linux/drivers/scsi/scsi_lib.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>
  21#include <linux/delay.h>
  22#include <linux/hardirq.h>
  23#include <linux/scatterlist.h>
  24#include <linux/blk-mq.h>
  25#include <linux/ratelimit.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34
  35#include <trace/events/scsi.h>
  36
  37#include "scsi_priv.h"
  38#include "scsi_logging.h"
  39
  40
  41#define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
  42#define SG_MEMPOOL_SIZE         2
  43
  44struct scsi_host_sg_pool {
  45        size_t          size;
  46        char            *name;
  47        struct kmem_cache       *slab;
  48        mempool_t       *pool;
  49};
  50
  51#define SP(x) { .size = x, "sgpool-" __stringify(x) }
  52#if (SCSI_MAX_SG_SEGMENTS < 32)
  53#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  54#endif
  55static struct scsi_host_sg_pool scsi_sg_pools[] = {
  56        SP(8),
  57        SP(16),
  58#if (SCSI_MAX_SG_SEGMENTS > 32)
  59        SP(32),
  60#if (SCSI_MAX_SG_SEGMENTS > 64)
  61        SP(64),
  62#if (SCSI_MAX_SG_SEGMENTS > 128)
  63        SP(128),
  64#if (SCSI_MAX_SG_SEGMENTS > 256)
  65#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  66#endif
  67#endif
  68#endif
  69#endif
  70        SP(SCSI_MAX_SG_SEGMENTS)
  71};
  72#undef SP
  73
  74struct kmem_cache *scsi_sdb_cache;
  75
  76/*
  77 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  78 * not change behaviour from the previous unplug mechanism, experimentation
  79 * may prove this needs changing.
  80 */
  81#define SCSI_QUEUE_DELAY        3
  82
  83static void
  84scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  85{
  86        struct Scsi_Host *host = cmd->device->host;
  87        struct scsi_device *device = cmd->device;
  88        struct scsi_target *starget = scsi_target(device);
  89
  90        /*
  91         * Set the appropriate busy bit for the device/host.
  92         *
  93         * If the host/device isn't busy, assume that something actually
  94         * completed, and that we should be able to queue a command now.
  95         *
  96         * Note that the prior mid-layer assumption that any host could
  97         * always queue at least one command is now broken.  The mid-layer
  98         * will implement a user specifiable stall (see
  99         * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 100         * if a command is requeued with no other commands outstanding
 101         * either for the device or for the host.
 102         */
 103        switch (reason) {
 104        case SCSI_MLQUEUE_HOST_BUSY:
 105                atomic_set(&host->host_blocked, host->max_host_blocked);
 106                break;
 107        case SCSI_MLQUEUE_DEVICE_BUSY:
 108        case SCSI_MLQUEUE_EH_RETRY:
 109                atomic_set(&device->device_blocked,
 110                           device->max_device_blocked);
 111                break;
 112        case SCSI_MLQUEUE_TARGET_BUSY:
 113                atomic_set(&starget->target_blocked,
 114                           starget->max_target_blocked);
 115                break;
 116        }
 117}
 118
 119static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 120{
 121        struct scsi_device *sdev = cmd->device;
 122        struct request_queue *q = cmd->request->q;
 123
 124        blk_mq_requeue_request(cmd->request);
 125        blk_mq_kick_requeue_list(q);
 126        put_device(&sdev->sdev_gendev);
 127}
 128
 129/**
 130 * __scsi_queue_insert - private queue insertion
 131 * @cmd: The SCSI command being requeued
 132 * @reason:  The reason for the requeue
 133 * @unbusy: Whether the queue should be unbusied
 134 *
 135 * This is a private queue insertion.  The public interface
 136 * scsi_queue_insert() always assumes the queue should be unbusied
 137 * because it's always called before the completion.  This function is
 138 * for a requeue after completion, which should only occur in this
 139 * file.
 140 */
 141static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 142{
 143        struct scsi_device *device = cmd->device;
 144        struct request_queue *q = device->request_queue;
 145        unsigned long flags;
 146
 147        SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 148                "Inserting command %p into mlqueue\n", cmd));
 149
 150        scsi_set_blocked(cmd, reason);
 151
 152        /*
 153         * Decrement the counters, since these commands are no longer
 154         * active on the host/device.
 155         */
 156        if (unbusy)
 157                scsi_device_unbusy(device);
 158
 159        /*
 160         * Requeue this command.  It will go before all other commands
 161         * that are already in the queue. Schedule requeue work under
 162         * lock such that the kblockd_schedule_work() call happens
 163         * before blk_cleanup_queue() finishes.
 164         */
 165        cmd->result = 0;
 166        if (q->mq_ops) {
 167                scsi_mq_requeue_cmd(cmd);
 168                return;
 169        }
 170        spin_lock_irqsave(q->queue_lock, flags);
 171        blk_requeue_request(q, cmd->request);
 172        kblockd_schedule_work(&device->requeue_work);
 173        spin_unlock_irqrestore(q->queue_lock, flags);
 174}
 175
 176/*
 177 * Function:    scsi_queue_insert()
 178 *
 179 * Purpose:     Insert a command in the midlevel queue.
 180 *
 181 * Arguments:   cmd    - command that we are adding to queue.
 182 *              reason - why we are inserting command to queue.
 183 *
 184 * Lock status: Assumed that lock is not held upon entry.
 185 *
 186 * Returns:     Nothing.
 187 *
 188 * Notes:       We do this for one of two cases.  Either the host is busy
 189 *              and it cannot accept any more commands for the time being,
 190 *              or the device returned QUEUE_FULL and can accept no more
 191 *              commands.
 192 * Notes:       This could be called either from an interrupt context or a
 193 *              normal process context.
 194 */
 195void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 196{
 197        __scsi_queue_insert(cmd, reason, 1);
 198}
 199/**
 200 * scsi_execute - insert request and wait for the result
 201 * @sdev:       scsi device
 202 * @cmd:        scsi command
 203 * @data_direction: data direction
 204 * @buffer:     data buffer
 205 * @bufflen:    len of buffer
 206 * @sense:      optional sense buffer
 207 * @timeout:    request timeout in seconds
 208 * @retries:    number of times to retry request
 209 * @flags:      or into request flags;
 210 * @resid:      optional residual length
 211 *
 212 * returns the req->errors value which is the scsi_cmnd result
 213 * field.
 214 */
 215int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 216                 int data_direction, void *buffer, unsigned bufflen,
 217                 unsigned char *sense, int timeout, int retries, u64 flags,
 218                 int *resid)
 219{
 220        struct request *req;
 221        int write = (data_direction == DMA_TO_DEVICE);
 222        int ret = DRIVER_ERROR << 24;
 223
 224        req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 225        if (IS_ERR(req))
 226                return ret;
 227        blk_rq_set_block_pc(req);
 228
 229        if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
 230                                        buffer, bufflen, __GFP_WAIT))
 231                goto out;
 232
 233        req->cmd_len = COMMAND_SIZE(cmd[0]);
 234        memcpy(req->cmd, cmd, req->cmd_len);
 235        req->sense = sense;
 236        req->sense_len = 0;
 237        req->retries = retries;
 238        req->timeout = timeout;
 239        req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 240
 241        /*
 242         * head injection *required* here otherwise quiesce won't work
 243         */
 244        blk_execute_rq(req->q, NULL, req, 1);
 245
 246        /*
 247         * Some devices (USB mass-storage in particular) may transfer
 248         * garbage data together with a residue indicating that the data
 249         * is invalid.  Prevent the garbage from being misinterpreted
 250         * and prevent security leaks by zeroing out the excess data.
 251         */
 252        if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 253                memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 254
 255        if (resid)
 256                *resid = req->resid_len;
 257        ret = req->errors;
 258 out:
 259        blk_put_request(req);
 260
 261        return ret;
 262}
 263EXPORT_SYMBOL(scsi_execute);
 264
 265int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
 266                     int data_direction, void *buffer, unsigned bufflen,
 267                     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 268                     int *resid, u64 flags)
 269{
 270        char *sense = NULL;
 271        int result;
 272        
 273        if (sshdr) {
 274                sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 275                if (!sense)
 276                        return DRIVER_ERROR << 24;
 277        }
 278        result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 279                              sense, timeout, retries, flags, resid);
 280        if (sshdr)
 281                scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 282
 283        kfree(sense);
 284        return result;
 285}
 286EXPORT_SYMBOL(scsi_execute_req_flags);
 287
 288/*
 289 * Function:    scsi_init_cmd_errh()
 290 *
 291 * Purpose:     Initialize cmd fields related to error handling.
 292 *
 293 * Arguments:   cmd     - command that is ready to be queued.
 294 *
 295 * Notes:       This function has the job of initializing a number of
 296 *              fields related to error handling.   Typically this will
 297 *              be called once for each command, as required.
 298 */
 299static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 300{
 301        cmd->serial_number = 0;
 302        scsi_set_resid(cmd, 0);
 303        memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 304        if (cmd->cmd_len == 0)
 305                cmd->cmd_len = scsi_command_size(cmd->cmnd);
 306}
 307
 308void scsi_device_unbusy(struct scsi_device *sdev)
 309{
 310        struct Scsi_Host *shost = sdev->host;
 311        struct scsi_target *starget = scsi_target(sdev);
 312        unsigned long flags;
 313
 314        atomic_dec(&shost->host_busy);
 315        if (starget->can_queue > 0)
 316                atomic_dec(&starget->target_busy);
 317
 318        if (unlikely(scsi_host_in_recovery(shost) &&
 319                     (shost->host_failed || shost->host_eh_scheduled))) {
 320                spin_lock_irqsave(shost->host_lock, flags);
 321                scsi_eh_wakeup(shost);
 322                spin_unlock_irqrestore(shost->host_lock, flags);
 323        }
 324
 325        atomic_dec(&sdev->device_busy);
 326}
 327
 328static void scsi_kick_queue(struct request_queue *q)
 329{
 330        if (q->mq_ops)
 331                blk_mq_start_hw_queues(q);
 332        else
 333                blk_run_queue(q);
 334}
 335
 336/*
 337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 338 * and call blk_run_queue for all the scsi_devices on the target -
 339 * including current_sdev first.
 340 *
 341 * Called with *no* scsi locks held.
 342 */
 343static void scsi_single_lun_run(struct scsi_device *current_sdev)
 344{
 345        struct Scsi_Host *shost = current_sdev->host;
 346        struct scsi_device *sdev, *tmp;
 347        struct scsi_target *starget = scsi_target(current_sdev);
 348        unsigned long flags;
 349
 350        spin_lock_irqsave(shost->host_lock, flags);
 351        starget->starget_sdev_user = NULL;
 352        spin_unlock_irqrestore(shost->host_lock, flags);
 353
 354        /*
 355         * Call blk_run_queue for all LUNs on the target, starting with
 356         * current_sdev. We race with others (to set starget_sdev_user),
 357         * but in most cases, we will be first. Ideally, each LU on the
 358         * target would get some limited time or requests on the target.
 359         */
 360        scsi_kick_queue(current_sdev->request_queue);
 361
 362        spin_lock_irqsave(shost->host_lock, flags);
 363        if (starget->starget_sdev_user)
 364                goto out;
 365        list_for_each_entry_safe(sdev, tmp, &starget->devices,
 366                        same_target_siblings) {
 367                if (sdev == current_sdev)
 368                        continue;
 369                if (scsi_device_get(sdev))
 370                        continue;
 371
 372                spin_unlock_irqrestore(shost->host_lock, flags);
 373                scsi_kick_queue(sdev->request_queue);
 374                spin_lock_irqsave(shost->host_lock, flags);
 375        
 376                scsi_device_put(sdev);
 377        }
 378 out:
 379        spin_unlock_irqrestore(shost->host_lock, flags);
 380}
 381
 382static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 383{
 384        if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 385                return true;
 386        if (atomic_read(&sdev->device_blocked) > 0)
 387                return true;
 388        return false;
 389}
 390
 391static inline bool scsi_target_is_busy(struct scsi_target *starget)
 392{
 393        if (starget->can_queue > 0) {
 394                if (atomic_read(&starget->target_busy) >= starget->can_queue)
 395                        return true;
 396                if (atomic_read(&starget->target_blocked) > 0)
 397                        return true;
 398        }
 399        return false;
 400}
 401
 402static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 403{
 404        if (shost->can_queue > 0 &&
 405            atomic_read(&shost->host_busy) >= shost->can_queue)
 406                return true;
 407        if (atomic_read(&shost->host_blocked) > 0)
 408                return true;
 409        if (shost->host_self_blocked)
 410                return true;
 411        return false;
 412}
 413
 414static void scsi_starved_list_run(struct Scsi_Host *shost)
 415{
 416        LIST_HEAD(starved_list);
 417        struct scsi_device *sdev;
 418        unsigned long flags;
 419
 420        spin_lock_irqsave(shost->host_lock, flags);
 421        list_splice_init(&shost->starved_list, &starved_list);
 422
 423        while (!list_empty(&starved_list)) {
 424                struct request_queue *slq;
 425
 426                /*
 427                 * As long as shost is accepting commands and we have
 428                 * starved queues, call blk_run_queue. scsi_request_fn
 429                 * drops the queue_lock and can add us back to the
 430                 * starved_list.
