linux/drivers/mtd/ubi/attach.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI attaching sub-system.
  23 *
  24 * This sub-system is responsible for attaching MTD devices and it also
  25 * implements flash media scanning.
  26 *
  27 * The attaching information is represented by a &struct ubi_attach_info'
  28 * object. Information about volumes is represented by &struct ubi_ainf_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  33 * objects are kept in per-volume RB-trees with the root at the corresponding
  34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  35 * per-volume objects and each of these objects is the root of RB-tree of
  36 * per-LEB objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 *
  42 * About corruptions
  43 * ~~~~~~~~~~~~~~~~~
  44 *
  45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  46 * whether the headers are corrupted or not. Sometimes UBI also protects the
  47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  48 * when it moves the contents of a PEB for wear-leveling purposes.
  49 *
  50 * UBI tries to distinguish between 2 types of corruptions.
  51 *
  52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  53 * tries to handle them gracefully, without printing too many warnings and
  54 * error messages. The idea is that we do not lose important data in these
  55 * cases - we may lose only the data which were being written to the media just
  56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  57 * supposed to handle such data losses (e.g., by using the FS journal).
  58 *
  59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  61 * PEBs in the @erase list are scheduled for erasure later.
  62 *
  63 * 2. Unexpected corruptions which are not caused by power cuts. During
  64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  65 * Obviously, this lessens the amount of available PEBs, and if at some  point
  66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  67 * about such PEBs every time the MTD device is attached.
  68 *
  69 * However, it is difficult to reliably distinguish between these types of
  70 * corruptions and UBI's strategy is as follows (in case of attaching by
  71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  72 * the data area does not contain all 0xFFs, and there were no bit-flips or
  73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  75 * are as follows.
  76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  77 *     to just erase this PEB - this is corruption type 1.
  78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  79 *     NAND), it is probably a PEB which was being erased when power cut
  80 *     happened, so this is corruption type 1. However, this is just a guess,
  81 *     which might be wrong.
  82 *   o Otherwise this is corruption type 2.
  83 */
  84
  85#include <linux/err.h>
  86#include <linux/slab.h>
  87#include <linux/crc32.h>
  88#include <linux/math64.h>
  89#include <linux/random.h>
  90#include "ubi.h"
  91
  92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  93
  94/* Temporary variables used during scanning */
  95static struct ubi_ec_hdr *ech;
  96static struct ubi_vid_hdr *vidh;
  97
  98/**
  99 * add_to_list - add physical eraseblock to a list.
 100 * @ai: attaching information
 101 * @pnum: physical eraseblock number to add
 102 * @vol_id: the last used volume id for the PEB
 103 * @lnum: the last used LEB number for the PEB
 104 * @ec: erase counter of the physical eraseblock
 105 * @to_head: if not zero, add to the head of the list
 106 * @list: the list to add to
 107 *
 108 * This function allocates a 'struct ubi_ainf_peb' object for physical
 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 110 * It stores the @lnum and @vol_id alongside, which can both be
 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 112 * If @to_head is not zero, PEB will be added to the head of the list, which
 113 * basically means it will be processed first later. E.g., we add corrupted
 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 115 * sure we erase them first and get rid of corruptions ASAP. This function
 116 * returns zero in case of success and a negative error code in case of
 117 * failure.
 118 */
 119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 120                       int lnum, int ec, int to_head, struct list_head *list)
 121{
 122        struct ubi_ainf_peb *aeb;
 123
 124        if (list == &ai->free) {
 125                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 126        } else if (list == &ai->erase) {
 127                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 128        } else if (list == &ai->alien) {
 129                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 130                ai->alien_peb_count += 1;
 131        } else
 132                BUG();
 133
 134        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 135        if (!aeb)
 136                return -ENOMEM;
 137
 138        aeb->pnum = pnum;
 139        aeb->vol_id = vol_id;
 140        aeb->lnum = lnum;
 141        aeb->ec = ec;
 142        if (to_head)
 143                list_add(&aeb->u.list, list);
 144        else
 145                list_add_tail(&aeb->u.list, list);
 146        return 0;
 147}
 148
 149/**
 150 * add_corrupted - add a corrupted physical eraseblock.
 151 * @ai: attaching information
 152 * @pnum: physical eraseblock number to add
 153 * @ec: erase counter of the physical eraseblock
 154 *
 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 156 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 157 * was presumably not caused by a power cut. Returns zero in case of success
 158 * and a negative error code in case of failure.
 159 */
 160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 161{
 162        struct ubi_ainf_peb *aeb;
 163
 164        dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 165
 166        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 167        if (!aeb)
 168                return -ENOMEM;
 169
 170        ai->corr_peb_count += 1;
 171        aeb->pnum = pnum;
 172        aeb->ec = ec;
 173        list_add(&aeb->u.list, &ai->corr);
 174        return 0;
 175}
 176
 177/**
 178 * validate_vid_hdr - check volume identifier header.
 179 * @ubi: UBI device description object
 180 * @vid_hdr: the volume identifier header to check
 181 * @av: information about the volume this logical eraseblock belongs to
 182 * @pnum: physical eraseblock number the VID header came from
 183 *
 184 * This function checks that data stored in @vid_hdr is consistent. Returns
 185 * non-zero if an inconsistency was found and zero if not.
 186 *
 187 * Note, UBI does sanity check of everything it reads from the flash media.
 188 * Most of the checks are done in the I/O sub-system. Here we check that the
 189 * information in the VID header is consistent to the information in other VID
 190 * headers of the same volume.
 191 */
 192static int validate_vid_hdr(const struct ubi_device *ubi,
 193                            const struct ubi_vid_hdr *vid_hdr,
 194                            const struct ubi_ainf_volume *av, int pnum)
 195{
 196        int vol_type = vid_hdr->vol_type;
 197        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 198        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 199        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 200
 201        if (av->leb_count != 0) {
 202                int av_vol_type;
 203
 204                /*
 205                 * This is not the first logical eraseblock belonging to this
 206                 * volume. Ensure that the data in its VID header is consistent
 207                 * to the data in previous logical eraseblock headers.
 208                 */
 209
 210                if (vol_id != av->vol_id) {
 211                        ubi_err(ubi, "inconsistent vol_id");
 212                        goto bad;
 213                }
 214
 215                if (av->vol_type == UBI_STATIC_VOLUME)
 216                        av_vol_type = UBI_VID_STATIC;
 217                else
 218                        av_vol_type = UBI_VID_DYNAMIC;
 219
 220                if (vol_type != av_vol_type) {
 221                        ubi_err(ubi, "inconsistent vol_type");
 222                        goto bad;
 223                }
 224
 225                if (used_ebs != av->used_ebs) {
 226                        ubi_err(ubi, "inconsistent used_ebs");
 227                        goto bad;
 228                }
 229
 230                if (data_pad != av->data_pad) {
 231                        ubi_err(ubi, "inconsistent data_pad");
 232                        goto bad;
 233                }
 234        }
 235
 236        return 0;
 237
 238bad:
 239        ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 240        ubi_dump_vid_hdr(vid_hdr);
 241        ubi_dump_av(av);
 242        return -EINVAL;
 243}
 244
 245/**
 246 * add_volume - add volume to the attaching information.
