linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init_ops.h
<<
>>
Prefs
   1/* bnx2x_init_ops.h: Broadcom Everest network driver.
   2 *               Static functions needed during the initialization.
   3 *               This file is "included" in bnx2x_main.c.
   4 *
   5 * Copyright (c) 2007-2013 Broadcom Corporation
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation.
  10 *
  11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  12 * Written by: Vladislav Zolotarov
  13 */
  14
  15#ifndef BNX2X_INIT_OPS_H
  16#define BNX2X_INIT_OPS_H
  17
  18
  19#ifndef BP_ILT
  20#define BP_ILT(bp)      NULL
  21#endif
  22
  23#ifndef BP_FUNC
  24#define BP_FUNC(bp)     0
  25#endif
  26
  27#ifndef BP_PORT
  28#define BP_PORT(bp)     0
  29#endif
  30
  31#ifndef BNX2X_ILT_FREE
  32#define BNX2X_ILT_FREE(x, y, sz)
  33#endif
  34
  35#ifndef BNX2X_ILT_ZALLOC
  36#define BNX2X_ILT_ZALLOC(x, y, sz)
  37#endif
  38
  39#ifndef ILOG2
  40#define ILOG2(x)        x
  41#endif
  42
  43static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
  44static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
  45static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
  46                                      dma_addr_t phys_addr, u32 addr,
  47                                      u32 len);
  48
  49static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
  50                              const u32 *data, u32 len)
  51{
  52        u32 i;
  53
  54        for (i = 0; i < len; i++)
  55                REG_WR(bp, addr + i*4, data[i]);
  56}
  57
  58static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
  59                              const u32 *data, u32 len)
  60{
  61        u32 i;
  62
  63        for (i = 0; i < len; i++)
  64                bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
  65}
  66
  67static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
  68                                u8 wb)
  69{
  70        if (bp->dmae_ready)
  71                bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
  72
  73        /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
  74        else if (wb && CHIP_IS_E1(bp))
  75                bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
  76
  77        /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
  78        else
  79                bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
  80}
  81
  82static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
  83                            u32 len, u8 wb)
  84{
  85        u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
  86        u32 buf_len32 = buf_len/4;
  87        u32 i;
  88
  89        memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
  90
  91        for (i = 0; i < len; i += buf_len32) {
  92                u32 cur_len = min(buf_len32, len - i);
  93
  94                bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
  95        }
  96}
  97
  98static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
  99{
 100        if (bp->dmae_ready)
 101                bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
 102
 103        /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
 104        else if (CHIP_IS_E1(bp))
 105                bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
 106
 107        /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
 108        else
 109                bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
 110}
 111
 112static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
 113                             const u32 *data, u32 len64)
 114{
 115        u32 buf_len32 = FW_BUF_SIZE/4;
 116        u32 len = len64*2;
 117        u64 data64 = 0;
 118        u32 i;
 119
 120        /* 64 bit value is in a blob: first low DWORD, then high DWORD */
 121        data64 = HILO_U64((*(data + 1)), (*data));
 122
 123        len64 = min((u32)(FW_BUF_SIZE/8), len64);
 124        for (i = 0; i < len64; i++) {
 125                u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
 126
 127                *pdata = data64;
 128        }
 129
 130        for (i = 0; i < len; i += buf_len32) {
 131                u32 cur_len = min(buf_len32, len - i);
 132
 133                bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
 134        }
 135}
 136
 137/*********************************************************
 138   There are different blobs for each PRAM section.
 139   In addition, each blob write operation is divided into a few operations
 140   in order to decrease the amount of phys. contiguous buffer needed.
 141   Thus, when we select a blob the address may be with some offset
 142   from the beginning of PRAM section.
