linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
<<
>>
Prefs
   1/* bnx2x_main.c: Broadcom Everest network driver.
   2 *
   3 * Copyright (c) 2007-2013 Broadcom Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation.
   8 *
   9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  10 * Written by: Eliezer Tamir
  11 * Based on code from Michael Chan's bnx2 driver
  12 * UDP CSUM errata workaround by Arik Gendelman
  13 * Slowpath and fastpath rework by Vladislav Zolotarov
  14 * Statistics and Link management by Yitchak Gertner
  15 *
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/module.h>
  21#include <linux/moduleparam.h>
  22#include <linux/kernel.h>
  23#include <linux/device.h>  /* for dev_info() */
  24#include <linux/timer.h>
  25#include <linux/errno.h>
  26#include <linux/ioport.h>
  27#include <linux/slab.h>
  28#include <linux/interrupt.h>
  29#include <linux/pci.h>
  30#include <linux/aer.h>
  31#include <linux/init.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/skbuff.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/bitops.h>
  37#include <linux/irq.h>
  38#include <linux/delay.h>
  39#include <asm/byteorder.h>
  40#include <linux/time.h>
  41#include <linux/ethtool.h>
  42#include <linux/mii.h>
  43#include <linux/if_vlan.h>
  44#include <linux/crash_dump.h>
  45#include <net/ip.h>
  46#include <net/ipv6.h>
  47#include <net/tcp.h>
  48#include <net/vxlan.h>
  49#include <net/checksum.h>
  50#include <net/ip6_checksum.h>
  51#include <linux/workqueue.h>
  52#include <linux/crc32.h>
  53#include <linux/crc32c.h>
  54#include <linux/prefetch.h>
  55#include <linux/zlib.h>
  56#include <linux/io.h>
  57#include <linux/semaphore.h>
  58#include <linux/stringify.h>
  59#include <linux/vmalloc.h>
  60
  61#include "bnx2x.h"
  62#include "bnx2x_init.h"
  63#include "bnx2x_init_ops.h"
  64#include "bnx2x_cmn.h"
  65#include "bnx2x_vfpf.h"
  66#include "bnx2x_dcb.h"
  67#include "bnx2x_sp.h"
  68#include <linux/firmware.h>
  69#include "bnx2x_fw_file_hdr.h"
  70/* FW files */
  71#define FW_FILE_VERSION                                 \
  72        __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
  73        __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
  74        __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
  75        __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  76#define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  77#define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  78#define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  79
  80/* Time in jiffies before concluding the transmitter is hung */
  81#define TX_TIMEOUT              (5*HZ)
  82
  83static char version[] =
  84        "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
  85        DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  86
  87MODULE_AUTHOR("Eliezer Tamir");
  88MODULE_DESCRIPTION("Broadcom NetXtreme II "
  89                   "BCM57710/57711/57711E/"
  90                   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  91                   "57840/57840_MF Driver");
  92MODULE_LICENSE("GPL");
  93MODULE_VERSION(DRV_MODULE_VERSION);
  94MODULE_FIRMWARE(FW_FILE_NAME_E1);
  95MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  96MODULE_FIRMWARE(FW_FILE_NAME_E2);
  97
  98int bnx2x_num_queues;
  99module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
 100MODULE_PARM_DESC(num_queues,
 101                 " Set number of queues (default is as a number of CPUs)");
 102
 103static int disable_tpa;
 104module_param(disable_tpa, int, S_IRUGO);
 105MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
 106
 107static int int_mode;
 108module_param(int_mode, int, S_IRUGO);
 109MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
 110                                "(1 INT#x; 2 MSI)");
 111
 112static int dropless_fc;
 113module_param(dropless_fc, int, S_IRUGO);
 114MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
 115
 116static int mrrs = -1;
 117module_param(mrrs, int, S_IRUGO);
 118MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
 119
 120static int debug;
 121module_param(debug, int, S_IRUGO);
 122MODULE_PARM_DESC(debug, " Default debug msglevel");
 123
 124static struct workqueue_struct *bnx2x_wq;
 125struct workqueue_struct *bnx2x_iov_wq;
 126
 127struct bnx2x_mac_vals {
 128        u32 xmac_addr;
 129        u32 xmac_val;
 130        u32 emac_addr;
 131        u32 emac_val;
 132        u32 umac_addr[2];
 133        u32 umac_val[2];
 134        u32 bmac_addr;
 135        u32 bmac_val[2];
 136};
 137
 138enum bnx2x_board_type {
 139        BCM57710 = 0,
 140        BCM57711,
 141        BCM57711E,
 142        BCM57712,
 143        BCM57712_MF,
 144        BCM57712_VF,
 145        BCM57800,
 146        BCM57800_MF,
 147        BCM57800_VF,
 148        BCM57810,
 149        BCM57810_MF,
 150        BCM57810_VF,
 151        BCM57840_4_10,
 152        BCM57840_2_20,
 153        BCM57840_MF,
 154        BCM57840_VF,
 155        BCM57811,
 156        BCM57811_MF,
 157        BCM57840_O,
 158        BCM57840_MFO,
 159        BCM57811_VF
 160};
 161
 162/* indexed by board_type, above */
 163static struct {
 164        char *name;
 165} board_info[] = {
 166        [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
 167        [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
 168        [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
 169        [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
 170        [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
 171        [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
 172        [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
 173        [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
 174        [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
 175        [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
 176        [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
 177        [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
 178        [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
 179        [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
 180        [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
 181        [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
 182        [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
 183        [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
 184        [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
 185        [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
 186        [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
 187};
 188
 189#ifndef PCI_DEVICE_ID_NX2_57710
 190#define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
 191#endif
 192#ifndef PCI_DEVICE_ID_NX2_57711
 193#define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
 194#endif
 195#ifndef PCI_DEVICE_ID_NX2_57711E
 196#define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
 197#endif
 198#ifndef PCI_DEVICE_ID_NX2_57712
 199#define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
 200#endif
 201#ifndef PCI_DEVICE_ID_NX2_57712_MF
 202#define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
 203#endif
 204#ifndef PCI_DEVICE_ID_NX2_57712_VF
 205#define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
 206#endif
 207#ifndef PCI_DEVICE_ID_NX2_57800
 208#define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
 209#endif
 210#ifndef PCI_DEVICE_ID_NX2_57800_MF
 211#define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
 212#endif
 213#ifndef PCI_DEVICE_ID_NX2_57800_VF
 214#define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
 215#endif
 216#ifndef PCI_DEVICE_ID_NX2_57810
 217#define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
 218#endif
 219#ifndef PCI_DEVICE_ID_NX2_57810_MF
 220#define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
 221#endif
 222#ifndef PCI_DEVICE_ID_NX2_57840_O
 223#define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
 224#endif
 225#ifndef PCI_DEVICE_ID_NX2_57810_VF
 226#define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
 227#endif
 228#ifndef PCI_DEVICE_ID_NX2_57840_4_10
 229#define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
 230#endif
 231#ifndef PCI_DEVICE_ID_NX2_57840_2_20
 232#define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
 233#endif
 234#ifndef PCI_DEVICE_ID_NX2_57840_MFO
 235#define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
 236#endif
 237#ifndef PCI_DEVICE_ID_NX2_57840_MF
 238#define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
 239#endif
 240#ifndef PCI_DEVICE_ID_NX2_57840_VF
 241#define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
 242#endif
 243#ifndef PCI_DEVICE_ID_NX2_57811
 244#define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
 245#endif
 246#ifndef PCI_DEVICE_ID_NX2_57811_MF
 247#define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
 248#endif
 249#ifndef PCI_DEVICE_ID_NX2_57811_VF
 250#define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
 251#endif
 252
 253static const struct pci_device_id bnx2x_pci_tbl[] = {
 254        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
 255        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
 256        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
 257        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
 258        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
 259        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
 260        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
 261        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
 262        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
 263        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
 264        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
 265        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
 266        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
 267        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
 268        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
 269        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
 270        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
 271        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
 272        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
 273        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
 274        { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
 275        { 0 }
 276};
 277
 278MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
 279
 280/* Global resources for unloading a previously loaded device */
 281#define BNX2X_PREV_WAIT_NEEDED 1
 282static DEFINE_SEMAPHORE(bnx2x_prev_sem);
 283static LIST_HEAD(bnx2x_prev_list);
 284
 285/* Forward declaration */
 286static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
 287static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
 288static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
 289
 290/****************************************************************************
 291* General service functions
 292****************************************************************************/
 293
 294static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
 295
 296static void __storm_memset_dma_mapping(struct bnx2x *bp,
 297                                       u32 addr, dma_addr_t mapping)
 298{
 299        REG_WR(bp,  addr, U64_LO(mapping));
 300        REG_WR(bp,  addr + 4, U64_HI(mapping));
 301}
 302
 303static void storm_memset_spq_addr(struct bnx2x *bp,
 304                                  dma_addr_t mapping, u16 abs_fid)
 305{
 306        u32 addr = XSEM_REG_FAST_MEMORY +
 307                        XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
 308
 309        __storm_memset_dma_mapping(bp, addr, mapping);
 310}
 311
 312static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
 313                                  u16 pf_id)
 314{
 315        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
 316                pf_id);
 317        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
 318                pf_id);
 319        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
 320                pf_id);
 321        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
 322                pf_id);
 323}
 324
 325static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
 326                                 u8 enable)
 327{
 328        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
 329                enable);
 330        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
 331                enable);
 332        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
 333                enable);
 334        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
 335                enable);
 336}
 337
 338static void storm_memset_eq_data(struct bnx2x *bp,
 339                                 struct event_ring_data *eq_data,
 340                                u16 pfid)
 341{
 342        size_t size = sizeof(struct event_ring_data);
 343
 344        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
 345
 346        __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
 347}
 348
 349static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
 350                                 u16 pfid)
 351{
 352        u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
 353        REG_WR16(bp, addr, eq_prod);
 354}
 355
 356/* used only at init
 357 * locking is done by mcp
 358 */
 359static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
 360{
 361        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 362        pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
 363        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 364                               PCICFG_VENDOR_ID_OFFSET);
 365}
 366
 367static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
 368{
 369        u32 val;
 370
 371        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
 372        pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
 373        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
 374                               PCICFG_VENDOR_ID_OFFSET);
 375
 376        return val;
 377}
 378
 379#define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
 380#define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
 381#define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
 382#define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
 383#define DMAE_DP_DST_NONE        "dst_addr [none]"
 384
 385static void bnx2x_dp_dmae(struct bnx2x *bp,
 386                          struct dmae_command *dmae, int msglvl)
 387{
 388        u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
 389        int i;
 390
 391        switch (dmae->opcode & DMAE_COMMAND_DST) {
 392        case DMAE_CMD_DST_PCI:
 393                if (src_type == DMAE_CMD_SRC_PCI)
 394                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 395                           "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
 396                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 397                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 398                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 399                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 400                           dmae->comp_val);
 401                else
 402                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 403                           "src [%08x], len [%d*4], dst [%x:%08x]\n"
 404                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 405                           dmae->opcode, dmae->src_addr_lo >> 2,
 406                           dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
 407                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 408                           dmae->comp_val);
 409                break;
 410        case DMAE_CMD_DST_GRC:
 411                if (src_type == DMAE_CMD_SRC_PCI)
 412                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 413                           "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
 414                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 415                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 416                           dmae->len, dmae->dst_addr_lo >> 2,
 417                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 418                           dmae->comp_val);
 419                else
 420                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 421                           "src [%08x], len [%d*4], dst [%08x]\n"
 422                           "comp_addr [%x:%08x], comp_val 0x%08x\n",
 423                           dmae->opcode, dmae->src_addr_lo >> 2,
 424                           dmae->len, dmae->dst_addr_lo >> 2,
 425                           dmae->comp_addr_hi, dmae->comp_addr_lo,
 426                           dmae->comp_val);
 427                break;
 428        default:
 429                if (src_type == DMAE_CMD_SRC_PCI)
 430                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 431                           "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
 432                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 433                           dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
 434                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 435                           dmae->comp_val);
 436                else
 437                        DP(msglvl, "DMAE: opcode 0x%08x\n"
 438                           "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
 439                           "comp_addr [%x:%08x]  comp_val 0x%08x\n",
 440                           dmae->opcode, dmae->src_addr_lo >> 2,
 441                           dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
 442                           dmae->comp_val);
 443                break;
 444        }
 445
 446        for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
 447                DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
 448                   i, *(((u32 *)dmae) + i));
 449}
 450
 451/* copy command into DMAE command memory and set DMAE command go */
 452void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
 453{
 454        u32 cmd_offset;
 455        int i;
 456
 457        cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
 458        for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
 459                REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
 460        }
 461        REG_WR(bp, dmae_reg_go_c[idx], 1);
 462}
 463
 464u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
 465{
 466        return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
 467                           DMAE_CMD_C_ENABLE);
 468}
 469
 470u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
 471{
 472        return opcode & ~DMAE_CMD_SRC_RESET;
 473}
 474
 475u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
 476                             bool with_comp, u8 comp_type)
 477{
 478        u32 opcode = 0;
 479
 480        opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
 481                   (dst_type << DMAE_COMMAND_DST_SHIFT));
 482
 483        opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
 484
 485        opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
 486        opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
 487                   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
 488        opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
 489
 490#ifdef __BIG_ENDIAN
 491        opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
 492#else
 493        opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
 494#endif
 495        if (with_comp)
 496                opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
 497        return opcode;
 498}
 499
 500void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
 501                                      struct dmae_command *dmae,
 502                                      u8 src_type, u8 dst_type)
 503{
 504        memset(dmae, 0, sizeof(struct dmae_command));
 505
 506        /* set the opcode */
 507        dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
 508                                         true, DMAE_COMP_PCI);
 509
 510        /* fill in the completion parameters */
 511        dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
 512        dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
 513        dmae->comp_val = DMAE_COMP_VAL;
 514}
 515
 516/* issue a dmae command over the init-channel and wait for completion */
 517int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
 518                               u32 *comp)
 519{
 520        int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
 521        int rc = 0;
 522
 523        bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
 524
 525        /* Lock the dmae channel. Disable BHs to prevent a dead-lock
 526         * as long as this code is called both from syscall context and
 527         * from ndo_set_rx_mode() flow that may be called from BH.
 528         */
 529
 530        spin_lock_bh(&bp->dmae_lock);
 531
 532        /* reset completion */
 533        *comp = 0;
 534
 535        /* post the command on the channel used for initializations */
 536        bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
 537
 538        /* wait for completion */
 539        udelay(5);
 540        while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
 541
 542                if (!cnt ||
 543                    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
 544                     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
 545                        BNX2X_ERR("DMAE timeout!\n");
 546                        rc = DMAE_TIMEOUT;
 547                        goto unlock;
 548                }
 549                cnt--;
 550                udelay(50);
 551        }
 552        if (*comp & DMAE_PCI_ERR_FLAG) {
 553                BNX2X_ERR("DMAE PCI error!\n");
 554                rc = DMAE_PCI_ERROR;
 555        }
 556
 557unlock:
 558
 559        spin_unlock_bh(&bp->dmae_lock);
 560
 561        return rc;
 562}
 563
 564void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
 565                      u32 len32)
 566{
 567        int rc;
 568        struct dmae_command dmae;
 569
 570        if (!bp->dmae_ready) {
 571                u32 *data = bnx2x_sp(bp, wb_data[0]);
 572
 573                if (CHIP_IS_E1(bp))
 574                        bnx2x_init_ind_wr(bp, dst_addr, data, len32);
 575                else
 576                        bnx2x_init_str_wr(bp, dst_addr, data, len32);
 577                return;
 578        }
 579
 580        /* set opcode and fixed command fields */
 581        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
 582
 583        /* fill in addresses and len */
 584        dmae.src_addr_lo = U64_LO(dma_addr);
 585        dmae.src_addr_hi = U64_HI(dma_addr);
 586        dmae.dst_addr_lo = dst_addr >> 2;
 587        dmae.dst_addr_hi = 0;
 588        dmae.len = len32;
 589
 590        /* issue the command and wait for completion */
 591        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 592        if (rc) {
 593                BNX2X_ERR("DMAE returned failure %d\n", rc);
 594#ifdef BNX2X_STOP_ON_ERROR
 595                bnx2x_panic();
 596#endif
 597        }
 598}
 599
 600void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
 601{
 602        int rc;
 603        struct dmae_command dmae;
 604
 605        if (!bp->dmae_ready) {
 606                u32 *data = bnx2x_sp(bp, wb_data[0]);
 607                int i;
 608
 609                if (CHIP_IS_E1(bp))
 610                        for (i = 0; i < len32; i++)
 611                                data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
 612                else
 613                        for (i = 0; i < len32; i++)
 614                                data[i] = REG_RD(bp, src_addr + i*4);
 615
 616                return;
 617        }
 618
 619        /* set opcode and fixed command fields */
 620        bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
 621
 622        /* fill in addresses and len */
 623        dmae.src_addr_lo = src_addr >> 2;
 624        dmae.src_addr_hi = 0;
 625        dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
 626        dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
 627        dmae.len = len32;
 628
 629        /* issue the command and wait for completion */
 630        rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
 631        if (rc) {
 632                BNX2X_ERR("DMAE returned failure %d\n", rc);
 633#ifdef BNX2X_STOP_ON_ERROR
 634                bnx2x_panic();
 635#endif
 636        }
 637}
 638
 639static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
 640                                      u32 addr, u32 len)
 641{
 642        int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
 643        int offset = 0;
 644
 645        while (len > dmae_wr_max) {
 646                bnx2x_write_dmae(bp, phys_addr + offset,
 647                                 addr + offset, dmae_wr_max);
 648                offset += dmae_wr_max * 4;
 649                len -= dmae_wr_max;
 650        }
 651
 652        bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
 653}
 654
 655enum storms {
 656           XSTORM,
 657           TSTORM,
 658           CSTORM,
 659           USTORM,
 660           MAX_STORMS
 661};
 662
 663#define STORMS_NUM 4
 664#define REGS_IN_ENTRY 4
 665
 666static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
 667                                              enum storms storm,
 668                                              int entry)
 669{
 670        switch (storm) {
 671        case XSTORM:
 672                return XSTORM_ASSERT_LIST_OFFSET(entry);
 673        case TSTORM:
 674                return TSTORM_ASSERT_LIST_OFFSET(entry);
 675        case CSTORM:
 676                return CSTORM_ASSERT_LIST_OFFSET(entry);
 677        case USTORM:
 678                return USTORM_ASSERT_LIST_OFFSET(entry);
 679        case MAX_STORMS:
 680        default:
 681                BNX2X_ERR("unknown storm\n");
 682        }
 683        return -EINVAL;
 684}
 685
 686static int bnx2x_mc_assert(struct bnx2x *bp)
 687{
 688        char last_idx;
 689        int i, j, rc = 0;
 690        enum storms storm;
 691        u32 regs[REGS_IN_ENTRY];
 692        u32 bar_storm_intmem[STORMS_NUM] = {
 693                BAR_XSTRORM_INTMEM,
 694                BAR_TSTRORM_INTMEM,
 695                BAR_CSTRORM_INTMEM,
 696                BAR_USTRORM_INTMEM
 697        };
 698        u32 storm_assert_list_index[STORMS_NUM] = {
 699                XSTORM_ASSERT_LIST_INDEX_OFFSET,
 700                TSTORM_ASSERT_LIST_INDEX_OFFSET,
 701                CSTORM_ASSERT_LIST_INDEX_OFFSET,
 702                USTORM_ASSERT_LIST_INDEX_OFFSET
 703        };
 704        char *storms_string[STORMS_NUM] = {
 705                "XSTORM",
 706                "TSTORM",
 707                "CSTORM",
 708                "USTORM"
 709        };
 710
 711        for (storm = XSTORM; storm < MAX_STORMS; storm++) {
 712                last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
 713                                   storm_assert_list_index[storm]);
 714                if (last_idx)
 715                        BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
 716                                  storms_string[storm], last_idx);
 717
 718                /* print the asserts */
 719                for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
 720                        /* read a single assert entry */
 721                        for (j = 0; j < REGS_IN_ENTRY; j++)
 722                                regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
 723                                          bnx2x_get_assert_list_entry(bp,
 724                                                                      storm,
 725                                                                      i) +
 726                                          sizeof(u32) * j);
 727
 728                        /* log entry if it contains a valid assert */
 729                        if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 730                                BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 731                                          storms_string[storm], i, regs[3],
 732                                          regs[2], regs[1], regs[0]);
 733                                rc++;
 734                        } else {
 735                                break;
 736                        }
 737                }
 738        }
 739
 740        BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
 741                  CHIP_IS_E1(bp) ? "everest1" :
 742                  CHIP_IS_E1H(bp) ? "everest1h" :
 743                  CHIP_IS_E2(bp) ? "everest2" : "everest3",
 744                  BCM_5710_FW_MAJOR_VERSION,
 745                  BCM_5710_FW_MINOR_VERSION,
 746                  BCM_5710_FW_REVISION_VERSION);
 747
 748        return rc;
 749}
 750
 751#define MCPR_TRACE_BUFFER_SIZE  (0x800)
 752#define SCRATCH_BUFFER_SIZE(bp) \
 753        (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
 754
 755void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
 756{
 757        u32 addr, val;
 758        u32 mark, offset;
 759        __be32 data[9];
 760        int word;
 761        u32 trace_shmem_base;
 762        if (BP_NOMCP(bp)) {
 763                BNX2X_ERR("NO MCP - can not dump\n");
 764                return;
 765        }
 766        netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
 767                (bp->common.bc_ver & 0xff0000) >> 16,
 768                (bp->common.bc_ver & 0xff00) >> 8,
 769                (bp->common.bc_ver & 0xff));
 770
 771        val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
 772        if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
 773                BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
 774
 775        if (BP_PATH(bp) == 0)
 776                trace_shmem_base = bp->common.shmem_base;
 777        else
 778                trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
 779
 780        /* sanity */
 781        if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
 782            trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
 783                                SCRATCH_BUFFER_SIZE(bp)) {
 784                BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
 785                          trace_shmem_base);
 786                return;
 787        }
 788
 789        addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
 790
 791        /* validate TRCB signature */
 792        mark = REG_RD(bp, addr);
 793        if (mark != MFW_TRACE_SIGNATURE) {
 794                BNX2X_ERR("Trace buffer signature is missing.");
 795                return ;
 796        }
 797
 798        /* read cyclic buffer pointer */
 799        addr += 4;
 800        mark = REG_RD(bp, addr);
 801        mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
 802        if (mark >= trace_shmem_base || mark < addr + 4) {
 803                BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
 804                return;
 805        }
 806        printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
 807
 808        printk("%s", lvl);
 809
 810        /* dump buffer after the mark */
 811        for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
 812                for (word = 0; word < 8; word++)
 813                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 814                data[8] = 0x0;
 815                pr_cont("%s", (char *)data);
 816        }
 817
 818        /* dump buffer before the mark */
 819        for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
 820                for (word = 0; word < 8; word++)
 821                        data[word] = htonl(REG_RD(bp, offset + 4*word));
 822                data[8] = 0x0;
 823                pr_cont("%s", (char *)data);
 824        }
 825        printk("%s" "end of fw dump\n", lvl);
 826}
 827
 828static void bnx2x_fw_dump(struct bnx2x *bp)
 829{
 830        bnx2x_fw_dump_lvl(bp, KERN_ERR);
 831}
 832
 833static void bnx2x_hc_int_disable(struct bnx2x *bp)
 834{
 835        int port = BP_PORT(bp);
 836        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
 837        u32 val = REG_RD(bp, addr);
 838
 839        /* in E1 we must use only PCI configuration space to disable
 840         * MSI/MSIX capability
 841         * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
 842         */
 843        if (CHIP_IS_E1(bp)) {
 844                /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
 845                 * Use mask register to prevent from HC sending interrupts
 846                 * after we exit the function
 847                 */
 848                REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
 849
 850                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 851                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 852                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 853        } else
 854                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
 855                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
 856                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
 857                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
 858
 859        DP(NETIF_MSG_IFDOWN,
 860           "write %x to HC %d (addr 0x%x)\n",
 861           val, port, addr);
 862
 863        /* flush all outstanding writes */
 864        mmiowb();
 865
 866        REG_WR(bp, addr, val);
 867        if (REG_RD(bp, addr) != val)
 868                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 869}
 870
 871static void bnx2x_igu_int_disable(struct bnx2x *bp)
 872{
 873        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
 874
 875        val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
 876                 IGU_PF_CONF_INT_LINE_EN |
 877                 IGU_PF_CONF_ATTN_BIT_EN);
 878
 879        DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
 880
 881        /* flush all outstanding writes */
 882        mmiowb();
 883
 884        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
 885        if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
 886                BNX2X_ERR("BUG! Proper val not read from IGU!\n");
 887}
 888
 889static void bnx2x_int_disable(struct bnx2x *bp)
 890{
 891        if (bp->common.int_block == INT_BLOCK_HC)
 892                bnx2x_hc_int_disable(bp);
 893        else
 894                bnx2x_igu_int_disable(bp);
 895}
 896
 897void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
 898{
 899        int i;
 900        u16 j;
 901        struct hc_sp_status_block_data sp_sb_data;
 902        int func = BP_FUNC(bp);
 903#ifdef BNX2X_STOP_ON_ERROR
 904        u16 start = 0, end = 0;
 905        u8 cos;
 906#endif
 907        if (IS_PF(bp) && disable_int)
 908                bnx2x_int_disable(bp);
 909
 910        bp->stats_state = STATS_STATE_DISABLED;
 911        bp->eth_stats.unrecoverable_error++;
 912        DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
 913
 914        BNX2X_ERR("begin crash dump -----------------\n");
 915
 916        /* Indices */
 917        /* Common */
 918        if (IS_PF(bp)) {
 919                struct host_sp_status_block *def_sb = bp->def_status_blk;
 920                int data_size, cstorm_offset;
 921
 922                BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
 923                          bp->def_idx, bp->def_att_idx, bp->attn_state,
 924                          bp->spq_prod_idx, bp->stats_counter);
 925                BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
 926                          def_sb->atten_status_block.attn_bits,
 927                          def_sb->atten_status_block.attn_bits_ack,
 928                          def_sb->atten_status_block.status_block_id,
 929                          def_sb->atten_status_block.attn_bits_index);
 930                BNX2X_ERR("     def (");
 931                for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
 932                        pr_cont("0x%x%s",
 933                                def_sb->sp_sb.index_values[i],
 934                                (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
 935
 936                data_size = sizeof(struct hc_sp_status_block_data) /
 937                            sizeof(u32);
 938                cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
 939                for (i = 0; i < data_size; i++)
 940                        *((u32 *)&sp_sb_data + i) =
 941                                REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
 942                                           i * sizeof(u32));
 943
 944                pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
 945                        sp_sb_data.igu_sb_id,
 946                        sp_sb_data.igu_seg_id,
 947                        sp_sb_data.p_func.pf_id,
 948                        sp_sb_data.p_func.vnic_id,
 949                        sp_sb_data.p_func.vf_id,
 950                        sp_sb_data.p_func.vf_valid,
 951                        sp_sb_data.state);
 952        }
 953
 954        for_each_eth_queue(bp, i) {
 955                struct bnx2x_fastpath *fp = &bp->fp[i];
 956                int loop;
 957                struct hc_status_block_data_e2 sb_data_e2;
 958                struct hc_status_block_data_e1x sb_data_e1x;
 959                struct hc_status_block_sm  *hc_sm_p =
 960                        CHIP_IS_E1x(bp) ?
 961                        sb_data_e1x.common.state_machine :
 962                        sb_data_e2.common.state_machine;
 963                struct hc_index_data *hc_index_p =
 964                        CHIP_IS_E1x(bp) ?
 965                        sb_data_e1x.index_data :
 966                        sb_data_e2.index_data;
 967                u8 data_size, cos;
 968                u32 *sb_data_p;
 969                struct bnx2x_fp_txdata txdata;
 970
 971                if (!bp->fp)
 972                        break;
 973
 974                if (!fp->rx_cons_sb)
 975                        continue;
 976
 977                /* Rx */
 978                BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
 979                          i, fp->rx_bd_prod, fp->rx_bd_cons,
 980                          fp->rx_comp_prod,
 981                          fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
 982                BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
 983                          fp->rx_sge_prod, fp->last_max_sge,
 984                          le16_to_cpu(fp->fp_hc_idx));
 985
 986                /* Tx */
 987                for_each_cos_in_tx_queue(fp, cos)
 988                {
 989                        if (!fp->txdata_ptr[cos])
 990                                break;
 991
 992                        txdata = *fp->txdata_ptr[cos];
 993
 994                        if (!txdata.tx_cons_sb)
 995                                continue;
 996
 997                        BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
 998                                  i, txdata.tx_pkt_prod,
 999                                  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1000                                  txdata.tx_bd_cons,
1001                                  le16_to_cpu(*txdata.tx_cons_sb));
1002                }
1003
1004                loop = CHIP_IS_E1x(bp) ?
1005                        HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1006
1007                /* host sb data */
1008
1009                if (IS_FCOE_FP(fp))
1010                        continue;
1011
1012                BNX2X_ERR("     run indexes (");
1013                for (j = 0; j < HC_SB_MAX_SM; j++)
1014                        pr_cont("0x%x%s",
1015                               fp->sb_running_index[j],
1016                               (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1017
1018                BNX2X_ERR("     indexes (");
1019                for (j = 0; j < loop; j++)
1020                        pr_cont("0x%x%s",
1021                               fp->sb_index_values[j],
1022                               (j == loop - 1) ? ")" : " ");
1023
1024                /* VF cannot access FW refelection for status block */
1025                if (IS_VF(bp))
1026                        continue;
1027
1028                /* fw sb data */
1029                data_size = CHIP_IS_E1x(bp) ?
1030                        sizeof(struct hc_status_block_data_e1x) :
1031                        sizeof(struct hc_status_block_data_e2);
1032                data_size /= sizeof(u32);
1033                sb_data_p = CHIP_IS_E1x(bp) ?
1034                        (u32 *)&sb_data_e1x :
1035                        (u32 *)&sb_data_e2;
1036                /* copy sb data in here */
1037                for (j = 0; j < data_size; j++)
1038                        *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1039                                CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1040                                j * sizeof(u32));
1041
1042                if (!CHIP_IS_E1x(bp)) {
1043                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1044                                sb_data_e2.common.p_func.pf_id,
1045                                sb_data_e2.common.p_func.vf_id,
1046                                sb_data_e2.common.p_func.vf_valid,
1047                                sb_data_e2.common.p_func.vnic_id,
1048                                sb_data_e2.common.same_igu_sb_1b,
1049                                sb_data_e2.common.state);
1050                } else {
1051                        pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1052                                sb_data_e1x.common.p_func.pf_id,
1053                                sb_data_e1x.common.p_func.vf_id,
1054                                sb_data_e1x.common.p_func.vf_valid,
1055                                sb_data_e1x.common.p_func.vnic_id,
1056                                sb_data_e1x.common.same_igu_sb_1b,
1057                                sb_data_e1x.common.state);
1058                }
1059
1060                /* SB_SMs data */
1061                for (j = 0; j < HC_SB_MAX_SM; j++) {
1062                        pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1063                                j, hc_sm_p[j].__flags,
1064                                hc_sm_p[j].igu_sb_id,
1065                                hc_sm_p[j].igu_seg_id,
1066                                hc_sm_p[j].time_to_expire,
1067                                hc_sm_p[j].timer_value);
1068                }
1069
1070                /* Indices data */
1071                for (j = 0; j < loop; j++) {
1072                        pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1073                               hc_index_p[j].flags,
1074                               hc_index_p[j].timeout);
1075                }
1076        }
1077
1078#ifdef BNX2X_STOP_ON_ERROR
1079        if (IS_PF(bp)) {
1080                /* event queue */
1081                BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1082                for (i = 0; i < NUM_EQ_DESC; i++) {
1083                        u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1084
1085                        BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1086                                  i, bp->eq_ring[i].message.opcode,
1087                                  bp->eq_ring[i].message.error);
1088                        BNX2X_ERR("data: %x %x %x\n",
1089                                  data[0], data[1], data[2]);
1090                }
1091        }
1092
1093        /* Rings */
1094        /* Rx */
1095        for_each_valid_rx_queue(bp, i) {
1096                struct bnx2x_fastpath *fp = &bp->fp[i];
1097
1098                if (!bp->fp)
1099                        break;
1100
1101                if (!fp->rx_cons_sb)
1102                        continue;
1103
1104                start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1105                end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1106                for (j = start; j != end; j = RX_BD(j + 1)) {
1107                        u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1108                        struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1109
1110                        BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1111                                  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1112                }
1113
1114                start = RX_SGE(fp->rx_sge_prod);
1115                end = RX_SGE(fp->last_max_sge);
1116                for (j = start; j != end; j = RX_SGE(j + 1)) {
1117                        u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1118                        struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1119
1120                        BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1121                                  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1122                }
1123
1124                start = RCQ_BD(fp->rx_comp_cons - 10);
1125                end = RCQ_BD(fp->rx_comp_cons + 503);
1126                for (j = start; j != end; j = RCQ_BD(j + 1)) {
1127                        u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1128
1129                        BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1130                                  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1131                }
1132        }
1133
1134        /* Tx */
1135        for_each_valid_tx_queue(bp, i) {
1136                struct bnx2x_fastpath *fp = &bp->fp[i];
1137
1138                if (!bp->fp)
1139                        break;
1140
1141                for_each_cos_in_tx_queue(fp, cos) {
1142                        struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1143
1144                        if (!fp->txdata_ptr[cos])
1145                                break;
1146
1147                        if (!txdata->tx_cons_sb)
1148                                continue;
1149
1150                        start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1151                        end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1152                        for (j = start; j != end; j = TX_BD(j + 1)) {
1153                                struct sw_tx_bd *sw_bd =
1154                                        &txdata->tx_buf_ring[j];
1155
1156                                BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1157                                          i, cos, j, sw_bd->skb,
1158                                          sw_bd->first_bd);
1159                        }
1160
1161                        start = TX_BD(txdata->tx_bd_cons - 10);
1162                        end = TX_BD(txdata->tx_bd_cons + 254);
1163                        for (j = start; j != end; j = TX_BD(j + 1)) {
1164                                u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1165
1166                                BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1167                                          i, cos, j, tx_bd[0], tx_bd[1],
1168                                          tx_bd[2], tx_bd[3]);
1169                        }
1170                }
1171        }
1172#endif
1173        if (IS_PF(bp)) {
1174                bnx2x_fw_dump(bp);
1175                bnx2x_mc_assert(bp);
1176        }
1177        BNX2X_ERR("end crash dump -----------------\n");
1178}
1179
1180/*
1181 * FLR Support for E2
1182 *
1183 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1184 * initialization.
1185 */
1186#define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1187#define FLR_WAIT_INTERVAL       50      /* usec */
1188#define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1189
1190struct pbf_pN_buf_regs {
1191        int pN;
1192        u32 init_crd;
1193        u32 crd;
1194        u32 crd_freed;
1195};
1196
1197struct pbf_pN_cmd_regs {
1198        int pN;
1199        u32 lines_occup;
1200        u32 lines_freed;
1201};
1202
1203static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1204                                     struct pbf_pN_buf_regs *regs,
1205                                     u32 poll_count)
1206{
1207        u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1208        u32 cur_cnt = poll_count;
1209
1210        crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1211        crd = crd_start = REG_RD(bp, regs->crd);
1212        init_crd = REG_RD(bp, regs->init_crd);
1213
1214        DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1215        DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1216        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1217
1218        while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1219               (init_crd - crd_start))) {
1220                if (cur_cnt--) {
1221                        udelay(FLR_WAIT_INTERVAL);
1222                        crd = REG_RD(bp, regs->crd);
1223                        crd_freed = REG_RD(bp, regs->crd_freed);
1224                } else {
1225                        DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1226                           regs->pN);
1227                        DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1228                           regs->pN, crd);
1229                        DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1230                           regs->pN, crd_freed);
1231                        break;
1232                }
1233        }
1234        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1235           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1236}
1237
1238static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1239                                     struct pbf_pN_cmd_regs *regs,
1240                                     u32 poll_count)
1241{
1242        u32 occup, to_free, freed, freed_start;
1243        u32 cur_cnt = poll_count;
1244
1245        occup = to_free = REG_RD(bp, regs->lines_occup);
1246        freed = freed_start = REG_RD(bp, regs->lines_freed);
1247
1248        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1249        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1250
1251        while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1252                if (cur_cnt--) {
1253                        udelay(FLR_WAIT_INTERVAL);
1254                        occup = REG_RD(bp, regs->lines_occup);
1255                        freed = REG_RD(bp, regs->lines_freed);
1256                } else {
1257                        DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1258                           regs->pN);
1259                        DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1260                           regs->pN, occup);
1261                        DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1262                           regs->pN, freed);
1263                        break;
1264                }
1265        }
1266        DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1267           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1268}
1269
1270static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1271                                    u32 expected, u32 poll_count)
1272{
1273        u32 cur_cnt = poll_count;
1274        u32 val;
1275
1276        while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1277                udelay(FLR_WAIT_INTERVAL);
1278
1279        return val;
1280}
1281
1282int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1283                                    char *msg, u32 poll_cnt)
1284{
1285        u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1286        if (val != 0) {
1287                BNX2X_ERR("%s usage count=%d\n", msg, val);
1288                return 1;
1289        }
1290        return 0;
1291}
1292
1293/* Common routines with VF FLR cleanup */
1294u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1295{
1296        /* adjust polling timeout */
1297        if (CHIP_REV_IS_EMUL(bp))
1298                return FLR_POLL_CNT * 2000;
1299
1300        if (CHIP_REV_IS_FPGA(bp))
1301                return FLR_POLL_CNT * 120;
1302
1303        return FLR_POLL_CNT;
1304}
1305
1306void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1307{
1308        struct pbf_pN_cmd_regs cmd_regs[] = {
1309                {0, (CHIP_IS_E3B0(bp)) ?
1310                        PBF_REG_TQ_OCCUPANCY_Q0 :
1311                        PBF_REG_P0_TQ_OCCUPANCY,
1312                    (CHIP_IS_E3B0(bp)) ?
1313                        PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1314                        PBF_REG_P0_TQ_LINES_FREED_CNT},
1315                {1, (CHIP_IS_E3B0(bp)) ?
1316                        PBF_REG_TQ_OCCUPANCY_Q1 :
1317                        PBF_REG_P1_TQ_OCCUPANCY,
1318                    (CHIP_IS_E3B0(bp)) ?
1319                        PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1320                        PBF_REG_P1_TQ_LINES_FREED_CNT},
1321                {4, (CHIP_IS_E3B0(bp)) ?
1322                        PBF_REG_TQ_OCCUPANCY_LB_Q :
1323                        PBF_REG_P4_TQ_OCCUPANCY,
1324                    (CHIP_IS_E3B0(bp)) ?
1325                        PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1326                        PBF_REG_P4_TQ_LINES_FREED_CNT}
1327        };
1328
1329        struct pbf_pN_buf_regs buf_regs[] = {
1330                {0, (CHIP_IS_E3B0(bp)) ?
1331                        PBF_REG_INIT_CRD_Q0 :
1332                        PBF_REG_P0_INIT_CRD ,
1333                    (CHIP_IS_E3B0(bp)) ?
1334                        PBF_REG_CREDIT_Q0 :
1335                        PBF_REG_P0_CREDIT,
1336                    (CHIP_IS_E3B0(bp)) ?
1337                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1338                        PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1339                {1, (CHIP_IS_E3B0(bp)) ?
1340                        PBF_REG_INIT_CRD_Q1 :
1341                        PBF_REG_P1_INIT_CRD,
1342                    (CHIP_IS_E3B0(bp)) ?
1343                        PBF_REG_CREDIT_Q1 :
1344                        PBF_REG_P1_CREDIT,
1345                    (CHIP_IS_E3B0(bp)) ?
1346                        PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1347                        PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1348                {4, (CHIP_IS_E3B0(bp)) ?
1349                        PBF_REG_INIT_CRD_LB_Q :
1350                        PBF_REG_P4_INIT_CRD,
1351                    (CHIP_IS_E3B0(bp)) ?
1352                        PBF_REG_CREDIT_LB_Q :
1353                        PBF_REG_P4_CREDIT,
1354                    (CHIP_IS_E3B0(bp)) ?
1355                        PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1356                        PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1357        };
1358
1359        int i;
1360
1361        /* Verify the command queues are flushed P0, P1, P4 */
1362        for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1363                bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1364
1365        /* Verify the transmission buffers are flushed P0, P1, P4 */
1366        for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1367                bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1368}
1369
1370#define OP_GEN_PARAM(param) \
1371        (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1372
1373#define OP_GEN_TYPE(type) \
1374        (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1375
1376#define OP_GEN_AGG_VECT(index) \
1377        (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1378
1379int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1380{
1381        u32 op_gen_command = 0;
1382        u32 comp_addr = BAR_CSTRORM_INTMEM +
1383                        CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1384        int ret = 0;
1385
1386        if (REG_RD(bp, comp_addr)) {
1387                BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1388                return 1;
1389        }
1390
1391        op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1392        op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1393        op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1394        op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1395
1396        DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1397        REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1398
1399        if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1400                BNX2X_ERR("FW final cleanup did not succeed\n");
1401                DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1402                   (REG_RD(bp, comp_addr)));
1403                bnx2x_panic();
1404                return 1;
1405        }
1406        /* Zero completion for next FLR */
1407        REG_WR(bp, comp_addr, 0);
1408
1409        return ret;
1410}
1411
1412u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1413{
1414        u16 status;
1415
1416        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1417        return status & PCI_EXP_DEVSTA_TRPND;
1418}
1419
1420/* PF FLR specific routines
1421*/
1422static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1423{
1424        /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1425        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426                        CFC_REG_NUM_LCIDS_INSIDE_PF,
1427                        "CFC PF usage counter timed out",
1428                        poll_cnt))
1429                return 1;
1430
1431        /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1432        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433                        DORQ_REG_PF_USAGE_CNT,
1434                        "DQ PF usage counter timed out",
1435                        poll_cnt))
1436                return 1;
1437
1438        /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1439        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440                        QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1441                        "QM PF usage counter timed out",
1442                        poll_cnt))
1443                return 1;
1444
1445        /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1446        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447                        TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1448                        "Timers VNIC usage counter timed out",
1449                        poll_cnt))
1450                return 1;
1451        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452                        TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1453                        "Timers NUM_SCANS usage counter timed out",
1454                        poll_cnt))
1455                return 1;
1456
1457        /* Wait DMAE PF usage counter to zero */
1458        if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459                        dmae_reg_go_c[INIT_DMAE_C(bp)],
1460                        "DMAE command register timed out",
1461                        poll_cnt))
1462                return 1;
1463
1464        return 0;
1465}
1466
1467static void bnx2x_hw_enable_status(struct bnx2x *bp)
1468{
1469        u32 val;
1470
1471        val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1472        DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1473
1474        val = REG_RD(bp, PBF_REG_DISABLE_PF);
1475        DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1476
1477        val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1478        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1479
1480        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1481        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1482
1483        val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1484        DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1485
1486        val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1487        DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1488
1489        val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1490        DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1491
1492        val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1493        DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1494           val);
1495}
1496
1497static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1498{
1499        u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1500
1501        DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1502
1503        /* Re-enable PF target read access */
1504        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1505
1506        /* Poll HW usage counters */
1507        DP(BNX2X_MSG_SP, "Polling usage counters\n");
1508        if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1509                return -EBUSY;
1510
1511        /* Zero the igu 'trailing edge' and 'leading edge' */
1512
1513        /* Send the FW cleanup command */
1514        if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1515                return -EBUSY;
1516
1517        /* ATC cleanup */
1518
1519        /* Verify TX hw is flushed */
1520        bnx2x_tx_hw_flushed(bp, poll_cnt);
1521
1522        /* Wait 100ms (not adjusted according to platform) */
1523        msleep(100);
1524
1525        /* Verify no pending pci transactions */
1526        if (bnx2x_is_pcie_pending(bp->pdev))
1527                BNX2X_ERR("PCIE Transactions still pending\n");
1528
1529        /* Debug */
1530        bnx2x_hw_enable_status(bp);
1531
1532        /*
1533         * Master enable - Due to WB DMAE writes performed before this
1534         * register is re-initialized as part of the regular function init
1535         */
1536        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1537
1538        return 0;
1539}
1540
1541static void bnx2x_hc_int_enable(struct bnx2x *bp)
1542{
1543        int port = BP_PORT(bp);
1544        u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1545        u32 val = REG_RD(bp, addr);
1546        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1547        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1548        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1549
1550        if (msix) {
1551                val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1552                         HC_CONFIG_0_REG_INT_LINE_EN_0);
1553                val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1554                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1555                if (single_msix)
1556                        val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1557        } else if (msi) {
1558                val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1559                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1560                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1561                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1562        } else {
1563                val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564                        HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565                        HC_CONFIG_0_REG_INT_LINE_EN_0 |
1566                        HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567
1568                if (!CHIP_IS_E1(bp)) {
1569                        DP(NETIF_MSG_IFUP,
1570                           "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1571
1572                        REG_WR(bp, addr, val);
1573
1574                        val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1575                }
1576        }
1577
1578        if (CHIP_IS_E1(bp))
1579                REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1580
1581        DP(NETIF_MSG_IFUP,
1582           "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1583           (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1584
1585        REG_WR(bp, addr, val);
1586        /*
1587         * Ensure that HC_CONFIG is written before leading/trailing edge config
1588         */
1589        mmiowb();
1590        barrier();
1591
1592        if (!CHIP_IS_E1(bp)) {
1593                /* init leading/trailing edge */
1594                if (IS_MF(bp)) {
1595                        val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1596                        if (bp->port.pmf)
1597                                /* enable nig and gpio3 attention */
1598                                val |= 0x1100;
1599                } else
1600                        val = 0xffff;
1601
1602                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1603                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1604        }
1605
1606        /* Make sure that interrupts are indeed enabled from here on */
1607        mmiowb();
1608}
1609
1610static void bnx2x_igu_int_enable(struct bnx2x *bp)
1611{
1612        u32 val;
1613        bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1614        bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1615        bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1616
1617        val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1618
1619        if (msix) {
1620                val &= ~(IGU_PF_CONF_INT_LINE_EN |
1621                         IGU_PF_CONF_SINGLE_ISR_EN);
1622                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1623                        IGU_PF_CONF_ATTN_BIT_EN);
1624
1625                if (single_msix)
1626                        val |= IGU_PF_CONF_SINGLE_ISR_EN;
1627        } else if (msi) {
1628                val &= ~IGU_PF_CONF_INT_LINE_EN;
1629                val |= (IGU_PF_CONF_MSI_MSIX_EN |
1630                        IGU_PF_CONF_ATTN_BIT_EN |
1631                        IGU_PF_CONF_SINGLE_ISR_EN);
1632        } else {
1633                val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1634                val |= (IGU_PF_CONF_INT_LINE_EN |
1635                        IGU_PF_CONF_ATTN_BIT_EN |
1636                        IGU_PF_CONF_SINGLE_ISR_EN);
1637        }
1638
1639        /* Clean previous status - need to configure igu prior to ack*/
1640        if ((!msix) || single_msix) {
1641                REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1642                bnx2x_ack_int(bp);
1643        }
1644
1645        val |= IGU_PF_CONF_FUNC_EN;
1646
1647        DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1648           val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1649
1650        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651
1652        if (val & IGU_PF_CONF_INT_LINE_EN)
1653                pci_intx(bp->pdev, true);
1654
1655        barrier();
1656
1657        /* init leading/trailing edge */
1658        if (IS_MF(bp)) {
1659                val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1660                if (bp->port.pmf)
1661                        /* enable nig and gpio3 attention */
1662                        val |= 0x1100;
1663        } else
1664                val = 0xffff;
1665
1666        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1667        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1668
1669        /* Make sure that interrupts are indeed enabled from here on */
1670        mmiowb();
1671}
1672
1673void bnx2x_int_enable(struct bnx2x *bp)
1674{
1675        if (bp->common.int_block == INT_BLOCK_HC)
1676                bnx2x_hc_int_enable(bp);
1677        else
1678                bnx2x_igu_int_enable(bp);
1679}
1680
1681void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1682{
1683        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1684        int i, offset;
1685
1686        if (disable_hw)
1687                /* prevent the HW from sending interrupts */
1688                bnx2x_int_disable(bp);
1689
1690        /* make sure all ISRs are done */
1691        if (msix) {
1692                synchronize_irq(bp->msix_table[0].vector);
1693                offset = 1;
1694                if (CNIC_SUPPORT(bp))
1695                        offset++;
1696                for_each_eth_queue(bp, i)
1697                        synchronize_irq(bp->msix_table[offset++].vector);
1698        } else
1699                synchronize_irq(bp->pdev->irq);
1700
1701        /* make sure sp_task is not running */
1702        cancel_delayed_work(&bp->sp_task);
1703        cancel_delayed_work(&bp->period_task);
1704        flush_workqueue(bnx2x_wq);
1705}
1706
1707/* fast path */
1708
1709/*
1710 * General service functions
1711 */
1712
1713/* Return true if succeeded to acquire the lock */
1714static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1715{
1716        u32 lock_status;
1717        u32 resource_bit = (1 << resource);
1718        int func = BP_FUNC(bp);
1719        u32 hw_lock_control_reg;
1720
1721        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1722           "Trying to take a lock on resource %d\n", resource);
1723
1724        /* Validating that the resource is within range */
1725        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1726                DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727                   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1728                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1729                return false;
1730        }
1731
1732        if (func <= 5)
1733                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1734        else
1735                hw_lock_control_reg =
1736                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1737
1738        /* Try to acquire the lock */
1739        REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1740        lock_status = REG_RD(bp, hw_lock_control_reg);
1741        if (lock_status & resource_bit)
1742                return true;
1743
1744        DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1745           "Failed to get a lock on resource %d\n", resource);
1746        return false;
1747}
1748
1749/**
1750 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1751 *
1752 * @bp: driver handle
1753 *
1754 * Returns the recovery leader resource id according to the engine this function
1755 * belongs to. Currently only only 2 engines is supported.
1756 */
1757static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1758{
1759        if (BP_PATH(bp))
1760                return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1761        else
1762                return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1763}
1764
1765/**
1766 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1767 *
1768 * @bp: driver handle
1769 *
1770 * Tries to acquire a leader lock for current engine.
1771 */
1772static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1773{
1774        return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1775}
1776
1777static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1778
1779/* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1780static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1781{
1782        /* Set the interrupt occurred bit for the sp-task to recognize it
1783         * must ack the interrupt and transition according to the IGU
1784         * state machine.
1785         */
1786        atomic_set(&bp->interrupt_occurred, 1);
1787
1788        /* The sp_task must execute only after this bit
1789         * is set, otherwise we will get out of sync and miss all
1790         * further interrupts. Hence, the barrier.
1791         */
1792        smp_wmb();
1793
1794        /* schedule sp_task to workqueue */
1795        return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1796}
1797
1798void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1799{
1800        struct bnx2x *bp = fp->bp;
1801        int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802        int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1803        enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1804        struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1805
1806        DP(BNX2X_MSG_SP,
1807           "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1808           fp->index, cid, command, bp->state,
1809           rr_cqe->ramrod_cqe.ramrod_type);
1810
1811        /* If cid is within VF range, replace the slowpath object with the
1812         * one corresponding to this VF
1813         */
1814        if (cid >= BNX2X_FIRST_VF_CID  &&
1815            cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1816                bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1817
1818        switch (command) {
1819        case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1820                DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1821                drv_cmd = BNX2X_Q_CMD_UPDATE;
1822                break;
1823
1824        case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1825                DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1826                drv_cmd = BNX2X_Q_CMD_SETUP;
1827                break;
1828
1829        case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1830                DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1831                drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1832                break;
1833
1834        case (RAMROD_CMD_ID_ETH_HALT):
1835                DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1836                drv_cmd = BNX2X_Q_CMD_HALT;
1837                break;
1838
1839        case (RAMROD_CMD_ID_ETH_TERMINATE):
1840                DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1841                drv_cmd = BNX2X_Q_CMD_TERMINATE;
1842                break;
1843
1844        case (RAMROD_CMD_ID_ETH_EMPTY):
1845                DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1846                drv_cmd = BNX2X_Q_CMD_EMPTY;
1847                break;
1848
1849        case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1850                DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1851                drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1852                break;
1853
1854        default:
1855                BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1856                          command, fp->index);
1857                return;
1858        }
1859
1860        if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1861            q_obj->complete_cmd(bp, q_obj, drv_cmd))
1862                /* q_obj->complete_cmd() failure means that this was
1863                 * an unexpected completion.
1864                 *
1865                 * In this case we don't want to increase the bp->spq_left
1866                 * because apparently we haven't sent this command the first
1867                 * place.
1868                 */
1869#ifdef BNX2X_STOP_ON_ERROR
1870                bnx2x_panic();
1871#else
1872                return;
1873#endif
1874
1875        smp_mb__before_atomic();
1876        atomic_inc(&bp->cq_spq_left);
1877        /* push the change in bp->spq_left and towards the memory */
1878        smp_mb__after_atomic();
1879
1880        DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1881
1882        if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1883            (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1884                /* if Q update ramrod is completed for last Q in AFEX vif set
1885                 * flow, then ACK MCP at the end
1886                 *
1887                 * mark pending ACK to MCP bit.
