linux/drivers/tty/tty_io.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *      -- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *      -- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *      -- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
 114        .c_iflag = ICRNL | IXON,
 115        .c_oflag = OPOST | ONLCR,
 116        .c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117        .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118                   ECHOCTL | ECHOKE | IEXTEN,
 119        .c_cc = INIT_C_CC,
 120        .c_ispeed = 38400,
 121        .c_ospeed = 38400
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143                                                        size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149                                unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156
 157/**
 158 *      free_tty_struct         -       free a disused tty
 159 *      @tty: tty struct to free
 160 *
 161 *      Free the write buffers, tty queue and tty memory itself.
 162 *
 163 *      Locking: none. Must be called after tty is definitely unused
 164 */
 165
 166void free_tty_struct(struct tty_struct *tty)
 167{
 168        if (!tty)
 169                return;
 170        put_device(tty->dev);
 171        kfree(tty->write_buf);
 172        tty->magic = 0xDEADDEAD;
 173        kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178        return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183        struct tty_file_private *priv;
 184
 185        priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186        if (!priv)
 187                return -ENOMEM;
 188
 189        file->private_data = priv;
 190
 191        return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197        struct tty_file_private *priv = file->private_data;
 198
 199        priv->tty = tty;
 200        priv->file = file;
 201
 202        spin_lock(&tty_files_lock);
 203        list_add(&priv->list, &tty->tty_files);
 204        spin_unlock(&tty_files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215        struct tty_file_private *priv = file->private_data;
 216
 217        file->private_data = NULL;
 218        kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224        struct tty_file_private *priv = file->private_data;
 225
 226        spin_lock(&tty_files_lock);
 227        list_del(&priv->list);
 228        spin_unlock(&tty_files_lock);
 229        tty_free_file(file);
 230}
 231
 232
 233#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 234
 235/**
 236 *      tty_name        -       return tty naming
 237 *      @tty: tty structure
 238 *
 239 *      Convert a tty structure into a name. The name reflects the kernel
 240 *      naming policy and if udev is in use may not reflect user space
 241 *
 242 *      Locking: none
 243 */
 244
 245const char *tty_name(const struct tty_struct *tty)
 246{
 247        if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 248                return "NULL tty";
 249        return tty->name;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 255                              const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258        if (!tty) {
 259                printk(KERN_WARNING
 260                        "null TTY for (%d:%d) in %s\n",
 261                        imajor(inode), iminor(inode), routine);
 262                return 1;
 263        }
 264        if (tty->magic != TTY_MAGIC) {
 265                printk(KERN_WARNING
 266                        "bad magic number for tty struct (%d:%d) in %s\n",
 267                        imajor(inode), iminor(inode), routine);
 268                return 1;
 269        }
 270#endif
 271        return 0;
 272}
 273
 274/* Caller must hold tty_lock */
 275static int check_tty_count(struct tty_struct *tty, const char *routine)
 276{
 277#ifdef CHECK_TTY_COUNT
 278        struct list_head *p;
 279        int count = 0;
 280
 281        spin_lock(&tty_files_lock);
 282        list_for_each(p, &tty->tty_files) {
 283                count++;
 284        }
 285        spin_unlock(&tty_files_lock);
 286        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 287            tty->driver->subtype == PTY_TYPE_SLAVE &&
 288            tty->link && tty->link->count)
 289                count++;
 290        if (tty->count != count) {
 291                printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 292                                    "!= #fd's(%d) in %s\n",
 293                       tty->name, tty->count, count, routine);
 294                return count;
 295        }
 296#endif
 297        return 0;
 298}
 299
 300/**
 301 *      get_tty_driver          -       find device of a tty
 302 *      @dev_t: device identifier
 303 *      @index: returns the index of the tty
 304 *
 305 *      This routine returns a tty driver structure, given a device number
 306 *      and also passes back the index number.
 307 *
 308 *      Locking: caller must hold tty_mutex
 309 */
 310
 311static struct tty_driver *get_tty_driver(dev_t device, int *index)
 312{
 313        struct tty_driver *p;
 314
 315        list_for_each_entry(p, &tty_drivers, tty_drivers) {
 316                dev_t base = MKDEV(p->major, p->minor_start);
 317                if (device < base || device >= base + p->num)
 318                        continue;
 319                *index = device - base;
 320                return tty_driver_kref_get(p);
 321        }
 322        return NULL;
 323}
 324
 325#ifdef CONFIG_CONSOLE_POLL
 326
 327/**
 328 *      tty_find_polling_driver -       find device of a polled tty
 329 *      @name: name string to match
 330 *      @line: pointer to resulting tty line nr
 331 *
 332 *      This routine returns a tty driver structure, given a name
 333 *      and the condition that the tty driver is capable of polled
 334 *      operation.
 335 */
 336struct tty_driver *tty_find_polling_driver(char *name, int *line)
 337{
 338        struct tty_driver *p, *res = NULL;
 339        int tty_line = 0;
 340        int len;
 341        char *str, *stp;
 342
 343        for (str = name; *str; str++)
 344                if ((*str >= '0' && *str <= '9') || *str == ',')
 345                        break;
 346        if (!*str)
 347                return NULL;
 348
 349        len = str - name;
 350        tty_line = simple_strtoul(str, &str, 10);
 351
 352        mutex_lock(&tty_mutex);
 353        /* Search through the tty devices to look for a match */
 354        list_for_each_entry(p, &tty_drivers, tty_drivers) {
 355                if (strncmp(name, p->name, len) != 0)
 356                        continue;
 357                stp = str;
 358                if (*stp == ',')
 359                        stp++;
 360                if (*stp == '\0')
 361                        stp = NULL;
 362
 363                if (tty_line >= 0 && tty_line < p->num && p->ops &&
 364                    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 365                        res = tty_driver_kref_get(p);
 366                        *line = tty_line;
 367                        break;
 368                }
 369        }
 370        mutex_unlock(&tty_mutex);
 371
 372        return res;
 373}
 374EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 375#endif
 376
 377/**
 378 *      tty_check_change        -       check for POSIX terminal changes
 379 *      @tty: tty to check
 380 *
 381 *      If we try to write to, or set the state of, a terminal and we're
 382 *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
 383 *      ignored, go ahead and perform the operation.  (POSIX 7.2)
 384 *
 385 *      Locking: ctrl_lock
 386 */
 387
 388int tty_check_change(struct tty_struct *tty)
 389{
 390        unsigned long flags;
 391        int ret = 0;
 392
 393        if (current->signal->tty != tty)
 394                return 0;
 395
 396        spin_lock_irqsave(&tty->ctrl_lock, flags);
 397
 398        if (!tty->pgrp) {
 399                printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 400                goto out_unlock;
 401        }
 402        if (task_pgrp(current) == tty->pgrp)
 403                goto out_unlock;
 404        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 405        if (is_ignored(SIGTTOU))
 406                goto out;
 407        if (is_current_pgrp_orphaned()) {
 408                ret = -EIO;
 409                goto out;
 410        }
 411        kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 412        set_thread_flag(TIF_SIGPENDING);
 413        ret = -ERESTARTSYS;
 414out:
 415        return ret;
 416out_unlock:
 417        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 418        return ret;
 419}
 420
 421EXPORT_SYMBOL(tty_check_change);
 422
 423static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 424                                size_t count, loff_t *ppos)
 425{
 426        return 0;
 427}
 428
 429static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 430                                 size_t count, loff_t *ppos)
 431{
 432        return -EIO;
 433}
 434
 435/* No kernel lock held - none needed ;) */
 436static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 437{
 438        return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 439}
 440
 441static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 442                unsigned long arg)
 443{
 444        return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 445}
 446
 447static long hung_up_tty_compat_ioctl(struct file *file,
 448                                     unsigned int cmd, unsigned long arg)
 449{
 450        return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 451}
 452
 453static const struct file_operations tty_fops = {
 454        .llseek         = no_llseek,
 455        .read           = tty_read,
 456        .write          = tty_write,
 457        .poll           = tty_poll,
 458        .unlocked_ioctl = tty_ioctl,
 459        .compat_ioctl   = tty_compat_ioctl,
 460        .open           = tty_open,
 461        .release        = tty_release,
 462        .fasync         = tty_fasync,
 463};
 464
 465static const struct file_operations console_fops = {
 466        .llseek         = no_llseek,
 467        .read           = tty_read,
 468        .write          = redirected_tty_write,
 469        .poll           = tty_poll,
 470        .unlocked_ioctl = tty_ioctl,
 471        .compat_ioctl   = tty_compat_ioctl,
 472        .open           = tty_open,
 473        .release        = tty_release,
 474        .fasync         = tty_fasync,
 475};
 476
 477static const struct file_operations hung_up_tty_fops = {
 478        .llseek         = no_llseek,
 479        .read           = hung_up_tty_read,
 480        .write          = hung_up_tty_write,
 481        .poll           = hung_up_tty_poll,
 482        .unlocked_ioctl = hung_up_tty_ioctl,
 483        .compat_ioctl   = hung_up_tty_compat_ioctl,
 484        .release        = tty_release,
 485};
 486
 487static DEFINE_SPINLOCK(redirect_lock);
 488static struct file *redirect;
 489
 490
 491void proc_clear_tty(struct task_struct *p)
 492{
 493        unsigned long flags;
 494        struct tty_struct *tty;
 495        spin_lock_irqsave(&p->sighand->siglock, flags);
 496        tty = p->signal->tty;
 497        p->signal->tty = NULL;
 498        spin_unlock_irqrestore(&p->sighand->siglock, flags);
 499        tty_kref_put(tty);
 500}
 501
 502/**
 503 * proc_set_tty -  set the controlling terminal
 504 *
 505 * Only callable by the session leader and only if it does not already have
 506 * a controlling terminal.
 507 *
 508 * Caller must hold:  tty_lock()
 509 *                    a readlock on tasklist_lock
 510 *                    sighand lock
 511 */
 512static void __proc_set_tty(struct tty_struct *tty)
 513{
 514        unsigned long flags;
 515
 516        spin_lock_irqsave(&tty->ctrl_lock, flags);
 517        /*
 518         * The session and fg pgrp references will be non-NULL if
 519         * tiocsctty() is stealing the controlling tty
 520         */
 521        put_pid(tty->session);
 522        put_pid(tty->pgrp);
 523        tty->pgrp = get_pid(task_pgrp(current));
 524        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 525        tty->session = get_pid(task_session(current));
 526        if (current->signal->tty) {
 527                printk(KERN_DEBUG "tty not NULL!!\n");
 528                tty_kref_put(current->signal->tty);
 529        }
 530        put_pid(current->signal->tty_old_pgrp);
 531        current->signal->tty = tty_kref_get(tty);
 532        current->signal->tty_old_pgrp = NULL;
 533}
 534
 535static void proc_set_tty(struct tty_struct *tty)
 536{
 537        spin_lock_irq(&current->sighand->siglock);
 538        __proc_set_tty(tty);
 539        spin_unlock_irq(&current->sighand->siglock);
 540}
 541
 542struct tty_struct *get_current_tty(void)
 543{
 544        struct tty_struct *tty;
 545        unsigned long flags;
 546
 547        spin_lock_irqsave(&current->sighand->siglock, flags);
 548        tty = tty_kref_get(current->signal->tty);
 549        spin_unlock_irqrestore(&current->sighand->siglock, flags);
 550        return tty;
 551}
 552EXPORT_SYMBOL_GPL(get_current_tty);
 553
 554static void session_clear_tty(struct pid *session)
 555{
 556        struct task_struct *p;
 557        do_each_pid_task(session, PIDTYPE_SID, p) {
 558                proc_clear_tty(p);
 559        } while_each_pid_task(session, PIDTYPE_SID, p);
 560}
 561
 562/**
 563 *      tty_wakeup      -       request more data
 564 *      @tty: terminal
 565 *
 566 *      Internal and external helper for wakeups of tty. This function
 567 *      informs the line discipline if present that the driver is ready
 568 *      to receive more output data.
 569 */
 570
 571void tty_wakeup(struct tty_struct *tty)
 572{
 573        struct tty_ldisc *ld;
 574
 575        if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 576                ld = tty_ldisc_ref(tty);
 577                if (ld) {
 578                        if (ld->ops->write_wakeup)
 579                                ld->ops->write_wakeup(tty);
 580                        tty_ldisc_deref(ld);
 581                }
 582        }
 583        wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 584}
 585
 586EXPORT_SYMBOL_GPL(tty_wakeup);
 587
 588/**
 589 *      tty_signal_session_leader       - sends SIGHUP to session leader
 590 *      @tty            controlling tty
 591 *      @exit_session   if non-zero, signal all foreground group processes
 592 *
 593 *      Send SIGHUP and SIGCONT to the session leader and its process group.