 143   The same holds for the INT_TABLE sections.
 144**********************************************************/
 145#define IF_IS_INT_TABLE_ADDR(base, addr) \
 146                        if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
 147
 148#define IF_IS_PRAM_ADDR(base, addr) \
 149                        if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
 150
 151static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
 152                                const u8 *data)
 153{
 154        IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
 155                data = INIT_TSEM_INT_TABLE_DATA(bp);
 156        else
 157                IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
 158                        data = INIT_CSEM_INT_TABLE_DATA(bp);
 159        else
 160                IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
 161                        data = INIT_USEM_INT_TABLE_DATA(bp);
 162        else
 163                IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
 164                        data = INIT_XSEM_INT_TABLE_DATA(bp);
 165        else
 166                IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
 167                        data = INIT_TSEM_PRAM_DATA(bp);
 168        else
 169                IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
 170                        data = INIT_CSEM_PRAM_DATA(bp);
 171        else
 172                IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
 173                        data = INIT_USEM_PRAM_DATA(bp);
 174        else
 175                IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
 176                        data = INIT_XSEM_PRAM_DATA(bp);
 177
 178        return data;
 179}
 180
 181static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
 182                             const u32 *data, u32 len)
 183{
 184        if (bp->dmae_ready)
 185                VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
 186
 187        /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
 188        else if (CHIP_IS_E1(bp))
 189                bnx2x_init_ind_wr(bp, addr, data, len);
 190
 191        /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
 192        else
 193                bnx2x_init_str_wr(bp, addr, data, len);
 194}
 195
 196static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
 197                        u32 val_hi)
 198{
 199        u32 wb_write[2];
 200
 201        wb_write[0] = val_lo;
 202        wb_write[1] = val_hi;
 203        REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
 204}
 205static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
 206                             u32 blob_off)
 207{
 208        const u8 *data = NULL;
 209        int rc;
 210        u32 i;
 211
 212        data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
 213
 214        rc = bnx2x_gunzip(bp, data, len);
 215        if (rc)
 216                return;
 217
 218        /* gunzip_outlen is in dwords */
 219        len = GUNZIP_OUTLEN(bp);
 220        for (i = 0; i < len; i++)
 221                ((u32 *)GUNZIP_BUF(bp))[i] = (__force u32)
 222                                cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
 223
 224        bnx2x_write_big_buf_wb(bp, addr, len);
 225}
 226
 227static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
 228{
 229        u16 op_start =
 230                INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
 231                                                     STAGE_START)];
 232        u16 op_end =
 233                INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
 234                                                     STAGE_END)];
 235        const union init_op *op;
 236        u32 op_idx, op_type, addr, len;
 237        const u32 *data, *data_base;
 238
 239        /* If empty block */
 240        if (op_start == op_end)
 241                return;
 242
 243        data_base = INIT_DATA(bp);
 244
 245        for (op_idx = op_start; op_idx < op_end; op_idx++) {
 246
 247                op = (const union init_op *)&(INIT_OPS(bp)[op_idx]);
 248                /* Get generic data */
 249                op_type = op->raw.op;
 250                addr = op->raw.offset;
 251                /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
 252                 * OP_WR64 (we assume that op_arr_write and op_write have the
 253                 * same structure).
 254                 */
 255                len = op->arr_wr.data_len;
 256                data = data_base + op->arr_wr.data_off;
 257
 258                switch (op_type) {
 259                case OP_RD:
 260                        REG_RD(bp, addr);
 261                        break;
 262                case OP_WR:
 263                        REG_WR(bp, addr, op->write.val);
 264                        break;
 265                case OP_SW:
 266                        bnx2x_init_str_wr(bp, addr, data, len);
 267                        break;
 268                case OP_WB:
 269                        bnx2x_init_wr_wb(bp, addr, data, len);
 270                        break;
 271                case OP_ZR:
 272                        bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
 273                        break;
 274                case OP_WB_ZR:
 275                        bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
 276                        break;
 277                case OP_ZP:
 278                        bnx2x_init_wr_zp(bp, addr, len,
 279                                         op->arr_wr.data_off);
 280                        break;
 281                case OP_WR_64:
 282                        bnx2x_init_wr_64(bp, addr, data, len);
 283                        break;
 284                case OP_IF_MODE_AND:
 285                        /* if any of the flags doesn't match, skip the
 286                         * conditional block.