1888                 * prevent case that both bits are cleared.
1889                 * At the end of load/unload driver checks that
1890                 * sp_state is cleared, and this order prevents
1891                 * races
1892                 */
1893                smp_mb__before_atomic();
1894                set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1895                wmb();
1896                clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1897                smp_mb__after_atomic();
1898
1899                /* schedule the sp task as mcp ack is required */
1900                bnx2x_schedule_sp_task(bp);
1901        }
1902
1903        return;
1904}
1905
1906irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1907{
1908        struct bnx2x *bp = netdev_priv(dev_instance);
1909        u16 status = bnx2x_ack_int(bp);
1910        u16 mask;
1911        int i;
1912        u8 cos;
1913
1914        /* Return here if interrupt is shared and it's not for us */
1915        if (unlikely(status == 0)) {
1916                DP(NETIF_MSG_INTR, "not our interrupt!\n");
1917                return IRQ_NONE;
1918        }
1919        DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1920
1921#ifdef BNX2X_STOP_ON_ERROR
1922        if (unlikely(bp->panic))
1923                return IRQ_HANDLED;
1924#endif
1925
1926        for_each_eth_queue(bp, i) {
1927                struct bnx2x_fastpath *fp = &bp->fp[i];
1928
1929                mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1930                if (status & mask) {
1931                        /* Handle Rx or Tx according to SB id */
1932                        for_each_cos_in_tx_queue(fp, cos)
1933                                prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1934                        prefetch(&fp->sb_running_index[SM_RX_ID]);
1935                        napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1936                        status &= ~mask;
1937                }
1938        }
1939
1940        if (CNIC_SUPPORT(bp)) {
1941                mask = 0x2;
1942                if (status & (mask | 0x1)) {
1943                        struct cnic_ops *c_ops = NULL;
1944
1945                        rcu_read_lock();
1946                        c_ops = rcu_dereference(bp->cnic_ops);
1947                        if (c_ops && (bp->cnic_eth_dev.drv_state &
1948                                      CNIC_DRV_STATE_HANDLES_IRQ))
1949                                c_ops->cnic_handler(bp->cnic_data, NULL);
1950                        rcu_read_unlock();
1951
1952                        status &= ~mask;
1953                }
1954        }
1955
1956        if (unlikely(status & 0x1)) {
1957
1958                /* schedule sp task to perform default status block work, ack
1959                 * attentions and enable interrupts.
1960                 */
1961                bnx2x_schedule_sp_task(bp);
1962
1963                status &= ~0x1;
1964                if (!status)
1965                        return IRQ_HANDLED;
1966        }
1967
1968        if (unlikely(status))
1969                DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1970                   status);
1971
1972        return IRQ_HANDLED;
1973}
1974
1975/* Link */
1976
1977/*
1978 * General service functions
1979 */
1980
1981int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1982{
1983        u32 lock_status;
1984        u32 resource_bit = (1 << resource);
1985        int func = BP_FUNC(bp);
1986        u32 hw_lock_control_reg;
1987        int cnt;
1988
1989        /* Validating that the resource is within range */
1990        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1991                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1992                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1993                return -EINVAL;
1994        }
1995
1996        if (func <= 5) {
1997                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1998        } else {
1999                hw_lock_control_reg =
2000                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2001        }
2002
2003        /* Validating that the resource is not already taken */
2004        lock_status = REG_RD(bp, hw_lock_control_reg);
2005        if (lock_status & resource_bit) {
2006                BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2007                   lock_status, resource_bit);
2008                return -EEXIST;
2009        }
2010
2011        /* Try for 5 second every 5ms */
2012        for (cnt = 0; cnt < 1000; cnt++) {
2013                /* Try to acquire the lock */
2014                REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2015                lock_status = REG_RD(bp, hw_lock_control_reg);
2016                if (lock_status & resource_bit)
2017                        return 0;
2018
2019                usleep_range(5000, 10000);
2020        }
2021        BNX2X_ERR("Timeout\n");
2022        return -EAGAIN;
2023}
2024
2025int bnx2x_release_leader_lock(struct bnx2x *bp)
2026{
2027        return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2028}
2029
2030int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2031{
2032        u32 lock_status;
2033        u32 resource_bit = (1 << resource);
2034        int func = BP_FUNC(bp);
2035        u32 hw_lock_control_reg;
2036
2037        /* Validating that the resource is within range */
2038        if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2039                BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2040                   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2041                return -EINVAL;
2042        }
2043
2044        if (func <= 5) {
2045                hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2046        } else {
2047                hw_lock_control_reg =
2048                                (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2049        }
2050
2051        /* Validating that the resource is currently taken */
2052        lock_status = REG_RD(bp, hw_lock_control_reg);
2053        if (!(lock_status & resource_bit)) {
2054                BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2055                          lock_status, resource_bit);
2056                return -EFAULT;
2057        }
2058
2059        REG_WR(bp, hw_lock_control_reg, resource_bit);
2060        return 0;
2061}
2062
2063int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2064{
2065        /* The GPIO should be swapped if swap register is set and active */
2066        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2067                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2068        int gpio_shift = gpio_num +
2069                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2070        u32 gpio_mask = (1 << gpio_shift);
2071        u32 gpio_reg;
2072        int value;
2073
2074        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2075                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2076                return -EINVAL;
2077        }
2078
2079        /* read GPIO value */
2080        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2081
2082        /* get the requested pin value */
2083        if ((gpio_reg & gpio_mask) == gpio_mask)
2084                value = 1;
2085        else
2086                value = 0;
2087
2088        return value;
2089}
2090
2091int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2092{
2093        /* The GPIO should be swapped if swap register is set and active */
2094        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2095                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2096        int gpio_shift = gpio_num +
2097                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2098        u32 gpio_mask = (1 << gpio_shift);
2099        u32 gpio_reg;
2100
2101        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2102                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2103                return -EINVAL;
2104        }
2105
2106        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2107        /* read GPIO and mask except the float bits */
2108        gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2109
2110        switch (mode) {
2111        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2112                DP(NETIF_MSG_LINK,
2113                   "Set GPIO %d (shift %d) -> output low\n",
2114                   gpio_num, gpio_shift);
2115                /* clear FLOAT and set CLR */
2116                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2117                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2118                break;
2119
2120        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2121                DP(NETIF_MSG_LINK,
2122                   "Set GPIO %d (shift %d) -> output high\n",
2123                   gpio_num, gpio_shift);
2124                /* clear FLOAT and set SET */
2125                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2127                break;
2128
2129        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2130                DP(NETIF_MSG_LINK,
2131                   "Set GPIO %d (shift %d) -> input\n",
2132                   gpio_num, gpio_shift);
2133                /* set FLOAT */
2134                gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135                break;
2136
2137        default:
2138                break;
2139        }
2140
2141        REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2142        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143
2144        return 0;
2145}
2146
2147int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2148{
2149        u32 gpio_reg = 0;
2150        int rc = 0;
2151
2152        /* Any port swapping should be handled by caller. */
2153
2154        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2155        /* read GPIO and mask except the float bits */
2156        gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2157        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2158        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2159        gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2160
2161        switch (mode) {
2162        case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2163                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2164                /* set CLR */
2165                gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2166                break;
2167
2168        case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2169                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2170                /* set SET */
2171                gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2172                break;
2173
2174        case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2175                DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2176                /* set FLOAT */
2177                gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2178                break;
2179
2180        default:
2181                BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2182                rc = -EINVAL;
2183                break;
2184        }
2185
2186        if (rc == 0)
2187                REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2188
2189        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2190
2191        return rc;
2192}
2193
2194int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2195{
2196        /* The GPIO should be swapped if swap register is set and active */
2197        int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2198                         REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2199        int gpio_shift = gpio_num +
2200                        (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2201        u32 gpio_mask = (1 << gpio_shift);
2202        u32 gpio_reg;
2203
2204        if (gpio_num > MISC_REGISTERS_GPIO_3) {
2205                BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2206                return -EINVAL;
2207        }
2208
2209        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2210        /* read GPIO int */
2211        gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2212
2213        switch (mode) {
2214        case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2215                DP(NETIF_MSG_LINK,
2216                   "Clear GPIO INT %d (shift %d) -> output low\n",
2217                   gpio_num, gpio_shift);
2218                /* clear SET and set CLR */
2219                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2220                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2221                break;
2222
2223        case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2224                DP(NETIF_MSG_LINK,
2225                   "Set GPIO INT %d (shift %d) -> output high\n",
2226                   gpio_num, gpio_shift);
2227                /* clear CLR and set SET */
2228                gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2229                gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2230                break;
2231
2232        default:
2233                break;
2234        }
2235
2236        REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2237        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2238
2239        return 0;
2240}
2241
2242static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2243{
2244        u32 spio_reg;
2245
2246        /* Only 2 SPIOs are configurable */
2247        if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2248                BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2249                return -EINVAL;
2250        }
2251
2252        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2253        /* read SPIO and mask except the float bits */
2254        spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2255
2256        switch (mode) {
2257        case MISC_SPIO_OUTPUT_LOW:
2258                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2259                /* clear FLOAT and set CLR */
2260                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2261                spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2262                break;
2263
2264        case MISC_SPIO_OUTPUT_HIGH:
2265                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2266                /* clear FLOAT and set SET */
2267                spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268                spio_reg |=  (spio << MISC_SPIO_SET_POS);
2269                break;
2270
2271        case MISC_SPIO_INPUT_HI_Z:
2272                DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2273                /* set FLOAT */
2274                spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2275                break;
2276
2277        default:
2278                break;
2279        }
2280
2281        REG_WR(bp, MISC_REG_SPIO, spio_reg);
2282        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2283
2284        return 0;
2285}
2286
2287void bnx2x_calc_fc_adv(struct bnx2x *bp)
2288{
2289        u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2290
2291        bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2292                                           ADVERTISED_Pause);
2293        switch (bp->link_vars.ieee_fc &
2294                MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2295        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2296                bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2297                                                  ADVERTISED_Pause);
2298                break;
2299
2300        case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2301                bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2302                break;
2303
2304        default:
2305                break;
2306        }
2307}
2308
2309static void bnx2x_set_requested_fc(struct bnx2x *bp)
2310{
2311        /* Initialize link parameters structure variables
2312         * It is recommended to turn off RX FC for jumbo frames
2313         *  for better performance
2314         */
2315        if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2316                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2317        else
2318                bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2319}
2320
2321static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2322{
2323        u32 pause_enabled = 0;
2324
2325        if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2326                if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2327                        pause_enabled = 1;
2328
2329                REG_WR(bp, BAR_USTRORM_INTMEM +
2330                           USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2331                       pause_enabled);
2332        }
2333
2334        DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2335           pause_enabled ? "enabled" : "disabled");
2336}
2337
2338int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2339{
2340        int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2341        u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2342
2343        if (!BP_NOMCP(bp)) {
2344                bnx2x_set_requested_fc(bp);
2345                bnx2x_acquire_phy_lock(bp);
2346
2347                if (load_mode == LOAD_DIAG) {
2348                        struct link_params *lp = &bp->link_params;
2349                        lp->loopback_mode = LOOPBACK_XGXS;
2350                        /* Prefer doing PHY loopback at highest speed */
2351                        if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2352                                if (lp->speed_cap_mask[cfx_idx] &
2353                                    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2354                                        lp->req_line_speed[cfx_idx] =
2355                                        SPEED_20000;
2356                                else if (lp->speed_cap_mask[cfx_idx] &
2357                                            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2358                                                lp->req_line_speed[cfx_idx] =
2359                                                SPEED_10000;
2360                                else
2361                                        lp->req_line_speed[cfx_idx] =
2362                                        SPEED_1000;
2363                        }
2364                }
2365
2366                if (load_mode == LOAD_LOOPBACK_EXT) {
2367                        struct link_params *lp = &bp->link_params;
2368                        lp->loopback_mode = LOOPBACK_EXT;
2369                }
2370
2371                rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2372
2373                bnx2x_release_phy_lock(bp);
2374
2375                bnx2x_init_dropless_fc(bp);
2376
2377                bnx2x_calc_fc_adv(bp);
2378
2379                if (bp->link_vars.link_up) {
2380                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2381                        bnx2x_link_report(bp);
2382                }
2383                queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2384                bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2385                return rc;
2386        }
2387        BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2388        return -EINVAL;
2389}
2390
2391void bnx2x_link_set(struct bnx2x *bp)
2392{
2393        if (!BP_NOMCP(bp)) {
2394                bnx2x_acquire_phy_lock(bp);
2395                bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2396                bnx2x_release_phy_lock(bp);
2397
2398                bnx2x_init_dropless_fc(bp);
2399
2400                bnx2x_calc_fc_adv(bp);
2401        } else
2402                BNX2X_ERR("Bootcode is missing - can not set link\n");
2403}
2404
2405static void bnx2x__link_reset(struct bnx2x *bp)
2406{
2407        if (!BP_NOMCP(bp)) {
2408                bnx2x_acquire_phy_lock(bp);
2409                bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2410                bnx2x_release_phy_lock(bp);
2411        } else
2412                BNX2X_ERR("Bootcode is missing - can not reset link\n");
2413}
2414
2415void bnx2x_force_link_reset(struct bnx2x *bp)
2416{
2417        bnx2x_acquire_phy_lock(bp);
2418        bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2419        bnx2x_release_phy_lock(bp);
2420}
2421
2422u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2423{
2424        u8 rc = 0;
2425
2426        if (!BP_NOMCP(bp)) {
2427                bnx2x_acquire_phy_lock(bp);
2428                rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2429                                     is_serdes);
2430                bnx2x_release_phy_lock(bp);
2431        } else
2432                BNX2X_ERR("Bootcode is missing - can not test link\n");
2433
2434        return rc;
2435}
2436
2437/* Calculates the sum of vn_min_rates.
2438   It's needed for further normalizing of the min_rates.
2439   Returns:
2440     sum of vn_min_rates.
2441       or
2442     0 - if all the min_rates are 0.
2443     In the later case fairness algorithm should be deactivated.
2444     If not all min_rates are zero then those that are zeroes will be set to 1.
2445 */
2446static void bnx2x_calc_vn_min(struct bnx2x *bp,
2447                                      struct cmng_init_input *input)
2448{
2449        int all_zero = 1;
2450        int vn;
2451
2452        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2453                u32 vn_cfg = bp->mf_config[vn];
2454                u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2455                                   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2456
2457                /* Skip hidden vns */
2458                if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2459                        vn_min_rate = 0;
2460                /* If min rate is zero - set it to 1 */
2461                else if (!vn_min_rate)
2462                        vn_min_rate = DEF_MIN_RATE;
2463                else
2464                        all_zero = 0;
2465
2466                input->vnic_min_rate[vn] = vn_min_rate;
2467        }
2468
2469        /* if ETS or all min rates are zeros - disable fairness */
2470        if (BNX2X_IS_ETS_ENABLED(bp)) {
2471                input->flags.cmng_enables &=
2472                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473                DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2474        } else if (all_zero) {
2475                input->flags.cmng_enables &=
2476                                        ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477                DP(NETIF_MSG_IFUP,
2478                   "All MIN values are zeroes fairness will be disabled\n");
2479        } else
2480                input->flags.cmng_enables |=
2481                                        CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482}
2483
2484static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2485                                    struct cmng_init_input *input)
2486{
2487        u16 vn_max_rate;
2488        u32 vn_cfg = bp->mf_config[vn];
2489
2490        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2491                vn_max_rate = 0;
2492        else {
2493                u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2494
2495                if (IS_MF_SI(bp)) {
2496                        /* maxCfg in percents of linkspeed */
2497                        vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2498                } else /* SD modes */
2499                        /* maxCfg is absolute in 100Mb units */
2500                        vn_max_rate = maxCfg * 100;
2501        }
2502
2503        DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2504
2505        input->vnic_max_rate[vn] = vn_max_rate;
2506}
2507
2508static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2509{
2510        if (CHIP_REV_IS_SLOW(bp))
2511                return CMNG_FNS_NONE;
2512        if (IS_MF(bp))
2513                return CMNG_FNS_MINMAX;
2514
2515        return CMNG_FNS_NONE;
2516}
2517
2518void bnx2x_read_mf_cfg(struct bnx2x *bp)
2519{
2520        int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2521
2522        if (BP_NOMCP(bp))
2523                return; /* what should be the default value in this case */
2524
2525        /* For 2 port configuration the absolute function number formula
2526         * is:
2527         *      abs_func = 2 * vn + BP_PORT + BP_PATH
2528         *
2529         *      and there are 4 functions per port
2530         *
2531         * For 4 port configuration it is
2532         *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2533         *
2534         *      and there are 2 functions per port
2535         */
2536        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2537                int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2538
2539                if (func >= E1H_FUNC_MAX)
2540                        break;
2541
2542                bp->mf_config[vn] =
2543                        MF_CFG_RD(bp, func_mf_config[func].config);
2544        }
2545        if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2546                DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2547                bp->flags |= MF_FUNC_DIS;
2548        } else {
2549                DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2550                bp->flags &= ~MF_FUNC_DIS;
2551        }
2552}
2553
2554static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2555{
2556        struct cmng_init_input input;
2557        memset(&input, 0, sizeof(struct cmng_init_input));
2558
2559        input.port_rate = bp->link_vars.line_speed;
2560
2561        if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2562                int vn;
2563
2564                /* read mf conf from shmem */
2565                if (read_cfg)
2566                        bnx2x_read_mf_cfg(bp);
2567
2568                /* vn_weight_sum and enable fairness if not 0 */
2569                bnx2x_calc_vn_min(bp, &input);
2570
2571                /* calculate and set min-max rate for each vn */
2572                if (bp->port.pmf)
2573                        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2574                                bnx2x_calc_vn_max(bp, vn, &input);
2575
2576                /* always enable rate shaping and fairness */
2577                input.flags.cmng_enables |=
2578                                        CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2579
2580                bnx2x_init_cmng(&input, &bp->cmng);
2581                return;
2582        }
2583
2584        /* rate shaping and fairness are disabled */
2585        DP(NETIF_MSG_IFUP,
2586           "rate shaping and fairness are disabled\n");
2587}
2588
2589static void storm_memset_cmng(struct bnx2x *bp,
2590                              struct cmng_init *cmng,
2591                              u8 port)
2592{
2593        int vn;
2594        size_t size = sizeof(struct cmng_struct_per_port);
2595
2596        u32 addr = BAR_XSTRORM_INTMEM +
2597                        XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2598
2599        __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2600
2601        for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2602                int func = func_by_vn(bp, vn);
2603
2604                addr = BAR_XSTRORM_INTMEM +
2605                       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2606                size = sizeof(struct rate_shaping_vars_per_vn);
2607                __storm_memset_struct(bp, addr, size,
2608                                      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2609
2610                addr = BAR_XSTRORM_INTMEM +
2611                       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2612                size = sizeof(struct fairness_vars_per_vn);
2613                __storm_memset_struct(bp, addr, size,
2614                                      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2615        }
2616}
2617
2618/* init cmng mode in HW according to local configuration */
2619void bnx2x_set_local_cmng(struct bnx2x *bp)
2620{
2621        int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2622
2623        if (cmng_fns != CMNG_FNS_NONE) {
2624                bnx2x_cmng_fns_init(bp, false, cmng_fns);
2625                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2626        } else {
2627                /* rate shaping and fairness are disabled */
2628                DP(NETIF_MSG_IFUP,
2629                   "single function mode without fairness\n");
2630        }
2631}
2632
2633/* This function is called upon link interrupt */
2634static void bnx2x_link_attn(struct bnx2x *bp)
2635{
2636        /* Make sure that we are synced with the current statistics */
2637        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2638
2639        bnx2x_link_update(&bp->link_params, &bp->link_vars);
2640
2641        bnx2x_init_dropless_fc(bp);
2642
2643        if (bp->link_vars.link_up) {
2644
2645                if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2646                        struct host_port_stats *pstats;
2647
2648                        pstats = bnx2x_sp(bp, port_stats);
2649                        /* reset old mac stats */
2650                        memset(&(pstats->mac_stx[0]), 0,
2651                               sizeof(struct mac_stx));
2652                }
2653                if (bp->state == BNX2X_STATE_OPEN)
2654                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2655        }
2656
2657        if (bp->link_vars.link_up && bp->link_vars.line_speed)
2658                bnx2x_set_local_cmng(bp);
2659
2660        __bnx2x_link_report(bp);
2661
2662        if (IS_MF(bp))
2663                bnx2x_link_sync_notify(bp);
2664}
2665
2666void bnx2x__link_status_update(struct bnx2x *bp)
2667{
2668        if (bp->state != BNX2X_STATE_OPEN)
2669                return;
2670
2671        /* read updated dcb configuration */
2672        if (IS_PF(bp)) {
2673                bnx2x_dcbx_pmf_update(bp);
2674                bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2675                if (bp->link_vars.link_up)
2676                        bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2677                else
2678                        bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2679                        /* indicate link status */
2680                bnx2x_link_report(bp);
2681
2682        } else { /* VF */
2683                bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2684                                          SUPPORTED_10baseT_Full |
2685                                          SUPPORTED_100baseT_Half |
2686                                          SUPPORTED_100baseT_Full |
2687                                          SUPPORTED_1000baseT_Full |
2688                                          SUPPORTED_2500baseX_Full |
2689                                          SUPPORTED_10000baseT_Full |
2690                                          SUPPORTED_TP |
2691                                          SUPPORTED_FIBRE |
2692                                          SUPPORTED_Autoneg |
2693                                          SUPPORTED_Pause |
2694                                          SUPPORTED_Asym_Pause);
2695                bp->port.advertising[0] = bp->port.supported[0];
2696
2697                bp->link_params.bp = bp;
2698                bp->link_params.port = BP_PORT(bp);
2699                bp->link_params.req_duplex[0] = DUPLEX_FULL;
2700                bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2701                bp->link_params.req_line_speed[0] = SPEED_10000;
2702                bp->link_params.speed_cap_mask[0] = 0x7f0000;
2703                bp->link_params.switch_cfg = SWITCH_CFG_10G;
2704                bp->link_vars.mac_type = MAC_TYPE_BMAC;
2705                bp->link_vars.line_speed = SPEED_10000;
2706                bp->link_vars.link_status =
2707                        (LINK_STATUS_LINK_UP |
2708                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2709                bp->link_vars.link_up = 1;
2710                bp->link_vars.duplex = DUPLEX_FULL;
2711                bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2712                __bnx2x_link_report(bp);
2713
2714                bnx2x_sample_bulletin(bp);
2715
2716                /* if bulletin board did not have an update for link status
2717                 * __bnx2x_link_report will report current status
2718                 * but it will NOT duplicate report in case of already reported
2719                 * during sampling bulletin board.
2720                 */
2721                bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2722        }
2723}
2724
2725static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2726                                  u16 vlan_val, u8 allowed_prio)
2727{
2728        struct bnx2x_func_state_params func_params = {NULL};
2729        struct bnx2x_func_afex_update_params *f_update_params =
2730                &func_params.params.afex_update;
2731
2732        func_params.f_obj = &bp->func_obj;
2733        func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2734
2735        /* no need to wait for RAMROD completion, so don't
2736         * set RAMROD_COMP_WAIT flag
2737         */
2738
2739        f_update_params->vif_id = vifid;
2740        f_update_params->afex_default_vlan = vlan_val;
2741        f_update_params->allowed_priorities = allowed_prio;
2742
2743        /* if ramrod can not be sent, response to MCP immediately */
2744        if (bnx2x_func_state_change(bp, &func_params) < 0)
2745                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2746
2747        return 0;
2748}
2749
2750static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2751                                          u16 vif_index, u8 func_bit_map)
2752{
2753        struct bnx2x_func_state_params func_params = {NULL};
2754        struct bnx2x_func_afex_viflists_params *update_params =
2755                &func_params.params.afex_viflists;
2756        int rc;
2757        u32 drv_msg_code;
2758
2759        /* validate only LIST_SET and LIST_GET are received from switch */
2760        if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2761                BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2762                          cmd_type);
2763
2764        func_params.f_obj = &bp->func_obj;
2765        func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2766
2767        /* set parameters according to cmd_type */
2768        update_params->afex_vif_list_command = cmd_type;
2769        update_params->vif_list_index = vif_index;
2770        update_params->func_bit_map =
2771                (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2772        update_params->func_to_clear = 0;
2773        drv_msg_code =
2774                (cmd_type == VIF_LIST_RULE_GET) ?
2775                DRV_MSG_CODE_AFEX_LISTGET_ACK :
2776                DRV_MSG_CODE_AFEX_LISTSET_ACK;
2777
2778        /* if ramrod can not be sent, respond to MCP immediately for
2779         * SET and GET requests (other are not triggered from MCP)
2780         */
2781        rc = bnx2x_func_state_change(bp, &func_params);
2782        if (rc < 0)
2783                bnx2x_fw_command(bp, drv_msg_code, 0);
2784
2785        return 0;
2786}
2787
2788static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2789{
2790        struct afex_stats afex_stats;
2791        u32 func = BP_ABS_FUNC(bp);
2792        u32 mf_config;
2793        u16 vlan_val;
2794        u32 vlan_prio;
2795        u16 vif_id;
2796        u8 allowed_prio;
2797        u8 vlan_mode;
2798        u32 addr_to_write, vifid, addrs, stats_type, i;
2799
2800        if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2801                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802                DP(BNX2X_MSG_MCP,
2803                   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2804                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2805        }
2806
2807        if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2808                vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809                addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2810                DP(BNX2X_MSG_MCP,
2811                   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2812                   vifid, addrs);
2813                bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2814                                               addrs);
2815        }
2816
2817        if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2818                addr_to_write = SHMEM2_RD(bp,
2819                        afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2820                stats_type = SHMEM2_RD(bp,
2821                        afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2822
2823                DP(BNX2X_MSG_MCP,
2824                   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2825                   addr_to_write);
2826
2827                bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2828
2829                /* write response to scratchpad, for MCP */
2830                for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2831                        REG_WR(bp, addr_to_write + i*sizeof(u32),
2832                               *(((u32 *)(&afex_stats))+i));
2833
2834                /* send ack message to MCP */
2835                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2836        }
2837
2838        if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2839                mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2840                bp->mf_config[BP_VN(bp)] = mf_config;
2841                DP(BNX2X_MSG_MCP,
2842                   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2843                   mf_config);
2844
2845                /* if VIF_SET is "enabled" */
2846                if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2847                        /* set rate limit directly to internal RAM */
2848                        struct cmng_init_input cmng_input;
2849                        struct rate_shaping_vars_per_vn m_rs_vn;
2850                        size_t size = sizeof(struct rate_shaping_vars_per_vn);
2851                        u32 addr = BAR_XSTRORM_INTMEM +
2852                            XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2853
2854                        bp->mf_config[BP_VN(bp)] = mf_config;
2855
2856                        bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2857                        m_rs_vn.vn_counter.rate =
2858                                cmng_input.vnic_max_rate[BP_VN(bp)];
2859                        m_rs_vn.vn_counter.quota =
2860                                (m_rs_vn.vn_counter.rate *
2861                                 RS_PERIODIC_TIMEOUT_USEC) / 8;
2862
2863                        __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2864
2865                        /* read relevant values from mf_cfg struct in shmem */
2866                        vif_id =
2867                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868                                 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2869                                FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2870                        vlan_val =
2871                                (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872                                 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2873                                FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2874                        vlan_prio = (mf_config &
2875                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2876                                    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2877                        vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2878                        vlan_mode =
2879                                (MF_CFG_RD(bp,
2880                                           func_mf_config[func].afex_config) &
2881                                 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2882                                FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2883                        allowed_prio =
2884                                (MF_CFG_RD(bp,
2885                                           func_mf_config[func].afex_config) &
2886                                 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2887                                FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2888
2889                        /* send ramrod to FW, return in case of failure */
2890                        if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2891                                                   allowed_prio))
2892                                return;
2893
2894                        bp->afex_def_vlan_tag = vlan_val;
2895                        bp->afex_vlan_mode = vlan_mode;
2896                } else {
2897                        /* notify link down because BP->flags is disabled */
2898                        bnx2x_link_report(bp);
2899
2900                        /* send INVALID VIF ramrod to FW */
2901                        bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2902
2903                        /* Reset the default afex VLAN */
2904                        bp->afex_def_vlan_tag = -1;
2905                }
2906        }
2907}
2908
2909static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2910{
2911        struct bnx2x_func_switch_update_params *switch_update_params;
2912        struct bnx2x_func_state_params func_params;
2913
2914        memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2915        switch_update_params = &func_params.params.switch_update;
2916        func_params.f_obj = &bp->func_obj;
2917        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2918
2919        if (IS_MF_UFP(bp)) {
2920                int func = BP_ABS_FUNC(bp);
2921                u32 val;
2922
2923                /* Re-learn the S-tag from shmem */
2924                val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925                                FUNC_MF_CFG_E1HOV_TAG_MASK;
2926                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927                        bp->mf_ov = val;
2928                } else {
2929                        BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930                        goto fail;
2931                }
2932
2933                /* Configure new S-tag in LLH */
2934                REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935                       bp->mf_ov);
2936
2937                /* Send Ramrod to update FW of change */
2938                __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939                          &switch_update_params->changes);
2940                switch_update_params->vlan = bp->mf_ov;
2941
2942                if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943                        BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944                                  bp->mf_ov);
2945                        goto fail;
2946                }
2947
2948                DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2949
2950                bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2951
2952                return;
2953        }
2954
2955        /* not supported by SW yet */
2956fail:
2957        bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958}
2959
2960static void bnx2x_pmf_update(struct bnx2x *bp)
2961{
2962        int port = BP_PORT(bp);
2963        u32 val;
2964
2965        bp->port.pmf = 1;
2966        DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967
2968        /*
2969         * We need the mb() to ensure the ordering between the writing to
2970         * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971         */
2972        smp_mb();
2973
2974        /* queue a periodic task */
2975        queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976
2977        bnx2x_dcbx_pmf_update(bp);
2978
2979        /* enable nig attention */
2980        val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981        if (bp->common.int_block == INT_BLOCK_HC) {
2982                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984        } else if (!CHIP_IS_E1x(bp)) {
2985                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987        }
2988
2989        bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990}
2991
2992/* end of Link */
2993
2994/* slow path */
2995
2996/*
2997 * General service functions
2998 */
2999
3000/* send the MCP a request, block until there is a reply */
3001u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002{
3003        int mb_idx = BP_FW_MB_IDX(bp);
3004        u32 seq;
3005        u32 rc = 0;
3006        u32 cnt = 1;
3007        u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008
3009        mutex_lock(&bp->fw_mb_mutex);
3010        seq = ++bp->fw_seq;
3011        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012        SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013
3014        DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015                        (command | seq), param);
3016
3017        do {
3018                /* let the FW do it's magic ... */
3019                msleep(delay);
3020
3021                rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022
3023                /* Give the FW up to 5 second (500*10ms) */
3024        } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025
3026        DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027           cnt*delay, rc, seq);
3028
3029        /* is this a reply to our command? */
3030        if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031                rc &= FW_MSG_CODE_MASK;
3032        else {
3033                /* FW BUG! */
3034                BNX2X_ERR("FW failed to respond!\n");
3035                bnx2x_fw_dump(bp);
3036                rc = 0;
3037        }
3038        mutex_unlock(&bp->fw_mb_mutex);
3039
3040        return rc;
3041}
3042
3043static void storm_memset_func_cfg(struct bnx2x *bp,
3044                                 struct tstorm_eth_function_common_config *tcfg,
3045                                 u16 abs_fid)
3046{
3047        size_t size = sizeof(struct tstorm_eth_function_common_config);
3048
3049        u32 addr = BAR_TSTRORM_INTMEM +
3050                        TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051
3052        __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053}
3054
3055void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056{
3057        if (CHIP_IS_E1x(bp)) {
3058                struct tstorm_eth_function_common_config tcfg = {0};
3059
3060                storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061        }
3062
3063        /* Enable the function in the FW */
3064        storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065        storm_memset_func_en(bp, p->func_id, 1);
3066
3067        /* spq */
3068        if (p->func_flgs & FUNC_FLG_SPQ) {
3069                storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070                REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071                       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072        }
3073}
3074
3075/**
3076 * bnx2x_get_common_flags - Return common flags
3077 *
3078 * @bp          device handle
3079 * @fp          queue handle
3080 * @zero_stats  TRUE if statistics zeroing is needed
3081 *
3082 * Return the flags that are common for the Tx-only and not normal connections.
3083 */
3084static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085                                            struct bnx2x_fastpath *fp,
3086                                            bool zero_stats)
3087{
3088        unsigned long flags = 0;
3089
3090        /* PF driver will always initialize the Queue to an ACTIVE state */
3091        __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092
3093        /* tx only connections collect statistics (on the same index as the
3094         * parent connection). The statistics are zeroed when the parent
3095         * connection is initialized.
3096         */
3097
3098        __set_bit(BNX2X_Q_FLG_STATS, &flags);
3099        if (zero_stats)
3100                __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101
3102        if (bp->flags & TX_SWITCHING)
3103                __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104
3105        __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106        __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107
3108#ifdef BNX2X_STOP_ON_ERROR
3109        __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110#endif
3111
3112        return flags;
3113}
3114
3115static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116                                       struct bnx2x_fastpath *fp,
3117                                       bool leading)
3118{
3119        unsigned long flags = 0;
3120
3121        /* calculate other queue flags */
3122        if (IS_MF_SD(bp))
3123                __set_bit(BNX2X_Q_FLG_OV, &flags);
3124
3125        if (IS_FCOE_FP(fp)) {
3126                __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127                /* For FCoE - force usage of default priority (for afex) */
3128                __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129        }
3130
3131        if (fp->mode != TPA_MODE_DISABLED) {
3132                __set_bit(BNX2X_Q_FLG_TPA, &flags);
3133                __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134                if (fp->mode == TPA_MODE_GRO)
3135                        __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136        }
3137
3138        if (leading) {
3139                __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140                __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141        }
3142
3143        /* Always set HW VLAN stripping */
3144        __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145
3146        /* configure silent vlan removal */
3147        if (IS_MF_AFEX(bp))
3148                __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149
3150        return flags | bnx2x_get_common_flags(bp, fp, true);
3151}
3152
3153static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154        struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155        u8 cos)
3156{
3157        gen_init->stat_id = bnx2x_stats_id(fp);
3158        gen_init->spcl_id = fp->cl_id;
3159
3160        /* Always use mini-jumbo MTU for FCoE L2 ring */
3161        if (IS_FCOE_FP(fp))
3162                gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163        else
3164                gen_init->mtu = bp->dev->mtu;
3165
3166        gen_init->cos = cos;
3167
3168        gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169}
3170
3171static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172        struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173        struct bnx2x_rxq_setup_params *rxq_init)
3174{
3175        u8 max_sge = 0;
3176        u16 sge_sz = 0;
3177        u16 tpa_agg_size = 0;
3178
3179        if (fp->mode != TPA_MODE_DISABLED) {
3180                pause->sge_th_lo = SGE_TH_LO(bp);
3181                pause->sge_th_hi = SGE_TH_HI(bp);
3182
3183                /* validate SGE ring has enough to cross high threshold */
3184                WARN_ON(bp->dropless_fc &&
3185                                pause->sge_th_hi + FW_PREFETCH_CNT >
3186                                MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187
3188                tpa_agg_size = TPA_AGG_SIZE;
3189                max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190                        SGE_PAGE_SHIFT;
3191                max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192                          (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193                sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194        }
3195
3196        /* pause - not for e1 */
3197        if (!CHIP_IS_E1(bp)) {
3198                pause->bd_th_lo = BD_TH_LO(bp);
3199                pause->bd_th_hi = BD_TH_HI(bp);
3200
3201                pause->rcq_th_lo = RCQ_TH_LO(bp);
3202                pause->rcq_th_hi = RCQ_TH_HI(bp);
3203                /*
3204                 * validate that rings have enough entries to cross
3205                 * high thresholds
3206                 */
3207                WARN_ON(bp->dropless_fc &&
3208                                pause->bd_th_hi + FW_PREFETCH_CNT >
3209                                bp->rx_ring_size);
3210                WARN_ON(bp->dropless_fc &&
3211                                pause->rcq_th_hi + FW_PREFETCH_CNT >
3212                                NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213
3214                pause->pri_map = 1;
3215        }
3216
3217        /* rxq setup */
3218        rxq_init->dscr_map = fp->rx_desc_mapping;
3219        rxq_init->sge_map = fp->rx_sge_mapping;
3220        rxq_init->rcq_map = fp->rx_comp_mapping;
3221        rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222
3223        /* This should be a maximum number of data bytes that may be
3224         * placed on the BD (not including paddings).
3225         */
3226        rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227                           BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228
3229        rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230        rxq_init->tpa_agg_sz = tpa_agg_size;
3231        rxq_init->sge_buf_sz = sge_sz;
3232        rxq_init->max_sges_pkt = max_sge;
3233        rxq_init->rss_engine_id = BP_FUNC(bp);
3234        rxq_init->mcast_engine_id = BP_FUNC(bp);
3235
3236        /* Maximum number or simultaneous TPA aggregation for this Queue.
3237         *
3238         * For PF Clients it should be the maximum available number.
3239         * VF driver(s) may want to define it to a smaller value.
3240         */
3241        rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242
3243        rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244        rxq_init->fw_sb_id = fp->fw_sb_id;
3245
3246        if (IS_FCOE_FP(fp))
3247                rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248        else
3249                rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250        /* configure silent vlan removal
3251         * if multi function mode is afex, then mask default vlan
3252         */
3253        if (IS_MF_AFEX(bp)) {
3254                rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255                rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256        }
3257}
3258
3259static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260        struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261        u8 cos)
3262{
3263        txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264        txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265        txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266        txq_init->fw_sb_id = fp->fw_sb_id;
3267
3268        /*
3269         * set the tss leading client id for TX classification ==
3270         * leading RSS client id
3271         */
3272        txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273
3274        if (IS_FCOE_FP(fp)) {
3275                txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276                txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277        }
3278}
3279
3280static void bnx2x_pf_init(struct bnx2x *bp)
3281{
3282        struct bnx2x_func_init_params func_init = {0};
3283        struct event_ring_data eq_data = { {0} };
3284        u16 flags;
3285
3286        if (!CHIP_IS_E1x(bp)) {
3287                /* reset IGU PF statistics: MSIX + ATTN */
3288                /* PF */
3289                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3290                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3291                           (CHIP_MODE_IS_4_PORT(bp) ?
3292                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3293                /* ATTN */
3294                REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3295                           BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3296                           BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3297                           (CHIP_MODE_IS_4_PORT(bp) ?
3298                                BP_FUNC(bp) : BP_VN(bp))*4, 0);
3299        }
3300
3301        /* function setup flags */
3302        flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3303
3304        /* This flag is relevant for E1x only.
3305         * E2 doesn't have a TPA configuration in a function level.
3306         */
3307        flags |= (bp->dev->features & NETIF_F_LRO) ? FUNC_FLG_TPA : 0;
3308
3309        func_init.func_flgs = flags;
3310        func_init.pf_id = BP_FUNC(bp);
3311        func_init.func_id = BP_FUNC(bp);
3312        func_init.spq_map = bp->spq_mapping;
3313        func_init.spq_prod = bp->spq_prod_idx;
3314
3315        bnx2x_func_init(bp, &func_init);
3316
3317        memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318
3319        /*
3320         * Congestion management values depend on the link rate
3321         * There is no active link so initial link rate is set to 10 Gbps.
3322         * When the link comes up The congestion management values are
3323         * re-calculated according to the actual link rate.
3324         */
3325        bp->link_vars.line_speed = SPEED_10000;
3326        bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327
3328        /* Only the PMF sets the HW */
3329        if (bp->port.pmf)
3330                storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331
3332        /* init Event Queue - PCI bus guarantees correct endianity*/
3333        eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334        eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335        eq_data.producer = bp->eq_prod;
3336        eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337        eq_data.sb_id = DEF_SB_ID;
3338        storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339}
3340
3341static void bnx2x_e1h_disable(struct bnx2x *bp)
3342{
3343        int port = BP_PORT(bp);
3344
3345        bnx2x_tx_disable(bp);
3346
3347        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348}
3349
3350static void bnx2x_e1h_enable(struct bnx2x *bp)
3351{
3352        int port = BP_PORT(bp);
3353
3354        if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356
3357        /* Tx queue should be only re-enabled */
3358        netif_tx_wake_all_queues(bp->dev);
3359
3360        /*
3361         * Should not call netif_carrier_on since it will be called if the link
3362         * is up when checking for link state
3363         */
3364}
3365
3366#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367
3368static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369{
3370        struct eth_stats_info *ether_stat =
3371                &bp->slowpath->drv_info_to_mcp.ether_stat;
3372        struct bnx2x_vlan_mac_obj *mac_obj =
3373                &bp->sp_objs->mac_obj;
3374        int i;
3375
3376        strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377                ETH_STAT_INFO_VERSION_LEN);
3378
3379        /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380         * mac_local field in ether_stat struct. The base address is offset by 2
3381         * bytes to account for the field being 8 bytes but a mac address is
3382         * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383         * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384         * allocated by the ether_stat struct, so the macs will land in their
3385         * proper positions.
3386         */
3387        for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388                memset(ether_stat->mac_local + i, 0,
3389                       sizeof(ether_stat->mac_local[0]));
3390        mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391                                DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392                                ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393                                ETH_ALEN);
3394        ether_stat->mtu_size = bp->dev->mtu;
3395        if (bp->dev->features & NETIF_F_RXCSUM)
3396                ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397        if (bp->dev->features & NETIF_F_TSO)
3398                ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399        ether_stat->feature_flags |= bp->common.boot_mode;
3400
3401        ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402
3403        ether_stat->txq_size = bp->tx_ring_size;
3404        ether_stat->rxq_size = bp->rx_ring_size;
3405
3406#ifdef CONFIG_BNX2X_SRIOV
3407        ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408#endif
3409}
3410
3411static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412{
3413        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414        struct fcoe_stats_info *fcoe_stat =
3415                &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416
3417        if (!CNIC_LOADED(bp))
3418                return;
3419
3420        memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421
3422        fcoe_stat->qos_priority =
3423                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424
3425        /* insert FCoE stats from ramrod response */
3426        if (!NO_FCOE(bp)) {
3427                struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429                        tstorm_queue_statistics;
3430
3431                struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432                        &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433                        xstorm_queue_statistics;
3434
3435                struct fcoe_statistics_params *fw_fcoe_stat =
3436                        &bp->fw_stats_data->fcoe;
3437
3438                ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439                          fcoe_stat->rx_bytes_lo,
3440                          fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441
3442                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443                          fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444                          fcoe_stat->rx_bytes_lo,
3445                          fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446
3447                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448                          fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449                          fcoe_stat->rx_bytes_lo,
3450                          fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451
3452                ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453                          fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454                          fcoe_stat->rx_bytes_lo,
3455                          fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456
3457                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458                          fcoe_stat->rx_frames_lo,
3459                          fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460
3461                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462                          fcoe_stat->rx_frames_lo,
3463                          fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464
3465                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466                          fcoe_stat->rx_frames_lo,
3467                          fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468
3469                ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470                          fcoe_stat->rx_frames_lo,
3471                          fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472
3473                ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474                          fcoe_stat->tx_bytes_lo,
3475                          fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476
3477                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478                          fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479                          fcoe_stat->tx_bytes_lo,
3480                          fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481
3482                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483                          fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484                          fcoe_stat->tx_bytes_lo,
3485                          fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486
3487                ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488                          fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489                          fcoe_stat->tx_bytes_lo,
3490                          fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491
3492                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493                          fcoe_stat->tx_frames_lo,
3494                          fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495
3496                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497                          fcoe_stat->tx_frames_lo,
3498                          fcoe_q_xstorm_stats->ucast_pkts_sent);
3499
3500                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501                          fcoe_stat->tx_frames_lo,
3502                          fcoe_q_xstorm_stats->bcast_pkts_sent);
3503
3504                ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505                          fcoe_stat->tx_frames_lo,
3506                          fcoe_q_xstorm_stats->mcast_pkts_sent);
3507        }
3508
3509        /* ask L5 driver to add data to the struct */
3510        bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511}
3512
3513static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514{
3515        struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516        struct iscsi_stats_info *iscsi_stat =
3517                &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518
3519        if (!CNIC_LOADED(bp))
3520                return;
3521
3522        memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523               ETH_ALEN);
3524
3525        iscsi_stat->qos_priority =
3526                app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527
3528        /* ask L5 driver to add data to the struct */
3529        bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530}
3531
3532/* called due to MCP event (on pmf):
3533 *      reread new bandwidth configuration
3534 *      configure FW
3535 *      notify others function about the change
3536 */
3537static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538{
3539        if (bp->link_vars.link_up) {
3540                bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541                bnx2x_link_sync_notify(bp);
3542        }
3543        storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544}
3545
3546static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547{
3548        bnx2x_config_mf_bw(bp);
3549        bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550}
3551
3552static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553{
3554        DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555        bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556}
3557
3558#define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3559#define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3560
3561static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562{
3563        enum drv_info_opcode op_code;
3564        u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565        bool release = false;
3566        int wait;
3567
3568        /* if drv_info version supported by MFW doesn't match - send NACK */
3569        if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571                return;
3572        }
3573
3574        op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575                  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576
3577        /* Must prevent other flows from accessing drv_info_to_mcp */
3578        mutex_lock(&bp->drv_info_mutex);
3579
3580        memset(&bp->slowpath->drv_info_to_mcp, 0,
3581               sizeof(union drv_info_to_mcp));
3582
3583        switch (op_code) {
3584        case ETH_STATS_OPCODE:
3585                bnx2x_drv_info_ether_stat(bp);
3586                break;
3587        case FCOE_STATS_OPCODE:
3588                bnx2x_drv_info_fcoe_stat(bp);
3589                break;
3590        case ISCSI_STATS_OPCODE:
3591                bnx2x_drv_info_iscsi_stat(bp);
3592                break;
3593        default:
3594                /* if op code isn't supported - send NACK */
3595                bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596                goto out;
3597        }
3598
3599        /* if we got drv_info attn from MFW then these fields are defined in
3600         * shmem2 for sure
3601         */
3602        SHMEM2_WR(bp, drv_info_host_addr_lo,
3603                U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604        SHMEM2_WR(bp, drv_info_host_addr_hi,
3605                U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606
3607        bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608
3609        /* Since possible management wants both this and get_driver_version
3610         * need to wait until management notifies us it finished utilizing
3611         * the buffer.
3612         */
3613        if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614                DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615        } else if (!bp->drv_info_mng_owner) {
3616                u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617
3618                for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619                        u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620
3621                        /* Management is done; need to clear indication */
3622                        if (indication & bit) {
3623                                SHMEM2_WR(bp, mfw_drv_indication,
3624                                          indication & ~bit);
3625                                release = true;
3626                                break;
3627                        }
3628
3629                        msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630                }
3631        }
3632        if (!release) {
3633                DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634                bp->drv_info_mng_owner = true;
3635        }
3636
3637out:
3638        mutex_unlock(&bp->drv_info_mutex);
3639}
3640
3641static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642{
3643        u8 vals[4];
3644        int i = 0;
3645
3646        if (bnx2x_format) {
3647                i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648                           &vals[0], &vals[1], &vals[2], &vals[3]);
3649                if (i > 0)
3650                        vals[0] -= '0';
3651        } else {
3652                i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653                           &vals[0], &vals[1], &vals[2], &vals[3]);
3654        }
3655
3656        while (i < 4)
3657                vals[i++] = 0;
3658
3659        return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660}
3661
3662void bnx2x_update_mng_version(struct bnx2x *bp)
3663{
3664        u32 iscsiver = DRV_VER_NOT_LOADED;
3665        u32 fcoever = DRV_VER_NOT_LOADED;
3666        u32 ethver = DRV_VER_NOT_LOADED;
3667        int idx = BP_FW_MB_IDX(bp);
3668        u8 *version;
3669
3670        if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671                return;
3672
3673        mutex_lock(&bp->drv_info_mutex);
3674        /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675        if (bp->drv_info_mng_owner)
3676                goto out;
3677
3678        if (bp->state != BNX2X_STATE_OPEN)
3679                goto out;
3680
3681        /* Parse ethernet driver version */
3682        ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683        if (!CNIC_LOADED(bp))
3684                goto out;
3685
3686        /* Try getting storage driver version via cnic */
3687        memset(&bp->slowpath->drv_info_to_mcp, 0,
3688               sizeof(union drv_info_to_mcp));
3689        bnx2x_drv_info_iscsi_stat(bp);
3690        version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691        iscsiver = bnx2x_update_mng_version_utility(version, false);
3692
3693        memset(&bp->slowpath->drv_info_to_mcp, 0,
3694               sizeof(union drv_info_to_mcp));
3695        bnx2x_drv_info_fcoe_stat(bp);
3696        version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697        fcoever = bnx2x_update_mng_version_utility(version, false);
3698
3699out:
3700        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702        SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703
3704        mutex_unlock(&bp->drv_info_mutex);
3705
3706        DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707           ethver, iscsiver, fcoever);
3708}
3709
3710static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3711{
3712        u32 cmd_ok, cmd_fail;
3713
3714        /* sanity */
3715        if (event & DRV_STATUS_DCC_EVENT_MASK &&
3716            event & DRV_STATUS_OEM_EVENT_MASK) {
3717                BNX2X_ERR("Received simultaneous events %08x\n", event);
3718                return;
3719        }
3720
3721        if (event & DRV_STATUS_DCC_EVENT_MASK) {
3722                cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3723                cmd_ok = DRV_MSG_CODE_DCC_OK;
3724        } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3725                cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3726                cmd_ok = DRV_MSG_CODE_OEM_OK;
3727        }
3728
3729        DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3730
3731        if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3732                     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3733                /* This is the only place besides the function initialization
3734                 * where the bp->flags can change so it is done without any
3735                 * locks
3736                 */
3737                if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3738                        DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3739                        bp->flags |= MF_FUNC_DIS;
3740
3741                        bnx2x_e1h_disable(bp);
3742                } else {
3743                        DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3744                        bp->flags &= ~MF_FUNC_DIS;
3745
3746                        bnx2x_e1h_enable(bp);
3747                }
3748                event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3749                           DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3750        }
3751
3752        if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753                     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3754                bnx2x_config_mf_bw(bp);
3755                event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3756                           DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3757        }
3758
3759        /* Report results to MCP */
3760        if (event)
3761                bnx2x_fw_command(bp, cmd_fail, 0);
3762        else
3763                bnx2x_fw_command(bp, cmd_ok, 0);
3764}
3765
3766/* must be called under the spq lock */
3767static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3768{
3769        struct eth_spe *next_spe = bp->spq_prod_bd;
3770
3771        if (bp->spq_prod_bd == bp->spq_last_bd) {
3772                bp->spq_prod_bd = bp->spq;
3773                bp->spq_prod_idx = 0;
3774                DP(BNX2X_MSG_SP, "end of spq\n");
3775        } else {
3776                bp->spq_prod_bd++;
3777                bp->spq_prod_idx++;
3778        }
3779        return next_spe;
3780}
3781
3782/* must be called under the spq lock */
3783static void bnx2x_sp_prod_update(struct bnx2x *bp)
3784{
3785        int func = BP_FUNC(bp);
3786
3787        /*
3788         * Make sure that BD data is updated before writing the producer:
3789         * BD data is written to the memory, the producer is read from the
3790         * memory, thus we need a full memory barrier to ensure the ordering.
3791         */
3792        mb();
3793
3794        REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3795                 bp->spq_prod_idx);
3796        mmiowb();
3797}
3798
3799/**
3800 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3801 *
3802 * @cmd:        command to check
3803 * @cmd_type:   command type
3804 */
3805static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3806{
3807        if ((cmd_type == NONE_CONNECTION_TYPE) ||
3808            (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3809            (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3810            (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3811            (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3812            (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3813            (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3814                return true;
3815        else
3816                return false;
3817}
3818
3819/**
3820 * bnx2x_sp_post - place a single command on an SP ring
3821 *
3822 * @bp:         driver handle
3823 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3824 * @cid:        SW CID the command is related to
3825 * @data_hi:    command private data address (high 32 bits)
3826 * @data_lo:    command private data address (low 32 bits)
3827 * @cmd_type:   command type (e.g. NONE, ETH)
3828 *
3829 * SP data is handled as if it's always an address pair, thus data fields are
3830 * not swapped to little endian in upper functions. Instead this function swaps
3831 * data as if it's two u32 fields.