 594 *      Optionally, signal all processes in the foreground process group.
 595 *
 596 *      Returns the number of processes in the session with this tty
 597 *      as their controlling terminal. This value is used to drop
 598 *      tty references for those processes.
 599 */
 600static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 601{
 602        struct task_struct *p;
 603        int refs = 0;
 604        struct pid *tty_pgrp = NULL;
 605
 606        read_lock(&tasklist_lock);
 607        if (tty->session) {
 608                do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 609                        spin_lock_irq(&p->sighand->siglock);
 610                        if (p->signal->tty == tty) {
 611                                p->signal->tty = NULL;
 612                                /* We defer the dereferences outside fo
 613                                   the tasklist lock */
 614                                refs++;
 615                        }
 616                        if (!p->signal->leader) {
 617                                spin_unlock_irq(&p->sighand->siglock);
 618                                continue;
 619                        }
 620                        __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 621                        __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 622                        put_pid(p->signal->tty_old_pgrp);  /* A noop */
 623                        spin_lock(&tty->ctrl_lock);
 624                        tty_pgrp = get_pid(tty->pgrp);
 625                        if (tty->pgrp)
 626                                p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 627                        spin_unlock(&tty->ctrl_lock);
 628                        spin_unlock_irq(&p->sighand->siglock);
 629                } while_each_pid_task(tty->session, PIDTYPE_SID, p);
 630        }
 631        read_unlock(&tasklist_lock);
 632
 633        if (tty_pgrp) {
 634                if (exit_session)
 635                        kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 636                put_pid(tty_pgrp);
 637        }
 638
 639        return refs;
 640}
 641
 642/**
 643 *      __tty_hangup            -       actual handler for hangup events
 644 *      @work: tty device
 645 *
 646 *      This can be called by a "kworker" kernel thread.  That is process
 647 *      synchronous but doesn't hold any locks, so we need to make sure we
 648 *      have the appropriate locks for what we're doing.
 649 *
 650 *      The hangup event clears any pending redirections onto the hung up
 651 *      device. It ensures future writes will error and it does the needed
 652 *      line discipline hangup and signal delivery. The tty object itself
 653 *      remains intact.
 654 *
 655 *      Locking:
 656 *              BTM
 657 *                redirect lock for undoing redirection
 658 *                file list lock for manipulating list of ttys
 659 *                tty_ldiscs_lock from called functions
 660 *                termios_rwsem resetting termios data
 661 *                tasklist_lock to walk task list for hangup event
 662 *                  ->siglock to protect ->signal/->sighand
 663 */
 664static void __tty_hangup(struct tty_struct *tty, int exit_session)
 665{
 666        struct file *cons_filp = NULL;
 667        struct file *filp, *f = NULL;
 668        struct tty_file_private *priv;
 669        int    closecount = 0, n;
 670        int refs;
 671
 672        if (!tty)
 673                return;
 674
 675
 676        spin_lock(&redirect_lock);
 677        if (redirect && file_tty(redirect) == tty) {
 678                f = redirect;
 679                redirect = NULL;
 680        }
 681        spin_unlock(&redirect_lock);
 682
 683        tty_lock(tty);
 684
 685        if (test_bit(TTY_HUPPED, &tty->flags)) {
 686                tty_unlock(tty);
 687                return;
 688        }
 689
 690        /* inuse_filps is protected by the single tty lock,
 691           this really needs to change if we want to flush the
 692           workqueue with the lock held */
 693        check_tty_count(tty, "tty_hangup");
 694
 695        spin_lock(&tty_files_lock);
 696        /* This breaks for file handles being sent over AF_UNIX sockets ? */
 697        list_for_each_entry(priv, &tty->tty_files, list) {
 698                filp = priv->file;
 699                if (filp->f_op->write == redirected_tty_write)
 700                        cons_filp = filp;
 701                if (filp->f_op->write != tty_write)
 702                        continue;
 703                closecount++;
 704                __tty_fasync(-1, filp, 0);      /* can't block */
 705                filp->f_op = &hung_up_tty_fops;
 706        }
 707        spin_unlock(&tty_files_lock);
 708
 709        refs = tty_signal_session_leader(tty, exit_session);
 710        /* Account for the p->signal references we killed */
 711        while (refs--)
 712                tty_kref_put(tty);
 713
 714        tty_ldisc_hangup(tty);
 715
 716        spin_lock_irq(&tty->ctrl_lock);
 717        clear_bit(TTY_THROTTLED, &tty->flags);
 718        clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 719        put_pid(tty->session);
 720        put_pid(tty->pgrp);
 721        tty->session = NULL;
 722        tty->pgrp = NULL;
 723        tty->ctrl_status = 0;
 724        spin_unlock_irq(&tty->ctrl_lock);
 725
 726        /*
 727         * If one of the devices matches a console pointer, we
 728         * cannot just call hangup() because that will cause
 729         * tty->count and state->count to go out of sync.
 730         * So we just call close() the right number of times.
 731         */
 732        if (cons_filp) {
 733                if (tty->ops->close)
 734                        for (n = 0; n < closecount; n++)
 735                                tty->ops->close(tty, cons_filp);
 736        } else if (tty->ops->hangup)
 737                tty->ops->hangup(tty);
 738        /*
 739         * We don't want to have driver/ldisc interactions beyond
 740         * the ones we did here. The driver layer expects no
 741         * calls after ->hangup() from the ldisc side. However we
 742         * can't yet guarantee all that.
 743         */
 744        set_bit(TTY_HUPPED, &tty->flags);
 745        tty_unlock(tty);
 746
 747        if (f)
 748                fput(f);
 749}
 750
 751static void do_tty_hangup(struct work_struct *work)
 752{
 753        struct tty_struct *tty =
 754                container_of(work, struct tty_struct, hangup_work);
 755
 756        __tty_hangup(tty, 0);
 757}
 758
 759/**
 760 *      tty_hangup              -       trigger a hangup event
 761 *      @tty: tty to hangup
 762 *
 763 *      A carrier loss (virtual or otherwise) has occurred on this like
 764 *      schedule a hangup sequence to run after this event.
 765 */
 766
 767void tty_hangup(struct tty_struct *tty)
 768{
 769#ifdef TTY_DEBUG_HANGUP
 770        printk(KERN_DEBUG "%s hangup...\n", tty_name(tty));
 771#endif
 772        schedule_work(&tty->hangup_work);
 773}
 774
 775EXPORT_SYMBOL(tty_hangup);
 776
 777/**
 778 *      tty_vhangup             -       process vhangup
 779 *      @tty: tty to hangup
 780 *
 781 *      The user has asked via system call for the terminal to be hung up.
 782 *      We do this synchronously so that when the syscall returns the process
 783 *      is complete. That guarantee is necessary for security reasons.
 784 */
 785
 786void tty_vhangup(struct tty_struct *tty)
 787{
 788#ifdef TTY_DEBUG_HANGUP
 789        printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty));
 790#endif
 791        __tty_hangup(tty, 0);
 792}
 793
 794EXPORT_SYMBOL(tty_vhangup);
 795
 796
 797/**
 798 *      tty_vhangup_self        -       process vhangup for own ctty
 799 *
 800 *      Perform a vhangup on the current controlling tty
 801 */
 802
 803void tty_vhangup_self(void)
 804{
 805        struct tty_struct *tty;
 806
 807        tty = get_current_tty();
 808        if (tty) {
 809                tty_vhangup(tty);
 810                tty_kref_put(tty);
 811        }
 812}
 813
 814/**
 815 *      tty_vhangup_session             -       hangup session leader exit
 816 *      @tty: tty to hangup
 817 *
 818 *      The session leader is exiting and hanging up its controlling terminal.
 819 *      Every process in the foreground process group is signalled SIGHUP.
 820 *
 821 *      We do this synchronously so that when the syscall returns the process
 822 *      is complete. That guarantee is necessary for security reasons.
 823 */
 824
 825static void tty_vhangup_session(struct tty_struct *tty)
 826{
 827#ifdef TTY_DEBUG_HANGUP
 828        printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty));
 829#endif
 830        __tty_hangup(tty, 1);
 831}
 832
 833/**
 834 *      tty_hung_up_p           -       was tty hung up
 835 *      @filp: file pointer of tty
 836 *
 837 *      Return true if the tty has been subject to a vhangup or a carrier
 838 *      loss
 839 */
 840
 841int tty_hung_up_p(struct file *filp)
 842{
 843        return (filp->f_op == &hung_up_tty_fops);
 844}
 845
 846EXPORT_SYMBOL(tty_hung_up_p);
 847
 848/**
 849 *      disassociate_ctty       -       disconnect controlling tty
 850 *      @on_exit: true if exiting so need to "hang up" the session
 851 *
 852 *      This function is typically called only by the session leader, when
 853 *      it wants to disassociate itself from its controlling tty.
 854 *
 855 *      It performs the following functions:
 856 *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
 857 *      (2)  Clears the tty from being controlling the session
 858 *      (3)  Clears the controlling tty for all processes in the
 859 *              session group.
 860 *
 861 *      The argument on_exit is set to 1 if called when a process is
 862 *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
 863 *
 864 *      Locking:
 865 *              BTM is taken for hysterical raisins, and held when
 866 *                called from no_tty().
 867 *                tty_mutex is taken to protect tty
 868 *                ->siglock is taken to protect ->signal/->sighand
 869 *                tasklist_lock is taken to walk process list for sessions
 870 *                  ->siglock is taken to protect ->signal/->sighand
 871 */
 872
 873void disassociate_ctty(int on_exit)
 874{
 875        struct tty_struct *tty;
 876
 877        if (!current->signal->leader)
 878                return;
 879
 880        tty = get_current_tty();
 881        if (tty) {
 882                if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 883                        tty_vhangup_session(tty);
 884                } else {
 885                        struct pid *tty_pgrp = tty_get_pgrp(tty);
 886                        if (tty_pgrp) {
 887                                kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 888                                if (!on_exit)
 889                                        kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 890                                put_pid(tty_pgrp);
 891                        }
 892                }
 893                tty_kref_put(tty);
 894
 895        } else if (on_exit) {
 896                struct pid *old_pgrp;
 897                spin_lock_irq(&current->sighand->siglock);
 898                old_pgrp = current->signal->tty_old_pgrp;
 899                current->signal->tty_old_pgrp = NULL;
 900                spin_unlock_irq(&current->sighand->siglock);
 901                if (old_pgrp) {
 902                        kill_pgrp(old_pgrp, SIGHUP, on_exit);
 903                        kill_pgrp(old_pgrp, SIGCONT, on_exit);
 904                        put_pid(old_pgrp);
 905                }
 906                return;
 907        }
 908
 909        spin_lock_irq(&current->sighand->siglock);
 910        put_pid(current->signal->tty_old_pgrp);
 911        current->signal->tty_old_pgrp = NULL;
 912
 913        tty = tty_kref_get(current->signal->tty);
 914        if (tty) {
 915                unsigned long flags;
 916                spin_lock_irqsave(&tty->ctrl_lock, flags);
 917                put_pid(tty->session);
 918                put_pid(tty->pgrp);
 919                tty->session = NULL;
 920                tty->pgrp = NULL;
 921                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 922                tty_kref_put(tty);
 923        } else {
 924#ifdef TTY_DEBUG_HANGUP
 925                printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 926                       " = NULL", tty);
 927#endif
 928        }
 929
 930        spin_unlock_irq(&current->sighand->siglock);
 931        /* Now clear signal->tty under the lock */
 932        read_lock(&tasklist_lock);
 933        session_clear_tty(task_session(current));
 934        read_unlock(&tasklist_lock);
 935}
 936
 937/**
 938 *
 939 *      no_tty  - Ensure the current process does not have a controlling tty
 940 */
 941void no_tty(void)
 942{
 943        /* FIXME: Review locking here. The tty_lock never covered any race
 944           between a new association and proc_clear_tty but possible we need
 945           to protect against this anyway */
 946        struct task_struct *tsk = current;
 947        disassociate_ctty(0);
 948        proc_clear_tty(tsk);
 949}
 950
 951
 952/**
 953 *      stop_tty        -       propagate flow control
 954 *      @tty: tty to stop
 955 *
 956 *      Perform flow control to the driver. May be called
 957 *      on an already stopped device and will not re-call the driver
 958 *      method.
 959 *
 960 *      This functionality is used by both the line disciplines for
 961 *      halting incoming flow and by the driver. It may therefore be
 962 *      called from any context, may be under the tty atomic_write_lock
 963 *      but not always.
