linux/drivers/net/ethernet/intel/igb/igb_ptp.c
<<
>>
Prefs
   1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
   2 *
   3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/pci.h>
  21#include <linux/ptp_classify.h>
  22
  23#include "igb.h"
  24
  25#define INCVALUE_MASK           0x7fffffff
  26#define ISGN                    0x80000000
  27
  28/* The 82580 timesync updates the system timer every 8ns by 8ns,
  29 * and this update value cannot be reprogrammed.
  30 *
  31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  32 * nanoseconds time values for very long. For the 82580, SYSTIM always
  33 * counts nanoseconds, but the upper 24 bits are not available. The
  34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  35 * register, TIMINCA.
  36 *
  37 * For the 82576, the SYSTIM register time unit is affect by the
  38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  39 * field are needed to provide the nominal 16 nanosecond period,
  40 * leaving 19 bits for fractional nanoseconds.
  41 *
  42 * We scale the NIC clock cycle by a large factor so that relatively
  43 * small clock corrections can be added or subtracted at each clock
  44 * tick. The drawbacks of a large factor are a) that the clock
  45 * register overflows more quickly (not such a big deal) and b) that
  46 * the increment per tick has to fit into 24 bits.  As a result we
  47 * need to use a shift of 19 so we can fit a value of 16 into the
  48 * TIMINCA register.
  49 *
  50 *
  51 *             SYSTIMH            SYSTIML
  52 *        +--------------+   +---+---+------+
  53 *  82576 |      32      |   | 8 | 5 |  19  |
  54 *        +--------------+   +---+---+------+
  55 *         \________ 45 bits _______/  fract
  56 *
  57 *        +----------+---+   +--------------+
  58 *  82580 |    24    | 8 |   |      32      |
  59 *        +----------+---+   +--------------+
  60 *          reserved  \______ 40 bits _____/
  61 *
  62 *
  63 * The 45 bit 82576 SYSTIM overflows every
  64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  65 *
  66 * The 40 bit 82580 SYSTIM overflows every
  67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  68 */
  69
  70#define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
  71#define IGB_PTP_TX_TIMEOUT              (HZ * 15)
  72#define INCPERIOD_82576                 (1 << E1000_TIMINCA_16NS_SHIFT)
  73#define INCVALUE_82576_MASK             ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
  74#define INCVALUE_82576                  (16 << IGB_82576_TSYNC_SHIFT)
  75#define IGB_NBITS_82580                 40
  76
  77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  78
  79/* SYSTIM read access for the 82576 */
  80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
  81{
  82        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  83        struct e1000_hw *hw = &igb->hw;
  84        u64 val;
  85        u32 lo, hi;
  86
  87        lo = rd32(E1000_SYSTIML);
  88        hi = rd32(E1000_SYSTIMH);
  89
  90        val = ((u64) hi) << 32;
  91        val |= lo;
  92
  93        return val;
  94}
  95
  96/* SYSTIM read access for the 82580 */
  97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
  98{
  99        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
 100        struct e1000_hw *hw = &igb->hw;
 101        u32 lo, hi;
 102        u64 val;
 103
 104        /* The timestamp latches on lowest register read. For the 82580
 105         * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 106         * need to provide nanosecond resolution, so we just ignore it.
 107         */
 108        rd32(E1000_SYSTIMR);
 109        lo = rd32(E1000_SYSTIML);
 110        hi = rd32(E1000_SYSTIMH);
 111
 112        val = ((u64) hi) << 32;
 113        val |= lo;
 114
 115        return val;
 116}
 117
 118/* SYSTIM read access for I210/I211 */
 119static void igb_ptp_read_i210(struct igb_adapter *adapter,
 120                              struct timespec64 *ts)
 121{
 122        struct e1000_hw *hw = &adapter->hw;
 123        u32 sec, nsec;
 124
 125        /* The timestamp latches on lowest register read. For I210/I211, the
 126         * lowest register is SYSTIMR. Since we only need to provide nanosecond
 127         * resolution, we can ignore it.
 128         */
 129        rd32(E1000_SYSTIMR);
 130        nsec = rd32(E1000_SYSTIML);
 131        sec = rd32(E1000_SYSTIMH);
 132
 133        ts->tv_sec = sec;
 134        ts->tv_nsec = nsec;
 135}
 136
 137static void igb_ptp_write_i210(struct igb_adapter *adapter,
 138                               const struct timespec64 *ts)
 139{
 140        struct e1000_hw *hw = &adapter->hw;
 141
 142        /* Writing the SYSTIMR register is not necessary as it only provides
 143         * sub-nanosecond resolution.