 431                 *
 432                 * host_lock protects the starved_list and starved_entry.
 433                 * scsi_request_fn must get the host_lock before checking
 434                 * or modifying starved_list or starved_entry.
 435                 */
 436                if (scsi_host_is_busy(shost))
 437                        break;
 438
 439                sdev = list_entry(starved_list.next,
 440                                  struct scsi_device, starved_entry);
 441                list_del_init(&sdev->starved_entry);
 442                if (scsi_target_is_busy(scsi_target(sdev))) {
 443                        list_move_tail(&sdev->starved_entry,
 444                                       &shost->starved_list);
 445                        continue;
 446                }
 447
 448                /*
 449                 * Once we drop the host lock, a racing scsi_remove_device()
 450                 * call may remove the sdev from the starved list and destroy
 451                 * it and the queue.  Mitigate by taking a reference to the
 452                 * queue and never touching the sdev again after we drop the
 453                 * host lock.  Note: if __scsi_remove_device() invokes
 454                 * blk_cleanup_queue() before the queue is run from this
 455                 * function then blk_run_queue() will return immediately since
 456                 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 457                 */
 458                slq = sdev->request_queue;
 459                if (!blk_get_queue(slq))
 460                        continue;
 461                spin_unlock_irqrestore(shost->host_lock, flags);
 462
 463                scsi_kick_queue(slq);
 464                blk_put_queue(slq);
 465
 466                spin_lock_irqsave(shost->host_lock, flags);
 467        }
 468        /* put any unprocessed entries back */
 469        list_splice(&starved_list, &shost->starved_list);
 470        spin_unlock_irqrestore(shost->host_lock, flags);
 471}
 472
 473/*
 474 * Function:   scsi_run_queue()
 475 *
 476 * Purpose:    Select a proper request queue to serve next
 477 *
 478 * Arguments:  q       - last request's queue
 479 *
 480 * Returns:     Nothing
 481 *
 482 * Notes:      The previous command was completely finished, start
 483 *             a new one if possible.
 484 */
 485static void scsi_run_queue(struct request_queue *q)
 486{
 487        struct scsi_device *sdev = q->queuedata;
 488
 489        if (scsi_target(sdev)->single_lun)
 490                scsi_single_lun_run(sdev);
 491        if (!list_empty(&sdev->host->starved_list))
 492                scsi_starved_list_run(sdev->host);
 493
 494        if (q->mq_ops)
 495                blk_mq_start_stopped_hw_queues(q, false);
 496        else
 497                blk_run_queue(q);
 498}
 499
 500void scsi_requeue_run_queue(struct work_struct *work)
 501{
 502        struct scsi_device *sdev;
 503        struct request_queue *q;
 504
 505        sdev = container_of(work, struct scsi_device, requeue_work);
 506        q = sdev->request_queue;
 507        scsi_run_queue(q);
 508}
 509
 510/*
 511 * Function:    scsi_requeue_command()
 512 *
 513 * Purpose:     Handle post-processing of completed commands.
 514 *
 515 * Arguments:   q       - queue to operate on
 516 *              cmd     - command that may need to be requeued.
 517 *
 518 * Returns:     Nothing
 519 *
 520 * Notes:       After command completion, there may be blocks left
 521 *              over which weren't finished by the previous command
 522 *              this can be for a number of reasons - the main one is
 523 *              I/O errors in the middle of the request, in which case
 524 *              we need to request the blocks that come after the bad
 525 *              sector.
 526 * Notes:       Upon return, cmd is a stale pointer.
 527 */
 528static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 529{
 530        struct scsi_device *sdev = cmd->device;
 531        struct request *req = cmd->request;
 532        unsigned long flags;
 533
 534        spin_lock_irqsave(q->queue_lock, flags);
 535        blk_unprep_request(req);
 536        req->special = NULL;
 537        scsi_put_command(cmd);
 538        blk_requeue_request(q, req);
 539        spin_unlock_irqrestore(q->queue_lock, flags);
 540
 541        scsi_run_queue(q);
 542
 543        put_device(&sdev->sdev_gendev);
 544}
 545
 546void scsi_run_host_queues(struct Scsi_Host *shost)
 547{
 548        struct scsi_device *sdev;
 549
 550        shost_for_each_device(sdev, shost)
 551                scsi_run_queue(sdev->request_queue);
 552}
 553
 554static inline unsigned int scsi_sgtable_index(unsigned short nents)
 555{
 556        unsigned int index;
 557
 558        BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 559
 560        if (nents <= 8)
 561                index = 0;
 562        else
 563                index = get_count_order(nents) - 3;
 564
 565        return index;
 566}
 567
 568static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 569{
 570        struct scsi_host_sg_pool *sgp;
 571
 572        sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 573        mempool_free(sgl, sgp->pool);
 574}
 575
 576static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 577{
 578        struct scsi_host_sg_pool *sgp;
 579
 580        sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 581        return mempool_alloc(sgp->pool, gfp_mask);
 582}
 583
 584static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
 585{
 586        if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
 587                return;
 588        __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
 589}
 590
 591static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
 592{
 593        struct scatterlist *first_chunk = NULL;
 594        int ret;
 595
 596        BUG_ON(!nents);
 597
 598        if (mq) {
 599                if (nents <= SCSI_MAX_SG_SEGMENTS) {
 600                        sdb->table.nents = sdb->table.orig_nents = nents;
 601                        sg_init_table(sdb->table.sgl, nents);
 602                        return 0;
 603                }
 604                first_chunk = sdb->table.sgl;
 605        }
 606
 607        ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 608                               first_chunk, GFP_ATOMIC, scsi_sg_alloc);
 609        if (unlikely(ret))
 610                scsi_free_sgtable(sdb, mq);
 611        return ret;
 612}
 613
 614static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 615{
 616        if (cmd->request->cmd_type == REQ_TYPE_FS) {
 617                struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 618
 619                if (drv->uninit_command)
 620                        drv->uninit_command(cmd);
 621        }
 622}
 623
 624static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 625{
 626        if (cmd->sdb.table.nents)
 627                scsi_free_sgtable(&cmd->sdb, true);
 628        if (cmd->request->next_rq && cmd->request->next_rq->special)
 629                scsi_free_sgtable(cmd->request->next_rq->special, true);
 630        if (scsi_prot_sg_count(cmd))
 631                scsi_free_sgtable(cmd->prot_sdb, true);
 632}
 633
 634static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 635{
 636        struct scsi_device *sdev = cmd->device;
 637        struct Scsi_Host *shost = sdev->host;
 638        unsigned long flags;
 639
 640        scsi_mq_free_sgtables(cmd);
 641        scsi_uninit_cmd(cmd);
 642
 643        if (shost->use_cmd_list) {
 644                BUG_ON(list_empty(&cmd->list));
 645                spin_lock_irqsave(&sdev->list_lock, flags);
 646                list_del_init(&cmd->list);
 647                spin_unlock_irqrestore(&sdev->list_lock, flags);
 648        }
 649}
 650
 651/*
 652 * Function:    scsi_release_buffers()
 653 *
 654 * Purpose:     Free resources allocate for a scsi_command.
 655 *
 656 * Arguments:   cmd     - command that we are bailing.
 657 *
 658 * Lock status: Assumed that no lock is held upon entry.
 659 *
 660 * Returns:     Nothing
 661 *
 662 * Notes:       In the event that an upper level driver rejects a
 663 *              command, we must release resources allocated during
 664 *              the __init_io() function.  Primarily this would involve
 665 *              the scatter-gather table.
 666 */
 667static void scsi_release_buffers(struct scsi_cmnd *cmd)
 668{
 669        if (cmd->sdb.table.nents)
 670                scsi_free_sgtable(&cmd->sdb, false);
 671
 672        memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 673
 674        if (scsi_prot_sg_count(cmd))
 675                scsi_free_sgtable(cmd->prot_sdb, false);
 676}
 677
 678static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 679{
 680        struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 681
 682        scsi_free_sgtable(bidi_sdb, false);
 683        kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 684        cmd->request->next_rq->special = NULL;
 685}
 686
 687static bool scsi_end_request(struct request *req, int error,
 688                unsigned int bytes, unsigned int bidi_bytes)
 689{
 690        struct scsi_cmnd *cmd = req->special;
 691        struct scsi_device *sdev = cmd->device;
 692        struct request_queue *q = sdev->request_queue;
 693
 694        if (blk_update_request(req, error, bytes))
 695                return true;
 696
 697        /* Bidi request must be completed as a whole */
 698        if (unlikely(bidi_bytes) &&
 699            blk_update_request(req->next_rq, error, bidi_bytes))
 700                return true;
 701
 702        if (blk_queue_add_random(q))
 703                add_disk_randomness(req->rq_disk);
 704
 705        if (req->mq_ctx) {
 706                /*
 707                 * In the MQ case the command gets freed by __blk_mq_end_request,
 708                 * so we have to do all cleanup that depends on it earlier.
 709                 *
 710                 * We also can't kick the queues from irq context, so we
 711                 * will have to defer it to a workqueue.
 712                 */
 713                scsi_mq_uninit_cmd(cmd);
 714
 715                __blk_mq_end_request(req, error);
 716
 717                if (scsi_target(sdev)->single_lun ||
 718                    !list_empty(&sdev->host->starved_list))
 719                        kblockd_schedule_work(&sdev->requeue_work);
 720                else
 721                        blk_mq_start_stopped_hw_queues(q, true);
 722        } else {
 723                unsigned long flags;
 724
 725                if (bidi_bytes)
 726                        scsi_release_bidi_buffers(cmd);
 727
 728                spin_lock_irqsave(q->queue_lock, flags);
 729                blk_finish_request(req, error);
 730                spin_unlock_irqrestore(q->queue_lock, flags);
 731
 732                scsi_release_buffers(cmd);
 733
 734                scsi_put_command(cmd);
 735                scsi_run_queue(q);
 736        }
 737
 738        put_device(&sdev->sdev_gendev);
 739        return false;
 740}
 741
 742/**
 743 * __scsi_error_from_host_byte - translate SCSI error code into errno
 744 * @cmd:        SCSI command (unused)
 745 * @result:     scsi error code
 746 *
 747 * Translate SCSI error code into standard UNIX errno.
 748 * Return values:
 749 * -ENOLINK     temporary transport failure
 750 * -EREMOTEIO   permanent target failure, do not retry
 751 * -EBADE       permanent nexus failure, retry on other path
 752 * -ENOSPC      No write space available
 753 * -ENODATA     Medium error
 754 * -EIO         unspecified I/O error
 755 */
 756static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 757{
 758        int error = 0;
 759
 760        switch(host_byte(result)) {
 761        case DID_TRANSPORT_FAILFAST:
 762                error = -ENOLINK;
 763                break;
 764        case DID_TARGET_FAILURE:
 765                set_host_byte(cmd, DID_OK);
 766                error = -EREMOTEIO;
 767                break;
 768        case DID_NEXUS_FAILURE:
 769                set_host_byte(cmd, DID_OK);
 770                error = -EBADE;
 771                break;
 772        case DID_ALLOC_FAILURE:
 773                set_host_byte(cmd, DID_OK);
 774                error = -ENOSPC;
 775                break;
 776        case DID_MEDIUM_ERROR:
 777                set_host_byte(cmd, DID_OK);
 778                error = -ENODATA;
 779                break;
 780        default:
 781                error = -EIO;
 782                break;
 783        }
 784
 785        return error;
 786}
 787
 788/*
 789 * Function:    scsi_io_completion()
 790 *
 791 * Purpose:     Completion processing for block device I/O requests.
 792 *
 793 * Arguments:   cmd   - command that is finished.
 794 *
 795 * Lock status: Assumed that no lock is held upon entry.