 247 * @ai: attaching information
 248 * @vol_id: ID of the volume to add
 249 * @pnum: physical eraseblock number
 250 * @vid_hdr: volume identifier header
 251 *
 252 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 253 * present in the attaching information, this function does nothing. Otherwise
 254 * it adds corresponding volume to the attaching information. Returns a pointer
 255 * to the allocated "av" object in case of success and a negative error code in
 256 * case of failure.
 257 */
 258static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 259                                          int vol_id, int pnum,
 260                                          const struct ubi_vid_hdr *vid_hdr)
 261{
 262        struct ubi_ainf_volume *av;
 263        struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 264
 265        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 266
 267        /* Walk the volume RB-tree to look if this volume is already present */
 268        while (*p) {
 269                parent = *p;
 270                av = rb_entry(parent, struct ubi_ainf_volume, rb);
 271
 272                if (vol_id == av->vol_id)
 273                        return av;
 274
 275                if (vol_id > av->vol_id)
 276                        p = &(*p)->rb_left;
 277                else
 278                        p = &(*p)->rb_right;
 279        }
 280
 281        /* The volume is absent - add it */
 282        av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 283        if (!av)
 284                return ERR_PTR(-ENOMEM);
 285
 286        av->highest_lnum = av->leb_count = 0;
 287        av->vol_id = vol_id;
 288        av->root = RB_ROOT;
 289        av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 290        av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 291        av->compat = vid_hdr->compat;
 292        av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 293                                                            : UBI_STATIC_VOLUME;
 294        if (vol_id > ai->highest_vol_id)
 295                ai->highest_vol_id = vol_id;
 296
 297        rb_link_node(&av->rb, parent, p);
 298        rb_insert_color(&av->rb, &ai->volumes);
 299        ai->vols_found += 1;
 300        dbg_bld("added volume %d", vol_id);
 301        return av;
 302}
 303
 304/**
 305 * ubi_compare_lebs - find out which logical eraseblock is newer.
 306 * @ubi: UBI device description object
 307 * @aeb: first logical eraseblock to compare
 308 * @pnum: physical eraseblock number of the second logical eraseblock to
 309 * compare
 310 * @vid_hdr: volume identifier header of the second logical eraseblock
 311 *
 312 * This function compares 2 copies of a LEB and informs which one is newer. In
 313 * case of success this function returns a positive value, in case of failure, a
 314 * negative error code is returned. The success return codes use the following
 315 * bits:
 316 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 317 *       second PEB (described by @pnum and @vid_hdr);
 318 *     o bit 0 is set: the second PEB is newer;
 319 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 320 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 321 *     o bit 2 is cleared: the older LEB is not corrupted;
 322 *     o bit 2 is set: the older LEB is corrupted.
 323 */
 324int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 325                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 326{
 327        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 328        uint32_t data_crc, crc;
 329        struct ubi_vid_hdr *vh = NULL;
 330        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 331
 332        if (sqnum2 == aeb->sqnum) {
 333                /*
 334                 * This must be a really ancient UBI image which has been
 335                 * created before sequence numbers support has been added. At
 336                 * that times we used 32-bit LEB versions stored in logical
 337                 * eraseblocks. That was before UBI got into mainline. We do not
 338                 * support these images anymore. Well, those images still work,
 339                 * but only if no unclean reboots happened.
 340                 */
 341                ubi_err(ubi, "unsupported on-flash UBI format");
 342                return -EINVAL;
 343        }
 344
 345        /* Obviously the LEB with lower sequence counter is older */
 346        second_is_newer = (sqnum2 > aeb->sqnum);
 347
 348        /*
 349         * Now we know which copy is newer. If the copy flag of the PEB with
 350         * newer version is not set, then we just return, otherwise we have to
 351         * check data CRC. For the second PEB we already have the VID header,
 352         * for the first one - we'll need to re-read it from flash.
 353         *
 354         * Note: this may be optimized so that we wouldn't read twice.
 355         */
 356
 357        if (second_is_newer) {
 358                if (!vid_hdr->copy_flag) {
 359                        /* It is not a copy, so it is newer */
 360                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 361                                pnum);
 362                        return 1;
 363                }
 364        } else {
 365                if (!aeb->copy_flag) {
 366                        /* It is not a copy, so it is newer */
 367                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 368                                pnum);
 369                        return bitflips << 1;
 370                }
 371
 372                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 373                if (!vh)
 374                        return -ENOMEM;
 375
 376                pnum = aeb->pnum;
 377                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 378                if (err) {
 379                        if (err == UBI_IO_BITFLIPS)
 380                                bitflips = 1;
 381                        else {
 382                                ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 383                                        pnum, err);
 384                                if (err > 0)
 385                                        err = -EIO;
 386
 387                                goto out_free_vidh;
 388                        }
 389                }
 390
 391                vid_hdr = vh;
 392        }
 393
 394        /* Read the data of the copy and check the CRC */
 395
 396        len = be32_to_cpu(vid_hdr->data_size);
 397
 398        mutex_lock(&ubi->buf_mutex);
 399        err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 400        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 401                goto out_unlock;
 402
 403        data_crc = be32_to_cpu(vid_hdr->data_crc);
 404        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 405        if (crc != data_crc) {
 406                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 407                        pnum, crc, data_crc);
 408                corrupted = 1;
 409                bitflips = 0;
 410                second_is_newer = !second_is_newer;
 411        } else {
 412                dbg_bld("PEB %d CRC is OK", pnum);
 413                bitflips |= !!err;
 414        }
 415        mutex_unlock(&ubi->buf_mutex);
 416
 417        ubi_free_vid_hdr(ubi, vh);
 418
 419        if (second_is_newer)
 420                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 421        else
 422                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 423
 424        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 425
 426out_unlock:
 427        mutex_unlock(&ubi->buf_mutex);
 428out_free_vidh:
 429        ubi_free_vid_hdr(ubi, vh);
 430        return err;
 431}
 432
 433/**
 434 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 435 * @ubi: UBI device description object
 436 * @ai: attaching information
 437 * @pnum: the physical eraseblock number
 438 * @ec: erase counter
 439 * @vid_hdr: the volume identifier header
 440 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 441 *
 442 * This function adds information about a used physical eraseblock to the
 443 * 'used' tree of the corresponding volume. The function is rather complex
 444 * because it has to handle cases when this is not the first physical
 445 * eraseblock belonging to the same logical eraseblock, and the newer one has
 446 * to be picked, while the older one has to be dropped. This function returns
 447 * zero in case of success and a negative error code in case of failure.