 964 *
 965 *      Locking:
 966 *              flow_lock
 967 */
 968
 969void __stop_tty(struct tty_struct *tty)
 970{
 971        if (tty->stopped)
 972                return;
 973        tty->stopped = 1;
 974        if (tty->ops->stop)
 975                tty->ops->stop(tty);
 976}
 977
 978void stop_tty(struct tty_struct *tty)
 979{
 980        unsigned long flags;
 981
 982        spin_lock_irqsave(&tty->flow_lock, flags);
 983        __stop_tty(tty);
 984        spin_unlock_irqrestore(&tty->flow_lock, flags);
 985}
 986EXPORT_SYMBOL(stop_tty);
 987
 988/**
 989 *      start_tty       -       propagate flow control
 990 *      @tty: tty to start
 991 *
 992 *      Start a tty that has been stopped if at all possible. If this
 993 *      tty was previous stopped and is now being started, the driver
 994 *      start method is invoked and the line discipline woken.
 995 *
 996 *      Locking:
 997 *              flow_lock
 998 */
 999
1000void __start_tty(struct tty_struct *tty)
1001{
1002        if (!tty->stopped || tty->flow_stopped)
1003                return;
1004        tty->stopped = 0;
1005        if (tty->ops->start)
1006                tty->ops->start(tty);
1007        tty_wakeup(tty);
1008}
1009
1010void start_tty(struct tty_struct *tty)
1011{
1012        unsigned long flags;
1013
1014        spin_lock_irqsave(&tty->flow_lock, flags);
1015        __start_tty(tty);
1016        spin_unlock_irqrestore(&tty->flow_lock, flags);
1017}
1018EXPORT_SYMBOL(start_tty);
1019
1020static void tty_update_time(struct timespec *time)
1021{
1022        unsigned long sec = get_seconds();
1023
1024        /*
1025         * We only care if the two values differ in anything other than the
1026         * lower three bits (i.e every 8 seconds).  If so, then we can update
1027         * the time of the tty device, otherwise it could be construded as a
1028         * security leak to let userspace know the exact timing of the tty.
1029         */
1030        if ((sec ^ time->tv_sec) & ~7)
1031                time->tv_sec = sec;
1032}
1033
1034/**
1035 *      tty_read        -       read method for tty device files
1036 *      @file: pointer to tty file
1037 *      @buf: user buffer
1038 *      @count: size of user buffer
1039 *      @ppos: unused
1040 *
1041 *      Perform the read system call function on this terminal device. Checks
1042 *      for hung up devices before calling the line discipline method.
1043 *
1044 *      Locking:
1045 *              Locks the line discipline internally while needed. Multiple
1046 *      read calls may be outstanding in parallel.
1047 */
1048
1049static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1050                        loff_t *ppos)
1051{
1052        int i;
1053        struct inode *inode = file_inode(file);
1054        struct tty_struct *tty = file_tty(file);
1055        struct tty_ldisc *ld;
1056
1057        if (tty_paranoia_check(tty, inode, "tty_read"))
1058                return -EIO;
1059        if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1060                return -EIO;
1061
1062        /* We want to wait for the line discipline to sort out in this
1063           situation */
1064        ld = tty_ldisc_ref_wait(tty);
1065        if (ld->ops->read)
1066                i = ld->ops->read(tty, file, buf, count);
1067        else
1068                i = -EIO;
1069        tty_ldisc_deref(ld);
1070
1071        if (i > 0)
1072                tty_update_time(&inode->i_atime);
1073
1074        return i;
1075}
1076
1077static void tty_write_unlock(struct tty_struct *tty)
1078{
1079        mutex_unlock(&tty->atomic_write_lock);
1080        wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1081}
1082
1083static int tty_write_lock(struct tty_struct *tty, int ndelay)
1084{
1085        if (!mutex_trylock(&tty->atomic_write_lock)) {
1086                if (ndelay)
1087                        return -EAGAIN;
1088                if (mutex_lock_interruptible(&tty->atomic_write_lock))
1089                        return -ERESTARTSYS;
1090        }
1091        return 0;
1092}
1093
1094/*
1095 * Split writes up in sane blocksizes to avoid
1096 * denial-of-service type attacks
1097 */
1098static inline ssize_t do_tty_write(
1099        ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1100        struct tty_struct *tty,
1101        struct file *file,
1102        const char __user *buf,
1103        size_t count)
1104{
1105        ssize_t ret, written = 0;
1106        unsigned int chunk;
1107
1108        ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1109        if (ret < 0)
1110                return ret;
1111
1112        /*
1113         * We chunk up writes into a temporary buffer. This
1114         * simplifies low-level drivers immensely, since they
1115         * don't have locking issues and user mode accesses.
1116         *
1117         * But if TTY_NO_WRITE_SPLIT is set, we should use a
1118         * big chunk-size..
1119         *
1120         * The default chunk-size is 2kB, because the NTTY
1121         * layer has problems with bigger chunks. It will
1122         * claim to be able to handle more characters than
1123         * it actually does.
1124         *
1125         * FIXME: This can probably go away now except that 64K chunks
1126         * are too likely to fail unless switched to vmalloc...
1127         */
1128        chunk = 2048;
1129        if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1130                chunk = 65536;
1131        if (count < chunk)
1132                chunk = count;
1133
1134        /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1135        if (tty->write_cnt < chunk) {
1136                unsigned char *buf_chunk;
1137
1138                if (chunk < 1024)
1139                        chunk = 1024;
1140
1141                buf_chunk = kmalloc(chunk, GFP_KERNEL);
1142                if (!buf_chunk) {
1143                        ret = -ENOMEM;
1144                        goto out;
1145                }
1146                kfree(tty->write_buf);
1147                tty->write_cnt = chunk;
1148                tty->write_buf = buf_chunk;
1149        }
1150
1151        /* Do the write .. */
1152        for (;;) {
1153                size_t size = count;
1154                if (size > chunk)
1155                        size = chunk;
1156                ret = -EFAULT;
1157                if (copy_from_user(tty->write_buf, buf, size))
1158                        break;
1159                ret = write(tty, file, tty->write_buf, size);
1160                if (ret <= 0)
1161                        break;
1162                written += ret;
1163                buf += ret;
1164                count -= ret;
1165                if (!count)
1166                        break;
1167                ret = -ERESTARTSYS;
1168                if (signal_pending(current))
1169                        break;
1170                cond_resched();
1171        }
1172        if (written) {
1173                tty_update_time(&file_inode(file)->i_mtime);
1174                ret = written;
1175        }
1176out:
1177        tty_write_unlock(tty);
1178        return ret;
1179}
1180
1181/**
1182 * tty_write_message - write a message to a certain tty, not just the console.
1183 * @tty: the destination tty_struct
1184 * @msg: the message to write
1185 *
1186 * This is used for messages that need to be redirected to a specific tty.
1187 * We don't put it into the syslog queue right now maybe in the future if
1188 * really needed.
1189 *
1190 * We must still hold the BTM and test the CLOSING flag for the moment.
1191 */
1192
1193void tty_write_message(struct tty_struct *tty, char *msg)
1194{
1195        if (tty) {
1196                mutex_lock(&tty->atomic_write_lock);
1197                tty_lock(tty);
1198                if (tty->ops->write && tty->count > 0) {
1199                        tty_unlock(tty);
1200                        tty->ops->write(tty, msg, strlen(msg));
1201                } else
1202                        tty_unlock(tty);
1203                tty_write_unlock(tty);
1204        }
1205        return;
1206}
1207
1208
1209/**
1210 *      tty_write               -       write method for tty device file
1211 *      @file: tty file pointer
1212 *      @buf: user data to write
1213 *      @count: bytes to write
1214 *      @ppos: unused
1215 *
1216 *      Write data to a tty device via the line discipline.
1217 *
1218 *      Locking:
1219 *              Locks the line discipline as required
1220 *              Writes to the tty driver are serialized by the atomic_write_lock
1221 *      and are then processed in chunks to the device. The line discipline
1222 *      write method will not be invoked in parallel for each device.
1223 */
1224
1225static ssize_t tty_write(struct file *file, const char __user *buf,
1226                                                size_t count, loff_t *ppos)
1227{
1228        struct tty_struct *tty = file_tty(file);
1229        struct tty_ldisc *ld;
1230        ssize_t ret;
1231
1232        if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1233                return -EIO;
1234        if (!tty || !tty->ops->write ||
1235                (test_bit(TTY_IO_ERROR, &tty->flags)))
1236                        return -EIO;
1237        /* Short term debug to catch buggy drivers */
1238        if (tty->ops->write_room == NULL)
1239                printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1240                        tty->driver->name);
1241        ld = tty_ldisc_ref_wait(tty);
1242        if (!ld->ops->write)
1243                ret = -EIO;
1244        else
1245                ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1246        tty_ldisc_deref(ld);
1247        return ret;
1248}
1249
1250ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1251                                                size_t count, loff_t *ppos)
1252{
1253        struct file *p = NULL;
1254
1255        spin_lock(&redirect_lock);
1256        if (redirect)
1257                p = get_file(redirect);
1258        spin_unlock(&redirect_lock);
1259
1260        if (p) {
1261                ssize_t res;
1262                res = vfs_write(p, buf, count, &p->f_pos);
1263                fput(p);
1264                return res;
1265        }
1266        return tty_write(file, buf, count, ppos);
1267}
1268
1269/**
1270 *      tty_send_xchar  -       send priority character
1271 *
1272 *      Send a high priority character to the tty even if stopped
1273 *
1274 *      Locking: none for xchar method, write ordering for write method.
1275 */
1276
1277int tty_send_xchar(struct tty_struct *tty, char ch)
1278{
1279        int     was_stopped = tty->stopped;
1280
1281        if (tty->ops->send_xchar) {
1282                tty->ops->send_xchar(tty, ch);
1283                return 0;
1284        }
1285
1286        if (tty_write_lock(tty, 0) < 0)
1287                return -ERESTARTSYS;
1288
1289        if (was_stopped)
1290                start_tty(tty);
1291        tty->ops->write(tty, &ch, 1);
1292        if (was_stopped)
1293                stop_tty(tty);
1294        tty_write_unlock(tty);
1295        return 0;
1296}
1297
1298static char ptychar[] = "pqrstuvwxyzabcde";
1299
1300/**
1301 *      pty_line_name   -       generate name for a pty
1302 *      @driver: the tty driver in use
1303 *      @index: the minor number
1304 *      @p: output buffer of at least 6 bytes
1305 *
1306 *      Generate a name from a driver reference and write it to the output
1307 *      buffer.
1308 *
1309 *      Locking: None
1310 */
1311static void pty_line_name(struct tty_driver *driver, int index, char *p)
1312{
1313        int i = index + driver->name_base;
1314        /* ->name is initialized to "ttyp", but "tty" is expected */
1315        sprintf(p, "%s%c%x",
1316                driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1317                ptychar[i >> 4 & 0xf], i & 0xf);
1318}
1319
1320/**
1321 *      tty_line_name   -       generate name for a tty
1322 *      @driver: the tty driver in use
1323 *      @index: the minor number
1324 *      @p: output buffer of at least 7 bytes
1325 *
1326 *      Generate a name from a driver reference and write it to the output
1327 *      buffer.
1328 *
1329 *      Locking: None
1330 */
1331static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1332{
1333        if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1334                return sprintf(p, "%s", driver->name);
1335        else
1336                return sprintf(p, "%s%d", driver->name,
1337                               index + driver->name_base);
1338}
1339
1340/**
1341 *      tty_driver_lookup_tty() - find an existing tty, if any
1342 *      @driver: the driver for the tty
1343 *      @idx:    the minor number
1344 *
1345 *      Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1346 *      driver lookup() method returns an error.
1347 *
1348 *      Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1349 */
1350static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1351                struct inode *inode, int idx)
1352{
1353        struct tty_struct *tty;
1354
1355        if (driver->ops->lookup)
1356                tty = driver->ops->lookup(driver, inode, idx);
1357        else
1358                tty = driver->ttys[idx];
1359
1360        if (!IS_ERR(tty))
1361                tty_kref_get(tty);
1362        return tty;
1363}
1364
1365/**
1366 *      tty_init_termios        -  helper for termios setup
1367 *      @tty: the tty to set up
1368 *
1369 *      Initialise the termios structures for this tty. Thus runs under
1370 *      the tty_mutex currently so we can be relaxed about ordering.