 144         */
 145        wr32(E1000_SYSTIML, ts->tv_nsec);
 146        wr32(E1000_SYSTIMH, ts->tv_sec);
 147}
 148
 149/**
 150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 151 * @adapter: board private structure
 152 * @hwtstamps: timestamp structure to update
 153 * @systim: unsigned 64bit system time value.
 154 *
 155 * We need to convert the system time value stored in the RX/TXSTMP registers
 156 * into a hwtstamp which can be used by the upper level timestamping functions.
 157 *
 158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 159 * system time value. This is needed because reading the 64 bit time
 160 * value involves reading two (or three) 32 bit registers. The first
 161 * read latches the value. Ditto for writing.
 162 *
 163 * In addition, here have extended the system time with an overflow
 164 * counter in software.
 165 **/
 166static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 167                                       struct skb_shared_hwtstamps *hwtstamps,
 168                                       u64 systim)
 169{
 170        unsigned long flags;
 171        u64 ns;
 172
 173        switch (adapter->hw.mac.type) {
 174        case e1000_82576:
 175        case e1000_82580:
 176        case e1000_i354:
 177        case e1000_i350:
 178                spin_lock_irqsave(&adapter->tmreg_lock, flags);
 179
 180                ns = timecounter_cyc2time(&adapter->tc, systim);
 181
 182                spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 183
 184                memset(hwtstamps, 0, sizeof(*hwtstamps));
 185                hwtstamps->hwtstamp = ns_to_ktime(ns);
 186                break;
 187        case e1000_i210:
 188        case e1000_i211:
 189                memset(hwtstamps, 0, sizeof(*hwtstamps));
 190                /* Upper 32 bits contain s, lower 32 bits contain ns. */
 191                hwtstamps->hwtstamp = ktime_set(systim >> 32,
 192                                                systim & 0xFFFFFFFF);
 193                break;
 194        default:
 195                break;
 196        }
 197}
 198
 199/* PTP clock operations */
 200static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 201{
 202        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 203                                               ptp_caps);
 204        struct e1000_hw *hw = &igb->hw;
 205        int neg_adj = 0;
 206        u64 rate;
 207        u32 incvalue;
 208
 209        if (ppb < 0) {
 210                neg_adj = 1;
 211                ppb = -ppb;
 212        }
 213        rate = ppb;
 214        rate <<= 14;
 215        rate = div_u64(rate, 1953125);
 216
 217        incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 218
 219        if (neg_adj)
 220                incvalue -= rate;
 221        else
 222                incvalue += rate;
 223
 224        wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 225
 226        return 0;
 227}
 228
 229static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
 230{
 231        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 232                                               ptp_caps);
 233        struct e1000_hw *hw = &igb->hw;
 234        int neg_adj = 0;
 235        u64 rate;
 236        u32 inca;
 237
 238        if (ppb < 0) {
 239                neg_adj = 1;
 240                ppb = -ppb;
 241        }
 242        rate = ppb;
 243        rate <<= 26;
 244        rate = div_u64(rate, 1953125);
 245
 246        inca = rate & INCVALUE_MASK;
 247        if (neg_adj)
 248                inca |= ISGN;
 249
 250        wr32(E1000_TIMINCA, inca);
 251
 252        return 0;
 253}
 254
 255static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 256{
 257        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 258                                               ptp_caps);
 259        unsigned long flags;
 260
 261        spin_lock_irqsave(&igb->tmreg_lock, flags);
 262        timecounter_adjtime(&igb->tc, delta);
 263        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 264
 265        return 0;
 266}
 267
 268static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 269{
 270        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 271                                               ptp_caps);
 272        unsigned long flags;
 273        struct timespec64 now, then = ns_to_timespec64(delta);
 274
 275        spin_lock_irqsave(&igb->tmreg_lock, flags);
 276
 277        igb_ptp_read_i210(igb, &now);
 278        now = timespec64_add(now, then);
 279        igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 280
 281        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 282
 283        return 0;
 284}
 285
 286static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
 287                                 struct timespec64 *ts)
 288{
 289        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 290                                               ptp_caps);
 291        unsigned long flags;
 292        u64 ns;
 293
 294        spin_lock_irqsave(&igb->tmreg_lock, flags);
 295
 296        ns = timecounter_read(&igb->tc);
 297
 298        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 299
 300        *ts = ns_to_timespec64(ns);
 301
 302        return 0;
 303}
 304
 305static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
 306                                struct timespec64 *ts)
 307{