 448 */
 449int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 450                  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 451{
 452        int err, vol_id, lnum;
 453        unsigned long long sqnum;
 454        struct ubi_ainf_volume *av;
 455        struct ubi_ainf_peb *aeb;
 456        struct rb_node **p, *parent = NULL;
 457
 458        vol_id = be32_to_cpu(vid_hdr->vol_id);
 459        lnum = be32_to_cpu(vid_hdr->lnum);
 460        sqnum = be64_to_cpu(vid_hdr->sqnum);
 461
 462        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 463                pnum, vol_id, lnum, ec, sqnum, bitflips);
 464
 465        av = add_volume(ai, vol_id, pnum, vid_hdr);
 466        if (IS_ERR(av))
 467                return PTR_ERR(av);
 468
 469        if (ai->max_sqnum < sqnum)
 470                ai->max_sqnum = sqnum;
 471
 472        /*
 473         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 474         * if this is the first instance of this logical eraseblock or not.
 475         */
 476        p = &av->root.rb_node;
 477        while (*p) {
 478                int cmp_res;
 479
 480                parent = *p;
 481                aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 482                if (lnum != aeb->lnum) {
 483                        if (lnum < aeb->lnum)
 484                                p = &(*p)->rb_left;
 485                        else
 486                                p = &(*p)->rb_right;
 487                        continue;
 488                }
 489
 490                /*
 491                 * There is already a physical eraseblock describing the same
 492                 * logical eraseblock present.
 493                 */
 494
 495                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 496                        aeb->pnum, aeb->sqnum, aeb->ec);
 497
 498                /*
 499                 * Make sure that the logical eraseblocks have different
 500                 * sequence numbers. Otherwise the image is bad.
 501                 *
 502                 * However, if the sequence number is zero, we assume it must
 503                 * be an ancient UBI image from the era when UBI did not have
 504                 * sequence numbers. We still can attach these images, unless
 505                 * there is a need to distinguish between old and new
 506                 * eraseblocks, in which case we'll refuse the image in
 507                 * 'ubi_compare_lebs()'. In other words, we attach old clean
 508                 * images, but refuse attaching old images with duplicated
 509                 * logical eraseblocks because there was an unclean reboot.
 510                 */
 511                if (aeb->sqnum == sqnum && sqnum != 0) {
 512                        ubi_err(ubi, "two LEBs with same sequence number %llu",
 513                                sqnum);
 514                        ubi_dump_aeb(aeb, 0);
 515                        ubi_dump_vid_hdr(vid_hdr);
 516                        return -EINVAL;
 517                }
 518
 519                /*
 520                 * Now we have to drop the older one and preserve the newer
 521                 * one.
 522                 */
 523                cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 524                if (cmp_res < 0)
 525                        return cmp_res;
 526
 527                if (cmp_res & 1) {
 528                        /*
 529                         * This logical eraseblock is newer than the one
 530                         * found earlier.
 531                         */
 532                        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 533                        if (err)
 534                                return err;
 535
 536                        err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 537                                          aeb->lnum, aeb->ec, cmp_res & 4,
 538                                          &ai->erase);
 539                        if (err)
 540                                return err;
 541
 542                        aeb->ec = ec;
 543                        aeb->pnum = pnum;
 544                        aeb->vol_id = vol_id;
 545                        aeb->lnum = lnum;
 546                        aeb->scrub = ((cmp_res & 2) || bitflips);
 547                        aeb->copy_flag = vid_hdr->copy_flag;
 548                        aeb->sqnum = sqnum;
 549
 550                        if (av->highest_lnum == lnum)
 551                                av->last_data_size =
 552                                        be32_to_cpu(vid_hdr->data_size);
 553
 554                        return 0;
 555                } else {
 556                        /*
 557                         * This logical eraseblock is older than the one found
 558                         * previously.
 559                         */
 560                        return add_to_list(ai, pnum, vol_id, lnum, ec,
 561                                           cmp_res & 4, &ai->erase);
 562                }
 563        }
 564
 565        /*
 566         * We've met this logical eraseblock for the first time, add it to the
 567         * attaching information.
 568         */
 569
 570        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 571        if (err)
 572                return err;
 573
 574        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 575        if (!aeb)
 576                return -ENOMEM;
 577
 578        aeb->ec = ec;
 579        aeb->pnum = pnum;
 580        aeb->vol_id = vol_id;
 581        aeb->lnum = lnum;
 582        aeb->scrub = bitflips;
 583        aeb->copy_flag = vid_hdr->copy_flag;
 584        aeb->sqnum = sqnum;
 585
 586        if (av->highest_lnum <= lnum) {
 587                av->highest_lnum = lnum;
 588                av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 589        }
 590
 591        av->leb_count += 1;
 592        rb_link_node(&aeb->u.rb, parent, p);
 593        rb_insert_color(&aeb->u.rb, &av->root);
 594        return 0;
 595}
 596
 597/**
 598 * ubi_find_av - find volume in the attaching information.
 599 * @ai: attaching information
 600 * @vol_id: the requested volume ID
 601 *
 602 * This function returns a pointer to the volume description or %NULL if there
 603 * are no data about this volume in the attaching information.
 604 */
 605struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 606                                    int vol_id)
 607{
 608        struct ubi_ainf_volume *av;
 609        struct rb_node *p = ai->volumes.rb_node;
 610
 611        while (p) {
 612                av = rb_entry(p, struct ubi_ainf_volume, rb);
 613
 614                if (vol_id == av->vol_id)
 615                        return av;
 616
 617                if (vol_id > av->vol_id)
 618                        p = p->rb_left;
 619                else
 620                        p = p->rb_right;
 621        }
 622
 623        return NULL;
 624}
 625
 626/**
 627 * ubi_remove_av - delete attaching information about a volume.
 628 * @ai: attaching information
 629 * @av: the volume attaching information to delete
 630 */
 631void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 632{
 633        struct rb_node *rb;
 634        struct ubi_ainf_peb *aeb;
 635
 636        dbg_bld("remove attaching information about volume %d", av->vol_id);
 637
 638        while ((rb = rb_first(&av->root))) {
 639                aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 640                rb_erase(&aeb->u.rb, &av->root);
 641                list_add_tail(&aeb->u.list, &ai->erase);
 642        }
 643
 644        rb_erase(&av->rb, &ai->volumes);
 645        kfree(av);
 646        ai->vols_found -= 1;
 647}
 648
 649/**
 650 * early_erase_peb - erase a physical eraseblock.
 651 * @ubi: UBI device description object
 652 * @ai: attaching information
 653 * @pnum: physical eraseblock number to erase;
 654 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 655 *
 656 * This function erases physical eraseblock 'pnum', and writes the erase
 657 * counter header to it. This function should only be used on UBI device
 658 * initialization stages, when the EBA sub-system had not been yet initialized.
 659 * This function returns zero in case of success and a negative error code in
 660 * case of failure.