3832 */
3833int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3834                  u32 data_hi, u32 data_lo, int cmd_type)
3835{
3836        struct eth_spe *spe;
3837        u16 type;
3838        bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3839
3840#ifdef BNX2X_STOP_ON_ERROR
3841        if (unlikely(bp->panic)) {
3842                BNX2X_ERR("Can't post SP when there is panic\n");
3843                return -EIO;
3844        }
3845#endif
3846
3847        spin_lock_bh(&bp->spq_lock);
3848
3849        if (common) {
3850                if (!atomic_read(&bp->eq_spq_left)) {
3851                        BNX2X_ERR("BUG! EQ ring full!\n");
3852                        spin_unlock_bh(&bp->spq_lock);
3853                        bnx2x_panic();
3854                        return -EBUSY;
3855                }
3856        } else if (!atomic_read(&bp->cq_spq_left)) {
3857                        BNX2X_ERR("BUG! SPQ ring full!\n");
3858                        spin_unlock_bh(&bp->spq_lock);
3859                        bnx2x_panic();
3860                        return -EBUSY;
3861        }
3862
3863        spe = bnx2x_sp_get_next(bp);
3864
3865        /* CID needs port number to be encoded int it */
3866        spe->hdr.conn_and_cmd_data =
3867                        cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3868                                    HW_CID(bp, cid));
3869
3870        /* In some cases, type may already contain the func-id
3871         * mainly in SRIOV related use cases, so we add it here only
3872         * if it's not already set.
3873         */
3874        if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3875                type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3876                        SPE_HDR_CONN_TYPE;
3877                type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3878                         SPE_HDR_FUNCTION_ID);
3879        } else {
3880                type = cmd_type;
3881        }
3882
3883        spe->hdr.type = cpu_to_le16(type);
3884
3885        spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3886        spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3887
3888        /*
3889         * It's ok if the actual decrement is issued towards the memory
3890         * somewhere between the spin_lock and spin_unlock. Thus no
3891         * more explicit memory barrier is needed.
3892         */
3893        if (common)
3894                atomic_dec(&bp->eq_spq_left);
3895        else
3896                atomic_dec(&bp->cq_spq_left);
3897
3898        DP(BNX2X_MSG_SP,
3899           "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3900           bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3901           (u32)(U64_LO(bp->spq_mapping) +
3902           (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3903           HW_CID(bp, cid), data_hi, data_lo, type,
3904           atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3905
3906        bnx2x_sp_prod_update(bp);
3907        spin_unlock_bh(&bp->spq_lock);
3908        return 0;
3909}
3910
3911/* acquire split MCP access lock register */
3912static int bnx2x_acquire_alr(struct bnx2x *bp)
3913{
3914        u32 j, val;
3915        int rc = 0;
3916
3917        might_sleep();
3918        for (j = 0; j < 1000; j++) {
3919                REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3920                val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3921                if (val & MCPR_ACCESS_LOCK_LOCK)
3922                        break;
3923
3924                usleep_range(5000, 10000);
3925        }
3926        if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3927                BNX2X_ERR("Cannot acquire MCP access lock register\n");
3928                rc = -EBUSY;
3929        }
3930
3931        return rc;
3932}
3933
3934/* release split MCP access lock register */
3935static void bnx2x_release_alr(struct bnx2x *bp)
3936{
3937        REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3938}
3939
3940#define BNX2X_DEF_SB_ATT_IDX    0x0001
3941#define BNX2X_DEF_SB_IDX        0x0002
3942
3943static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3944{
3945        struct host_sp_status_block *def_sb = bp->def_status_blk;
3946        u16 rc = 0;
3947
3948        barrier(); /* status block is written to by the chip */
3949        if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3950                bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3951                rc |= BNX2X_DEF_SB_ATT_IDX;
3952        }
3953
3954        if (bp->def_idx != def_sb->sp_sb.running_index) {
3955                bp->def_idx = def_sb->sp_sb.running_index;
3956                rc |= BNX2X_DEF_SB_IDX;
3957        }
3958
3959        /* Do not reorder: indices reading should complete before handling */
3960        barrier();
3961        return rc;
3962}
3963
3964/*
3965 * slow path service functions
3966 */
3967
3968static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3969{
3970        int port = BP_PORT(bp);
3971        u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3972                              MISC_REG_AEU_MASK_ATTN_FUNC_0;
3973        u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3974                                       NIG_REG_MASK_INTERRUPT_PORT0;
3975        u32 aeu_mask;
3976        u32 nig_mask = 0;
3977        u32 reg_addr;
3978
3979        if (bp->attn_state & asserted)
3980                BNX2X_ERR("IGU ERROR\n");
3981
3982        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3983        aeu_mask = REG_RD(bp, aeu_addr);
3984
3985        DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3986           aeu_mask, asserted);
3987        aeu_mask &= ~(asserted & 0x3ff);
3988        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3989
3990        REG_WR(bp, aeu_addr, aeu_mask);
3991        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3992
3993        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3994        bp->attn_state |= asserted;
3995        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3996
3997        if (asserted & ATTN_HARD_WIRED_MASK) {
3998                if (asserted & ATTN_NIG_FOR_FUNC) {
3999
4000                        bnx2x_acquire_phy_lock(bp);
4001
4002                        /* save nig interrupt mask */
4003                        nig_mask = REG_RD(bp, nig_int_mask_addr);
4004
4005                        /* If nig_mask is not set, no need to call the update
4006                         * function.
4007                         */
4008                        if (nig_mask) {
4009                                REG_WR(bp, nig_int_mask_addr, 0);
4010
4011                                bnx2x_link_attn(bp);
4012                        }
4013
4014                        /* handle unicore attn? */
4015                }
4016                if (asserted & ATTN_SW_TIMER_4_FUNC)
4017                        DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4018
4019                if (asserted & GPIO_2_FUNC)
4020                        DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4021
4022                if (asserted & GPIO_3_FUNC)
4023                        DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4024
4025                if (asserted & GPIO_4_FUNC)
4026                        DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4027
4028                if (port == 0) {
4029                        if (asserted & ATTN_GENERAL_ATTN_1) {
4030                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4031                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4032                        }
4033                        if (asserted & ATTN_GENERAL_ATTN_2) {
4034                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4035                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4036                        }
4037                        if (asserted & ATTN_GENERAL_ATTN_3) {
4038                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4039                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4040                        }
4041                } else {
4042                        if (asserted & ATTN_GENERAL_ATTN_4) {
4043                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4044                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4045                        }
4046                        if (asserted & ATTN_GENERAL_ATTN_5) {
4047                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4048                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4049                        }
4050                        if (asserted & ATTN_GENERAL_ATTN_6) {
4051                                DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4052                                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4053                        }
4054                }
4055
4056        } /* if hardwired */
4057
4058        if (bp->common.int_block == INT_BLOCK_HC)
4059                reg_addr = (HC_REG_COMMAND_REG + port*32 +
4060                            COMMAND_REG_ATTN_BITS_SET);
4061        else
4062                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4063
4064        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4065           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4066        REG_WR(bp, reg_addr, asserted);
4067
4068        /* now set back the mask */
4069        if (asserted & ATTN_NIG_FOR_FUNC) {
4070                /* Verify that IGU ack through BAR was written before restoring
4071                 * NIG mask. This loop should exit after 2-3 iterations max.
4072                 */
4073                if (bp->common.int_block != INT_BLOCK_HC) {
4074                        u32 cnt = 0, igu_acked;
4075                        do {
4076                                igu_acked = REG_RD(bp,
4077                                                   IGU_REG_ATTENTION_ACK_BITS);
4078                        } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4079                                 (++cnt < MAX_IGU_ATTN_ACK_TO));
4080                        if (!igu_acked)
4081                                DP(NETIF_MSG_HW,
4082                                   "Failed to verify IGU ack on time\n");
4083                        barrier();
4084                }
4085                REG_WR(bp, nig_int_mask_addr, nig_mask);
4086                bnx2x_release_phy_lock(bp);
4087        }
4088}
4089
4090static void bnx2x_fan_failure(struct bnx2x *bp)
4091{
4092        int port = BP_PORT(bp);
4093        u32 ext_phy_config;
4094        /* mark the failure */
4095        ext_phy_config =
4096                SHMEM_RD(bp,
4097                         dev_info.port_hw_config[port].external_phy_config);
4098
4099        ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4100        ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4101        SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4102                 ext_phy_config);
4103
4104        /* log the failure */
4105        netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4106                            "Please contact OEM Support for assistance\n");
4107
4108        /* Schedule device reset (unload)
4109         * This is due to some boards consuming sufficient power when driver is
4110         * up to overheat if fan fails.
4111         */
4112        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4113}
4114
4115static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4116{
4117        int port = BP_PORT(bp);
4118        int reg_offset;
4119        u32 val;
4120
4121        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4122                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4123
4124        if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4125
4126                val = REG_RD(bp, reg_offset);
4127                val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4128                REG_WR(bp, reg_offset, val);
4129
4130                BNX2X_ERR("SPIO5 hw attention\n");
4131
4132                /* Fan failure attention */
4133                bnx2x_hw_reset_phy(&bp->link_params);
4134                bnx2x_fan_failure(bp);
4135        }
4136
4137        if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4138                bnx2x_acquire_phy_lock(bp);
4139                bnx2x_handle_module_detect_int(&bp->link_params);
4140                bnx2x_release_phy_lock(bp);
4141        }
4142
4143        if (attn & HW_INTERRUT_ASSERT_SET_0) {
4144
4145                val = REG_RD(bp, reg_offset);
4146                val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4147                REG_WR(bp, reg_offset, val);
4148
4149                BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4150                          (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4151                bnx2x_panic();
4152        }
4153}
4154
4155static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4156{
4157        u32 val;
4158
4159        if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4160
4161                val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4162                BNX2X_ERR("DB hw attention 0x%x\n", val);
4163                /* DORQ discard attention */
4164                if (val & 0x2)
4165                        BNX2X_ERR("FATAL error from DORQ\n");
4166        }
4167
4168        if (attn & HW_INTERRUT_ASSERT_SET_1) {
4169
4170                int port = BP_PORT(bp);
4171                int reg_offset;
4172
4173                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4174                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4175
4176                val = REG_RD(bp, reg_offset);
4177                val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4178                REG_WR(bp, reg_offset, val);
4179
4180                BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4181                          (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4182                bnx2x_panic();
4183        }
4184}
4185
4186static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4187{
4188        u32 val;
4189
4190        if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4191
4192                val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4193                BNX2X_ERR("CFC hw attention 0x%x\n", val);
4194                /* CFC error attention */
4195                if (val & 0x2)
4196                        BNX2X_ERR("FATAL error from CFC\n");
4197        }
4198
4199        if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4200                val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4201                BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4202                /* RQ_USDMDP_FIFO_OVERFLOW */
4203                if (val & 0x18000)
4204                        BNX2X_ERR("FATAL error from PXP\n");
4205
4206                if (!CHIP_IS_E1x(bp)) {
4207                        val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4208                        BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4209                }
4210        }
4211
4212        if (attn & HW_INTERRUT_ASSERT_SET_2) {
4213
4214                int port = BP_PORT(bp);
4215                int reg_offset;
4216
4217                reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4218                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4219
4220                val = REG_RD(bp, reg_offset);
4221                val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4222                REG_WR(bp, reg_offset, val);
4223
4224                BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4225                          (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4226                bnx2x_panic();
4227        }
4228}
4229
4230static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4231{
4232        u32 val;
4233
4234        if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4235
4236                if (attn & BNX2X_PMF_LINK_ASSERT) {
4237                        int func = BP_FUNC(bp);
4238
4239                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4240                        bnx2x_read_mf_cfg(bp);
4241                        bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4242                                        func_mf_config[BP_ABS_FUNC(bp)].config);
4243                        val = SHMEM_RD(bp,
4244                                       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4245
4246                        if (val & (DRV_STATUS_DCC_EVENT_MASK |
4247                                   DRV_STATUS_OEM_EVENT_MASK))
4248                                bnx2x_oem_event(bp,
4249                                        (val & (DRV_STATUS_DCC_EVENT_MASK |
4250                                                DRV_STATUS_OEM_EVENT_MASK)));
4251
4252                        if (val & DRV_STATUS_SET_MF_BW)
4253                                bnx2x_set_mf_bw(bp);
4254
4255                        if (val & DRV_STATUS_DRV_INFO_REQ)
4256                                bnx2x_handle_drv_info_req(bp);
4257
4258                        if (val & DRV_STATUS_VF_DISABLED)
4259                                bnx2x_schedule_iov_task(bp,
4260                                                        BNX2X_IOV_HANDLE_FLR);
4261
4262                        if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4263                                bnx2x_pmf_update(bp);
4264
4265                        if (bp->port.pmf &&
4266                            (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4267                                bp->dcbx_enabled > 0)
4268                                /* start dcbx state machine */
4269                                bnx2x_dcbx_set_params(bp,
4270                                        BNX2X_DCBX_STATE_NEG_RECEIVED);
4271                        if (val & DRV_STATUS_AFEX_EVENT_MASK)
4272                                bnx2x_handle_afex_cmd(bp,
4273                                        val & DRV_STATUS_AFEX_EVENT_MASK);
4274                        if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4275                                bnx2x_handle_eee_event(bp);
4276
4277                        if (val & DRV_STATUS_OEM_UPDATE_SVID)
4278                                bnx2x_handle_update_svid_cmd(bp);
4279
4280                        if (bp->link_vars.periodic_flags &
4281                            PERIODIC_FLAGS_LINK_EVENT) {
4282                                /*  sync with link */
4283                                bnx2x_acquire_phy_lock(bp);
4284                                bp->link_vars.periodic_flags &=
4285                                        ~PERIODIC_FLAGS_LINK_EVENT;
4286                                bnx2x_release_phy_lock(bp);
4287                                if (IS_MF(bp))
4288                                        bnx2x_link_sync_notify(bp);
4289                                bnx2x_link_report(bp);
4290                        }
4291                        /* Always call it here: bnx2x_link_report() will
4292                         * prevent the link indication duplication.
4293                         */
4294                        bnx2x__link_status_update(bp);
4295                } else if (attn & BNX2X_MC_ASSERT_BITS) {
4296
4297                        BNX2X_ERR("MC assert!\n");
4298                        bnx2x_mc_assert(bp);
4299                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4300                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4301                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4302                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4303                        bnx2x_panic();
4304
4305                } else if (attn & BNX2X_MCP_ASSERT) {
4306
4307                        BNX2X_ERR("MCP assert!\n");
4308                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4309                        bnx2x_fw_dump(bp);
4310
4311                } else
4312                        BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4313        }
4314
4315        if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4316                BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4317                if (attn & BNX2X_GRC_TIMEOUT) {
4318                        val = CHIP_IS_E1(bp) ? 0 :
4319                                        REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4320                        BNX2X_ERR("GRC time-out 0x%08x\n", val);
4321                }
4322                if (attn & BNX2X_GRC_RSV) {
4323                        val = CHIP_IS_E1(bp) ? 0 :
4324                                        REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4325                        BNX2X_ERR("GRC reserved 0x%08x\n", val);
4326                }
4327                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4328        }
4329}
4330
4331/*
4332 * Bits map:
4333 * 0-7   - Engine0 load counter.
4334 * 8-15  - Engine1 load counter.
4335 * 16    - Engine0 RESET_IN_PROGRESS bit.
4336 * 17    - Engine1 RESET_IN_PROGRESS bit.
4337 * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4338 *         on the engine
4339 * 19    - Engine1 ONE_IS_LOADED.
4340 * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4341 *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4342 *         just the one belonging to its engine).
4343 *
4344 */
4345#define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4346
4347#define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4348#define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4349#define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4350#define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4351#define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4352#define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4353#define BNX2X_GLOBAL_RESET_BIT          0x00040000
4354
4355/*
4356 * Set the GLOBAL_RESET bit.
4357 *
4358 * Should be run under rtnl lock
4359 */
4360void bnx2x_set_reset_global(struct bnx2x *bp)
4361{
4362        u32 val;
4363        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4365        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4366        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4367}
4368
4369/*
4370 * Clear the GLOBAL_RESET bit.
4371 *
4372 * Should be run under rtnl lock
4373 */
4374static void bnx2x_clear_reset_global(struct bnx2x *bp)
4375{
4376        u32 val;
4377        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4379        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4380        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4381}
4382
4383/*
4384 * Checks the GLOBAL_RESET bit.
4385 *
4386 * should be run under rtnl lock
4387 */
4388static bool bnx2x_reset_is_global(struct bnx2x *bp)
4389{
4390        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391
4392        DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4393        return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4394}
4395
4396/*
4397 * Clear RESET_IN_PROGRESS bit for the current engine.
4398 *
4399 * Should be run under rtnl lock
4400 */
4401static void bnx2x_set_reset_done(struct bnx2x *bp)
4402{
4403        u32 val;
4404        u32 bit = BP_PATH(bp) ?
4405                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4406        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4408
4409        /* Clear the bit */
4410        val &= ~bit;
4411        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4412
4413        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414}
4415
4416/*
4417 * Set RESET_IN_PROGRESS for the current engine.
4418 *
4419 * should be run under rtnl lock
4420 */
4421void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4422{
4423        u32 val;
4424        u32 bit = BP_PATH(bp) ?
4425                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4426        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4428
4429        /* Set the bit */
4430        val |= bit;
4431        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4432        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433}
4434
4435/*
4436 * Checks the RESET_IN_PROGRESS bit for the given engine.
4437 * should be run under rtnl lock
4438 */
4439bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4440{
4441        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4442        u32 bit = engine ?
4443                BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444
4445        /* return false if bit is set */
4446        return (val & bit) ? false : true;
4447}
4448
4449/*
4450 * set pf load for the current pf.
4451 *
4452 * should be run under rtnl lock
4453 */
4454void bnx2x_set_pf_load(struct bnx2x *bp)
4455{
4456        u32 val1, val;
4457        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4458                             BNX2X_PATH0_LOAD_CNT_MASK;
4459        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4460                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4461
4462        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464
4465        DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4466
4467        /* get the current counter value */
4468        val1 = (val & mask) >> shift;
4469
4470        /* set bit of that PF */
4471        val1 |= (1 << bp->pf_num);
4472
4473        /* clear the old value */
4474        val &= ~mask;
4475
4476        /* set the new one */
4477        val |= ((val1 << shift) & mask);
4478
4479        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481}
4482
4483/**
4484 * bnx2x_clear_pf_load - clear pf load mark
4485 *
4486 * @bp:         driver handle
4487 *
4488 * Should be run under rtnl lock.
4489 * Decrements the load counter for the current engine. Returns
4490 * whether other functions are still loaded
4491 */
4492bool bnx2x_clear_pf_load(struct bnx2x *bp)
4493{
4494        u32 val1, val;
4495        u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496                             BNX2X_PATH0_LOAD_CNT_MASK;
4497        u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498                             BNX2X_PATH0_LOAD_CNT_SHIFT;
4499
4500        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501        val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502        DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4503
4504        /* get the current counter value */
4505        val1 = (val & mask) >> shift;
4506
4507        /* clear bit of that PF */
4508        val1 &= ~(1 << bp->pf_num);
4509
4510        /* clear the old value */
4511        val &= ~mask;
4512
4513        /* set the new one */
4514        val |= ((val1 << shift) & mask);
4515
4516        REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4517        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4518        return val1 != 0;
4519}
4520
4521/*
4522 * Read the load status for the current engine.
4523 *
4524 * should be run under rtnl lock
4525 */
4526static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4527{
4528        u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4529                             BNX2X_PATH0_LOAD_CNT_MASK);
4530        u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4531                             BNX2X_PATH0_LOAD_CNT_SHIFT);
4532        u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4533
4534        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4535
4536        val = (val & mask) >> shift;
4537
4538        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4539           engine, val);
4540
4541        return val != 0;
4542}
4543
4544static void _print_parity(struct bnx2x *bp, u32 reg)
4545{
4546        pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4547}
4548
4549static void _print_next_block(int idx, const char *blk)
4550{
4551        pr_cont("%s%s", idx ? ", " : "", blk);
4552}
4553
4554static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4555                                            int *par_num, bool print)
4556{
4557        u32 cur_bit;
4558        bool res;
4559        int i;
4560
4561        res = false;
4562
4563        for (i = 0; sig; i++) {
4564                cur_bit = (0x1UL << i);
4565                if (sig & cur_bit) {
4566                        res |= true; /* Each bit is real error! */
4567
4568                        if (print) {
4569                                switch (cur_bit) {
4570                                case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4571                                        _print_next_block((*par_num)++, "BRB");
4572                                        _print_parity(bp,
4573                                                      BRB1_REG_BRB1_PRTY_STS);
4574                                        break;
4575                                case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4576                                        _print_next_block((*par_num)++,
4577                                                          "PARSER");
4578                                        _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4579                                        break;
4580                                case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4581                                        _print_next_block((*par_num)++, "TSDM");
4582                                        _print_parity(bp,
4583                                                      TSDM_REG_TSDM_PRTY_STS);
4584                                        break;
4585                                case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4586                                        _print_next_block((*par_num)++,
4587                                                          "SEARCHER");
4588                                        _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4589                                        break;
4590                                case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4591                                        _print_next_block((*par_num)++, "TCM");
4592                                        _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4593                                        break;
4594                                case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4595                                        _print_next_block((*par_num)++,
4596                                                          "TSEMI");
4597                                        _print_parity(bp,
4598                                                      TSEM_REG_TSEM_PRTY_STS_0);
4599                                        _print_parity(bp,
4600                                                      TSEM_REG_TSEM_PRTY_STS_1);
4601                                        break;
4602                                case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4603                                        _print_next_block((*par_num)++, "XPB");
4604                                        _print_parity(bp, GRCBASE_XPB +
4605                                                          PB_REG_PB_PRTY_STS);
4606                                        break;
4607                                }
4608                        }
4609
4610                        /* Clear the bit */
4611                        sig &= ~cur_bit;
4612                }
4613        }
4614
4615        return res;
4616}
4617
4618static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4619                                            int *par_num, bool *global,
4620                                            bool print)
4621{
4622        u32 cur_bit;
4623        bool res;
4624        int i;
4625
4626        res = false;
4627
4628        for (i = 0; sig; i++) {
4629                cur_bit = (0x1UL << i);
4630                if (sig & cur_bit) {
4631                        res |= true; /* Each bit is real error! */
4632                        switch (cur_bit) {
4633                        case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4634                                if (print) {
4635                                        _print_next_block((*par_num)++, "PBF");
4636                                        _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4637                                }
4638                                break;
4639                        case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4640                                if (print) {
4641                                        _print_next_block((*par_num)++, "QM");
4642                                        _print_parity(bp, QM_REG_QM_PRTY_STS);
4643                                }
4644                                break;
4645                        case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4646                                if (print) {
4647                                        _print_next_block((*par_num)++, "TM");
4648                                        _print_parity(bp, TM_REG_TM_PRTY_STS);
4649                                }
4650                                break;
4651                        case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4652                                if (print) {
4653                                        _print_next_block((*par_num)++, "XSDM");
4654                                        _print_parity(bp,
4655                                                      XSDM_REG_XSDM_PRTY_STS);
4656                                }
4657                                break;
4658                        case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4659                                if (print) {
4660                                        _print_next_block((*par_num)++, "XCM");
4661                                        _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4662                                }
4663                                break;
4664                        case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4665                                if (print) {
4666                                        _print_next_block((*par_num)++,
4667                                                          "XSEMI");
4668                                        _print_parity(bp,
4669                                                      XSEM_REG_XSEM_PRTY_STS_0);
4670                                        _print_parity(bp,
4671                                                      XSEM_REG_XSEM_PRTY_STS_1);
4672                                }
4673                                break;
4674                        case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4675                                if (print) {
4676                                        _print_next_block((*par_num)++,
4677                                                          "DOORBELLQ");
4678                                        _print_parity(bp,
4679                                                      DORQ_REG_DORQ_PRTY_STS);
4680                                }
4681                                break;
4682                        case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4683                                if (print) {
4684                                        _print_next_block((*par_num)++, "NIG");
4685                                        if (CHIP_IS_E1x(bp)) {
4686                                                _print_parity(bp,
4687                                                        NIG_REG_NIG_PRTY_STS);
4688                                        } else {
4689                                                _print_parity(bp,
4690                                                        NIG_REG_NIG_PRTY_STS_0);
4691                                                _print_parity(bp,
4692                                                        NIG_REG_NIG_PRTY_STS_1);
4693                                        }
4694                                }
4695                                break;
4696                        case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4697                                if (print)
4698                                        _print_next_block((*par_num)++,
4699                                                          "VAUX PCI CORE");
4700                                *global = true;
4701                                break;
4702                        case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4703                                if (print) {
4704                                        _print_next_block((*par_num)++,
4705                                                          "DEBUG");
4706                                        _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4707                                }
4708                                break;
4709                        case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4710                                if (print) {
4711                                        _print_next_block((*par_num)++, "USDM");
4712                                        _print_parity(bp,
4713                                                      USDM_REG_USDM_PRTY_STS);
4714                                }
4715                                break;
4716                        case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4717                                if (print) {
4718                                        _print_next_block((*par_num)++, "UCM");
4719                                        _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4720                                }
4721                                break;
4722                        case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4723                                if (print) {
4724                                        _print_next_block((*par_num)++,
4725                                                          "USEMI");
4726                                        _print_parity(bp,
4727                                                      USEM_REG_USEM_PRTY_STS_0);
4728                                        _print_parity(bp,
4729                                                      USEM_REG_USEM_PRTY_STS_1);
4730                                }
4731                                break;
4732                        case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4733                                if (print) {
4734                                        _print_next_block((*par_num)++, "UPB");
4735                                        _print_parity(bp, GRCBASE_UPB +
4736                                                          PB_REG_PB_PRTY_STS);
4737                                }
4738                                break;
4739                        case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4740                                if (print) {
4741                                        _print_next_block((*par_num)++, "CSDM");
4742                                        _print_parity(bp,
4743                                                      CSDM_REG_CSDM_PRTY_STS);
4744                                }
4745                                break;
4746                        case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4747                                if (print) {
4748                                        _print_next_block((*par_num)++, "CCM");
4749                                        _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4750                                }
4751                                break;
4752                        }
4753
4754                        /* Clear the bit */
4755                        sig &= ~cur_bit;
4756                }
4757        }
4758
4759        return res;
4760}
4761
4762static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4763                                            int *par_num, bool print)
4764{
4765        u32 cur_bit;
4766        bool res;
4767        int i;
4768
4769        res = false;
4770
4771        for (i = 0; sig; i++) {
4772                cur_bit = (0x1UL << i);
4773                if (sig & cur_bit) {
4774                        res = true; /* Each bit is real error! */
4775                        if (print) {
4776                                switch (cur_bit) {
4777                                case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4778                                        _print_next_block((*par_num)++,
4779                                                          "CSEMI");
4780                                        _print_parity(bp,
4781                                                      CSEM_REG_CSEM_PRTY_STS_0);
4782                                        _print_parity(bp,
4783                                                      CSEM_REG_CSEM_PRTY_STS_1);
4784                                        break;
4785                                case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4786                                        _print_next_block((*par_num)++, "PXP");
4787                                        _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4788                                        _print_parity(bp,
4789                                                      PXP2_REG_PXP2_PRTY_STS_0);
4790                                        _print_parity(bp,
4791                                                      PXP2_REG_PXP2_PRTY_STS_1);
4792                                        break;
4793                                case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4794                                        _print_next_block((*par_num)++,
4795                                                          "PXPPCICLOCKCLIENT");
4796                                        break;
4797                                case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4798                                        _print_next_block((*par_num)++, "CFC");
4799                                        _print_parity(bp,
4800                                                      CFC_REG_CFC_PRTY_STS);
4801                                        break;
4802                                case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4803                                        _print_next_block((*par_num)++, "CDU");
4804                                        _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4805                                        break;
4806                                case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4807                                        _print_next_block((*par_num)++, "DMAE");
4808                                        _print_parity(bp,
4809                                                      DMAE_REG_DMAE_PRTY_STS);
4810                                        break;
4811                                case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4812                                        _print_next_block((*par_num)++, "IGU");
4813                                        if (CHIP_IS_E1x(bp))
4814                                                _print_parity(bp,
4815                                                        HC_REG_HC_PRTY_STS);
4816                                        else
4817                                                _print_parity(bp,
4818                                                        IGU_REG_IGU_PRTY_STS);
4819                                        break;
4820                                case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4821                                        _print_next_block((*par_num)++, "MISC");
4822                                        _print_parity(bp,
4823                                                      MISC_REG_MISC_PRTY_STS);
4824                                        break;
4825                                }
4826                        }
4827
4828                        /* Clear the bit */
4829                        sig &= ~cur_bit;
4830                }
4831        }
4832
4833        return res;
4834}
4835
4836static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4837                                            int *par_num, bool *global,
4838                                            bool print)
4839{
4840        bool res = false;
4841        u32 cur_bit;
4842        int i;
4843
4844        for (i = 0; sig; i++) {
4845                cur_bit = (0x1UL << i);
4846                if (sig & cur_bit) {
4847                        switch (cur_bit) {
4848                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4849                                if (print)
4850                                        _print_next_block((*par_num)++,
4851                                                          "MCP ROM");
4852                                *global = true;
4853                                res = true;
4854                                break;
4855                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4856                                if (print)
4857                                        _print_next_block((*par_num)++,
4858                                                          "MCP UMP RX");
4859                                *global = true;
4860                                res = true;
4861                                break;
4862                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4863                                if (print)
4864                                        _print_next_block((*par_num)++,
4865                                                          "MCP UMP TX");
4866                                *global = true;
4867                                res = true;
4868                                break;
4869                        case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4870                                (*par_num)++;
4871                                /* clear latched SCPAD PATIRY from MCP */
4872                                REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4873                                       1UL << 10);
4874                                break;
4875                        }
4876
4877                        /* Clear the bit */
4878                        sig &= ~cur_bit;
4879                }
4880        }
4881
4882        return res;
4883}
4884
4885static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4886                                            int *par_num, bool print)
4887{
4888        u32 cur_bit;
4889        bool res;
4890        int i;
4891
4892        res = false;
4893
4894        for (i = 0; sig; i++) {
4895                cur_bit = (0x1UL << i);
4896                if (sig & cur_bit) {
4897                        res = true; /* Each bit is real error! */
4898                        if (print) {
4899                                switch (cur_bit) {
4900                                case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4901                                        _print_next_block((*par_num)++,
4902                                                          "PGLUE_B");
4903                                        _print_parity(bp,
4904                                                      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4905                                        break;
4906                                case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4907                                        _print_next_block((*par_num)++, "ATC");
4908                                        _print_parity(bp,
4909                                                      ATC_REG_ATC_PRTY_STS);
4910                                        break;
4911                                }
4912                        }
4913                        /* Clear the bit */
4914                        sig &= ~cur_bit;
4915                }
4916        }
4917
4918        return res;
4919}
4920
4921static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4922                              u32 *sig)
4923{
4924        bool res = false;
4925
4926        if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4927            (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4928            (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4929            (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4930            (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4931                int par_num = 0;
4932
4933                DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4934                                 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4935                          sig[0] & HW_PRTY_ASSERT_SET_0,
4936                          sig[1] & HW_PRTY_ASSERT_SET_1,
4937                          sig[2] & HW_PRTY_ASSERT_SET_2,
4938                          sig[3] & HW_PRTY_ASSERT_SET_3,
4939                          sig[4] & HW_PRTY_ASSERT_SET_4);
4940                if (print) {
4941                        if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4942                             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4943                             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4944                             (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4945                             (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4946                                netdev_err(bp->dev,
4947                                           "Parity errors detected in blocks: ");
4948                        } else {
4949                                print = false;
4950                        }
4951                }
4952                res |= bnx2x_check_blocks_with_parity0(bp,
4953                        sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4954                res |= bnx2x_check_blocks_with_parity1(bp,
4955                        sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4956                res |= bnx2x_check_blocks_with_parity2(bp,
4957                        sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4958                res |= bnx2x_check_blocks_with_parity3(bp,
4959                        sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4960                res |= bnx2x_check_blocks_with_parity4(bp,
4961                        sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4962
4963                if (print)
4964                        pr_cont("\n");
4965        }
4966
4967        return res;
4968}
4969
4970/**
4971 * bnx2x_chk_parity_attn - checks for parity attentions.
4972 *
4973 * @bp:         driver handle
4974 * @global:     true if there was a global attention
4975 * @print:      show parity attention in syslog
4976 */
4977bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4978{
4979        struct attn_route attn = { {0} };
4980        int port = BP_PORT(bp);
4981
4982        attn.sig[0] = REG_RD(bp,
4983                MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4984                             port*4);
4985        attn.sig[1] = REG_RD(bp,
4986                MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4987                             port*4);
4988        attn.sig[2] = REG_RD(bp,
4989                MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4990                             port*4);
4991        attn.sig[3] = REG_RD(bp,
4992                MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4993                             port*4);
4994        /* Since MCP attentions can't be disabled inside the block, we need to
4995         * read AEU registers to see whether they're currently disabled
4996         */
4997        attn.sig[3] &= ((REG_RD(bp,
4998                                !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4999                                      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5000                         MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5001                        ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5002
5003        if (!CHIP_IS_E1x(bp))
5004                attn.sig[4] = REG_RD(bp,
5005                        MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5006                                     port*4);
5007
5008        return bnx2x_parity_attn(bp, global, print, attn.sig);
5009}
5010
5011static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5012{
5013        u32 val;
5014        if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5015
5016                val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5017                BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5018                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5019                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5020                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5021                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5022                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5023                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5024                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5025                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5026                if (val &
5027                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5028                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5029                if (val &
5030                    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5031                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5032                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5033                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5034                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5035                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5036                if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5037                        BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5038        }
5039        if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5040                val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5041                BNX2X_ERR("ATC hw attention 0x%x\n", val);
5042                if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5043                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5044                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5045                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5046                if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5047                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5048                if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5049                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5050                if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5051                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5052                if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5053                        BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5054        }
5055
5056        if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5057                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5058                BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5059                (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5060                    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5061        }
5062}
5063
5064static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5065{
5066        struct attn_route attn, *group_mask;
5067        int port = BP_PORT(bp);
5068        int index;
5069        u32 reg_addr;
5070        u32 val;
5071        u32 aeu_mask;
5072        bool global = false;
5073
5074        /* need to take HW lock because MCP or other port might also
5075           try to handle this event */
5076        bnx2x_acquire_alr(bp);
5077
5078        if (bnx2x_chk_parity_attn(bp, &global, true)) {
5079#ifndef BNX2X_STOP_ON_ERROR
5080                bp->recovery_state = BNX2X_RECOVERY_INIT;
5081                schedule_delayed_work(&bp->sp_rtnl_task, 0);
5082                /* Disable HW interrupts */
5083                bnx2x_int_disable(bp);
5084                /* In case of parity errors don't handle attentions so that
5085                 * other function would "see" parity errors.
5086                 */
5087#else
5088                bnx2x_panic();
5089#endif
5090                bnx2x_release_alr(bp);
5091                return;
5092        }
5093
5094        attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5095        attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5096        attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5097        attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5098        if (!CHIP_IS_E1x(bp))
5099                attn.sig[4] =
5100                      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5101        else
5102                attn.sig[4] = 0;
5103
5104        DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5105           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5106
5107        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5108                if (deasserted & (1 << index)) {
5109                        group_mask = &bp->attn_group[index];
5110
5111                        DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5112                           index,
5113                           group_mask->sig[0], group_mask->sig[1],
5114                           group_mask->sig[2], group_mask->sig[3],
5115                           group_mask->sig[4]);
5116
5117                        bnx2x_attn_int_deasserted4(bp,
5118                                        attn.sig[4] & group_mask->sig[4]);
5119                        bnx2x_attn_int_deasserted3(bp,
5120                                        attn.sig[3] & group_mask->sig[3]);
5121                        bnx2x_attn_int_deasserted1(bp,
5122                                        attn.sig[1] & group_mask->sig[1]);
5123                        bnx2x_attn_int_deasserted2(bp,
5124                                        attn.sig[2] & group_mask->sig[2]);
5125                        bnx2x_attn_int_deasserted0(bp,
5126                                        attn.sig[0] & group_mask->sig[0]);
5127                }
5128        }
5129
5130        bnx2x_release_alr(bp);
5131
5132        if (bp->common.int_block == INT_BLOCK_HC)
5133                reg_addr = (HC_REG_COMMAND_REG + port*32 +
5134                            COMMAND_REG_ATTN_BITS_CLR);
5135        else
5136                reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5137
5138        val = ~deasserted;
5139        DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5140           (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5141        REG_WR(bp, reg_addr, val);
5142
5143        if (~bp->attn_state & deasserted)
5144                BNX2X_ERR("IGU ERROR\n");
5145
5146        reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5147                          MISC_REG_AEU_MASK_ATTN_FUNC_0;
5148
5149        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5150        aeu_mask = REG_RD(bp, reg_addr);
5151
5152        DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5153           aeu_mask, deasserted);
5154        aeu_mask |= (deasserted & 0x3ff);
5155        DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5156
5157        REG_WR(bp, reg_addr, aeu_mask);
5158        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5159
5160        DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5161        bp->attn_state &= ~deasserted;
5162        DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5163}
5164
5165static void bnx2x_attn_int(struct bnx2x *bp)
5166{
5167        /* read local copy of bits */
5168        u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5169                                                                attn_bits);
5170        u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5171                                                                attn_bits_ack);
5172        u32 attn_state = bp->attn_state;
5173
5174        /* look for changed bits */
5175        u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5176        u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5177
5178        DP(NETIF_MSG_HW,
5179           "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5180           attn_bits, attn_ack, asserted, deasserted);
5181
5182        if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5183                BNX2X_ERR("BAD attention state\n");
5184
5185        /* handle bits that were raised */
5186        if (asserted)
5187                bnx2x_attn_int_asserted(bp, asserted);
5188
5189        if (deasserted)
5190                bnx2x_attn_int_deasserted(bp, deasserted);
5191}
5192
5193void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5194                      u16 index, u8 op, u8 update)
5195{
5196        u32 igu_addr = bp->igu_base_addr;
5197        igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5198        bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5199                             igu_addr);
5200}
5201
5202static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5203{
5204        /* No memory barriers */
5205        storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5206        mmiowb(); /* keep prod updates ordered */
5207}
5208
5209static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5210                                      union event_ring_elem *elem)
5211{
5212        u8 err = elem->message.error;
5213
5214        if (!bp->cnic_eth_dev.starting_cid  ||
5215            (cid < bp->cnic_eth_dev.starting_cid &&
5216            cid != bp->cnic_eth_dev.iscsi_l2_cid))
5217                return 1;
5218
5219        DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5220
5221        if (unlikely(err)) {
5222
5223                BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5224                          cid);
5225                bnx2x_panic_dump(bp, false);
5226        }
5227        bnx2x_cnic_cfc_comp(bp, cid, err);
5228        return 0;
5229}
5230
5231static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5232{
5233        struct bnx2x_mcast_ramrod_params rparam;
5234        int rc;
5235
5236        memset(&rparam, 0, sizeof(rparam));
5237
5238        rparam.mcast_obj = &bp->mcast_obj;
5239
5240        netif_addr_lock_bh(bp->dev);
5241
5242        /* Clear pending state for the last command */
5243        bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5244
5245        /* If there are pending mcast commands - send them */
5246        if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5247                rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5248                if (rc < 0)
5249                        BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5250                                  rc);
5251        }
5252
5253        netif_addr_unlock_bh(bp->dev);
5254}
5255
5256static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5257                                            union event_ring_elem *elem)
5258{
5259        unsigned long ramrod_flags = 0;
5260        int rc = 0;
5261        u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5262        struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5263
5264        /* Always push next commands out, don't wait here */
5265        __set_bit(RAMROD_CONT, &ramrod_flags);
5266
5267        switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5268                            >> BNX2X_SWCID_SHIFT) {
5269        case BNX2X_FILTER_MAC_PENDING:
5270                DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5271                if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5272                        vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5273                else
5274                        vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5275
5276                break;
5277        case BNX2X_FILTER_MCAST_PENDING:
5278                DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5279                /* This is only relevant for 57710 where multicast MACs are
5280                 * configured as unicast MACs using the same ramrod.
5281                 */
5282                bnx2x_handle_mcast_eqe(bp);
5283                return;
5284        default:
5285                BNX2X_ERR("Unsupported classification command: %d\n",
5286                          elem->message.data.eth_event.echo);
5287                return;
5288        }
5289
5290        rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5291
5292        if (rc < 0)
5293                BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5294        else if (rc > 0)
5295                DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5296}
5297
5298static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5299
5300static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5301{
5302        netif_addr_lock_bh(bp->dev);
5303
5304        clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5305
5306        /* Send rx_mode command again if was requested */
5307        if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5308                bnx2x_set_storm_rx_mode(bp);
5309        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5310                                    &bp->sp_state))
5311                bnx2x_set_iscsi_eth_rx_mode(bp, true);
5312        else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5313                                    &bp->sp_state))
5314                bnx2x_set_iscsi_eth_rx_mode(bp, false);
5315
5316        netif_addr_unlock_bh(bp->dev);
5317}
5318
5319static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5320                                              union event_ring_elem *elem)
5321{
5322        if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5323                DP(BNX2X_MSG_SP,
5324                   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5325                   elem->message.data.vif_list_event.func_bit_map);
5326                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5327                        elem->message.data.vif_list_event.func_bit_map);
5328        } else if (elem->message.data.vif_list_event.echo ==
5329                   VIF_LIST_RULE_SET) {
5330                DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5331                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5332        }
5333}
5334
5335/* called with rtnl_lock */
5336static void bnx2x_after_function_update(struct bnx2x *bp)
5337{
5338        int q, rc;
5339        struct bnx2x_fastpath *fp;
5340        struct bnx2x_queue_state_params queue_params = {NULL};
5341        struct bnx2x_queue_update_params *q_update_params =
5342                &queue_params.params.update;
5343
5344        /* Send Q update command with afex vlan removal values for all Qs */
5345        queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5346
5347        /* set silent vlan removal values according to vlan mode */
5348        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5349                  &q_update_params->update_flags);
5350        __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5351                  &q_update_params->update_flags);
5352        __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5353
5354        /* in access mode mark mask and value are 0 to strip all vlans */
5355        if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5356                q_update_params->silent_removal_value = 0;
5357                q_update_params->silent_removal_mask = 0;
5358        } else {
5359                q_update_params->silent_removal_value =
5360                        (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5361                q_update_params->silent_removal_mask = VLAN_VID_MASK;
5362        }
5363
5364        for_each_eth_queue(bp, q) {
5365                /* Set the appropriate Queue object */
5366                fp = &bp->fp[q];
5367                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5368
5369                /* send the ramrod */
5370                rc = bnx2x_queue_state_change(bp, &queue_params);
5371                if (rc < 0)
5372                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5373                                  q);
5374        }
5375
5376        if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5377                fp = &bp->fp[FCOE_IDX(bp)];
5378                queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5379
5380                /* clear pending completion bit */
5381                __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5382
5383                /* mark latest Q bit */
5384                smp_mb__before_atomic();
5385                set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5386                smp_mb__after_atomic();
5387
5388                /* send Q update ramrod for FCoE Q */
5389                rc = bnx2x_queue_state_change(bp, &queue_params);
5390                if (rc < 0)
5391                        BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5392                                  q);
5393        } else {
5394                /* If no FCoE ring - ACK MCP now */
5395                bnx2x_link_report(bp);
5396                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5397        }
5398}
5399
5400static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5401        struct bnx2x *bp, u32 cid)
5402{
5403        DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5404
5405        if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5406                return &bnx2x_fcoe_sp_obj(bp, q_obj);
5407        else
5408                return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5409}
5410
5411static void bnx2x_eq_int(struct bnx2x *bp)
5412{
5413        u16 hw_cons, sw_cons, sw_prod;
5414        union event_ring_elem *elem;
5415        u8 echo;
5416        u32 cid;
5417        u8 opcode;
5418        int rc, spqe_cnt = 0;
5419        struct bnx2x_queue_sp_obj *q_obj;
5420        struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5421        struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5422
5423        hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5424
5425        /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5426         * when we get the next-page we need to adjust so the loop
5427         * condition below will be met. The next element is the size of a
5428         * regular element and hence incrementing by 1
5429         */
5430        if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5431                hw_cons++;
5432
5433        /* This function may never run in parallel with itself for a
5434         * specific bp, thus there is no need in "paired" read memory
5435         * barrier here.
5436         */
5437        sw_cons = bp->eq_cons;
5438        sw_prod = bp->eq_prod;
5439
5440        DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5441                        hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5442
5443        for (; sw_cons != hw_cons;
5444              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5445
5446                elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5447
5448                rc = bnx2x_iov_eq_sp_event(bp, elem);
5449                if (!rc) {
5450                        DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5451                           rc);
5452                        goto next_spqe;
5453                }
5454
5455                /* elem CID originates from FW; actually LE */
5456                cid = SW_CID((__force __le32)
5457                             elem->message.data.cfc_del_event.cid);
5458                opcode = elem->message.opcode;
5459
5460                /* handle eq element */
5461                switch (opcode) {
5462                case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5463                        bnx2x_vf_mbx_schedule(bp,
5464                                              &elem->message.data.vf_pf_event);
5465                        continue;
5466
5467                case EVENT_RING_OPCODE_STAT_QUERY:
5468                        DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5469                               "got statistics comp event %d\n",
5470                               bp->stats_comp++);
5471                        /* nothing to do with stats comp */
5472                        goto next_spqe;
5473
5474                case EVENT_RING_OPCODE_CFC_DEL:
5475                        /* handle according to cid range */
5476                        /*
5477                         * we may want to verify here that the bp state is
5478                         * HALTING
5479                         */
5480                        DP(BNX2X_MSG_SP,
5481                           "got delete ramrod for MULTI[%d]\n", cid);
5482
5483                        if (CNIC_LOADED(bp) &&
5484                            !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5485                                goto next_spqe;
5486
5487                        q_obj = bnx2x_cid_to_q_obj(bp, cid);
5488
5489                        if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5490                                break;
5491
5492                        goto next_spqe;
5493
5494                case EVENT_RING_OPCODE_STOP_TRAFFIC:
5495                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5496                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5497                        if (f_obj->complete_cmd(bp, f_obj,
5498                                                BNX2X_F_CMD_TX_STOP))
5499                                break;
5500                        goto next_spqe;
5501
5502                case EVENT_RING_OPCODE_START_TRAFFIC:
5503                        DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5504                        bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5505                        if (f_obj->complete_cmd(bp, f_obj,
5506                                                BNX2X_F_CMD_TX_START))
5507                                break;
5508                        goto next_spqe;
5509
5510                case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5511                        echo = elem->message.data.function_update_event.echo;
5512                        if (echo == SWITCH_UPDATE) {
5513                                DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5514                                   "got FUNC_SWITCH_UPDATE ramrod\n");
5515                                if (f_obj->complete_cmd(
5516                                        bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5517                                        break;
5518
5519                        } else {
5520                                int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5521
5522                                DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5523                                   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5524                                f_obj->complete_cmd(bp, f_obj,
5525                                                    BNX2X_F_CMD_AFEX_UPDATE);
5526
5527                                /* We will perform the Queues update from
5528                                 * sp_rtnl task as all Queue SP operations
5529                                 * should run under rtnl_lock.
5530                                 */
5531                                bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5532                        }
5533
5534                        goto next_spqe;
5535
5536                case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5537                        f_obj->complete_cmd(bp, f_obj,
5538                                            BNX2X_F_CMD_AFEX_VIFLISTS);
5539                        bnx2x_after_afex_vif_lists(bp, elem);
5540                        goto next_spqe;
5541                case EVENT_RING_OPCODE_FUNCTION_START:
5542                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5543                           "got FUNC_START ramrod\n");
5544                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5545                                break;
5546
5547                        goto next_spqe;
5548
5549                case EVENT_RING_OPCODE_FUNCTION_STOP:
5550                        DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5551                           "got FUNC_STOP ramrod\n");
5552                        if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5553                                break;
5554
5555                        goto next_spqe;
5556
5557                case EVENT_RING_OPCODE_SET_TIMESYNC:
5558                        DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5559                           "got set_timesync ramrod completion\n");
5560                        if (f_obj->complete_cmd(bp, f_obj,
5561                                                BNX2X_F_CMD_SET_TIMESYNC))
5562                                break;
5563                        goto next_spqe;
5564                }
5565
5566                switch (opcode | bp->state) {
5567                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5568                      BNX2X_STATE_OPEN):
5569                case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5570                      BNX2X_STATE_OPENING_WAIT4_PORT):
5571                        cid = elem->message.data.eth_event.echo &
5572                                BNX2X_SWCID_MASK;
5573                        DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5574                           cid);
5575                        rss_raw->clear_pending(rss_raw);
5576                        break;
5577
5578                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5579                case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5580                case (EVENT_RING_OPCODE_SET_MAC |
5581                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5582                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5583                      BNX2X_STATE_OPEN):
5584                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5585                      BNX2X_STATE_DIAG):
5586                case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5587                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5588                        DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5589                        bnx2x_handle_classification_eqe(bp, elem);
5590                        break;
5591
5592                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5593                      BNX2X_STATE_OPEN):
5594                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5595                      BNX2X_STATE_DIAG):
5596                case (EVENT_RING_OPCODE_MULTICAST_RULES |
5597                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5598                        DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5599                        bnx2x_handle_mcast_eqe(bp);
5600                        break;
5601
5602                case (EVENT_RING_OPCODE_FILTERS_RULES |
5603                      BNX2X_STATE_OPEN):
5604                case (EVENT_RING_OPCODE_FILTERS_RULES |
5605                      BNX2X_STATE_DIAG):
5606                case (EVENT_RING_OPCODE_FILTERS_RULES |
5607                      BNX2X_STATE_CLOSING_WAIT4_HALT):
5608                        DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5609                        bnx2x_handle_rx_mode_eqe(bp);
5610                        break;
5611                default:
5612                        /* unknown event log error and continue */
5613                        BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5614                                  elem->message.opcode, bp->state);
5615                }
5616next_spqe:
5617                spqe_cnt++;
5618        } /* for */
5619
5620        smp_mb__before_atomic();
5621        atomic_add(spqe_cnt, &bp->eq_spq_left);
5622
5623        bp->eq_cons = sw_cons;
5624        bp->eq_prod = sw_prod;
5625        /* Make sure that above mem writes were issued towards the memory */
5626        smp_wmb();
5627
5628        /* update producer */
5629        bnx2x_update_eq_prod(bp, bp->eq_prod);
5630}
5631
5632static void bnx2x_sp_task(struct work_struct *work)
5633{
5634        struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5635
5636        DP(BNX2X_MSG_SP, "sp task invoked\n");
5637
5638        /* make sure the atomic interrupt_occurred has been written */
5639        smp_rmb();
5640        if (atomic_read(&bp->interrupt_occurred)) {
5641
5642                /* what work needs to be performed? */
5643                u16 status = bnx2x_update_dsb_idx(bp);
5644
5645                DP(BNX2X_MSG_SP, "status %x\n", status);
5646                DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5647                atomic_set(&bp->interrupt_occurred, 0);
5648
5649                /* HW attentions */
5650                if (status & BNX2X_DEF_SB_ATT_IDX) {
5651                        bnx2x_attn_int(bp);
5652                        status &= ~BNX2X_DEF_SB_ATT_IDX;
5653                }
5654
5655                /* SP events: STAT_QUERY and others */
5656                if (status & BNX2X_DEF_SB_IDX) {
5657                        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5658
5659                if (FCOE_INIT(bp) &&
5660                            (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5661                                /* Prevent local bottom-halves from running as
5662                                 * we are going to change the local NAPI list.
5663                                 */
5664                                local_bh_disable();
5665                                napi_schedule(&bnx2x_fcoe(bp, napi));
5666                                local_bh_enable();
5667                        }
5668
5669                        /* Handle EQ completions */
5670                        bnx2x_eq_int(bp);
5671                        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5672                                     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5673
5674                        status &= ~BNX2X_DEF_SB_IDX;
5675                }
5676
5677                /* if status is non zero then perhaps something went wrong */
5678                if (unlikely(status))
5679                        DP(BNX2X_MSG_SP,
5680                           "got an unknown interrupt! (status 0x%x)\n", status);
5681
5682                /* ack status block only if something was actually handled */
5683                bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5684                             le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5685        }
5686
5687        /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5688        if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5689                               &bp->sp_state)) {
5690                bnx2x_link_report(bp);
5691                bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5692        }
5693}
5694
5695irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5696{
5697        struct net_device *dev = dev_instance;
5698        struct bnx2x *bp = netdev_priv(dev);
5699
5700        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5701                     IGU_INT_DISABLE, 0);
5702
5703#ifdef BNX2X_STOP_ON_ERROR
5704        if (unlikely(bp->panic))
5705                return IRQ_HANDLED;
5706#endif
5707
5708        if (CNIC_LOADED(bp)) {
5709                struct cnic_ops *c_ops;
5710
5711                rcu_read_lock();
5712                c_ops = rcu_dereference(bp->cnic_ops);
5713                if (c_ops)
5714                        c_ops->cnic_handler(bp->cnic_data, NULL);
5715                rcu_read_unlock();
5716        }
5717
5718        /* schedule sp task to perform default status block work, ack
5719         * attentions and enable interrupts.