 308        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 309                                               ptp_caps);
 310        unsigned long flags;
 311
 312        spin_lock_irqsave(&igb->tmreg_lock, flags);
 313
 314        igb_ptp_read_i210(igb, ts);
 315
 316        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 317
 318        return 0;
 319}
 320
 321static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 322                                 const struct timespec64 *ts)
 323{
 324        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 325                                               ptp_caps);
 326        unsigned long flags;
 327        u64 ns;
 328
 329        ns = timespec64_to_ns(ts);
 330
 331        spin_lock_irqsave(&igb->tmreg_lock, flags);
 332
 333        timecounter_init(&igb->tc, &igb->cc, ns);
 334
 335        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 336
 337        return 0;
 338}
 339
 340static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 341                                const struct timespec64 *ts)
 342{
 343        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 344                                               ptp_caps);
 345        unsigned long flags;
 346
 347        spin_lock_irqsave(&igb->tmreg_lock, flags);
 348
 349        igb_ptp_write_i210(igb, ts);
 350
 351        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 352
 353        return 0;
 354}
 355
 356static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 357{
 358        u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 359        static const u32 mask[IGB_N_SDP] = {
 360                E1000_CTRL_SDP0_DIR,
 361                E1000_CTRL_SDP1_DIR,
 362                E1000_CTRL_EXT_SDP2_DIR,
 363                E1000_CTRL_EXT_SDP3_DIR,
 364        };
 365
 366        if (input)
 367                *ptr &= ~mask[pin];
 368        else
 369                *ptr |= mask[pin];
 370}
 371
 372static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 373{
 374        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 375                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 376        };
 377        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 378                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 379        };
 380        static const u32 ts_sdp_en[IGB_N_SDP] = {
 381                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 382        };
 383        struct e1000_hw *hw = &igb->hw;
 384        u32 ctrl, ctrl_ext, tssdp = 0;
 385
 386        ctrl = rd32(E1000_CTRL);
 387        ctrl_ext = rd32(E1000_CTRL_EXT);
 388        tssdp = rd32(E1000_TSSDP);
 389
 390        igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 391
 392        /* Make sure this pin is not enabled as an output. */
 393        tssdp &= ~ts_sdp_en[pin];
 394
 395        if (chan == 1) {
 396                tssdp &= ~AUX1_SEL_SDP3;
 397                tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 398        } else {
 399                tssdp &= ~AUX0_SEL_SDP3;
 400                tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 401        }
 402
 403        wr32(E1000_TSSDP, tssdp);
 404        wr32(E1000_CTRL, ctrl);
 405        wr32(E1000_CTRL_EXT, ctrl_ext);
 406}
 407
 408static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin)
 409{
 410        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412        };
 413        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415        };
 416        static const u32 ts_sdp_en[IGB_N_SDP] = {
 417                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418        };
 419        static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 420                TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 421                TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 422        };
 423        static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 424                TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 425                TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 426        };
 427        static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 428                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 429                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 430        };
 431        struct e1000_hw *hw = &igb->hw;
 432        u32 ctrl, ctrl_ext, tssdp = 0;
 433
 434        ctrl = rd32(E1000_CTRL);
 435        ctrl_ext = rd32(E1000_CTRL_EXT);
 436        tssdp = rd32(E1000_TSSDP);
 437
 438        igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 439
 440        /* Make sure this pin is not enabled as an input. */
 441        if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 442                tssdp &= ~AUX0_TS_SDP_EN;
 443
 444        if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 445                tssdp &= ~AUX1_TS_SDP_EN;
 446
 447        tssdp &= ~ts_sdp_sel_clr[pin];
 448        if (chan == 1)
 449                tssdp |= ts_sdp_sel_tt1[pin];
 450        else
 451                tssdp |= ts_sdp_sel_tt0[pin];
 452
 453        tssdp |= ts_sdp_en[pin];
 454
 455        wr32(E1000_TSSDP, tssdp);
 456        wr32(E1000_CTRL, ctrl);
 457        wr32(E1000_CTRL_EXT, ctrl_ext);
 458}
 459
 460static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 461                                       struct ptp_clock_request *rq, int on)
 462{
 463        struct igb_adapter *igb =