 661 */
 662static int early_erase_peb(struct ubi_device *ubi,
 663                           const struct ubi_attach_info *ai, int pnum, int ec)
 664{
 665        int err;
 666        struct ubi_ec_hdr *ec_hdr;
 667
 668        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 669                /*
 670                 * Erase counter overflow. Upgrade UBI and use 64-bit
 671                 * erase counters internally.
 672                 */
 673                ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 674                        pnum, ec);
 675                return -EINVAL;
 676        }
 677
 678        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 679        if (!ec_hdr)
 680                return -ENOMEM;
 681
 682        ec_hdr->ec = cpu_to_be64(ec);
 683
 684        err = ubi_io_sync_erase(ubi, pnum, 0);
 685        if (err < 0)
 686                goto out_free;
 687
 688        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 689
 690out_free:
 691        kfree(ec_hdr);
 692        return err;
 693}
 694
 695/**
 696 * ubi_early_get_peb - get a free physical eraseblock.
 697 * @ubi: UBI device description object
 698 * @ai: attaching information
 699 *
 700 * This function returns a free physical eraseblock. It is supposed to be
 701 * called on the UBI initialization stages when the wear-leveling sub-system is
 702 * not initialized yet. This function picks a physical eraseblocks from one of
 703 * the lists, writes the EC header if it is needed, and removes it from the
 704 * list.
 705 *
 706 * This function returns a pointer to the "aeb" of the found free PEB in case
 707 * of success and an error code in case of failure.
 708 */
 709struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 710                                       struct ubi_attach_info *ai)
 711{
 712        int err = 0;
 713        struct ubi_ainf_peb *aeb, *tmp_aeb;
 714
 715        if (!list_empty(&ai->free)) {
 716                aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 717                list_del(&aeb->u.list);
 718                dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 719                return aeb;
 720        }
 721
 722        /*
 723         * We try to erase the first physical eraseblock from the erase list
 724         * and pick it if we succeed, or try to erase the next one if not. And
 725         * so forth. We don't want to take care about bad eraseblocks here -
 726         * they'll be handled later.
 727         */
 728        list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 729                if (aeb->ec == UBI_UNKNOWN)
 730                        aeb->ec = ai->mean_ec;
 731
 732                err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 733                if (err)
 734                        continue;
 735
 736                aeb->ec += 1;
 737                list_del(&aeb->u.list);
 738                dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 739                return aeb;
 740        }
 741
 742        ubi_err(ubi, "no free eraseblocks");
 743        return ERR_PTR(-ENOSPC);
 744}
 745
 746/**
 747 * check_corruption - check the data area of PEB.
 748 * @ubi: UBI device description object
 749 * @vid_hdr: the (corrupted) VID header of this PEB
 750 * @pnum: the physical eraseblock number to check
 751 *
 752 * This is a helper function which is used to distinguish between VID header
 753 * corruptions caused by power cuts and other reasons. If the PEB contains only
 754 * 0xFF bytes in the data area, the VID header is most probably corrupted
 755 * because of a power cut (%0 is returned in this case). Otherwise, it was
 756 * probably corrupted for some other reasons (%1 is returned in this case). A
 757 * negative error code is returned if a read error occurred.
 758 *
 759 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 760 * Otherwise, it should preserve it to avoid possibly destroying important
 761 * information.
 762 */
 763static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 764                            int pnum)
 765{
 766        int err;
 767
 768        mutex_lock(&ubi->buf_mutex);
 769        memset(ubi->peb_buf, 0x00, ubi->leb_size);
 770
 771        err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 772                          ubi->leb_size);
 773        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 774                /*
 775                 * Bit-flips or integrity errors while reading the data area.
 776                 * It is difficult to say for sure what type of corruption is
 777                 * this, but presumably a power cut happened while this PEB was
 778                 * erased, so it became unstable and corrupted, and should be
 779                 * erased.
 780                 */
 781                err = 0;
 782                goto out_unlock;
 783        }
 784
 785        if (err)
 786                goto out_unlock;
 787
 788        if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 789                goto out_unlock;
 790
 791        ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 792                pnum);
 793        ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 794        ubi_dump_vid_hdr(vid_hdr);
 795        pr_err("hexdump of PEB %d offset %d, length %d",
 796               pnum, ubi->leb_start, ubi->leb_size);
 797        ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 798                               ubi->peb_buf, ubi->leb_size, 1);
 799        err = 1;
 800
 801out_unlock:
 802        mutex_unlock(&ubi->buf_mutex);
 803        return err;
 804}
 805
 806/**
 807 * scan_peb - scan and process UBI headers of a PEB.
 808 * @ubi: UBI device description object
 809 * @ai: attaching information
 810 * @pnum: the physical eraseblock number
 811 * @vid: The volume ID of the found volume will be stored in this pointer
 812 * @sqnum: The sqnum of the found volume will be stored in this pointer
 813 *
 814 * This function reads UBI headers of PEB @pnum, checks them, and adds
 815 * information about this PEB to the corresponding list or RB-tree in the
 816 * "attaching info" structure. Returns zero if the physical eraseblock was
 817 * successfully handled and a negative error code in case of failure.
 818 */
 819static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 820                    int pnum, int *vid, unsigned long long *sqnum)
 821{
 822        long long uninitialized_var(ec);
 823        int err, bitflips = 0, vol_id = -1, ec_err = 0;
 824
 825        dbg_bld("scan PEB %d", pnum);
 826
 827        /* Skip bad physical eraseblocks */
 828        err = ubi_io_is_bad(ubi, pnum);
 829        if (err < 0)
 830                return err;
 831        else if (err) {
 832                ai->bad_peb_count += 1;
 833                return 0;
 834        }
 835
 836        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 837        if (err < 0)
 838                return err;
 839        switch (err) {
 840        case 0:
 841                break;
 842        case UBI_IO_BITFLIPS:
 843                bitflips = 1;
 844                break;
 845        case UBI_IO_FF:
 846                ai->empty_peb_count += 1;
 847                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 848                                   UBI_UNKNOWN, 0, &ai->erase);
 849        case UBI_IO_FF_BITFLIPS:
 850                ai->empty_peb_count += 1;
 851                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 852                                   UBI_UNKNOWN, 1, &ai->erase);
 853        case UBI_IO_BAD_HDR_EBADMSG:
 854        case UBI_IO_BAD_HDR:
 855                /*
 856                 * We have to also look at the VID header, possibly it is not
 857                 * corrupted. Set %bitflips flag in order to make this PEB be
 858                 * moved and EC be re-created.