 287                         */
 288                        if ((INIT_MODE_FLAGS(bp) &
 289                                op->if_mode.mode_bit_map) !=
 290                                op->if_mode.mode_bit_map)
 291                                op_idx += op->if_mode.cmd_offset;
 292                        break;
 293                case OP_IF_MODE_OR:
 294                        /* if all the flags don't match, skip the conditional
 295                         * block.
 296                         */
 297                        if ((INIT_MODE_FLAGS(bp) &
 298                                op->if_mode.mode_bit_map) == 0)
 299                                op_idx += op->if_mode.cmd_offset;
 300                        break;
 301                default:
 302                        /* Should never get here! */
 303
 304                        break;
 305                }
 306        }
 307}
 308
 309
 310/****************************************************************************
 311* PXP Arbiter
 312****************************************************************************/
 313/*
 314 * This code configures the PCI read/write arbiter
 315 * which implements a weighted round robin
 316 * between the virtual queues in the chip.
 317 *
 318 * The values were derived for each PCI max payload and max request size.
 319 * since max payload and max request size are only known at run time,
 320 * this is done as a separate init stage.
 321 */
 322
 323#define NUM_WR_Q                        13
 324#define NUM_RD_Q                        29
 325#define MAX_RD_ORD                      3
 326#define MAX_WR_ORD                      2
 327
 328/* configuration for one arbiter queue */
 329struct arb_line {
 330        int l;
 331        int add;
 332        int ubound;
 333};
 334
 335/* derived configuration for each read queue for each max request size */
 336static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
 337/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
 338        { {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
 339        { {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
 340        { {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
 341        { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
 342        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 343        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 344        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 345        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
 346/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 347        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 348        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 349        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 350        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 351        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 352        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 353        { {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
 354        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 355        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 356/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 357        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 358        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 359        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 360        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 361        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 362        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 363        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 364        { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
 365        { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
 366};
 367
 368/* derived configuration for each write queue for each max request size */
 369static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
 370/* 1 */ { {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
 371        { {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
 372        { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 373        { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 374        { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 375        { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
 376        { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
 377        { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 378        { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
 379/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
 380        { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
 381        { {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
 382        { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
 383};
 384
 385/* register addresses for read queues */
 386static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
 387/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
 388                PXP2_REG_RQ_BW_RD_UBOUND0},
 389        {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
 390                PXP2_REG_PSWRQ_BW_UB1},
 391        {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
 392                PXP2_REG_PSWRQ_BW_UB2},
 393        {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
 394                PXP2_REG_PSWRQ_BW_UB3},
 395        {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
 396                PXP2_REG_RQ_BW_RD_UBOUND4},
 397        {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
 398                PXP2_REG_RQ_BW_RD_UBOUND5},
 399        {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
 400                PXP2_REG_PSWRQ_BW_UB6},
 401        {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