5720         */
5721        bnx2x_schedule_sp_task(bp);
5722
5723        return IRQ_HANDLED;
5724}
5725
5726/* end of slow path */
5727
5728void bnx2x_drv_pulse(struct bnx2x *bp)
5729{
5730        SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5731                 bp->fw_drv_pulse_wr_seq);
5732}
5733
5734static void bnx2x_timer(unsigned long data)
5735{
5736        struct bnx2x *bp = (struct bnx2x *) data;
5737
5738        if (!netif_running(bp->dev))
5739                return;
5740
5741        if (IS_PF(bp) &&
5742            !BP_NOMCP(bp)) {
5743                int mb_idx = BP_FW_MB_IDX(bp);
5744                u16 drv_pulse;
5745                u16 mcp_pulse;
5746
5747                ++bp->fw_drv_pulse_wr_seq;
5748                bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5749                drv_pulse = bp->fw_drv_pulse_wr_seq;
5750                bnx2x_drv_pulse(bp);
5751
5752                mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5753                             MCP_PULSE_SEQ_MASK);
5754                /* The delta between driver pulse and mcp response
5755                 * should not get too big. If the MFW is more than 5 pulses
5756                 * behind, we should worry about it enough to generate an error
5757                 * log.
5758                 */
5759                if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5760                        BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5761                                  drv_pulse, mcp_pulse);
5762        }
5763
5764        if (bp->state == BNX2X_STATE_OPEN)
5765                bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5766
5767        /* sample pf vf bulletin board for new posts from pf */
5768        if (IS_VF(bp))
5769                bnx2x_timer_sriov(bp);
5770
5771        mod_timer(&bp->timer, jiffies + bp->current_interval);
5772}
5773
5774/* end of Statistics */
5775
5776/* nic init */
5777
5778/*
5779 * nic init service functions
5780 */
5781
5782static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5783{
5784        u32 i;
5785        if (!(len%4) && !(addr%4))
5786                for (i = 0; i < len; i += 4)
5787                        REG_WR(bp, addr + i, fill);
5788        else
5789                for (i = 0; i < len; i++)
5790                        REG_WR8(bp, addr + i, fill);
5791}
5792
5793/* helper: writes FP SP data to FW - data_size in dwords */
5794static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5795                                int fw_sb_id,
5796                                u32 *sb_data_p,
5797                                u32 data_size)
5798{
5799        int index;
5800        for (index = 0; index < data_size; index++)
5801                REG_WR(bp, BAR_CSTRORM_INTMEM +
5802                        CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5803                        sizeof(u32)*index,
5804                        *(sb_data_p + index));
5805}
5806
5807static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5808{
5809        u32 *sb_data_p;
5810        u32 data_size = 0;
5811        struct hc_status_block_data_e2 sb_data_e2;
5812        struct hc_status_block_data_e1x sb_data_e1x;
5813
5814        /* disable the function first */
5815        if (!CHIP_IS_E1x(bp)) {
5816                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5817                sb_data_e2.common.state = SB_DISABLED;
5818                sb_data_e2.common.p_func.vf_valid = false;
5819                sb_data_p = (u32 *)&sb_data_e2;
5820                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5821        } else {
5822                memset(&sb_data_e1x, 0,
5823                       sizeof(struct hc_status_block_data_e1x));
5824                sb_data_e1x.common.state = SB_DISABLED;
5825                sb_data_e1x.common.p_func.vf_valid = false;
5826                sb_data_p = (u32 *)&sb_data_e1x;
5827                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5828        }
5829        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5830
5831        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5832                        CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5833                        CSTORM_STATUS_BLOCK_SIZE);
5834        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5835                        CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5836                        CSTORM_SYNC_BLOCK_SIZE);
5837}
5838
5839/* helper:  writes SP SB data to FW */
5840static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5841                struct hc_sp_status_block_data *sp_sb_data)
5842{
5843        int func = BP_FUNC(bp);
5844        int i;
5845        for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5846                REG_WR(bp, BAR_CSTRORM_INTMEM +
5847                        CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5848                        i*sizeof(u32),
5849                        *((u32 *)sp_sb_data + i));
5850}
5851
5852static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5853{
5854        int func = BP_FUNC(bp);
5855        struct hc_sp_status_block_data sp_sb_data;
5856        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5857
5858        sp_sb_data.state = SB_DISABLED;
5859        sp_sb_data.p_func.vf_valid = false;
5860
5861        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5862
5863        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5864                        CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5865                        CSTORM_SP_STATUS_BLOCK_SIZE);
5866        bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5867                        CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5868                        CSTORM_SP_SYNC_BLOCK_SIZE);
5869}
5870
5871static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5872                                           int igu_sb_id, int igu_seg_id)
5873{
5874        hc_sm->igu_sb_id = igu_sb_id;
5875        hc_sm->igu_seg_id = igu_seg_id;
5876        hc_sm->timer_value = 0xFF;
5877        hc_sm->time_to_expire = 0xFFFFFFFF;
5878}
5879
5880/* allocates state machine ids. */
5881static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5882{
5883        /* zero out state machine indices */
5884        /* rx indices */
5885        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5886
5887        /* tx indices */
5888        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5889        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5890        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5891        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5892
5893        /* map indices */
5894        /* rx indices */
5895        index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5896                SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5897
5898        /* tx indices */
5899        index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5900                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5901        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5902                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5903        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5904                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5905        index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5906                SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5907}
5908
5909void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5910                          u8 vf_valid, int fw_sb_id, int igu_sb_id)
5911{
5912        int igu_seg_id;
5913
5914        struct hc_status_block_data_e2 sb_data_e2;
5915        struct hc_status_block_data_e1x sb_data_e1x;
5916        struct hc_status_block_sm  *hc_sm_p;
5917        int data_size;
5918        u32 *sb_data_p;
5919
5920        if (CHIP_INT_MODE_IS_BC(bp))
5921                igu_seg_id = HC_SEG_ACCESS_NORM;
5922        else
5923                igu_seg_id = IGU_SEG_ACCESS_NORM;
5924
5925        bnx2x_zero_fp_sb(bp, fw_sb_id);
5926
5927        if (!CHIP_IS_E1x(bp)) {
5928                memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5929                sb_data_e2.common.state = SB_ENABLED;
5930                sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5931                sb_data_e2.common.p_func.vf_id = vfid;
5932                sb_data_e2.common.p_func.vf_valid = vf_valid;
5933                sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5934                sb_data_e2.common.same_igu_sb_1b = true;
5935                sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5936                sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5937                hc_sm_p = sb_data_e2.common.state_machine;
5938                sb_data_p = (u32 *)&sb_data_e2;
5939                data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5940                bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5941        } else {
5942                memset(&sb_data_e1x, 0,
5943                       sizeof(struct hc_status_block_data_e1x));
5944                sb_data_e1x.common.state = SB_ENABLED;
5945                sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5946                sb_data_e1x.common.p_func.vf_id = 0xff;
5947                sb_data_e1x.common.p_func.vf_valid = false;
5948                sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5949                sb_data_e1x.common.same_igu_sb_1b = true;
5950                sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5951                sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5952                hc_sm_p = sb_data_e1x.common.state_machine;
5953                sb_data_p = (u32 *)&sb_data_e1x;
5954                data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5955                bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5956        }
5957
5958        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5959                                       igu_sb_id, igu_seg_id);
5960        bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5961                                       igu_sb_id, igu_seg_id);
5962
5963        DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5964
5965        /* write indices to HW - PCI guarantees endianity of regpairs */
5966        bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5967}
5968
5969static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5970                                     u16 tx_usec, u16 rx_usec)
5971{
5972        bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5973                                    false, rx_usec);
5974        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5975                                       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5976                                       tx_usec);
5977        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5978                                       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5979                                       tx_usec);
5980        bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5981                                       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5982                                       tx_usec);
5983}
5984
5985static void bnx2x_init_def_sb(struct bnx2x *bp)
5986{
5987        struct host_sp_status_block *def_sb = bp->def_status_blk;
5988        dma_addr_t mapping = bp->def_status_blk_mapping;
5989        int igu_sp_sb_index;
5990        int igu_seg_id;
5991        int port = BP_PORT(bp);
5992        int func = BP_FUNC(bp);
5993        int reg_offset, reg_offset_en5;
5994        u64 section;
5995        int index;
5996        struct hc_sp_status_block_data sp_sb_data;
5997        memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5998
5999        if (CHIP_INT_MODE_IS_BC(bp)) {
6000                igu_sp_sb_index = DEF_SB_IGU_ID;
6001                igu_seg_id = HC_SEG_ACCESS_DEF;
6002        } else {
6003                igu_sp_sb_index = bp->igu_dsb_id;
6004                igu_seg_id = IGU_SEG_ACCESS_DEF;
6005        }
6006
6007        /* ATTN */
6008        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6009                                            atten_status_block);
6010        def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6011
6012        bp->attn_state = 0;
6013
6014        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6015                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6016        reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6017                                 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6018        for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6019                int sindex;
6020                /* take care of sig[0]..sig[4] */
6021                for (sindex = 0; sindex < 4; sindex++)
6022                        bp->attn_group[index].sig[sindex] =
6023                           REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6024
6025                if (!CHIP_IS_E1x(bp))
6026                        /*
6027                         * enable5 is separate from the rest of the registers,
6028                         * and therefore the address skip is 4
6029                         * and not 16 between the different groups
6030                         */
6031                        bp->attn_group[index].sig[4] = REG_RD(bp,
6032                                        reg_offset_en5 + 0x4*index);
6033                else
6034                        bp->attn_group[index].sig[4] = 0;
6035        }
6036
6037        if (bp->common.int_block == INT_BLOCK_HC) {
6038                reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6039                                     HC_REG_ATTN_MSG0_ADDR_L);
6040
6041                REG_WR(bp, reg_offset, U64_LO(section));
6042                REG_WR(bp, reg_offset + 4, U64_HI(section));
6043        } else if (!CHIP_IS_E1x(bp)) {
6044                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6045                REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6046        }
6047
6048        section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6049                                            sp_sb);
6050
6051        bnx2x_zero_sp_sb(bp);
6052
6053        /* PCI guarantees endianity of regpairs */
6054        sp_sb_data.state                = SB_ENABLED;
6055        sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6056        sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6057        sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6058        sp_sb_data.igu_seg_id           = igu_seg_id;
6059        sp_sb_data.p_func.pf_id         = func;
6060        sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6061        sp_sb_data.p_func.vf_id         = 0xff;
6062
6063        bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6064
6065        bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6066}
6067
6068void bnx2x_update_coalesce(struct bnx2x *bp)
6069{
6070        int i;
6071
6072        for_each_eth_queue(bp, i)
6073                bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6074                                         bp->tx_ticks, bp->rx_ticks);
6075}
6076
6077static void bnx2x_init_sp_ring(struct bnx2x *bp)
6078{
6079        spin_lock_init(&bp->spq_lock);
6080        atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6081
6082        bp->spq_prod_idx = 0;
6083        bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6084        bp->spq_prod_bd = bp->spq;
6085        bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6086}
6087
6088static void bnx2x_init_eq_ring(struct bnx2x *bp)
6089{
6090        int i;
6091        for (i = 1; i <= NUM_EQ_PAGES; i++) {
6092                union event_ring_elem *elem =
6093                        &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6094
6095                elem->next_page.addr.hi =
6096                        cpu_to_le32(U64_HI(bp->eq_mapping +
6097                                   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6098                elem->next_page.addr.lo =
6099                        cpu_to_le32(U64_LO(bp->eq_mapping +
6100                                   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6101        }
6102        bp->eq_cons = 0;
6103        bp->eq_prod = NUM_EQ_DESC;
6104        bp->eq_cons_sb = BNX2X_EQ_INDEX;
6105        /* we want a warning message before it gets wrought... */
6106        atomic_set(&bp->eq_spq_left,
6107                min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6108}
6109
6110/* called with netif_addr_lock_bh() */
6111static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6112                               unsigned long rx_mode_flags,
6113                               unsigned long rx_accept_flags,
6114                               unsigned long tx_accept_flags,
6115                               unsigned long ramrod_flags)
6116{
6117        struct bnx2x_rx_mode_ramrod_params ramrod_param;
6118        int rc;
6119
6120        memset(&ramrod_param, 0, sizeof(ramrod_param));
6121
6122        /* Prepare ramrod parameters */
6123        ramrod_param.cid = 0;
6124        ramrod_param.cl_id = cl_id;
6125        ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6126        ramrod_param.func_id = BP_FUNC(bp);
6127
6128        ramrod_param.pstate = &bp->sp_state;
6129        ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6130
6131        ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6132        ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6133
6134        set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6135
6136        ramrod_param.ramrod_flags = ramrod_flags;
6137        ramrod_param.rx_mode_flags = rx_mode_flags;
6138
6139        ramrod_param.rx_accept_flags = rx_accept_flags;
6140        ramrod_param.tx_accept_flags = tx_accept_flags;
6141
6142        rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6143        if (rc < 0) {
6144                BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6145                return rc;
6146        }
6147
6148        return 0;
6149}
6150
6151static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6152                                   unsigned long *rx_accept_flags,
6153                                   unsigned long *tx_accept_flags)
6154{
6155        /* Clear the flags first */
6156        *rx_accept_flags = 0;
6157        *tx_accept_flags = 0;
6158
6159        switch (rx_mode) {
6160        case BNX2X_RX_MODE_NONE:
6161                /*
6162                 * 'drop all' supersedes any accept flags that may have been
6163                 * passed to the function.
6164                 */
6165                break;
6166        case BNX2X_RX_MODE_NORMAL:
6167                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6168                __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6169                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6170
6171                /* internal switching mode */
6172                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6173                __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6174                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6175
6176                break;
6177        case BNX2X_RX_MODE_ALLMULTI:
6178                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6179                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6180                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6181
6182                /* internal switching mode */
6183                __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6184                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6185                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6186
6187                break;
6188        case BNX2X_RX_MODE_PROMISC:
6189                /* According to definition of SI mode, iface in promisc mode
6190                 * should receive matched and unmatched (in resolution of port)
6191                 * unicast packets.
6192                 */
6193                __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6194                __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6195                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6196                __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6197
6198                /* internal switching mode */
6199                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6200                __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6201
6202                if (IS_MF_SI(bp))
6203                        __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6204                else
6205                        __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6206
6207                break;
6208        default:
6209                BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6210                return -EINVAL;
6211        }
6212
6213        /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6214        if (rx_mode != BNX2X_RX_MODE_NONE) {
6215                __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6216                __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6217        }
6218
6219        return 0;
6220}
6221
6222/* called with netif_addr_lock_bh() */
6223static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6224{
6225        unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6226        unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6227        int rc;
6228
6229        if (!NO_FCOE(bp))
6230                /* Configure rx_mode of FCoE Queue */
6231                __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6232
6233        rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6234                                     &tx_accept_flags);
6235        if (rc)
6236                return rc;
6237
6238        __set_bit(RAMROD_RX, &ramrod_flags);
6239        __set_bit(RAMROD_TX, &ramrod_flags);
6240
6241        return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6242                                   rx_accept_flags, tx_accept_flags,
6243                                   ramrod_flags);
6244}
6245
6246static void bnx2x_init_internal_common(struct bnx2x *bp)
6247{
6248        int i;
6249
6250        /* Zero this manually as its initialization is
6251           currently missing in the initTool */
6252        for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6253                REG_WR(bp, BAR_USTRORM_INTMEM +
6254                       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6255        if (!CHIP_IS_E1x(bp)) {
6256                REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6257                        CHIP_INT_MODE_IS_BC(bp) ?
6258                        HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6259        }
6260}
6261
6262static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6263{
6264        switch (load_code) {
6265        case FW_MSG_CODE_DRV_LOAD_COMMON:
6266        case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6267                bnx2x_init_internal_common(bp);
6268                /* no break */
6269
6270        case FW_MSG_CODE_DRV_LOAD_PORT:
6271                /* nothing to do */
6272                /* no break */
6273
6274        case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6275                /* internal memory per function is
6276                   initialized inside bnx2x_pf_init */
6277                break;
6278
6279        default:
6280                BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6281                break;
6282        }
6283}
6284
6285static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6286{
6287        return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6288}
6289
6290static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6291{
6292        return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6293}
6294
6295static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6296{
6297        if (CHIP_IS_E1x(fp->bp))
6298                return BP_L_ID(fp->bp) + fp->index;
6299        else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6300                return bnx2x_fp_igu_sb_id(fp);
6301}
6302
6303static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6304{
6305        struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6306        u8 cos;
6307        unsigned long q_type = 0;
6308        u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6309        fp->rx_queue = fp_idx;
6310        fp->cid = fp_idx;
6311        fp->cl_id = bnx2x_fp_cl_id(fp);
6312        fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6313        fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6314        /* qZone id equals to FW (per path) client id */
6315        fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6316
6317        /* init shortcut */
6318        fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6319
6320        /* Setup SB indices */
6321        fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6322
6323        /* Configure Queue State object */
6324        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6325        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6326
6327        BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6328
6329        /* init tx data */
6330        for_each_cos_in_tx_queue(fp, cos) {
6331                bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6332                                  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6333                                  FP_COS_TO_TXQ(fp, cos, bp),
6334                                  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6335                cids[cos] = fp->txdata_ptr[cos]->cid;
6336        }
6337
6338        /* nothing more for vf to do here */
6339        if (IS_VF(bp))
6340                return;
6341
6342        bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6343                      fp->fw_sb_id, fp->igu_sb_id);
6344        bnx2x_update_fpsb_idx(fp);
6345        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6346                             fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6347                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6348
6349        /**
6350         * Configure classification DBs: Always enable Tx switching
6351         */
6352        bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6353
6354        DP(NETIF_MSG_IFUP,
6355           "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6356           fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6357           fp->igu_sb_id);
6358}
6359
6360static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6361{
6362        int i;
6363
6364        for (i = 1; i <= NUM_TX_RINGS; i++) {
6365                struct eth_tx_next_bd *tx_next_bd =
6366                        &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6367
6368                tx_next_bd->addr_hi =
6369                        cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6370                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6371                tx_next_bd->addr_lo =
6372                        cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6373                                    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6374        }
6375
6376        *txdata->tx_cons_sb = cpu_to_le16(0);
6377
6378        SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6379        txdata->tx_db.data.zero_fill1 = 0;
6380        txdata->tx_db.data.prod = 0;
6381
6382        txdata->tx_pkt_prod = 0;
6383        txdata->tx_pkt_cons = 0;
6384        txdata->tx_bd_prod = 0;
6385        txdata->tx_bd_cons = 0;
6386        txdata->tx_pkt = 0;
6387}
6388
6389static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6390{
6391        int i;
6392
6393        for_each_tx_queue_cnic(bp, i)
6394                bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6395}
6396
6397static void bnx2x_init_tx_rings(struct bnx2x *bp)
6398{
6399        int i;
6400        u8 cos;
6401
6402        for_each_eth_queue(bp, i)
6403                for_each_cos_in_tx_queue(&bp->fp[i], cos)
6404                        bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6405}
6406
6407static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6408{
6409        struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6410        unsigned long q_type = 0;
6411
6412        bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6413        bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6414                                                     BNX2X_FCOE_ETH_CL_ID_IDX);
6415        bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6416        bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6417        bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6418        bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6419        bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6420                          fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6421                          fp);
6422
6423        DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6424
6425        /* qZone id equals to FW (per path) client id */
6426        bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6427        /* init shortcut */
6428        bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6429                bnx2x_rx_ustorm_prods_offset(fp);
6430
6431        /* Configure Queue State object */
6432        __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6433        __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6434
6435        /* No multi-CoS for FCoE L2 client */
6436        BUG_ON(fp->max_cos != 1);
6437
6438        bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6439                             &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6440                             bnx2x_sp_mapping(bp, q_rdata), q_type);
6441
6442        DP(NETIF_MSG_IFUP,
6443           "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6444           fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6445           fp->igu_sb_id);
6446}
6447
6448void bnx2x_nic_init_cnic(struct bnx2x *bp)
6449{
6450        if (!NO_FCOE(bp))
6451                bnx2x_init_fcoe_fp(bp);
6452
6453        bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6454                      BNX2X_VF_ID_INVALID, false,
6455                      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6456
6457        /* ensure status block indices were read */
6458        rmb();
6459        bnx2x_init_rx_rings_cnic(bp);
6460        bnx2x_init_tx_rings_cnic(bp);
6461
6462        /* flush all */
6463        mb();
6464        mmiowb();
6465}
6466
6467void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6468{
6469        int i;
6470
6471        /* Setup NIC internals and enable interrupts */
6472        for_each_eth_queue(bp, i)
6473                bnx2x_init_eth_fp(bp, i);
6474
6475        /* ensure status block indices were read */
6476        rmb();
6477        bnx2x_init_rx_rings(bp);
6478        bnx2x_init_tx_rings(bp);
6479
6480        if (IS_PF(bp)) {
6481                /* Initialize MOD_ABS interrupts */
6482                bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6483                                       bp->common.shmem_base,
6484                                       bp->common.shmem2_base, BP_PORT(bp));
6485
6486                /* initialize the default status block and sp ring */
6487                bnx2x_init_def_sb(bp);
6488                bnx2x_update_dsb_idx(bp);
6489                bnx2x_init_sp_ring(bp);
6490        } else {
6491                bnx2x_memset_stats(bp);
6492        }
6493}
6494
6495void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6496{
6497        bnx2x_init_eq_ring(bp);
6498        bnx2x_init_internal(bp, load_code);
6499        bnx2x_pf_init(bp);
6500        bnx2x_stats_init(bp);
6501
6502        /* flush all before enabling interrupts */
6503        mb();
6504        mmiowb();
6505
6506        bnx2x_int_enable(bp);
6507
6508        /* Check for SPIO5 */
6509        bnx2x_attn_int_deasserted0(bp,
6510                REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6511                                   AEU_INPUTS_ATTN_BITS_SPIO5);
6512}
6513
6514/* gzip service functions */
6515static int bnx2x_gunzip_init(struct bnx2x *bp)
6516{
6517        bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6518                                            &bp->gunzip_mapping, GFP_KERNEL);
6519        if (bp->gunzip_buf  == NULL)
6520                goto gunzip_nomem1;
6521
6522        bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6523        if (bp->strm  == NULL)
6524                goto gunzip_nomem2;
6525
6526        bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6527        if (bp->strm->workspace == NULL)
6528                goto gunzip_nomem3;
6529
6530        return 0;
6531
6532gunzip_nomem3:
6533        kfree(bp->strm);
6534        bp->strm = NULL;
6535
6536gunzip_nomem2:
6537        dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6538                          bp->gunzip_mapping);
6539        bp->gunzip_buf = NULL;
6540
6541gunzip_nomem1:
6542        BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6543        return -ENOMEM;
6544}
6545
6546static void bnx2x_gunzip_end(struct bnx2x *bp)
6547{
6548        if (bp->strm) {
6549                vfree(bp->strm->workspace);
6550                kfree(bp->strm);
6551                bp->strm = NULL;
6552        }
6553
6554        if (bp->gunzip_buf) {
6555                dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6556                                  bp->gunzip_mapping);
6557                bp->gunzip_buf = NULL;
6558        }
6559}
6560
6561static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6562{
6563        int n, rc;
6564
6565        /* check gzip header */
6566        if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6567                BNX2X_ERR("Bad gzip header\n");
6568                return -EINVAL;
6569        }
6570
6571        n = 10;
6572
6573#define FNAME                           0x8
6574
6575        if (zbuf[3] & FNAME)
6576                while ((zbuf[n++] != 0) && (n < len));
6577
6578        bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6579        bp->strm->avail_in = len - n;
6580        bp->strm->next_out = bp->gunzip_buf;
6581        bp->strm->avail_out = FW_BUF_SIZE;
6582
6583        rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6584        if (rc != Z_OK)
6585                return rc;
6586
6587        rc = zlib_inflate(bp->strm, Z_FINISH);
6588        if ((rc != Z_OK) && (rc != Z_STREAM_END))
6589                netdev_err(bp->dev, "Firmware decompression error: %s\n",
6590                           bp->strm->msg);
6591
6592        bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6593        if (bp->gunzip_outlen & 0x3)
6594                netdev_err(bp->dev,
6595                           "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6596                                bp->gunzip_outlen);
6597        bp->gunzip_outlen >>= 2;
6598
6599        zlib_inflateEnd(bp->strm);
6600
6601        if (rc == Z_STREAM_END)
6602                return 0;
6603
6604        return rc;
6605}
6606
6607/* nic load/unload */
6608
6609/*
6610 * General service functions
6611 */
6612
6613/* send a NIG loopback debug packet */
6614static void bnx2x_lb_pckt(struct bnx2x *bp)
6615{
6616        u32 wb_write[3];
6617
6618        /* Ethernet source and destination addresses */
6619        wb_write[0] = 0x55555555;
6620        wb_write[1] = 0x55555555;
6621        wb_write[2] = 0x20;             /* SOP */
6622        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6623
6624        /* NON-IP protocol */
6625        wb_write[0] = 0x09000000;
6626        wb_write[1] = 0x55555555;
6627        wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6628        REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6629}
6630
6631/* some of the internal memories
6632 * are not directly readable from the driver
6633 * to test them we send debug packets
6634 */
6635static int bnx2x_int_mem_test(struct bnx2x *bp)
6636{
6637        int factor;
6638        int count, i;
6639        u32 val = 0;
6640
6641        if (CHIP_REV_IS_FPGA(bp))
6642                factor = 120;
6643        else if (CHIP_REV_IS_EMUL(bp))
6644                factor = 200;
6645        else
6646                factor = 1;
6647
6648        /* Disable inputs of parser neighbor blocks */
6649        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6650        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6651        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6652        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6653
6654        /*  Write 0 to parser credits for CFC search request */
6655        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6656
6657        /* send Ethernet packet */
6658        bnx2x_lb_pckt(bp);
6659
6660        /* TODO do i reset NIG statistic? */
6661        /* Wait until NIG register shows 1 packet of size 0x10 */
6662        count = 1000 * factor;
6663        while (count) {
6664
6665                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6666                val = *bnx2x_sp(bp, wb_data[0]);
6667                if (val == 0x10)
6668                        break;
6669
6670                usleep_range(10000, 20000);
6671                count--;
6672        }
6673        if (val != 0x10) {
6674                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6675                return -1;
6676        }
6677
6678        /* Wait until PRS register shows 1 packet */
6679        count = 1000 * factor;
6680        while (count) {
6681                val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6682                if (val == 1)
6683                        break;
6684
6685                usleep_range(10000, 20000);
6686                count--;
6687        }
6688        if (val != 0x1) {
6689                BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6690                return -2;
6691        }
6692
6693        /* Reset and init BRB, PRS */
6694        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6695        msleep(50);
6696        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6697        msleep(50);
6698        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6699        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6700
6701        DP(NETIF_MSG_HW, "part2\n");
6702
6703        /* Disable inputs of parser neighbor blocks */
6704        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6705        REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6706        REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6707        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6708
6709        /* Write 0 to parser credits for CFC search request */
6710        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6711
6712        /* send 10 Ethernet packets */
6713        for (i = 0; i < 10; i++)
6714                bnx2x_lb_pckt(bp);
6715
6716        /* Wait until NIG register shows 10 + 1
6717           packets of size 11*0x10 = 0xb0 */
6718        count = 1000 * factor;
6719        while (count) {
6720
6721                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6722                val = *bnx2x_sp(bp, wb_data[0]);
6723                if (val == 0xb0)
6724                        break;
6725
6726                usleep_range(10000, 20000);
6727                count--;
6728        }
6729        if (val != 0xb0) {
6730                BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6731                return -3;
6732        }
6733
6734        /* Wait until PRS register shows 2 packets */
6735        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6736        if (val != 2)
6737                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6738
6739        /* Write 1 to parser credits for CFC search request */
6740        REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6741
6742        /* Wait until PRS register shows 3 packets */
6743        msleep(10 * factor);
6744        /* Wait until NIG register shows 1 packet of size 0x10 */
6745        val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6746        if (val != 3)
6747                BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6748
6749        /* clear NIG EOP FIFO */
6750        for (i = 0; i < 11; i++)
6751                REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6752        val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6753        if (val != 1) {
6754                BNX2X_ERR("clear of NIG failed\n");
6755                return -4;
6756        }
6757
6758        /* Reset and init BRB, PRS, NIG */
6759        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6760        msleep(50);
6761        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6762        msleep(50);
6763        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6764        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6765        if (!CNIC_SUPPORT(bp))
6766                /* set NIC mode */
6767                REG_WR(bp, PRS_REG_NIC_MODE, 1);
6768
6769        /* Enable inputs of parser neighbor blocks */
6770        REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6771        REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6772        REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6773        REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6774
6775        DP(NETIF_MSG_HW, "done\n");
6776
6777        return 0; /* OK */
6778}
6779
6780static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6781{
6782        u32 val;
6783
6784        REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6785        if (!CHIP_IS_E1x(bp))
6786                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6787        else
6788                REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6789        REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6790        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6791        /*
6792         * mask read length error interrupts in brb for parser
6793         * (parsing unit and 'checksum and crc' unit)
6794         * these errors are legal (PU reads fixed length and CAC can cause
6795         * read length error on truncated packets)
6796         */
6797        REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6798        REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6799        REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6800        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6801        REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6802        REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6803/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6804/*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6805        REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6806        REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6807        REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6808/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6809/*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6810        REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6811        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6812        REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6813        REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6814/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6815/*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6816
6817        val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6818                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6819                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6820        if (!CHIP_IS_E1x(bp))
6821                val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6822                        PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6823        REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6824
6825        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6826        REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6827        REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6828/*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6829
6830        if (!CHIP_IS_E1x(bp))
6831                /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6832                REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6833
6834        REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6835        REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6836/*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6837        REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6838}
6839
6840static void bnx2x_reset_common(struct bnx2x *bp)
6841{
6842        u32 val = 0x1400;
6843
6844        /* reset_common */
6845        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6846               0xd3ffff7f);
6847
6848        if (CHIP_IS_E3(bp)) {
6849                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6850                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6851        }
6852
6853        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6854}
6855
6856static void bnx2x_setup_dmae(struct bnx2x *bp)
6857{
6858        bp->dmae_ready = 0;
6859        spin_lock_init(&bp->dmae_lock);
6860}
6861
6862static void bnx2x_init_pxp(struct bnx2x *bp)
6863{
6864        u16 devctl;
6865        int r_order, w_order;
6866
6867        pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6868        DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6869        w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6870        if (bp->mrrs == -1)
6871                r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6872        else {
6873                DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6874                r_order = bp->mrrs;
6875        }
6876
6877        bnx2x_init_pxp_arb(bp, r_order, w_order);
6878}
6879
6880static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6881{
6882        int is_required;
6883        u32 val;
6884        int port;
6885
6886        if (BP_NOMCP(bp))
6887                return;
6888
6889        is_required = 0;
6890        val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6891              SHARED_HW_CFG_FAN_FAILURE_MASK;
6892
6893        if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6894                is_required = 1;
6895
6896        /*
6897         * The fan failure mechanism is usually related to the PHY type since
6898         * the power consumption of the board is affected by the PHY. Currently,
6899         * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6900         */
6901        else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6902                for (port = PORT_0; port < PORT_MAX; port++) {
6903                        is_required |=
6904                                bnx2x_fan_failure_det_req(
6905                                        bp,
6906                                        bp->common.shmem_base,
6907                                        bp->common.shmem2_base,
6908                                        port);
6909                }
6910
6911        DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6912
6913        if (is_required == 0)
6914                return;
6915
6916        /* Fan failure is indicated by SPIO 5 */
6917        bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6918
6919        /* set to active low mode */
6920        val = REG_RD(bp, MISC_REG_SPIO_INT);
6921        val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6922        REG_WR(bp, MISC_REG_SPIO_INT, val);
6923
6924        /* enable interrupt to signal the IGU */
6925        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6926        val |= MISC_SPIO_SPIO5;
6927        REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6928}
6929
6930void bnx2x_pf_disable(struct bnx2x *bp)
6931{
6932        u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6933        val &= ~IGU_PF_CONF_FUNC_EN;
6934
6935        REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6936        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6937        REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6938}
6939
6940static void bnx2x__common_init_phy(struct bnx2x *bp)
6941{
6942        u32 shmem_base[2], shmem2_base[2];
6943        /* Avoid common init in case MFW supports LFA */
6944        if (SHMEM2_RD(bp, size) >
6945            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6946                return;
6947        shmem_base[0] =  bp->common.shmem_base;
6948        shmem2_base[0] = bp->common.shmem2_base;
6949        if (!CHIP_IS_E1x(bp)) {
6950                shmem_base[1] =
6951                        SHMEM2_RD(bp, other_shmem_base_addr);
6952                shmem2_base[1] =
6953                        SHMEM2_RD(bp, other_shmem2_base_addr);
6954        }
6955        bnx2x_acquire_phy_lock(bp);
6956        bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6957                              bp->common.chip_id);
6958        bnx2x_release_phy_lock(bp);
6959}
6960
6961static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6962{
6963        REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6964        REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6965        REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6966        REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6967        REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6968
6969        /* make sure this value is 0 */
6970        REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6971
6972        REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6973        REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6974        REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6975        REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6976}
6977
6978static void bnx2x_set_endianity(struct bnx2x *bp)
6979{
6980#ifdef __BIG_ENDIAN
6981        bnx2x_config_endianity(bp, 1);
6982#else
6983        bnx2x_config_endianity(bp, 0);
6984#endif
6985}
6986
6987static void bnx2x_reset_endianity(struct bnx2x *bp)
6988{
6989        bnx2x_config_endianity(bp, 0);
6990}
6991
6992/**
6993 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6994 *
6995 * @bp:         driver handle
6996 */
6997static int bnx2x_init_hw_common(struct bnx2x *bp)
6998{
6999        u32 val;
7000
7001        DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7002
7003        /*
7004         * take the RESET lock to protect undi_unload flow from accessing
7005         * registers while we're resetting the chip
7006         */
7007        bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7008
7009        bnx2x_reset_common(bp);
7010        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7011
7012        val = 0xfffc;
7013        if (CHIP_IS_E3(bp)) {
7014                val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7015                val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7016        }
7017        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7018
7019        bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7020
7021        bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7022
7023        if (!CHIP_IS_E1x(bp)) {
7024                u8 abs_func_id;
7025
7026                /**
7027                 * 4-port mode or 2-port mode we need to turn of master-enable
7028                 * for everyone, after that, turn it back on for self.
7029                 * so, we disregard multi-function or not, and always disable
7030                 * for all functions on the given path, this means 0,2,4,6 for
7031                 * path 0 and 1,3,5,7 for path 1
7032                 */
7033                for (abs_func_id = BP_PATH(bp);
7034                     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7035                        if (abs_func_id == BP_ABS_FUNC(bp)) {
7036                                REG_WR(bp,
7037                                    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7038                                    1);
7039                                continue;
7040                        }
7041
7042                        bnx2x_pretend_func(bp, abs_func_id);
7043                        /* clear pf enable */
7044                        bnx2x_pf_disable(bp);
7045                        bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7046                }
7047        }
7048
7049        bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7050        if (CHIP_IS_E1(bp)) {
7051                /* enable HW interrupt from PXP on USDM overflow
7052                   bit 16 on INT_MASK_0 */
7053                REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7054        }
7055
7056        bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7057        bnx2x_init_pxp(bp);
7058        bnx2x_set_endianity(bp);
7059        bnx2x_ilt_init_page_size(bp, INITOP_SET);
7060
7061        if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7062                REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7063
7064        /* let the HW do it's magic ... */
7065        msleep(100);
7066        /* finish PXP init */
7067        val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7068        if (val != 1) {
7069                BNX2X_ERR("PXP2 CFG failed\n");
7070                return -EBUSY;
7071        }
7072        val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7073        if (val != 1) {
7074                BNX2X_ERR("PXP2 RD_INIT failed\n");
7075                return -EBUSY;
7076        }
7077
7078        /* Timers bug workaround E2 only. We need to set the entire ILT to
7079         * have entries with value "0" and valid bit on.
7080         * This needs to be done by the first PF that is loaded in a path
7081         * (i.e. common phase)
7082         */
7083        if (!CHIP_IS_E1x(bp)) {
7084/* In E2 there is a bug in the timers block that can cause function 6 / 7
7085 * (i.e. vnic3) to start even if it is marked as "scan-off".
7086 * This occurs when a different function (func2,3) is being marked
7087 * as "scan-off". Real-life scenario for example: if a driver is being
7088 * load-unloaded while func6,7 are down. This will cause the timer to access
7089 * the ilt, translate to a logical address and send a request to read/write.
7090 * Since the ilt for the function that is down is not valid, this will cause
7091 * a translation error which is unrecoverable.
7092 * The Workaround is intended to make sure that when this happens nothing fatal
7093 * will occur. The workaround:
7094 *      1.  First PF driver which loads on a path will:
7095 *              a.  After taking the chip out of reset, by using pretend,
7096 *                  it will write "0" to the following registers of
7097 *                  the other vnics.
7098 *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7099 *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7100 *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7101 *                  And for itself it will write '1' to
7102 *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7103 *                  dmae-operations (writing to pram for example.)
7104 *                  note: can be done for only function 6,7 but cleaner this
7105 *                        way.
7106 *              b.  Write zero+valid to the entire ILT.
7107 *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7108 *                  VNIC3 (of that port). The range allocated will be the
7109 *                  entire ILT. This is needed to prevent  ILT range error.
7110 *      2.  Any PF driver load flow:
7111 *              a.  ILT update with the physical addresses of the allocated
7112 *                  logical pages.
7113 *              b.  Wait 20msec. - note that this timeout is needed to make
7114 *                  sure there are no requests in one of the PXP internal
7115 *                  queues with "old" ILT addresses.
7116 *              c.  PF enable in the PGLC.
7117 *              d.  Clear the was_error of the PF in the PGLC. (could have
7118 *                  occurred while driver was down)
7119 *              e.  PF enable in the CFC (WEAK + STRONG)
7120 *              f.  Timers scan enable
7121 *      3.  PF driver unload flow:
7122 *              a.  Clear the Timers scan_en.
7123 *              b.  Polling for scan_on=0 for that PF.
7124 *              c.  Clear the PF enable bit in the PXP.
7125 *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7126 *              e.  Write zero+valid to all ILT entries (The valid bit must
7127 *                  stay set)
7128 *              f.  If this is VNIC 3 of a port then also init
7129 *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7130 *                  to the last entry in the ILT.
7131 *
7132 *      Notes:
7133 *      Currently the PF error in the PGLC is non recoverable.
7134 *      In the future the there will be a recovery routine for this error.
7135 *      Currently attention is masked.
7136 *      Having an MCP lock on the load/unload process does not guarantee that
7137 *      there is no Timer disable during Func6/7 enable. This is because the
7138 *      Timers scan is currently being cleared by the MCP on FLR.
7139 *      Step 2.d can be done only for PF6/7 and the driver can also check if
7140 *      there is error before clearing it. But the flow above is simpler and
7141 *      more general.
7142 *      All ILT entries are written by zero+valid and not just PF6/7
7143 *      ILT entries since in the future the ILT entries allocation for
7144 *      PF-s might be dynamic.
7145 */
7146                struct ilt_client_info ilt_cli;
7147                struct bnx2x_ilt ilt;
7148                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7149                memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7150
7151                /* initialize dummy TM client */
7152                ilt_cli.start = 0;
7153                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7154                ilt_cli.client_num = ILT_CLIENT_TM;
7155
7156                /* Step 1: set zeroes to all ilt page entries with valid bit on
7157                 * Step 2: set the timers first/last ilt entry to point
7158                 * to the entire range to prevent ILT range error for 3rd/4th
7159                 * vnic (this code assumes existence of the vnic)
7160                 *
7161                 * both steps performed by call to bnx2x_ilt_client_init_op()
7162                 * with dummy TM client
7163                 *
7164                 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7165                 * and his brother are split registers
7166                 */
7167                bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7168                bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7169                bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7170
7171                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7172                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7173                REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7174        }
7175
7176        REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7177        REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7178
7179        if (!CHIP_IS_E1x(bp)) {
7180                int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7181                                (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7182                bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7183
7184                bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7185
7186                /* let the HW do it's magic ... */
7187                do {
7188                        msleep(200);
7189                        val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7190                } while (factor-- && (val != 1));
7191
7192                if (val != 1) {
7193                        BNX2X_ERR("ATC_INIT failed\n");
7194                        return -EBUSY;
7195                }
7196        }
7197
7198        bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7199
7200        bnx2x_iov_init_dmae(bp);
7201
7202        /* clean the DMAE memory */
7203        bp->dmae_ready = 1;
7204        bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7205
7206        bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7207
7208        bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7209
7210        bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7211
7212        bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7213
7214        bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7215        bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7216        bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7217        bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7218
7219        bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7220
7221        /* QM queues pointers table */
7222        bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7223
7224        /* soft reset pulse */
7225        REG_WR(bp, QM_REG_SOFT_RESET, 1);
7226        REG_WR(bp, QM_REG_SOFT_RESET, 0);
7227
7228        if (CNIC_SUPPORT(bp))
7229                bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7230
7231        bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7232
7233        if (!CHIP_REV_IS_SLOW(bp))
7234                /* enable hw interrupt from doorbell Q */
7235                REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7236
7237        bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7238
7239        bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7240        REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7241
7242        if (!CHIP_IS_E1(bp))
7243                REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7244
7245        if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7246                if (IS_MF_AFEX(bp)) {
7247                        /* configure that VNTag and VLAN headers must be
7248                         * received in afex mode
7249                         */
7250                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7251                        REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7252                        REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7253                        REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7254                        REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7255                } else {
7256                        /* Bit-map indicating which L2 hdrs may appear
7257                         * after the basic Ethernet header
7258                         */
7259                        REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7260                               bp->path_has_ovlan ? 7 : 6);
7261                }
7262        }
7263
7264        bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7265        bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7266        bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7267        bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7268
7269        if (!CHIP_IS_E1x(bp)) {
7270                /* reset VFC memories */
7271                REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7272                           VFC_MEMORIES_RST_REG_CAM_RST |
7273                           VFC_MEMORIES_RST_REG_RAM_RST);
7274                REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7275                           VFC_MEMORIES_RST_REG_CAM_RST |
7276                           VFC_MEMORIES_RST_REG_RAM_RST);
7277
7278                msleep(20);
7279        }
7280
7281        bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7282        bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7283        bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7284        bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7285
7286        /* sync semi rtc */
7287        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7288               0x80000000);
7289        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7290               0x80000000);
7291
7292        bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7293        bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7294        bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7295
7296        if (!CHIP_IS_E1x(bp)) {
7297                if (IS_MF_AFEX(bp)) {
7298                        /* configure that VNTag and VLAN headers must be
7299                         * sent in afex mode
7300                         */
7301                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7302                        REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7303                        REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7304                        REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7305                        REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7306                } else {
7307                        REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7308                               bp->path_has_ovlan ? 7 : 6);
7309                }
7310        }
7311
7312        REG_WR(bp, SRC_REG_SOFT_RST, 1);
7313
7314        bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7315
7316        if (CNIC_SUPPORT(bp)) {
7317                REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7318                REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7319                REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7320                REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7321                REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7322                REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7323                REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7324                REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7325                REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7326                REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7327        }
7328        REG_WR(bp, SRC_REG_SOFT_RST, 0);
7329
7330        if (sizeof(union cdu_context) != 1024)
7331                /* we currently assume that a context is 1024 bytes */
7332                dev_alert(&bp->pdev->dev,
7333                          "please adjust the size of cdu_context(%ld)\n",
7334                          (long)sizeof(union cdu_context));
7335
7336        bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7337        val = (4 << 24) + (0 << 12) + 1024;
7338        REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7339
7340        bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7341        REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7342        /* enable context validation interrupt from CFC */
7343        REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7344
7345        /* set the thresholds to prevent CFC/CDU race */
7346        REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7347
7348        bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7349
7350        if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7351                REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7352
7353        bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7354        bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7355
7356        /* Reset PCIE errors for debug */
7357        REG_WR(bp, 0x2814, 0xffffffff);
7358        REG_WR(bp, 0x3820, 0xffffffff);
7359
7360        if (!CHIP_IS_E1x(bp)) {
7361                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7362                           (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7363                                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7364                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7365                           (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7366                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7367                                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7368                REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7369                           (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7370                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7371                                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7372        }
7373
7374        bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7375        if (!CHIP_IS_E1(bp)) {
7376                /* in E3 this done in per-port section */
7377                if (!CHIP_IS_E3(bp))
7378                        REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7379        }
7380        if (CHIP_IS_E1H(bp))
7381                /* not applicable for E2 (and above ...) */
7382                REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7383
7384        if (CHIP_REV_IS_SLOW(bp))
7385                msleep(200);
7386
7387        /* finish CFC init */
7388        val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7389        if (val != 1) {
7390                BNX2X_ERR("CFC LL_INIT failed\n");
7391                return -EBUSY;
7392        }
7393        val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7394        if (val != 1) {
7395                BNX2X_ERR("CFC AC_INIT failed\n");
7396                return -EBUSY;
7397        }
7398        val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7399        if (val != 1) {
7400                BNX2X_ERR("CFC CAM_INIT failed\n");
7401                return -EBUSY;
7402        }
7403        REG_WR(bp, CFC_REG_DEBUG0, 0);
7404
7405        if (CHIP_IS_E1(bp)) {
7406                /* read NIG statistic
7407                   to see if this is our first up since powerup */
7408                bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7409                val = *bnx2x_sp(bp, wb_data[0]);
7410
7411                /* do internal memory self test */
7412                if ((val == 0) && bnx2x_int_mem_test(bp)) {
7413                        BNX2X_ERR("internal mem self test failed\n");
7414                        return -EBUSY;
7415                }
7416        }
7417
7418        bnx2x_setup_fan_failure_detection(bp);
7419
7420        /* clear PXP2 attentions */
7421        REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7422
7423        bnx2x_enable_blocks_attention(bp);
7424        bnx2x_enable_blocks_parity(bp);
7425
7426        if (!BP_NOMCP(bp)) {
7427                if (CHIP_IS_E1x(bp))
7428                        bnx2x__common_init_phy(bp);
7429        } else
7430                BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7431
7432        return 0;
7433}
7434
7435/**
7436 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7437 *
7438 * @bp:         driver handle
7439 */
7440static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7441{
7442        int rc = bnx2x_init_hw_common(bp);
7443
7444        if (rc)
7445                return rc;
7446
7447        /* In E2 2-PORT mode, same ext phy is used for the two paths */
7448        if (!BP_NOMCP(bp))
7449                bnx2x__common_init_phy(bp);
7450
7451        return 0;
7452}
7453
7454static int bnx2x_init_hw_port(struct bnx2x *bp)
7455{
7456        int port = BP_PORT(bp);
7457        int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7458        u32 low, high;
7459        u32 val, reg;
7460
7461        DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7462
7463        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7464
7465        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7466        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7467        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7468
7469        /* Timers bug workaround: disables the pf_master bit in pglue at
7470         * common phase, we need to enable it here before any dmae access are
7471         * attempted. Therefore we manually added the enable-master to the
7472         * port phase (it also happens in the function phase)
7473         */
7474        if (!CHIP_IS_E1x(bp))
7475                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7476
7477        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7478        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7479        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7480        bnx2x_init_block(bp, BLOCK_QM, init_phase);
7481
7482        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7483        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7484        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7485        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7486
7487        /* QM cid (connection) count */
7488        bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7489
7490        if (CNIC_SUPPORT(bp)) {
7491                bnx2x_init_block(bp, BLOCK_TM, init_phase);
7492                REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7493                REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7494        }
7495
7496        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7497
7498        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7499
7500        if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7501
7502                if (IS_MF(bp))
7503                        low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7504                else if (bp->dev->mtu > 4096) {
7505                        if (bp->flags & ONE_PORT_FLAG)
7506                                low = 160;
7507                        else {
7508                                val = bp->dev->mtu;
7509                                /* (24*1024 + val*4)/256 */
7510                                low = 96 + (val/64) +
7511                                                ((val % 64) ? 1 : 0);
7512                        }
7513                } else
7514                        low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7515                high = low + 56;        /* 14*1024/256 */
7516                REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7517                REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7518        }
7519
7520        if (CHIP_MODE_IS_4_PORT(bp))
7521                REG_WR(bp, (BP_PORT(bp) ?
7522                            BRB1_REG_MAC_GUARANTIED_1 :
7523                            BRB1_REG_MAC_GUARANTIED_0), 40);
7524
7525        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7526        if (CHIP_IS_E3B0(bp)) {
7527                if (IS_MF_AFEX(bp)) {
7528                        /* configure headers for AFEX mode */
7529                        REG_WR(bp, BP_PORT(bp) ?
7530                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7531                               PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7532                        REG_WR(bp, BP_PORT(bp) ?
7533                               PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7534                               PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7535                        REG_WR(bp, BP_PORT(bp) ?
7536                               PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7537                               PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7538                } else {
7539                        /* Ovlan exists only if we are in multi-function +
7540                         * switch-dependent mode, in switch-independent there
7541                         * is no ovlan headers
7542                         */
7543                        REG_WR(bp, BP_PORT(bp) ?
7544                               PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7545                               PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7546                               (bp->path_has_ovlan ? 7 : 6));
7547                }
7548        }
7549
7550        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7551        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7552        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7553        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7554
7555        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7556        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7557        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7558        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7559
7560        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7561        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7562
7563        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7564
7565        if (CHIP_IS_E1x(bp)) {
7566                /* configure PBF to work without PAUSE mtu 9000 */
7567                REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7568
7569                /* update threshold */
7570                REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7571                /* update init credit */
7572                REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7573
7574                /* probe changes */
7575                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7576                udelay(50);
7577                REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7578        }
7579
7580        if (CNIC_SUPPORT(bp))
7581                bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7582
7583        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7584        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7585
7586        if (CHIP_IS_E1(bp)) {
7587                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7588                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7589        }
7590        bnx2x_init_block(bp, BLOCK_HC, init_phase);
7591
7592        bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7593
7594        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7595        /* init aeu_mask_attn_func_0/1:
7596         *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7597         *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7598         *             bits 4-7 are used for "per vn group attention" */
7599        val = IS_MF(bp) ? 0xF7 : 0x7;
7600        /* Enable DCBX attention for all but E1 */
7601        val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7602        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7603
7604        /* SCPAD_PARITY should NOT trigger close the gates */
7605        reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7606        REG_WR(bp, reg,
7607               REG_RD(bp, reg) &
7608               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7609
7610        reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7611        REG_WR(bp, reg,
7612               REG_RD(bp, reg) &
7613               ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7614
7615        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7616
7617        if (!CHIP_IS_E1x(bp)) {
7618                /* Bit-map indicating which L2 hdrs may appear after the
7619                 * basic Ethernet header
7620                 */
7621                if (IS_MF_AFEX(bp))
7622                        REG_WR(bp, BP_PORT(bp) ?
7623                               NIG_REG_P1_HDRS_AFTER_BASIC :
7624                               NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7625                else
7626                        REG_WR(bp, BP_PORT(bp) ?
7627                               NIG_REG_P1_HDRS_AFTER_BASIC :
7628                               NIG_REG_P0_HDRS_AFTER_BASIC,
7629                               IS_MF_SD(bp) ? 7 : 6);
7630
7631                if (CHIP_IS_E3(bp))
7632                        REG_WR(bp, BP_PORT(bp) ?
7633                                   NIG_REG_LLH1_MF_MODE :
7634                                   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7635        }
7636        if (!CHIP_IS_E3(bp))
7637                REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7638
7639        if (!CHIP_IS_E1(bp)) {
7640                /* 0x2 disable mf_ov, 0x1 enable */
7641                REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7642                       (IS_MF_SD(bp) ? 0x1 : 0x2));
7643
7644                if (!CHIP_IS_E1x(bp)) {
7645                        val = 0;
7646                        switch (bp->mf_mode) {
7647                        case MULTI_FUNCTION_SD:
7648                                val = 1;
7649                                break;
7650                        case MULTI_FUNCTION_SI:
7651                        case MULTI_FUNCTION_AFEX:
7652                                val = 2;
7653                                break;
7654                        }
7655
7656                        REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7657                                                  NIG_REG_LLH0_CLS_TYPE), val);
7658                }
7659                {
7660                        REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7661                        REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7662                        REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7663                }
7664        }
7665
7666        /* If SPIO5 is set to generate interrupts, enable it for this port */
7667        val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7668        if (val & MISC_SPIO_SPIO5) {
7669                u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7670                                       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7671                val = REG_RD(bp, reg_addr);
7672                val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7673                REG_WR(bp, reg_addr, val);
7674        }
7675
7676        return 0;
7677}
7678
7679static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7680{
7681        int reg;
7682        u32 wb_write[2];
7683
7684        if (CHIP_IS_E1(bp))
7685                reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7686        else
7687                reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7688
7689        wb_write[0] = ONCHIP_ADDR1(addr);
7690        wb_write[1] = ONCHIP_ADDR2(addr);
7691        REG_WR_DMAE(bp, reg, wb_write, 2);
7692}
7693
7694void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7695{
7696        u32 data, ctl, cnt = 100;
7697        u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7698        u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7699        u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7700        u32 sb_bit =  1 << (idu_sb_id%32);
7701        u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7702        u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7703
7704        /* Not supported in BC mode */
7705        if (CHIP_INT_MODE_IS_BC(bp))
7706                return;
7707
7708        data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7709                        << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7710                IGU_REGULAR_CLEANUP_SET                         |
7711                IGU_REGULAR_BCLEANUP;
7712
7713        ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7714              func_encode << IGU_CTRL_REG_FID_SHIFT             |
7715              IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7716
7717        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7718                         data, igu_addr_data);
7719        REG_WR(bp, igu_addr_data, data);
7720        mmiowb();
7721        barrier();
7722        DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7723                          ctl, igu_addr_ctl);
7724        REG_WR(bp, igu_addr_ctl, ctl);
7725        mmiowb();
7726        barrier();
7727
7728        /* wait for clean up to finish */
7729        while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7730                msleep(20);
7731
7732        if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7733                DP(NETIF_MSG_HW,
7734                   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7735                          idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7736        }
7737}
7738
7739static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7740{
7741        bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7742}
7743
7744static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7745{
7746        u32 i, base = FUNC_ILT_BASE(func);
7747        for (i = base; i < base + ILT_PER_FUNC; i++)
7748                bnx2x_ilt_wr(bp, i, 0);
7749}
7750
7751static void bnx2x_init_searcher(struct bnx2x *bp)
7752{
7753        int port = BP_PORT(bp);
7754        bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7755        /* T1 hash bits value determines the T1 number of entries */
7756        REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7757}
7758
7759static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7760{
7761        int rc;
7762        struct bnx2x_func_state_params func_params = {NULL};
7763        struct bnx2x_func_switch_update_params *switch_update_params =
7764                &func_params.params.switch_update;
7765
7766        /* Prepare parameters for function state transitions */
7767        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7768        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7769
7770        func_params.f_obj = &bp->func_obj;
7771        func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7772
7773        /* Function parameters */
7774        __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7775                  &switch_update_params->changes);
7776        if (suspend)
7777                __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7778                          &switch_update_params->changes);
7779
7780        rc = bnx2x_func_state_change(bp, &func_params);
7781
7782        return rc;
7783}
7784
7785static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7786{
7787        int rc, i, port = BP_PORT(bp);
7788        int vlan_en = 0, mac_en[NUM_MACS];
7789
7790        /* Close input from network */
7791        if (bp->mf_mode == SINGLE_FUNCTION) {
7792                bnx2x_set_rx_filter(&bp->link_params, 0);
7793        } else {
7794                vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7795                                   NIG_REG_LLH0_FUNC_EN);
7796                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7797                          NIG_REG_LLH0_FUNC_EN, 0);
7798                for (i = 0; i < NUM_MACS; i++) {
7799                        mac_en[i] = REG_RD(bp, port ?