 859                 */
 860                ec_err = err;
 861                ec = UBI_UNKNOWN;
 862                bitflips = 1;
 863                break;
 864        default:
 865                ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 866                        err);
 867                return -EINVAL;
 868        }
 869
 870        if (!ec_err) {
 871                int image_seq;
 872
 873                /* Make sure UBI version is OK */
 874                if (ech->version != UBI_VERSION) {
 875                        ubi_err(ubi, "this UBI version is %d, image version is %d",
 876                                UBI_VERSION, (int)ech->version);
 877                        return -EINVAL;
 878                }
 879
 880                ec = be64_to_cpu(ech->ec);
 881                if (ec > UBI_MAX_ERASECOUNTER) {
 882                        /*
 883                         * Erase counter overflow. The EC headers have 64 bits
 884                         * reserved, but we anyway make use of only 31 bit
 885                         * values, as this seems to be enough for any existing
 886                         * flash. Upgrade UBI and use 64-bit erase counters
 887                         * internally.
 888                         */
 889                        ubi_err(ubi, "erase counter overflow, max is %d",
 890                                UBI_MAX_ERASECOUNTER);
 891                        ubi_dump_ec_hdr(ech);
 892                        return -EINVAL;
 893                }
 894
 895                /*
 896                 * Make sure that all PEBs have the same image sequence number.
 897                 * This allows us to detect situations when users flash UBI
 898                 * images incorrectly, so that the flash has the new UBI image
 899                 * and leftovers from the old one. This feature was added
 900                 * relatively recently, and the sequence number was always
 901                 * zero, because old UBI implementations always set it to zero.
 902                 * For this reasons, we do not panic if some PEBs have zero
 903                 * sequence number, while other PEBs have non-zero sequence
 904                 * number.
 905                 */
 906                image_seq = be32_to_cpu(ech->image_seq);
 907                if (!ubi->image_seq)
 908                        ubi->image_seq = image_seq;
 909                if (image_seq && ubi->image_seq != image_seq) {
 910                        ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
 911                                image_seq, pnum, ubi->image_seq);
 912                        ubi_dump_ec_hdr(ech);
 913                        return -EINVAL;
 914                }
 915        }
 916
 917        /* OK, we've done with the EC header, let's look at the VID header */
 918
 919        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 920        if (err < 0)
 921                return err;
 922        switch (err) {
 923        case 0:
 924                break;
 925        case UBI_IO_BITFLIPS:
 926                bitflips = 1;
 927                break;
 928        case UBI_IO_BAD_HDR_EBADMSG:
 929                if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 930                        /*
 931                         * Both EC and VID headers are corrupted and were read
 932                         * with data integrity error, probably this is a bad
 933                         * PEB, bit it is not marked as bad yet. This may also
 934                         * be a result of power cut during erasure.
 935                         */
 936                        ai->maybe_bad_peb_count += 1;
 937        case UBI_IO_BAD_HDR:
 938                if (ec_err)
 939                        /*
 940                         * Both headers are corrupted. There is a possibility
 941                         * that this a valid UBI PEB which has corresponding
 942                         * LEB, but the headers are corrupted. However, it is
 943                         * impossible to distinguish it from a PEB which just
 944                         * contains garbage because of a power cut during erase
 945                         * operation. So we just schedule this PEB for erasure.
 946                         *
 947                         * Besides, in case of NOR flash, we deliberately
 948                         * corrupt both headers because NOR flash erasure is
 949                         * slow and can start from the end.
 950                         */
 951                        err = 0;
 952                else
 953                        /*
 954                         * The EC was OK, but the VID header is corrupted. We
 955                         * have to check what is in the data area.
 956                         */
 957                        err = check_corruption(ubi, vidh, pnum);
 958
 959                if (err < 0)
 960                        return err;
 961                else if (!err)
 962                        /* This corruption is caused by a power cut */
 963                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 964                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 965                else
 966                        /* This is an unexpected corruption */
 967                        err = add_corrupted(ai, pnum, ec);
 968                if (err)
 969                        return err;
 970                goto adjust_mean_ec;
 971        case UBI_IO_FF_BITFLIPS:
 972                err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 973                                  ec, 1, &ai->erase);
 974                if (err)
 975                        return err;
 976                goto adjust_mean_ec;
 977        case UBI_IO_FF:
 978                if (ec_err || bitflips)
 979                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 980                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 981                else
 982                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 983                                          UBI_UNKNOWN, ec, 0, &ai->free);
 984                if (err)
 985                        return err;
 986                goto adjust_mean_ec;
 987        default:
 988                ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
 989                        err);
 990                return -EINVAL;
 991        }
 992
 993        vol_id = be32_to_cpu(vidh->vol_id);
 994        if (vid)
 995                *vid = vol_id;
 996        if (sqnum)
 997                *sqnum = be64_to_cpu(vidh->sqnum);
 998        if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 999                int lnum = be32_to_cpu(vidh->lnum);
1000
1001                /* Unsupported internal volume */
1002                switch (vidh->compat) {
1003                case UBI_COMPAT_DELETE:
1004                        if (vol_id != UBI_FM_SB_VOLUME_ID
1005                            && vol_id != UBI_FM_DATA_VOLUME_ID) {
1006                                ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1007                                        vol_id, lnum);
1008                        }
1009                        err = add_to_list(ai, pnum, vol_id, lnum,
1010                                          ec, 1, &ai->erase);
1011                        if (err)
1012                                return err;
1013                        return 0;
1014
1015                case UBI_COMPAT_RO:
1016                        ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1017                                vol_id, lnum);
1018                        ubi->ro_mode = 1;
1019                        break;
1020
1021                case UBI_COMPAT_PRESERVE:
1022                        ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1023                                vol_id, lnum);
1024                        err = add_to_list(ai, pnum, vol_id, lnum,
1025                                          ec, 0, &ai->alien);
1026                        if (err)
1027                                return err;
1028                        return 0;
1029
1030                case UBI_COMPAT_REJECT:
1031                        ubi_err(ubi, "incompatible internal volume %d:%d found",
1032                                vol_id, lnum);
1033                        return -EINVAL;
1034                }
1035        }
1036
1037        if (ec_err)
1038                ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1039                         pnum);
1040        err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1041        if (err)
1042                return err;
1043
1044adjust_mean_ec:
1045        if (!ec_err) {
1046                ai->ec_sum += ec;
1047                ai->ec_count += 1;
1048                if (ec > ai->max_ec)
1049                        ai->max_ec = ec;
1050                if (ec < ai->min_ec)
1051                        ai->min_ec = ec;
1052        }
1053
1054        return 0;
1055}
1056
1057/**
1058 * late_analysis - analyze the overall situation with PEB.
1059 * @ubi: UBI device description object
1060 * @ai: attaching information
1061 *
1062 * This is a helper function which takes a look what PEBs we have after we
1063 * gather information about all of them ("ai" is compete). It decides whether
1064 * the flash is empty and should be formatted of whether there are too many
1065 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1066 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1067 */
1068static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1069{
1070        struct ubi_ainf_peb *aeb;
1071        int max_corr, peb_count;
1072
1073        peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1074        max_corr = peb_count / 20 ?: 8;
1075
1076        /*
1077         * Few corrupted PEBs is not a problem and may be just a result of
1078         * unclean reboots. However, many of them may indicate some problems
1079         * with the flash HW or driver.