 402                PXP2_REG_PSWRQ_BW_UB7},
 403        {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
 404                PXP2_REG_PSWRQ_BW_UB8},
 405/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
 406                PXP2_REG_PSWRQ_BW_UB9},
 407        {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
 408                PXP2_REG_PSWRQ_BW_UB10},
 409        {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
 410                PXP2_REG_PSWRQ_BW_UB11},
 411        {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
 412                PXP2_REG_RQ_BW_RD_UBOUND12},
 413        {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
 414                PXP2_REG_RQ_BW_RD_UBOUND13},
 415        {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
 416                PXP2_REG_RQ_BW_RD_UBOUND14},
 417        {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
 418                PXP2_REG_RQ_BW_RD_UBOUND15},
 419        {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
 420                PXP2_REG_RQ_BW_RD_UBOUND16},
 421        {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
 422                PXP2_REG_RQ_BW_RD_UBOUND17},
 423        {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
 424                PXP2_REG_RQ_BW_RD_UBOUND18},
 425/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
 426                PXP2_REG_RQ_BW_RD_UBOUND19},
 427        {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
 428                PXP2_REG_RQ_BW_RD_UBOUND20},
 429        {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
 430                PXP2_REG_RQ_BW_RD_UBOUND22},
 431        {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
 432                PXP2_REG_RQ_BW_RD_UBOUND23},
 433        {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
 434                PXP2_REG_RQ_BW_RD_UBOUND24},
 435        {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
 436                PXP2_REG_RQ_BW_RD_UBOUND25},
 437        {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
 438                PXP2_REG_RQ_BW_RD_UBOUND26},
 439        {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
 440                PXP2_REG_RQ_BW_RD_UBOUND27},
 441        {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
 442                PXP2_REG_PSWRQ_BW_UB28}
 443};
 444
 445/* register addresses for write queues */
 446static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
 447/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
 448                PXP2_REG_PSWRQ_BW_UB1},
 449        {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
 450                PXP2_REG_PSWRQ_BW_UB2},
 451        {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
 452                PXP2_REG_PSWRQ_BW_UB3},
 453        {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
 454                PXP2_REG_PSWRQ_BW_UB6},
 455        {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
 456                PXP2_REG_PSWRQ_BW_UB7},
 457        {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
 458                PXP2_REG_PSWRQ_BW_UB8},
 459        {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
 460                PXP2_REG_PSWRQ_BW_UB9},
 461        {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
 462                PXP2_REG_PSWRQ_BW_UB10},
 463        {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
 464                PXP2_REG_PSWRQ_BW_UB11},
 465/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
 466                PXP2_REG_PSWRQ_BW_UB28},
 467        {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
 468                PXP2_REG_RQ_BW_WR_UBOUND29},
 469        {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
 470                PXP2_REG_RQ_BW_WR_UBOUND30}
 471};
 472
 473static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
 474                               int w_order)
 475{
 476        u32 val, i;
 477
 478        if (r_order > MAX_RD_ORD) {
 479                DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
 480                   r_order, MAX_RD_ORD);
 481                r_order = MAX_RD_ORD;
 482        }
 483        if (w_order > MAX_WR_ORD) {
 484                DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
 485                   w_order, MAX_WR_ORD);
 486                w_order = MAX_WR_ORD;
 487        }
 488        if (CHIP_REV_IS_FPGA(bp)) {
 489                DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
 490                w_order = 0;
 491        }
 492        DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
 493
 494        for (i = 0; i < NUM_RD_Q-1; i++) {
 495                REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
 496                REG_WR(bp, read_arb_addr[i].add,
 497                       read_arb_data[i][r_order].add);
 498                REG_WR(bp, read_arb_addr[i].ubound,
 499                       read_arb_data[i][r_order].ubound);
 500        }
 501
 502        for (i = 0; i < NUM_WR_Q-1; i++) {
 503                if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
 504                    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
 505
 506                        REG_WR(bp, write_arb_addr[i].l,
 507                               write_arb_data[i][w_order].l);
 508
 509                        REG_WR(bp, write_arb_addr[i].add,
 510                               write_arb_data[i][w_order].add);
 511
 512                        REG_WR(bp, write_arb_addr[i].ubound,
 513                               write_arb_data[i][w_order].ubound);
 514                } else {
 515
 516                        val = REG_RD(bp, write_arb_addr[i].l);
 517                        REG_WR(bp, write_arb_addr[i].l,
 518                               val | (write_arb_data[i][w_order].l << 10));