 464                container_of(ptp, struct igb_adapter, ptp_caps);
 465        struct e1000_hw *hw = &igb->hw;
 466        u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh;
 467        unsigned long flags;
 468        struct timespec ts;
 469        int pin = -1;
 470        s64 ns;
 471
 472        switch (rq->type) {
 473        case PTP_CLK_REQ_EXTTS:
 474                if (on) {
 475                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 476                                           rq->extts.index);
 477                        if (pin < 0)
 478                                return -EBUSY;
 479                }
 480                if (rq->extts.index == 1) {
 481                        tsauxc_mask = TSAUXC_EN_TS1;
 482                        tsim_mask = TSINTR_AUTT1;
 483                } else {
 484                        tsauxc_mask = TSAUXC_EN_TS0;
 485                        tsim_mask = TSINTR_AUTT0;
 486                }
 487                spin_lock_irqsave(&igb->tmreg_lock, flags);
 488                tsauxc = rd32(E1000_TSAUXC);
 489                tsim = rd32(E1000_TSIM);
 490                if (on) {
 491                        igb_pin_extts(igb, rq->extts.index, pin);
 492                        tsauxc |= tsauxc_mask;
 493                        tsim |= tsim_mask;
 494                } else {
 495                        tsauxc &= ~tsauxc_mask;
 496                        tsim &= ~tsim_mask;
 497                }
 498                wr32(E1000_TSAUXC, tsauxc);
 499                wr32(E1000_TSIM, tsim);
 500                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 501                return 0;
 502
 503        case PTP_CLK_REQ_PEROUT:
 504                if (on) {
 505                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 506                                           rq->perout.index);
 507                        if (pin < 0)
 508                                return -EBUSY;
 509                }
 510                ts.tv_sec = rq->perout.period.sec;
 511                ts.tv_nsec = rq->perout.period.nsec;
 512                ns = timespec_to_ns(&ts);
 513                ns = ns >> 1;
 514                if (on && ns < 500000LL) {
 515                        /* 2k interrupts per second is an awful lot. */
 516                        return -EINVAL;
 517                }
 518                ts = ns_to_timespec(ns);
 519                if (rq->perout.index == 1) {
 520                        tsauxc_mask = TSAUXC_EN_TT1;
 521                        tsim_mask = TSINTR_TT1;
 522                        trgttiml = E1000_TRGTTIML1;
 523                        trgttimh = E1000_TRGTTIMH1;
 524                } else {
 525                        tsauxc_mask = TSAUXC_EN_TT0;
 526                        tsim_mask = TSINTR_TT0;
 527                        trgttiml = E1000_TRGTTIML0;
 528                        trgttimh = E1000_TRGTTIMH0;
 529                }
 530                spin_lock_irqsave(&igb->tmreg_lock, flags);
 531                tsauxc = rd32(E1000_TSAUXC);
 532                tsim = rd32(E1000_TSIM);
 533                if (on) {
 534                        int i = rq->perout.index;
 535
 536                        igb_pin_perout(igb, i, pin);
 537                        igb->perout[i].start.tv_sec = rq->perout.start.sec;
 538                        igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 539                        igb->perout[i].period.tv_sec = ts.tv_sec;
 540                        igb->perout[i].period.tv_nsec = ts.tv_nsec;
 541                        wr32(trgttimh, rq->perout.start.sec);
 542                        wr32(trgttiml, rq->perout.start.nsec);
 543                        tsauxc |= tsauxc_mask;
 544                        tsim |= tsim_mask;
 545                } else {
 546                        tsauxc &= ~tsauxc_mask;
 547                        tsim &= ~tsim_mask;
 548                }
 549                wr32(E1000_TSAUXC, tsauxc);
 550                wr32(E1000_TSIM, tsim);
 551                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 552                return 0;
 553
 554        case PTP_CLK_REQ_PPS:
 555                spin_lock_irqsave(&igb->tmreg_lock, flags);
 556                tsim = rd32(E1000_TSIM);
 557                if (on)
 558                        tsim |= TSINTR_SYS_WRAP;
 559                else
 560                        tsim &= ~TSINTR_SYS_WRAP;
 561                wr32(E1000_TSIM, tsim);
 562                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 563                return 0;
 564        }
 565
 566        return -EOPNOTSUPP;
 567}
 568
 569static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 570                                  struct ptp_clock_request *rq, int on)
 571{
 572        return -EOPNOTSUPP;
 573}
 574
 575static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 576                              enum ptp_pin_function func, unsigned int chan)
 577{
 578        switch (func) {
 579        case PTP_PF_NONE:
 580        case PTP_PF_EXTTS:
 581        case PTP_PF_PEROUT:
 582                break;
 583        case PTP_PF_PHYSYNC:
 584                return -1;
 585        }
 586        return 0;
 587}
 588
 589/**
 590 * igb_ptp_tx_work
 591 * @work: pointer to work struct
 592 *
 593 * This work function polls the TSYNCTXCTL valid bit to determine when a
 594 * timestamp has been taken for the current stored skb.