1080         */
1081        if (ai->corr_peb_count) {
1082                ubi_err(ubi, "%d PEBs are corrupted and preserved",
1083                        ai->corr_peb_count);
1084                pr_err("Corrupted PEBs are:");
1085                list_for_each_entry(aeb, &ai->corr, u.list)
1086                        pr_cont(" %d", aeb->pnum);
1087                pr_cont("\n");
1088
1089                /*
1090                 * If too many PEBs are corrupted, we refuse attaching,
1091                 * otherwise, only print a warning.
1092                 */
1093                if (ai->corr_peb_count >= max_corr) {
1094                        ubi_err(ubi, "too many corrupted PEBs, refusing");
1095                        return -EINVAL;
1096                }
1097        }
1098
1099        if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1100                /*
1101                 * All PEBs are empty, or almost all - a couple PEBs look like
1102                 * they may be bad PEBs which were not marked as bad yet.
1103                 *
1104                 * This piece of code basically tries to distinguish between
1105                 * the following situations:
1106                 *
1107                 * 1. Flash is empty, but there are few bad PEBs, which are not
1108                 *    marked as bad so far, and which were read with error. We
1109                 *    want to go ahead and format this flash. While formatting,
1110                 *    the faulty PEBs will probably be marked as bad.
1111                 *
1112                 * 2. Flash contains non-UBI data and we do not want to format
1113                 *    it and destroy possibly important information.
1114                 */
1115                if (ai->maybe_bad_peb_count <= 2) {
1116                        ai->is_empty = 1;
1117                        ubi_msg(ubi, "empty MTD device detected");
1118                        get_random_bytes(&ubi->image_seq,
1119                                         sizeof(ubi->image_seq));
1120                } else {
1121                        ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1122                        return -EINVAL;
1123                }
1124
1125        }
1126
1127        return 0;
1128}
1129
1130/**
1131 * destroy_av - free volume attaching information.
1132 * @av: volume attaching information
1133 * @ai: attaching information
1134 *
1135 * This function destroys the volume attaching information.
1136 */
1137static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1138{
1139        struct ubi_ainf_peb *aeb;
1140        struct rb_node *this = av->root.rb_node;
1141
1142        while (this) {
1143                if (this->rb_left)
1144                        this = this->rb_left;
1145                else if (this->rb_right)
1146                        this = this->rb_right;
1147                else {
1148                        aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1149                        this = rb_parent(this);
1150                        if (this) {
1151                                if (this->rb_left == &aeb->u.rb)
1152                                        this->rb_left = NULL;
1153                                else
1154                                        this->rb_right = NULL;
1155                        }
1156
1157                        kmem_cache_free(ai->aeb_slab_cache, aeb);
1158                }
1159        }
1160        kfree(av);
1161}
1162
1163/**
1164 * destroy_ai - destroy attaching information.
1165 * @ai: attaching information
1166 */
1167static void destroy_ai(struct ubi_attach_info *ai)
1168{
1169        struct ubi_ainf_peb *aeb, *aeb_tmp;
1170        struct ubi_ainf_volume *av;
1171        struct rb_node *rb;
1172
1173        list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1174                list_del(&aeb->u.list);
1175                kmem_cache_free(ai->aeb_slab_cache, aeb);
1176        }
1177        list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1178                list_del(&aeb->u.list);
1179                kmem_cache_free(ai->aeb_slab_cache, aeb);
1180        }
1181        list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1182                list_del(&aeb->u.list);
1183                kmem_cache_free(ai->aeb_slab_cache, aeb);
1184        }
1185        list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1186                list_del(&aeb->u.list);
1187                kmem_cache_free(ai->aeb_slab_cache, aeb);
1188        }
1189
1190        /* Destroy the volume RB-tree */
1191        rb = ai->volumes.rb_node;
1192        while (rb) {
1193                if (rb->rb_left)
1194                        rb = rb->rb_left;
1195                else if (rb->rb_right)
1196                        rb = rb->rb_right;
1197                else {
1198                        av = rb_entry(rb, struct ubi_ainf_volume, rb);
1199
1200                        rb = rb_parent(rb);
1201                        if (rb) {
1202                                if (rb->rb_left == &av->rb)
1203                                        rb->rb_left = NULL;
1204                                else
1205                                        rb->rb_right = NULL;
1206                        }
1207
1208                        destroy_av(ai, av);
1209                }
1210        }
1211
1212        if (ai->aeb_slab_cache)
1213                kmem_cache_destroy(ai->aeb_slab_cache);
1214
1215        kfree(ai);
1216}
1217
1218/**
1219 * scan_all - scan entire MTD device.
1220 * @ubi: UBI device description object
1221 * @ai: attach info object
1222 * @start: start scanning at this PEB
1223 *
1224 * This function does full scanning of an MTD device and returns complete
1225 * information about it in form of a "struct ubi_attach_info" object. In case
1226 * of failure, an error code is returned.
1227 */
1228static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1229                    int start)
1230{
1231        int err, pnum;
1232        struct rb_node *rb1, *rb2;
1233        struct ubi_ainf_volume *av;
1234        struct ubi_ainf_peb *aeb;
1235
1236        err = -ENOMEM;
1237
1238        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1239        if (!ech)
1240                return err;
1241
1242        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1243        if (!vidh)
1244                goto out_ech;
1245
1246        for (pnum = start; pnum < ubi->peb_count; pnum++) {
1247                cond_resched();
1248
1249                dbg_gen("process PEB %d", pnum);
1250                err = scan_peb(ubi, ai, pnum, NULL, NULL);
1251                if (err < 0)
1252                        goto out_vidh;
1253        }
1254
1255        ubi_msg(ubi, "scanning is finished");
1256
1257        /* Calculate mean erase counter */
1258        if (ai->ec_count)
1259                ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1260
1261        err = late_analysis(ubi, ai);
1262        if (err)
1263                goto out_vidh;
1264
1265        /*
1266         * In case of unknown erase counter we use the mean erase counter
1267         * value.