1371 */
1372
1373int tty_init_termios(struct tty_struct *tty)
1374{
1375        struct ktermios *tp;
1376        int idx = tty->index;
1377
1378        if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1379                tty->termios = tty->driver->init_termios;
1380        else {
1381                /* Check for lazy saved data */
1382                tp = tty->driver->termios[idx];
1383                if (tp != NULL)
1384                        tty->termios = *tp;
1385                else
1386                        tty->termios = tty->driver->init_termios;
1387        }
1388        /* Compatibility until drivers always set this */
1389        tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1390        tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1391        return 0;
1392}
1393EXPORT_SYMBOL_GPL(tty_init_termios);
1394
1395int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1396{
1397        int ret = tty_init_termios(tty);
1398        if (ret)
1399                return ret;
1400
1401        tty_driver_kref_get(driver);
1402        tty->count++;
1403        driver->ttys[tty->index] = tty;
1404        return 0;
1405}
1406EXPORT_SYMBOL_GPL(tty_standard_install);
1407
1408/**
1409 *      tty_driver_install_tty() - install a tty entry in the driver
1410 *      @driver: the driver for the tty
1411 *      @tty: the tty
1412 *
1413 *      Install a tty object into the driver tables. The tty->index field
1414 *      will be set by the time this is called. This method is responsible
1415 *      for ensuring any need additional structures are allocated and
1416 *      configured.
1417 *
1418 *      Locking: tty_mutex for now
1419 */
1420static int tty_driver_install_tty(struct tty_driver *driver,
1421                                                struct tty_struct *tty)
1422{
1423        return driver->ops->install ? driver->ops->install(driver, tty) :
1424                tty_standard_install(driver, tty);
1425}
1426
1427/**
1428 *      tty_driver_remove_tty() - remove a tty from the driver tables
1429 *      @driver: the driver for the tty
1430 *      @idx:    the minor number
1431 *
1432 *      Remvoe a tty object from the driver tables. The tty->index field
1433 *      will be set by the time this is called.
1434 *
1435 *      Locking: tty_mutex for now
1436 */
1437void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1438{
1439        if (driver->ops->remove)
1440                driver->ops->remove(driver, tty);
1441        else
1442                driver->ttys[tty->index] = NULL;
1443}
1444
1445/*
1446 *      tty_reopen()    - fast re-open of an open tty
1447 *      @tty    - the tty to open
1448 *
1449 *      Return 0 on success, -errno on error.
1450 *      Re-opens on master ptys are not allowed and return -EIO.
1451 *
1452 *      Locking: Caller must hold tty_lock
1453 */
1454static int tty_reopen(struct tty_struct *tty)
1455{
1456        struct tty_driver *driver = tty->driver;
1457
1458        if (!tty->count)
1459                return -EIO;
1460
1461        if (driver->type == TTY_DRIVER_TYPE_PTY &&
1462            driver->subtype == PTY_TYPE_MASTER)
1463                return -EIO;
1464
1465        if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1466                return -EBUSY;
1467
1468        tty->count++;
1469
1470        WARN_ON(!tty->ldisc);
1471
1472        return 0;
1473}
1474
1475/**
1476 *      tty_init_dev            -       initialise a tty device
1477 *      @driver: tty driver we are opening a device on
1478 *      @idx: device index
1479 *      @ret_tty: returned tty structure
1480 *
1481 *      Prepare a tty device. This may not be a "new" clean device but
1482 *      could also be an active device. The pty drivers require special
1483 *      handling because of this.
1484 *
1485 *      Locking:
1486 *              The function is called under the tty_mutex, which
1487 *      protects us from the tty struct or driver itself going away.
1488 *
1489 *      On exit the tty device has the line discipline attached and
1490 *      a reference count of 1. If a pair was created for pty/tty use
1491 *      and the other was a pty master then it too has a reference count of 1.
1492 *
1493 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1494 * failed open.  The new code protects the open with a mutex, so it's
1495 * really quite straightforward.  The mutex locking can probably be
1496 * relaxed for the (most common) case of reopening a tty.
1497 */
1498
1499struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1500{
1501        struct tty_struct *tty;
1502        int retval;
1503
1504        /*
1505         * First time open is complex, especially for PTY devices.
1506         * This code guarantees that either everything succeeds and the
1507         * TTY is ready for operation, or else the table slots are vacated
1508         * and the allocated memory released.  (Except that the termios
1509         * and locked termios may be retained.)
1510         */
1511
1512        if (!try_module_get(driver->owner))
1513                return ERR_PTR(-ENODEV);
1514
1515        tty = alloc_tty_struct(driver, idx);
1516        if (!tty) {
1517                retval = -ENOMEM;
1518                goto err_module_put;
1519        }
1520
1521        tty_lock(tty);
1522        retval = tty_driver_install_tty(driver, tty);
1523        if (retval < 0)
1524                goto err_deinit_tty;
1525
1526        if (!tty->port)
1527                tty->port = driver->ports[idx];
1528
1529        WARN_RATELIMIT(!tty->port,
1530                        "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1531                        __func__, tty->driver->name);
1532
1533        tty->port->itty = tty;
1534
1535        /*
1536         * Structures all installed ... call the ldisc open routines.
1537         * If we fail here just call release_tty to clean up.  No need
1538         * to decrement the use counts, as release_tty doesn't care.
1539         */
1540        retval = tty_ldisc_setup(tty, tty->link);
1541        if (retval)
1542                goto err_release_tty;
1543        /* Return the tty locked so that it cannot vanish under the caller */
1544        return tty;
1545
1546err_deinit_tty:
1547        tty_unlock(tty);
1548        deinitialize_tty_struct(tty);
1549        free_tty_struct(tty);
1550err_module_put:
1551        module_put(driver->owner);
1552        return ERR_PTR(retval);
1553
1554        /* call the tty release_tty routine to clean out this slot */
1555err_release_tty:
1556        tty_unlock(tty);
1557        printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1558                                 "clearing slot %d\n", idx);
1559        release_tty(tty, idx);
1560        return ERR_PTR(retval);
1561}
1562
1563void tty_free_termios(struct tty_struct *tty)
1564{
1565        struct ktermios *tp;
1566        int idx = tty->index;
1567
1568        /* If the port is going to reset then it has no termios to save */
1569        if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1570                return;
1571
1572        /* Stash the termios data */
1573        tp = tty->driver->termios[idx];
1574        if (tp == NULL) {
1575                tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1576                if (tp == NULL) {
1577                        pr_warn("tty: no memory to save termios state.\n");
1578                        return;
1579                }
1580                tty->driver->termios[idx] = tp;
1581        }
1582        *tp = tty->termios;
1583}
1584EXPORT_SYMBOL(tty_free_termios);
1585
1586/**
1587 *      tty_flush_works         -       flush all works of a tty/pty pair
1588 *      @tty: tty device to flush works for (or either end of a pty pair)
1589 *
1590 *      Sync flush all works belonging to @tty (and the 'other' tty).
1591 */
1592static void tty_flush_works(struct tty_struct *tty)
1593{
1594        flush_work(&tty->SAK_work);
1595        flush_work(&tty->hangup_work);
1596        if (tty->link) {
1597                flush_work(&tty->link->SAK_work);
1598                flush_work(&tty->link->hangup_work);
1599        }
1600}
1601
1602/**
1603 *      release_one_tty         -       release tty structure memory
1604 *      @kref: kref of tty we are obliterating
1605 *
1606 *      Releases memory associated with a tty structure, and clears out the
1607 *      driver table slots. This function is called when a device is no longer
1608 *      in use. It also gets called when setup of a device fails.
1609 *
1610 *      Locking:
1611 *              takes the file list lock internally when working on the list
1612 *      of ttys that the driver keeps.
1613 *
1614 *      This method gets called from a work queue so that the driver private
1615 *      cleanup ops can sleep (needed for USB at least)
1616 */
1617static void release_one_tty(struct work_struct *work)
1618{
1619        struct tty_struct *tty =
1620                container_of(work, struct tty_struct, hangup_work);
1621        struct tty_driver *driver = tty->driver;
1622        struct module *owner = driver->owner;
1623
1624        if (tty->ops->cleanup)
1625                tty->ops->cleanup(tty);
1626
1627        tty->magic = 0;
1628        tty_driver_kref_put(driver);
1629        module_put(owner);
1630
1631        spin_lock(&tty_files_lock);
1632        list_del_init(&tty->tty_files);
1633        spin_unlock(&tty_files_lock);
1634
1635        put_pid(tty->pgrp);
1636        put_pid(tty->session);
1637        free_tty_struct(tty);
1638}
1639
1640static void queue_release_one_tty(struct kref *kref)
1641{
1642        struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1643
1644        /* The hangup queue is now free so we can reuse it rather than
1645           waste a chunk of memory for each port */
1646        INIT_WORK(&tty->hangup_work, release_one_tty);
1647        schedule_work(&tty->hangup_work);
1648}
1649
1650/**
1651 *      tty_kref_put            -       release a tty kref
1652 *      @tty: tty device
1653 *
1654 *      Release a reference to a tty device and if need be let the kref
1655 *      layer destruct the object for us
1656 */
1657
1658void tty_kref_put(struct tty_struct *tty)
1659{
1660        if (tty)
1661                kref_put(&tty->kref, queue_release_one_tty);
1662}
1663EXPORT_SYMBOL(tty_kref_put);
1664
1665/**
1666 *      release_tty             -       release tty structure memory
1667 *
1668 *      Release both @tty and a possible linked partner (think pty pair),
1669 *      and decrement the refcount of the backing module.
1670 *
1671 *      Locking:
1672 *              tty_mutex
1673 *              takes the file list lock internally when working on the list
1674 *      of ttys that the driver keeps.
1675 *
1676 */
1677static void release_tty(struct tty_struct *tty, int idx)
1678{
1679        /* This should always be true but check for the moment */
1680        WARN_ON(tty->index != idx);
1681        WARN_ON(!mutex_is_locked(&tty_mutex));
1682        if (tty->ops->shutdown)
1683                tty->ops->shutdown(tty);
1684        tty_free_termios(tty);
1685        tty_driver_remove_tty(tty->driver, tty);
1686        tty->port->itty = NULL;
1687        if (tty->link)
1688                tty->link->port->itty = NULL;
1689        cancel_work_sync(&tty->port->buf.work);
1690
1691        tty_kref_put(tty->link);
1692        tty_kref_put(tty);
1693}
1694
1695/**
1696 *      tty_release_checks - check a tty before real release
1697 *      @tty: tty to check
1698 *      @o_tty: link of @tty (if any)
1699 *      @idx: index of the tty
1700 *
1701 *      Performs some paranoid checking before true release of the @tty.
1702 *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1703 */
1704static int tty_release_checks(struct tty_struct *tty, int idx)
1705{
1706#ifdef TTY_PARANOIA_CHECK
1707        if (idx < 0 || idx >= tty->driver->num) {
1708                printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1709                                __func__, tty->name);
1710                return -1;
1711        }
1712
1713        /* not much to check for devpts */
1714        if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1715                return 0;
1716
1717        if (tty != tty->driver->ttys[idx]) {
1718                printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1719                                __func__, idx, tty->name);
1720                return -1;
1721        }
1722        if (tty->driver->other) {
1723                struct tty_struct *o_tty = tty->link;
1724
1725                if (o_tty != tty->driver->other->ttys[idx]) {
1726                        printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1727                                        __func__, idx, tty->name);
1728                        return -1;
1729                }
1730                if (o_tty->link != tty) {
1731                        printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1732                        return -1;
1733                }
1734        }
1735#endif
1736        return 0;
1737}
1738
1739/**
1740 *      tty_release             -       vfs callback for close
1741 *      @inode: inode of tty
1742 *      @filp: file pointer for handle to tty
1743 *
1744 *      Called the last time each file handle is closed that references
1745 *      this tty. There may however be several such references.
1746 *
1747 *      Locking:
1748 *              Takes bkl. See tty_release_dev
1749 *
1750 * Even releasing the tty structures is a tricky business.. We have
1751 * to be very careful that the structures are all released at the
1752 * same time, as interrupts might otherwise get the wrong pointers.
1753 *
1754 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1755 * lead to double frees or releasing memory still in use.
1756 */
1757
1758int tty_release(struct inode *inode, struct file *filp)
1759{
1760        struct tty_struct *tty = file_tty(filp);
1761        struct tty_struct *o_tty = NULL;
1762        int     do_sleep, final;
1763        int     idx;
1764        long    timeout = 0;
1765        int     once = 1;
1766
1767        if (tty_paranoia_check(tty, inode, __func__))
1768                return 0;
1769
1770        tty_lock(tty);
1771        check_tty_count(tty, __func__);
1772
1773        __tty_fasync(-1, filp, 0);
1774
1775        idx = tty->index;
1776        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1777            tty->driver->subtype == PTY_TYPE_MASTER)
1778                o_tty = tty->link;
1779
1780        if (tty_release_checks(tty, idx)) {
1781                tty_unlock(tty);
1782                return 0;
1783        }
1784
1785#ifdef TTY_DEBUG_HANGUP
1786        printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1787                        tty_name(tty), tty->count);
1788#endif
1789
1790        if (tty->ops->close)
1791                tty->ops->close(tty, filp);
1792
1793        /* If tty is pty master, lock the slave pty (stable lock order) */
1794        tty_lock_slave(o_tty);
1795
1796        /*
1797         * Sanity check: if tty->count is going to zero, there shouldn't be
1798         * any waiters on tty->read_wait or tty->write_wait.  We test the
1799         * wait queues and kick everyone out _before_ actually starting to
1800         * close.  This ensures that we won't block while releasing the tty
1801         * structure.