7800                                             (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7801                                              4 * i) :
7802                                             (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7803                                              4 * i));
7804                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7805                                              4 * i) :
7806                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7807                }
7808        }
7809
7810        /* Close BMC to host */
7811        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7812               NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7813
7814        /* Suspend Tx switching to the PF. Completion of this ramrod
7815         * further guarantees that all the packets of that PF / child
7816         * VFs in BRB were processed by the Parser, so it is safe to
7817         * change the NIC_MODE register.
7818         */
7819        rc = bnx2x_func_switch_update(bp, 1);
7820        if (rc) {
7821                BNX2X_ERR("Can't suspend tx-switching!\n");
7822                return rc;
7823        }
7824
7825        /* Change NIC_MODE register */
7826        REG_WR(bp, PRS_REG_NIC_MODE, 0);
7827
7828        /* Open input from network */
7829        if (bp->mf_mode == SINGLE_FUNCTION) {
7830                bnx2x_set_rx_filter(&bp->link_params, 1);
7831        } else {
7832                REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7833                          NIG_REG_LLH0_FUNC_EN, vlan_en);
7834                for (i = 0; i < NUM_MACS; i++) {
7835                        REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7836                                              4 * i) :
7837                                  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7838                                  mac_en[i]);
7839                }
7840        }
7841
7842        /* Enable BMC to host */
7843        REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7844               NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7845
7846        /* Resume Tx switching to the PF */
7847        rc = bnx2x_func_switch_update(bp, 0);
7848        if (rc) {
7849                BNX2X_ERR("Can't resume tx-switching!\n");
7850                return rc;
7851        }
7852
7853        DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7854        return 0;
7855}
7856
7857int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7858{
7859        int rc;
7860
7861        bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7862
7863        if (CONFIGURE_NIC_MODE(bp)) {
7864                /* Configure searcher as part of function hw init */
7865                bnx2x_init_searcher(bp);
7866
7867                /* Reset NIC mode */
7868                rc = bnx2x_reset_nic_mode(bp);
7869                if (rc)
7870                        BNX2X_ERR("Can't change NIC mode!\n");
7871                return rc;
7872        }
7873
7874        return 0;
7875}
7876
7877/* previous driver DMAE transaction may have occurred when pre-boot stage ended
7878 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7879 * the addresses of the transaction, resulting in was-error bit set in the pci
7880 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7881 * to clear the interrupt which detected this from the pglueb and the was done
7882 * bit
7883 */
7884static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7885{
7886        if (!CHIP_IS_E1x(bp))
7887                REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7888                       1 << BP_ABS_FUNC(bp));
7889}
7890
7891static int bnx2x_init_hw_func(struct bnx2x *bp)
7892{
7893        int port = BP_PORT(bp);
7894        int func = BP_FUNC(bp);
7895        int init_phase = PHASE_PF0 + func;
7896        struct bnx2x_ilt *ilt = BP_ILT(bp);
7897        u16 cdu_ilt_start;
7898        u32 addr, val;
7899        u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7900        int i, main_mem_width, rc;
7901
7902        DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7903
7904        /* FLR cleanup - hmmm */
7905        if (!CHIP_IS_E1x(bp)) {
7906                rc = bnx2x_pf_flr_clnup(bp);
7907                if (rc) {
7908                        bnx2x_fw_dump(bp);
7909                        return rc;
7910                }
7911        }
7912
7913        /* set MSI reconfigure capability */
7914        if (bp->common.int_block == INT_BLOCK_HC) {
7915                addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7916                val = REG_RD(bp, addr);
7917                val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7918                REG_WR(bp, addr, val);
7919        }
7920
7921        bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7922        bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7923
7924        ilt = BP_ILT(bp);
7925        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7926
7927        if (IS_SRIOV(bp))
7928                cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7929        cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7930
7931        /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7932         * those of the VFs, so start line should be reset
7933         */
7934        cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7935        for (i = 0; i < L2_ILT_LINES(bp); i++) {
7936                ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7937                ilt->lines[cdu_ilt_start + i].page_mapping =
7938                        bp->context[i].cxt_mapping;
7939                ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7940        }
7941
7942        bnx2x_ilt_init_op(bp, INITOP_SET);
7943
7944        if (!CONFIGURE_NIC_MODE(bp)) {
7945                bnx2x_init_searcher(bp);
7946                REG_WR(bp, PRS_REG_NIC_MODE, 0);
7947                DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7948        } else {
7949                /* Set NIC mode */
7950                REG_WR(bp, PRS_REG_NIC_MODE, 1);
7951                DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7952        }
7953
7954        if (!CHIP_IS_E1x(bp)) {
7955                u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7956
7957                /* Turn on a single ISR mode in IGU if driver is going to use
7958                 * INT#x or MSI
7959                 */
7960                if (!(bp->flags & USING_MSIX_FLAG))
7961                        pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7962                /*
7963                 * Timers workaround bug: function init part.
7964                 * Need to wait 20msec after initializing ILT,
7965                 * needed to make sure there are no requests in
7966                 * one of the PXP internal queues with "old" ILT addresses
7967                 */
7968                msleep(20);
7969                /*
7970                 * Master enable - Due to WB DMAE writes performed before this
7971                 * register is re-initialized as part of the regular function
7972                 * init
7973                 */
7974                REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7975                /* Enable the function in IGU */
7976                REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7977        }
7978
7979        bp->dmae_ready = 1;
7980
7981        bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7982
7983        bnx2x_clean_pglue_errors(bp);
7984
7985        bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7986        bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7987        bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7988        bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7989        bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7990        bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7991        bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7992        bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7993        bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7994        bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7995        bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7996        bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7997        bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7998
7999        if (!CHIP_IS_E1x(bp))
8000                REG_WR(bp, QM_REG_PF_EN, 1);
8001
8002        if (!CHIP_IS_E1x(bp)) {
8003                REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8004                REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8005                REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8006                REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8007        }
8008        bnx2x_init_block(bp, BLOCK_QM, init_phase);
8009
8010        bnx2x_init_block(bp, BLOCK_TM, init_phase);
8011        bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8012        REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8013
8014        bnx2x_iov_init_dq(bp);
8015
8016        bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8017        bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8018        bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8019        bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8020        bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8021        bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8022        bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8023        bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8024        bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8025        if (!CHIP_IS_E1x(bp))
8026                REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8027
8028        bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8029
8030        bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8031
8032        if (!CHIP_IS_E1x(bp))
8033                REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8034
8035        if (IS_MF(bp)) {
8036                if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8037                        REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8038                        REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8039                               bp->mf_ov);
8040                }
8041        }
8042
8043        bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8044
8045        /* HC init per function */
8046        if (bp->common.int_block == INT_BLOCK_HC) {
8047                if (CHIP_IS_E1H(bp)) {
8048                        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8049
8050                        REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8051                        REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8052                }
8053                bnx2x_init_block(bp, BLOCK_HC, init_phase);
8054
8055        } else {
8056                int num_segs, sb_idx, prod_offset;
8057
8058                REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8059
8060                if (!CHIP_IS_E1x(bp)) {
8061                        REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8062                        REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8063                }
8064
8065                bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8066
8067                if (!CHIP_IS_E1x(bp)) {
8068                        int dsb_idx = 0;
8069                        /**
8070                         * Producer memory:
8071                         * E2 mode: address 0-135 match to the mapping memory;
8072                         * 136 - PF0 default prod; 137 - PF1 default prod;
8073                         * 138 - PF2 default prod; 139 - PF3 default prod;
8074                         * 140 - PF0 attn prod;    141 - PF1 attn prod;
8075                         * 142 - PF2 attn prod;    143 - PF3 attn prod;
8076                         * 144-147 reserved.
8077                         *
8078                         * E1.5 mode - In backward compatible mode;
8079                         * for non default SB; each even line in the memory
8080                         * holds the U producer and each odd line hold
8081                         * the C producer. The first 128 producers are for
8082                         * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8083                         * producers are for the DSB for each PF.
8084                         * Each PF has five segments: (the order inside each
8085                         * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8086                         * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8087                         * 144-147 attn prods;
8088                         */
8089                        /* non-default-status-blocks */
8090                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8091                                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8092                        for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8093                                prod_offset = (bp->igu_base_sb + sb_idx) *
8094                                        num_segs;
8095
8096                                for (i = 0; i < num_segs; i++) {
8097                                        addr = IGU_REG_PROD_CONS_MEMORY +
8098                                                        (prod_offset + i) * 4;
8099                                        REG_WR(bp, addr, 0);
8100                                }
8101                                /* send consumer update with value 0 */
8102                                bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8103                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8104                                bnx2x_igu_clear_sb(bp,
8105                                                   bp->igu_base_sb + sb_idx);
8106                        }
8107
8108                        /* default-status-blocks */
8109                        num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8110                                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8111
8112                        if (CHIP_MODE_IS_4_PORT(bp))
8113                                dsb_idx = BP_FUNC(bp);
8114                        else
8115                                dsb_idx = BP_VN(bp);
8116
8117                        prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8118                                       IGU_BC_BASE_DSB_PROD + dsb_idx :
8119                                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8120
8121                        /*
8122                         * igu prods come in chunks of E1HVN_MAX (4) -
8123                         * does not matters what is the current chip mode
8124                         */
8125                        for (i = 0; i < (num_segs * E1HVN_MAX);
8126                             i += E1HVN_MAX) {
8127                                addr = IGU_REG_PROD_CONS_MEMORY +
8128                                                        (prod_offset + i)*4;
8129                                REG_WR(bp, addr, 0);
8130                        }
8131                        /* send consumer update with 0 */
8132                        if (CHIP_INT_MODE_IS_BC(bp)) {
8133                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8134                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8135                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8136                                             CSTORM_ID, 0, IGU_INT_NOP, 1);
8137                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8138                                             XSTORM_ID, 0, IGU_INT_NOP, 1);
8139                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8140                                             TSTORM_ID, 0, IGU_INT_NOP, 1);
8141                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8142                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8143                        } else {
8144                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8145                                             USTORM_ID, 0, IGU_INT_NOP, 1);
8146                                bnx2x_ack_sb(bp, bp->igu_dsb_id,
8147                                             ATTENTION_ID, 0, IGU_INT_NOP, 1);
8148                        }
8149                        bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8150
8151                        /* !!! These should become driver const once
8152                           rf-tool supports split-68 const */
8153                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8154                        REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8155                        REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8156                        REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8157                        REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8158                        REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8159                }
8160        }
8161
8162        /* Reset PCIE errors for debug */
8163        REG_WR(bp, 0x2114, 0xffffffff);
8164        REG_WR(bp, 0x2120, 0xffffffff);
8165
8166        if (CHIP_IS_E1x(bp)) {
8167                main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8168                main_mem_base = HC_REG_MAIN_MEMORY +
8169                                BP_PORT(bp) * (main_mem_size * 4);
8170                main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8171                main_mem_width = 8;
8172
8173                val = REG_RD(bp, main_mem_prty_clr);
8174                if (val)
8175                        DP(NETIF_MSG_HW,
8176                           "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8177                           val);
8178
8179                /* Clear "false" parity errors in MSI-X table */
8180                for (i = main_mem_base;
8181                     i < main_mem_base + main_mem_size * 4;
8182                     i += main_mem_width) {
8183                        bnx2x_read_dmae(bp, i, main_mem_width / 4);
8184                        bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8185                                         i, main_mem_width / 4);
8186                }
8187                /* Clear HC parity attention */
8188                REG_RD(bp, main_mem_prty_clr);
8189        }
8190
8191#ifdef BNX2X_STOP_ON_ERROR
8192        /* Enable STORMs SP logging */
8193        REG_WR8(bp, BAR_USTRORM_INTMEM +
8194               USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8195        REG_WR8(bp, BAR_TSTRORM_INTMEM +
8196               TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8197        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8198               CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8199        REG_WR8(bp, BAR_XSTRORM_INTMEM +
8200               XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8201#endif
8202
8203        bnx2x_phy_probe(&bp->link_params);
8204
8205        return 0;
8206}
8207
8208void bnx2x_free_mem_cnic(struct bnx2x *bp)
8209{
8210        bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8211
8212        if (!CHIP_IS_E1x(bp))
8213                BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8214                               sizeof(struct host_hc_status_block_e2));
8215        else
8216                BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8217                               sizeof(struct host_hc_status_block_e1x));
8218
8219        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8220}
8221
8222void bnx2x_free_mem(struct bnx2x *bp)
8223{
8224        int i;
8225
8226        BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8227                       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8228
8229        if (IS_VF(bp))
8230                return;
8231
8232        BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8233                       sizeof(struct host_sp_status_block));
8234
8235        BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8236                       sizeof(struct bnx2x_slowpath));
8237
8238        for (i = 0; i < L2_ILT_LINES(bp); i++)
8239                BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8240                               bp->context[i].size);
8241        bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8242
8243        BNX2X_FREE(bp->ilt->lines);
8244
8245        BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8246
8247        BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8248                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8249
8250        BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8251
8252        bnx2x_iov_free_mem(bp);
8253}
8254
8255int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8256{
8257        if (!CHIP_IS_E1x(bp)) {
8258                /* size = the status block + ramrod buffers */
8259                bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8260                                                    sizeof(struct host_hc_status_block_e2));
8261                if (!bp->cnic_sb.e2_sb)
8262                        goto alloc_mem_err;
8263        } else {
8264                bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8265                                                     sizeof(struct host_hc_status_block_e1x));
8266                if (!bp->cnic_sb.e1x_sb)
8267                        goto alloc_mem_err;
8268        }
8269
8270        if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8271                /* allocate searcher T2 table, as it wasn't allocated before */
8272                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8273                if (!bp->t2)
8274                        goto alloc_mem_err;
8275        }
8276
8277        /* write address to which L5 should insert its values */
8278        bp->cnic_eth_dev.addr_drv_info_to_mcp =
8279                &bp->slowpath->drv_info_to_mcp;
8280
8281        if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8282                goto alloc_mem_err;
8283
8284        return 0;
8285
8286alloc_mem_err:
8287        bnx2x_free_mem_cnic(bp);
8288        BNX2X_ERR("Can't allocate memory\n");
8289        return -ENOMEM;
8290}
8291
8292int bnx2x_alloc_mem(struct bnx2x *bp)
8293{
8294        int i, allocated, context_size;
8295
8296        if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8297                /* allocate searcher T2 table */
8298                bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8299                if (!bp->t2)
8300                        goto alloc_mem_err;
8301        }
8302
8303        bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8304                                             sizeof(struct host_sp_status_block));
8305        if (!bp->def_status_blk)
8306                goto alloc_mem_err;
8307
8308        bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8309                                       sizeof(struct bnx2x_slowpath));
8310        if (!bp->slowpath)
8311                goto alloc_mem_err;
8312
8313        /* Allocate memory for CDU context:
8314         * This memory is allocated separately and not in the generic ILT
8315         * functions because CDU differs in few aspects:
8316         * 1. There are multiple entities allocating memory for context -
8317         * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8318         * its own ILT lines.
8319         * 2. Since CDU page-size is not a single 4KB page (which is the case
8320         * for the other ILT clients), to be efficient we want to support
8321         * allocation of sub-page-size in the last entry.
8322         * 3. Context pointers are used by the driver to pass to FW / update
8323         * the context (for the other ILT clients the pointers are used just to
8324         * free the memory during unload).
8325         */
8326        context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8327
8328        for (i = 0, allocated = 0; allocated < context_size; i++) {
8329                bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8330                                          (context_size - allocated));
8331                bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8332                                                      bp->context[i].size);
8333                if (!bp->context[i].vcxt)
8334                        goto alloc_mem_err;
8335                allocated += bp->context[i].size;
8336        }
8337        bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8338                                 GFP_KERNEL);
8339        if (!bp->ilt->lines)
8340                goto alloc_mem_err;
8341
8342        if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8343                goto alloc_mem_err;
8344
8345        if (bnx2x_iov_alloc_mem(bp))
8346                goto alloc_mem_err;
8347
8348        /* Slow path ring */
8349        bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8350        if (!bp->spq)
8351                goto alloc_mem_err;
8352
8353        /* EQ */
8354        bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8355                                      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8356        if (!bp->eq_ring)
8357                goto alloc_mem_err;
8358
8359        return 0;
8360
8361alloc_mem_err:
8362        bnx2x_free_mem(bp);
8363        BNX2X_ERR("Can't allocate memory\n");
8364        return -ENOMEM;
8365}
8366
8367/*
8368 * Init service functions
8369 */
8370
8371int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8372                      struct bnx2x_vlan_mac_obj *obj, bool set,
8373                      int mac_type, unsigned long *ramrod_flags)
8374{
8375        int rc;
8376        struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8377
8378        memset(&ramrod_param, 0, sizeof(ramrod_param));
8379
8380        /* Fill general parameters */
8381        ramrod_param.vlan_mac_obj = obj;
8382        ramrod_param.ramrod_flags = *ramrod_flags;
8383
8384        /* Fill a user request section if needed */
8385        if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8386                memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8387
8388                __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8389
8390                /* Set the command: ADD or DEL */
8391                if (set)
8392                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8393                else
8394                        ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8395        }
8396
8397        rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8398
8399        if (rc == -EEXIST) {
8400                DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8401                /* do not treat adding same MAC as error */
8402                rc = 0;
8403        } else if (rc < 0)
8404                BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8405
8406        return rc;
8407}
8408
8409int bnx2x_del_all_macs(struct bnx2x *bp,
8410                       struct bnx2x_vlan_mac_obj *mac_obj,
8411                       int mac_type, bool wait_for_comp)
8412{
8413        int rc;
8414        unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8415
8416        /* Wait for completion of requested */
8417        if (wait_for_comp)
8418                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8419
8420        /* Set the mac type of addresses we want to clear */
8421        __set_bit(mac_type, &vlan_mac_flags);
8422
8423        rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8424        if (rc < 0)
8425                BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8426
8427        return rc;
8428}
8429
8430int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8431{
8432        if (IS_PF(bp)) {
8433                unsigned long ramrod_flags = 0;
8434
8435                DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8436                __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8437                return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8438                                         &bp->sp_objs->mac_obj, set,
8439                                         BNX2X_ETH_MAC, &ramrod_flags);
8440        } else { /* vf */
8441                return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8442                                             bp->fp->index, set);
8443        }
8444}
8445
8446int bnx2x_setup_leading(struct bnx2x *bp)
8447{
8448        if (IS_PF(bp))
8449                return bnx2x_setup_queue(bp, &bp->fp[0], true);
8450        else /* VF */
8451                return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8452}
8453
8454/**
8455 * bnx2x_set_int_mode - configure interrupt mode
8456 *
8457 * @bp:         driver handle
8458 *
8459 * In case of MSI-X it will also try to enable MSI-X.
8460 */
8461int bnx2x_set_int_mode(struct bnx2x *bp)
8462{
8463        int rc = 0;
8464
8465        if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8466                BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8467                return -EINVAL;
8468        }
8469
8470        switch (int_mode) {
8471        case BNX2X_INT_MODE_MSIX:
8472                /* attempt to enable msix */
8473                rc = bnx2x_enable_msix(bp);
8474
8475                /* msix attained */
8476                if (!rc)
8477                        return 0;
8478
8479                /* vfs use only msix */
8480                if (rc && IS_VF(bp))
8481                        return rc;
8482
8483                /* failed to enable multiple MSI-X */
8484                BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8485                               bp->num_queues,
8486                               1 + bp->num_cnic_queues);
8487
8488                /* falling through... */
8489        case BNX2X_INT_MODE_MSI:
8490                bnx2x_enable_msi(bp);
8491
8492                /* falling through... */
8493        case BNX2X_INT_MODE_INTX:
8494                bp->num_ethernet_queues = 1;
8495                bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8496                BNX2X_DEV_INFO("set number of queues to 1\n");
8497                break;
8498        default:
8499                BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8500                return -EINVAL;
8501        }
8502        return 0;
8503}
8504
8505/* must be called prior to any HW initializations */
8506static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8507{
8508        if (IS_SRIOV(bp))
8509                return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8510        return L2_ILT_LINES(bp);
8511}
8512
8513void bnx2x_ilt_set_info(struct bnx2x *bp)
8514{
8515        struct ilt_client_info *ilt_client;
8516        struct bnx2x_ilt *ilt = BP_ILT(bp);
8517        u16 line = 0;
8518
8519        ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8520        DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8521
8522        /* CDU */
8523        ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8524        ilt_client->client_num = ILT_CLIENT_CDU;
8525        ilt_client->page_size = CDU_ILT_PAGE_SZ;
8526        ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8527        ilt_client->start = line;
8528        line += bnx2x_cid_ilt_lines(bp);
8529
8530        if (CNIC_SUPPORT(bp))
8531                line += CNIC_ILT_LINES;
8532        ilt_client->end = line - 1;
8533
8534        DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8535           ilt_client->start,
8536           ilt_client->end,
8537           ilt_client->page_size,
8538           ilt_client->flags,
8539           ilog2(ilt_client->page_size >> 12));
8540
8541        /* QM */
8542        if (QM_INIT(bp->qm_cid_count)) {
8543                ilt_client = &ilt->clients[ILT_CLIENT_QM];
8544                ilt_client->client_num = ILT_CLIENT_QM;
8545                ilt_client->page_size = QM_ILT_PAGE_SZ;
8546                ilt_client->flags = 0;
8547                ilt_client->start = line;
8548
8549                /* 4 bytes for each cid */
8550                line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8551                                                         QM_ILT_PAGE_SZ);
8552
8553                ilt_client->end = line - 1;
8554
8555                DP(NETIF_MSG_IFUP,
8556                   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8557                   ilt_client->start,
8558                   ilt_client->end,
8559                   ilt_client->page_size,
8560                   ilt_client->flags,
8561                   ilog2(ilt_client->page_size >> 12));
8562        }
8563
8564        if (CNIC_SUPPORT(bp)) {
8565                /* SRC */
8566                ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8567                ilt_client->client_num = ILT_CLIENT_SRC;
8568                ilt_client->page_size = SRC_ILT_PAGE_SZ;
8569                ilt_client->flags = 0;
8570                ilt_client->start = line;
8571                line += SRC_ILT_LINES;
8572                ilt_client->end = line - 1;
8573
8574                DP(NETIF_MSG_IFUP,
8575                   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8576                   ilt_client->start,
8577                   ilt_client->end,
8578                   ilt_client->page_size,
8579                   ilt_client->flags,
8580                   ilog2(ilt_client->page_size >> 12));
8581
8582                /* TM */
8583                ilt_client = &ilt->clients[ILT_CLIENT_TM];
8584                ilt_client->client_num = ILT_CLIENT_TM;
8585                ilt_client->page_size = TM_ILT_PAGE_SZ;
8586                ilt_client->flags = 0;
8587                ilt_client->start = line;
8588                line += TM_ILT_LINES;
8589                ilt_client->end = line - 1;
8590
8591                DP(NETIF_MSG_IFUP,
8592                   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8593                   ilt_client->start,
8594                   ilt_client->end,
8595                   ilt_client->page_size,
8596                   ilt_client->flags,
8597                   ilog2(ilt_client->page_size >> 12));
8598        }
8599
8600        BUG_ON(line > ILT_MAX_LINES);
8601}
8602
8603/**
8604 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8605 *
8606 * @bp:                 driver handle
8607 * @fp:                 pointer to fastpath
8608 * @init_params:        pointer to parameters structure
8609 *
8610 * parameters configured:
8611 *      - HC configuration
8612 *      - Queue's CDU context
8613 */
8614static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8615        struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8616{
8617        u8 cos;
8618        int cxt_index, cxt_offset;
8619
8620        /* FCoE Queue uses Default SB, thus has no HC capabilities */
8621        if (!IS_FCOE_FP(fp)) {
8622                __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8623                __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8624
8625                /* If HC is supported, enable host coalescing in the transition
8626                 * to INIT state.
8627                 */
8628                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8629                __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8630
8631                /* HC rate */
8632                init_params->rx.hc_rate = bp->rx_ticks ?
8633                        (1000000 / bp->rx_ticks) : 0;
8634                init_params->tx.hc_rate = bp->tx_ticks ?
8635                        (1000000 / bp->tx_ticks) : 0;
8636
8637                /* FW SB ID */
8638                init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8639                        fp->fw_sb_id;
8640
8641                /*
8642                 * CQ index among the SB indices: FCoE clients uses the default
8643                 * SB, therefore it's different.
8644                 */
8645                init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8646                init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8647        }
8648
8649        /* set maximum number of COSs supported by this queue */
8650        init_params->max_cos = fp->max_cos;
8651
8652        DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8653            fp->index, init_params->max_cos);
8654
8655        /* set the context pointers queue object */
8656        for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8657                cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8658                cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8659                                ILT_PAGE_CIDS);
8660                init_params->cxts[cos] =
8661                        &bp->context[cxt_index].vcxt[cxt_offset].eth;
8662        }
8663}
8664
8665static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8666                        struct bnx2x_queue_state_params *q_params,
8667                        struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8668                        int tx_index, bool leading)
8669{
8670        memset(tx_only_params, 0, sizeof(*tx_only_params));
8671
8672        /* Set the command */
8673        q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8674
8675        /* Set tx-only QUEUE flags: don't zero statistics */
8676        tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8677
8678        /* choose the index of the cid to send the slow path on */
8679        tx_only_params->cid_index = tx_index;
8680
8681        /* Set general TX_ONLY_SETUP parameters */
8682        bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8683
8684        /* Set Tx TX_ONLY_SETUP parameters */
8685        bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8686
8687        DP(NETIF_MSG_IFUP,
8688           "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8689           tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8690           q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8691           tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8692
8693        /* send the ramrod */
8694        return bnx2x_queue_state_change(bp, q_params);
8695}
8696
8697/**
8698 * bnx2x_setup_queue - setup queue
8699 *
8700 * @bp:         driver handle
8701 * @fp:         pointer to fastpath
8702 * @leading:    is leading
8703 *
8704 * This function performs 2 steps in a Queue state machine
8705 *      actually: 1) RESET->INIT 2) INIT->SETUP
8706 */
8707
8708int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8709                       bool leading)
8710{
8711        struct bnx2x_queue_state_params q_params = {NULL};
8712        struct bnx2x_queue_setup_params *setup_params =
8713                                                &q_params.params.setup;
8714        struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8715                                                &q_params.params.tx_only;
8716        int rc;
8717        u8 tx_index;
8718
8719        DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8720
8721        /* reset IGU state skip FCoE L2 queue */
8722        if (!IS_FCOE_FP(fp))
8723                bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8724                             IGU_INT_ENABLE, 0);
8725
8726        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8727        /* We want to wait for completion in this context */
8728        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8729
8730        /* Prepare the INIT parameters */
8731        bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8732
8733        /* Set the command */
8734        q_params.cmd = BNX2X_Q_CMD_INIT;
8735
8736        /* Change the state to INIT */
8737        rc = bnx2x_queue_state_change(bp, &q_params);
8738        if (rc) {
8739                BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8740                return rc;
8741        }
8742
8743        DP(NETIF_MSG_IFUP, "init complete\n");
8744
8745        /* Now move the Queue to the SETUP state... */
8746        memset(setup_params, 0, sizeof(*setup_params));
8747
8748        /* Set QUEUE flags */
8749        setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8750
8751        /* Set general SETUP parameters */
8752        bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8753                                FIRST_TX_COS_INDEX);
8754
8755        bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8756                            &setup_params->rxq_params);
8757
8758        bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8759                           FIRST_TX_COS_INDEX);
8760
8761        /* Set the command */
8762        q_params.cmd = BNX2X_Q_CMD_SETUP;
8763
8764        if (IS_FCOE_FP(fp))
8765                bp->fcoe_init = true;
8766
8767        /* Change the state to SETUP */
8768        rc = bnx2x_queue_state_change(bp, &q_params);
8769        if (rc) {
8770                BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8771                return rc;
8772        }
8773
8774        /* loop through the relevant tx-only indices */
8775        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8776              tx_index < fp->max_cos;
8777              tx_index++) {
8778
8779                /* prepare and send tx-only ramrod*/
8780                rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8781                                          tx_only_params, tx_index, leading);
8782                if (rc) {
8783                        BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8784                                  fp->index, tx_index);
8785                        return rc;
8786                }
8787        }
8788
8789        return rc;
8790}
8791
8792static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8793{
8794        struct bnx2x_fastpath *fp = &bp->fp[index];
8795        struct bnx2x_fp_txdata *txdata;
8796        struct bnx2x_queue_state_params q_params = {NULL};
8797        int rc, tx_index;
8798
8799        DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8800
8801        q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8802        /* We want to wait for completion in this context */
8803        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8804
8805        /* close tx-only connections */
8806        for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8807             tx_index < fp->max_cos;
8808             tx_index++){
8809
8810                /* ascertain this is a normal queue*/
8811                txdata = fp->txdata_ptr[tx_index];
8812
8813                DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8814                                                        txdata->txq_index);
8815
8816                /* send halt terminate on tx-only connection */
8817                q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8818                memset(&q_params.params.terminate, 0,
8819                       sizeof(q_params.params.terminate));
8820                q_params.params.terminate.cid_index = tx_index;
8821
8822                rc = bnx2x_queue_state_change(bp, &q_params);
8823                if (rc)
8824                        return rc;
8825
8826                /* send halt terminate on tx-only connection */
8827                q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8828                memset(&q_params.params.cfc_del, 0,
8829                       sizeof(q_params.params.cfc_del));
8830                q_params.params.cfc_del.cid_index = tx_index;
8831                rc = bnx2x_queue_state_change(bp, &q_params);
8832                if (rc)
8833                        return rc;
8834        }
8835        /* Stop the primary connection: */
8836        /* ...halt the connection */
8837        q_params.cmd = BNX2X_Q_CMD_HALT;
8838        rc = bnx2x_queue_state_change(bp, &q_params);
8839        if (rc)
8840                return rc;
8841
8842        /* ...terminate the connection */
8843        q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8844        memset(&q_params.params.terminate, 0,
8845               sizeof(q_params.params.terminate));
8846        q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8847        rc = bnx2x_queue_state_change(bp, &q_params);
8848        if (rc)
8849                return rc;
8850        /* ...delete cfc entry */
8851        q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8852        memset(&q_params.params.cfc_del, 0,
8853               sizeof(q_params.params.cfc_del));
8854        q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8855        return bnx2x_queue_state_change(bp, &q_params);
8856}
8857
8858static void bnx2x_reset_func(struct bnx2x *bp)
8859{
8860        int port = BP_PORT(bp);
8861        int func = BP_FUNC(bp);
8862        int i;
8863
8864        /* Disable the function in the FW */
8865        REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8866        REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8867        REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8868        REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8869
8870        /* FP SBs */
8871        for_each_eth_queue(bp, i) {
8872                struct bnx2x_fastpath *fp = &bp->fp[i];
8873                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8874                           CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8875                           SB_DISABLED);
8876        }
8877
8878        if (CNIC_LOADED(bp))
8879                /* CNIC SB */
8880                REG_WR8(bp, BAR_CSTRORM_INTMEM +
8881                        CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8882                        (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8883
8884        /* SP SB */
8885        REG_WR8(bp, BAR_CSTRORM_INTMEM +
8886                CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8887                SB_DISABLED);
8888
8889        for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8890                REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8891                       0);
8892
8893        /* Configure IGU */
8894        if (bp->common.int_block == INT_BLOCK_HC) {
8895                REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8896                REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8897        } else {
8898                REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8899                REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8900        }
8901
8902        if (CNIC_LOADED(bp)) {
8903                /* Disable Timer scan */
8904                REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8905                /*
8906                 * Wait for at least 10ms and up to 2 second for the timers
8907                 * scan to complete
8908                 */
8909                for (i = 0; i < 200; i++) {
8910                        usleep_range(10000, 20000);
8911                        if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8912                                break;
8913                }
8914        }
8915        /* Clear ILT */
8916        bnx2x_clear_func_ilt(bp, func);
8917
8918        /* Timers workaround bug for E2: if this is vnic-3,
8919         * we need to set the entire ilt range for this timers.
8920         */
8921        if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8922                struct ilt_client_info ilt_cli;
8923                /* use dummy TM client */
8924                memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8925                ilt_cli.start = 0;
8926                ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8927                ilt_cli.client_num = ILT_CLIENT_TM;
8928
8929                bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8930        }
8931
8932        /* this assumes that reset_port() called before reset_func()*/
8933        if (!CHIP_IS_E1x(bp))
8934                bnx2x_pf_disable(bp);
8935
8936        bp->dmae_ready = 0;
8937}
8938
8939static void bnx2x_reset_port(struct bnx2x *bp)
8940{
8941        int port = BP_PORT(bp);
8942        u32 val;
8943
8944        /* Reset physical Link */
8945        bnx2x__link_reset(bp);
8946
8947        REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8948
8949        /* Do not rcv packets to BRB */
8950        REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8951        /* Do not direct rcv packets that are not for MCP to the BRB */
8952        REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8953                           NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8954
8955        /* Configure AEU */
8956        REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8957
8958        msleep(100);
8959        /* Check for BRB port occupancy */
8960        val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8961        if (val)
8962                DP(NETIF_MSG_IFDOWN,
8963                   "BRB1 is not empty  %d blocks are occupied\n", val);
8964
8965        /* TODO: Close Doorbell port? */
8966}
8967
8968static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8969{
8970        struct bnx2x_func_state_params func_params = {NULL};
8971
8972        /* Prepare parameters for function state transitions */
8973        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8974
8975        func_params.f_obj = &bp->func_obj;
8976        func_params.cmd = BNX2X_F_CMD_HW_RESET;
8977
8978        func_params.params.hw_init.load_phase = load_code;
8979
8980        return bnx2x_func_state_change(bp, &func_params);
8981}
8982
8983static int bnx2x_func_stop(struct bnx2x *bp)
8984{
8985        struct bnx2x_func_state_params func_params = {NULL};
8986        int rc;
8987
8988        /* Prepare parameters for function state transitions */
8989        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8990        func_params.f_obj = &bp->func_obj;
8991        func_params.cmd = BNX2X_F_CMD_STOP;
8992
8993        /*
8994         * Try to stop the function the 'good way'. If fails (in case
8995         * of a parity error during bnx2x_chip_cleanup()) and we are
8996         * not in a debug mode, perform a state transaction in order to
8997         * enable further HW_RESET transaction.
8998         */
8999        rc = bnx2x_func_state_change(bp, &func_params);
9000        if (rc) {
9001#ifdef BNX2X_STOP_ON_ERROR
9002                return rc;
9003#else
9004                BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9005                __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9006                return bnx2x_func_state_change(bp, &func_params);
9007#endif
9008        }
9009
9010        return 0;
9011}
9012
9013/**
9014 * bnx2x_send_unload_req - request unload mode from the MCP.
9015 *
9016 * @bp:                 driver handle
9017 * @unload_mode:        requested function's unload mode
9018 *
9019 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9020 */
9021u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9022{
9023        u32 reset_code = 0;
9024        int port = BP_PORT(bp);
9025
9026        /* Select the UNLOAD request mode */
9027        if (unload_mode == UNLOAD_NORMAL)
9028                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9029
9030        else if (bp->flags & NO_WOL_FLAG)
9031                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9032
9033        else if (bp->wol) {
9034                u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9035                u8 *mac_addr = bp->dev->dev_addr;
9036                struct pci_dev *pdev = bp->pdev;
9037                u32 val;
9038                u16 pmc;
9039
9040                /* The mac address is written to entries 1-4 to
9041                 * preserve entry 0 which is used by the PMF
9042                 */
9043                u8 entry = (BP_VN(bp) + 1)*8;
9044
9045                val = (mac_addr[0] << 8) | mac_addr[1];
9046                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9047
9048                val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9049                      (mac_addr[4] << 8) | mac_addr[5];
9050                EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9051
9052                /* Enable the PME and clear the status */
9053                pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9054                pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9055                pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9056
9057                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9058
9059        } else
9060                reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9061
9062        /* Send the request to the MCP */
9063        if (!BP_NOMCP(bp))
9064                reset_code = bnx2x_fw_command(bp, reset_code, 0);
9065        else {
9066                int path = BP_PATH(bp);
9067
9068                DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9069                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9070                   bnx2x_load_count[path][2]);
9071                bnx2x_load_count[path][0]--;
9072                bnx2x_load_count[path][1 + port]--;
9073                DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9074                   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9075                   bnx2x_load_count[path][2]);
9076                if (bnx2x_load_count[path][0] == 0)
9077                        reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9078                else if (bnx2x_load_count[path][1 + port] == 0)
9079                        reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9080                else
9081                        reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9082        }
9083
9084        return reset_code;
9085}
9086
9087/**
9088 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9089 *
9090 * @bp:         driver handle
9091 * @keep_link:          true iff link should be kept up
9092 */
9093void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9094{
9095        u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9096
9097        /* Report UNLOAD_DONE to MCP */
9098        if (!BP_NOMCP(bp))
9099                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9100}
9101
9102static int bnx2x_func_wait_started(struct bnx2x *bp)
9103{
9104        int tout = 50;
9105        int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9106
9107        if (!bp->port.pmf)
9108                return 0;
9109
9110        /*
9111         * (assumption: No Attention from MCP at this stage)
9112         * PMF probably in the middle of TX disable/enable transaction
9113         * 1. Sync IRS for default SB
9114         * 2. Sync SP queue - this guarantees us that attention handling started
9115         * 3. Wait, that TX disable/enable transaction completes
9116         *
9117         * 1+2 guarantee that if DCBx attention was scheduled it already changed
9118         * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9119         * received completion for the transaction the state is TX_STOPPED.
9120         * State will return to STARTED after completion of TX_STOPPED-->STARTED
9121         * transaction.
9122         */
9123
9124        /* make sure default SB ISR is done */
9125        if (msix)
9126                synchronize_irq(bp->msix_table[0].vector);
9127        else
9128                synchronize_irq(bp->pdev->irq);
9129
9130        flush_workqueue(bnx2x_wq);
9131        flush_workqueue(bnx2x_iov_wq);
9132
9133        while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9134                                BNX2X_F_STATE_STARTED && tout--)
9135                msleep(20);
9136
9137        if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9138                                                BNX2X_F_STATE_STARTED) {
9139#ifdef BNX2X_STOP_ON_ERROR
9140                BNX2X_ERR("Wrong function state\n");
9141                return -EBUSY;
9142#else
9143                /*
9144                 * Failed to complete the transaction in a "good way"
9145                 * Force both transactions with CLR bit
9146                 */
9147                struct bnx2x_func_state_params func_params = {NULL};
9148
9149                DP(NETIF_MSG_IFDOWN,
9150                   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9151
9152                func_params.f_obj = &bp->func_obj;
9153                __set_bit(RAMROD_DRV_CLR_ONLY,
9154                                        &func_params.ramrod_flags);
9155
9156                /* STARTED-->TX_ST0PPED */
9157                func_params.cmd = BNX2X_F_CMD_TX_STOP;
9158                bnx2x_func_state_change(bp, &func_params);
9159
9160                /* TX_ST0PPED-->STARTED */
9161                func_params.cmd = BNX2X_F_CMD_TX_START;
9162                return bnx2x_func_state_change(bp, &func_params);
9163#endif
9164        }
9165
9166        return 0;
9167}
9168
9169static void bnx2x_disable_ptp(struct bnx2x *bp)
9170{
9171        int port = BP_PORT(bp);
9172
9173        /* Disable sending PTP packets to host */
9174        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9175               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9176
9177        /* Reset PTP event detection rules */
9178        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9179               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9180        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9181               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9182        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9183               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9184        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9185               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9186
9187        /* Disable the PTP feature */
9188        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9189               NIG_REG_P0_PTP_EN, 0x0);
9190}
9191
9192/* Called during unload, to stop PTP-related stuff */
9193static void bnx2x_stop_ptp(struct bnx2x *bp)
9194{
9195        /* Cancel PTP work queue. Should be done after the Tx queues are
9196         * drained to prevent additional scheduling.
9197         */
9198        cancel_work_sync(&bp->ptp_task);
9199
9200        if (bp->ptp_tx_skb) {
9201                dev_kfree_skb_any(bp->ptp_tx_skb);
9202                bp->ptp_tx_skb = NULL;
9203        }
9204
9205        /* Disable PTP in HW */
9206        bnx2x_disable_ptp(bp);
9207
9208        DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9209}
9210
9211void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9212{
9213        int port = BP_PORT(bp);
9214        int i, rc = 0;
9215        u8 cos;
9216        struct bnx2x_mcast_ramrod_params rparam = {NULL};
9217        u32 reset_code;
9218
9219        /* Wait until tx fastpath tasks complete */
9220        for_each_tx_queue(bp, i) {
9221                struct bnx2x_fastpath *fp = &bp->fp[i];
9222
9223                for_each_cos_in_tx_queue(fp, cos)
9224                        rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9225#ifdef BNX2X_STOP_ON_ERROR
9226                if (rc)
9227                        return;
9228#endif
9229        }
9230
9231        /* Give HW time to discard old tx messages */
9232        usleep_range(1000, 2000);
9233
9234        /* Clean all ETH MACs */
9235        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9236                                false);
9237        if (rc < 0)
9238                BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9239
9240        /* Clean up UC list  */
9241        rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9242                                true);
9243        if (rc < 0)
9244                BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9245                          rc);
9246
9247        /* Disable LLH */
9248        if (!CHIP_IS_E1(bp))
9249                REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9250
9251        /* Set "drop all" (stop Rx).
9252         * We need to take a netif_addr_lock() here in order to prevent
9253         * a race between the completion code and this code.
9254         */
9255        netif_addr_lock_bh(bp->dev);
9256        /* Schedule the rx_mode command */
9257        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9258                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9259        else
9260                bnx2x_set_storm_rx_mode(bp);
9261
9262        /* Cleanup multicast configuration */
9263        rparam.mcast_obj = &bp->mcast_obj;
9264        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9265        if (rc < 0)
9266                BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9267
9268        netif_addr_unlock_bh(bp->dev);
9269
9270        bnx2x_iov_chip_cleanup(bp);
9271
9272        /*
9273         * Send the UNLOAD_REQUEST to the MCP. This will return if
9274         * this function should perform FUNC, PORT or COMMON HW
9275         * reset.
9276         */
9277        reset_code = bnx2x_send_unload_req(bp, unload_mode);
9278
9279        /*
9280         * (assumption: No Attention from MCP at this stage)
9281         * PMF probably in the middle of TX disable/enable transaction
9282         */
9283        rc = bnx2x_func_wait_started(bp);
9284        if (rc) {
9285                BNX2X_ERR("bnx2x_func_wait_started failed\n");
9286#ifdef BNX2X_STOP_ON_ERROR
9287                return;
9288#endif
9289        }
9290
9291        /* Close multi and leading connections
9292         * Completions for ramrods are collected in a synchronous way
9293         */
9294        for_each_eth_queue(bp, i)
9295                if (bnx2x_stop_queue(bp, i))
9296#ifdef BNX2X_STOP_ON_ERROR
9297                        return;
9298#else
9299                        goto unload_error;
9300#endif
9301
9302        if (CNIC_LOADED(bp)) {
9303                for_each_cnic_queue(bp, i)
9304                        if (bnx2x_stop_queue(bp, i))
9305#ifdef BNX2X_STOP_ON_ERROR
9306                                return;
9307#else
9308                                goto unload_error;
9309#endif
9310        }
9311
9312        /* If SP settings didn't get completed so far - something
9313         * very wrong has happen.
9314         */
9315        if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9316                BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9317
9318#ifndef BNX2X_STOP_ON_ERROR
9319unload_error:
9320#endif
9321        rc = bnx2x_func_stop(bp);
9322        if (rc) {
9323                BNX2X_ERR("Function stop failed!\n");
9324#ifdef BNX2X_STOP_ON_ERROR
9325                return;
9326#endif
9327        }
9328
9329        /* stop_ptp should be after the Tx queues are drained to prevent
9330         * scheduling to the cancelled PTP work queue. It should also be after
9331         * function stop ramrod is sent, since as part of this ramrod FW access
9332         * PTP registers.
9333         */
9334        if (bp->flags & PTP_SUPPORTED)
9335                bnx2x_stop_ptp(bp);
9336
9337        /* Disable HW interrupts, NAPI */
9338        bnx2x_netif_stop(bp, 1);
9339        /* Delete all NAPI objects */
9340        bnx2x_del_all_napi(bp);
9341        if (CNIC_LOADED(bp))
9342                bnx2x_del_all_napi_cnic(bp);
9343
9344        /* Release IRQs */
9345        bnx2x_free_irq(bp);
9346
9347        /* Reset the chip */
9348        rc = bnx2x_reset_hw(bp, reset_code);
9349        if (rc)
9350                BNX2X_ERR("HW_RESET failed\n");
9351
9352        /* Report UNLOAD_DONE to MCP */
9353        bnx2x_send_unload_done(bp, keep_link);
9354}
9355
9356void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9357{
9358        u32 val;
9359
9360        DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9361
9362        if (CHIP_IS_E1(bp)) {
9363                int port = BP_PORT(bp);
9364                u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9365                        MISC_REG_AEU_MASK_ATTN_FUNC_0;
9366
9367                val = REG_RD(bp, addr);
9368                val &= ~(0x300);
9369                REG_WR(bp, addr, val);
9370        } else {
9371                val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9372                val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9373                         MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9374                REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9375        }
9376}
9377
9378/* Close gates #2, #3 and #4: */
9379static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9380{
9381        u32 val;
9382
9383        /* Gates #2 and #4a are closed/opened for "not E1" only */
9384        if (!CHIP_IS_E1(bp)) {
9385                /* #4 */
9386                REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9387                /* #2 */
9388                REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9389        }
9390
9391        /* #3 */
9392        if (CHIP_IS_E1x(bp)) {
9393                /* Prevent interrupts from HC on both ports */
9394                val = REG_RD(bp, HC_REG_CONFIG_1);
9395                REG_WR(bp, HC_REG_CONFIG_1,
9396                       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9397                       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9398
9399                val = REG_RD(bp, HC_REG_CONFIG_0);
9400                REG_WR(bp, HC_REG_CONFIG_0,
9401                       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9402                       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9403        } else {
9404                /* Prevent incoming interrupts in IGU */
9405                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9406
9407                REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9408                       (!close) ?
9409                       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9410                       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9411        }
9412
9413        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9414                close ? "closing" : "opening");
9415        mmiowb();
9416}
9417
9418#define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9419
9420static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9421{
9422        /* Do some magic... */
9423        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9424        *magic_val = val & SHARED_MF_CLP_MAGIC;
9425        MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9426}
9427
9428/**
9429 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9430 *
9431 * @bp:         driver handle
9432 * @magic_val:  old value of the `magic' bit.
9433 */
9434static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9435{
9436        /* Restore the `magic' bit value... */
9437        u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9438        MF_CFG_WR(bp, shared_mf_config.clp_mb,
9439                (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9440}
9441
9442/**
9443 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9444 *
9445 * @bp:         driver handle
9446 * @magic_val:  old value of 'magic' bit.
9447 *
9448 * Takes care of CLP configurations.
9449 */
9450static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9451{
9452        u32 shmem;
9453        u32 validity_offset;
9454
9455        DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9456
9457        /* Set `magic' bit in order to save MF config */
9458        if (!CHIP_IS_E1(bp))
9459                bnx2x_clp_reset_prep(bp, magic_val);
9460
9461        /* Get shmem offset */
9462        shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9463        validity_offset =
9464                offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9465
9466        /* Clear validity map flags */
9467        if (shmem > 0)
9468                REG_WR(bp, shmem + validity_offset, 0);
9469}
9470
9471#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9472#define MCP_ONE_TIMEOUT  100    /* 100 ms */
9473
9474/**
9475 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9476 *
9477 * @bp: driver handle
9478 */
9479static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9480{
9481        /* special handling for emulation and FPGA,
9482           wait 10 times longer */
9483        if (CHIP_REV_IS_SLOW(bp))
9484                msleep(MCP_ONE_TIMEOUT*10);
9485        else
9486                msleep(MCP_ONE_TIMEOUT);
9487}
9488
9489/*
9490 * initializes bp->common.shmem_base and waits for validity signature to appear
9491 */
9492static int bnx2x_init_shmem(struct bnx2x *bp)
9493{
9494        int cnt = 0;
9495        u32 val = 0;
9496
9497        do {
9498                bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9499                if (bp->common.shmem_base) {
9500                        val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9501                        if (val & SHR_MEM_VALIDITY_MB)
9502                                return 0;
9503                }
9504
9505                bnx2x_mcp_wait_one(bp);
9506
9507        } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9508
9509        BNX2X_ERR("BAD MCP validity signature\n");
9510
9511        return -ENODEV;
9512}
9513
9514static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9515{
9516        int rc = bnx2x_init_shmem(bp);
9517
9518        /* Restore the `magic' bit value */
9519        if (!CHIP_IS_E1(bp))
9520                bnx2x_clp_reset_done(bp, magic_val);
9521
9522        return rc;
9523}
9524
9525static void bnx2x_pxp_prep(struct bnx2x *bp)
9526{
9527        if (!CHIP_IS_E1(bp)) {
9528                REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9529                REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9530                mmiowb();
9531        }
9532}
9533
9534/*
9535 * Reset the whole chip except for:
9536 *      - PCIE core
9537 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9538 *              one reset bit)
9539 *      - IGU
9540 *      - MISC (including AEU)
9541 *      - GRC
9542 *      - RBCN, RBCP
9543 */
9544static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9545{
9546        u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9547        u32 global_bits2, stay_reset2;
9548
9549        /*
9550         * Bits that have to be set in reset_mask2 if we want to reset 'global'
9551         * (per chip) blocks.
9552         */
9553        global_bits2 =
9554                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9555                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9556
9557        /* Don't reset the following blocks.
9558         * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9559         *            reset, as in 4 port device they might still be owned
9560         *            by the MCP (there is only one leader per path).