1268         */
1269        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1270                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1271                        if (aeb->ec == UBI_UNKNOWN)
1272                                aeb->ec = ai->mean_ec;
1273        }
1274
1275        list_for_each_entry(aeb, &ai->free, u.list) {
1276                if (aeb->ec == UBI_UNKNOWN)
1277                        aeb->ec = ai->mean_ec;
1278        }
1279
1280        list_for_each_entry(aeb, &ai->corr, u.list)
1281                if (aeb->ec == UBI_UNKNOWN)
1282                        aeb->ec = ai->mean_ec;
1283
1284        list_for_each_entry(aeb, &ai->erase, u.list)
1285                if (aeb->ec == UBI_UNKNOWN)
1286                        aeb->ec = ai->mean_ec;
1287
1288        err = self_check_ai(ubi, ai);
1289        if (err)
1290                goto out_vidh;
1291
1292        ubi_free_vid_hdr(ubi, vidh);
1293        kfree(ech);
1294
1295        return 0;
1296
1297out_vidh:
1298        ubi_free_vid_hdr(ubi, vidh);
1299out_ech:
1300        kfree(ech);
1301        return err;
1302}
1303
1304static struct ubi_attach_info *alloc_ai(void)
1305{
1306        struct ubi_attach_info *ai;
1307
1308        ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1309        if (!ai)
1310                return ai;
1311
1312        INIT_LIST_HEAD(&ai->corr);
1313        INIT_LIST_HEAD(&ai->free);
1314        INIT_LIST_HEAD(&ai->erase);
1315        INIT_LIST_HEAD(&ai->alien);
1316        ai->volumes = RB_ROOT;
1317        ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1318                                               sizeof(struct ubi_ainf_peb),
1319                                               0, 0, NULL);
1320        if (!ai->aeb_slab_cache) {
1321                kfree(ai);
1322                ai = NULL;
1323        }
1324
1325        return ai;
1326}
1327
1328#ifdef CONFIG_MTD_UBI_FASTMAP
1329
1330/**
1331 * scan_fastmap - try to find a fastmap and attach from it.
1332 * @ubi: UBI device description object
1333 * @ai: attach info object
1334 *
1335 * Returns 0 on success, negative return values indicate an internal
1336 * error.
1337 * UBI_NO_FASTMAP denotes that no fastmap was found.
1338 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1339 */
1340static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1341{
1342        int err, pnum, fm_anchor = -1;
1343        unsigned long long max_sqnum = 0;
1344
1345        err = -ENOMEM;
1346
1347        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1348        if (!ech)
1349                goto out;
1350
1351        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1352        if (!vidh)
1353                goto out_ech;
1354
1355        for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1356                int vol_id = -1;
1357                unsigned long long sqnum = -1;
1358                cond_resched();
1359
1360                dbg_gen("process PEB %d", pnum);
1361                err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1362                if (err < 0)
1363                        goto out_vidh;
1364
1365                if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1366                        max_sqnum = sqnum;
1367                        fm_anchor = pnum;
1368                }
1369        }
1370
1371        ubi_free_vid_hdr(ubi, vidh);
1372        kfree(ech);
1373
1374        if (fm_anchor < 0)
1375                return UBI_NO_FASTMAP;
1376
1377        destroy_ai(*ai);
1378        *ai = alloc_ai();
1379        if (!*ai)
1380                return -ENOMEM;
1381
1382        return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1383
1384out_vidh:
1385        ubi_free_vid_hdr(ubi, vidh);
1386out_ech:
1387        kfree(ech);
1388out:
1389        return err;
1390}
1391
1392#endif
1393
1394/**
1395 * ubi_attach - attach an MTD device.
1396 * @ubi: UBI device descriptor
1397 * @force_scan: if set to non-zero attach by scanning
1398 *
1399 * This function returns zero in case of success and a negative error code in
1400 * case of failure.
1401 */
1402int ubi_attach(struct ubi_device *ubi, int force_scan)
1403{
1404        int err;
1405        struct ubi_attach_info *ai;
1406
1407        ai = alloc_ai();
1408        if (!ai)
1409                return -ENOMEM;
1410
1411#ifdef CONFIG_MTD_UBI_FASTMAP
1412        /* On small flash devices we disable fastmap in any case. */
1413        if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1414                ubi->fm_disabled = 1;
1415                force_scan = 1;
1416        }
1417
1418        if (force_scan)
1419                err = scan_all(ubi, ai, 0);
1420        else {
1421                err = scan_fast(ubi, &ai);
1422                if (err > 0 || mtd_is_eccerr(err)) {
1423                        if (err != UBI_NO_FASTMAP) {
1424                                destroy_ai(ai);
1425                                ai = alloc_ai();
1426                                if (!ai)
1427                                        return -ENOMEM;
1428
1429                                err = scan_all(ubi, ai, 0);
1430                        } else {
1431                                err = scan_all(ubi, ai, UBI_FM_MAX_START);
1432                        }
1433                }
1434        }
1435#else
1436        err = scan_all(ubi, ai, 0);
1437#endif
1438        if (err)
1439                goto out_ai;
1440
1441        ubi->bad_peb_count = ai->bad_peb_count;
1442        ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1443        ubi->corr_peb_count = ai->corr_peb_count;
1444        ubi->max_ec = ai->max_ec;
1445        ubi->mean_ec = ai->mean_ec;
1446        dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1447
1448        err = ubi_read_volume_table(ubi, ai);
1449        if (err)
1450                goto out_ai;
1451
1452        err = ubi_wl_init(ubi, ai);
1453        if (err)
1454                goto out_vtbl;
1455
1456        err = ubi_eba_init(ubi, ai);
1457        if (err)
1458                goto out_wl;
1459
1460#ifdef CONFIG_MTD_UBI_FASTMAP
1461        if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1462                struct ubi_attach_info *scan_ai;
1463
1464                scan_ai = alloc_ai();
1465                if (!scan_ai) {
1466                        err = -ENOMEM;
1467                        goto out_wl;
1468                }
1469
1470                err = scan_all(ubi, scan_ai, 0);
1471                if (err) {
1472                        destroy_ai(scan_ai);
1473                        goto out_wl;
1474                }
1475
1476                err = self_check_eba(ubi, ai, scan_ai);
1477                destroy_ai(scan_ai);
1478
1479                if (err)
1480                        goto out_wl;
1481        }
1482#endif
1483
1484        destroy_ai(ai);
1485        return 0;
1486
1487out_wl:
1488        ubi_wl_close(ubi);
1489out_vtbl:
1490        ubi_free_internal_volumes(ubi);
1491        vfree(ubi->vtbl);
1492out_ai:
1493        destroy_ai(ai);
1494        return err;
1495}
1496
1497/**
1498 * self_check_ai - check the attaching information.
1499 * @ubi: UBI device description object
1500 * @ai: attaching information
1501 *
1502 * This function returns zero if the attaching information is all right, and a
1503 * negative error code if not or if an error occurred.
1504 */
1505static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1506{
1507        int pnum, err, vols_found = 0;
1508        struct rb_node *rb1, *rb2;
1509        struct ubi_ainf_volume *av;
1510        struct ubi_ainf_peb *aeb, *last_aeb;
1511        uint8_t *buf;
1512
1513        if (!ubi_dbg_chk_gen(ubi))
1514                return 0;
1515
1516        /*
1517         * At first, check that attaching information is OK.