1802         *
1803         * The test for the o_tty closing is necessary, since the master and
1804         * slave sides may close in any order.  If the slave side closes out
1805         * first, its count will be one, since the master side holds an open.
1806         * Thus this test wouldn't be triggered at the time the slave closed,
1807         * so we do it now.
1808         */
1809        while (1) {
1810                do_sleep = 0;
1811
1812                if (tty->count <= 1) {
1813                        if (waitqueue_active(&tty->read_wait)) {
1814                                wake_up_poll(&tty->read_wait, POLLIN);
1815                                do_sleep++;
1816                        }
1817                        if (waitqueue_active(&tty->write_wait)) {
1818                                wake_up_poll(&tty->write_wait, POLLOUT);
1819                                do_sleep++;
1820                        }
1821                }
1822                if (o_tty && o_tty->count <= 1) {
1823                        if (waitqueue_active(&o_tty->read_wait)) {
1824                                wake_up_poll(&o_tty->read_wait, POLLIN);
1825                                do_sleep++;
1826                        }
1827                        if (waitqueue_active(&o_tty->write_wait)) {
1828                                wake_up_poll(&o_tty->write_wait, POLLOUT);
1829                                do_sleep++;
1830                        }
1831                }
1832                if (!do_sleep)
1833                        break;
1834
1835                if (once) {
1836                        once = 0;
1837                        printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1838                               __func__, tty_name(tty));
1839                }
1840                schedule_timeout_killable(timeout);
1841                if (timeout < 120 * HZ)
1842                        timeout = 2 * timeout + 1;
1843                else
1844                        timeout = MAX_SCHEDULE_TIMEOUT;
1845        }
1846
1847        if (o_tty) {
1848                if (--o_tty->count < 0) {
1849                        printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1850                                __func__, o_tty->count, tty_name(o_tty));
1851                        o_tty->count = 0;
1852                }
1853        }
1854        if (--tty->count < 0) {
1855                printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1856                                __func__, tty->count, tty_name(tty));
1857                tty->count = 0;
1858        }
1859
1860        /*
1861         * We've decremented tty->count, so we need to remove this file
1862         * descriptor off the tty->tty_files list; this serves two
1863         * purposes:
1864         *  - check_tty_count sees the correct number of file descriptors
1865         *    associated with this tty.
1866         *  - do_tty_hangup no longer sees this file descriptor as
1867         *    something that needs to be handled for hangups.
1868         */
1869        tty_del_file(filp);
1870
1871        /*
1872         * Perform some housekeeping before deciding whether to return.
1873         *
1874         * If _either_ side is closing, make sure there aren't any
1875         * processes that still think tty or o_tty is their controlling
1876         * tty.
1877         */
1878        if (!tty->count) {
1879                read_lock(&tasklist_lock);
1880                session_clear_tty(tty->session);
1881                if (o_tty)
1882                        session_clear_tty(o_tty->session);
1883                read_unlock(&tasklist_lock);
1884        }
1885
1886        /* check whether both sides are closing ... */
1887        final = !tty->count && !(o_tty && o_tty->count);
1888
1889        tty_unlock_slave(o_tty);
1890        tty_unlock(tty);
1891
1892        /* At this point, the tty->count == 0 should ensure a dead tty
1893           cannot be re-opened by a racing opener */
1894
1895        if (!final)
1896                return 0;
1897
1898#ifdef TTY_DEBUG_HANGUP
1899        printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty));
1900#endif
1901        /*
1902         * Ask the line discipline code to release its structures
1903         */
1904        tty_ldisc_release(tty);
1905
1906        /* Wait for pending work before tty destruction commmences */
1907        tty_flush_works(tty);
1908
1909#ifdef TTY_DEBUG_HANGUP
1910        printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__,
1911               tty_name(tty));
1912#endif
1913        /*
1914         * The release_tty function takes care of the details of clearing
1915         * the slots and preserving the termios structure. The tty_unlock_pair
1916         * should be safe as we keep a kref while the tty is locked (so the
1917         * unlock never unlocks a freed tty).
1918         */
1919        mutex_lock(&tty_mutex);
1920        release_tty(tty, idx);
1921        mutex_unlock(&tty_mutex);
1922
1923        return 0;
1924}
1925
1926/**
1927 *      tty_open_current_tty - get locked tty of current task
1928 *      @device: device number
1929 *      @filp: file pointer to tty
1930 *      @return: locked tty of the current task iff @device is /dev/tty
1931 *
1932 *      Performs a re-open of the current task's controlling tty.
1933 *
1934 *      We cannot return driver and index like for the other nodes because
1935 *      devpts will not work then. It expects inodes to be from devpts FS.
1936 */
1937static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1938{
1939        struct tty_struct *tty;
1940        int retval;
1941
1942        if (device != MKDEV(TTYAUX_MAJOR, 0))
1943                return NULL;
1944
1945        tty = get_current_tty();
1946        if (!tty)
1947                return ERR_PTR(-ENXIO);
1948
1949        filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1950        /* noctty = 1; */
1951        tty_lock(tty);
1952        tty_kref_put(tty);      /* safe to drop the kref now */
1953
1954        retval = tty_reopen(tty);
1955        if (retval < 0) {
1956                tty_unlock(tty);
1957                tty = ERR_PTR(retval);
1958        }
1959        return tty;
1960}
1961
1962/**
1963 *      tty_lookup_driver - lookup a tty driver for a given device file
1964 *      @device: device number
1965 *      @filp: file pointer to tty
1966 *      @noctty: set if the device should not become a controlling tty
1967 *      @index: index for the device in the @return driver
1968 *      @return: driver for this inode (with increased refcount)
1969 *
1970 *      If @return is not erroneous, the caller is responsible to decrement the
1971 *      refcount by tty_driver_kref_put.
1972 *
1973 *      Locking: tty_mutex protects get_tty_driver
1974 */
1975static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1976                int *noctty, int *index)
1977{
1978        struct tty_driver *driver;
1979
1980        switch (device) {
1981#ifdef CONFIG_VT
1982        case MKDEV(TTY_MAJOR, 0): {
1983                extern struct tty_driver *console_driver;
1984                driver = tty_driver_kref_get(console_driver);
1985                *index = fg_console;
1986                *noctty = 1;
1987                break;
1988        }
1989#endif
1990        case MKDEV(TTYAUX_MAJOR, 1): {
1991                struct tty_driver *console_driver = console_device(index);
1992                if (console_driver) {
1993                        driver = tty_driver_kref_get(console_driver);
1994                        if (driver) {
1995                                /* Don't let /dev/console block */
1996                                filp->f_flags |= O_NONBLOCK;
1997                                *noctty = 1;
1998                                break;
1999                        }
2000                }
2001                return ERR_PTR(-ENODEV);
2002        }
2003        default:
2004                driver = get_tty_driver(device, index);
2005                if (!driver)
2006                        return ERR_PTR(-ENODEV);
2007                break;
2008        }
2009        return driver;
2010}
2011
2012/**
2013 *      tty_open                -       open a tty device
2014 *      @inode: inode of device file
2015 *      @filp: file pointer to tty
2016 *
2017 *      tty_open and tty_release keep up the tty count that contains the
2018 *      number of opens done on a tty. We cannot use the inode-count, as
2019 *      different inodes might point to the same tty.
2020 *
2021 *      Open-counting is needed for pty masters, as well as for keeping
2022 *      track of serial lines: DTR is dropped when the last close happens.
2023 *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2024 *
2025 *      The termios state of a pty is reset on first open so that
2026 *      settings don't persist across reuse.
2027 *
2028 *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2029 *               tty->count should protect the rest.
2030 *               ->siglock protects ->signal/->sighand
2031 *
2032 *      Note: the tty_unlock/lock cases without a ref are only safe due to
2033 *      tty_mutex
2034 */
2035
2036static int tty_open(struct inode *inode, struct file *filp)
2037{
2038        struct tty_struct *tty;
2039        int noctty, retval;
2040        struct tty_driver *driver = NULL;
2041        int index;
2042        dev_t device = inode->i_rdev;
2043        unsigned saved_flags = filp->f_flags;
2044
2045        nonseekable_open(inode, filp);
2046
2047retry_open:
2048        retval = tty_alloc_file(filp);
2049        if (retval)
2050                return -ENOMEM;
2051
2052        noctty = filp->f_flags & O_NOCTTY;
2053        index  = -1;
2054        retval = 0;
2055
2056        tty = tty_open_current_tty(device, filp);
2057        if (!tty) {
2058                mutex_lock(&tty_mutex);
2059                driver = tty_lookup_driver(device, filp, &noctty, &index);
2060                if (IS_ERR(driver)) {
2061                        retval = PTR_ERR(driver);
2062                        goto err_unlock;
2063                }
2064
2065                /* check whether we're reopening an existing tty */
2066                tty = tty_driver_lookup_tty(driver, inode, index);
2067                if (IS_ERR(tty)) {
2068                        retval = PTR_ERR(tty);
2069                        goto err_unlock;
2070                }
2071
2072                if (tty) {
2073                        mutex_unlock(&tty_mutex);
2074                        tty_lock(tty);
2075                        /* safe to drop the kref from tty_driver_lookup_tty() */
2076                        tty_kref_put(tty);
2077                        retval = tty_reopen(tty);
2078                        if (retval < 0) {
2079                                tty_unlock(tty);
2080                                tty = ERR_PTR(retval);
2081                        }
2082                } else { /* Returns with the tty_lock held for now */
2083                        tty = tty_init_dev(driver, index);
2084                        mutex_unlock(&tty_mutex);
2085                }
2086
2087                tty_driver_kref_put(driver);
2088        }
2089
2090        if (IS_ERR(tty)) {
2091                retval = PTR_ERR(tty);
2092                goto err_file;
2093        }
2094
2095        tty_add_file(tty, filp);
2096
2097        check_tty_count(tty, __func__);
2098        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2099            tty->driver->subtype == PTY_TYPE_MASTER)
2100                noctty = 1;
2101#ifdef TTY_DEBUG_HANGUP
2102        printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2103#endif
2104        if (tty->ops->open)
2105                retval = tty->ops->open(tty, filp);
2106        else
2107                retval = -ENODEV;
2108        filp->f_flags = saved_flags;
2109
2110        if (retval) {
2111#ifdef TTY_DEBUG_HANGUP
2112                printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2113                                retval, tty->name);
2114#endif
2115                tty_unlock(tty); /* need to call tty_release without BTM */
2116                tty_release(inode, filp);
2117                if (retval != -ERESTARTSYS)
2118                        return retval;
2119
2120                if (signal_pending(current))
2121                        return retval;
2122
2123                schedule();
2124                /*
2125                 * Need to reset f_op in case a hangup happened.
2126                 */
2127                if (tty_hung_up_p(filp))
2128                        filp->f_op = &tty_fops;
2129                goto retry_open;
2130        }
2131        clear_bit(TTY_HUPPED, &tty->flags);
2132
2133
2134        read_lock(&tasklist_lock);
2135        spin_lock_irq(&current->sighand->siglock);
2136        if (!noctty &&
2137            current->signal->leader &&
2138            !current->signal->tty &&
2139            tty->session == NULL)
2140                __proc_set_tty(tty);
2141        spin_unlock_irq(&current->sighand->siglock);
2142        read_unlock(&tasklist_lock);
2143        tty_unlock(tty);
2144        return 0;
2145err_unlock:
2146        mutex_unlock(&tty_mutex);
2147        /* after locks to avoid deadlock */
2148        if (!IS_ERR_OR_NULL(driver))
2149                tty_driver_kref_put(driver);
2150err_file:
2151        tty_free_file(filp);
2152        return retval;
2153}
2154
2155
2156
2157/**
2158 *      tty_poll        -       check tty status
2159 *      @filp: file being polled
2160 *      @wait: poll wait structures to update
2161 *
2162 *      Call the line discipline polling method to obtain the poll
2163 *      status of the device.
2164 *
2165 *      Locking: locks called line discipline but ldisc poll method
2166 *      may be re-entered freely by other callers.