9561         */
9562        not_reset_mask1 =
9563                MISC_REGISTERS_RESET_REG_1_RST_HC |
9564                MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9565                MISC_REGISTERS_RESET_REG_1_RST_PXP;
9566
9567        not_reset_mask2 =
9568                MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9569                MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9570                MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9571                MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9572                MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9573                MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9574                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9575                MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9576                MISC_REGISTERS_RESET_REG_2_RST_ATC |
9577                MISC_REGISTERS_RESET_REG_2_PGLC |
9578                MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9579                MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9580                MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9581                MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9582                MISC_REGISTERS_RESET_REG_2_UMAC0 |
9583                MISC_REGISTERS_RESET_REG_2_UMAC1;
9584
9585        /*
9586         * Keep the following blocks in reset:
9587         *  - all xxMACs are handled by the bnx2x_link code.
9588         */
9589        stay_reset2 =
9590                MISC_REGISTERS_RESET_REG_2_XMAC |
9591                MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9592
9593        /* Full reset masks according to the chip */
9594        reset_mask1 = 0xffffffff;
9595
9596        if (CHIP_IS_E1(bp))
9597                reset_mask2 = 0xffff;
9598        else if (CHIP_IS_E1H(bp))
9599                reset_mask2 = 0x1ffff;
9600        else if (CHIP_IS_E2(bp))
9601                reset_mask2 = 0xfffff;
9602        else /* CHIP_IS_E3 */
9603                reset_mask2 = 0x3ffffff;
9604
9605        /* Don't reset global blocks unless we need to */
9606        if (!global)
9607                reset_mask2 &= ~global_bits2;
9608
9609        /*
9610         * In case of attention in the QM, we need to reset PXP
9611         * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9612         * because otherwise QM reset would release 'close the gates' shortly
9613         * before resetting the PXP, then the PSWRQ would send a write
9614         * request to PGLUE. Then when PXP is reset, PGLUE would try to
9615         * read the payload data from PSWWR, but PSWWR would not
9616         * respond. The write queue in PGLUE would stuck, dmae commands
9617         * would not return. Therefore it's important to reset the second
9618         * reset register (containing the
9619         * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9620         * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9621         * bit).
9622         */
9623        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9624               reset_mask2 & (~not_reset_mask2));
9625
9626        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9627               reset_mask1 & (~not_reset_mask1));
9628
9629        barrier();
9630        mmiowb();
9631
9632        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9633               reset_mask2 & (~stay_reset2));
9634
9635        barrier();
9636        mmiowb();
9637
9638        REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9639        mmiowb();
9640}
9641
9642/**
9643 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9644 * It should get cleared in no more than 1s.
9645 *
9646 * @bp: driver handle
9647 *
9648 * It should get cleared in no more than 1s. Returns 0 if
9649 * pending writes bit gets cleared.
9650 */
9651static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9652{
9653        u32 cnt = 1000;
9654        u32 pend_bits = 0;
9655
9656        do {
9657                pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9658
9659                if (pend_bits == 0)
9660                        break;
9661
9662                usleep_range(1000, 2000);
9663        } while (cnt-- > 0);
9664
9665        if (cnt <= 0) {
9666                BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9667                          pend_bits);
9668                return -EBUSY;
9669        }
9670
9671        return 0;
9672}
9673
9674static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9675{
9676        int cnt = 1000;
9677        u32 val = 0;
9678        u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9679        u32 tags_63_32 = 0;
9680
9681        /* Empty the Tetris buffer, wait for 1s */
9682        do {
9683                sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9684                blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9685                port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9686                port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9687                pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9688                if (CHIP_IS_E3(bp))
9689                        tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9690
9691                if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9692                    ((port_is_idle_0 & 0x1) == 0x1) &&
9693                    ((port_is_idle_1 & 0x1) == 0x1) &&
9694                    (pgl_exp_rom2 == 0xffffffff) &&
9695                    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9696                        break;
9697                usleep_range(1000, 2000);
9698        } while (cnt-- > 0);
9699
9700        if (cnt <= 0) {
9701                BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9702                BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9703                          sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9704                          pgl_exp_rom2);
9705                return -EAGAIN;
9706        }
9707
9708        barrier();
9709
9710        /* Close gates #2, #3 and #4 */
9711        bnx2x_set_234_gates(bp, true);
9712
9713        /* Poll for IGU VQs for 57712 and newer chips */
9714        if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9715                return -EAGAIN;
9716
9717        /* TBD: Indicate that "process kill" is in progress to MCP */
9718
9719        /* Clear "unprepared" bit */
9720        REG_WR(bp, MISC_REG_UNPREPARED, 0);
9721        barrier();
9722
9723        /* Make sure all is written to the chip before the reset */
9724        mmiowb();
9725
9726        /* Wait for 1ms to empty GLUE and PCI-E core queues,
9727         * PSWHST, GRC and PSWRD Tetris buffer.
9728         */
9729        usleep_range(1000, 2000);
9730
9731        /* Prepare to chip reset: */
9732        /* MCP */
9733        if (global)
9734                bnx2x_reset_mcp_prep(bp, &val);
9735
9736        /* PXP */
9737        bnx2x_pxp_prep(bp);
9738        barrier();
9739
9740        /* reset the chip */
9741        bnx2x_process_kill_chip_reset(bp, global);
9742        barrier();
9743
9744        /* clear errors in PGB */
9745        if (!CHIP_IS_E1x(bp))
9746                REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9747
9748        /* Recover after reset: */
9749        /* MCP */
9750        if (global && bnx2x_reset_mcp_comp(bp, val))
9751                return -EAGAIN;
9752
9753        /* TBD: Add resetting the NO_MCP mode DB here */
9754
9755        /* Open the gates #2, #3 and #4 */
9756        bnx2x_set_234_gates(bp, false);
9757
9758        /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9759         * reset state, re-enable attentions. */
9760
9761        return 0;
9762}
9763
9764static int bnx2x_leader_reset(struct bnx2x *bp)
9765{
9766        int rc = 0;
9767        bool global = bnx2x_reset_is_global(bp);
9768        u32 load_code;
9769
9770        /* if not going to reset MCP - load "fake" driver to reset HW while
9771         * driver is owner of the HW
9772         */
9773        if (!global && !BP_NOMCP(bp)) {
9774                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9775                                             DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9776                if (!load_code) {
9777                        BNX2X_ERR("MCP response failure, aborting\n");
9778                        rc = -EAGAIN;
9779                        goto exit_leader_reset;
9780                }
9781                if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9782                    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9783                        BNX2X_ERR("MCP unexpected resp, aborting\n");
9784                        rc = -EAGAIN;
9785                        goto exit_leader_reset2;
9786                }
9787                load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9788                if (!load_code) {
9789                        BNX2X_ERR("MCP response failure, aborting\n");
9790                        rc = -EAGAIN;
9791                        goto exit_leader_reset2;
9792                }
9793        }
9794
9795        /* Try to recover after the failure */
9796        if (bnx2x_process_kill(bp, global)) {
9797                BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9798                          BP_PATH(bp));
9799                rc = -EAGAIN;
9800                goto exit_leader_reset2;
9801        }
9802
9803        /*
9804         * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9805         * state.
9806         */
9807        bnx2x_set_reset_done(bp);
9808        if (global)
9809                bnx2x_clear_reset_global(bp);
9810
9811exit_leader_reset2:
9812        /* unload "fake driver" if it was loaded */
9813        if (!global && !BP_NOMCP(bp)) {
9814                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9815                bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9816        }
9817exit_leader_reset:
9818        bp->is_leader = 0;
9819        bnx2x_release_leader_lock(bp);
9820        smp_mb();
9821        return rc;
9822}
9823
9824static void bnx2x_recovery_failed(struct bnx2x *bp)
9825{
9826        netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9827
9828        /* Disconnect this device */
9829        netif_device_detach(bp->dev);
9830
9831        /*
9832         * Block ifup for all function on this engine until "process kill"
9833         * or power cycle.
9834         */
9835        bnx2x_set_reset_in_progress(bp);
9836
9837        /* Shut down the power */
9838        bnx2x_set_power_state(bp, PCI_D3hot);
9839
9840        bp->recovery_state = BNX2X_RECOVERY_FAILED;
9841
9842        smp_mb();
9843}
9844
9845/*
9846 * Assumption: runs under rtnl lock. This together with the fact
9847 * that it's called only from bnx2x_sp_rtnl() ensure that it
9848 * will never be called when netif_running(bp->dev) is false.
9849 */
9850static void bnx2x_parity_recover(struct bnx2x *bp)
9851{
9852        bool global = false;
9853        u32 error_recovered, error_unrecovered;
9854        bool is_parity;
9855
9856        DP(NETIF_MSG_HW, "Handling parity\n");
9857        while (1) {
9858                switch (bp->recovery_state) {
9859                case BNX2X_RECOVERY_INIT:
9860                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9861                        is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9862                        WARN_ON(!is_parity);
9863
9864                        /* Try to get a LEADER_LOCK HW lock */
9865                        if (bnx2x_trylock_leader_lock(bp)) {
9866                                bnx2x_set_reset_in_progress(bp);
9867                                /*
9868                                 * Check if there is a global attention and if
9869                                 * there was a global attention, set the global
9870                                 * reset bit.
9871                                 */
9872
9873                                if (global)
9874                                        bnx2x_set_reset_global(bp);
9875
9876                                bp->is_leader = 1;
9877                        }
9878
9879                        /* Stop the driver */
9880                        /* If interface has been removed - break */
9881                        if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9882                                return;
9883
9884                        bp->recovery_state = BNX2X_RECOVERY_WAIT;
9885
9886                        /* Ensure "is_leader", MCP command sequence and
9887                         * "recovery_state" update values are seen on other
9888                         * CPUs.
9889                         */
9890                        smp_mb();
9891                        break;
9892
9893                case BNX2X_RECOVERY_WAIT:
9894                        DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9895                        if (bp->is_leader) {
9896                                int other_engine = BP_PATH(bp) ? 0 : 1;
9897                                bool other_load_status =
9898                                        bnx2x_get_load_status(bp, other_engine);
9899                                bool load_status =
9900                                        bnx2x_get_load_status(bp, BP_PATH(bp));
9901                                global = bnx2x_reset_is_global(bp);
9902
9903                                /*
9904                                 * In case of a parity in a global block, let
9905                                 * the first leader that performs a
9906                                 * leader_reset() reset the global blocks in
9907                                 * order to clear global attentions. Otherwise
9908                                 * the gates will remain closed for that
9909                                 * engine.
9910                                 */
9911                                if (load_status ||
9912                                    (global && other_load_status)) {
9913                                        /* Wait until all other functions get
9914                                         * down.
9915                                         */
9916                                        schedule_delayed_work(&bp->sp_rtnl_task,
9917                                                                HZ/10);
9918                                        return;
9919                                } else {
9920                                        /* If all other functions got down -
9921                                         * try to bring the chip back to
9922                                         * normal. In any case it's an exit
9923                                         * point for a leader.
9924                                         */
9925                                        if (bnx2x_leader_reset(bp)) {
9926                                                bnx2x_recovery_failed(bp);
9927                                                return;
9928                                        }
9929
9930                                        /* If we are here, means that the
9931                                         * leader has succeeded and doesn't
9932                                         * want to be a leader any more. Try
9933                                         * to continue as a none-leader.
9934                                         */
9935                                        break;
9936                                }
9937                        } else { /* non-leader */
9938                                if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9939                                        /* Try to get a LEADER_LOCK HW lock as
9940                                         * long as a former leader may have
9941                                         * been unloaded by the user or
9942                                         * released a leadership by another
9943                                         * reason.
9944                                         */
9945                                        if (bnx2x_trylock_leader_lock(bp)) {
9946                                                /* I'm a leader now! Restart a
9947                                                 * switch case.
9948                                                 */
9949                                                bp->is_leader = 1;
9950                                                break;
9951                                        }
9952
9953                                        schedule_delayed_work(&bp->sp_rtnl_task,
9954                                                                HZ/10);
9955                                        return;
9956
9957                                } else {
9958                                        /*
9959                                         * If there was a global attention, wait
9960                                         * for it to be cleared.
9961                                         */
9962                                        if (bnx2x_reset_is_global(bp)) {
9963                                                schedule_delayed_work(
9964                                                        &bp->sp_rtnl_task,
9965                                                        HZ/10);
9966                                                return;
9967                                        }
9968
9969                                        error_recovered =
9970                                          bp->eth_stats.recoverable_error;
9971                                        error_unrecovered =
9972                                          bp->eth_stats.unrecoverable_error;
9973                                        bp->recovery_state =
9974                                                BNX2X_RECOVERY_NIC_LOADING;
9975                                        if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9976                                                error_unrecovered++;
9977                                                netdev_err(bp->dev,
9978                                                           "Recovery failed. Power cycle needed\n");
9979                                                /* Disconnect this device */
9980                                                netif_device_detach(bp->dev);
9981                                                /* Shut down the power */
9982                                                bnx2x_set_power_state(
9983                                                        bp, PCI_D3hot);
9984                                                smp_mb();
9985                                        } else {
9986                                                bp->recovery_state =
9987                                                        BNX2X_RECOVERY_DONE;
9988                                                error_recovered++;
9989                                                smp_mb();
9990                                        }
9991                                        bp->eth_stats.recoverable_error =
9992                                                error_recovered;
9993                                        bp->eth_stats.unrecoverable_error =
9994                                                error_unrecovered;
9995
9996                                        return;
9997                                }
9998                        }
9999                default:
10000                        return;
10001                }
10002        }
10003}
10004
10005static int bnx2x_close(struct net_device *dev);
10006
10007/* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10008 * scheduled on a general queue in order to prevent a dead lock.
10009 */
10010static void bnx2x_sp_rtnl_task(struct work_struct *work)
10011{
10012        struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10013
10014        rtnl_lock();
10015
10016        if (!netif_running(bp->dev)) {
10017                rtnl_unlock();
10018                return;
10019        }
10020
10021        if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10022#ifdef BNX2X_STOP_ON_ERROR
10023                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10024                          "you will need to reboot when done\n");
10025                goto sp_rtnl_not_reset;
10026#endif
10027                /*
10028                 * Clear all pending SP commands as we are going to reset the
10029                 * function anyway.
10030                 */
10031                bp->sp_rtnl_state = 0;
10032                smp_mb();
10033
10034                bnx2x_parity_recover(bp);
10035
10036                rtnl_unlock();
10037                return;
10038        }
10039
10040        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10041#ifdef BNX2X_STOP_ON_ERROR
10042                BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10043                          "you will need to reboot when done\n");
10044                goto sp_rtnl_not_reset;
10045#endif
10046
10047                /*
10048                 * Clear all pending SP commands as we are going to reset the
10049                 * function anyway.
10050                 */
10051                bp->sp_rtnl_state = 0;
10052                smp_mb();
10053
10054                bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10055                bnx2x_nic_load(bp, LOAD_NORMAL);
10056
10057                rtnl_unlock();
10058                return;
10059        }
10060#ifdef BNX2X_STOP_ON_ERROR
10061sp_rtnl_not_reset:
10062#endif
10063        if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10064                bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10065        if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10066                bnx2x_after_function_update(bp);
10067        /*
10068         * in case of fan failure we need to reset id if the "stop on error"
10069         * debug flag is set, since we trying to prevent permanent overheating
10070         * damage
10071         */
10072        if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10073                DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10074                netif_device_detach(bp->dev);
10075                bnx2x_close(bp->dev);
10076                rtnl_unlock();
10077                return;
10078        }
10079
10080        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10081                DP(BNX2X_MSG_SP,
10082                   "sending set mcast vf pf channel message from rtnl sp-task\n");
10083                bnx2x_vfpf_set_mcast(bp->dev);
10084        }
10085        if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10086                               &bp->sp_rtnl_state)){
10087                if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10088                        bnx2x_tx_disable(bp);
10089                        BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10090                }
10091        }
10092
10093        if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10094                DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10095                bnx2x_set_rx_mode_inner(bp);
10096        }
10097
10098        if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10099                               &bp->sp_rtnl_state))
10100                bnx2x_pf_set_vfs_vlan(bp);
10101
10102        if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10103                bnx2x_dcbx_stop_hw_tx(bp);
10104                bnx2x_dcbx_resume_hw_tx(bp);
10105        }
10106
10107        if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10108                               &bp->sp_rtnl_state))
10109                bnx2x_update_mng_version(bp);
10110
10111        /* work which needs rtnl lock not-taken (as it takes the lock itself and
10112         * can be called from other contexts as well)
10113         */
10114        rtnl_unlock();
10115
10116        /* enable SR-IOV if applicable */
10117        if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10118                                               &bp->sp_rtnl_state)) {
10119                bnx2x_disable_sriov(bp);
10120                bnx2x_enable_sriov(bp);
10121        }
10122}
10123
10124static void bnx2x_period_task(struct work_struct *work)
10125{
10126        struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10127
10128        if (!netif_running(bp->dev))
10129                goto period_task_exit;
10130
10131        if (CHIP_REV_IS_SLOW(bp)) {
10132                BNX2X_ERR("period task called on emulation, ignoring\n");
10133                goto period_task_exit;
10134        }
10135
10136        bnx2x_acquire_phy_lock(bp);
10137        /*
10138         * The barrier is needed to ensure the ordering between the writing to
10139         * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10140         * the reading here.
10141         */
10142        smp_mb();
10143        if (bp->port.pmf) {
10144                bnx2x_period_func(&bp->link_params, &bp->link_vars);
10145
10146                /* Re-queue task in 1 sec */
10147                queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10148        }
10149
10150        bnx2x_release_phy_lock(bp);
10151period_task_exit:
10152        return;
10153}
10154
10155/*
10156 * Init service functions
10157 */
10158
10159static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10160{
10161        u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10162        u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10163        return base + (BP_ABS_FUNC(bp)) * stride;
10164}
10165
10166static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10167                                         u8 port, u32 reset_reg,
10168                                         struct bnx2x_mac_vals *vals)
10169{
10170        u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10171        u32 base_addr;
10172
10173        if (!(mask & reset_reg))
10174                return false;
10175
10176        BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10177        base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10178        vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10179        vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10180        REG_WR(bp, vals->umac_addr[port], 0);
10181
10182        return true;
10183}
10184
10185static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10186                                        struct bnx2x_mac_vals *vals)
10187{
10188        u32 val, base_addr, offset, mask, reset_reg;
10189        bool mac_stopped = false;
10190        u8 port = BP_PORT(bp);
10191
10192        /* reset addresses as they also mark which values were changed */
10193        memset(vals, 0, sizeof(*vals));
10194
10195        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10196
10197        if (!CHIP_IS_E3(bp)) {
10198                val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10199                mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10200                if ((mask & reset_reg) && val) {
10201                        u32 wb_data[2];
10202                        BNX2X_DEV_INFO("Disable bmac Rx\n");
10203                        base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10204                                                : NIG_REG_INGRESS_BMAC0_MEM;
10205                        offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10206                                                : BIGMAC_REGISTER_BMAC_CONTROL;
10207
10208                        /*
10209                         * use rd/wr since we cannot use dmae. This is safe
10210                         * since MCP won't access the bus due to the request
10211                         * to unload, and no function on the path can be
10212                         * loaded at this time.
10213                         */
10214                        wb_data[0] = REG_RD(bp, base_addr + offset);
10215                        wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10216                        vals->bmac_addr = base_addr + offset;
10217                        vals->bmac_val[0] = wb_data[0];
10218                        vals->bmac_val[1] = wb_data[1];
10219                        wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10220                        REG_WR(bp, vals->bmac_addr, wb_data[0]);
10221                        REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10222                }
10223                BNX2X_DEV_INFO("Disable emac Rx\n");
10224                vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10225                vals->emac_val = REG_RD(bp, vals->emac_addr);
10226                REG_WR(bp, vals->emac_addr, 0);
10227                mac_stopped = true;
10228        } else {
10229                if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10230                        BNX2X_DEV_INFO("Disable xmac Rx\n");
10231                        base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10232                        val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10233                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10234                               val & ~(1 << 1));
10235                        REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10236                               val | (1 << 1));
10237                        vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10238                        vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10239                        REG_WR(bp, vals->xmac_addr, 0);
10240                        mac_stopped = true;
10241                }
10242
10243                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10244                                                            reset_reg, vals);
10245                mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10246                                                            reset_reg, vals);
10247        }
10248
10249        if (mac_stopped)
10250                msleep(20);
10251}
10252
10253#define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10254#define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10255                                        0x1848 + ((f) << 4))
10256#define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10257#define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10258#define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10259
10260#define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10261#define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10262#define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10263
10264static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10265{
10266        /* UNDI marks its presence in DORQ -
10267         * it initializes CID offset for normal bell to 0x7
10268         */
10269        if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10270            MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10271                return false;
10272
10273        if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10274                BNX2X_DEV_INFO("UNDI previously loaded\n");
10275                return true;
10276        }
10277
10278        return false;
10279}
10280
10281static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10282{
10283        u16 rcq, bd;
10284        u32 addr, tmp_reg;
10285
10286        if (BP_FUNC(bp) < 2)
10287                addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10288        else
10289                addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10290
10291        tmp_reg = REG_RD(bp, addr);
10292        rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10293        bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10294
10295        tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10296        REG_WR(bp, addr, tmp_reg);
10297
10298        BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10299                       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10300}
10301
10302static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10303{
10304        u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10305                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10306        if (!rc) {
10307                BNX2X_ERR("MCP response failure, aborting\n");
10308                return -EBUSY;
10309        }
10310
10311        return 0;
10312}
10313
10314static struct bnx2x_prev_path_list *
10315                bnx2x_prev_path_get_entry(struct bnx2x *bp)
10316{
10317        struct bnx2x_prev_path_list *tmp_list;
10318
10319        list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10320                if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10321                    bp->pdev->bus->number == tmp_list->bus &&
10322                    BP_PATH(bp) == tmp_list->path)
10323                        return tmp_list;
10324
10325        return NULL;
10326}
10327
10328static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10329{
10330        struct bnx2x_prev_path_list *tmp_list;
10331        int rc;
10332
10333        rc = down_interruptible(&bnx2x_prev_sem);
10334        if (rc) {
10335                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10336                return rc;
10337        }
10338
10339        tmp_list = bnx2x_prev_path_get_entry(bp);
10340        if (tmp_list) {
10341                tmp_list->aer = 1;
10342                rc = 0;
10343        } else {
10344                BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10345                          BP_PATH(bp));
10346        }
10347
10348        up(&bnx2x_prev_sem);
10349
10350        return rc;
10351}
10352
10353static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10354{
10355        struct bnx2x_prev_path_list *tmp_list;
10356        bool rc = false;
10357
10358        if (down_trylock(&bnx2x_prev_sem))
10359                return false;
10360
10361        tmp_list = bnx2x_prev_path_get_entry(bp);
10362        if (tmp_list) {
10363                if (tmp_list->aer) {
10364                        DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10365                           BP_PATH(bp));
10366                } else {
10367                        rc = true;
10368                        BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10369                                       BP_PATH(bp));
10370                }
10371        }
10372
10373        up(&bnx2x_prev_sem);
10374
10375        return rc;
10376}
10377
10378bool bnx2x_port_after_undi(struct bnx2x *bp)
10379{
10380        struct bnx2x_prev_path_list *entry;
10381        bool val;
10382
10383        down(&bnx2x_prev_sem);
10384
10385        entry = bnx2x_prev_path_get_entry(bp);
10386        val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10387
10388        up(&bnx2x_prev_sem);
10389
10390        return val;
10391}
10392
10393static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10394{
10395        struct bnx2x_prev_path_list *tmp_list;
10396        int rc;
10397
10398        rc = down_interruptible(&bnx2x_prev_sem);
10399        if (rc) {
10400                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10401                return rc;
10402        }
10403
10404        /* Check whether the entry for this path already exists */
10405        tmp_list = bnx2x_prev_path_get_entry(bp);
10406        if (tmp_list) {
10407                if (!tmp_list->aer) {
10408                        BNX2X_ERR("Re-Marking the path.\n");
10409                } else {
10410                        DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10411                           BP_PATH(bp));
10412                        tmp_list->aer = 0;
10413                }
10414                up(&bnx2x_prev_sem);
10415                return 0;
10416        }
10417        up(&bnx2x_prev_sem);
10418
10419        /* Create an entry for this path and add it */
10420        tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10421        if (!tmp_list) {
10422                BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10423                return -ENOMEM;
10424        }
10425
10426        tmp_list->bus = bp->pdev->bus->number;
10427        tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10428        tmp_list->path = BP_PATH(bp);
10429        tmp_list->aer = 0;
10430        tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10431
10432        rc = down_interruptible(&bnx2x_prev_sem);
10433        if (rc) {
10434                BNX2X_ERR("Received %d when tried to take lock\n", rc);
10435                kfree(tmp_list);
10436        } else {
10437                DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10438                   BP_PATH(bp));
10439                list_add(&tmp_list->list, &bnx2x_prev_list);
10440                up(&bnx2x_prev_sem);
10441        }
10442
10443        return rc;
10444}
10445
10446static int bnx2x_do_flr(struct bnx2x *bp)
10447{
10448        struct pci_dev *dev = bp->pdev;
10449
10450        if (CHIP_IS_E1x(bp)) {
10451                BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10452                return -EINVAL;
10453        }
10454
10455        /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10456        if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10457                BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10458                          bp->common.bc_ver);
10459                return -EINVAL;
10460        }
10461
10462        if (!pci_wait_for_pending_transaction(dev))
10463                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10464
10465        BNX2X_DEV_INFO("Initiating FLR\n");
10466        bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10467
10468        return 0;
10469}
10470
10471static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10472{
10473        int rc;
10474
10475        BNX2X_DEV_INFO("Uncommon unload Flow\n");
10476
10477        /* Test if previous unload process was already finished for this path */
10478        if (bnx2x_prev_is_path_marked(bp))
10479                return bnx2x_prev_mcp_done(bp);
10480
10481        BNX2X_DEV_INFO("Path is unmarked\n");
10482
10483        /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10484        if (bnx2x_prev_is_after_undi(bp))
10485                goto out;
10486
10487        /* If function has FLR capabilities, and existing FW version matches
10488         * the one required, then FLR will be sufficient to clean any residue
10489         * left by previous driver
10490         */
10491        rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10492
10493        if (!rc) {
10494                /* fw version is good */
10495                BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10496                rc = bnx2x_do_flr(bp);
10497        }
10498
10499        if (!rc) {
10500                /* FLR was performed */
10501                BNX2X_DEV_INFO("FLR successful\n");
10502                return 0;
10503        }
10504
10505        BNX2X_DEV_INFO("Could not FLR\n");
10506
10507out:
10508        /* Close the MCP request, return failure*/
10509        rc = bnx2x_prev_mcp_done(bp);
10510        if (!rc)
10511                rc = BNX2X_PREV_WAIT_NEEDED;
10512
10513        return rc;
10514}
10515
10516static int bnx2x_prev_unload_common(struct bnx2x *bp)
10517{
10518        u32 reset_reg, tmp_reg = 0, rc;
10519        bool prev_undi = false;
10520        struct bnx2x_mac_vals mac_vals;
10521
10522        /* It is possible a previous function received 'common' answer,
10523         * but hasn't loaded yet, therefore creating a scenario of
10524         * multiple functions receiving 'common' on the same path.
10525         */
10526        BNX2X_DEV_INFO("Common unload Flow\n");
10527
10528        memset(&mac_vals, 0, sizeof(mac_vals));
10529
10530        if (bnx2x_prev_is_path_marked(bp))
10531                return bnx2x_prev_mcp_done(bp);
10532
10533        reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10534
10535        /* Reset should be performed after BRB is emptied */
10536        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10537                u32 timer_count = 1000;
10538
10539                /* Close the MAC Rx to prevent BRB from filling up */
10540                bnx2x_prev_unload_close_mac(bp, &mac_vals);
10541
10542                /* close LLH filters for both ports towards the BRB */
10543                bnx2x_set_rx_filter(&bp->link_params, 0);
10544                bp->link_params.port ^= 1;
10545                bnx2x_set_rx_filter(&bp->link_params, 0);
10546                bp->link_params.port ^= 1;
10547
10548                /* Check if the UNDI driver was previously loaded */
10549                if (bnx2x_prev_is_after_undi(bp)) {
10550                        prev_undi = true;
10551                        /* clear the UNDI indication */
10552                        REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10553                        /* clear possible idle check errors */
10554                        REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10555                }
10556                if (!CHIP_IS_E1x(bp))
10557                        /* block FW from writing to host */
10558                        REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10559
10560                /* wait until BRB is empty */
10561                tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10562                while (timer_count) {
10563                        u32 prev_brb = tmp_reg;
10564
10565                        tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10566                        if (!tmp_reg)
10567                                break;
10568
10569                        BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10570
10571                        /* reset timer as long as BRB actually gets emptied */
10572                        if (prev_brb > tmp_reg)
10573                                timer_count = 1000;
10574                        else
10575                                timer_count--;
10576
10577                        /* If UNDI resides in memory, manually increment it */
10578                        if (prev_undi)
10579                                bnx2x_prev_unload_undi_inc(bp, 1);
10580
10581                        udelay(10);
10582                }
10583
10584                if (!timer_count)
10585                        BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10586        }
10587
10588        /* No packets are in the pipeline, path is ready for reset */
10589        bnx2x_reset_common(bp);
10590
10591        if (mac_vals.xmac_addr)
10592                REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10593        if (mac_vals.umac_addr[0])
10594                REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10595        if (mac_vals.umac_addr[1])
10596                REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10597        if (mac_vals.emac_addr)
10598                REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10599        if (mac_vals.bmac_addr) {
10600                REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10601                REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10602        }
10603
10604        rc = bnx2x_prev_mark_path(bp, prev_undi);
10605        if (rc) {
10606                bnx2x_prev_mcp_done(bp);
10607                return rc;
10608        }
10609
10610        return bnx2x_prev_mcp_done(bp);
10611}
10612
10613static int bnx2x_prev_unload(struct bnx2x *bp)
10614{
10615        int time_counter = 10;
10616        u32 rc, fw, hw_lock_reg, hw_lock_val;
10617        BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10618
10619        /* clear hw from errors which may have resulted from an interrupted
10620         * dmae transaction.
10621         */
10622        bnx2x_clean_pglue_errors(bp);
10623
10624        /* Release previously held locks */
10625        hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10626                      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10627                      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10628
10629        hw_lock_val = REG_RD(bp, hw_lock_reg);
10630        if (hw_lock_val) {
10631                if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10632                        BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10633                        REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10634                               (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10635                }
10636
10637                BNX2X_DEV_INFO("Release Previously held hw lock\n");
10638                REG_WR(bp, hw_lock_reg, 0xffffffff);
10639        } else
10640                BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10641
10642        if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10643                BNX2X_DEV_INFO("Release previously held alr\n");
10644                bnx2x_release_alr(bp);
10645        }
10646
10647        do {
10648                int aer = 0;
10649                /* Lock MCP using an unload request */
10650                fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10651                if (!fw) {
10652                        BNX2X_ERR("MCP response failure, aborting\n");
10653                        rc = -EBUSY;
10654                        break;
10655                }
10656
10657                rc = down_interruptible(&bnx2x_prev_sem);
10658                if (rc) {
10659                        BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10660                                  rc);
10661                } else {
10662                        /* If Path is marked by EEH, ignore unload status */
10663                        aer = !!(bnx2x_prev_path_get_entry(bp) &&
10664                                 bnx2x_prev_path_get_entry(bp)->aer);
10665                        up(&bnx2x_prev_sem);
10666                }
10667
10668                if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10669                        rc = bnx2x_prev_unload_common(bp);
10670                        break;
10671                }
10672
10673                /* non-common reply from MCP might require looping */
10674                rc = bnx2x_prev_unload_uncommon(bp);
10675                if (rc != BNX2X_PREV_WAIT_NEEDED)
10676                        break;
10677
10678                msleep(20);
10679        } while (--time_counter);
10680
10681        if (!time_counter || rc) {
10682                BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10683                rc = -EPROBE_DEFER;
10684        }
10685
10686        /* Mark function if its port was used to boot from SAN */
10687        if (bnx2x_port_after_undi(bp))
10688                bp->link_params.feature_config_flags |=
10689                        FEATURE_CONFIG_BOOT_FROM_SAN;
10690
10691        BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10692
10693        return rc;
10694}
10695
10696static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10697{
10698        u32 val, val2, val3, val4, id, boot_mode;
10699        u16 pmc;
10700
10701        /* Get the chip revision id and number. */
10702        /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10703        val = REG_RD(bp, MISC_REG_CHIP_NUM);
10704        id = ((val & 0xffff) << 16);
10705        val = REG_RD(bp, MISC_REG_CHIP_REV);
10706        id |= ((val & 0xf) << 12);
10707
10708        /* Metal is read from PCI regs, but we can't access >=0x400 from
10709         * the configuration space (so we need to reg_rd)
10710         */
10711        val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10712        id |= (((val >> 24) & 0xf) << 4);
10713        val = REG_RD(bp, MISC_REG_BOND_ID);
10714        id |= (val & 0xf);
10715        bp->common.chip_id = id;
10716
10717        /* force 57811 according to MISC register */
10718        if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10719                if (CHIP_IS_57810(bp))
10720                        bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10721                                (bp->common.chip_id & 0x0000FFFF);
10722                else if (CHIP_IS_57810_MF(bp))
10723                        bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10724                                (bp->common.chip_id & 0x0000FFFF);
10725                bp->common.chip_id |= 0x1;
10726        }
10727
10728        /* Set doorbell size */
10729        bp->db_size = (1 << BNX2X_DB_SHIFT);
10730
10731        if (!CHIP_IS_E1x(bp)) {
10732                val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10733                if ((val & 1) == 0)
10734                        val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10735                else
10736                        val = (val >> 1) & 1;
10737                BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10738                                                       "2_PORT_MODE");
10739                bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10740                                                 CHIP_2_PORT_MODE;
10741
10742                if (CHIP_MODE_IS_4_PORT(bp))
10743                        bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10744                else
10745                        bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10746        } else {
10747                bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10748                bp->pfid = bp->pf_num;                  /* 0..7 */
10749        }
10750
10751        BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10752
10753        bp->link_params.chip_id = bp->common.chip_id;
10754        BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10755
10756        val = (REG_RD(bp, 0x2874) & 0x55);
10757        if ((bp->common.chip_id & 0x1) ||
10758            (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10759                bp->flags |= ONE_PORT_FLAG;
10760                BNX2X_DEV_INFO("single port device\n");
10761        }
10762
10763        val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10764        bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10765                                 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10766        BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10767                       bp->common.flash_size, bp->common.flash_size);
10768
10769        bnx2x_init_shmem(bp);
10770
10771        bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10772                                        MISC_REG_GENERIC_CR_1 :
10773                                        MISC_REG_GENERIC_CR_0));
10774
10775        bp->link_params.shmem_base = bp->common.shmem_base;
10776        bp->link_params.shmem2_base = bp->common.shmem2_base;
10777        if (SHMEM2_RD(bp, size) >
10778            (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10779                bp->link_params.lfa_base =
10780                REG_RD(bp, bp->common.shmem2_base +
10781                       (u32)offsetof(struct shmem2_region,
10782                                     lfa_host_addr[BP_PORT(bp)]));
10783        else
10784                bp->link_params.lfa_base = 0;
10785        BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10786                       bp->common.shmem_base, bp->common.shmem2_base);
10787
10788        if (!bp->common.shmem_base) {
10789                BNX2X_DEV_INFO("MCP not active\n");
10790                bp->flags |= NO_MCP_FLAG;
10791                return;
10792        }
10793
10794        bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10795        BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10796
10797        bp->link_params.hw_led_mode = ((bp->common.hw_config &
10798                                        SHARED_HW_CFG_LED_MODE_MASK) >>
10799                                       SHARED_HW_CFG_LED_MODE_SHIFT);
10800
10801        bp->link_params.feature_config_flags = 0;
10802        val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10803        if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10804                bp->link_params.feature_config_flags |=
10805                                FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10806        else
10807                bp->link_params.feature_config_flags &=
10808                                ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10809
10810        val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10811        bp->common.bc_ver = val;
10812        BNX2X_DEV_INFO("bc_ver %X\n", val);
10813        if (val < BNX2X_BC_VER) {
10814                /* for now only warn
10815                 * later we might need to enforce this */
10816                BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10817                          BNX2X_BC_VER, val);
10818        }
10819        bp->link_params.feature_config_flags |=
10820                                (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10821                                FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10822
10823        bp->link_params.feature_config_flags |=
10824                (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10825                FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10826        bp->link_params.feature_config_flags |=
10827                (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10828                FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10829        bp->link_params.feature_config_flags |=
10830                (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10831                FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10832
10833        bp->link_params.feature_config_flags |=
10834                (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10835                FEATURE_CONFIG_MT_SUPPORT : 0;
10836
10837        bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10838                        BC_SUPPORTS_PFC_STATS : 0;
10839
10840        bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10841                        BC_SUPPORTS_FCOE_FEATURES : 0;
10842
10843        bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10844                        BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10845
10846        bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10847                        BC_SUPPORTS_RMMOD_CMD : 0;
10848
10849        boot_mode = SHMEM_RD(bp,
10850                        dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10851                        PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10852        switch (boot_mode) {
10853        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10854                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10855                break;
10856        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10857                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10858                break;
10859        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10860                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10861                break;
10862        case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10863                bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10864                break;
10865        }
10866
10867        pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10868        bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10869
10870        BNX2X_DEV_INFO("%sWoL capable\n",
10871                       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10872
10873        val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10874        val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10875        val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10876        val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10877
10878        dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10879                 val, val2, val3, val4);
10880}
10881
10882#define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10883#define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10884
10885static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10886{
10887        int pfid = BP_FUNC(bp);
10888        int igu_sb_id;
10889        u32 val;
10890        u8 fid, igu_sb_cnt = 0;
10891
10892        bp->igu_base_sb = 0xff;
10893        if (CHIP_INT_MODE_IS_BC(bp)) {
10894                int vn = BP_VN(bp);
10895                igu_sb_cnt = bp->igu_sb_cnt;
10896                bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10897                        FP_SB_MAX_E1x;
10898
10899                bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10900                        (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10901
10902                return 0;
10903        }
10904
10905        /* IGU in normal mode - read CAM */
10906        for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10907             igu_sb_id++) {
10908                val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10909                if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10910                        continue;
10911                fid = IGU_FID(val);
10912                if ((fid & IGU_FID_ENCODE_IS_PF)) {
10913                        if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10914                                continue;
10915                        if (IGU_VEC(val) == 0)
10916                                /* default status block */
10917                                bp->igu_dsb_id = igu_sb_id;
10918                        else {
10919                                if (bp->igu_base_sb == 0xff)
10920                                        bp->igu_base_sb = igu_sb_id;
10921                                igu_sb_cnt++;
10922                        }
10923                }
10924        }
10925
10926#ifdef CONFIG_PCI_MSI
10927        /* Due to new PF resource allocation by MFW T7.4 and above, it's
10928         * optional that number of CAM entries will not be equal to the value
10929         * advertised in PCI.
10930         * Driver should use the minimal value of both as the actual status
10931         * block count
10932         */
10933        bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10934#endif
10935
10936        if (igu_sb_cnt == 0) {
10937                BNX2X_ERR("CAM configuration error\n");
10938                return -EINVAL;
10939        }
10940
10941        return 0;
10942}
10943
10944static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10945{
10946        int cfg_size = 0, idx, port = BP_PORT(bp);
10947
10948        /* Aggregation of supported attributes of all external phys */
10949        bp->port.supported[0] = 0;
10950        bp->port.supported[1] = 0;
10951        switch (bp->link_params.num_phys) {
10952        case 1:
10953                bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10954                cfg_size = 1;
10955                break;
10956        case 2:
10957                bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10958                cfg_size = 1;
10959                break;
10960        case 3:
10961                if (bp->link_params.multi_phy_config &
10962                    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10963                        bp->port.supported[1] =
10964                                bp->link_params.phy[EXT_PHY1].supported;
10965                        bp->port.supported[0] =
10966                                bp->link_params.phy[EXT_PHY2].supported;
10967                } else {
10968                        bp->port.supported[0] =
10969                                bp->link_params.phy[EXT_PHY1].supported;
10970                        bp->port.supported[1] =
10971                                bp->link_params.phy[EXT_PHY2].supported;
10972                }
10973                cfg_size = 2;
10974                break;
10975        }
10976
10977        if (!(bp->port.supported[0] || bp->port.supported[1])) {
10978                BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10979                           SHMEM_RD(bp,
10980                           dev_info.port_hw_config[port].external_phy_config),
10981                           SHMEM_RD(bp,
10982                           dev_info.port_hw_config[port].external_phy_config2));
10983                        return;
10984        }
10985
10986        if (CHIP_IS_E3(bp))
10987                bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10988        else {
10989                switch (switch_cfg) {
10990                case SWITCH_CFG_1G:
10991                        bp->port.phy_addr = REG_RD(
10992                                bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10993                        break;
10994                case SWITCH_CFG_10G:
10995                        bp->port.phy_addr = REG_RD(
10996                                bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10997                        break;
10998                default:
10999                        BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11000                                  bp->port.link_config[0]);
11001                        return;
11002                }
11003        }
11004        BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11005        /* mask what we support according to speed_cap_mask per configuration */
11006        for (idx = 0; idx < cfg_size; idx++) {
11007                if (!(bp->link_params.speed_cap_mask[idx] &
11008                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11009                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11010
11011                if (!(bp->link_params.speed_cap_mask[idx] &
11012                                PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11013                        bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11014
11015                if (!(bp->link_params.speed_cap_mask[idx] &
11016                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11017                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11018
11019                if (!(bp->link_params.speed_cap_mask[idx] &
11020                                PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11021                        bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11022
11023                if (!(bp->link_params.speed_cap_mask[idx] &
11024                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11025                        bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11026                                                     SUPPORTED_1000baseT_Full);
11027
11028                if (!(bp->link_params.speed_cap_mask[idx] &
11029                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11030                        bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11031
11032                if (!(bp->link_params.speed_cap_mask[idx] &
11033                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11034                        bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11035
11036                if (!(bp->link_params.speed_cap_mask[idx] &
11037                                        PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11038                        bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11039        }
11040
11041        BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11042                       bp->port.supported[1]);
11043}
11044
11045static void bnx2x_link_settings_requested(struct bnx2x *bp)
11046{
11047        u32 link_config, idx, cfg_size = 0;
11048        bp->port.advertising[0] = 0;
11049        bp->port.advertising[1] = 0;
11050        switch (bp->link_params.num_phys) {
11051        case 1:
11052        case 2:
11053                cfg_size = 1;
11054                break;
11055        case 3:
11056                cfg_size = 2;
11057                break;
11058        }
11059        for (idx = 0; idx < cfg_size; idx++) {
11060                bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11061                link_config = bp->port.link_config[idx];
11062                switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11063                case PORT_FEATURE_LINK_SPEED_AUTO:
11064                        if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11065                                bp->link_params.req_line_speed[idx] =
11066                                        SPEED_AUTO_NEG;
11067                                bp->port.advertising[idx] |=
11068                                        bp->port.supported[idx];
11069                                if (bp->link_params.phy[EXT_PHY1].type ==
11070                                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11071                                        bp->port.advertising[idx] |=
11072                                        (SUPPORTED_100baseT_Half |
11073                                         SUPPORTED_100baseT_Full);
11074                        } else {
11075                                /* force 10G, no AN */
11076                                bp->link_params.req_line_speed[idx] =
11077                                        SPEED_10000;
11078                                bp->port.advertising[idx] |=
11079                                        (ADVERTISED_10000baseT_Full |
11080                                         ADVERTISED_FIBRE);
11081                                continue;
11082                        }
11083                        break;
11084
11085                case PORT_FEATURE_LINK_SPEED_10M_FULL:
11086                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11087                                bp->link_params.req_line_speed[idx] =
11088                                        SPEED_10;
11089                                bp->port.advertising[idx] |=
11090                                        (ADVERTISED_10baseT_Full |
11091                                         ADVERTISED_TP);
11092                        } else {
11093                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11094                                            link_config,
11095                                    bp->link_params.speed_cap_mask[idx]);
11096                                return;
11097                        }
11098                        break;
11099
11100                case PORT_FEATURE_LINK_SPEED_10M_HALF:
11101                        if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11102                                bp->link_params.req_line_speed[idx] =
11103                                        SPEED_10;
11104                                bp->link_params.req_duplex[idx] =
11105                                        DUPLEX_HALF;
11106                                bp->port.advertising[idx] |=
11107                                        (ADVERTISED_10baseT_Half |
11108                                         ADVERTISED_TP);
11109                        } else {
11110                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11111                                            link_config,
11112                                          bp->link_params.speed_cap_mask[idx]);
11113                                return;
11114                        }
11115                        break;
11116
11117                case PORT_FEATURE_LINK_SPEED_100M_FULL:
11118                        if (bp->port.supported[idx] &
11119                            SUPPORTED_100baseT_Full) {
11120                                bp->link_params.req_line_speed[idx] =
11121                                        SPEED_100;
11122                                bp->port.advertising[idx] |=
11123                                        (ADVERTISED_100baseT_Full |
11124                                         ADVERTISED_TP);
11125                        } else {
11126                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11127                                            link_config,
11128                                          bp->link_params.speed_cap_mask[idx]);
11129                                return;
11130                        }
11131                        break;
11132
11133                case PORT_FEATURE_LINK_SPEED_100M_HALF:
11134                        if (bp->port.supported[idx] &
11135                            SUPPORTED_100baseT_Half) {
11136                                bp->link_params.req_line_speed[idx] =
11137                                                                SPEED_100;
11138                                bp->link_params.req_duplex[idx] =
11139                                                                DUPLEX_HALF;
11140                                bp->port.advertising[idx] |=
11141                                        (ADVERTISED_100baseT_Half |
11142                                         ADVERTISED_TP);
11143                        } else {
11144                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11145                                    link_config,
11146                                    bp->link_params.speed_cap_mask[idx]);
11147                                return;
11148                        }
11149                        break;
11150
11151                case PORT_FEATURE_LINK_SPEED_1G:
11152                        if (bp->port.supported[idx] &
11153                            SUPPORTED_1000baseT_Full) {
11154                                bp->link_params.req_line_speed[idx] =
11155                                        SPEED_1000;
11156                                bp->port.advertising[idx] |=
11157                                        (ADVERTISED_1000baseT_Full |
11158                                         ADVERTISED_TP);
11159                        } else if (bp->port.supported[idx] &
11160                                   SUPPORTED_1000baseKX_Full) {
11161                                bp->link_params.req_line_speed[idx] =
11162                                        SPEED_1000;
11163                                bp->port.advertising[idx] |=
11164                                        ADVERTISED_1000baseKX_Full;
11165                        } else {
11166                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11167                                    link_config,
11168                                    bp->link_params.speed_cap_mask[idx]);
11169                                return;
11170                        }
11171                        break;
11172
11173                case PORT_FEATURE_LINK_SPEED_2_5G:
11174                        if (bp->port.supported[idx] &
11175                            SUPPORTED_2500baseX_Full) {
11176                                bp->link_params.req_line_speed[idx] =
11177                                        SPEED_2500;
11178                                bp->port.advertising[idx] |=
11179                                        (ADVERTISED_2500baseX_Full |
11180                                                ADVERTISED_TP);
11181                        } else {
11182                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11183                                    link_config,
11184                                    bp->link_params.speed_cap_mask[idx]);
11185                                return;
11186                        }
11187                        break;
11188
11189                case PORT_FEATURE_LINK_SPEED_10G_CX4:
11190                        if (bp->port.supported[idx] &
11191                            SUPPORTED_10000baseT_Full) {
11192                                bp->link_params.req_line_speed[idx] =
11193                                        SPEED_10000;
11194                                bp->port.advertising[idx] |=
11195                                        (ADVERTISED_10000baseT_Full |
11196                                                ADVERTISED_FIBRE);
11197                        } else if (bp->port.supported[idx] &
11198                                   SUPPORTED_10000baseKR_Full) {
11199                                bp->link_params.req_line_speed[idx] =
11200                                        SPEED_10000;
11201                                bp->port.advertising[idx] |=
11202                                        (ADVERTISED_10000baseKR_Full |
11203                                                ADVERTISED_FIBRE);
11204                        } else {
11205                                BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11206                                    link_config,
11207                                    bp->link_params.speed_cap_mask[idx]);
11208                                return;
11209                        }
11210                        break;
11211                case PORT_FEATURE_LINK_SPEED_20G:
11212                        bp->link_params.req_line_speed[idx] = SPEED_20000;
11213
11214                        break;
11215                default:
11216                        BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11217                                  link_config);
11218                                bp->link_params.req_line_speed[idx] =
11219                                                        SPEED_AUTO_NEG;
11220                                bp->port.advertising[idx] =
11221                                                bp->port.supported[idx];
11222                        break;
11223                }
11224
11225                bp->link_params.req_flow_ctrl[idx] = (link_config &
11226                                         PORT_FEATURE_FLOW_CONTROL_MASK);
11227                if (bp->link_params.req_flow_ctrl[idx] ==
11228                    BNX2X_FLOW_CTRL_AUTO) {
11229                        if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11230                                bp->link_params.req_flow_ctrl[idx] =
11231                                                        BNX2X_FLOW_CTRL_NONE;
11232                        else
11233                                bnx2x_set_requested_fc(bp);
11234                }
11235
11236                BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11237                               bp->link_params.req_line_speed[idx],
11238                               bp->link_params.req_duplex[idx],
11239                               bp->link_params.req_flow_ctrl[idx],
11240                               bp->port.advertising[idx]);
11241        }
11242}
11243
11244static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11245{
11246        __be16 mac_hi_be = cpu_to_be16(mac_hi);
11247        __be32 mac_lo_be = cpu_to_be32(mac_lo);
11248        memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11249        memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11250}
11251
11252static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11253{
11254        int port = BP_PORT(bp);
11255        u32 config;
11256        u32 ext_phy_type, ext_phy_config, eee_mode;
11257
11258        bp->link_params.bp = bp;
11259        bp->link_params.port = port;
11260
11261        bp->link_params.lane_config =
11262                SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11263
11264        bp->link_params.speed_cap_mask[0] =
11265                SHMEM_RD(bp,
11266                         dev_info.port_hw_config[port].speed_capability_mask) &
11267                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11268        bp->link_params.speed_cap_mask[1] =
11269                SHMEM_RD(bp,
11270                         dev_info.port_hw_config[port].speed_capability_mask2) &
11271                PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11272        bp->port.link_config[0] =
11273                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11274
11275        bp->port.link_config[1] =
11276                SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11277
11278        bp->link_params.multi_phy_config =
11279                SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11280        /* If the device is capable of WoL, set the default state according
11281         * to the HW
11282         */
11283        config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11284        bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11285                   (config & PORT_FEATURE_WOL_ENABLED));
11286
11287        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11288            PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11289                bp->flags |= NO_ISCSI_FLAG;
11290        if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11291            PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11292                bp->flags |= NO_FCOE_FLAG;
11293
11294        BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11295                       bp->link_params.lane_config,
11296                       bp->link_params.speed_cap_mask[0],
11297                       bp->port.link_config[0]);
11298
11299        bp->link_params.switch_cfg = (bp->port.link_config[0] &
11300                                      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11301        bnx2x_phy_probe(&bp->link_params);
11302        bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11303
11304        bnx2x_link_settings_requested(bp);
11305
11306        /*
11307         * If connected directly, work with the internal PHY, otherwise, work
11308         * with the external PHY
11309         */
11310        ext_phy_config =
11311                SHMEM_RD(bp,
11312                         dev_info.port_hw_config[port].external_phy_config);
11313        ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11314        if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11315                bp->mdio.prtad = bp->port.phy_addr;
11316
11317        else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11318                 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11319                bp->mdio.prtad =
11320                        XGXS_EXT_PHY_ADDR(ext_phy_config);
11321
11322        /* Configure link feature according to nvram value */
11323        eee_mode = (((SHMEM_RD(bp, dev_info.
11324                      port_feature_config[port].eee_power_mode)) &
11325                     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11326                    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11327        if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11328                bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11329                                           EEE_MODE_ENABLE_LPI |
11330                                           EEE_MODE_OUTPUT_TIME;
11331        } else {
11332                bp->link_params.eee_mode = 0;
11333        }
11334}
11335
11336void bnx2x_get_iscsi_info(struct bnx2x *bp)
11337{
11338        u32 no_flags = NO_ISCSI_FLAG;
11339        int port = BP_PORT(bp);
11340        u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11341                                drv_lic_key[port].max_iscsi_conn);
11342
11343        if (!CNIC_SUPPORT(bp)) {
11344                bp->flags |= no_flags;
11345                return;
11346        }
11347
11348        /* Get the number of maximum allowed iSCSI connections */
11349        bp->cnic_eth_dev.max_iscsi_conn =
11350                (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11351                BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11352
11353        BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11354                       bp->cnic_eth_dev.max_iscsi_conn);
11355
11356        /*
11357         * If maximum allowed number of connections is zero -
11358         * disable the feature.