 796 *
 797 * Returns:     Nothing
 798 *
 799 * Notes:       We will finish off the specified number of sectors.  If we
 800 *              are done, the command block will be released and the queue
 801 *              function will be goosed.  If we are not done then we have to
 802 *              figure out what to do next:
 803 *
 804 *              a) We can call scsi_requeue_command().  The request
 805 *                 will be unprepared and put back on the queue.  Then
 806 *                 a new command will be created for it.  This should
 807 *                 be used if we made forward progress, or if we want
 808 *                 to switch from READ(10) to READ(6) for example.
 809 *
 810 *              b) We can call __scsi_queue_insert().  The request will
 811 *                 be put back on the queue and retried using the same
 812 *                 command as before, possibly after a delay.
 813 *
 814 *              c) We can call scsi_end_request() with -EIO to fail
 815 *                 the remainder of the request.
 816 */
 817void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 818{
 819        int result = cmd->result;
 820        struct request_queue *q = cmd->device->request_queue;
 821        struct request *req = cmd->request;
 822        int error = 0;
 823        struct scsi_sense_hdr sshdr;
 824        bool sense_valid = false;
 825        int sense_deferred = 0, level = 0;
 826        enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 827              ACTION_DELAYED_RETRY} action;
 828        unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 829
 830        if (result) {
 831                sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 832                if (sense_valid)
 833                        sense_deferred = scsi_sense_is_deferred(&sshdr);
 834        }
 835
 836        if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 837                if (result) {
 838                        if (sense_valid && req->sense) {
 839                                /*
 840                                 * SG_IO wants current and deferred errors
 841                                 */
 842                                int len = 8 + cmd->sense_buffer[7];
 843
 844                                if (len > SCSI_SENSE_BUFFERSIZE)
 845                                        len = SCSI_SENSE_BUFFERSIZE;
 846                                memcpy(req->sense, cmd->sense_buffer,  len);
 847                                req->sense_len = len;
 848                        }
 849                        if (!sense_deferred)
 850                                error = __scsi_error_from_host_byte(cmd, result);
 851                }
 852                /*
 853                 * __scsi_error_from_host_byte may have reset the host_byte
 854                 */
 855                req->errors = cmd->result;
 856
 857                req->resid_len = scsi_get_resid(cmd);
 858
 859                if (scsi_bidi_cmnd(cmd)) {
 860                        /*
 861                         * Bidi commands Must be complete as a whole,
 862                         * both sides at once.
 863                         */
 864                        req->next_rq->resid_len = scsi_in(cmd)->resid;
 865                        if (scsi_end_request(req, 0, blk_rq_bytes(req),
 866                                        blk_rq_bytes(req->next_rq)))
 867                                BUG();
 868                        return;
 869                }
 870        } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 871                /*
 872                 * Certain non BLOCK_PC requests are commands that don't
 873                 * actually transfer anything (FLUSH), so cannot use
 874                 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 875                 * This sets the error explicitly for the problem case.
 876                 */
 877                error = __scsi_error_from_host_byte(cmd, result);
 878        }
 879
 880        /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 881        BUG_ON(blk_bidi_rq(req));
 882
 883        /*
 884         * Next deal with any sectors which we were able to correctly
 885         * handle.
 886         */
 887        SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 888                "%u sectors total, %d bytes done.\n",
 889                blk_rq_sectors(req), good_bytes));
 890
 891        /*
 892         * Recovered errors need reporting, but they're always treated
 893         * as success, so fiddle the result code here.  For BLOCK_PC
 894         * we already took a copy of the original into rq->errors which
 895         * is what gets returned to the user
 896         */
 897        if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 898                /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 899                 * print since caller wants ATA registers. Only occurs on
 900                 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 901                 */
 902                if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 903                        ;
 904                else if (!(req->cmd_flags & REQ_QUIET))
 905                        scsi_print_sense(cmd);
 906                result = 0;
 907                /* BLOCK_PC may have set error */
 908                error = 0;
 909        }
 910
 911        /*
 912         * If we finished all bytes in the request we are done now.
 913         */
 914        if (!scsi_end_request(req, error, good_bytes, 0))
 915                return;
 916
 917        /*
 918         * Kill remainder if no retrys.
 919         */
 920        if (error && scsi_noretry_cmd(cmd)) {
 921                if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 922                        BUG();
 923                return;
 924        }
 925
 926        /*
 927         * If there had been no error, but we have leftover bytes in the
 928         * requeues just queue the command up again.
 929         */
 930        if (result == 0)
 931                goto requeue;
 932
 933        error = __scsi_error_from_host_byte(cmd, result);
 934
 935        if (host_byte(result) == DID_RESET) {
 936                /* Third party bus reset or reset for error recovery
 937                 * reasons.  Just retry the command and see what
 938                 * happens.
 939                 */
 940                action = ACTION_RETRY;
 941        } else if (sense_valid && !sense_deferred) {
 942                switch (sshdr.sense_key) {
 943                case UNIT_ATTENTION:
 944                        if (cmd->device->removable) {
 945                                /* Detected disc change.  Set a bit
 946                                 * and quietly refuse further access.
 947                                 */
 948                                cmd->device->changed = 1;
 949                                action = ACTION_FAIL;
 950                        } else {
 951                                /* Must have been a power glitch, or a
 952                                 * bus reset.  Could not have been a
 953                                 * media change, so we just retry the
 954                                 * command and see what happens.
 955                                 */
 956                                action = ACTION_RETRY;
 957                        }
 958                        break;
 959                case ILLEGAL_REQUEST:
 960                        /* If we had an ILLEGAL REQUEST returned, then
 961                         * we may have performed an unsupported
 962                         * command.  The only thing this should be
 963                         * would be a ten byte read where only a six
 964                         * byte read was supported.  Also, on a system
 965                         * where READ CAPACITY failed, we may have
 966                         * read past the end of the disk.
 967                         */
 968                        if ((cmd->device->use_10_for_rw &&
 969                            sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 970                            (cmd->cmnd[0] == READ_10 ||
 971                             cmd->cmnd[0] == WRITE_10)) {
 972                                /* This will issue a new 6-byte command. */
 973                                cmd->device->use_10_for_rw = 0;
 974                                action = ACTION_REPREP;
 975                        } else if (sshdr.asc == 0x10) /* DIX */ {
 976                                action = ACTION_FAIL;
 977                                error = -EILSEQ;
 978                        /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 979                        } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 980                                action = ACTION_FAIL;
 981                                error = -EREMOTEIO;
 982                        } else
 983                                action = ACTION_FAIL;
 984                        break;
 985                case ABORTED_COMMAND:
 986                        action = ACTION_FAIL;
 987                        if (sshdr.asc == 0x10) /* DIF */
 988                                error = -EILSEQ;
 989                        break;
 990                case NOT_READY:
 991                        /* If the device is in the process of becoming
 992                         * ready, or has a temporary blockage, retry.
 993                         */
 994                        if (sshdr.asc == 0x04) {
 995                                switch (sshdr.ascq) {
 996                                case 0x01: /* becoming ready */
 997                                case 0x04: /* format in progress */
 998                                case 0x05: /* rebuild in progress */
 999                                case 0x06: /* recalculation in progress */
1000                                case 0x07: /* operation in progress */
1001                                case 0x08: /* Long write in progress */
1002                                case 0x09: /* self test in progress */
1003                                case 0x14: /* space allocation in progress */
1004                                        action = ACTION_DELAYED_RETRY;
1005                                        break;
1006                                default:
1007                                        action = ACTION_FAIL;
1008                                        break;
1009                                }
1010                        } else
1011                                action = ACTION_FAIL;
1012                        break;
1013                case VOLUME_OVERFLOW:
1014                        /* See SSC3rXX or current. */
1015                        action = ACTION_FAIL;
1016                        break;
1017                default:
1018                        action = ACTION_FAIL;
1019                        break;
1020                }
1021        } else
1022                action = ACTION_FAIL;
1023
1024        if (action != ACTION_FAIL &&
1025            time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1026                action = ACTION_FAIL;
1027
1028        switch (action) {
1029        case ACTION_FAIL:
1030                /* Give up and fail the remainder of the request */
1031                if (!(req->cmd_flags & REQ_QUIET)) {
1032                        static DEFINE_RATELIMIT_STATE(_rs,
1033                                        DEFAULT_RATELIMIT_INTERVAL,
1034                                        DEFAULT_RATELIMIT_BURST);
1035
1036                        if (unlikely(scsi_logging_level))
1037                                level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1038                                                       SCSI_LOG_MLCOMPLETE_BITS);
1039
1040                        /*
1041                         * if logging is enabled the failure will be printed
1042                         * in scsi_log_completion(), so avoid duplicate messages
1043                         */
1044                        if (!level && __ratelimit(&_rs)) {
1045                                scsi_print_result(cmd, NULL, FAILED);
1046                                if (driver_byte(result) & DRIVER_SENSE)
1047                                        scsi_print_sense(cmd);
1048                                scsi_print_command(cmd);
1049                        }
1050                }
1051                if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1052                        return;
1053                /*FALLTHRU*/
1054        case ACTION_REPREP:
1055        requeue:
1056                /* Unprep the request and put it back at the head of the queue.
1057                 * A new command will be prepared and issued.
1058                 */
1059                if (q->mq_ops) {
1060                        cmd->request->cmd_flags &= ~REQ_DONTPREP;
1061                        scsi_mq_uninit_cmd(cmd);
1062                        scsi_mq_requeue_cmd(cmd);
1063                } else {
1064                        scsi_release_buffers(cmd);
1065                        scsi_requeue_command(q, cmd);
1066                }
1067                break;
1068        case ACTION_RETRY:
1069                /* Retry the same command immediately */
1070                __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1071                break;
1072        case ACTION_DELAYED_RETRY:
1073                /* Retry the same command after a delay */
1074                __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1075                break;
1076        }
1077}
1078
1079static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1080{
1081        int count;
1082
1083        /*
1084         * If sg table allocation fails, requeue request later.
1085         */
1086        if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1087                                        req->mq_ctx != NULL)))
1088                return BLKPREP_DEFER;
1089
1090        /* 
1091         * Next, walk the list, and fill in the addresses and sizes of
1092         * each segment.
1093         */
1094        count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1095        BUG_ON(count > sdb->table.nents);
1096        sdb->table.nents = count;
1097        sdb->length = blk_rq_bytes(req);
1098        return BLKPREP_OK;
1099}
1100
1101/*
1102 * Function:    scsi_init_io()
1103 *
1104 * Purpose:     SCSI I/O initialize function.
1105 *
1106 * Arguments:   cmd   - Command descriptor we wish to initialize
1107 *
1108 * Returns:     0 on success
1109 *              BLKPREP_DEFER if the failure is retryable
1110 *              BLKPREP_KILL if the failure is fatal
1111 */
1112int scsi_init_io(struct scsi_cmnd *cmd)
1113{
1114        struct scsi_device *sdev = cmd->device;
1115        struct request *rq = cmd->request;
1116        bool is_mq = (rq->mq_ctx != NULL);
1117        int error;
1118
1119        BUG_ON(!rq->nr_phys_segments);
1120
1121        error = scsi_init_sgtable(rq, &cmd->sdb);
1122        if (error)
1123                goto err_exit;
1124
1125        if (blk_bidi_rq(rq)) {
1126                if (!rq->q->mq_ops) {
1127                        struct scsi_data_buffer *bidi_sdb =
1128                                kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1129                        if (!bidi_sdb) {
1130                                error = BLKPREP_DEFER;
1131                                goto err_exit;
1132                        }
1133
1134                        rq->next_rq->special = bidi_sdb;
1135                }
1136
1137                error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1138                if (error)
1139                        goto err_exit;
1140        }
1141
1142        if (blk_integrity_rq(rq)) {
1143                struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1144                int ivecs, count;
1145
1146                if (prot_sdb == NULL) {
1147                        /*
1148                         * This can happen if someone (e.g. multipath)
1149                         * queues a command to a device on an adapter
1150                         * that does not support DIX.