 519
 520                        val = REG_RD(bp, write_arb_addr[i].add);
 521                        REG_WR(bp, write_arb_addr[i].add,
 522                               val | (write_arb_data[i][w_order].add << 10));
 523
 524                        val = REG_RD(bp, write_arb_addr[i].ubound);
 525                        REG_WR(bp, write_arb_addr[i].ubound,
 526                               val | (write_arb_data[i][w_order].ubound << 7));
 527                }
 528        }
 529
 530        val =  write_arb_data[NUM_WR_Q-1][w_order].add;
 531        val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
 532        val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
 533        REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
 534
 535        val =  read_arb_data[NUM_RD_Q-1][r_order].add;
 536        val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
 537        val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
 538        REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
 539
 540        REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
 541        REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
 542        REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
 543        REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
 544
 545        if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
 546                REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
 547
 548        if (CHIP_IS_E3(bp))
 549                REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
 550        else if (CHIP_IS_E2(bp))
 551                REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
 552        else
 553                REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
 554
 555        if (!CHIP_IS_E1(bp)) {
 556                /*    MPS      w_order     optimal TH      presently TH
 557                 *    128         0             0               2
 558                 *    256         1             1               3
 559                 *    >=512       2             2               3
 560                 */
 561                /* DMAE is special */
 562                if (!CHIP_IS_E1H(bp)) {
 563                        /* E2 can use optimal TH */
 564                        val = w_order;
 565                        REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
 566                } else {
 567                        val = ((w_order == 0) ? 2 : 3);
 568                        REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
 569                }
 570
 571                REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
 572                REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
 573                REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
 574                REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
 575                REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
 576                REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
 577                REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
 578                REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
 579                REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
 580                REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
 581        }
 582
 583        /* Validate number of tags suppoted by device */
 584#define PCIE_REG_PCIER_TL_HDR_FC_ST             0x2980
 585        val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
 586        val &= 0xFF;
 587        if (val <= 0x20)
 588                REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
 589}
 590
 591/****************************************************************************
 592* ILT management
 593****************************************************************************/
 594/*
 595 * This codes hides the low level HW interaction for ILT management and
 596 * configuration. The API consists of a shadow ILT table which is set by the
 597 * driver and a set of routines to use it to configure the HW.
 598 *
 599 */
 600
 601/* ILT HW init operations */
 602
 603/* ILT memory management operations */
 604#define ILT_MEMOP_ALLOC         0
 605#define ILT_MEMOP_FREE          1
 606
 607/* the phys address is shifted right 12 bits and has an added
 608 * 1=valid bit added to the 53rd bit
 609 * then since this is a wide register(TM)
 610 * we split it into two 32 bit writes
 611 */
 612#define ILT_ADDR1(x)            ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
 613#define ILT_ADDR2(x)            ((u32)((1 << 20) | ((u64)x >> 44)))
 614#define ILT_RANGE(f, l)         (((l) << 10) | f)
 615
 616static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
 617                                 struct ilt_line *line, u32 size, u8 memop)
 618{
 619        if (memop == ILT_MEMOP_FREE) {
 620                BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
 621                return 0;
 622        }
 623        BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
 624        if (!line->page)
 625                return -1;
 626        line->size = size;
 627        return 0;
 628}
 629
 630
 631static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
 632                                   u8 memop)
 633{
 634        int i, rc;
 635        struct bnx2x_ilt *ilt = BP_ILT(bp);
 636        struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 637
 638        if (!ilt || !ilt->lines)
 639                return -1;
 640
 641        if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
 642                return 0;
 643
 644        for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
 645                rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