 595 **/
 596static void igb_ptp_tx_work(struct work_struct *work)
 597{
 598        struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 599                                                   ptp_tx_work);
 600        struct e1000_hw *hw = &adapter->hw;
 601        u32 tsynctxctl;
 602
 603        if (!adapter->ptp_tx_skb)
 604                return;
 605
 606        if (time_is_before_jiffies(adapter->ptp_tx_start +
 607                                   IGB_PTP_TX_TIMEOUT)) {
 608                dev_kfree_skb_any(adapter->ptp_tx_skb);
 609                adapter->ptp_tx_skb = NULL;
 610                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 611                adapter->tx_hwtstamp_timeouts++;
 612                dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 613                return;
 614        }
 615
 616        tsynctxctl = rd32(E1000_TSYNCTXCTL);
 617        if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 618                igb_ptp_tx_hwtstamp(adapter);
 619        else
 620                /* reschedule to check later */
 621                schedule_work(&adapter->ptp_tx_work);
 622}
 623
 624static void igb_ptp_overflow_check(struct work_struct *work)
 625{
 626        struct igb_adapter *igb =
 627                container_of(work, struct igb_adapter, ptp_overflow_work.work);
 628        struct timespec64 ts;
 629
 630        igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
 631
 632        pr_debug("igb overflow check at %lld.%09lu\n",
 633                 (long long) ts.tv_sec, ts.tv_nsec);
 634
 635        schedule_delayed_work(&igb->ptp_overflow_work,
 636                              IGB_SYSTIM_OVERFLOW_PERIOD);
 637}
 638
 639/**
 640 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 641 * @adapter: private network adapter structure
 642 *
 643 * This watchdog task is scheduled to detect error case where hardware has
 644 * dropped an Rx packet that was timestamped when the ring is full. The
 645 * particular error is rare but leaves the device in a state unable to timestamp
 646 * any future packets.
 647 **/
 648void igb_ptp_rx_hang(struct igb_adapter *adapter)
 649{
 650        struct e1000_hw *hw = &adapter->hw;
 651        u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 652        unsigned long rx_event;
 653
 654        if (hw->mac.type != e1000_82576)
 655                return;
 656
 657        /* If we don't have a valid timestamp in the registers, just update the
 658         * timeout counter and exit
 659         */
 660        if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 661                adapter->last_rx_ptp_check = jiffies;
 662                return;
 663        }
 664
 665        /* Determine the most recent watchdog or rx_timestamp event */
 666        rx_event = adapter->last_rx_ptp_check;
 667        if (time_after(adapter->last_rx_timestamp, rx_event))
 668                rx_event = adapter->last_rx_timestamp;
 669
 670        /* Only need to read the high RXSTMP register to clear the lock */
 671        if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 672                rd32(E1000_RXSTMPH);
 673                adapter->last_rx_ptp_check = jiffies;
 674                adapter->rx_hwtstamp_cleared++;
 675                dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 676        }
 677}
 678
 679/**
 680 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 681 * @adapter: Board private structure.
 682 *
 683 * If we were asked to do hardware stamping and such a time stamp is
 684 * available, then it must have been for this skb here because we only
 685 * allow only one such packet into the queue.
 686 **/
 687static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 688{
 689        struct e1000_hw *hw = &adapter->hw;
 690        struct skb_shared_hwtstamps shhwtstamps;
 691        u64 regval;
 692
 693        regval = rd32(E1000_TXSTMPL);
 694        regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 695
 696        igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 697        skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
 698        dev_kfree_skb_any(adapter->ptp_tx_skb);
 699        adapter->ptp_tx_skb = NULL;
 700        clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 701}
 702
 703/**
 704 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 705 * @q_vector: Pointer to interrupt specific structure
 706 * @va: Pointer to address containing Rx buffer
 707 * @skb: Buffer containing timestamp and packet
 708 *
 709 * This function is meant to retrieve a timestamp from the first buffer of an
 710 * incoming frame.  The value is stored in little endian format starting on
 711 * byte 8.
 712 **/
 713void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
 714                         unsigned char *va,
 715                         struct sk_buff *skb)
 716{
 717        __le64 *regval = (__le64 *)va;
 718
 719        /* The timestamp is recorded in little endian format.
 720         * DWORD: 0        1        2        3
 721         * Field: Reserved Reserved SYSTIML  SYSTIMH
 722         */
 723        igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
 724                                   le64_to_cpu(regval[1]));
 725}
 726
 727/**
 728 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 729 * @q_vector: Pointer to interrupt specific structure
 730 * @skb: Buffer containing timestamp and packet
 731 *
 732 * This function is meant to retrieve a timestamp from the internal registers
 733 * of the adapter and store it in the skb.
 734 **/
 735void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 736                         struct sk_buff *skb)
 737{
 738        struct igb_adapter *adapter = q_vector->adapter;
 739        struct e1000_hw *hw = &adapter->hw;
 740        u64 regval;
 741
 742        /* If this bit is set, then the RX registers contain the time stamp. No
 743         * other packet will be time stamped until we read these registers, so
 744         * read the registers to make them available again. Because only one
 745         * packet can be time stamped at a time, we know that the register
 746         * values must belong to this one here and therefore we don't need to
 747         * compare any of the additional attributes stored for it.