1151                         */
1152                        WARN_ON_ONCE(1);
1153                        error = BLKPREP_KILL;
1154                        goto err_exit;
1155                }
1156
1157                ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1158
1159                if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1160                        error = BLKPREP_DEFER;
1161                        goto err_exit;
1162                }
1163
1164                count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1165                                                prot_sdb->table.sgl);
1166                BUG_ON(unlikely(count > ivecs));
1167                BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1168
1169                cmd->prot_sdb = prot_sdb;
1170                cmd->prot_sdb->table.nents = count;
1171        }
1172
1173        return BLKPREP_OK;
1174err_exit:
1175        if (is_mq) {
1176                scsi_mq_free_sgtables(cmd);
1177        } else {
1178                scsi_release_buffers(cmd);
1179                cmd->request->special = NULL;
1180                scsi_put_command(cmd);
1181                put_device(&sdev->sdev_gendev);
1182        }
1183        return error;
1184}
1185EXPORT_SYMBOL(scsi_init_io);
1186
1187static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1188                struct request *req)
1189{
1190        struct scsi_cmnd *cmd;
1191
1192        if (!req->special) {
1193                /* Bail if we can't get a reference to the device */
1194                if (!get_device(&sdev->sdev_gendev))
1195                        return NULL;
1196
1197                cmd = scsi_get_command(sdev, GFP_ATOMIC);
1198                if (unlikely(!cmd)) {
1199                        put_device(&sdev->sdev_gendev);
1200                        return NULL;
1201                }
1202                req->special = cmd;
1203        } else {
1204                cmd = req->special;
1205        }
1206
1207        /* pull a tag out of the request if we have one */
1208        cmd->tag = req->tag;
1209        cmd->request = req;
1210
1211        cmd->cmnd = req->cmd;
1212        cmd->prot_op = SCSI_PROT_NORMAL;
1213
1214        return cmd;
1215}
1216
1217static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1218{
1219        struct scsi_cmnd *cmd = req->special;
1220
1221        /*
1222         * BLOCK_PC requests may transfer data, in which case they must
1223         * a bio attached to them.  Or they might contain a SCSI command
1224         * that does not transfer data, in which case they may optionally
1225         * submit a request without an attached bio.
1226         */
1227        if (req->bio) {
1228                int ret = scsi_init_io(cmd);
1229                if (unlikely(ret))
1230                        return ret;
1231        } else {
1232                BUG_ON(blk_rq_bytes(req));
1233
1234                memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1235        }
1236
1237        cmd->cmd_len = req->cmd_len;
1238        cmd->transfersize = blk_rq_bytes(req);
1239        cmd->allowed = req->retries;
1240        return BLKPREP_OK;
1241}
1242
1243/*
1244 * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1245 * that still need to be translated to SCSI CDBs from the ULD.
1246 */
1247static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1248{
1249        struct scsi_cmnd *cmd = req->special;
1250
1251        if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1252                         && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1253                int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1254                if (ret != BLKPREP_OK)
1255                        return ret;
1256        }
1257
1258        memset(cmd->cmnd, 0, BLK_MAX_CDB);
1259        return scsi_cmd_to_driver(cmd)->init_command(cmd);
1260}
1261
1262static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1263{
1264        struct scsi_cmnd *cmd = req->special;
1265
1266        if (!blk_rq_bytes(req))
1267                cmd->sc_data_direction = DMA_NONE;
1268        else if (rq_data_dir(req) == WRITE)
1269                cmd->sc_data_direction = DMA_TO_DEVICE;
1270        else
1271                cmd->sc_data_direction = DMA_FROM_DEVICE;
1272
1273        switch (req->cmd_type) {
1274        case REQ_TYPE_FS:
1275                return scsi_setup_fs_cmnd(sdev, req);
1276        case REQ_TYPE_BLOCK_PC:
1277                return scsi_setup_blk_pc_cmnd(sdev, req);
1278        default:
1279                return BLKPREP_KILL;
1280        }
1281}
1282
1283static int
1284scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1285{
1286        int ret = BLKPREP_OK;
1287
1288        /*
1289         * If the device is not in running state we will reject some
1290         * or all commands.
1291         */
1292        if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1293                switch (sdev->sdev_state) {
1294                case SDEV_OFFLINE:
1295                case SDEV_TRANSPORT_OFFLINE:
1296                        /*
1297                         * If the device is offline we refuse to process any
1298                         * commands.  The device must be brought online
1299                         * before trying any recovery commands.
1300                         */
1301                        sdev_printk(KERN_ERR, sdev,
1302                                    "rejecting I/O to offline device\n");
1303                        ret = BLKPREP_KILL;
1304                        break;
1305                case SDEV_DEL:
1306                        /*
1307                         * If the device is fully deleted, we refuse to
1308                         * process any commands as well.
1309                         */
1310                        sdev_printk(KERN_ERR, sdev,
1311                                    "rejecting I/O to dead device\n");
1312                        ret = BLKPREP_KILL;
1313                        break;
1314                case SDEV_BLOCK:
1315                case SDEV_CREATED_BLOCK:
1316                        ret = BLKPREP_DEFER;
1317                        break;
1318                case SDEV_QUIESCE:
1319                        /*
1320                         * If the devices is blocked we defer normal commands.
1321                         */
1322                        if (!(req->cmd_flags & REQ_PREEMPT))
1323                                ret = BLKPREP_DEFER;
1324                        break;
1325                default:
1326                        /*
1327                         * For any other not fully online state we only allow
1328                         * special commands.  In particular any user initiated
1329                         * command is not allowed.
1330                         */
1331                        if (!(req->cmd_flags & REQ_PREEMPT))
1332                                ret = BLKPREP_KILL;
1333                        break;
1334                }
1335        }
1336        return ret;
1337}
1338
1339static int
1340scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1341{
1342        struct scsi_device *sdev = q->queuedata;
1343
1344        switch (ret) {
1345        case BLKPREP_KILL:
1346                req->errors = DID_NO_CONNECT << 16;
1347                /* release the command and kill it */
1348                if (req->special) {
1349                        struct scsi_cmnd *cmd = req->special;
1350                        scsi_release_buffers(cmd);
1351                        scsi_put_command(cmd);
1352                        put_device(&sdev->sdev_gendev);
1353                        req->special = NULL;
1354                }
1355                break;
1356        case BLKPREP_DEFER:
1357                /*
1358                 * If we defer, the blk_peek_request() returns NULL, but the
1359                 * queue must be restarted, so we schedule a callback to happen
1360                 * shortly.
1361                 */
1362                if (atomic_read(&sdev->device_busy) == 0)
1363                        blk_delay_queue(q, SCSI_QUEUE_DELAY);
1364                break;
1365        default:
1366                req->cmd_flags |= REQ_DONTPREP;
1367        }
1368
1369        return ret;
1370}
1371
1372static int scsi_prep_fn(struct request_queue *q, struct request *req)
1373{
1374        struct scsi_device *sdev = q->queuedata;
1375        struct scsi_cmnd *cmd;
1376        int ret;
1377
1378        ret = scsi_prep_state_check(sdev, req);
1379        if (ret != BLKPREP_OK)
1380                goto out;
1381
1382        cmd = scsi_get_cmd_from_req(sdev, req);
1383        if (unlikely(!cmd)) {
1384                ret = BLKPREP_DEFER;
1385                goto out;
1386        }
1387
1388        ret = scsi_setup_cmnd(sdev, req);
1389out:
1390        return scsi_prep_return(q, req, ret);
1391}
1392
1393static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1394{
1395        scsi_uninit_cmd(req->special);
1396}
1397
1398/*
1399 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1400 * return 0.
1401 *
1402 * Called with the queue_lock held.
1403 */
1404static inline int scsi_dev_queue_ready(struct request_queue *q,
1405                                  struct scsi_device *sdev)
1406{
1407        unsigned int busy;
1408
1409        busy = atomic_inc_return(&sdev->device_busy) - 1;
1410        if (atomic_read(&sdev->device_blocked)) {
1411                if (busy)
1412                        goto out_dec;
1413
1414                /*
1415                 * unblock after device_blocked iterates to zero
1416                 */
1417                if (atomic_dec_return(&sdev->device_blocked) > 0) {
1418                        /*
1419                         * For the MQ case we take care of this in the caller.
1420                         */
1421                        if (!q->mq_ops)
1422                                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1423                        goto out_dec;
1424                }
1425                SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1426                                   "unblocking device at zero depth\n"));
1427        }
1428
1429        if (busy >= sdev->queue_depth)
1430                goto out_dec;
1431
1432        return 1;
1433out_dec:
1434        atomic_dec(&sdev->device_busy);
1435        return 0;
1436}
1437
1438/*
1439 * scsi_target_queue_ready: checks if there we can send commands to target
1440 * @sdev: scsi device on starget to check.
1441 */
1442static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1443                                           struct scsi_device *sdev)
1444{
1445        struct scsi_target *starget = scsi_target(sdev);
1446        unsigned int busy;
1447
1448        if (starget->single_lun) {
1449                spin_lock_irq(shost->host_lock);
1450                if (starget->starget_sdev_user &&
1451                    starget->starget_sdev_user != sdev) {
1452                        spin_unlock_irq(shost->host_lock);
1453                        return 0;
1454                }
1455                starget->starget_sdev_user = sdev;
1456                spin_unlock_irq(shost->host_lock);
1457        }
1458
1459        if (starget->can_queue <= 0)
1460                return 1;
1461
1462        busy = atomic_inc_return(&starget->target_busy) - 1;
1463        if (atomic_read(&starget->target_blocked) > 0) {
1464                if (busy)
1465                        goto starved;
1466
1467                /*
1468                 * unblock after target_blocked iterates to zero
1469                 */
1470                if (atomic_dec_return(&starget->target_blocked) > 0)
1471                        goto out_dec;
1472
1473                SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1474                                 "unblocking target at zero depth\n"));
1475        }
1476
1477        if (busy >= starget->can_queue)
1478                goto starved;
1479
1480        return 1;
1481
1482starved:
1483        spin_lock_irq(shost->host_lock);
1484        list_move_tail(&sdev->starved_entry, &shost->starved_list);
1485        spin_unlock_irq(shost->host_lock);
1486out_dec:
1487        if (starget->can_queue > 0)
1488                atomic_dec(&starget->target_busy);
1489        return 0;
1490}
1491
1492/*
1493 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1494 * return 0. We must end up running the queue again whenever 0 is
1495 * returned, else IO can hang.
1496 */
1497static inline int scsi_host_queue_ready(struct request_queue *q,
1498                                   struct Scsi_Host *shost,
1499                                   struct scsi_device *sdev)
1500{
1501        unsigned int busy;
1502
1503        if (scsi_host_in_recovery(shost))
1504                return 0;
1505
1506        busy = atomic_inc_return(&shost->host_busy) - 1;
1507        if (atomic_read(&shost->host_blocked) > 0) {
1508                if (busy)
1509                        goto starved;
1510
1511                /*
1512                 * unblock after host_blocked iterates to zero
1513                 */
1514                if (atomic_dec_return(&shost->host_blocked) > 0)
1515                        goto out_dec;
1516
1517                SCSI_LOG_MLQUEUE(3,
1518                        shost_printk(KERN_INFO, shost,
1519                                     "unblocking host at zero depth\n"));
1520        }
1521
1522        if (shost->can_queue > 0 && busy >= shost->can_queue)
1523                goto starved;
1524        if (shost->host_self_blocked)
1525                goto starved;
1526
1527        /* We're OK to process the command, so we can't be starved */
1528        if (!list_empty(&sdev->starved_entry)) {
1529                spin_lock_irq(shost->host_lock);
1530                if (!list_empty(&sdev->starved_entry))
1531                        list_del_init(&sdev->starved_entry);
1532                spin_unlock_irq(shost->host_lock);
1533        }
1534
1535        return 1;
1536
1537starved:
1538        spin_lock_irq(shost->host_lock);
1539        if (list_empty(&sdev->starved_entry))
1540                list_add_tail(&sdev->starved_entry, &shost->starved_list);
1541        spin_unlock_irq(shost->host_lock);
1542out_dec:
1543        atomic_dec(&shost->host_busy);
1544        return 0;
1545}
1546
1547/*
1548 * Busy state exporting function for request stacking drivers.
1549 *
1550 * For efficiency, no lock is taken to check the busy state of
1551 * shost/starget/sdev, since the returned value is not guaranteed and
1552 * may be changed after request stacking drivers call the function,
1553 * regardless of taking lock or not.
1554 *
1555 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1556 * needs to return 'not busy'. Otherwise, request stacking drivers
1557 * may hold requests forever.
1558 */
1559static int scsi_lld_busy(struct request_queue *q)
1560{
1561        struct scsi_device *sdev = q->queuedata;
1562        struct Scsi_Host *shost;
1563
1564        if (blk_queue_dying(q))
1565                return 0;
1566
1567        shost = sdev->host;
1568
1569        /*
1570         * Ignore host/starget busy state.