 646                                           ilt_cli->page_size, memop);
 647        }
 648        return rc;
 649}
 650
 651static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop)
 652{
 653        int rc = 0;
 654
 655        if (CONFIGURE_NIC_MODE(bp))
 656                rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
 657        if (!rc)
 658                rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
 659
 660        return rc;
 661}
 662
 663static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
 664{
 665        int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
 666        if (!rc)
 667                rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
 668        if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
 669                rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
 670
 671        return rc;
 672}
 673
 674static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
 675                              dma_addr_t page_mapping)
 676{
 677        u32 reg;
 678
 679        if (CHIP_IS_E1(bp))
 680                reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
 681        else
 682                reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
 683
 684        bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
 685}
 686
 687static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
 688                                   struct bnx2x_ilt *ilt, int idx, u8 initop)
 689{
 690        dma_addr_t      null_mapping;
 691        int abs_idx = ilt->start_line + idx;
 692
 693
 694        switch (initop) {
 695        case INITOP_INIT:
 696                /* set in the init-value array */
 697        case INITOP_SET:
 698                bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
 699                break;
 700        case INITOP_CLEAR:
 701                null_mapping = 0;
 702                bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
 703                break;
 704        }
 705}
 706
 707static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
 708                                      struct ilt_client_info *ilt_cli,
 709                                      u32 ilt_start, u8 initop)
 710{
 711        u32 start_reg = 0;
 712        u32 end_reg = 0;
 713
 714        /* The boundary is either SET or INIT,
 715           CLEAR => SET and for now SET ~~ INIT */
 716
 717        /* find the appropriate regs */
 718        if (CHIP_IS_E1(bp)) {
 719                switch (ilt_cli->client_num) {
 720                case ILT_CLIENT_CDU:
 721                        start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
 722                        break;
 723                case ILT_CLIENT_QM:
 724                        start_reg = PXP2_REG_PSWRQ_QM0_L2P;
 725                        break;
 726                case ILT_CLIENT_SRC:
 727                        start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
 728                        break;
 729                case ILT_CLIENT_TM:
 730                        start_reg = PXP2_REG_PSWRQ_TM0_L2P;
 731                        break;
 732                }
 733                REG_WR(bp, start_reg + BP_FUNC(bp)*4,
 734                       ILT_RANGE((ilt_start + ilt_cli->start),
 735                                 (ilt_start + ilt_cli->end)));
 736        } else {
 737                switch (ilt_cli->client_num) {
 738                case ILT_CLIENT_CDU:
 739                        start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
 740                        end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
 741                        break;
 742                case ILT_CLIENT_QM:
 743                        start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
 744                        end_reg = PXP2_REG_RQ_QM_LAST_ILT;
 745                        break;
 746                case ILT_CLIENT_SRC:
 747                        start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
 748                        end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
 749                        break;
 750                case ILT_CLIENT_TM:
 751                        start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
 752                        end_reg = PXP2_REG_RQ_TM_LAST_ILT;
 753                        break;
 754                }
 755                REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
 756                REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
 757        }
 758}
 759
 760static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
 761                                         struct bnx2x_ilt *ilt,
 762                                         struct ilt_client_info *ilt_cli,
 763                                         u8 initop)
 764{
 765        int i;
 766
 767        if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
 768                return;
 769
 770        for (i = ilt_cli->start; i <= ilt_cli->end; i++)
 771                bnx2x_ilt_line_init_op(bp, ilt, i, initop);
 772
 773        /* init/clear the ILT boundries */
 774        bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
 775}
 776
 777static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
 778                                     struct ilt_client_info *ilt_cli, u8 initop)
 779{
 780        struct bnx2x_ilt *ilt = BP_ILT(bp);
 781
 782        bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
 783}
 784
 785static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
 786                                        int cli_num, u8 initop)
 787{
 788        struct bnx2x_ilt *ilt = BP_ILT(bp);
 789        struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 790
 791        bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