 748         *
 749         * If nothing went wrong, then it should have a shared tx_flags that we
 750         * can turn into a skb_shared_hwtstamps.
 751         */
 752        if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 753                return;
 754
 755        regval = rd32(E1000_RXSTMPL);
 756        regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 757
 758        igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 759
 760        /* Update the last_rx_timestamp timer in order to enable watchdog check
 761         * for error case of latched timestamp on a dropped packet.
 762         */
 763        adapter->last_rx_timestamp = jiffies;
 764}
 765
 766/**
 767 * igb_ptp_get_ts_config - get hardware time stamping config
 768 * @netdev:
 769 * @ifreq:
 770 *
 771 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 772 * to deconstruct the settings from the registers, just return a shadow copy
 773 * of the last known settings.
 774 **/
 775int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 776{
 777        struct igb_adapter *adapter = netdev_priv(netdev);
 778        struct hwtstamp_config *config = &adapter->tstamp_config;
 779
 780        return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 781                -EFAULT : 0;
 782}
 783
 784/**
 785 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 786 * @adapter: networking device structure
 787 * @config: hwtstamp configuration
 788 *
 789 * Outgoing time stamping can be enabled and disabled. Play nice and
 790 * disable it when requested, although it shouldn't case any overhead
 791 * when no packet needs it. At most one packet in the queue may be
 792 * marked for time stamping, otherwise it would be impossible to tell
 793 * for sure to which packet the hardware time stamp belongs.
 794 *
 795 * Incoming time stamping has to be configured via the hardware
 796 * filters. Not all combinations are supported, in particular event
 797 * type has to be specified. Matching the kind of event packet is
 798 * not supported, with the exception of "all V2 events regardless of
 799 * level 2 or 4".
 800 */
 801static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 802                                      struct hwtstamp_config *config)
 803{
 804        struct e1000_hw *hw = &adapter->hw;
 805        u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 806        u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 807        u32 tsync_rx_cfg = 0;
 808        bool is_l4 = false;
 809        bool is_l2 = false;
 810        u32 regval;
 811
 812        /* reserved for future extensions */
 813        if (config->flags)
 814                return -EINVAL;
 815
 816        switch (config->tx_type) {
 817        case HWTSTAMP_TX_OFF:
 818                tsync_tx_ctl = 0;
 819        case HWTSTAMP_TX_ON:
 820                break;
 821        default:
 822                return -ERANGE;
 823        }
 824
 825        switch (config->rx_filter) {
 826        case HWTSTAMP_FILTER_NONE:
 827                tsync_rx_ctl = 0;
 828                break;
 829        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 830                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 831                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
 832                is_l4 = true;
 833                break;
 834        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 835                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 836                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
 837                is_l4 = true;
 838                break;
 839        case HWTSTAMP_FILTER_PTP_V2_EVENT:
 840        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 841        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 842        case HWTSTAMP_FILTER_PTP_V2_SYNC:
 843        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 844        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 845        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 846        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 847        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 848                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
 849                config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 850                is_l2 = true;
 851                is_l4 = true;
 852                break;
 853        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 854        case HWTSTAMP_FILTER_ALL:
 855                /* 82576 cannot timestamp all packets, which it needs to do to
 856                 * support both V1 Sync and Delay_Req messages
 857                 */
 858                if (hw->mac.type != e1000_82576) {
 859                        tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 860                        config->rx_filter = HWTSTAMP_FILTER_ALL;
 861                        break;
 862                }
 863                /* fall through */
 864        default:
 865                config->rx_filter = HWTSTAMP_FILTER_NONE;
 866                return -ERANGE;
 867        }
 868
 869        if (hw->mac.type == e1000_82575) {
 870                if (tsync_rx_ctl | tsync_tx_ctl)
 871                        return -EINVAL;
 872                return 0;
 873        }
 874
 875        /* Per-packet timestamping only works if all packets are
 876         * timestamped, so enable timestamping in all packets as
 877         * long as one Rx filter was configured.