1571         * Since block layer does not have a concept of fairness across
1572         * multiple queues, congestion of host/starget needs to be handled
1573         * in SCSI layer.
1574         */
1575        if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1576                return 1;
1577
1578        return 0;
1579}
1580
1581/*
1582 * Kill a request for a dead device
1583 */
1584static void scsi_kill_request(struct request *req, struct request_queue *q)
1585{
1586        struct scsi_cmnd *cmd = req->special;
1587        struct scsi_device *sdev;
1588        struct scsi_target *starget;
1589        struct Scsi_Host *shost;
1590
1591        blk_start_request(req);
1592
1593        scmd_printk(KERN_INFO, cmd, "killing request\n");
1594
1595        sdev = cmd->device;
1596        starget = scsi_target(sdev);
1597        shost = sdev->host;
1598        scsi_init_cmd_errh(cmd);
1599        cmd->result = DID_NO_CONNECT << 16;
1600        atomic_inc(&cmd->device->iorequest_cnt);
1601
1602        /*
1603         * SCSI request completion path will do scsi_device_unbusy(),
1604         * bump busy counts.  To bump the counters, we need to dance
1605         * with the locks as normal issue path does.
1606         */
1607        atomic_inc(&sdev->device_busy);
1608        atomic_inc(&shost->host_busy);
1609        if (starget->can_queue > 0)
1610                atomic_inc(&starget->target_busy);
1611
1612        blk_complete_request(req);
1613}
1614
1615static void scsi_softirq_done(struct request *rq)
1616{
1617        struct scsi_cmnd *cmd = rq->special;
1618        unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1619        int disposition;
1620
1621        INIT_LIST_HEAD(&cmd->eh_entry);
1622
1623        atomic_inc(&cmd->device->iodone_cnt);
1624        if (cmd->result)
1625                atomic_inc(&cmd->device->ioerr_cnt);
1626
1627        disposition = scsi_decide_disposition(cmd);
1628        if (disposition != SUCCESS &&
1629            time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1630                sdev_printk(KERN_ERR, cmd->device,
1631                            "timing out command, waited %lus\n",
1632                            wait_for/HZ);
1633                disposition = SUCCESS;
1634        }
1635
1636        scsi_log_completion(cmd, disposition);
1637
1638        switch (disposition) {
1639                case SUCCESS:
1640                        scsi_finish_command(cmd);
1641                        break;
1642                case NEEDS_RETRY:
1643                        scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1644                        break;
1645                case ADD_TO_MLQUEUE:
1646                        scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1647                        break;
1648                default:
1649                        if (!scsi_eh_scmd_add(cmd, 0))
1650                                scsi_finish_command(cmd);
1651        }
1652}
1653
1654/**
1655 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1656 * @cmd: command block we are dispatching.
1657 *
1658 * Return: nonzero return request was rejected and device's queue needs to be
1659 * plugged.
1660 */
1661static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1662{
1663        struct Scsi_Host *host = cmd->device->host;
1664        int rtn = 0;
1665
1666        atomic_inc(&cmd->device->iorequest_cnt);
1667
1668        /* check if the device is still usable */
1669        if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1670                /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1671                 * returns an immediate error upwards, and signals
1672                 * that the device is no longer present */
1673                cmd->result = DID_NO_CONNECT << 16;
1674                goto done;
1675        }
1676
1677        /* Check to see if the scsi lld made this device blocked. */
1678        if (unlikely(scsi_device_blocked(cmd->device))) {
1679                /*
1680                 * in blocked state, the command is just put back on
1681                 * the device queue.  The suspend state has already
1682                 * blocked the queue so future requests should not
1683                 * occur until the device transitions out of the
1684                 * suspend state.
1685                 */
1686                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1687                        "queuecommand : device blocked\n"));
1688                return SCSI_MLQUEUE_DEVICE_BUSY;
1689        }
1690
1691        /* Store the LUN value in cmnd, if needed. */
1692        if (cmd->device->lun_in_cdb)
1693                cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1694                               (cmd->device->lun << 5 & 0xe0);
1695
1696        scsi_log_send(cmd);
1697
1698        /*
1699         * Before we queue this command, check if the command
1700         * length exceeds what the host adapter can handle.
1701         */
1702        if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1703                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1704                               "queuecommand : command too long. "
1705                               "cdb_size=%d host->max_cmd_len=%d\n",
1706                               cmd->cmd_len, cmd->device->host->max_cmd_len));
1707                cmd->result = (DID_ABORT << 16);
1708                goto done;
1709        }
1710
1711        if (unlikely(host->shost_state == SHOST_DEL)) {
1712                cmd->result = (DID_NO_CONNECT << 16);
1713                goto done;
1714
1715        }
1716
1717        trace_scsi_dispatch_cmd_start(cmd);
1718        rtn = host->hostt->queuecommand(host, cmd);
1719        if (rtn) {
1720                trace_scsi_dispatch_cmd_error(cmd, rtn);
1721                if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1722                    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1723                        rtn = SCSI_MLQUEUE_HOST_BUSY;
1724
1725                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1726                        "queuecommand : request rejected\n"));
1727        }
1728
1729        return rtn;
1730 done:
1731        cmd->scsi_done(cmd);
1732        return 0;
1733}
1734
1735/**
1736 * scsi_done - Invoke completion on finished SCSI command.
1737 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1738 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1739 *
1740 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1741 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1742 * calls blk_complete_request() for further processing.
1743 *
1744 * This function is interrupt context safe.
1745 */
1746static void scsi_done(struct scsi_cmnd *cmd)
1747{
1748        trace_scsi_dispatch_cmd_done(cmd);
1749        blk_complete_request(cmd->request);
1750}
1751
1752/*
1753 * Function:    scsi_request_fn()
1754 *
1755 * Purpose:     Main strategy routine for SCSI.
1756 *
1757 * Arguments:   q       - Pointer to actual queue.
1758 *
1759 * Returns:     Nothing
1760 *
1761 * Lock status: IO request lock assumed to be held when called.
1762 */
1763static void scsi_request_fn(struct request_queue *q)
1764        __releases(q->queue_lock)
1765        __acquires(q->queue_lock)
1766{
1767        struct scsi_device *sdev = q->queuedata;
1768        struct Scsi_Host *shost;
1769        struct scsi_cmnd *cmd;
1770        struct request *req;
1771
1772        /*
1773         * To start with, we keep looping until the queue is empty, or until
1774         * the host is no longer able to accept any more requests.
1775         */
1776        shost = sdev->host;
1777        for (;;) {
1778                int rtn;
1779                /*
1780                 * get next queueable request.  We do this early to make sure
1781                 * that the request is fully prepared even if we cannot
1782                 * accept it.
1783                 */
1784                req = blk_peek_request(q);
1785                if (!req)
1786                        break;
1787
1788                if (unlikely(!scsi_device_online(sdev))) {
1789                        sdev_printk(KERN_ERR, sdev,
1790                                    "rejecting I/O to offline device\n");
1791                        scsi_kill_request(req, q);
1792                        continue;
1793                }
1794
1795                if (!scsi_dev_queue_ready(q, sdev))
1796                        break;
1797
1798                /*
1799                 * Remove the request from the request list.
1800                 */
1801                if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1802                        blk_start_request(req);
1803
1804                spin_unlock_irq(q->queue_lock);
1805                cmd = req->special;
1806                if (unlikely(cmd == NULL)) {
1807                        printk(KERN_CRIT "impossible request in %s.\n"
1808                                         "please mail a stack trace to "
1809                                         "linux-scsi@vger.kernel.org\n",
1810                                         __func__);
1811                        blk_dump_rq_flags(req, "foo");
1812                        BUG();
1813                }
1814
1815                /*
1816                 * We hit this when the driver is using a host wide
1817                 * tag map. For device level tag maps the queue_depth check
1818                 * in the device ready fn would prevent us from trying
1819                 * to allocate a tag. Since the map is a shared host resource
1820                 * we add the dev to the starved list so it eventually gets
1821                 * a run when a tag is freed.
1822                 */
1823                if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1824                        spin_lock_irq(shost->host_lock);
1825                        if (list_empty(&sdev->starved_entry))
1826                                list_add_tail(&sdev->starved_entry,
1827                                              &shost->starved_list);
1828                        spin_unlock_irq(shost->host_lock);
1829                        goto not_ready;
1830                }
1831
1832                if (!scsi_target_queue_ready(shost, sdev))
1833                        goto not_ready;
1834
1835                if (!scsi_host_queue_ready(q, shost, sdev))
1836                        goto host_not_ready;
1837        
1838                if (sdev->simple_tags)
1839                        cmd->flags |= SCMD_TAGGED;
1840                else
1841                        cmd->flags &= ~SCMD_TAGGED;
1842
1843                /*
1844                 * Finally, initialize any error handling parameters, and set up
1845                 * the timers for timeouts.
1846                 */
1847                scsi_init_cmd_errh(cmd);
1848
1849                /*
1850                 * Dispatch the command to the low-level driver.
1851                 */
1852                cmd->scsi_done = scsi_done;
1853                rtn = scsi_dispatch_cmd(cmd);
1854                if (rtn) {
1855                        scsi_queue_insert(cmd, rtn);
1856                        spin_lock_irq(q->queue_lock);
1857                        goto out_delay;
1858                }
1859                spin_lock_irq(q->queue_lock);
1860        }
1861
1862        return;
1863
1864 host_not_ready:
1865        if (scsi_target(sdev)->can_queue > 0)
1866                atomic_dec(&scsi_target(sdev)->target_busy);
1867 not_ready:
1868        /*
1869         * lock q, handle tag, requeue req, and decrement device_busy. We
1870         * must return with queue_lock held.
1871         *
1872         * Decrementing device_busy without checking it is OK, as all such
1873         * cases (host limits or settings) should run the queue at some
1874         * later time.