1518         */
1519        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1520                int leb_count = 0;
1521
1522                cond_resched();
1523
1524                vols_found += 1;
1525
1526                if (ai->is_empty) {
1527                        ubi_err(ubi, "bad is_empty flag");
1528                        goto bad_av;
1529                }
1530
1531                if (av->vol_id < 0 || av->highest_lnum < 0 ||
1532                    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1533                    av->data_pad < 0 || av->last_data_size < 0) {
1534                        ubi_err(ubi, "negative values");
1535                        goto bad_av;
1536                }
1537
1538                if (av->vol_id >= UBI_MAX_VOLUMES &&
1539                    av->vol_id < UBI_INTERNAL_VOL_START) {
1540                        ubi_err(ubi, "bad vol_id");
1541                        goto bad_av;
1542                }
1543
1544                if (av->vol_id > ai->highest_vol_id) {
1545                        ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1546                                ai->highest_vol_id, av->vol_id);
1547                        goto out;
1548                }
1549
1550                if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1551                    av->vol_type != UBI_STATIC_VOLUME) {
1552                        ubi_err(ubi, "bad vol_type");
1553                        goto bad_av;
1554                }
1555
1556                if (av->data_pad > ubi->leb_size / 2) {
1557                        ubi_err(ubi, "bad data_pad");
1558                        goto bad_av;
1559                }
1560
1561                last_aeb = NULL;
1562                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1563                        cond_resched();
1564
1565                        last_aeb = aeb;
1566                        leb_count += 1;
1567
1568                        if (aeb->pnum < 0 || aeb->ec < 0) {
1569                                ubi_err(ubi, "negative values");
1570                                goto bad_aeb;
1571                        }
1572
1573                        if (aeb->ec < ai->min_ec) {
1574                                ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1575                                        ai->min_ec, aeb->ec);
1576                                goto bad_aeb;
1577                        }
1578
1579                        if (aeb->ec > ai->max_ec) {
1580                                ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1581                                        ai->max_ec, aeb->ec);
1582                                goto bad_aeb;
1583                        }
1584
1585                        if (aeb->pnum >= ubi->peb_count) {
1586                                ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1587                                        aeb->pnum, ubi->peb_count);
1588                                goto bad_aeb;
1589                        }
1590
1591                        if (av->vol_type == UBI_STATIC_VOLUME) {
1592                                if (aeb->lnum >= av->used_ebs) {
1593                                        ubi_err(ubi, "bad lnum or used_ebs");
1594                                        goto bad_aeb;
1595                                }
1596                        } else {
1597                                if (av->used_ebs != 0) {
1598                                        ubi_err(ubi, "non-zero used_ebs");
1599                                        goto bad_aeb;
1600                                }
1601                        }
1602
1603                        if (aeb->lnum > av->highest_lnum) {
1604                                ubi_err(ubi, "incorrect highest_lnum or lnum");
1605                                goto bad_aeb;
1606                        }
1607                }
1608
1609                if (av->leb_count != leb_count) {
1610                        ubi_err(ubi, "bad leb_count, %d objects in the tree",
1611                                leb_count);
1612                        goto bad_av;
1613                }
1614
1615                if (!last_aeb)
1616                        continue;
1617
1618                aeb = last_aeb;
1619
1620                if (aeb->lnum != av->highest_lnum) {
1621                        ubi_err(ubi, "bad highest_lnum");
1622                        goto bad_aeb;
1623                }
1624        }
1625
1626        if (vols_found != ai->vols_found) {
1627                ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1628                        ai->vols_found, vols_found);
1629                goto out;
1630        }
1631
1632        /* Check that attaching information is correct */
1633        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1634                last_aeb = NULL;
1635                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1636                        int vol_type;
1637
1638                        cond_resched();
1639
1640                        last_aeb = aeb;
1641
1642                        err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1643                        if (err && err != UBI_IO_BITFLIPS) {
1644                                ubi_err(ubi, "VID header is not OK (%d)",
1645                                        err);
1646                                if (err > 0)
1647                                        err = -EIO;
1648                                return err;
1649                        }
1650
1651                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1652                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1653                        if (av->vol_type != vol_type) {
1654                                ubi_err(ubi, "bad vol_type");
1655                                goto bad_vid_hdr;
1656                        }
1657
1658                        if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1659                                ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1660                                goto bad_vid_hdr;
1661                        }
1662
1663                        if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1664                                ubi_err(ubi, "bad vol_id %d", av->vol_id);
1665                                goto bad_vid_hdr;
1666                        }
1667
1668                        if (av->compat != vidh->compat) {
1669                                ubi_err(ubi, "bad compat %d", vidh->compat);
1670                                goto bad_vid_hdr;
1671                        }
1672
1673                        if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1674                                ubi_err(ubi, "bad lnum %d", aeb->lnum);
1675                                goto bad_vid_hdr;
1676                        }
1677
1678                        if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1679                                ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1680                                goto bad_vid_hdr;
1681                        }
1682
1683                        if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1684                                ubi_err(ubi, "bad data_pad %d", av->data_pad);
1685                                goto bad_vid_hdr;
1686                        }
1687                }
1688
1689                if (!last_aeb)
1690                        continue;
1691
1692                if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1693                        ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1694                        goto bad_vid_hdr;
1695                }
1696
1697                if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1698                        ubi_err(ubi, "bad last_data_size %d",
1699                                av->last_data_size);
1700                        goto bad_vid_hdr;
1701                }
1702        }
1703
1704        /*
1705         * Make sure that all the physical eraseblocks are in one of the lists
1706         * or trees.
1707         */
1708        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1709        if (!buf)
1710                return -ENOMEM;
1711
1712        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1713                err = ubi_io_is_bad(ubi, pnum);
1714                if (err < 0) {
1715                        kfree(buf);
1716                        return err;
1717                } else if (err)
1718                        buf[pnum] = 1;
1719        }
1720
1721        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1722                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1723                        buf[aeb->pnum] = 1;
1724
1725        list_for_each_entry(aeb, &ai->free, u.list)
1726                buf[aeb->pnum] = 1;
1727
1728        list_for_each_entry(aeb, &ai->corr, u.list)
1729                buf[aeb->pnum] = 1;
1730
1731        list_for_each_entry(aeb, &ai->erase, u.list)
1732                buf[aeb->pnum] = 1;
1733
1734        list_for_each_entry(aeb, &ai->alien, u.list)
1735                buf[aeb->pnum] = 1;
1736
1737        err = 0;
1738        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1739                if (!buf[pnum]) {
1740                        ubi_err(ubi, "PEB %d is not referred", pnum);
1741                        err = 1;
1742                }
1743
1744        kfree(buf);
1745        if (err)
1746                goto out;
1747        return 0;
1748
1749bad_aeb:
1750        ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1751        ubi_dump_aeb(aeb, 0);
1752        ubi_dump_av(av);
1753        goto out;
1754
1755bad_av:
1756        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1757        ubi_dump_av(av);
1758        goto out;
1759
1760bad_vid_hdr:
1761        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1762        ubi_dump_av(av);
1763        ubi_dump_vid_hdr(vidh);
1764
1765out:
1766        dump_stack();
1767        return -EINVAL;
1768}
1769