 878         */
 879        if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
 880                tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 881                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 882                config->rx_filter = HWTSTAMP_FILTER_ALL;
 883                is_l2 = true;
 884                is_l4 = true;
 885
 886                if ((hw->mac.type == e1000_i210) ||
 887                    (hw->mac.type == e1000_i211)) {
 888                        regval = rd32(E1000_RXPBS);
 889                        regval |= E1000_RXPBS_CFG_TS_EN;
 890                        wr32(E1000_RXPBS, regval);
 891                }
 892        }
 893
 894        /* enable/disable TX */
 895        regval = rd32(E1000_TSYNCTXCTL);
 896        regval &= ~E1000_TSYNCTXCTL_ENABLED;
 897        regval |= tsync_tx_ctl;
 898        wr32(E1000_TSYNCTXCTL, regval);
 899
 900        /* enable/disable RX */
 901        regval = rd32(E1000_TSYNCRXCTL);
 902        regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
 903        regval |= tsync_rx_ctl;
 904        wr32(E1000_TSYNCRXCTL, regval);
 905
 906        /* define which PTP packets are time stamped */
 907        wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
 908
 909        /* define ethertype filter for timestamped packets */
 910        if (is_l2)
 911                wr32(E1000_ETQF(3),
 912                     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
 913                      E1000_ETQF_1588 | /* enable timestamping */
 914                      ETH_P_1588));     /* 1588 eth protocol type */
 915        else
 916                wr32(E1000_ETQF(3), 0);
 917
 918        /* L4 Queue Filter[3]: filter by destination port and protocol */
 919        if (is_l4) {
 920                u32 ftqf = (IPPROTO_UDP /* UDP */
 921                        | E1000_FTQF_VF_BP /* VF not compared */
 922                        | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
 923                        | E1000_FTQF_MASK); /* mask all inputs */
 924                ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
 925
 926                wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
 927                wr32(E1000_IMIREXT(3),
 928                     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
 929                if (hw->mac.type == e1000_82576) {
 930                        /* enable source port check */
 931                        wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
 932                        ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
 933                }
 934                wr32(E1000_FTQF(3), ftqf);
 935        } else {
 936                wr32(E1000_FTQF(3), E1000_FTQF_MASK);
 937        }
 938        wrfl();
 939
 940        /* clear TX/RX time stamp registers, just to be sure */
 941        regval = rd32(E1000_TXSTMPL);
 942        regval = rd32(E1000_TXSTMPH);
 943        regval = rd32(E1000_RXSTMPL);
 944        regval = rd32(E1000_RXSTMPH);
 945
 946        return 0;
 947}
 948
 949/**
 950 * igb_ptp_set_ts_config - set hardware time stamping config
 951 * @netdev:
 952 * @ifreq:
 953 *
 954 **/
 955int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
 956{
 957        struct igb_adapter *adapter = netdev_priv(netdev);
 958        struct hwtstamp_config config;
 959        int err;
 960
 961        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 962                return -EFAULT;
 963
 964        err = igb_ptp_set_timestamp_mode(adapter, &config);
 965        if (err)
 966                return err;
 967
 968        /* save these settings for future reference */
 969        memcpy(&adapter->tstamp_config, &config,
 970               sizeof(adapter->tstamp_config));
 971
 972        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 973                -EFAULT : 0;
 974}
 975
 976void igb_ptp_init(struct igb_adapter *adapter)
 977{
 978        struct e1000_hw *hw = &adapter->hw;
 979        struct net_device *netdev = adapter->netdev;
 980        int i;
 981
 982        switch (hw->mac.type) {
 983        case e1000_82576:
 984                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
 985                adapter->ptp_caps.owner = THIS_MODULE;
 986                adapter->ptp_caps.max_adj = 999999881;
 987                adapter->ptp_caps.n_ext_ts = 0;
 988                adapter->ptp_caps.pps = 0;
 989                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
 990                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
 991                adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
 992                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
 993                adapter->ptp_caps.enable = igb_ptp_feature_enable;
 994                adapter->cc.read = igb_ptp_read_82576;
 995                adapter->cc.mask = CYCLECOUNTER_MASK(64);
 996                adapter->cc.mult = 1;
 997                adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
 998                /* Dial the nominal frequency. */
 999                wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1000                break;
1001        case e1000_82580:
1002        case e1000_i354:
1003        case e1000_i350:
1004                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1005                adapter->ptp_caps.owner = THIS_MODULE;
1006                adapter->ptp_caps.max_adj = 62499999;
1007                adapter->ptp_caps.n_ext_ts = 0;
1008                adapter->ptp_caps.pps = 0;
1009                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1010                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1011                adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1012                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1013                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1014                adapter->cc.read = igb_ptp_read_82580;
1015                adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1016                adapter->cc.mult = 1;
1017                adapter->cc.shift = 0;
1018                /* Enable the timer functions by clearing bit 31. */
1019                wr32(E1000_TSAUXC, 0x0);
1020                break;
1021        case e1000_i210:
1022        case e1000_i211:
1023                for (i = 0; i < IGB_N_SDP; i++) {
1024                        struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1025