1875         */
1876        spin_lock_irq(q->queue_lock);
1877        blk_requeue_request(q, req);
1878        atomic_dec(&sdev->device_busy);
1879out_delay:
1880        if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1881                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1882}
1883
1884static inline int prep_to_mq(int ret)
1885{
1886        switch (ret) {
1887        case BLKPREP_OK:
1888                return 0;
1889        case BLKPREP_DEFER:
1890                return BLK_MQ_RQ_QUEUE_BUSY;
1891        default:
1892                return BLK_MQ_RQ_QUEUE_ERROR;
1893        }
1894}
1895
1896static int scsi_mq_prep_fn(struct request *req)
1897{
1898        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1899        struct scsi_device *sdev = req->q->queuedata;
1900        struct Scsi_Host *shost = sdev->host;
1901        unsigned char *sense_buf = cmd->sense_buffer;
1902        struct scatterlist *sg;
1903
1904        memset(cmd, 0, sizeof(struct scsi_cmnd));
1905
1906        req->special = cmd;
1907
1908        cmd->request = req;
1909        cmd->device = sdev;
1910        cmd->sense_buffer = sense_buf;
1911
1912        cmd->tag = req->tag;
1913
1914        cmd->cmnd = req->cmd;
1915        cmd->prot_op = SCSI_PROT_NORMAL;
1916
1917        INIT_LIST_HEAD(&cmd->list);
1918        INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1919        cmd->jiffies_at_alloc = jiffies;
1920
1921        if (shost->use_cmd_list) {
1922                spin_lock_irq(&sdev->list_lock);
1923                list_add_tail(&cmd->list, &sdev->cmd_list);
1924                spin_unlock_irq(&sdev->list_lock);
1925        }
1926
1927        sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1928        cmd->sdb.table.sgl = sg;
1929
1930        if (scsi_host_get_prot(shost)) {
1931                cmd->prot_sdb = (void *)sg +
1932                        min_t(unsigned int,
1933                              shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1934                        sizeof(struct scatterlist);
1935                memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1936
1937                cmd->prot_sdb->table.sgl =
1938                        (struct scatterlist *)(cmd->prot_sdb + 1);
1939        }
1940
1941        if (blk_bidi_rq(req)) {
1942                struct request *next_rq = req->next_rq;
1943                struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1944
1945                memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1946                bidi_sdb->table.sgl =
1947                        (struct scatterlist *)(bidi_sdb + 1);
1948
1949                next_rq->special = bidi_sdb;
1950        }
1951
1952        blk_mq_start_request(req);
1953
1954        return scsi_setup_cmnd(sdev, req);
1955}
1956
1957static void scsi_mq_done(struct scsi_cmnd *cmd)
1958{
1959        trace_scsi_dispatch_cmd_done(cmd);
1960        blk_mq_complete_request(cmd->request);
1961}
1962
1963static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1964                         const struct blk_mq_queue_data *bd)
1965{
1966        struct request *req = bd->rq;
1967        struct request_queue *q = req->q;
1968        struct scsi_device *sdev = q->queuedata;
1969        struct Scsi_Host *shost = sdev->host;
1970        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1971        int ret;
1972        int reason;
1973
1974        ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1975        if (ret)
1976                goto out;
1977
1978        ret = BLK_MQ_RQ_QUEUE_BUSY;
1979        if (!get_device(&sdev->sdev_gendev))
1980                goto out;
1981
1982        if (!scsi_dev_queue_ready(q, sdev))
1983                goto out_put_device;
1984        if (!scsi_target_queue_ready(shost, sdev))
1985                goto out_dec_device_busy;
1986        if (!scsi_host_queue_ready(q, shost, sdev))
1987                goto out_dec_target_busy;
1988
1989
1990        if (!(req->cmd_flags & REQ_DONTPREP)) {
1991                ret = prep_to_mq(scsi_mq_prep_fn(req));
1992                if (ret)
1993                        goto out_dec_host_busy;
1994                req->cmd_flags |= REQ_DONTPREP;
1995        } else {
1996                blk_mq_start_request(req);
1997        }
1998
1999        if (sdev->simple_tags)
2000                cmd->flags |= SCMD_TAGGED;
2001        else
2002                cmd->flags &= ~SCMD_TAGGED;
2003
2004        scsi_init_cmd_errh(cmd);
2005        cmd->scsi_done = scsi_mq_done;
2006
2007        reason = scsi_dispatch_cmd(cmd);
2008        if (reason) {
2009                scsi_set_blocked(cmd, reason);
2010                ret = BLK_MQ_RQ_QUEUE_BUSY;
2011                goto out_dec_host_busy;
2012        }
2013
2014        return BLK_MQ_RQ_QUEUE_OK;
2015
2016out_dec_host_busy:
2017        atomic_dec(&shost->host_busy);
2018out_dec_target_busy:
2019        if (scsi_target(sdev)->can_queue > 0)
2020                atomic_dec(&scsi_target(sdev)->target_busy);
2021out_dec_device_busy:
2022        atomic_dec(&sdev->device_busy);
2023out_put_device:
2024        put_device(&sdev->sdev_gendev);
2025out:
2026        switch (ret) {
2027        case BLK_MQ_RQ_QUEUE_BUSY:
2028                blk_mq_stop_hw_queue(hctx);
2029                if (atomic_read(&sdev->device_busy) == 0 &&
2030                    !scsi_device_blocked(sdev))
2031                        blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2032                break;
2033        case BLK_MQ_RQ_QUEUE_ERROR:
2034                /*
2035                 * Make sure to release all allocated ressources when
2036                 * we hit an error, as we will never see this command
2037                 * again.
2038                 */
2039                if (req->cmd_flags & REQ_DONTPREP)
2040                        scsi_mq_uninit_cmd(cmd);
2041                break;
2042        default:
2043                break;
2044        }
2045        return ret;
2046}
2047
2048static enum blk_eh_timer_return scsi_timeout(struct request *req,
2049                bool reserved)
2050{
2051        if (reserved)
2052                return BLK_EH_RESET_TIMER;
2053        return scsi_times_out(req);
2054}
2055
2056static int scsi_init_request(void *data, struct request *rq,
2057                unsigned int hctx_idx, unsigned int request_idx,
2058                unsigned int numa_node)
2059{
2060        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2061
2062        cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2063                        numa_node);
2064        if (!cmd->sense_buffer)
2065                return -ENOMEM;
2066        return 0;
2067}
2068
2069static void scsi_exit_request(void *data, struct request *rq,
2070                unsigned int hctx_idx, unsigned int request_idx)
2071{
2072        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2073
2074        kfree(cmd->sense_buffer);
2075}
2076
2077static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2078{
2079        struct device *host_dev;
2080        u64 bounce_limit = 0xffffffff;
2081
2082        if (shost->unchecked_isa_dma)
2083                return BLK_BOUNCE_ISA;
2084        /*
2085         * Platforms with virtual-DMA translation
2086         * hardware have no practical limit.
2087         */
2088        if (!PCI_DMA_BUS_IS_PHYS)
2089                return BLK_BOUNCE_ANY;
2090
2091        host_dev = scsi_get_device(shost);
2092        if (host_dev && host_dev->dma_mask)
2093                bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2094
2095        return bounce_limit;
2096}
2097
2098static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2099{
2100        struct device *dev = shost->dma_dev;
2101
2102        /*
2103         * this limit is imposed by hardware restrictions
2104         */
2105        blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2106                                        SCSI_MAX_SG_CHAIN_SEGMENTS));
2107
2108        if (scsi_host_prot_dma(shost)) {
2109                shost->sg_prot_tablesize =
2110                        min_not_zero(shost->sg_prot_tablesize,
2111                                     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2112                BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2113                blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2114        }
2115
2116        blk_queue_max_hw_sectors(q, shost->max_sectors);
2117        blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2118        blk_queue_segment_boundary(q, shost->dma_boundary);
2119        dma_set_seg_boundary(dev, shost->dma_boundary);
2120
2121        blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2122
2123        if (!shost->use_clustering)
2124                q->limits.cluster = 0;
2125
2126        /*
2127         * set a reasonable default alignment on word boundaries: the
2128         * host and device may alter it using
2129         * blk_queue_update_dma_alignment() later.
2130         */
2131        blk_queue_dma_alignment(q, 0x03);
2132}
2133
2134struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2135                                         request_fn_proc *request_fn)
2136{
2137        struct request_queue *q;
2138
2139        q = blk_init_queue(request_fn, NULL);
2140        if (!q)
2141                return NULL;
2142        __scsi_init_queue(shost, q);
2143        return q;
2144}
2145EXPORT_SYMBOL(__scsi_alloc_queue);
2146
2147struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2148{
2149        struct request_queue *q;
2150
2151        q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2152        if (!q)
2153                return NULL;
2154
2155        blk_queue_prep_rq(q, scsi_prep_fn);
2156        blk_queue_unprep_rq(q, scsi_unprep_fn);
2157        blk_queue_softirq_done(q, scsi_softirq_done);
2158        blk_queue_rq_timed_out(q, scsi_times_out);
2159        blk_queue_lld_busy(q, scsi_lld_busy);
2160        return q;
2161}
2162
2163static struct blk_mq_ops scsi_mq_ops = {
2164        .map_queue      = blk_mq_map_queue,
2165        .queue_rq       = scsi_queue_rq,
2166        .complete       = scsi_softirq_done,
2167        .timeout        = scsi_timeout,
2168        .init_request   = scsi_init_request,
2169        .exit_request   = scsi_exit_request,
2170};
2171
2172struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2173{
2174        sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2175        if (IS_ERR(sdev->request_queue))
2176                return NULL;
2177
2178        sdev->request_queue->queuedata = sdev;
2179        __scsi_init_queue(sdev->host, sdev->request_queue);
2180        return sdev->request_queue;
2181}
2182
2183int scsi_mq_setup_tags(struct Scsi_Host *shost)
2184{
2185        unsigned int cmd_size, sgl_size, tbl_size;
2186
2187        tbl_size = shost->sg_tablesize;
2188        if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2189                tbl_size = SCSI_MAX_SG_SEGMENTS;
2190        sgl_size = tbl_size * sizeof(struct scatterlist);
2191        cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2192        if (scsi_host_get_prot(shost))
2193                cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2194
2195        memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2196        shost->tag_set.ops = &scsi_mq_ops;
2197        shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2198        shost->tag_set.queue_depth = shost->can_queue;
2199        shost->tag_set.cmd_size = cmd_size;
2200        shost->tag_set.numa_node = NUMA_NO_NODE;
2201        shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2202        shost->tag_set.flags |=
2203                BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2204        shost->tag_set.driver_data = shost;
2205
2206        return blk_mq_alloc_tag_set(&shost->tag_set);
2207}
2208
2209void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2210{
2211        blk_mq_free_tag_set(&shost->tag_set);
2212}
2213
2214/*
2215 * Function:    scsi_block_requests()
2216 *
2217 * Purpose:     Utility function used by low-level drivers to prevent further
2218 *              commands from being queued to the device.
2219 *
2220 * Arguments:   shost       - Host in question
2221 *
2222 * Returns:     Nothing
2223 *
2224 * Lock status: No locks are assumed held.
2225 *
2226 * Notes:       There is no timer nor any other means by which the requests
2227 *              get unblocked other than the low-level driver calling
2228 *              scsi_unblock_requests().
2229 */
2230void scsi_block_requests(struct Scsi_Host *shost)
2231{
2232        shost->host_self_blocked = 1;
2233}
2234EXPORT_SYMBOL(scsi_block_requests);
2235
2236/*
2237 * Function:    scsi_unblock_requests()
2238 *
2239 * Purpose:     Utility function used by low-level drivers to allow further
2240 *              commands from being queued to the device.
2241 *
2242 * Arguments:   shost       - Host in question
2243 *
2244 * Returns:     Nothing
2245 *
2246 * Lock status: No locks are assumed held.
2247 *
2248 * Notes:       There is no timer nor any other means by which the requests
2249 *              get unblocked other than the low-level driver calling
2250 *              scsi_unblock_requests().
2251 *
2252 *              This is done as an API function so that changes to the
2253 *              internals of the scsi mid-layer won't require wholesale
2254 *              changes to drivers that use this feature.
2255 */
2256void scsi_unblock_requests(struct Scsi_Host *shost)
2257{
2258        shost->host_self_blocked = 0;
2259        scsi_run_host_queues(shost);
2260}
2261EXPORT_SYMBOL(scsi_unblock_requests);
2262
2263int __init scsi_init_queue(void)
2264{
2265        int i;
2266
2267        scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2268                                           sizeof(struct scsi_data_buffer),
2269                                           0, 0, NULL);
2270        if (!scsi_sdb_cache) {
2271                printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2272                return -ENOMEM;
2273        }
2274
2275        for (i = 0; i < SG_MEMPOOL_NR; i++) {
2276                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2277                int size = sgp->size * sizeof(struct scatterlist);
2278
2279                sgp->slab = kmem_cache_create(sgp->name, size, 0,
2280                                SLAB_HWCACHE_ALIGN, NULL);
2281                if (!sgp->slab) {
2282                        printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2283                                        sgp->name);
2284                        goto cleanup_sdb;
2285                }
2286
2287                sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2288                                                     sgp->slab);
2289                if (!sgp->pool) {
2290                        printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2291                                        sgp->name);
2292                        goto cleanup_sdb;
2293                }
2294        }
2295
2296        return 0;
2297
2298cleanup_sdb:
2299        for (i = 0; i < SG_MEMPOOL_NR; i++) {
2300                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2301                if (sgp->pool)
2302                        mempool_destroy(sgp->pool);
2303                if (sgp->slab)
2304                        kmem_cache_destroy(sgp->slab);
2305        }
2306        kmem_cache_destroy(scsi_sdb_cache);
2307
2308        return -ENOMEM;
2309}
2310
2311void scsi_exit_queue(void)
2312{
2313        int i;
2314
2315        kmem_cache_destroy(scsi_sdb_cache);
2316
2317        for (i = 0; i < SG_MEMPOOL_NR; i++) {
2318                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2319                mempool_destroy(sgp->pool);
2320                kmem_cache_destroy(sgp->slab);
2321        }
2322}
2323
2324/**
2325 *      scsi_mode_select - issue a mode select
2326 *      @sdev:  SCSI device to be queried
2327 *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2328 *      @sp:    Save page bit (0 == don't save, 1 == save)
2329 *      @modepage: mode page being requested
2330 *      @buffer: request buffer (may not be smaller than eight bytes)
2331 *      @len:   length of request buffer.
2332 *      @timeout: command timeout
2333 *      @retries: number of retries before failing
2334 *      @data: returns a structure abstracting the mode header data
2335 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2336 *              must be SCSI_SENSE_BUFFERSIZE big.