2167 */
2168
2169static unsigned int tty_poll(struct file *filp, poll_table *wait)
2170{
2171        struct tty_struct *tty = file_tty(filp);
2172        struct tty_ldisc *ld;
2173        int ret = 0;
2174
2175        if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2176                return 0;
2177
2178        ld = tty_ldisc_ref_wait(tty);
2179        if (ld->ops->poll)
2180                ret = ld->ops->poll(tty, filp, wait);
2181        tty_ldisc_deref(ld);
2182        return ret;
2183}
2184
2185static int __tty_fasync(int fd, struct file *filp, int on)
2186{
2187        struct tty_struct *tty = file_tty(filp);
2188        struct tty_ldisc *ldisc;
2189        unsigned long flags;
2190        int retval = 0;
2191
2192        if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2193                goto out;
2194
2195        retval = fasync_helper(fd, filp, on, &tty->fasync);
2196        if (retval <= 0)
2197                goto out;
2198
2199        ldisc = tty_ldisc_ref(tty);
2200        if (ldisc) {
2201                if (ldisc->ops->fasync)
2202                        ldisc->ops->fasync(tty, on);
2203                tty_ldisc_deref(ldisc);
2204        }
2205
2206        if (on) {
2207                enum pid_type type;
2208                struct pid *pid;
2209
2210                spin_lock_irqsave(&tty->ctrl_lock, flags);
2211                if (tty->pgrp) {
2212                        pid = tty->pgrp;
2213                        type = PIDTYPE_PGID;
2214                } else {
2215                        pid = task_pid(current);
2216                        type = PIDTYPE_PID;
2217                }
2218                get_pid(pid);
2219                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2220                __f_setown(filp, pid, type, 0);
2221                put_pid(pid);
2222                retval = 0;
2223        }
2224out:
2225        return retval;
2226}
2227
2228static int tty_fasync(int fd, struct file *filp, int on)
2229{
2230        struct tty_struct *tty = file_tty(filp);
2231        int retval;
2232
2233        tty_lock(tty);
2234        retval = __tty_fasync(fd, filp, on);
2235        tty_unlock(tty);
2236
2237        return retval;
2238}
2239
2240/**
2241 *      tiocsti                 -       fake input character
2242 *      @tty: tty to fake input into
2243 *      @p: pointer to character
2244 *
2245 *      Fake input to a tty device. Does the necessary locking and
2246 *      input management.
2247 *
2248 *      FIXME: does not honour flow control ??
2249 *
2250 *      Locking:
2251 *              Called functions take tty_ldiscs_lock
2252 *              current->signal->tty check is safe without locks
2253 *
2254 *      FIXME: may race normal receive processing
2255 */
2256
2257static int tiocsti(struct tty_struct *tty, char __user *p)
2258{
2259        char ch, mbz = 0;
2260        struct tty_ldisc *ld;
2261
2262        if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2263                return -EPERM;
2264        if (get_user(ch, p))
2265                return -EFAULT;
2266        tty_audit_tiocsti(tty, ch);
2267        ld = tty_ldisc_ref_wait(tty);
2268        ld->ops->receive_buf(tty, &ch, &mbz, 1);
2269        tty_ldisc_deref(ld);
2270        return 0;
2271}
2272
2273/**
2274 *      tiocgwinsz              -       implement window query ioctl
2275 *      @tty; tty
2276 *      @arg: user buffer for result
2277 *
2278 *      Copies the kernel idea of the window size into the user buffer.
2279 *
2280 *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2281 *              is consistent.
2282 */
2283
2284static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2285{
2286        int err;
2287
2288        mutex_lock(&tty->winsize_mutex);
2289        err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2290        mutex_unlock(&tty->winsize_mutex);
2291
2292        return err ? -EFAULT: 0;
2293}
2294
2295/**
2296 *      tty_do_resize           -       resize event
2297 *      @tty: tty being resized
2298 *      @rows: rows (character)
2299 *      @cols: cols (character)
2300 *
2301 *      Update the termios variables and send the necessary signals to
2302 *      peform a terminal resize correctly
2303 */
2304
2305int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2306{
2307        struct pid *pgrp;
2308
2309        /* Lock the tty */
2310        mutex_lock(&tty->winsize_mutex);
2311        if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2312                goto done;
2313
2314        /* Signal the foreground process group */
2315        pgrp = tty_get_pgrp(tty);
2316        if (pgrp)
2317                kill_pgrp(pgrp, SIGWINCH, 1);
2318        put_pid(pgrp);
2319
2320        tty->winsize = *ws;
2321done:
2322        mutex_unlock(&tty->winsize_mutex);
2323        return 0;
2324}
2325EXPORT_SYMBOL(tty_do_resize);
2326
2327/**
2328 *      tiocswinsz              -       implement window size set ioctl
2329 *      @tty; tty side of tty
2330 *      @arg: user buffer for result
2331 *
2332 *      Copies the user idea of the window size to the kernel. Traditionally
2333 *      this is just advisory information but for the Linux console it
2334 *      actually has driver level meaning and triggers a VC resize.
2335 *
2336 *      Locking:
2337 *              Driver dependent. The default do_resize method takes the
2338 *      tty termios mutex and ctrl_lock. The console takes its own lock
2339 *      then calls into the default method.
2340 */
2341
2342static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2343{
2344        struct winsize tmp_ws;
2345        if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2346                return -EFAULT;
2347
2348        if (tty->ops->resize)
2349                return tty->ops->resize(tty, &tmp_ws);
2350        else
2351                return tty_do_resize(tty, &tmp_ws);
2352}
2353
2354/**
2355 *      tioccons        -       allow admin to move logical console
2356 *      @file: the file to become console
2357 *
2358 *      Allow the administrator to move the redirected console device
2359 *
2360 *      Locking: uses redirect_lock to guard the redirect information
2361 */
2362
2363static int tioccons(struct file *file)
2364{
2365        if (!capable(CAP_SYS_ADMIN))
2366                return -EPERM;
2367        if (file->f_op->write == redirected_tty_write) {
2368                struct file *f;
2369                spin_lock(&redirect_lock);
2370                f = redirect;
2371                redirect = NULL;
2372                spin_unlock(&redirect_lock);
2373                if (f)
2374                        fput(f);
2375                return 0;
2376        }
2377        spin_lock(&redirect_lock);
2378        if (redirect) {
2379                spin_unlock(&redirect_lock);
2380                return -EBUSY;
2381        }
2382        redirect = get_file(file);
2383        spin_unlock(&redirect_lock);
2384        return 0;
2385}
2386
2387/**
2388 *      fionbio         -       non blocking ioctl
2389 *      @file: file to set blocking value
2390 *      @p: user parameter
2391 *
2392 *      Historical tty interfaces had a blocking control ioctl before
2393 *      the generic functionality existed. This piece of history is preserved
2394 *      in the expected tty API of posix OS's.
2395 *
2396 *      Locking: none, the open file handle ensures it won't go away.
2397 */
2398
2399static int fionbio(struct file *file, int __user *p)
2400{
2401        int nonblock;
2402
2403        if (get_user(nonblock, p))
2404                return -EFAULT;
2405
2406        spin_lock(&file->f_lock);
2407        if (nonblock)
2408                file->f_flags |= O_NONBLOCK;
2409        else
2410                file->f_flags &= ~O_NONBLOCK;
2411        spin_unlock(&file->f_lock);
2412        return 0;
2413}
2414
2415/**
2416 *      tiocsctty       -       set controlling tty
2417 *      @tty: tty structure
2418 *      @arg: user argument
2419 *
2420 *      This ioctl is used to manage job control. It permits a session
2421 *      leader to set this tty as the controlling tty for the session.
2422 *
2423 *      Locking:
2424 *              Takes tty_lock() to serialize proc_set_tty() for this tty
2425 *              Takes tasklist_lock internally to walk sessions
2426 *              Takes ->siglock() when updating signal->tty
2427 */
2428
2429static int tiocsctty(struct tty_struct *tty, int arg)
2430{
2431        int ret = 0;
2432
2433        tty_lock(tty);
2434        read_lock(&tasklist_lock);
2435
2436        if (current->signal->leader && (task_session(current) == tty->session))
2437                goto unlock;
2438
2439        /*
2440         * The process must be a session leader and
2441         * not have a controlling tty already.
2442         */
2443        if (!current->signal->leader || current->signal->tty) {
2444                ret = -EPERM;
2445                goto unlock;
2446        }
2447
2448        if (tty->session) {
2449                /*
2450                 * This tty is already the controlling
2451                 * tty for another session group!
2452                 */
2453                if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2454                        /*
2455                         * Steal it away
2456                         */
2457                        session_clear_tty(tty->session);
2458                } else {
2459                        ret = -EPERM;
2460                        goto unlock;
2461                }
2462        }
2463        proc_set_tty(tty);
2464unlock:
2465        read_unlock(&tasklist_lock);
2466        tty_unlock(tty);
2467        return ret;
2468}
2469
2470/**
2471 *      tty_get_pgrp    -       return a ref counted pgrp pid
2472 *      @tty: tty to read
2473 *
2474 *      Returns a refcounted instance of the pid struct for the process
2475 *      group controlling the tty.
2476 */
2477
2478struct pid *tty_get_pgrp(struct tty_struct *tty)
2479{
2480        unsigned long flags;
2481        struct pid *pgrp;
2482
2483        spin_lock_irqsave(&tty->ctrl_lock, flags);
2484        pgrp = get_pid(tty->pgrp);
2485        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2486
2487        return pgrp;
2488}
2489EXPORT_SYMBOL_GPL(tty_get_pgrp);
2490
2491/*
2492 * This checks not only the pgrp, but falls back on the pid if no
2493 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2494 * without this...
2495 *
2496 * The caller must hold rcu lock or the tasklist lock.
2497 */
2498static struct pid *session_of_pgrp(struct pid *pgrp)
2499{
2500        struct task_struct *p;
2501        struct pid *sid = NULL;
2502
2503        p = pid_task(pgrp, PIDTYPE_PGID);
2504        if (p == NULL)
2505                p = pid_task(pgrp, PIDTYPE_PID);
2506        if (p != NULL)
2507                sid = task_session(p);
2508
2509        return sid;
2510}
2511
2512/**
2513 *      tiocgpgrp               -       get process group
2514 *      @tty: tty passed by user
2515 *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2516 *      @p: returned pid
2517 *
2518 *      Obtain the process group of the tty. If there is no process group
2519 *      return an error.
2520 *
2521 *      Locking: none. Reference to current->signal->tty is safe.
2522 */
2523
2524static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2525{
2526        struct pid *pid;
2527        int ret;
2528        /*
2529         * (tty == real_tty) is a cheap way of
2530         * testing if the tty is NOT a master pty.
2531         */
2532        if (tty == real_tty && current->signal->tty != real_tty)
2533                return -ENOTTY;
2534        pid = tty_get_pgrp(real_tty);
2535        ret =  put_user(pid_vnr(pid), p);
2536        put_pid(pid);
2537        return ret;
2538}
2539
2540/**
2541 *      tiocspgrp               -       attempt to set process group
2542 *      @tty: tty passed by user
2543 *      @real_tty: tty side device matching tty passed by user
2544 *      @p: pid pointer
2545 *
2546 *      Set the process group of the tty to the session passed. Only
2547 *      permitted where the tty session is our session.
2548 *
2549 *      Locking: RCU, ctrl lock
2550 */
2551
2552static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2553{
2554        struct pid *pgrp;
2555        pid_t pgrp_nr;
2556        int retval = tty_check_change(real_tty);
2557        unsigned long flags;
2558
2559        if (retval == -EIO)
2560                return -ENOTTY;
2561        if (retval)
2562                return retval;
2563        if (!current->signal->tty ||
2564            (current->signal->tty != real_tty) ||
2565            (real_tty->session != task_session(current)))
2566                return -ENOTTY;
2567        if (get_user(pgrp_nr, p))
2568                return -EFAULT;
2569        if (pgrp_nr < 0)
2570                return -EINVAL;
2571        rcu_read_lock();
2572        pgrp = find_vpid(pgrp_nr);
2573        retval = -ESRCH;
2574        if (!pgrp)
2575                goto out_unlock;
2576        retval = -EPERM;
2577        if (session_of_pgrp(pgrp) != task_session(current))
2578                goto out_unlock;
2579        retval = 0;
2580        spin_lock_irqsave(&tty->ctrl_lock, flags);
2581        put_pid(real_tty->pgrp);
2582        real_tty->pgrp = get_pid(pgrp);
2583        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2584out_unlock:
2585        rcu_read_unlock();
2586        return retval;
2587}
2588
2589/**
2590 *      tiocgsid                -       get session id
2591 *      @tty: tty passed by user
2592 *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2593 *      @p: pointer to returned session id
2594 *
2595 *      Obtain the session id of the tty. If there is no session
2596 *      return an error.
2597 *
2598 *      Locking: none. Reference to current->signal->tty is safe.
2599 */
2600
2601static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2602{
2603        /*
2604         * (tty == real_tty) is a cheap way of
2605         * testing if the tty is NOT a master pty.