11359         */
11360        if (!bp->cnic_eth_dev.max_iscsi_conn)
11361                bp->flags |= no_flags;
11362}
11363
11364static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11365{
11366        /* Port info */
11367        bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11368                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11369        bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11370                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11371
11372        /* Node info */
11373        bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11374                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11375        bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11376                MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11377}
11378
11379static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11380{
11381        u8 count = 0;
11382
11383        if (IS_MF(bp)) {
11384                u8 fid;
11385
11386                /* iterate over absolute function ids for this path: */
11387                for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11388                        if (IS_MF_SD(bp)) {
11389                                u32 cfg = MF_CFG_RD(bp,
11390                                                    func_mf_config[fid].config);
11391
11392                                if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11393                                    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11394                                            FUNC_MF_CFG_PROTOCOL_FCOE))
11395                                        count++;
11396                        } else {
11397                                u32 cfg = MF_CFG_RD(bp,
11398                                                    func_ext_config[fid].
11399                                                                      func_cfg);
11400
11401                                if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11402                                    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11403                                        count++;
11404                        }
11405                }
11406        } else { /* SF */
11407                int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11408
11409                for (port = 0; port < port_cnt; port++) {
11410                        u32 lic = SHMEM_RD(bp,
11411                                           drv_lic_key[port].max_fcoe_conn) ^
11412                                  FW_ENCODE_32BIT_PATTERN;
11413                        if (lic)
11414                                count++;
11415                }
11416        }
11417
11418        return count;
11419}
11420
11421static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11422{
11423        int port = BP_PORT(bp);
11424        int func = BP_ABS_FUNC(bp);
11425        u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11426                                drv_lic_key[port].max_fcoe_conn);
11427        u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11428
11429        if (!CNIC_SUPPORT(bp)) {
11430                bp->flags |= NO_FCOE_FLAG;
11431                return;
11432        }
11433
11434        /* Get the number of maximum allowed FCoE connections */
11435        bp->cnic_eth_dev.max_fcoe_conn =
11436                (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11437                BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11438
11439        /* Calculate the number of maximum allowed FCoE tasks */
11440        bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11441
11442        /* check if FCoE resources must be shared between different functions */
11443        if (num_fcoe_func)
11444                bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11445
11446        /* Read the WWN: */
11447        if (!IS_MF(bp)) {
11448                /* Port info */
11449                bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11450                        SHMEM_RD(bp,
11451                                 dev_info.port_hw_config[port].
11452                                 fcoe_wwn_port_name_upper);
11453                bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11454                        SHMEM_RD(bp,
11455                                 dev_info.port_hw_config[port].
11456                                 fcoe_wwn_port_name_lower);
11457
11458                /* Node info */
11459                bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11460                        SHMEM_RD(bp,
11461                                 dev_info.port_hw_config[port].
11462                                 fcoe_wwn_node_name_upper);
11463                bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11464                        SHMEM_RD(bp,
11465                                 dev_info.port_hw_config[port].
11466                                 fcoe_wwn_node_name_lower);
11467        } else if (!IS_MF_SD(bp)) {
11468                /* Read the WWN info only if the FCoE feature is enabled for
11469                 * this function.
11470                 */
11471                if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11472                        bnx2x_get_ext_wwn_info(bp, func);
11473        } else {
11474                if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11475                        bnx2x_get_ext_wwn_info(bp, func);
11476        }
11477
11478        BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11479
11480        /*
11481         * If maximum allowed number of connections is zero -
11482         * disable the feature.
11483         */
11484        if (!bp->cnic_eth_dev.max_fcoe_conn)
11485                bp->flags |= NO_FCOE_FLAG;
11486}
11487
11488static void bnx2x_get_cnic_info(struct bnx2x *bp)
11489{
11490        /*
11491         * iSCSI may be dynamically disabled but reading
11492         * info here we will decrease memory usage by driver
11493         * if the feature is disabled for good
11494         */
11495        bnx2x_get_iscsi_info(bp);
11496        bnx2x_get_fcoe_info(bp);
11497}
11498
11499static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11500{
11501        u32 val, val2;
11502        int func = BP_ABS_FUNC(bp);
11503        int port = BP_PORT(bp);
11504        u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11505        u8 *fip_mac = bp->fip_mac;
11506
11507        if (IS_MF(bp)) {
11508                /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11509                 * FCoE MAC then the appropriate feature should be disabled.
11510                 * In non SD mode features configuration comes from struct
11511                 * func_ext_config.
11512                 */
11513                if (!IS_MF_SD(bp)) {
11514                        u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11515                        if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11516                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11517                                                 iscsi_mac_addr_upper);
11518                                val = MF_CFG_RD(bp, func_ext_config[func].
11519                                                iscsi_mac_addr_lower);
11520                                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11521                                BNX2X_DEV_INFO
11522                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11523                        } else {
11524                                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11525                        }
11526
11527                        if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11528                                val2 = MF_CFG_RD(bp, func_ext_config[func].
11529                                                 fcoe_mac_addr_upper);
11530                                val = MF_CFG_RD(bp, func_ext_config[func].
11531                                                fcoe_mac_addr_lower);
11532                                bnx2x_set_mac_buf(fip_mac, val, val2);
11533                                BNX2X_DEV_INFO
11534                                        ("Read FCoE L2 MAC: %pM\n", fip_mac);
11535                        } else {
11536                                bp->flags |= NO_FCOE_FLAG;
11537                        }
11538
11539                        bp->mf_ext_config = cfg;
11540
11541                } else { /* SD MODE */
11542                        if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11543                                /* use primary mac as iscsi mac */
11544                                memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11545
11546                                BNX2X_DEV_INFO("SD ISCSI MODE\n");
11547                                BNX2X_DEV_INFO
11548                                        ("Read iSCSI MAC: %pM\n", iscsi_mac);
11549                        } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11550                                /* use primary mac as fip mac */
11551                                memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11552                                BNX2X_DEV_INFO("SD FCoE MODE\n");
11553                                BNX2X_DEV_INFO
11554                                        ("Read FIP MAC: %pM\n", fip_mac);
11555                        }
11556                }
11557
11558                /* If this is a storage-only interface, use SAN mac as
11559                 * primary MAC. Notice that for SD this is already the case,
11560                 * as the SAN mac was copied from the primary MAC.
11561                 */
11562                if (IS_MF_FCOE_AFEX(bp))
11563                        memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11564        } else {
11565                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11566                                iscsi_mac_upper);
11567                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11568                               iscsi_mac_lower);
11569                bnx2x_set_mac_buf(iscsi_mac, val, val2);
11570
11571                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11572                                fcoe_fip_mac_upper);
11573                val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11574                               fcoe_fip_mac_lower);
11575                bnx2x_set_mac_buf(fip_mac, val, val2);
11576        }
11577
11578        /* Disable iSCSI OOO if MAC configuration is invalid. */
11579        if (!is_valid_ether_addr(iscsi_mac)) {
11580                bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11581                eth_zero_addr(iscsi_mac);
11582        }
11583
11584        /* Disable FCoE if MAC configuration is invalid. */
11585        if (!is_valid_ether_addr(fip_mac)) {
11586                bp->flags |= NO_FCOE_FLAG;
11587                eth_zero_addr(bp->fip_mac);
11588        }
11589}
11590
11591static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11592{
11593        u32 val, val2;
11594        int func = BP_ABS_FUNC(bp);
11595        int port = BP_PORT(bp);
11596
11597        /* Zero primary MAC configuration */
11598        eth_zero_addr(bp->dev->dev_addr);
11599
11600        if (BP_NOMCP(bp)) {
11601                BNX2X_ERROR("warning: random MAC workaround active\n");
11602                eth_hw_addr_random(bp->dev);
11603        } else if (IS_MF(bp)) {
11604                val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11605                val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11606                if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11607                    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11608                        bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11609
11610                if (CNIC_SUPPORT(bp))
11611                        bnx2x_get_cnic_mac_hwinfo(bp);
11612        } else {
11613                /* in SF read MACs from port configuration */
11614                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11615                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11616                bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11617
11618                if (CNIC_SUPPORT(bp))
11619                        bnx2x_get_cnic_mac_hwinfo(bp);
11620        }
11621
11622        if (!BP_NOMCP(bp)) {
11623                /* Read physical port identifier from shmem */
11624                val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11625                val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11626                bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11627                bp->flags |= HAS_PHYS_PORT_ID;
11628        }
11629
11630        memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11631
11632        if (!is_valid_ether_addr(bp->dev->dev_addr))
11633                dev_err(&bp->pdev->dev,
11634                        "bad Ethernet MAC address configuration: %pM\n"
11635                        "change it manually before bringing up the appropriate network interface\n",
11636                        bp->dev->dev_addr);
11637}
11638
11639static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11640{
11641        int tmp;
11642        u32 cfg;
11643
11644        if (IS_VF(bp))
11645                return false;
11646
11647        if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11648                /* Take function: tmp = func */
11649                tmp = BP_ABS_FUNC(bp);
11650                cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11651                cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11652        } else {
11653                /* Take port: tmp = port */
11654                tmp = BP_PORT(bp);
11655                cfg = SHMEM_RD(bp,
11656                               dev_info.port_hw_config[tmp].generic_features);
11657                cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11658        }
11659        return cfg;
11660}
11661
11662static void validate_set_si_mode(struct bnx2x *bp)
11663{
11664        u8 func = BP_ABS_FUNC(bp);
11665        u32 val;
11666
11667        val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11668
11669        /* check for legal mac (upper bytes) */
11670        if (val != 0xffff) {
11671                bp->mf_mode = MULTI_FUNCTION_SI;
11672                bp->mf_config[BP_VN(bp)] =
11673                        MF_CFG_RD(bp, func_mf_config[func].config);
11674        } else
11675                BNX2X_DEV_INFO("illegal MAC address for SI\n");
11676}
11677
11678static int bnx2x_get_hwinfo(struct bnx2x *bp)
11679{
11680        int /*abs*/func = BP_ABS_FUNC(bp);
11681        int vn;
11682        u32 val = 0, val2 = 0;
11683        int rc = 0;
11684
11685        /* Validate that chip access is feasible */
11686        if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11687                dev_err(&bp->pdev->dev,
11688                        "Chip read returns all Fs. Preventing probe from continuing\n");
11689                return -EINVAL;
11690        }
11691
11692        bnx2x_get_common_hwinfo(bp);
11693
11694        /*
11695         * initialize IGU parameters
11696         */
11697        if (CHIP_IS_E1x(bp)) {
11698                bp->common.int_block = INT_BLOCK_HC;
11699
11700                bp->igu_dsb_id = DEF_SB_IGU_ID;
11701                bp->igu_base_sb = 0;
11702        } else {
11703                bp->common.int_block = INT_BLOCK_IGU;
11704
11705                /* do not allow device reset during IGU info processing */
11706                bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11707
11708                val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11709
11710                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11711                        int tout = 5000;
11712
11713                        BNX2X_DEV_INFO("FORCING Normal Mode\n");
11714
11715                        val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11716                        REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11717                        REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11718
11719                        while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11720                                tout--;
11721                                usleep_range(1000, 2000);
11722                        }
11723
11724                        if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11725                                dev_err(&bp->pdev->dev,
11726                                        "FORCING Normal Mode failed!!!\n");
11727                                bnx2x_release_hw_lock(bp,
11728                                                      HW_LOCK_RESOURCE_RESET);
11729                                return -EPERM;
11730                        }
11731                }
11732
11733                if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11734                        BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11735                        bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11736                } else
11737                        BNX2X_DEV_INFO("IGU Normal Mode\n");
11738
11739                rc = bnx2x_get_igu_cam_info(bp);
11740                bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11741                if (rc)
11742                        return rc;
11743        }
11744
11745        /*
11746         * set base FW non-default (fast path) status block id, this value is
11747         * used to initialize the fw_sb_id saved on the fp/queue structure to
11748         * determine the id used by the FW.
11749         */
11750        if (CHIP_IS_E1x(bp))
11751                bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11752        else /*
11753              * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11754              * the same queue are indicated on the same IGU SB). So we prefer
11755              * FW and IGU SBs to be the same value.
11756              */
11757                bp->base_fw_ndsb = bp->igu_base_sb;
11758
11759        BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11760                       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11761                       bp->igu_sb_cnt, bp->base_fw_ndsb);
11762
11763        /*
11764         * Initialize MF configuration
11765         */
11766
11767        bp->mf_ov = 0;
11768        bp->mf_mode = 0;
11769        bp->mf_sub_mode = 0;
11770        vn = BP_VN(bp);
11771
11772        if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11773                BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11774                               bp->common.shmem2_base, SHMEM2_RD(bp, size),
11775                              (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11776
11777                if (SHMEM2_HAS(bp, mf_cfg_addr))
11778                        bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11779                else
11780                        bp->common.mf_cfg_base = bp->common.shmem_base +
11781                                offsetof(struct shmem_region, func_mb) +
11782                                E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11783                /*
11784                 * get mf configuration:
11785                 * 1. Existence of MF configuration
11786                 * 2. MAC address must be legal (check only upper bytes)
11787                 *    for  Switch-Independent mode;
11788                 *    OVLAN must be legal for Switch-Dependent mode
11789                 * 3. SF_MODE configures specific MF mode
11790                 */
11791                if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11792                        /* get mf configuration */
11793                        val = SHMEM_RD(bp,
11794                                       dev_info.shared_feature_config.config);
11795                        val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11796
11797                        switch (val) {
11798                        case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11799                                validate_set_si_mode(bp);
11800                                break;
11801                        case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11802                                if ((!CHIP_IS_E1x(bp)) &&
11803                                    (MF_CFG_RD(bp, func_mf_config[func].
11804                                               mac_upper) != 0xffff) &&
11805                                    (SHMEM2_HAS(bp,
11806                                                afex_driver_support))) {
11807                                        bp->mf_mode = MULTI_FUNCTION_AFEX;
11808                                        bp->mf_config[vn] = MF_CFG_RD(bp,
11809                                                func_mf_config[func].config);
11810                                } else {
11811                                        BNX2X_DEV_INFO("can not configure afex mode\n");
11812                                }
11813                                break;
11814                        case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11815                                /* get OV configuration */
11816                                val = MF_CFG_RD(bp,
11817                                        func_mf_config[FUNC_0].e1hov_tag);
11818                                val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11819
11820                                if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11821                                        bp->mf_mode = MULTI_FUNCTION_SD;
11822                                        bp->mf_config[vn] = MF_CFG_RD(bp,
11823                                                func_mf_config[func].config);
11824                                } else
11825                                        BNX2X_DEV_INFO("illegal OV for SD\n");
11826                                break;
11827                        case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11828                                bp->mf_mode = MULTI_FUNCTION_SD;
11829                                bp->mf_sub_mode = SUB_MF_MODE_UFP;
11830                                bp->mf_config[vn] =
11831                                        MF_CFG_RD(bp,
11832                                                  func_mf_config[func].config);
11833                                break;
11834                        case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11835                                bp->mf_config[vn] = 0;
11836                                break;
11837                        case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11838                                val2 = SHMEM_RD(bp,
11839                                        dev_info.shared_hw_config.config_3);
11840                                val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11841                                switch (val2) {
11842                                case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11843                                        validate_set_si_mode(bp);
11844                                        bp->mf_sub_mode =
11845                                                        SUB_MF_MODE_NPAR1_DOT_5;
11846                                        break;
11847                                default:
11848                                        /* Unknown configuration */
11849                                        bp->mf_config[vn] = 0;
11850                                        BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11851                                                       val);
11852                                }
11853                                break;
11854                        default:
11855                                /* Unknown configuration: reset mf_config */
11856                                bp->mf_config[vn] = 0;
11857                                BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11858                        }
11859                }
11860
11861                BNX2X_DEV_INFO("%s function mode\n",
11862                               IS_MF(bp) ? "multi" : "single");
11863
11864                switch (bp->mf_mode) {
11865                case MULTI_FUNCTION_SD:
11866                        val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11867                              FUNC_MF_CFG_E1HOV_TAG_MASK;
11868                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11869                                bp->mf_ov = val;
11870                                bp->path_has_ovlan = true;
11871
11872                                BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11873                                               func, bp->mf_ov, bp->mf_ov);
11874                        } else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11875                                dev_err(&bp->pdev->dev,
11876                                        "Unexpected - no valid MF OV for func %d in UFP mode\n",
11877                                        func);
11878                                bp->path_has_ovlan = true;
11879                        } else {
11880                                dev_err(&bp->pdev->dev,
11881                                        "No valid MF OV for func %d, aborting\n",
11882                                        func);
11883                                return -EPERM;
11884                        }
11885                        break;
11886                case MULTI_FUNCTION_AFEX:
11887                        BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11888                        break;
11889                case MULTI_FUNCTION_SI:
11890                        BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11891                                       func);
11892                        break;
11893                default:
11894                        if (vn) {
11895                                dev_err(&bp->pdev->dev,
11896                                        "VN %d is in a single function mode, aborting\n",
11897                                        vn);
11898                                return -EPERM;
11899                        }
11900                        break;
11901                }
11902
11903                /* check if other port on the path needs ovlan:
11904                 * Since MF configuration is shared between ports
11905                 * Possible mixed modes are only
11906                 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11907                 */
11908                if (CHIP_MODE_IS_4_PORT(bp) &&
11909                    !bp->path_has_ovlan &&
11910                    !IS_MF(bp) &&
11911                    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11912                        u8 other_port = !BP_PORT(bp);
11913                        u8 other_func = BP_PATH(bp) + 2*other_port;
11914                        val = MF_CFG_RD(bp,
11915                                        func_mf_config[other_func].e1hov_tag);
11916                        if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11917                                bp->path_has_ovlan = true;
11918                }
11919        }
11920
11921        /* adjust igu_sb_cnt to MF for E1H */
11922        if (CHIP_IS_E1H(bp) && IS_MF(bp))
11923                bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11924
11925        /* port info */
11926        bnx2x_get_port_hwinfo(bp);
11927
11928        /* Get MAC addresses */
11929        bnx2x_get_mac_hwinfo(bp);
11930
11931        bnx2x_get_cnic_info(bp);
11932
11933        return rc;
11934}
11935
11936static void bnx2x_read_fwinfo(struct bnx2x *bp)
11937{
11938        int cnt, i, block_end, rodi;
11939        char vpd_start[BNX2X_VPD_LEN+1];
11940        char str_id_reg[VENDOR_ID_LEN+1];
11941        char str_id_cap[VENDOR_ID_LEN+1];
11942        char *vpd_data;
11943        char *vpd_extended_data = NULL;
11944        u8 len;
11945
11946        cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11947        memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11948
11949        if (cnt < BNX2X_VPD_LEN)
11950                goto out_not_found;
11951
11952        /* VPD RO tag should be first tag after identifier string, hence
11953         * we should be able to find it in first BNX2X_VPD_LEN chars
11954         */
11955        i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11956                             PCI_VPD_LRDT_RO_DATA);
11957        if (i < 0)
11958                goto out_not_found;
11959
11960        block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11961                    pci_vpd_lrdt_size(&vpd_start[i]);
11962
11963        i += PCI_VPD_LRDT_TAG_SIZE;
11964
11965        if (block_end > BNX2X_VPD_LEN) {
11966                vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11967                if (vpd_extended_data  == NULL)
11968                        goto out_not_found;
11969
11970                /* read rest of vpd image into vpd_extended_data */
11971                memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11972                cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11973                                   block_end - BNX2X_VPD_LEN,
11974                                   vpd_extended_data + BNX2X_VPD_LEN);
11975                if (cnt < (block_end - BNX2X_VPD_LEN))
11976                        goto out_not_found;
11977                vpd_data = vpd_extended_data;
11978        } else
11979                vpd_data = vpd_start;
11980
11981        /* now vpd_data holds full vpd content in both cases */
11982
11983        rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11984                                   PCI_VPD_RO_KEYWORD_MFR_ID);
11985        if (rodi < 0)
11986                goto out_not_found;
11987
11988        len = pci_vpd_info_field_size(&vpd_data[rodi]);
11989
11990        if (len != VENDOR_ID_LEN)
11991                goto out_not_found;
11992
11993        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11994
11995        /* vendor specific info */
11996        snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11997        snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11998        if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11999            !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12000
12001                rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12002                                                PCI_VPD_RO_KEYWORD_VENDOR0);
12003                if (rodi >= 0) {
12004                        len = pci_vpd_info_field_size(&vpd_data[rodi]);
12005
12006                        rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12007
12008                        if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12009                                memcpy(bp->fw_ver, &vpd_data[rodi], len);
12010                                bp->fw_ver[len] = ' ';
12011                        }
12012                }
12013                kfree(vpd_extended_data);
12014                return;
12015        }
12016out_not_found:
12017        kfree(vpd_extended_data);
12018        return;
12019}
12020
12021static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12022{
12023        u32 flags = 0;
12024
12025        if (CHIP_REV_IS_FPGA(bp))
12026                SET_FLAGS(flags, MODE_FPGA);
12027        else if (CHIP_REV_IS_EMUL(bp))
12028                SET_FLAGS(flags, MODE_EMUL);
12029        else
12030                SET_FLAGS(flags, MODE_ASIC);
12031
12032        if (CHIP_MODE_IS_4_PORT(bp))
12033                SET_FLAGS(flags, MODE_PORT4);
12034        else
12035                SET_FLAGS(flags, MODE_PORT2);
12036
12037        if (CHIP_IS_E2(bp))
12038                SET_FLAGS(flags, MODE_E2);
12039        else if (CHIP_IS_E3(bp)) {
12040                SET_FLAGS(flags, MODE_E3);
12041                if (CHIP_REV(bp) == CHIP_REV_Ax)
12042                        SET_FLAGS(flags, MODE_E3_A0);
12043                else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12044                        SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12045        }
12046
12047        if (IS_MF(bp)) {
12048                SET_FLAGS(flags, MODE_MF);
12049                switch (bp->mf_mode) {
12050                case MULTI_FUNCTION_SD:
12051                        SET_FLAGS(flags, MODE_MF_SD);
12052                        break;
12053                case MULTI_FUNCTION_SI:
12054                        SET_FLAGS(flags, MODE_MF_SI);
12055                        break;
12056                case MULTI_FUNCTION_AFEX:
12057                        SET_FLAGS(flags, MODE_MF_AFEX);
12058                        break;
12059                }
12060        } else
12061                SET_FLAGS(flags, MODE_SF);
12062
12063#if defined(__LITTLE_ENDIAN)
12064        SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12065#else /*(__BIG_ENDIAN)*/
12066        SET_FLAGS(flags, MODE_BIG_ENDIAN);
12067#endif
12068        INIT_MODE_FLAGS(bp) = flags;
12069}
12070
12071static int bnx2x_init_bp(struct bnx2x *bp)
12072{
12073        int func;
12074        int rc;
12075
12076        mutex_init(&bp->port.phy_mutex);
12077        mutex_init(&bp->fw_mb_mutex);
12078        mutex_init(&bp->drv_info_mutex);
12079        sema_init(&bp->stats_lock, 1);
12080        bp->drv_info_mng_owner = false;
12081
12082        INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12083        INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12084        INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12085        INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12086        if (IS_PF(bp)) {
12087                rc = bnx2x_get_hwinfo(bp);
12088                if (rc)
12089                        return rc;
12090        } else {
12091                eth_zero_addr(bp->dev->dev_addr);
12092        }
12093
12094        bnx2x_set_modes_bitmap(bp);
12095
12096        rc = bnx2x_alloc_mem_bp(bp);
12097        if (rc)
12098                return rc;
12099
12100        bnx2x_read_fwinfo(bp);
12101
12102        func = BP_FUNC(bp);
12103
12104        /* need to reset chip if undi was active */
12105        if (IS_PF(bp) && !BP_NOMCP(bp)) {
12106                /* init fw_seq */
12107                bp->fw_seq =
12108                        SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12109                                                        DRV_MSG_SEQ_NUMBER_MASK;
12110                BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12111
12112                rc = bnx2x_prev_unload(bp);
12113                if (rc) {
12114                        bnx2x_free_mem_bp(bp);
12115                        return rc;
12116                }
12117        }
12118
12119        if (CHIP_REV_IS_FPGA(bp))
12120                dev_err(&bp->pdev->dev, "FPGA detected\n");
12121
12122        if (BP_NOMCP(bp) && (func == 0))
12123                dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12124
12125        bp->disable_tpa = disable_tpa;
12126        bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12127        /* Reduce memory usage in kdump environment by disabling TPA */
12128        bp->disable_tpa |= is_kdump_kernel();
12129
12130        /* Set TPA flags */
12131        if (bp->disable_tpa) {
12132                bp->dev->hw_features &= ~NETIF_F_LRO;
12133                bp->dev->features &= ~NETIF_F_LRO;
12134        }
12135
12136        if (CHIP_IS_E1(bp))
12137                bp->dropless_fc = 0;
12138        else
12139                bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12140
12141        bp->mrrs = mrrs;
12142
12143        bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12144        if (IS_VF(bp))
12145                bp->rx_ring_size = MAX_RX_AVAIL;
12146
12147        /* make sure that the numbers are in the right granularity */
12148        bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12149        bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12150
12151        bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12152
12153        init_timer(&bp->timer);
12154        bp->timer.expires = jiffies + bp->current_interval;
12155        bp->timer.data = (unsigned long) bp;
12156        bp->timer.function = bnx2x_timer;
12157
12158        if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12159            SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12160            SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12161            SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12162                bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12163                bnx2x_dcbx_init_params(bp);
12164        } else {
12165                bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12166        }
12167
12168        if (CHIP_IS_E1x(bp))
12169                bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12170        else
12171                bp->cnic_base_cl_id = FP_SB_MAX_E2;
12172
12173        /* multiple tx priority */
12174        if (IS_VF(bp))
12175                bp->max_cos = 1;
12176        else if (CHIP_IS_E1x(bp))
12177                bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12178        else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12179                bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12180        else if (CHIP_IS_E3B0(bp))
12181                bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12182        else
12183                BNX2X_ERR("unknown chip %x revision %x\n",
12184                          CHIP_NUM(bp), CHIP_REV(bp));
12185        BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12186
12187        /* We need at least one default status block for slow-path events,
12188         * second status block for the L2 queue, and a third status block for
12189         * CNIC if supported.
12190         */
12191        if (IS_VF(bp))
12192                bp->min_msix_vec_cnt = 1;
12193        else if (CNIC_SUPPORT(bp))
12194                bp->min_msix_vec_cnt = 3;
12195        else /* PF w/o cnic */
12196                bp->min_msix_vec_cnt = 2;
12197        BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12198
12199        bp->dump_preset_idx = 1;
12200
12201        if (CHIP_IS_E3B0(bp))
12202                bp->flags |= PTP_SUPPORTED;
12203
12204        return rc;
12205}
12206
12207/****************************************************************************
12208* General service functions
12209****************************************************************************/
12210
12211/*
12212 * net_device service functions
12213 */
12214
12215/* called with rtnl_lock */
12216static int bnx2x_open(struct net_device *dev)
12217{
12218        struct bnx2x *bp = netdev_priv(dev);
12219        int rc;
12220
12221        bp->stats_init = true;
12222
12223        netif_carrier_off(dev);
12224
12225        bnx2x_set_power_state(bp, PCI_D0);
12226
12227        /* If parity had happen during the unload, then attentions
12228         * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12229         * want the first function loaded on the current engine to
12230         * complete the recovery.
12231         * Parity recovery is only relevant for PF driver.
12232         */
12233        if (IS_PF(bp)) {
12234                int other_engine = BP_PATH(bp) ? 0 : 1;
12235                bool other_load_status, load_status;
12236                bool global = false;
12237
12238                other_load_status = bnx2x_get_load_status(bp, other_engine);
12239                load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12240                if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12241                    bnx2x_chk_parity_attn(bp, &global, true)) {
12242                        do {
12243                                /* If there are attentions and they are in a
12244                                 * global blocks, set the GLOBAL_RESET bit
12245                                 * regardless whether it will be this function
12246                                 * that will complete the recovery or not.
12247                                 */
12248                                if (global)
12249                                        bnx2x_set_reset_global(bp);
12250
12251                                /* Only the first function on the current
12252                                 * engine should try to recover in open. In case
12253                                 * of attentions in global blocks only the first
12254                                 * in the chip should try to recover.
12255                                 */
12256                                if ((!load_status &&
12257                                     (!global || !other_load_status)) &&
12258                                      bnx2x_trylock_leader_lock(bp) &&
12259                                      !bnx2x_leader_reset(bp)) {
12260                                        netdev_info(bp->dev,
12261                                                    "Recovered in open\n");
12262                                        break;
12263                                }
12264
12265                                /* recovery has failed... */
12266                                bnx2x_set_power_state(bp, PCI_D3hot);
12267                                bp->recovery_state = BNX2X_RECOVERY_FAILED;
12268
12269                                BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12270                                          "If you still see this message after a few retries then power cycle is required.\n");
12271
12272                                return -EAGAIN;
12273                        } while (0);
12274                }
12275        }
12276
12277        bp->recovery_state = BNX2X_RECOVERY_DONE;
12278        rc = bnx2x_nic_load(bp, LOAD_OPEN);
12279        if (rc)
12280                return rc;
12281        return 0;
12282}
12283
12284/* called with rtnl_lock */
12285static int bnx2x_close(struct net_device *dev)
12286{
12287        struct bnx2x *bp = netdev_priv(dev);
12288
12289        /* Unload the driver, release IRQs */
12290        bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12291
12292        return 0;
12293}
12294
12295static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12296                                      struct bnx2x_mcast_ramrod_params *p)
12297{
12298        int mc_count = netdev_mc_count(bp->dev);
12299        struct bnx2x_mcast_list_elem *mc_mac =
12300                kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12301        struct netdev_hw_addr *ha;
12302
12303        if (!mc_mac)
12304                return -ENOMEM;
12305
12306        INIT_LIST_HEAD(&p->mcast_list);
12307
12308        netdev_for_each_mc_addr(ha, bp->dev) {
12309                mc_mac->mac = bnx2x_mc_addr(ha);
12310                list_add_tail(&mc_mac->link, &p->mcast_list);
12311                mc_mac++;
12312        }
12313
12314        p->mcast_list_len = mc_count;
12315
12316        return 0;
12317}
12318
12319static void bnx2x_free_mcast_macs_list(
12320        struct bnx2x_mcast_ramrod_params *p)
12321{
12322        struct bnx2x_mcast_list_elem *mc_mac =
12323                list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12324                                 link);
12325
12326        WARN_ON(!mc_mac);
12327        kfree(mc_mac);
12328}
12329
12330/**
12331 * bnx2x_set_uc_list - configure a new unicast MACs list.
12332 *
12333 * @bp: driver handle
12334 *
12335 * We will use zero (0) as a MAC type for these MACs.
12336 */
12337static int bnx2x_set_uc_list(struct bnx2x *bp)
12338{
12339        int rc;
12340        struct net_device *dev = bp->dev;
12341        struct netdev_hw_addr *ha;
12342        struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12343        unsigned long ramrod_flags = 0;
12344
12345        /* First schedule a cleanup up of old configuration */
12346        rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12347        if (rc < 0) {
12348                BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12349                return rc;
12350        }
12351
12352        netdev_for_each_uc_addr(ha, dev) {
12353                rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12354                                       BNX2X_UC_LIST_MAC, &ramrod_flags);
12355                if (rc == -EEXIST) {
12356                        DP(BNX2X_MSG_SP,
12357                           "Failed to schedule ADD operations: %d\n", rc);
12358                        /* do not treat adding same MAC as error */
12359                        rc = 0;
12360
12361                } else if (rc < 0) {
12362
12363                        BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12364                                  rc);
12365                        return rc;
12366                }
12367        }
12368
12369        /* Execute the pending commands */
12370        __set_bit(RAMROD_CONT, &ramrod_flags);
12371        return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12372                                 BNX2X_UC_LIST_MAC, &ramrod_flags);
12373}
12374
12375static int bnx2x_set_mc_list(struct bnx2x *bp)
12376{
12377        struct net_device *dev = bp->dev;
12378        struct bnx2x_mcast_ramrod_params rparam = {NULL};
12379        int rc = 0;
12380
12381        rparam.mcast_obj = &bp->mcast_obj;
12382
12383        /* first, clear all configured multicast MACs */
12384        rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12385        if (rc < 0) {
12386                BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12387                return rc;
12388        }
12389
12390        /* then, configure a new MACs list */
12391        if (netdev_mc_count(dev)) {
12392                rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12393                if (rc) {
12394                        BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12395                                  rc);
12396                        return rc;
12397                }
12398
12399                /* Now add the new MACs */
12400                rc = bnx2x_config_mcast(bp, &rparam,
12401                                        BNX2X_MCAST_CMD_ADD);
12402                if (rc < 0)
12403                        BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12404                                  rc);
12405
12406                bnx2x_free_mcast_macs_list(&rparam);
12407        }
12408
12409        return rc;
12410}
12411
12412/* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12413static void bnx2x_set_rx_mode(struct net_device *dev)
12414{
12415        struct bnx2x *bp = netdev_priv(dev);
12416
12417        if (bp->state != BNX2X_STATE_OPEN) {
12418                DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12419                return;
12420        } else {
12421                /* Schedule an SP task to handle rest of change */
12422                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12423                                       NETIF_MSG_IFUP);
12424        }
12425}
12426
12427void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12428{
12429        u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12430
12431        DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12432
12433        netif_addr_lock_bh(bp->dev);
12434
12435        if (bp->dev->flags & IFF_PROMISC) {
12436                rx_mode = BNX2X_RX_MODE_PROMISC;
12437        } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12438                   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12439                    CHIP_IS_E1(bp))) {
12440                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12441        } else {
12442                if (IS_PF(bp)) {
12443                        /* some multicasts */
12444                        if (bnx2x_set_mc_list(bp) < 0)
12445                                rx_mode = BNX2X_RX_MODE_ALLMULTI;
12446
12447                        /* release bh lock, as bnx2x_set_uc_list might sleep */
12448                        netif_addr_unlock_bh(bp->dev);
12449                        if (bnx2x_set_uc_list(bp) < 0)
12450                                rx_mode = BNX2X_RX_MODE_PROMISC;
12451                        netif_addr_lock_bh(bp->dev);
12452                } else {
12453                        /* configuring mcast to a vf involves sleeping (when we
12454                         * wait for the pf's response).
12455                         */
12456                        bnx2x_schedule_sp_rtnl(bp,
12457                                               BNX2X_SP_RTNL_VFPF_MCAST, 0);
12458                }
12459        }
12460
12461        bp->rx_mode = rx_mode;
12462        /* handle ISCSI SD mode */
12463        if (IS_MF_ISCSI_ONLY(bp))
12464                bp->rx_mode = BNX2X_RX_MODE_NONE;
12465
12466        /* Schedule the rx_mode command */
12467        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12468                set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12469                netif_addr_unlock_bh(bp->dev);
12470                return;
12471        }
12472
12473        if (IS_PF(bp)) {
12474                bnx2x_set_storm_rx_mode(bp);
12475                netif_addr_unlock_bh(bp->dev);
12476        } else {
12477                /* VF will need to request the PF to make this change, and so
12478                 * the VF needs to release the bottom-half lock prior to the
12479                 * request (as it will likely require sleep on the VF side)
12480                 */
12481                netif_addr_unlock_bh(bp->dev);
12482                bnx2x_vfpf_storm_rx_mode(bp);
12483        }
12484}
12485
12486/* called with rtnl_lock */
12487static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12488                           int devad, u16 addr)
12489{
12490        struct bnx2x *bp = netdev_priv(netdev);
12491        u16 value;
12492        int rc;
12493
12494        DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12495           prtad, devad, addr);
12496
12497        /* The HW expects different devad if CL22 is used */
12498        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12499
12500        bnx2x_acquire_phy_lock(bp);
12501        rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12502        bnx2x_release_phy_lock(bp);
12503        DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12504
12505        if (!rc)
12506                rc = value;
12507        return rc;
12508}
12509
12510/* called with rtnl_lock */
12511static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12512                            u16 addr, u16 value)
12513{
12514        struct bnx2x *bp = netdev_priv(netdev);
12515        int rc;
12516
12517        DP(NETIF_MSG_LINK,
12518           "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12519           prtad, devad, addr, value);
12520
12521        /* The HW expects different devad if CL22 is used */
12522        devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12523
12524        bnx2x_acquire_phy_lock(bp);
12525        rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12526        bnx2x_release_phy_lock(bp);
12527        return rc;
12528}
12529
12530/* called with rtnl_lock */
12531static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12532{
12533        struct bnx2x *bp = netdev_priv(dev);
12534        struct mii_ioctl_data *mdio = if_mii(ifr);
12535
12536        if (!netif_running(dev))
12537                return -EAGAIN;
12538
12539        switch (cmd) {
12540        case SIOCSHWTSTAMP:
12541                return bnx2x_hwtstamp_ioctl(bp, ifr);
12542        default:
12543                DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12544                   mdio->phy_id, mdio->reg_num, mdio->val_in);
12545                return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12546        }
12547}
12548
12549#ifdef CONFIG_NET_POLL_CONTROLLER
12550static void poll_bnx2x(struct net_device *dev)
12551{
12552        struct bnx2x *bp = netdev_priv(dev);
12553        int i;
12554
12555        for_each_eth_queue(bp, i) {
12556                struct bnx2x_fastpath *fp = &bp->fp[i];
12557                napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12558        }
12559}
12560#endif
12561
12562static int bnx2x_validate_addr(struct net_device *dev)
12563{
12564        struct bnx2x *bp = netdev_priv(dev);
12565
12566        /* query the bulletin board for mac address configured by the PF */
12567        if (IS_VF(bp))
12568                bnx2x_sample_bulletin(bp);
12569
12570        if (!is_valid_ether_addr(dev->dev_addr)) {
12571                BNX2X_ERR("Non-valid Ethernet address\n");
12572                return -EADDRNOTAVAIL;
12573        }
12574        return 0;
12575}
12576
12577static int bnx2x_get_phys_port_id(struct net_device *netdev,
12578                                  struct netdev_phys_item_id *ppid)
12579{
12580        struct bnx2x *bp = netdev_priv(netdev);
12581
12582        if (!(bp->flags & HAS_PHYS_PORT_ID))
12583                return -EOPNOTSUPP;
12584
12585        ppid->id_len = sizeof(bp->phys_port_id);
12586        memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12587
12588        return 0;
12589}
12590
12591static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12592                                              struct net_device *dev,
12593                                              netdev_features_t features)
12594{
12595        features = vlan_features_check(skb, features);
12596        return vxlan_features_check(skb, features);
12597}
12598
12599static const struct net_device_ops bnx2x_netdev_ops = {
12600        .ndo_open               = bnx2x_open,
12601        .ndo_stop               = bnx2x_close,
12602        .ndo_start_xmit         = bnx2x_start_xmit,
12603        .ndo_select_queue       = bnx2x_select_queue,
12604        .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12605        .ndo_set_mac_address    = bnx2x_change_mac_addr,
12606        .ndo_validate_addr      = bnx2x_validate_addr,
12607        .ndo_do_ioctl           = bnx2x_ioctl,
12608        .ndo_change_mtu         = bnx2x_change_mtu,
12609        .ndo_fix_features       = bnx2x_fix_features,
12610        .ndo_set_features       = bnx2x_set_features,
12611        .ndo_tx_timeout         = bnx2x_tx_timeout,
12612#ifdef CONFIG_NET_POLL_CONTROLLER
12613        .ndo_poll_controller    = poll_bnx2x,
12614#endif
12615        .ndo_setup_tc           = bnx2x_setup_tc,
12616#ifdef CONFIG_BNX2X_SRIOV
12617        .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12618        .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12619        .ndo_get_vf_config      = bnx2x_get_vf_config,
12620#endif
12621#ifdef NETDEV_FCOE_WWNN
12622        .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12623#endif
12624
12625#ifdef CONFIG_NET_RX_BUSY_POLL
12626        .ndo_busy_poll          = bnx2x_low_latency_recv,
12627#endif
12628        .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12629        .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
12630        .ndo_features_check     = bnx2x_features_check,
12631};
12632
12633static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12634{
12635        struct device *dev = &bp->pdev->dev;
12636
12637        if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12638            dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12639                dev_err(dev, "System does not support DMA, aborting\n");
12640                return -EIO;
12641        }
12642
12643        return 0;
12644}
12645
12646static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12647{
12648        if (bp->flags & AER_ENABLED) {
12649                pci_disable_pcie_error_reporting(bp->pdev);
12650                bp->flags &= ~AER_ENABLED;
12651        }
12652}
12653
12654static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12655                          struct net_device *dev, unsigned long board_type)
12656{
12657        int rc;
12658        u32 pci_cfg_dword;
12659        bool chip_is_e1x = (board_type == BCM57710 ||
12660                            board_type == BCM57711 ||
12661                            board_type == BCM57711E);
12662
12663        SET_NETDEV_DEV(dev, &pdev->dev);
12664
12665        bp->dev = dev;
12666        bp->pdev = pdev;
12667
12668        rc = pci_enable_device(pdev);
12669        if (rc) {
12670                dev_err(&bp->pdev->dev,
12671                        "Cannot enable PCI device, aborting\n");
12672                goto err_out;
12673        }
12674
12675        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12676                dev_err(&bp->pdev->dev,
12677                        "Cannot find PCI device base address, aborting\n");
12678                rc = -ENODEV;
12679                goto err_out_disable;
12680        }
12681
12682        if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12683                dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12684                rc = -ENODEV;
12685                goto err_out_disable;
12686        }
12687
12688        pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12689        if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12690            PCICFG_REVESION_ID_ERROR_VAL) {
12691                pr_err("PCI device error, probably due to fan failure, aborting\n");
12692                rc = -ENODEV;
12693                goto err_out_disable;
12694        }
12695
12696        if (atomic_read(&pdev->enable_cnt) == 1) {
12697                rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12698                if (rc) {
12699                        dev_err(&bp->pdev->dev,
12700                                "Cannot obtain PCI resources, aborting\n");
12701                        goto err_out_disable;
12702                }
12703
12704                pci_set_master(pdev);
12705                pci_save_state(pdev);
12706        }
12707
12708        if (IS_PF(bp)) {
12709                if (!pdev->pm_cap) {
12710                        dev_err(&bp->pdev->dev,
12711                                "Cannot find power management capability, aborting\n");
12712                        rc = -EIO;
12713                        goto err_out_release;
12714                }
12715        }
12716
12717        if (!pci_is_pcie(pdev)) {
12718                dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12719                rc = -EIO;
12720                goto err_out_release;
12721        }
12722
12723        rc = bnx2x_set_coherency_mask(bp);
12724        if (rc)
12725                goto err_out_release;
12726
12727        dev->mem_start = pci_resource_start(pdev, 0);
12728        dev->base_addr = dev->mem_start;
12729        dev->mem_end = pci_resource_end(pdev, 0);
12730
12731        dev->irq = pdev->irq;
12732
12733        bp->regview = pci_ioremap_bar(pdev, 0);
12734        if (!bp->regview) {
12735                dev_err(&bp->pdev->dev,
12736                        "Cannot map register space, aborting\n");
12737                rc = -ENOMEM;
12738                goto err_out_release;
12739        }
12740
12741        /* In E1/E1H use pci device function given by kernel.
12742         * In E2/E3 read physical function from ME register since these chips
12743         * support Physical Device Assignment where kernel BDF maybe arbitrary
12744         * (depending on hypervisor).
12745         */
12746        if (chip_is_e1x) {
12747                bp->pf_num = PCI_FUNC(pdev->devfn);
12748        } else {
12749                /* chip is E2/3*/
12750                pci_read_config_dword(bp->pdev,
12751                                      PCICFG_ME_REGISTER, &pci_cfg_dword);
12752                bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12753                                  ME_REG_ABS_PF_NUM_SHIFT);
12754        }
12755        BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12756
12757        /* clean indirect addresses */
12758        pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12759                               PCICFG_VENDOR_ID_OFFSET);
12760
12761        /* Set PCIe reset type to fundamental for EEH recovery */
12762        pdev->needs_freset = 1;
12763
12764        /* AER (Advanced Error reporting) configuration */
12765        rc = pci_enable_pcie_error_reporting(pdev);
12766        if (!rc)
12767                bp->flags |= AER_ENABLED;
12768        else
12769                BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12770
12771        /*
12772         * Clean the following indirect addresses for all functions since it
12773         * is not used by the driver.
12774         */
12775        if (IS_PF(bp)) {
12776                REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12777                REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12778                REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12779                REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12780
12781                if (chip_is_e1x) {
12782                        REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12783                        REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12784                        REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12785                        REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12786                }
12787
12788                /* Enable internal target-read (in case we are probed after PF
12789                 * FLR). Must be done prior to any BAR read access. Only for
12790                 * 57712 and up
12791                 */
12792                if (!chip_is_e1x)
12793                        REG_WR(bp,
12794                               PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12795        }
12796
12797        dev->watchdog_timeo = TX_TIMEOUT;
12798
12799        dev->netdev_ops = &bnx2x_netdev_ops;
12800        bnx2x_set_ethtool_ops(bp, dev);
12801
12802        dev->priv_flags |= IFF_UNICAST_FLT;
12803
12804        dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12805                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12806                NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12807                NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12808        if (!chip_is_e1x) {
12809                dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12810                                    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12811                dev->hw_enc_features =
12812                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12813                        NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12814                        NETIF_F_GSO_IPIP |
12815                        NETIF_F_GSO_SIT |
12816                        NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12817        }
12818
12819        dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12820                NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12821
12822        dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12823        dev->features |= NETIF_F_HIGHDMA;
12824
12825        /* Add Loopback capability to the device */
12826        dev->hw_features |= NETIF_F_LOOPBACK;
12827
12828#ifdef BCM_DCBNL
12829        dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12830#endif
12831
12832        /* get_port_hwinfo() will set prtad and mmds properly */
12833        bp->mdio.prtad = MDIO_PRTAD_NONE;
12834        bp->mdio.mmds = 0;
12835        bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12836        bp->mdio.dev = dev;
12837        bp->mdio.mdio_read = bnx2x_mdio_read;
12838        bp->mdio.mdio_write = bnx2x_mdio_write;
12839
12840        return 0;
12841
12842err_out_release:
12843        if (atomic_read(&pdev->enable_cnt) == 1)
12844                pci_release_regions(pdev);
12845
12846err_out_disable:
12847        pci_disable_device(pdev);
12848
12849err_out:
12850        return rc;
12851}
12852
12853static int bnx2x_check_firmware(struct bnx2x *bp)
12854{
12855        const struct firmware *firmware = bp->firmware;
12856        struct bnx2x_fw_file_hdr *fw_hdr;
12857        struct bnx2x_fw_file_section *sections;
12858        u32 offset, len, num_ops;
12859        __be16 *ops_offsets;
12860        int i;
12861        const u8 *fw_ver;
12862
12863        if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12864                BNX2X_ERR("Wrong FW size\n");
12865                return -EINVAL;
12866        }
12867
12868        fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12869        sections = (struct bnx2x_fw_file_section *)fw_hdr;
12870
12871        /* Make sure none of the offsets and sizes make us read beyond
12872         * the end of the firmware data */
12873        for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12874                offset = be32_to_cpu(sections[i].offset);
12875                len = be32_to_cpu(sections[i].len);
12876                if (offset + len > firmware->size) {
12877                        BNX2X_ERR("Section %d length is out of bounds\n", i);
12878                        return -EINVAL;
12879                }
12880        }
12881
12882        /* Likewise for the init_ops offsets */
12883        offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12884        ops_offsets = (__force __be16 *)(firmware->data + offset);
12885        num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12886
12887        for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12888                if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12889                        BNX2X_ERR("Section offset %d is out of bounds\n", i);
12890                        return -EINVAL;
12891                }
12892        }
12893
12894        /* Check FW version */
12895        offset = be32_to_cpu(fw_hdr->fw_version.offset);
12896        fw_ver = firmware->data + offset;
12897        if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12898            (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12899            (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12900            (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12901                BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12902                       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12903                       BCM_5710_FW_MAJOR_VERSION,
12904                       BCM_5710_FW_MINOR_VERSION,
12905                       BCM_5710_FW_REVISION_VERSION,
12906                       BCM_5710_FW_ENGINEERING_VERSION);
12907                return -EINVAL;
12908        }
12909
12910        return 0;
12911}
12912
12913static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12914{
12915        const __be32 *source = (const __be32 *)_source;
12916        u32 *target = (u32 *)_target;
12917        u32 i;
12918
12919        for (i = 0; i < n/4; i++)
12920                target[i] = be32_to_cpu(source[i]);
12921}
12922
12923/*
12924   Ops array is stored in the following format:
12925   {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12926 */
12927static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12928{
12929        const __be32 *source = (const __be32 *)_source;
12930        struct raw_op *target = (struct raw_op *)_target;
12931        u32 i, j, tmp;
12932
12933        for (i = 0, j = 0; i < n/8; i++, j += 2) {
12934                tmp = be32_to_cpu(source[j]);
12935                target[i].op = (tmp >> 24) & 0xff;
12936                target[i].offset = tmp & 0xffffff;
12937                target[i].raw_data = be32_to_cpu(source[j + 1]);
12938        }
12939}
12940
12941/* IRO array is stored in the following format:
12942 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12943 */
12944static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12945{
12946        const __be32 *source = (const __be32 *)_source;
12947        struct iro *target = (struct iro *)_target;
12948        u32 i, j, tmp;
12949
12950        for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12951                target[i].base = be32_to_cpu(source[j]);
12952                j++;
12953                tmp = be32_to_cpu(source[j]);
12954                target[i].m1 = (tmp >> 16) & 0xffff;
12955                target[i].m2 = tmp & 0xffff;
12956                j++;
12957                tmp = be32_to_cpu(source[j]);
12958                target[i].m3 = (tmp >> 16) & 0xffff;
12959                target[i].size = tmp & 0xffff;
12960                j++;
12961        }
12962}
12963
12964static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12965{
12966        const __be16 *source = (const __be16 *)_source;
12967        u16 *target = (u16 *)_target;
12968        u32 i;
12969
12970        for (i = 0; i < n/2; i++)
12971                target[i] = be16_to_cpu(source[i]);
12972}
12973
12974#define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12975do {                                                                    \
12976        u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12977        bp->arr = kmalloc(len, GFP_KERNEL);                             \
12978        if (!bp->arr)                                                   \
12979                goto lbl;                                               \
12980        func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12981             (u8 *)bp->arr, len);                                       \
12982} while (0)
12983
12984static int bnx2x_init_firmware(struct bnx2x *bp)
12985{
12986        const char *fw_file_name;
12987        struct bnx2x_fw_file_hdr *fw_hdr;
12988        int rc;
12989
12990        if (bp->firmware)
12991                return 0;
12992
12993        if (CHIP_IS_E1(bp))
12994                fw_file_name = FW_FILE_NAME_E1;
12995        else if (CHIP_IS_E1H(bp))
12996                fw_file_name = FW_FILE_NAME_E1H;
12997        else if (!CHIP_IS_E1x(bp))
12998                fw_file_name = FW_FILE_NAME_E2;
12999        else {
13000                BNX2X_ERR("Unsupported chip revision\n");
13001                return -EINVAL;
13002        }
13003        BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13004
13005        rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13006        if (rc) {
13007                BNX2X_ERR("Can't load firmware file %s\n",
13008                          fw_file_name);
13009                goto request_firmware_exit;
13010        }
13011
13012        rc = bnx2x_check_firmware(bp);
13013        if (rc) {
13014                BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13015                goto request_firmware_exit;
13016        }
13017
13018        fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13019
13020        /* Initialize the pointers to the init arrays */
13021        /* Blob */
13022        BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13023
13024        /* Opcodes */
13025        BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13026
13027        /* Offsets */
13028        BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13029                            be16_to_cpu_n);
13030
13031        /* STORMs firmware */
13032        INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13033                        be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13034        INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13035                        be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13036        INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13037                        be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13038        INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13039                        be32_to_cpu(fw_hdr->usem_pram_data.offset);
13040        INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13041                        be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13042        INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13043                        be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13044        INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13045                        be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13046        INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13047                        be32_to_cpu(fw_hdr->csem_pram_data.offset);
13048        /* IRO */
13049        BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13050
13051        return 0;
13052
13053iro_alloc_err:
13054        kfree(bp->init_ops_offsets);
13055init_offsets_alloc_err:
13056        kfree(bp->init_ops);
13057init_ops_alloc_err:
13058        kfree(bp->init_data);
13059request_firmware_exit:
13060        release_firmware(bp->firmware);
13061        bp->firmware = NULL;
13062
13063        return rc;
13064}
13065
13066static void bnx2x_release_firmware(struct bnx2x *bp)
13067{
13068        kfree(bp->init_ops_offsets);
13069        kfree(bp->init_ops);
13070        kfree(bp->init_data);
13071        release_firmware(bp->firmware);
13072        bp->firmware = NULL;
13073}
13074
13075static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13076        .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13077        .init_hw_cmn      = bnx2x_init_hw_common,
13078        .init_hw_port     = bnx2x_init_hw_port,
13079        .init_hw_func     = bnx2x_init_hw_func,
13080
13081        .reset_hw_cmn     = bnx2x_reset_common,
13082        .reset_hw_port    = bnx2x_reset_port,
13083        .reset_hw_func    = bnx2x_reset_func,
13084
13085        .gunzip_init      = bnx2x_gunzip_init,
13086        .gunzip_end       = bnx2x_gunzip_end,
13087
13088        .init_fw          = bnx2x_init_firmware,
13089        .release_fw       = bnx2x_release_firmware,
13090};
13091
13092void bnx2x__init_func_obj(struct bnx2x *bp)
13093{
13094        /* Prepare DMAE related driver resources */
13095        bnx2x_setup_dmae(bp);
13096
13097        bnx2x_init_func_obj(bp, &bp->func_obj,
13098                            bnx2x_sp(bp, func_rdata),
13099                            bnx2x_sp_mapping(bp, func_rdata),
13100                            bnx2x_sp(bp, func_afex_rdata),
13101                            bnx2x_sp_mapping(bp, func_afex_rdata),
13102                            &bnx2x_func_sp_drv);
13103}
13104
13105/* must be called after sriov-enable */
13106static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13107{
13108        int cid_count = BNX2X_L2_MAX_CID(bp);
13109
13110        if (IS_SRIOV(bp))
13111                cid_count += BNX2X_VF_CIDS;
13112
13113        if (CNIC_SUPPORT(bp))
13114                cid_count += CNIC_CID_MAX;
13115
13116        return roundup(cid_count, QM_CID_ROUND);
13117}
13118
13119/**
13120 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13121 *
13122 * @dev:        pci device
13123 *
13124 */
13125static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13126{
13127        int index;
13128        u16 control = 0;
13129
13130        /*
13131         * If MSI-X is not supported - return number of SBs needed to support
13132         * one fast path queue: one FP queue + SB for CNIC
13133         */
13134        if (!pdev->msix_cap) {
13135                dev_info(&pdev->dev, "no msix capability found\n");
13136                return 1 + cnic_cnt;
13137        }
13138        dev_info(&pdev->dev, "msix capability found\n");
13139
13140        /*
13141         * The value in the PCI configuration space is the index of the last
13142         * entry, namely one less than the actual size of the table, which is
13143         * exactly what we want to return from this function: number of all SBs
13144         * without the default SB.