2337 *
2338 *      Returns zero if successful; negative error number or scsi
2339 *      status on error
2340 *
2341 */
2342int
2343scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2344                 unsigned char *buffer, int len, int timeout, int retries,
2345                 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2346{
2347        unsigned char cmd[10];
2348        unsigned char *real_buffer;
2349        int ret;
2350
2351        memset(cmd, 0, sizeof(cmd));
2352        cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2353
2354        if (sdev->use_10_for_ms) {
2355                if (len > 65535)
2356                        return -EINVAL;
2357                real_buffer = kmalloc(8 + len, GFP_KERNEL);
2358                if (!real_buffer)
2359                        return -ENOMEM;
2360                memcpy(real_buffer + 8, buffer, len);
2361                len += 8;
2362                real_buffer[0] = 0;
2363                real_buffer[1] = 0;
2364                real_buffer[2] = data->medium_type;
2365                real_buffer[3] = data->device_specific;
2366                real_buffer[4] = data->longlba ? 0x01 : 0;
2367                real_buffer[5] = 0;
2368                real_buffer[6] = data->block_descriptor_length >> 8;
2369                real_buffer[7] = data->block_descriptor_length;
2370
2371                cmd[0] = MODE_SELECT_10;
2372                cmd[7] = len >> 8;
2373                cmd[8] = len;
2374        } else {
2375                if (len > 255 || data->block_descriptor_length > 255 ||
2376                    data->longlba)
2377                        return -EINVAL;
2378
2379                real_buffer = kmalloc(4 + len, GFP_KERNEL);
2380                if (!real_buffer)
2381                        return -ENOMEM;
2382                memcpy(real_buffer + 4, buffer, len);
2383                len += 4;
2384                real_buffer[0] = 0;
2385                real_buffer[1] = data->medium_type;
2386                real_buffer[2] = data->device_specific;
2387                real_buffer[3] = data->block_descriptor_length;
2388                
2389
2390                cmd[0] = MODE_SELECT;
2391                cmd[4] = len;
2392        }
2393
2394        ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2395                               sshdr, timeout, retries, NULL);
2396        kfree(real_buffer);
2397        return ret;
2398}
2399EXPORT_SYMBOL_GPL(scsi_mode_select);
2400
2401/**
2402 *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2403 *      @sdev:  SCSI device to be queried
2404 *      @dbd:   set if mode sense will allow block descriptors to be returned
2405 *      @modepage: mode page being requested
2406 *      @buffer: request buffer (may not be smaller than eight bytes)
2407 *      @len:   length of request buffer.
2408 *      @timeout: command timeout
2409 *      @retries: number of retries before failing
2410 *      @data: returns a structure abstracting the mode header data
2411 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2412 *              must be SCSI_SENSE_BUFFERSIZE big.
2413 *
2414 *      Returns zero if unsuccessful, or the header offset (either 4
2415 *      or 8 depending on whether a six or ten byte command was
2416 *      issued) if successful.
2417 */
2418int
2419scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2420                  unsigned char *buffer, int len, int timeout, int retries,
2421                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2422{
2423        unsigned char cmd[12];
2424        int use_10_for_ms;
2425        int header_length;
2426        int result;
2427        struct scsi_sense_hdr my_sshdr;
2428
2429        memset(data, 0, sizeof(*data));
2430        memset(&cmd[0], 0, 12);
2431        cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2432        cmd[2] = modepage;
2433
2434        /* caller might not be interested in sense, but we need it */
2435        if (!sshdr)
2436                sshdr = &my_sshdr;
2437
2438 retry:
2439        use_10_for_ms = sdev->use_10_for_ms;
2440
2441        if (use_10_for_ms) {
2442                if (len < 8)
2443                        len = 8;
2444
2445                cmd[0] = MODE_SENSE_10;
2446                cmd[8] = len;
2447                header_length = 8;
2448        } else {
2449                if (len < 4)
2450                        len = 4;
2451
2452                cmd[0] = MODE_SENSE;
2453                cmd[4] = len;
2454                header_length = 4;
2455        }
2456
2457        memset(buffer, 0, len);
2458
2459        result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2460                                  sshdr, timeout, retries, NULL);
2461
2462        /* This code looks awful: what it's doing is making sure an
2463         * ILLEGAL REQUEST sense return identifies the actual command
2464         * byte as the problem.  MODE_SENSE commands can return
2465         * ILLEGAL REQUEST if the code page isn't supported */
2466
2467        if (use_10_for_ms && !scsi_status_is_good(result) &&
2468            (driver_byte(result) & DRIVER_SENSE)) {
2469                if (scsi_sense_valid(sshdr)) {
2470                        if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2471                            (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2472                                /* 
2473                                 * Invalid command operation code
2474                                 */
2475                                sdev->use_10_for_ms = 0;
2476                                goto retry;
2477                        }
2478                }
2479        }
2480
2481        if(scsi_status_is_good(result)) {
2482                if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2483                             (modepage == 6 || modepage == 8))) {
2484                        /* Initio breakage? */
2485                        header_length = 0;
2486                        data->length = 13;
2487                        data->medium_type = 0;
2488                        data->device_specific = 0;
2489                        data->longlba = 0;
2490                        data->block_descriptor_length = 0;
2491                } else if(use_10_for_ms) {
2492                        data->length = buffer[0]*256 + buffer[1] + 2;
2493                        data->medium_type = buffer[2];
2494                        data->device_specific = buffer[3];
2495                        data->longlba = buffer[4] & 0x01;
2496                        data->block_descriptor_length = buffer[6]*256
2497                                + buffer[7];
2498                } else {
2499                        data->length = buffer[0] + 1;
2500                        data->medium_type = buffer[1];
2501                        data->device_specific = buffer[2];
2502                        data->block_descriptor_length = buffer[3];
2503                }
2504                data->header_length = header_length;
2505        }
2506
2507        return result;
2508}
2509EXPORT_SYMBOL(scsi_mode_sense);
2510
2511/**
2512 *      scsi_test_unit_ready - test if unit is ready
2513 *      @sdev:  scsi device to change the state of.
2514 *      @timeout: command timeout
2515 *      @retries: number of retries before failing
2516 *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2517 *              returning sense. Make sure that this is cleared before passing
2518 *              in.
2519 *
2520 *      Returns zero if unsuccessful or an error if TUR failed.  For
2521 *      removable media, UNIT_ATTENTION sets ->changed flag.
2522 **/
2523int
2524scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2525                     struct scsi_sense_hdr *sshdr_external)
2526{
2527        char cmd[] = {
2528                TEST_UNIT_READY, 0, 0, 0, 0, 0,
2529        };
2530        struct scsi_sense_hdr *sshdr;
2531        int result;
2532
2533        if (!sshdr_external)
2534                sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2535        else
2536                sshdr = sshdr_external;
2537
2538        /* try to eat the UNIT_ATTENTION if there are enough retries */
2539        do {
2540                result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2541                                          timeout, retries, NULL);
2542                if (sdev->removable && scsi_sense_valid(sshdr) &&
2543                    sshdr->sense_key == UNIT_ATTENTION)
2544                        sdev->changed = 1;
2545        } while (scsi_sense_valid(sshdr) &&
2546                 sshdr->sense_key == UNIT_ATTENTION && --retries);
2547
2548        if (!sshdr_external)
2549                kfree(sshdr);
2550        return result;
2551}
2552EXPORT_SYMBOL(scsi_test_unit_ready);
2553
2554/**
2555 *      scsi_device_set_state - Take the given device through the device state model.
2556 *      @sdev:  scsi device to change the state of.
2557 *      @state: state to change to.
2558 *
2559 *      Returns zero if unsuccessful or an error if the requested 
2560 *      transition is illegal.
2561 */
2562int
2563scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2564{
2565        enum scsi_device_state oldstate = sdev->sdev_state;
2566
2567        if (state == oldstate)
2568                return 0;
2569
2570        switch (state) {
2571        case SDEV_CREATED:
2572                switch (oldstate) {
2573                case SDEV_CREATED_BLOCK:
2574                        break;
2575                default:
2576                        goto illegal;
2577                }
2578                break;
2579                        
2580        case SDEV_RUNNING:
2581                switch (oldstate) {
2582                case SDEV_CREATED:
2583                case SDEV_OFFLINE:
2584                case SDEV_TRANSPORT_OFFLINE:
2585                case SDEV_QUIESCE:
2586                case SDEV_BLOCK:
2587                        break;
2588                default:
2589                        goto illegal;
2590                }
2591                break;
2592
2593        case SDEV_QUIESCE:
2594                switch (oldstate) {
2595                case SDEV_RUNNING:
2596                case SDEV_OFFLINE:
2597                case SDEV_TRANSPORT_OFFLINE:
2598                        break;
2599                default:
2600                        goto illegal;
2601                }
2602                break;
2603
2604        case SDEV_OFFLINE:
2605        case SDEV_TRANSPORT_OFFLINE:
2606                switch (oldstate) {
2607                case SDEV_CREATED:
2608                case SDEV_RUNNING:
2609                case SDEV_QUIESCE:
2610                case SDEV_BLOCK:
2611                        break;
2612                default:
2613                        goto illegal;
2614                }
2615                break;
2616
2617        case SDEV_BLOCK:
2618                switch (oldstate) {
2619                case SDEV_RUNNING:
2620                case SDEV_CREATED_BLOCK:
2621                        break;
2622                default:
2623                        goto illegal;
2624                }
2625                break;
2626
2627        case SDEV_CREATED_BLOCK:
2628                switch (oldstate) {
2629                case SDEV_CREATED:
2630                        break;
2631                default:
2632                        goto illegal;
2633                }
2634                break;
2635
2636        case SDEV_CANCEL:
2637                switch (oldstate) {
2638                case SDEV_CREATED:
2639                case SDEV_RUNNING:
2640                case SDEV_QUIESCE:
2641                case SDEV_OFFLINE:
2642                case SDEV_TRANSPORT_OFFLINE:
2643                case SDEV_BLOCK:
2644                        break;
2645                default:
2646                        goto illegal;
2647                }
2648                break;
2649
2650        case SDEV_DEL:
2651                switch (oldstate) {
2652                case SDEV_CREATED:
2653                case SDEV_RUNNING:
2654                case SDEV_OFFLINE:
2655                case SDEV_TRANSPORT_OFFLINE:
2656                case SDEV_CANCEL:
2657                case SDEV_CREATED_BLOCK:
2658                        break;
2659                default:
2660                        goto illegal;
2661                }
2662                break;
2663
2664        }
2665        sdev->sdev_state = state;
2666        return 0;
2667
2668 illegal:
2669        SCSI_LOG_ERROR_RECOVERY(1,
2670                                sdev_printk(KERN_ERR, sdev,
2671                                            "Illegal state transition %s->%s",
2672                                            scsi_device_state_name(oldstate),
2673                                            scsi_device_state_name(state))
2674                                );
2675        return -EINVAL;
2676}
2677EXPORT_SYMBOL(scsi_device_set_state);
2678
2679/**
2680 *      sdev_evt_emit - emit a single SCSI device uevent
2681 *      @sdev: associated SCSI device
2682 *      @evt: event to emit
2683 *
2684 *      Send a single uevent (scsi_event) to the associated scsi_device.
2685 */
2686static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2687{
2688        int idx = 0;
2689        char *envp[3];
2690
2691        switch (evt->evt_type) {
2692        case SDEV_EVT_MEDIA_CHANGE:
2693                envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2694                break;
2695        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2696                envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2697                break;
2698        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2699                envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2700                break;
2701        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2702               envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2703                break;
2704        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2705                envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2706                break;
2707        case SDEV_EVT_LUN_CHANGE_REPORTED:
2708                envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2709                break;
2710        default:
2711                /* do nothing */
2712                break;
2713        }
2714
2715        envp[idx++] = NULL;
2716
2717        kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2718}
2719
2720/**
2721 *      sdev_evt_thread - send a uevent for each scsi event
2722 *      @work: work struct for scsi_device
2723 *
2724 *      Dispatch queued events to their associated scsi_device kobjects
2725 *      as uevents.
2726 */
2727void scsi_evt_thread(struct work_struct *work)
2728{
2729        struct scsi_device *sdev;
2730        enum scsi_device_event evt_type;
2731        LIST_HEAD(event_list);
2732
2733        sdev = container_of(work, struct scsi_device, event_work);
2734
2735        for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2736                if (test_and_clear_bit(evt_type, sdev->pending_events))
2737                        sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2738
2739        while (1) {
2740                struct scsi_event *evt;
2741                struct list_head *this, *tmp;
2742                unsigned long flags;
2743
2744                spin_lock_irqsave(&sdev->list_lock, flags);
2745                list_splice_init(&sdev->event_list, &event_list);
2746                spin_unlock_irqrestore(&sdev->list_lock, flags);
2747
2748                if (list_empty(&event_list))
2749                        break;
2750
2751                list_for_each_safe(this, tmp, &event_list) {
2752                        evt = list_entry(this, struct scsi_event, node);
2753                        list_del(&evt->node);
2754                        scsi_evt_emit(sdev, evt);
2755                        kfree(evt);
2756                }
2757        }
2758}
2759
2760/**
2761 *      sdev_evt_send - send asserted event to uevent thread
2762 *      @sdev: scsi_device event occurred on
2763 *      @evt: event to send
2764 *
2765 *      Assert scsi device event asynchronously.