2606        */
2607        if (tty == real_tty && current->signal->tty != real_tty)
2608                return -ENOTTY;
2609        if (!real_tty->session)
2610                return -ENOTTY;
2611        return put_user(pid_vnr(real_tty->session), p);
2612}
2613
2614/**
2615 *      tiocsetd        -       set line discipline
2616 *      @tty: tty device
2617 *      @p: pointer to user data
2618 *
2619 *      Set the line discipline according to user request.
2620 *
2621 *      Locking: see tty_set_ldisc, this function is just a helper
2622 */
2623
2624static int tiocsetd(struct tty_struct *tty, int __user *p)
2625{
2626        int ldisc;
2627        int ret;
2628
2629        if (get_user(ldisc, p))
2630                return -EFAULT;
2631
2632        ret = tty_set_ldisc(tty, ldisc);
2633
2634        return ret;
2635}
2636
2637/**
2638 *      send_break      -       performed time break
2639 *      @tty: device to break on
2640 *      @duration: timeout in mS
2641 *
2642 *      Perform a timed break on hardware that lacks its own driver level
2643 *      timed break functionality.
2644 *
2645 *      Locking:
2646 *              atomic_write_lock serializes
2647 *
2648 */
2649
2650static int send_break(struct tty_struct *tty, unsigned int duration)
2651{
2652        int retval;
2653
2654        if (tty->ops->break_ctl == NULL)
2655                return 0;
2656
2657        if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2658                retval = tty->ops->break_ctl(tty, duration);
2659        else {
2660                /* Do the work ourselves */
2661                if (tty_write_lock(tty, 0) < 0)
2662                        return -EINTR;
2663                retval = tty->ops->break_ctl(tty, -1);
2664                if (retval)
2665                        goto out;
2666                if (!signal_pending(current))
2667                        msleep_interruptible(duration);
2668                retval = tty->ops->break_ctl(tty, 0);
2669out:
2670                tty_write_unlock(tty);
2671                if (signal_pending(current))
2672                        retval = -EINTR;
2673        }
2674        return retval;
2675}
2676
2677/**
2678 *      tty_tiocmget            -       get modem status
2679 *      @tty: tty device
2680 *      @file: user file pointer
2681 *      @p: pointer to result
2682 *
2683 *      Obtain the modem status bits from the tty driver if the feature
2684 *      is supported. Return -EINVAL if it is not available.
2685 *
2686 *      Locking: none (up to the driver)
2687 */
2688
2689static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2690{
2691        int retval = -EINVAL;
2692
2693        if (tty->ops->tiocmget) {
2694                retval = tty->ops->tiocmget(tty);
2695
2696                if (retval >= 0)
2697                        retval = put_user(retval, p);
2698        }
2699        return retval;
2700}
2701
2702/**
2703 *      tty_tiocmset            -       set modem status
2704 *      @tty: tty device
2705 *      @cmd: command - clear bits, set bits or set all
2706 *      @p: pointer to desired bits
2707 *
2708 *      Set the modem status bits from the tty driver if the feature
2709 *      is supported. Return -EINVAL if it is not available.
2710 *
2711 *      Locking: none (up to the driver)
2712 */
2713
2714static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2715             unsigned __user *p)
2716{
2717        int retval;
2718        unsigned int set, clear, val;
2719
2720        if (tty->ops->tiocmset == NULL)
2721                return -EINVAL;
2722
2723        retval = get_user(val, p);
2724        if (retval)
2725                return retval;
2726        set = clear = 0;
2727        switch (cmd) {
2728        case TIOCMBIS:
2729                set = val;
2730                break;
2731        case TIOCMBIC:
2732                clear = val;
2733                break;
2734        case TIOCMSET:
2735                set = val;
2736                clear = ~val;
2737                break;
2738        }
2739        set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2740        clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2741        return tty->ops->tiocmset(tty, set, clear);
2742}
2743
2744static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2745{
2746        int retval = -EINVAL;
2747        struct serial_icounter_struct icount;
2748        memset(&icount, 0, sizeof(icount));
2749        if (tty->ops->get_icount)
2750                retval = tty->ops->get_icount(tty, &icount);
2751        if (retval != 0)
2752                return retval;
2753        if (copy_to_user(arg, &icount, sizeof(icount)))
2754                return -EFAULT;
2755        return 0;
2756}
2757
2758static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2759{
2760        static DEFINE_RATELIMIT_STATE(depr_flags,
2761                        DEFAULT_RATELIMIT_INTERVAL,
2762                        DEFAULT_RATELIMIT_BURST);
2763        char comm[TASK_COMM_LEN];
2764        int flags;
2765
2766        if (get_user(flags, &ss->flags))
2767                return;
2768
2769        flags &= ASYNC_DEPRECATED;
2770
2771        if (flags && __ratelimit(&depr_flags))
2772                pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2773                                __func__, get_task_comm(comm, current), flags);
2774}
2775
2776/*
2777 * if pty, return the slave side (real_tty)
2778 * otherwise, return self
2779 */
2780static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2781{
2782        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2783            tty->driver->subtype == PTY_TYPE_MASTER)
2784                tty = tty->link;
2785        return tty;
2786}
2787
2788/*
2789 * Split this up, as gcc can choke on it otherwise..
2790 */
2791long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2792{
2793        struct tty_struct *tty = file_tty(file);
2794        struct tty_struct *real_tty;
2795        void __user *p = (void __user *)arg;
2796        int retval;
2797        struct tty_ldisc *ld;
2798
2799        if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2800                return -EINVAL;
2801
2802        real_tty = tty_pair_get_tty(tty);
2803
2804        /*
2805         * Factor out some common prep work
2806         */
2807        switch (cmd) {
2808        case TIOCSETD:
2809        case TIOCSBRK:
2810        case TIOCCBRK:
2811        case TCSBRK:
2812        case TCSBRKP:
2813                retval = tty_check_change(tty);
2814                if (retval)
2815                        return retval;
2816                if (cmd != TIOCCBRK) {
2817                        tty_wait_until_sent(tty, 0);
2818                        if (signal_pending(current))
2819                                return -EINTR;
2820                }
2821                break;
2822        }
2823
2824        /*
2825         *      Now do the stuff.
2826         */
2827        switch (cmd) {
2828        case TIOCSTI:
2829                return tiocsti(tty, p);
2830        case TIOCGWINSZ:
2831                return tiocgwinsz(real_tty, p);
2832        case TIOCSWINSZ:
2833                return tiocswinsz(real_tty, p);
2834        case TIOCCONS:
2835                return real_tty != tty ? -EINVAL : tioccons(file);
2836        case FIONBIO:
2837                return fionbio(file, p);
2838        case TIOCEXCL:
2839                set_bit(TTY_EXCLUSIVE, &tty->flags);
2840                return 0;
2841        case TIOCNXCL:
2842                clear_bit(TTY_EXCLUSIVE, &tty->flags);
2843                return 0;
2844        case TIOCGEXCL:
2845        {
2846                int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2847                return put_user(excl, (int __user *)p);
2848        }
2849        case TIOCNOTTY:
2850                if (current->signal->tty != tty)
2851                        return -ENOTTY;
2852                no_tty();
2853                return 0;
2854        case TIOCSCTTY:
2855                return tiocsctty(tty, arg);
2856        case TIOCGPGRP:
2857                return tiocgpgrp(tty, real_tty, p);
2858        case TIOCSPGRP:
2859                return tiocspgrp(tty, real_tty, p);
2860        case TIOCGSID:
2861                return tiocgsid(tty, real_tty, p);
2862        case TIOCGETD:
2863                return put_user(tty->ldisc->ops->num, (int __user *)p);
2864        case TIOCSETD:
2865                return tiocsetd(tty, p);
2866        case TIOCVHANGUP:
2867                if (!capable(CAP_SYS_ADMIN))
2868                        return -EPERM;
2869                tty_vhangup(tty);
2870                return 0;
2871        case TIOCGDEV:
2872        {
2873                unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2874                return put_user(ret, (unsigned int __user *)p);
2875        }
2876        /*
2877         * Break handling
2878         */
2879        case TIOCSBRK:  /* Turn break on, unconditionally */
2880                if (tty->ops->break_ctl)
2881                        return tty->ops->break_ctl(tty, -1);
2882                return 0;
2883        case TIOCCBRK:  /* Turn break off, unconditionally */
2884                if (tty->ops->break_ctl)
2885                        return tty->ops->break_ctl(tty, 0);
2886                return 0;
2887        case TCSBRK:   /* SVID version: non-zero arg --> no break */
2888                /* non-zero arg means wait for all output data
2889                 * to be sent (performed above) but don't send break.
2890                 * This is used by the tcdrain() termios function.
2891                 */
2892                if (!arg)
2893                        return send_break(tty, 250);
2894                return 0;
2895        case TCSBRKP:   /* support for POSIX tcsendbreak() */
2896                return send_break(tty, arg ? arg*100 : 250);
2897
2898        case TIOCMGET:
2899                return tty_tiocmget(tty, p);
2900        case TIOCMSET:
2901        case TIOCMBIC:
2902        case TIOCMBIS:
2903                return tty_tiocmset(tty, cmd, p);
2904        case TIOCGICOUNT:
2905                retval = tty_tiocgicount(tty, p);
2906                /* For the moment allow fall through to the old method */
2907                if (retval != -EINVAL)
2908                        return retval;
2909                break;
2910        case TCFLSH:
2911                switch (arg) {
2912                case TCIFLUSH:
2913                case TCIOFLUSH:
2914                /* flush tty buffer and allow ldisc to process ioctl */
2915                        tty_buffer_flush(tty, NULL);
2916                        break;
2917                }
2918                break;
2919        case TIOCSSERIAL:
2920                tty_warn_deprecated_flags(p);
2921                break;
2922        }
2923        if (tty->ops->ioctl) {
2924                retval = tty->ops->ioctl(tty, cmd, arg);
2925                if (retval != -ENOIOCTLCMD)
2926                        return retval;
2927        }
2928        ld = tty_ldisc_ref_wait(tty);
2929        retval = -EINVAL;
2930        if (ld->ops->ioctl) {
2931                retval = ld->ops->ioctl(tty, file, cmd, arg);
2932                if (retval == -ENOIOCTLCMD)
2933                        retval = -ENOTTY;
2934        }
2935        tty_ldisc_deref(ld);
2936        return retval;
2937}
2938
2939#ifdef CONFIG_COMPAT
2940static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2941                                unsigned long arg)
2942{
2943        struct tty_struct *tty = file_tty(file);
2944        struct tty_ldisc *ld;
2945        int retval = -ENOIOCTLCMD;
2946
2947        if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2948                return -EINVAL;
2949
2950        if (tty->ops->compat_ioctl) {
2951                retval = tty->ops->compat_ioctl(tty, cmd, arg);
2952                if (retval != -ENOIOCTLCMD)
2953                        return retval;
2954        }
2955
2956        ld = tty_ldisc_ref_wait(tty);
2957        if (ld->ops->compat_ioctl)
2958                retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2959        else
2960                retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2961        tty_ldisc_deref(ld);
2962
2963        return retval;
2964}
2965#endif
2966
2967static int this_tty(const void *t, struct file *file, unsigned fd)
2968{
2969        if (likely(file->f_op->read != tty_read))
2970                return 0;
2971        return file_tty(file) != t ? 0 : fd + 1;
2972}
2973        
2974/*
2975 * This implements the "Secure Attention Key" ---  the idea is to
2976 * prevent trojan horses by killing all processes associated with this
2977 * tty when the user hits the "Secure Attention Key".  Required for
2978 * super-paranoid applications --- see the Orange Book for more details.
2979 *
2980 * This code could be nicer; ideally it should send a HUP, wait a few
2981 * seconds, then send a INT, and then a KILL signal.  But you then
2982 * have to coordinate with the init process, since all processes associated
2983 * with the current tty must be dead before the new getty is allowed
2984 * to spawn.
2985 *
2986 * Now, if it would be correct ;-/ The current code has a nasty hole -
2987 * it doesn't catch files in flight. We may send the descriptor to ourselves
2988 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2989 *
2990 * Nasty bug: do_SAK is being called in interrupt context.  This can
2991 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2992 */
2993void __do_SAK(struct tty_struct *tty)
2994{
2995#ifdef TTY_SOFT_SAK
2996        tty_hangup(tty);
2997#else
2998        struct task_struct *g, *p;
2999        struct pid *session;
3000        int             i;
3001
3002        if (!tty)
3003                return;
3004        session = tty->session;
3005
3006        tty_ldisc_flush(tty);
3007
3008        tty_driver_flush_buffer(tty);
3009
3010        read_lock(&tasklist_lock);
3011        /* Kill the entire session */
3012        do_each_pid_task(session, PIDTYPE_SID, p) {
3013                printk(KERN_NOTICE "SAK: killed process %d"
3014                        " (%s): task_session(p)==tty->session\n",
3015                        task_pid_nr(p), p->comm);
3016                send_sig(SIGKILL, p, 1);
3017        } while_each_pid_task(session, PIDTYPE_SID, p);
3018        /* Now kill any processes that happen to have the
3019         * tty open.