 792}
 793
 794static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop)
 795{
 796        if (CONFIGURE_NIC_MODE(bp))
 797                bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
 798        bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
 799}
 800
 801static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
 802{
 803        bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
 804        bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
 805        if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
 806                bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
 807}
 808
 809static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
 810                                      u32 psz_reg, u8 initop)
 811{
 812        struct bnx2x_ilt *ilt = BP_ILT(bp);
 813        struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
 814
 815        if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
 816                return;
 817
 818        switch (initop) {
 819        case INITOP_INIT:
 820                /* set in the init-value array */
 821        case INITOP_SET:
 822                REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
 823                break;
 824        case INITOP_CLEAR:
 825                break;
 826        }
 827}
 828
 829/*
 830 * called during init common stage, ilt clients should be initialized
 831 * prioir to calling this function
 832 */
 833static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
 834{
 835        bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
 836                                  PXP2_REG_RQ_CDU_P_SIZE, initop);
 837        bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
 838                                  PXP2_REG_RQ_QM_P_SIZE, initop);
 839        bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
 840                                  PXP2_REG_RQ_SRC_P_SIZE, initop);
 841        bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
 842                                  PXP2_REG_RQ_TM_P_SIZE, initop);
 843}
 844
 845/****************************************************************************
 846* QM initializations
 847****************************************************************************/
 848#define QM_QUEUES_PER_FUNC      16 /* E1 has 32, but only 16 are used */
 849#define QM_INIT_MIN_CID_COUNT   31
 850#define QM_INIT(cid_cnt)        (cid_cnt > QM_INIT_MIN_CID_COUNT)
 851
 852/* called during init port stage */
 853static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
 854                                    u8 initop)
 855{
 856        int port = BP_PORT(bp);
 857
 858        if (QM_INIT(qm_cid_count)) {
 859                switch (initop) {
 860                case INITOP_INIT:
 861                        /* set in the init-value array */
 862                case INITOP_SET:
 863                        REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
 864                               qm_cid_count/16 - 1);
 865                        break;
 866                case INITOP_CLEAR:
 867                        break;
 868                }
 869        }
 870}
 871
 872static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
 873                                   u32 base_reg, u32 reg)
 874{
 875        int i;
 876        u32 wb_data[2] = {0, 0};
 877        for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
 878                REG_WR(bp, base_reg + i*4,
 879                       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
 880                bnx2x_init_wr_wb(bp, reg + i*8,  wb_data, 2);
 881        }
 882}
 883
 884/* called during init common stage */
 885static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
 886                                    u8 initop)
 887{
 888        if (!QM_INIT(qm_cid_count))
 889                return;
 890
 891        switch (initop) {
 892        case INITOP_INIT:
 893                /* set in the init-value array */
 894        case INITOP_SET:
 895                bnx2x_qm_set_ptr_table(bp, qm_cid_count,
 896                                       QM_REG_BASEADDR, QM_REG_PTRTBL);
 897                if (CHIP_IS_E1H(bp))
 898                        bnx2x_qm_set_ptr_table(bp, qm_cid_count,
 899                                               QM_REG_BASEADDR_EXT_A,
 900                                               QM_REG_PTRTBL_EXT_A);
 901                break;
 902        case INITOP_CLEAR:
 903                break;
 904        }
 905}
 906
 907/****************************************************************************
 908* SRC initializations
 909****************************************************************************/
 910/* called during init func stage */
 911static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
 912                              dma_addr_t t2_mapping, int src_cid_count)
 913{
 914        int i;
 915        int port = BP_PORT(bp);
 916
 917        /* Initialize T2 */
 918        for (i = 0; i < src_cid_count-1; i++)
 919                t2[i].next = (u64)(t2_mapping +
 920                             (i+1)*sizeof(struct src_ent));
 921
 922        /* tell the searcher where the T2 table is */
 923        REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
 924
 925        bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
 926                    U64_LO(t2_mapping), U64_HI(t2_mapping));
 927
 928        bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
 929                    U64_LO((u64)t2_mapping +
 930                           (src_cid_count-1) * sizeof(struct src_ent)),
 931                    U64_HI((u64)t2_mapping +
 932                           (src_cid_count-1) * sizeof(struct src_ent)));
 933}
 934#endif /* BNX2X_INIT_OPS_H */
 935