13145         * For VFs there is no default SB, then we return (index+1).
13146         */
13147        pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13148
13149        index = control & PCI_MSIX_FLAGS_QSIZE;
13150
13151        return index;
13152}
13153
13154static int set_max_cos_est(int chip_id)
13155{
13156        switch (chip_id) {
13157        case BCM57710:
13158        case BCM57711:
13159        case BCM57711E:
13160                return BNX2X_MULTI_TX_COS_E1X;
13161        case BCM57712:
13162        case BCM57712_MF:
13163                return BNX2X_MULTI_TX_COS_E2_E3A0;
13164        case BCM57800:
13165        case BCM57800_MF:
13166        case BCM57810:
13167        case BCM57810_MF:
13168        case BCM57840_4_10:
13169        case BCM57840_2_20:
13170        case BCM57840_O:
13171        case BCM57840_MFO:
13172        case BCM57840_MF:
13173        case BCM57811:
13174        case BCM57811_MF:
13175                return BNX2X_MULTI_TX_COS_E3B0;
13176        case BCM57712_VF:
13177        case BCM57800_VF:
13178        case BCM57810_VF:
13179        case BCM57840_VF:
13180        case BCM57811_VF:
13181                return 1;
13182        default:
13183                pr_err("Unknown board_type (%d), aborting\n", chip_id);
13184                return -ENODEV;
13185        }
13186}
13187
13188static int set_is_vf(int chip_id)
13189{
13190        switch (chip_id) {
13191        case BCM57712_VF:
13192        case BCM57800_VF:
13193        case BCM57810_VF:
13194        case BCM57840_VF:
13195        case BCM57811_VF:
13196                return true;
13197        default:
13198                return false;
13199        }
13200}
13201
13202/* nig_tsgen registers relative address */
13203#define tsgen_ctrl 0x0
13204#define tsgen_freecount 0x10
13205#define tsgen_synctime_t0 0x20
13206#define tsgen_offset_t0 0x28
13207#define tsgen_drift_t0 0x30
13208#define tsgen_synctime_t1 0x58
13209#define tsgen_offset_t1 0x60
13210#define tsgen_drift_t1 0x68
13211
13212/* FW workaround for setting drift */
13213static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13214                                          int best_val, int best_period)
13215{
13216        struct bnx2x_func_state_params func_params = {NULL};
13217        struct bnx2x_func_set_timesync_params *set_timesync_params =
13218                &func_params.params.set_timesync;
13219
13220        /* Prepare parameters for function state transitions */
13221        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13222        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13223
13224        func_params.f_obj = &bp->func_obj;
13225        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13226
13227        /* Function parameters */
13228        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13229        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13230        set_timesync_params->add_sub_drift_adjust_value =
13231                drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13232        set_timesync_params->drift_adjust_value = best_val;
13233        set_timesync_params->drift_adjust_period = best_period;
13234
13235        return bnx2x_func_state_change(bp, &func_params);
13236}
13237
13238static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13239{
13240        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13241        int rc;
13242        int drift_dir = 1;
13243        int val, period, period1, period2, dif, dif1, dif2;
13244        int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13245
13246        DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13247
13248        if (!netif_running(bp->dev)) {
13249                DP(BNX2X_MSG_PTP,
13250                   "PTP adjfreq called while the interface is down\n");
13251                return -EFAULT;
13252        }
13253
13254        if (ppb < 0) {
13255                ppb = -ppb;
13256                drift_dir = 0;
13257        }
13258
13259        if (ppb == 0) {
13260                best_val = 1;
13261                best_period = 0x1FFFFFF;
13262        } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13263                best_val = 31;
13264                best_period = 1;
13265        } else {
13266                /* Changed not to allow val = 8, 16, 24 as these values
13267                 * are not supported in workaround.
13268                 */
13269                for (val = 0; val <= 31; val++) {
13270                        if ((val & 0x7) == 0)
13271                                continue;
13272                        period1 = val * 1000000 / ppb;
13273                        period2 = period1 + 1;
13274                        if (period1 != 0)
13275                                dif1 = ppb - (val * 1000000 / period1);
13276                        else
13277                                dif1 = BNX2X_MAX_PHC_DRIFT;
13278                        if (dif1 < 0)
13279                                dif1 = -dif1;
13280                        dif2 = ppb - (val * 1000000 / period2);
13281                        if (dif2 < 0)
13282                                dif2 = -dif2;
13283                        dif = (dif1 < dif2) ? dif1 : dif2;
13284                        period = (dif1 < dif2) ? period1 : period2;
13285                        if (dif < best_dif) {
13286                                best_dif = dif;
13287                                best_val = val;
13288                                best_period = period;
13289                        }
13290                }
13291        }
13292
13293        rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13294                                            best_period);
13295        if (rc) {
13296                BNX2X_ERR("Failed to set drift\n");
13297                return -EFAULT;
13298        }
13299
13300        DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13301           best_period);
13302
13303        return 0;
13304}
13305
13306static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13307{
13308        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13309
13310        DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13311
13312        timecounter_adjtime(&bp->timecounter, delta);
13313
13314        return 0;
13315}
13316
13317static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13318{
13319        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13320        u64 ns;
13321
13322        ns = timecounter_read(&bp->timecounter);
13323
13324        DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13325
13326        *ts = ns_to_timespec64(ns);
13327
13328        return 0;
13329}
13330
13331static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13332                             const struct timespec64 *ts)
13333{
13334        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13335        u64 ns;
13336
13337        ns = timespec64_to_ns(ts);
13338
13339        DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13340
13341        /* Re-init the timecounter */
13342        timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13343
13344        return 0;
13345}
13346
13347/* Enable (or disable) ancillary features of the phc subsystem */
13348static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13349                            struct ptp_clock_request *rq, int on)
13350{
13351        struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13352
13353        BNX2X_ERR("PHC ancillary features are not supported\n");
13354        return -ENOTSUPP;
13355}
13356
13357static void bnx2x_register_phc(struct bnx2x *bp)
13358{
13359        /* Fill the ptp_clock_info struct and register PTP clock*/
13360        bp->ptp_clock_info.owner = THIS_MODULE;
13361        snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13362        bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13363        bp->ptp_clock_info.n_alarm = 0;
13364        bp->ptp_clock_info.n_ext_ts = 0;
13365        bp->ptp_clock_info.n_per_out = 0;
13366        bp->ptp_clock_info.pps = 0;
13367        bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13368        bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13369        bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13370        bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13371        bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13372
13373        bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13374        if (IS_ERR(bp->ptp_clock)) {
13375                bp->ptp_clock = NULL;
13376                BNX2X_ERR("PTP clock registeration failed\n");
13377        }
13378}
13379
13380static int bnx2x_init_one(struct pci_dev *pdev,
13381                                    const struct pci_device_id *ent)
13382{
13383        struct net_device *dev = NULL;
13384        struct bnx2x *bp;
13385        enum pcie_link_width pcie_width;
13386        enum pci_bus_speed pcie_speed;
13387        int rc, max_non_def_sbs;
13388        int rx_count, tx_count, rss_count, doorbell_size;
13389        int max_cos_est;
13390        bool is_vf;
13391        int cnic_cnt;
13392
13393        /* Management FW 'remembers' living interfaces. Allow it some time
13394         * to forget previously living interfaces, allowing a proper re-load.
13395         */
13396        if (is_kdump_kernel()) {
13397                ktime_t now = ktime_get_boottime();
13398                ktime_t fw_ready_time = ktime_set(5, 0);
13399
13400                if (ktime_before(now, fw_ready_time))
13401                        msleep(ktime_ms_delta(fw_ready_time, now));
13402        }
13403
13404        /* An estimated maximum supported CoS number according to the chip
13405         * version.
13406         * We will try to roughly estimate the maximum number of CoSes this chip
13407         * may support in order to minimize the memory allocated for Tx
13408         * netdev_queue's. This number will be accurately calculated during the
13409         * initialization of bp->max_cos based on the chip versions AND chip
13410         * revision in the bnx2x_init_bp().
13411         */
13412        max_cos_est = set_max_cos_est(ent->driver_data);
13413        if (max_cos_est < 0)
13414                return max_cos_est;
13415        is_vf = set_is_vf(ent->driver_data);
13416        cnic_cnt = is_vf ? 0 : 1;
13417
13418        max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13419
13420        /* add another SB for VF as it has no default SB */
13421        max_non_def_sbs += is_vf ? 1 : 0;
13422
13423        /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13424        rss_count = max_non_def_sbs - cnic_cnt;
13425
13426        if (rss_count < 1)
13427                return -EINVAL;
13428
13429        /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13430        rx_count = rss_count + cnic_cnt;
13431
13432        /* Maximum number of netdev Tx queues:
13433         * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13434         */
13435        tx_count = rss_count * max_cos_est + cnic_cnt;
13436
13437        /* dev zeroed in init_etherdev */
13438        dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13439        if (!dev)
13440                return -ENOMEM;
13441
13442        bp = netdev_priv(dev);
13443
13444        bp->flags = 0;
13445        if (is_vf)
13446                bp->flags |= IS_VF_FLAG;
13447
13448        bp->igu_sb_cnt = max_non_def_sbs;
13449        bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13450        bp->msg_enable = debug;
13451        bp->cnic_support = cnic_cnt;
13452        bp->cnic_probe = bnx2x_cnic_probe;
13453
13454        pci_set_drvdata(pdev, dev);
13455
13456        rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13457        if (rc < 0) {
13458                free_netdev(dev);
13459                return rc;
13460        }
13461
13462        BNX2X_DEV_INFO("This is a %s function\n",
13463                       IS_PF(bp) ? "physical" : "virtual");
13464        BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13465        BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13466        BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13467                       tx_count, rx_count);
13468
13469        rc = bnx2x_init_bp(bp);
13470        if (rc)
13471                goto init_one_exit;
13472
13473        /* Map doorbells here as we need the real value of bp->max_cos which
13474         * is initialized in bnx2x_init_bp() to determine the number of
13475         * l2 connections.
13476         */
13477        if (IS_VF(bp)) {
13478                bp->doorbells = bnx2x_vf_doorbells(bp);
13479                rc = bnx2x_vf_pci_alloc(bp);
13480                if (rc)
13481                        goto init_one_exit;
13482        } else {
13483                doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13484                if (doorbell_size > pci_resource_len(pdev, 2)) {
13485                        dev_err(&bp->pdev->dev,
13486                                "Cannot map doorbells, bar size too small, aborting\n");
13487                        rc = -ENOMEM;
13488                        goto init_one_exit;
13489                }
13490                bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13491                                                doorbell_size);
13492        }
13493        if (!bp->doorbells) {
13494                dev_err(&bp->pdev->dev,
13495                        "Cannot map doorbell space, aborting\n");
13496                rc = -ENOMEM;
13497                goto init_one_exit;
13498        }
13499
13500        if (IS_VF(bp)) {
13501                rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13502                if (rc)
13503                        goto init_one_exit;
13504        }
13505
13506        /* Enable SRIOV if capability found in configuration space */
13507        rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13508        if (rc)
13509                goto init_one_exit;
13510
13511        /* calc qm_cid_count */
13512        bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13513        BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13514
13515        /* disable FCOE L2 queue for E1x*/
13516        if (CHIP_IS_E1x(bp))
13517                bp->flags |= NO_FCOE_FLAG;
13518
13519        /* Set bp->num_queues for MSI-X mode*/
13520        bnx2x_set_num_queues(bp);
13521
13522        /* Configure interrupt mode: try to enable MSI-X/MSI if
13523         * needed.
13524         */
13525        rc = bnx2x_set_int_mode(bp);
13526        if (rc) {
13527                dev_err(&pdev->dev, "Cannot set interrupts\n");
13528                goto init_one_exit;
13529        }
13530        BNX2X_DEV_INFO("set interrupts successfully\n");
13531
13532        /* register the net device */
13533        rc = register_netdev(dev);
13534        if (rc) {
13535                dev_err(&pdev->dev, "Cannot register net device\n");
13536                goto init_one_exit;
13537        }
13538        BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13539
13540        if (!NO_FCOE(bp)) {
13541                /* Add storage MAC address */
13542                rtnl_lock();
13543                dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13544                rtnl_unlock();
13545        }
13546        if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13547            pcie_speed == PCI_SPEED_UNKNOWN ||
13548            pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13549                BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13550        else
13551                BNX2X_DEV_INFO(
13552                       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13553                       board_info[ent->driver_data].name,
13554                       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13555                       pcie_width,
13556                       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13557                       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13558                       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13559                       "Unknown",
13560                       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13561
13562        bnx2x_register_phc(bp);
13563
13564        return 0;
13565
13566init_one_exit:
13567        bnx2x_disable_pcie_error_reporting(bp);
13568
13569        if (bp->regview)
13570                iounmap(bp->regview);
13571
13572        if (IS_PF(bp) && bp->doorbells)
13573                iounmap(bp->doorbells);
13574
13575        free_netdev(dev);
13576
13577        if (atomic_read(&pdev->enable_cnt) == 1)
13578                pci_release_regions(pdev);
13579
13580        pci_disable_device(pdev);
13581
13582        return rc;
13583}
13584
13585static void __bnx2x_remove(struct pci_dev *pdev,
13586                           struct net_device *dev,
13587                           struct bnx2x *bp,
13588                           bool remove_netdev)
13589{
13590        if (bp->ptp_clock) {
13591                ptp_clock_unregister(bp->ptp_clock);
13592                bp->ptp_clock = NULL;
13593        }
13594
13595        /* Delete storage MAC address */
13596        if (!NO_FCOE(bp)) {
13597                rtnl_lock();
13598                dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13599                rtnl_unlock();
13600        }
13601
13602#ifdef BCM_DCBNL
13603        /* Delete app tlvs from dcbnl */
13604        bnx2x_dcbnl_update_applist(bp, true);
13605#endif
13606
13607        if (IS_PF(bp) &&
13608            !BP_NOMCP(bp) &&
13609            (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13610                bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13611
13612        /* Close the interface - either directly or implicitly */
13613        if (remove_netdev) {
13614                unregister_netdev(dev);
13615        } else {
13616                rtnl_lock();
13617                dev_close(dev);
13618                rtnl_unlock();
13619        }
13620
13621        bnx2x_iov_remove_one(bp);
13622
13623        /* Power on: we can't let PCI layer write to us while we are in D3 */
13624        if (IS_PF(bp)) {
13625                bnx2x_set_power_state(bp, PCI_D0);
13626
13627                /* Set endianity registers to reset values in case next driver
13628                 * boots in different endianty environment.
13629                 */
13630                bnx2x_reset_endianity(bp);
13631        }
13632
13633        /* Disable MSI/MSI-X */
13634        bnx2x_disable_msi(bp);
13635
13636        /* Power off */
13637        if (IS_PF(bp))
13638                bnx2x_set_power_state(bp, PCI_D3hot);
13639
13640        /* Make sure RESET task is not scheduled before continuing */
13641        cancel_delayed_work_sync(&bp->sp_rtnl_task);
13642
13643        /* send message via vfpf channel to release the resources of this vf */
13644        if (IS_VF(bp))
13645                bnx2x_vfpf_release(bp);
13646
13647        /* Assumes no further PCIe PM changes will occur */
13648        if (system_state == SYSTEM_POWER_OFF) {
13649                pci_wake_from_d3(pdev, bp->wol);
13650                pci_set_power_state(pdev, PCI_D3hot);
13651        }
13652
13653        bnx2x_disable_pcie_error_reporting(bp);
13654        if (remove_netdev) {
13655                if (bp->regview)
13656                        iounmap(bp->regview);
13657
13658                /* For vfs, doorbells are part of the regview and were unmapped
13659                 * along with it. FW is only loaded by PF.
13660                 */
13661                if (IS_PF(bp)) {
13662                        if (bp->doorbells)
13663                                iounmap(bp->doorbells);
13664
13665                        bnx2x_release_firmware(bp);
13666                } else {
13667                        bnx2x_vf_pci_dealloc(bp);
13668                }
13669                bnx2x_free_mem_bp(bp);
13670
13671                free_netdev(dev);
13672
13673                if (atomic_read(&pdev->enable_cnt) == 1)
13674                        pci_release_regions(pdev);
13675
13676                pci_disable_device(pdev);
13677        }
13678}
13679
13680static void bnx2x_remove_one(struct pci_dev *pdev)
13681{
13682        struct net_device *dev = pci_get_drvdata(pdev);
13683        struct bnx2x *bp;
13684
13685        if (!dev) {
13686                dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13687                return;
13688        }
13689        bp = netdev_priv(dev);
13690
13691        __bnx2x_remove(pdev, dev, bp, true);
13692}
13693
13694static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13695{
13696        bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13697
13698        bp->rx_mode = BNX2X_RX_MODE_NONE;
13699
13700        if (CNIC_LOADED(bp))
13701                bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13702
13703        /* Stop Tx */
13704        bnx2x_tx_disable(bp);
13705        /* Delete all NAPI objects */
13706        bnx2x_del_all_napi(bp);
13707        if (CNIC_LOADED(bp))
13708                bnx2x_del_all_napi_cnic(bp);
13709        netdev_reset_tc(bp->dev);
13710
13711        del_timer_sync(&bp->timer);
13712        cancel_delayed_work_sync(&bp->sp_task);
13713        cancel_delayed_work_sync(&bp->period_task);
13714
13715        if (!down_timeout(&bp->stats_lock, HZ / 10)) {
13716                bp->stats_state = STATS_STATE_DISABLED;
13717                up(&bp->stats_lock);
13718        }
13719
13720        bnx2x_save_statistics(bp);
13721
13722        netif_carrier_off(bp->dev);
13723
13724        return 0;
13725}
13726
13727/**
13728 * bnx2x_io_error_detected - called when PCI error is detected
13729 * @pdev: Pointer to PCI device
13730 * @state: The current pci connection state
13731 *
13732 * This function is called after a PCI bus error affecting
13733 * this device has been detected.
13734 */
13735static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13736                                                pci_channel_state_t state)
13737{
13738        struct net_device *dev = pci_get_drvdata(pdev);
13739        struct bnx2x *bp = netdev_priv(dev);
13740
13741        rtnl_lock();
13742
13743        BNX2X_ERR("IO error detected\n");
13744
13745        netif_device_detach(dev);
13746
13747        if (state == pci_channel_io_perm_failure) {
13748                rtnl_unlock();
13749                return PCI_ERS_RESULT_DISCONNECT;
13750        }
13751
13752        if (netif_running(dev))
13753                bnx2x_eeh_nic_unload(bp);
13754
13755        bnx2x_prev_path_mark_eeh(bp);
13756
13757        pci_disable_device(pdev);
13758
13759        rtnl_unlock();
13760
13761        /* Request a slot reset */
13762        return PCI_ERS_RESULT_NEED_RESET;
13763}
13764
13765/**
13766 * bnx2x_io_slot_reset - called after the PCI bus has been reset
13767 * @pdev: Pointer to PCI device
13768 *
13769 * Restart the card from scratch, as if from a cold-boot.
13770 */
13771static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13772{
13773        struct net_device *dev = pci_get_drvdata(pdev);
13774        struct bnx2x *bp = netdev_priv(dev);
13775        int i;
13776
13777        rtnl_lock();
13778        BNX2X_ERR("IO slot reset initializing...\n");
13779        if (pci_enable_device(pdev)) {
13780                dev_err(&pdev->dev,
13781                        "Cannot re-enable PCI device after reset\n");
13782                rtnl_unlock();
13783                return PCI_ERS_RESULT_DISCONNECT;
13784        }
13785
13786        pci_set_master(pdev);
13787        pci_restore_state(pdev);
13788        pci_save_state(pdev);
13789
13790        if (netif_running(dev))
13791                bnx2x_set_power_state(bp, PCI_D0);
13792
13793        if (netif_running(dev)) {
13794                BNX2X_ERR("IO slot reset --> driver unload\n");
13795
13796                /* MCP should have been reset; Need to wait for validity */
13797                bnx2x_init_shmem(bp);
13798
13799                if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13800                        u32 v;
13801
13802                        v = SHMEM2_RD(bp,
13803                                      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13804                        SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13805                                  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13806                }
13807                bnx2x_drain_tx_queues(bp);
13808                bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13809                bnx2x_netif_stop(bp, 1);
13810                bnx2x_free_irq(bp);
13811
13812                /* Report UNLOAD_DONE to MCP */
13813                bnx2x_send_unload_done(bp, true);
13814
13815                bp->sp_state = 0;
13816                bp->port.pmf = 0;
13817
13818                bnx2x_prev_unload(bp);
13819
13820                /* We should have reseted the engine, so It's fair to
13821                 * assume the FW will no longer write to the bnx2x driver.
13822                 */
13823                bnx2x_squeeze_objects(bp);
13824                bnx2x_free_skbs(bp);
13825                for_each_rx_queue(bp, i)
13826                        bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13827                bnx2x_free_fp_mem(bp);
13828                bnx2x_free_mem(bp);
13829
13830                bp->state = BNX2X_STATE_CLOSED;
13831        }
13832
13833        rtnl_unlock();
13834
13835        /* If AER, perform cleanup of the PCIe registers */
13836        if (bp->flags & AER_ENABLED) {
13837                if (pci_cleanup_aer_uncorrect_error_status(pdev))
13838                        BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13839                else
13840                        DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13841        }
13842
13843        return PCI_ERS_RESULT_RECOVERED;
13844}
13845
13846/**
13847 * bnx2x_io_resume - called when traffic can start flowing again
13848 * @pdev: Pointer to PCI device
13849 *
13850 * This callback is called when the error recovery driver tells us that
13851 * its OK to resume normal operation.
13852 */
13853static void bnx2x_io_resume(struct pci_dev *pdev)
13854{
13855        struct net_device *dev = pci_get_drvdata(pdev);
13856        struct bnx2x *bp = netdev_priv(dev);
13857
13858        if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13859                netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13860                return;
13861        }
13862
13863        rtnl_lock();
13864
13865        bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13866                                                        DRV_MSG_SEQ_NUMBER_MASK;
13867
13868        if (netif_running(dev))
13869                bnx2x_nic_load(bp, LOAD_NORMAL);
13870
13871        netif_device_attach(dev);
13872
13873        rtnl_unlock();
13874}
13875
13876static const struct pci_error_handlers bnx2x_err_handler = {
13877        .error_detected = bnx2x_io_error_detected,
13878        .slot_reset     = bnx2x_io_slot_reset,
13879        .resume         = bnx2x_io_resume,
13880};
13881
13882static void bnx2x_shutdown(struct pci_dev *pdev)
13883{
13884        struct net_device *dev = pci_get_drvdata(pdev);
13885        struct bnx2x *bp;
13886
13887        if (!dev)
13888                return;
13889
13890        bp = netdev_priv(dev);
13891        if (!bp)
13892                return;
13893
13894        rtnl_lock();
13895        netif_device_detach(dev);
13896        rtnl_unlock();
13897
13898        /* Don't remove the netdevice, as there are scenarios which will cause
13899         * the kernel to hang, e.g., when trying to remove bnx2i while the
13900         * rootfs is mounted from SAN.
13901         */
13902        __bnx2x_remove(pdev, dev, bp, false);
13903}
13904
13905static struct pci_driver bnx2x_pci_driver = {
13906        .name        = DRV_MODULE_NAME,
13907        .id_table    = bnx2x_pci_tbl,
13908        .probe       = bnx2x_init_one,
13909        .remove      = bnx2x_remove_one,
13910        .suspend     = bnx2x_suspend,
13911        .resume      = bnx2x_resume,
13912        .err_handler = &bnx2x_err_handler,
13913#ifdef CONFIG_BNX2X_SRIOV
13914        .sriov_configure = bnx2x_sriov_configure,
13915#endif
13916        .shutdown    = bnx2x_shutdown,
13917};
13918
13919static int __init bnx2x_init(void)
13920{
13921        int ret;
13922
13923        pr_info("%s", version);
13924
13925        bnx2x_wq = create_singlethread_workqueue("bnx2x");
13926        if (bnx2x_wq == NULL) {
13927                pr_err("Cannot create workqueue\n");
13928                return -ENOMEM;
13929        }
13930        bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13931        if (!bnx2x_iov_wq) {
13932                pr_err("Cannot create iov workqueue\n");
13933                destroy_workqueue(bnx2x_wq);
13934                return -ENOMEM;
13935        }
13936
13937        ret = pci_register_driver(&bnx2x_pci_driver);
13938        if (ret) {
13939                pr_err("Cannot register driver\n");
13940                destroy_workqueue(bnx2x_wq);
13941                destroy_workqueue(bnx2x_iov_wq);
13942        }
13943        return ret;
13944}
13945
13946static void __exit bnx2x_cleanup(void)
13947{
13948        struct list_head *pos, *q;
13949
13950        pci_unregister_driver(&bnx2x_pci_driver);
13951
13952        destroy_workqueue(bnx2x_wq);
13953        destroy_workqueue(bnx2x_iov_wq);
13954
13955        /* Free globally allocated resources */
13956        list_for_each_safe(pos, q, &bnx2x_prev_list) {
13957                struct bnx2x_prev_path_list *tmp =
13958                        list_entry(pos, struct bnx2x_prev_path_list, list);
13959                list_del(pos);
13960                kfree(tmp);
13961        }
13962}
13963
13964void bnx2x_notify_link_changed(struct bnx2x *bp)
13965{
13966        REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13967}
13968
13969module_init(bnx2x_init);
13970module_exit(bnx2x_cleanup);
13971
13972/**
13973 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13974 *
13975 * @bp:         driver handle
13976 * @set:        set or clear the CAM entry
13977 *
13978 * This function will wait until the ramrod completion returns.
13979 * Return 0 if success, -ENODEV if ramrod doesn't return.
13980 */
13981static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13982{
13983        unsigned long ramrod_flags = 0;
13984
13985        __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13986        return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13987                                 &bp->iscsi_l2_mac_obj, true,
13988                                 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13989}
13990
13991/* count denotes the number of new completions we have seen */
13992static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13993{
13994        struct eth_spe *spe;
13995        int cxt_index, cxt_offset;
13996
13997#ifdef BNX2X_STOP_ON_ERROR
13998        if (unlikely(bp->panic))
13999                return;
14000#endif
14001
14002        spin_lock_bh(&bp->spq_lock);
14003        BUG_ON(bp->cnic_spq_pending < count);
14004        bp->cnic_spq_pending -= count;
14005
14006        for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14007                u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14008                                & SPE_HDR_CONN_TYPE) >>
14009                                SPE_HDR_CONN_TYPE_SHIFT;
14010                u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14011                                >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14012
14013                /* Set validation for iSCSI L2 client before sending SETUP
14014                 *  ramrod
14015                 */
14016                if (type == ETH_CONNECTION_TYPE) {
14017                        if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14018                                cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14019                                        ILT_PAGE_CIDS;
14020                                cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14021                                        (cxt_index * ILT_PAGE_CIDS);
14022                                bnx2x_set_ctx_validation(bp,
14023                                        &bp->context[cxt_index].
14024                                                         vcxt[cxt_offset].eth,
14025                                        BNX2X_ISCSI_ETH_CID(bp));
14026                        }
14027                }
14028
14029                /*
14030                 * There may be not more than 8 L2, not more than 8 L5 SPEs
14031                 * and in the air. We also check that number of outstanding
14032                 * COMMON ramrods is not more than the EQ and SPQ can
14033                 * accommodate.
14034                 */
14035                if (type == ETH_CONNECTION_TYPE) {
14036                        if (!atomic_read(&bp->cq_spq_left))
14037                                break;
14038                        else
14039                                atomic_dec(&bp->cq_spq_left);
14040                } else if (type == NONE_CONNECTION_TYPE) {
14041                        if (!atomic_read(&bp->eq_spq_left))
14042                                break;
14043                        else
14044                                atomic_dec(&bp->eq_spq_left);
14045                } else if ((type == ISCSI_CONNECTION_TYPE) ||
14046                           (type == FCOE_CONNECTION_TYPE)) {
14047                        if (bp->cnic_spq_pending >=
14048                            bp->cnic_eth_dev.max_kwqe_pending)
14049                                break;
14050                        else
14051                                bp->cnic_spq_pending++;
14052                } else {
14053                        BNX2X_ERR("Unknown SPE type: %d\n", type);
14054                        bnx2x_panic();
14055                        break;
14056                }
14057
14058                spe = bnx2x_sp_get_next(bp);
14059                *spe = *bp->cnic_kwq_cons;
14060
14061                DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14062                   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14063
14064                if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14065                        bp->cnic_kwq_cons = bp->cnic_kwq;
14066                else
14067                        bp->cnic_kwq_cons++;
14068        }
14069        bnx2x_sp_prod_update(bp);
14070        spin_unlock_bh(&bp->spq_lock);
14071}
14072
14073static int bnx2x_cnic_sp_queue(struct net_device *dev,
14074                               struct kwqe_16 *kwqes[], u32 count)
14075{
14076        struct bnx2x *bp = netdev_priv(dev);
14077        int i;
14078
14079#ifdef BNX2X_STOP_ON_ERROR
14080        if (unlikely(bp->panic)) {
14081                BNX2X_ERR("Can't post to SP queue while panic\n");
14082                return -EIO;
14083        }
14084#endif
14085
14086        if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14087            (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14088                BNX2X_ERR("Handling parity error recovery. Try again later\n");
14089                return -EAGAIN;
14090        }
14091
14092        spin_lock_bh(&bp->spq_lock);
14093
14094        for (i = 0; i < count; i++) {
14095                struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14096
14097                if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14098                        break;
14099
14100                *bp->cnic_kwq_prod = *spe;
14101
14102                bp->cnic_kwq_pending++;
14103
14104                DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14105                   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14106                   spe->data.update_data_addr.hi,
14107                   spe->data.update_data_addr.lo,
14108                   bp->cnic_kwq_pending);
14109
14110                if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14111                        bp->cnic_kwq_prod = bp->cnic_kwq;
14112                else
14113                        bp->cnic_kwq_prod++;
14114        }
14115
14116        spin_unlock_bh(&bp->spq_lock);
14117
14118        if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14119                bnx2x_cnic_sp_post(bp, 0);
14120
14121        return i;
14122}
14123
14124static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14125{
14126        struct cnic_ops *c_ops;
14127        int rc = 0;
14128
14129        mutex_lock(&bp->cnic_mutex);
14130        c_ops = rcu_dereference_protected(bp->cnic_ops,
14131                                          lockdep_is_held(&bp->cnic_mutex));
14132        if (c_ops)
14133                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14134        mutex_unlock(&bp->cnic_mutex);
14135
14136        return rc;
14137}
14138
14139static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14140{
14141        struct cnic_ops *c_ops;
14142        int rc = 0;
14143
14144        rcu_read_lock();
14145        c_ops = rcu_dereference(bp->cnic_ops);
14146        if (c_ops)
14147                rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14148        rcu_read_unlock();
14149
14150        return rc;
14151}
14152
14153/*
14154 * for commands that have no data
14155 */
14156int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14157{
14158        struct cnic_ctl_info ctl = {0};
14159
14160        ctl.cmd = cmd;
14161
14162        return bnx2x_cnic_ctl_send(bp, &ctl);
14163}
14164
14165static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14166{
14167        struct cnic_ctl_info ctl = {0};
14168
14169        /* first we tell CNIC and only then we count this as a completion */
14170        ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14171        ctl.data.comp.cid = cid;
14172        ctl.data.comp.error = err;
14173
14174        bnx2x_cnic_ctl_send_bh(bp, &ctl);
14175        bnx2x_cnic_sp_post(bp, 0);
14176}
14177
14178/* Called with netif_addr_lock_bh() taken.
14179 * Sets an rx_mode config for an iSCSI ETH client.
14180 * Doesn't block.
14181 * Completion should be checked outside.
14182 */
14183static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14184{
14185        unsigned long accept_flags = 0, ramrod_flags = 0;
14186        u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14187        int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14188
14189        if (start) {
14190                /* Start accepting on iSCSI L2 ring. Accept all multicasts
14191                 * because it's the only way for UIO Queue to accept
14192                 * multicasts (in non-promiscuous mode only one Queue per
14193                 * function will receive multicast packets (leading in our
14194                 * case).
14195                 */
14196                __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14197                __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14198                __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14199                __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14200
14201                /* Clear STOP_PENDING bit if START is requested */
14202                clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14203
14204                sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14205        } else
14206                /* Clear START_PENDING bit if STOP is requested */
14207                clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14208
14209        if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14210                set_bit(sched_state, &bp->sp_state);
14211        else {
14212                __set_bit(RAMROD_RX, &ramrod_flags);
14213                bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14214                                    ramrod_flags);
14215        }
14216}
14217
14218static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14219{
14220        struct bnx2x *bp = netdev_priv(dev);
14221        int rc = 0;
14222
14223        switch (ctl->cmd) {
14224        case DRV_CTL_CTXTBL_WR_CMD: {
14225                u32 index = ctl->data.io.offset;
14226                dma_addr_t addr = ctl->data.io.dma_addr;
14227
14228                bnx2x_ilt_wr(bp, index, addr);
14229                break;
14230        }
14231
14232        case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14233                int count = ctl->data.credit.credit_count;
14234
14235                bnx2x_cnic_sp_post(bp, count);
14236                break;
14237        }
14238
14239        /* rtnl_lock is held.  */
14240        case DRV_CTL_START_L2_CMD: {
14241                struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14242                unsigned long sp_bits = 0;
14243
14244                /* Configure the iSCSI classification object */
14245                bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14246                                   cp->iscsi_l2_client_id,
14247                                   cp->iscsi_l2_cid, BP_FUNC(bp),
14248                                   bnx2x_sp(bp, mac_rdata),
14249                                   bnx2x_sp_mapping(bp, mac_rdata),
14250                                   BNX2X_FILTER_MAC_PENDING,
14251                                   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14252                                   &bp->macs_pool);
14253
14254                /* Set iSCSI MAC address */
14255                rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14256                if (rc)
14257                        break;
14258
14259                mmiowb();
14260                barrier();
14261
14262                /* Start accepting on iSCSI L2 ring */
14263
14264                netif_addr_lock_bh(dev);
14265                bnx2x_set_iscsi_eth_rx_mode(bp, true);
14266                netif_addr_unlock_bh(dev);
14267
14268                /* bits to wait on */
14269                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14270                __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14271
14272                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14273                        BNX2X_ERR("rx_mode completion timed out!\n");
14274
14275                break;
14276        }
14277
14278        /* rtnl_lock is held.  */
14279        case DRV_CTL_STOP_L2_CMD: {
14280                unsigned long sp_bits = 0;
14281
14282                /* Stop accepting on iSCSI L2 ring */
14283                netif_addr_lock_bh(dev);
14284                bnx2x_set_iscsi_eth_rx_mode(bp, false);
14285                netif_addr_unlock_bh(dev);
14286
14287                /* bits to wait on */
14288                __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14289                __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14290
14291                if (!bnx2x_wait_sp_comp(bp, sp_bits))
14292                        BNX2X_ERR("rx_mode completion timed out!\n");
14293
14294                mmiowb();
14295                barrier();
14296
14297                /* Unset iSCSI L2 MAC */
14298                rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14299                                        BNX2X_ISCSI_ETH_MAC, true);
14300                break;
14301        }
14302        case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14303                int count = ctl->data.credit.credit_count;
14304
14305                smp_mb__before_atomic();
14306                atomic_add(count, &bp->cq_spq_left);
14307                smp_mb__after_atomic();
14308                break;
14309        }
14310        case DRV_CTL_ULP_REGISTER_CMD: {
14311                int ulp_type = ctl->data.register_data.ulp_type;
14312
14313                if (CHIP_IS_E3(bp)) {
14314                        int idx = BP_FW_MB_IDX(bp);
14315                        u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14316                        int path = BP_PATH(bp);
14317                        int port = BP_PORT(bp);
14318                        int i;
14319                        u32 scratch_offset;
14320                        u32 *host_addr;
14321
14322                        /* first write capability to shmem2 */
14323                        if (ulp_type == CNIC_ULP_ISCSI)
14324                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14325                        else if (ulp_type == CNIC_ULP_FCOE)
14326                                cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14327                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14328
14329                        if ((ulp_type != CNIC_ULP_FCOE) ||
14330                            (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14331                            (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14332                                break;
14333
14334                        /* if reached here - should write fcoe capabilities */
14335                        scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14336                        if (!scratch_offset)
14337                                break;
14338                        scratch_offset += offsetof(struct glob_ncsi_oem_data,
14339                                                   fcoe_features[path][port]);
14340                        host_addr = (u32 *) &(ctl->data.register_data.
14341                                              fcoe_features);
14342                        for (i = 0; i < sizeof(struct fcoe_capabilities);
14343                             i += 4)
14344                                REG_WR(bp, scratch_offset + i,
14345                                       *(host_addr + i/4));
14346                }
14347                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14348                break;
14349        }
14350
14351        case DRV_CTL_ULP_UNREGISTER_CMD: {
14352                int ulp_type = ctl->data.ulp_type;
14353
14354                if (CHIP_IS_E3(bp)) {
14355                        int idx = BP_FW_MB_IDX(bp);
14356                        u32 cap;
14357
14358                        cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14359                        if (ulp_type == CNIC_ULP_ISCSI)
14360                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14361                        else if (ulp_type == CNIC_ULP_FCOE)
14362                                cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14363                        SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14364                }
14365                bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14366                break;
14367        }
14368
14369        default:
14370                BNX2X_ERR("unknown command %x\n", ctl->cmd);
14371                rc = -EINVAL;
14372        }
14373
14374        return rc;
14375}
14376
14377void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14378{
14379        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14380
14381        if (bp->flags & USING_MSIX_FLAG) {
14382                cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14383                cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14384                cp->irq_arr[0].vector = bp->msix_table[1].vector;
14385        } else {
14386                cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14387                cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14388        }
14389        if (!CHIP_IS_E1x(bp))
14390                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14391        else
14392                cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14393
14394        cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14395        cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14396        cp->irq_arr[1].status_blk = bp->def_status_blk;
14397        cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14398        cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14399
14400        cp->num_irq = 2;
14401}
14402
14403void bnx2x_setup_cnic_info(struct bnx2x *bp)
14404{
14405        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14406
14407        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14408                             bnx2x_cid_ilt_lines(bp);
14409        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14410        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14411        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14412
14413        DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14414           BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14415           cp->iscsi_l2_cid);
14416
14417        if (NO_ISCSI_OOO(bp))
14418                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14419}
14420
14421static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14422                               void *data)
14423{
14424        struct bnx2x *bp = netdev_priv(dev);
14425        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14426        int rc;
14427
14428        DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14429
14430        if (ops == NULL) {
14431                BNX2X_ERR("NULL ops received\n");
14432                return -EINVAL;
14433        }
14434
14435        if (!CNIC_SUPPORT(bp)) {
14436                BNX2X_ERR("Can't register CNIC when not supported\n");
14437                return -EOPNOTSUPP;
14438        }
14439
14440        if (!CNIC_LOADED(bp)) {
14441                rc = bnx2x_load_cnic(bp);
14442                if (rc) {
14443                        BNX2X_ERR("CNIC-related load failed\n");
14444                        return rc;
14445                }
14446        }
14447
14448        bp->cnic_enabled = true;
14449
14450        bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14451        if (!bp->cnic_kwq)
14452                return -ENOMEM;
14453
14454        bp->cnic_kwq_cons = bp->cnic_kwq;
14455        bp->cnic_kwq_prod = bp->cnic_kwq;
14456        bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14457
14458        bp->cnic_spq_pending = 0;
14459        bp->cnic_kwq_pending = 0;
14460
14461        bp->cnic_data = data;
14462
14463        cp->num_irq = 0;
14464        cp->drv_state |= CNIC_DRV_STATE_REGD;
14465        cp->iro_arr = bp->iro_arr;
14466
14467        bnx2x_setup_cnic_irq_info(bp);
14468
14469        rcu_assign_pointer(bp->cnic_ops, ops);
14470
14471        /* Schedule driver to read CNIC driver versions */
14472        bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14473
14474        return 0;
14475}
14476
14477static int bnx2x_unregister_cnic(struct net_device *dev)
14478{
14479        struct bnx2x *bp = netdev_priv(dev);
14480        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14481
14482        mutex_lock(&bp->cnic_mutex);
14483        cp->drv_state = 0;
14484        RCU_INIT_POINTER(bp->cnic_ops, NULL);
14485        mutex_unlock(&bp->cnic_mutex);
14486        synchronize_rcu();
14487        bp->cnic_enabled = false;
14488        kfree(bp->cnic_kwq);
14489        bp->cnic_kwq = NULL;
14490
14491        return 0;
14492}
14493
14494static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14495{
14496        struct bnx2x *bp = netdev_priv(dev);
14497        struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14498
14499        /* If both iSCSI and FCoE are disabled - return NULL in
14500         * order to indicate CNIC that it should not try to work
14501         * with this device.
14502         */
14503        if (NO_ISCSI(bp) && NO_FCOE(bp))
14504                return NULL;
14505
14506        cp->drv_owner = THIS_MODULE;
14507        cp->chip_id = CHIP_ID(bp);
14508        cp->pdev = bp->pdev;
14509        cp->io_base = bp->regview;
14510        cp->io_base2 = bp->doorbells;
14511        cp->max_kwqe_pending = 8;
14512        cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14513        cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14514                             bnx2x_cid_ilt_lines(bp);
14515        cp->ctx_tbl_len = CNIC_ILT_LINES;
14516        cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14517        cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14518        cp->drv_ctl = bnx2x_drv_ctl;
14519        cp->drv_register_cnic = bnx2x_register_cnic;
14520        cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14521        cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14522        cp->iscsi_l2_client_id =
14523                bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14524        cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14525
14526        if (NO_ISCSI_OOO(bp))
14527                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14528
14529        if (NO_ISCSI(bp))
14530                cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14531
14532        if (NO_FCOE(bp))
14533                cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14534
14535        BNX2X_DEV_INFO(
14536                "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14537           cp->ctx_blk_size,
14538           cp->ctx_tbl_offset,
14539           cp->ctx_tbl_len,
14540           cp->starting_cid);
14541        return cp;
14542}
14543
14544static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14545{
14546        struct bnx2x *bp = fp->bp;
14547        u32 offset = BAR_USTRORM_INTMEM;
14548
14549        if (IS_VF(bp))
14550                return bnx2x_vf_ustorm_prods_offset(bp, fp);
14551        else if (!CHIP_IS_E1x(bp))
14552                offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14553        else
14554                offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14555
14556        return offset;
14557}
14558
14559/* called only on E1H or E2.
14560 * When pretending to be PF, the pretend value is the function number 0...7
14561 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14562 * combination
14563 */
14564int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14565{
14566        u32 pretend_reg;
14567
14568        if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14569                return -1;
14570
14571        /* get my own pretend register */
14572        pretend_reg = bnx2x_get_pretend_reg(bp);
14573        REG_WR(bp, pretend_reg, pretend_func_val);
14574        REG_RD(bp, pretend_reg);
14575        return 0;
14576}
14577
14578static void bnx2x_ptp_task(struct work_struct *work)
14579{
14580        struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14581        int port = BP_PORT(bp);
14582        u32 val_seq;
14583        u64 timestamp, ns;
14584        struct skb_shared_hwtstamps shhwtstamps;
14585
14586        /* Read Tx timestamp registers */
14587        val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14588                         NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14589        if (val_seq & 0x10000) {
14590                /* There is a valid timestamp value */
14591                timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14592                                   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14593                timestamp <<= 32;
14594                timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14595                                    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14596                /* Reset timestamp register to allow new timestamp */
14597                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14598                       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14599                ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14600
14601                memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14602                shhwtstamps.hwtstamp = ns_to_ktime(ns);
14603                skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14604                dev_kfree_skb_any(bp->ptp_tx_skb);
14605                bp->ptp_tx_skb = NULL;
14606
14607                DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14608                   timestamp, ns);
14609        } else {
14610                DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14611                /* Reschedule to keep checking for a valid timestamp value */
14612                schedule_work(&bp->ptp_task);
14613        }
14614}
14615
14616void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14617{
14618        int port = BP_PORT(bp);
14619        u64 timestamp, ns;
14620
14621        timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14622                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14623        timestamp <<= 32;
14624        timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14625                            NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14626
14627        /* Reset timestamp register to allow new timestamp */
14628        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14629               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14630
14631        ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14632
14633        skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14634
14635        DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14636           timestamp, ns);
14637}
14638
14639/* Read the PHC */
14640static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14641{
14642        struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14643        int port = BP_PORT(bp);
14644        u32 wb_data[2];
14645        u64 phc_cycles;
14646
14647        REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14648                    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14649        phc_cycles = wb_data[1];
14650        phc_cycles = (phc_cycles << 32) + wb_data[0];
14651
14652        DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14653
14654        return phc_cycles;
14655}
14656
14657static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14658{
14659        memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14660        bp->cyclecounter.read = bnx2x_cyclecounter_read;
14661        bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
14662        bp->cyclecounter.shift = 1;
14663        bp->cyclecounter.mult = 1;
14664}
14665
14666static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14667{
14668        struct bnx2x_func_state_params func_params = {NULL};
14669        struct bnx2x_func_set_timesync_params *set_timesync_params =
14670                &func_params.params.set_timesync;
14671
14672        /* Prepare parameters for function state transitions */
14673        __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14674        __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14675
14676        func_params.f_obj = &bp->func_obj;
14677        func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14678
14679        /* Function parameters */
14680        set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14681        set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14682
14683        return bnx2x_func_state_change(bp, &func_params);
14684}
14685
14686static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14687{
14688        struct bnx2x_queue_state_params q_params;
14689        int rc, i;
14690
14691        /* send queue update ramrod to enable PTP packets */
14692        memset(&q_params, 0, sizeof(q_params));
14693        __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14694        q_params.cmd = BNX2X_Q_CMD_UPDATE;
14695        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14696                  &q_params.params.update.update_flags);
14697        __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14698                  &q_params.params.update.update_flags);
14699
14700        /* send the ramrod on all the queues of the PF */
14701        for_each_eth_queue(bp, i) {
14702                struct bnx2x_fastpath *fp = &bp->fp[i];
14703
14704                /* Set the appropriate Queue object */
14705                q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14706
14707                /* Update the Queue state */
14708                rc = bnx2x_queue_state_change(bp, &q_params);
14709                if (rc) {
14710                        BNX2X_ERR("Failed to enable PTP packets\n");
14711                        return rc;
14712                }
14713        }
14714
14715        return 0;
14716}
14717
14718int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14719{
14720        int port = BP_PORT(bp);
14721        int rc;
14722
14723        if (!bp->hwtstamp_ioctl_called)
14724                return 0;
14725
14726        switch (bp->tx_type) {
14727        case HWTSTAMP_TX_ON:
14728                bp->flags |= TX_TIMESTAMPING_EN;
14729                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14730                       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14731                REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14732                       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14733                break;
14734        case HWTSTAMP_TX_ONESTEP_SYNC:
14735                BNX2X_ERR("One-step timestamping is not supported\n");
14736                return -ERANGE;
14737        }
14738
14739        switch (bp->rx_filter) {
14740        case HWTSTAMP_FILTER_NONE:
14741                break;
14742        case HWTSTAMP_FILTER_ALL:
14743        case HWTSTAMP_FILTER_SOME:
14744                bp->rx_filter = HWTSTAMP_FILTER_NONE;
14745                break;
14746        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14747        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14748        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14749                bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14750                /* Initialize PTP detection for UDP/IPv4 events */
14751                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14752                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14753                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14754                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14755                break;
14756        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14757        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14758        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14759                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14760                /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14761                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14762                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14763                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14764                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14765                break;
14766        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14767        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14768        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14769                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14770                /* Initialize PTP detection L2 events */
14771                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14772                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14773                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14774                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14775
14776                break;
14777        case HWTSTAMP_FILTER_PTP_V2_EVENT:
14778        case HWTSTAMP_FILTER_PTP_V2_SYNC:
14779        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14780                bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14781                /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14782                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14783                       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14784                REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14785                       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14786                break;
14787        }
14788
14789        /* Indicate to FW that this PF expects recorded PTP packets */
14790        rc = bnx2x_enable_ptp_packets(bp);
14791        if (rc)
14792                return rc;
14793
14794        /* Enable sending PTP packets to host */
14795        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14796               NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14797
14798        return 0;
14799}
14800
14801static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14802{
14803        struct hwtstamp_config config;
14804        int rc;
14805
14806        DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14807
14808        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14809                return -EFAULT;
14810
14811        DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14812           config.tx_type, config.rx_filter);
14813
14814        if (config.flags) {
14815                BNX2X_ERR("config.flags is reserved for future use\n");
14816                return -EINVAL;
14817        }
14818
14819        bp->hwtstamp_ioctl_called = 1;
14820        bp->tx_type = config.tx_type;
14821        bp->rx_filter = config.rx_filter;
14822
14823        rc = bnx2x_configure_ptp_filters(bp);
14824        if (rc)
14825                return rc;
14826
14827        config.rx_filter = bp->rx_filter;
14828
14829        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14830                -EFAULT : 0;
14831}
14832
14833/* Configures HW for PTP */
14834static int bnx2x_configure_ptp(struct bnx2x *bp)
14835{
14836        int rc, port = BP_PORT(bp);
14837        u32 wb_data[2];
14838
14839        /* Reset PTP event detection rules - will be configured in the IOCTL */
14840        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14841               NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14842        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14843               NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14844        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14845               NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14846        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14847               NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14848
14849        /* Disable PTP packets to host - will be configured in the IOCTL*/
14850        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14851               NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14852
14853        /* Enable the PTP feature */
14854        REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14855               NIG_REG_P0_PTP_EN, 0x3F);
14856
14857        /* Enable the free-running counter */
14858        wb_data[0] = 0;
14859        wb_data[1] = 0;
14860        REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14861
14862        /* Reset drift register (offset register is not reset) */
14863        rc = bnx2x_send_reset_timesync_ramrod(bp);
14864        if (rc) {
14865                BNX2X_ERR("Failed to reset PHC drift register\n");
14866                return -EFAULT;
14867        }
14868
14869        /* Reset possibly old timestamps */
14870        REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14871               NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14872        REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14873               NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14874
14875        return 0;
14876}
14877
14878/* Called during load, to initialize PTP-related stuff */
14879void bnx2x_init_ptp(struct bnx2x *bp)
14880{
14881        int rc;
14882
14883        /* Configure PTP in HW */
14884        rc = bnx2x_configure_ptp(bp);
14885        if (rc) {
14886                BNX2X_ERR("Stopping PTP initialization\n");
14887                return;
14888        }
14889
14890        /* Init work queue for Tx timestamping */
14891        INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14892
14893        /* Init cyclecounter and timecounter. This is done only in the first
14894         * load. If done in every load, PTP application will fail when doing
14895         * unload / load (e.g. MTU change) while it is running.
14896         */
14897        if (!bp->timecounter_init_done) {
14898                bnx2x_init_cyclecounter(bp);
14899                timecounter_init(&bp->timecounter, &bp->cyclecounter,
14900                                 ktime_to_ns(ktime_get_real()));
14901                bp->timecounter_init_done = 1;
14902        }
14903
14904        DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14905}
14906