2766 */
2767void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2768{
2769        unsigned long flags;
2770
2771#if 0
2772        /* FIXME: currently this check eliminates all media change events
2773         * for polled devices.  Need to update to discriminate between AN
2774         * and polled events */
2775        if (!test_bit(evt->evt_type, sdev->supported_events)) {
2776                kfree(evt);
2777                return;
2778        }
2779#endif
2780
2781        spin_lock_irqsave(&sdev->list_lock, flags);
2782        list_add_tail(&evt->node, &sdev->event_list);
2783        schedule_work(&sdev->event_work);
2784        spin_unlock_irqrestore(&sdev->list_lock, flags);
2785}
2786EXPORT_SYMBOL_GPL(sdev_evt_send);
2787
2788/**
2789 *      sdev_evt_alloc - allocate a new scsi event
2790 *      @evt_type: type of event to allocate
2791 *      @gfpflags: GFP flags for allocation
2792 *
2793 *      Allocates and returns a new scsi_event.
2794 */
2795struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2796                                  gfp_t gfpflags)
2797{
2798        struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2799        if (!evt)
2800                return NULL;
2801
2802        evt->evt_type = evt_type;
2803        INIT_LIST_HEAD(&evt->node);
2804
2805        /* evt_type-specific initialization, if any */
2806        switch (evt_type) {
2807        case SDEV_EVT_MEDIA_CHANGE:
2808        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2809        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2810        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2811        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2812        case SDEV_EVT_LUN_CHANGE_REPORTED:
2813        default:
2814                /* do nothing */
2815                break;
2816        }
2817
2818        return evt;
2819}
2820EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2821
2822/**
2823 *      sdev_evt_send_simple - send asserted event to uevent thread
2824 *      @sdev: scsi_device event occurred on
2825 *      @evt_type: type of event to send
2826 *      @gfpflags: GFP flags for allocation
2827 *
2828 *      Assert scsi device event asynchronously, given an event type.
2829 */
2830void sdev_evt_send_simple(struct scsi_device *sdev,
2831                          enum scsi_device_event evt_type, gfp_t gfpflags)
2832{
2833        struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2834        if (!evt) {
2835                sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2836                            evt_type);
2837                return;
2838        }
2839
2840        sdev_evt_send(sdev, evt);
2841}
2842EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2843
2844/**
2845 *      scsi_device_quiesce - Block user issued commands.
2846 *      @sdev:  scsi device to quiesce.
2847 *
2848 *      This works by trying to transition to the SDEV_QUIESCE state
2849 *      (which must be a legal transition).  When the device is in this
2850 *      state, only special requests will be accepted, all others will
2851 *      be deferred.  Since special requests may also be requeued requests,
2852 *      a successful return doesn't guarantee the device will be 
2853 *      totally quiescent.
2854 *
2855 *      Must be called with user context, may sleep.
2856 *
2857 *      Returns zero if unsuccessful or an error if not.
2858 */
2859int
2860scsi_device_quiesce(struct scsi_device *sdev)
2861{
2862        int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2863        if (err)
2864                return err;
2865
2866        scsi_run_queue(sdev->request_queue);
2867        while (atomic_read(&sdev->device_busy)) {
2868                msleep_interruptible(200);
2869                scsi_run_queue(sdev->request_queue);
2870        }
2871        return 0;
2872}
2873EXPORT_SYMBOL(scsi_device_quiesce);
2874
2875/**
2876 *      scsi_device_resume - Restart user issued commands to a quiesced device.
2877 *      @sdev:  scsi device to resume.
2878 *
2879 *      Moves the device from quiesced back to running and restarts the
2880 *      queues.
2881 *
2882 *      Must be called with user context, may sleep.
2883 */
2884void scsi_device_resume(struct scsi_device *sdev)
2885{
2886        /* check if the device state was mutated prior to resume, and if
2887         * so assume the state is being managed elsewhere (for example
2888         * device deleted during suspend)
2889         */
2890        if (sdev->sdev_state != SDEV_QUIESCE ||
2891            scsi_device_set_state(sdev, SDEV_RUNNING))
2892                return;
2893        scsi_run_queue(sdev->request_queue);
2894}
2895EXPORT_SYMBOL(scsi_device_resume);
2896
2897static void
2898device_quiesce_fn(struct scsi_device *sdev, void *data)
2899{
2900        scsi_device_quiesce(sdev);
2901}
2902
2903void
2904scsi_target_quiesce(struct scsi_target *starget)
2905{
2906        starget_for_each_device(starget, NULL, device_quiesce_fn);
2907}
2908EXPORT_SYMBOL(scsi_target_quiesce);
2909
2910static void
2911device_resume_fn(struct scsi_device *sdev, void *data)
2912{
2913        scsi_device_resume(sdev);
2914}
2915
2916void
2917scsi_target_resume(struct scsi_target *starget)
2918{
2919        starget_for_each_device(starget, NULL, device_resume_fn);
2920}
2921EXPORT_SYMBOL(scsi_target_resume);
2922
2923/**
2924 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2925 * @sdev:       device to block
2926 *
2927 * Block request made by scsi lld's to temporarily stop all
2928 * scsi commands on the specified device.  Called from interrupt
2929 * or normal process context.
2930 *
2931 * Returns zero if successful or error if not
2932 *
2933 * Notes:       
2934 *      This routine transitions the device to the SDEV_BLOCK state
2935 *      (which must be a legal transition).  When the device is in this
2936 *      state, all commands are deferred until the scsi lld reenables
2937 *      the device with scsi_device_unblock or device_block_tmo fires.
2938 */
2939int
2940scsi_internal_device_block(struct scsi_device *sdev)
2941{
2942        struct request_queue *q = sdev->request_queue;
2943        unsigned long flags;
2944        int err = 0;
2945
2946        err = scsi_device_set_state(sdev, SDEV_BLOCK);
2947        if (err) {
2948                err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2949
2950                if (err)
2951                        return err;
2952        }
2953
2954        /* 
2955         * The device has transitioned to SDEV_BLOCK.  Stop the
2956         * block layer from calling the midlayer with this device's
2957         * request queue. 
2958         */
2959        if (q->mq_ops) {
2960                blk_mq_stop_hw_queues(q);
2961        } else {
2962                spin_lock_irqsave(q->queue_lock, flags);
2963                blk_stop_queue(q);
2964                spin_unlock_irqrestore(q->queue_lock, flags);
2965        }
2966
2967        return 0;
2968}
2969EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2970 
2971/**
2972 * scsi_internal_device_unblock - resume a device after a block request
2973 * @sdev:       device to resume
2974 * @new_state:  state to set devices to after unblocking
2975 *
2976 * Called by scsi lld's or the midlayer to restart the device queue
2977 * for the previously suspended scsi device.  Called from interrupt or
2978 * normal process context.
2979 *
2980 * Returns zero if successful or error if not.
2981 *
2982 * Notes:       
2983 *      This routine transitions the device to the SDEV_RUNNING state
2984 *      or to one of the offline states (which must be a legal transition)
2985 *      allowing the midlayer to goose the queue for this device.
2986 */
2987int
2988scsi_internal_device_unblock(struct scsi_device *sdev,
2989                             enum scsi_device_state new_state)
2990{
2991        struct request_queue *q = sdev->request_queue; 
2992        unsigned long flags;
2993
2994        /*
2995         * Try to transition the scsi device to SDEV_RUNNING or one of the
2996         * offlined states and goose the device queue if successful.
2997         */
2998        if ((sdev->sdev_state == SDEV_BLOCK) ||
2999            (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3000                sdev->sdev_state = new_state;
3001        else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3002                if (new_state == SDEV_TRANSPORT_OFFLINE ||
3003                    new_state == SDEV_OFFLINE)
3004                        sdev->sdev_state = new_state;
3005                else
3006                        sdev->sdev_state = SDEV_CREATED;
3007        } else if (sdev->sdev_state != SDEV_CANCEL &&
3008                 sdev->sdev_state != SDEV_OFFLINE)
3009                return -EINVAL;
3010
3011        if (q->mq_ops) {
3012                blk_mq_start_stopped_hw_queues(q, false);
3013        } else {
3014                spin_lock_irqsave(q->queue_lock, flags);
3015                blk_start_queue(q);
3016                spin_unlock_irqrestore(q->queue_lock, flags);
3017        }
3018
3019        return 0;
3020}
3021EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3022
3023static void
3024device_block(struct scsi_device *sdev, void *data)
3025{
3026        scsi_internal_device_block(sdev);
3027}
3028
3029static int
3030target_block(struct device *dev, void *data)
3031{
3032        if (scsi_is_target_device(dev))
3033                starget_for_each_device(to_scsi_target(dev), NULL,
3034                                        device_block);
3035        return 0;
3036}
3037
3038void
3039scsi_target_block(struct device *dev)
3040{
3041        if (scsi_is_target_device(dev))
3042                starget_for_each_device(to_scsi_target(dev), NULL,
3043                                        device_block);
3044        else
3045                device_for_each_child(dev, NULL, target_block);
3046}
3047EXPORT_SYMBOL_GPL(scsi_target_block);
3048
3049static void
3050device_unblock(struct scsi_device *sdev, void *data)
3051{
3052        scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3053}
3054
3055static int
3056target_unblock(struct device *dev, void *data)
3057{
3058        if (scsi_is_target_device(dev))
3059                starget_for_each_device(to_scsi_target(dev), data,
3060                                        device_unblock);
3061        return 0;
3062}
3063
3064void
3065scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3066{
3067        if (scsi_is_target_device(dev))
3068                starget_for_each_device(to_scsi_target(dev), &new_state,
3069                                        device_unblock);
3070        else
3071                device_for_each_child(dev, &new_state, target_unblock);
3072}
3073EXPORT_SYMBOL_GPL(scsi_target_unblock);
3074
3075/**
3076 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3077 * @sgl:        scatter-gather list
3078 * @sg_count:   number of segments in sg
3079 * @offset:     offset in bytes into sg, on return offset into the mapped area
3080 * @len:        bytes to map, on return number of bytes mapped
3081 *
3082 * Returns virtual address of the start of the mapped page
3083 */
3084void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3085                          size_t *offset, size_t *len)
3086{
3087        int i;
3088        size_t sg_len = 0, len_complete = 0;
3089        struct scatterlist *sg;
3090        struct page *page;
3091
3092        WARN_ON(!irqs_disabled());
3093
3094        for_each_sg(sgl, sg, sg_count, i) {
3095                len_complete = sg_len; /* Complete sg-entries */
3096                sg_len += sg->length;
3097                if (sg_len > *offset)
3098                        break;
3099        }
3100
3101        if (unlikely(i == sg_count)) {
3102                printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3103                        "elements %d\n",
3104                       __func__, sg_len, *offset, sg_count);
3105                WARN_ON(1);
3106                return NULL;
3107        }
3108
3109        /* Offset starting from the beginning of first page in this sg-entry */
3110        *offset = *offset - len_complete + sg->offset;
3111
3112        /* Assumption: contiguous pages can be accessed as "page + i" */
3113        page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3114        *offset &= ~PAGE_MASK;
3115
3116        /* Bytes in this sg-entry from *offset to the end of the page */
3117        sg_len = PAGE_SIZE - *offset;
3118        if (*len > sg_len)
3119                *len = sg_len;
3120
3121        return kmap_atomic(page);
3122}
3123EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3124
3125/**
3126 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3127 * @virt:       virtual address to be unmapped
3128 */
3129void scsi_kunmap_atomic_sg(void *virt)
3130{
3131        kunmap_atomic(virt);
3132}
3133EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3134
3135void sdev_disable_disk_events(struct scsi_device *sdev)
3136{
3137        atomic_inc(&sdev->disk_events_disable_depth);
3138}
3139EXPORT_SYMBOL(sdev_disable_disk_events);
3140
3141void sdev_enable_disk_events(struct scsi_device *sdev)
3142{
3143        if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3144                return;
3145        atomic_dec(&sdev->disk_events_disable_depth);
3146}
3147EXPORT_SYMBOL(sdev_enable_disk_events);
3148