1026                        snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1027                        ppd->index = i;
1028                        ppd->func = PTP_PF_NONE;
1029                }
1030                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1031                adapter->ptp_caps.owner = THIS_MODULE;
1032                adapter->ptp_caps.max_adj = 62499999;
1033                adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1034                adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1035                adapter->ptp_caps.n_pins = IGB_N_SDP;
1036                adapter->ptp_caps.pps = 1;
1037                adapter->ptp_caps.pin_config = adapter->sdp_config;
1038                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1039                adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1040                adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1041                adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1042                adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1043                adapter->ptp_caps.verify = igb_ptp_verify_pin;
1044                /* Enable the timer functions by clearing bit 31. */
1045                wr32(E1000_TSAUXC, 0x0);
1046                break;
1047        default:
1048                adapter->ptp_clock = NULL;
1049                return;
1050        }
1051
1052        wrfl();
1053
1054        spin_lock_init(&adapter->tmreg_lock);
1055        INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1056
1057        /* Initialize the clock and overflow work for devices that need it. */
1058        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1059                struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1060
1061                igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1062        } else {
1063                timecounter_init(&adapter->tc, &adapter->cc,
1064                                 ktime_to_ns(ktime_get_real()));
1065
1066                INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1067                                  igb_ptp_overflow_check);
1068
1069                schedule_delayed_work(&adapter->ptp_overflow_work,
1070                                      IGB_SYSTIM_OVERFLOW_PERIOD);
1071        }
1072
1073        /* Initialize the time sync interrupts for devices that support it. */
1074        if (hw->mac.type >= e1000_82580) {
1075                wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1076                wr32(E1000_IMS, E1000_IMS_TS);
1077        }
1078
1079        adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1080        adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1081
1082        adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1083                                                &adapter->pdev->dev);
1084        if (IS_ERR(adapter->ptp_clock)) {
1085                adapter->ptp_clock = NULL;
1086                dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1087        } else {
1088                dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1089                         adapter->netdev->name);
1090                adapter->flags |= IGB_FLAG_PTP;
1091        }
1092}
1093
1094/**
1095 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1096 * @adapter: Board private structure.
1097 *
1098 * This function stops the PTP support and cancels the delayed work.
1099 **/
1100void igb_ptp_stop(struct igb_adapter *adapter)
1101{
1102        switch (adapter->hw.mac.type) {
1103        case e1000_82576:
1104        case e1000_82580:
1105        case e1000_i354:
1106        case e1000_i350:
1107                cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1108                break;
1109        case e1000_i210:
1110        case e1000_i211:
1111                /* No delayed work to cancel. */
1112                break;
1113        default:
1114                return;
1115        }
1116
1117        cancel_work_sync(&adapter->ptp_tx_work);
1118        if (adapter->ptp_tx_skb) {
1119                dev_kfree_skb_any(adapter->ptp_tx_skb);
1120                adapter->ptp_tx_skb = NULL;
1121                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1122        }
1123
1124        if (adapter->ptp_clock) {
1125                ptp_clock_unregister(adapter->ptp_clock);
1126                dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1127                         adapter->netdev->name);
1128                adapter->flags &= ~IGB_FLAG_PTP;
1129        }
1130}
1131
1132/**
1133 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1134 * @adapter: Board private structure.
1135 *
1136 * This function handles the reset work required to re-enable the PTP device.
1137 **/
1138void igb_ptp_reset(struct igb_adapter *adapter)
1139{
1140        struct e1000_hw *hw = &adapter->hw;
1141        unsigned long flags;
1142
1143        if (!(adapter->flags & IGB_FLAG_PTP))
1144                return;
1145
1146        /* reset the tstamp_config */
1147        igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1148
1149        spin_lock_irqsave(&adapter->tmreg_lock, flags);
1150
1151        switch (adapter->hw.mac.type) {
1152        case e1000_82576:
1153                /* Dial the nominal frequency. */
1154                wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1155                break;
1156        case e1000_82580:
1157        case e1000_i354:
1158        case e1000_i350:
1159        case e1000_i210:
1160        case e1000_i211:
1161                wr32(E1000_TSAUXC, 0x0);
1162                wr32(E1000_TSSDP, 0x0);
1163                wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1164                wr32(E1000_IMS, E1000_IMS_TS);
1165                break;
1166        default:
1167                /* No work to do. */
1168                goto out;
1169        }
1170
1171        /* Re-initialize the timer. */
1172        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1173                struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1174
1175                igb_ptp_write_i210(adapter, &ts);
1176        } else {
1177                timecounter_init(&adapter->tc, &adapter->cc,
1178                                 ktime_to_ns(ktime_get_real()));
1179        }
1180out:
1181        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1182}
1183