3020         */
3021        do_each_thread(g, p) {
3022                if (p->signal->tty == tty) {
3023                        printk(KERN_NOTICE "SAK: killed process %d"
3024                            " (%s): task_session(p)==tty->session\n",
3025                            task_pid_nr(p), p->comm);
3026                        send_sig(SIGKILL, p, 1);
3027                        continue;
3028                }
3029                task_lock(p);
3030                i = iterate_fd(p->files, 0, this_tty, tty);
3031                if (i != 0) {
3032                        printk(KERN_NOTICE "SAK: killed process %d"
3033                            " (%s): fd#%d opened to the tty\n",
3034                                    task_pid_nr(p), p->comm, i - 1);
3035                        force_sig(SIGKILL, p);
3036                }
3037                task_unlock(p);
3038        } while_each_thread(g, p);
3039        read_unlock(&tasklist_lock);
3040#endif
3041}
3042
3043static void do_SAK_work(struct work_struct *work)
3044{
3045        struct tty_struct *tty =
3046                container_of(work, struct tty_struct, SAK_work);
3047        __do_SAK(tty);
3048}
3049
3050/*
3051 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3052 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3053 * the values which we write to it will be identical to the values which it
3054 * already has. --akpm
3055 */
3056void do_SAK(struct tty_struct *tty)
3057{
3058        if (!tty)
3059                return;
3060        schedule_work(&tty->SAK_work);
3061}
3062
3063EXPORT_SYMBOL(do_SAK);
3064
3065static int dev_match_devt(struct device *dev, const void *data)
3066{
3067        const dev_t *devt = data;
3068        return dev->devt == *devt;
3069}
3070
3071/* Must put_device() after it's unused! */
3072static struct device *tty_get_device(struct tty_struct *tty)
3073{
3074        dev_t devt = tty_devnum(tty);
3075        return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3076}
3077
3078
3079/**
3080 *      alloc_tty_struct
3081 *
3082 *      This subroutine allocates and initializes a tty structure.
3083 *
3084 *      Locking: none - tty in question is not exposed at this point
3085 */
3086
3087struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3088{
3089        struct tty_struct *tty;
3090
3091        tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3092        if (!tty)
3093                return NULL;
3094
3095        kref_init(&tty->kref);
3096        tty->magic = TTY_MAGIC;
3097        tty_ldisc_init(tty);
3098        tty->session = NULL;
3099        tty->pgrp = NULL;
3100        mutex_init(&tty->legacy_mutex);
3101        mutex_init(&tty->throttle_mutex);
3102        init_rwsem(&tty->termios_rwsem);
3103        mutex_init(&tty->winsize_mutex);
3104        init_ldsem(&tty->ldisc_sem);
3105        init_waitqueue_head(&tty->write_wait);
3106        init_waitqueue_head(&tty->read_wait);
3107        INIT_WORK(&tty->hangup_work, do_tty_hangup);
3108        mutex_init(&tty->atomic_write_lock);
3109        spin_lock_init(&tty->ctrl_lock);
3110        spin_lock_init(&tty->flow_lock);
3111        INIT_LIST_HEAD(&tty->tty_files);
3112        INIT_WORK(&tty->SAK_work, do_SAK_work);
3113
3114        tty->driver = driver;
3115        tty->ops = driver->ops;
3116        tty->index = idx;
3117        tty_line_name(driver, idx, tty->name);
3118        tty->dev = tty_get_device(tty);
3119
3120        return tty;
3121}
3122
3123/**
3124 *      deinitialize_tty_struct
3125 *      @tty: tty to deinitialize
3126 *
3127 *      This subroutine deinitializes a tty structure that has been newly
3128 *      allocated but tty_release cannot be called on that yet.
3129 *
3130 *      Locking: none - tty in question must not be exposed at this point
3131 */
3132void deinitialize_tty_struct(struct tty_struct *tty)
3133{
3134        tty_ldisc_deinit(tty);
3135}
3136
3137/**
3138 *      tty_put_char    -       write one character to a tty
3139 *      @tty: tty
3140 *      @ch: character
3141 *
3142 *      Write one byte to the tty using the provided put_char method
3143 *      if present. Returns the number of characters successfully output.
3144 *
3145 *      Note: the specific put_char operation in the driver layer may go
3146 *      away soon. Don't call it directly, use this method
3147 */
3148
3149int tty_put_char(struct tty_struct *tty, unsigned char ch)
3150{
3151        if (tty->ops->put_char)
3152                return tty->ops->put_char(tty, ch);
3153        return tty->ops->write(tty, &ch, 1);
3154}
3155EXPORT_SYMBOL_GPL(tty_put_char);
3156
3157struct class *tty_class;
3158
3159static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3160                unsigned int index, unsigned int count)
3161{
3162        /* init here, since reused cdevs cause crashes */
3163        cdev_init(&driver->cdevs[index], &tty_fops);
3164        driver->cdevs[index].owner = driver->owner;
3165        return cdev_add(&driver->cdevs[index], dev, count);
3166}
3167
3168/**
3169 *      tty_register_device - register a tty device
3170 *      @driver: the tty driver that describes the tty device
3171 *      @index: the index in the tty driver for this tty device
3172 *      @device: a struct device that is associated with this tty device.
3173 *              This field is optional, if there is no known struct device
3174 *              for this tty device it can be set to NULL safely.
3175 *
3176 *      Returns a pointer to the struct device for this tty device
3177 *      (or ERR_PTR(-EFOO) on error).
3178 *
3179 *      This call is required to be made to register an individual tty device
3180 *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3181 *      that bit is not set, this function should not be called by a tty
3182 *      driver.
3183 *
3184 *      Locking: ??
3185 */
3186
3187struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3188                                   struct device *device)
3189{
3190        return tty_register_device_attr(driver, index, device, NULL, NULL);
3191}
3192EXPORT_SYMBOL(tty_register_device);
3193
3194static void tty_device_create_release(struct device *dev)
3195{
3196        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3197        kfree(dev);
3198}
3199
3200/**
3201 *      tty_register_device_attr - register a tty device
3202 *      @driver: the tty driver that describes the tty device
3203 *      @index: the index in the tty driver for this tty device
3204 *      @device: a struct device that is associated with this tty device.
3205 *              This field is optional, if there is no known struct device
3206 *              for this tty device it can be set to NULL safely.
3207 *      @drvdata: Driver data to be set to device.
3208 *      @attr_grp: Attribute group to be set on device.
3209 *
3210 *      Returns a pointer to the struct device for this tty device
3211 *      (or ERR_PTR(-EFOO) on error).
3212 *
3213 *      This call is required to be made to register an individual tty device
3214 *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3215 *      that bit is not set, this function should not be called by a tty
3216 *      driver.
3217 *
3218 *      Locking: ??
3219 */
3220struct device *tty_register_device_attr(struct tty_driver *driver,
3221                                   unsigned index, struct device *device,
3222                                   void *drvdata,
3223                                   const struct attribute_group **attr_grp)
3224{
3225        char name[64];
3226        dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3227        struct device *dev = NULL;
3228        int retval = -ENODEV;
3229        bool cdev = false;
3230
3231        if (index >= driver->num) {
3232                printk(KERN_ERR "Attempt to register invalid tty line number "
3233                       " (%d).\n", index);
3234                return ERR_PTR(-EINVAL);
3235        }
3236
3237        if (driver->type == TTY_DRIVER_TYPE_PTY)
3238                pty_line_name(driver, index, name);
3239        else
3240                tty_line_name(driver, index, name);
3241
3242        if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3243                retval = tty_cdev_add(driver, devt, index, 1);
3244                if (retval)
3245                        goto error;
3246                cdev = true;
3247        }
3248
3249        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3250        if (!dev) {
3251                retval = -ENOMEM;
3252                goto error;
3253        }
3254
3255        dev->devt = devt;
3256        dev->class = tty_class;
3257        dev->parent = device;
3258        dev->release = tty_device_create_release;
3259        dev_set_name(dev, "%s", name);
3260        dev->groups = attr_grp;
3261        dev_set_drvdata(dev, drvdata);
3262
3263        retval = device_register(dev);
3264        if (retval)
3265                goto error;
3266
3267        return dev;
3268
3269error:
3270        put_device(dev);
3271        if (cdev)
3272                cdev_del(&driver->cdevs[index]);
3273        return ERR_PTR(retval);
3274}
3275EXPORT_SYMBOL_GPL(tty_register_device_attr);
3276
3277/**
3278 *      tty_unregister_device - unregister a tty device
3279 *      @driver: the tty driver that describes the tty device
3280 *      @index: the index in the tty driver for this tty device
3281 *
3282 *      If a tty device is registered with a call to tty_register_device() then
3283 *      this function must be called when the tty device is gone.
3284 *
3285 *      Locking: ??
3286 */
3287
3288void tty_unregister_device(struct tty_driver *driver, unsigned index)
3289{
3290        device_destroy(tty_class,
3291                MKDEV(driver->major, driver->minor_start) + index);
3292        if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3293                cdev_del(&driver->cdevs[index]);
3294}
3295EXPORT_SYMBOL(tty_unregister_device);
3296
3297/**
3298 * __tty_alloc_driver -- allocate tty driver
3299 * @lines: count of lines this driver can handle at most
3300 * @owner: module which is repsonsible for this driver
3301 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3302 *
3303 * This should not be called directly, some of the provided macros should be
3304 * used instead. Use IS_ERR and friends on @retval.
3305 */
3306struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3307                unsigned long flags)
3308{
3309        struct tty_driver *driver;
3310        unsigned int cdevs = 1;
3311        int err;
3312
3313        if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3314                return ERR_PTR(-EINVAL);
3315
3316        driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3317        if (!driver)
3318                return ERR_PTR(-ENOMEM);
3319
3320        kref_init(&driver->kref);
3321        driver->magic = TTY_DRIVER_MAGIC;
3322        driver->num = lines;
3323        driver->owner = owner;
3324        driver->flags = flags;
3325
3326        if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3327                driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3328                                GFP_KERNEL);
3329                driver->termios = kcalloc(lines, sizeof(*driver->termios),
3330                                GFP_KERNEL);
3331                if (!driver->ttys || !driver->termios) {
3332                        err = -ENOMEM;
3333                        goto err_free_all;
3334                }
3335        }
3336
3337        if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3338                driver->ports = kcalloc(lines, sizeof(*driver->ports),
3339                                GFP_KERNEL);
3340                if (!driver->ports) {
3341                        err = -ENOMEM;
3342                        goto err_free_all;
3343                }
3344                cdevs = lines;
3345        }
3346
3347        driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3348        if (!driver->cdevs) {
3349                err = -ENOMEM;
3350                goto err_free_all;
3351        }
3352
3353        return driver;
3354err_free_all:
3355        kfree(driver->ports);
3356        kfree(driver->ttys);
3357        kfree(driver->termios);
3358        kfree(driver);
3359        return ERR_PTR(err);
3360}
3361EXPORT_SYMBOL(__tty_alloc_driver);
3362
3363static void destruct_tty_driver(struct kref *kref)
3364{
3365        struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3366        int i;
3367        struct ktermios *tp;
3368
3369        if (driver->flags & TTY_DRIVER_INSTALLED) {
3370                /*
3371                 * Free the termios and termios_locked structures because
3372                 * we don't want to get memory leaks when modular tty
3373                 * drivers are removed from the kernel.
3374                 */
3375                for (i = 0; i < driver->num; i++) {
3376                        tp = driver->termios[i];
3377                        if (tp) {
3378                                driver->termios[i] = NULL;
3379                                kfree(tp);
3380                        }
3381                        if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3382                                tty_unregister_device(driver, i);
3383                }
3384                proc_tty_unregister_driver(driver);
3385                if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3386                        cdev_del(&driver->cdevs[0]);
3387        }
3388        kfree(driver->cdevs);
3389        kfree(driver->ports);
3390        kfree(driver->termios);
3391        kfree(driver->ttys);
3392        kfree(driver);
3393}
3394
3395void tty_driver_kref_put(struct tty_driver *driver)
3396{
3397        kref_put(&driver->kref, destruct_tty_driver);
3398}
3399EXPORT_SYMBOL(tty_driver_kref_put);
3400
3401void tty_set_operations(struct tty_driver *driver,
3402                        const struct tty_operations *op)
3403{
3404        driver->ops = op;
3405};
3406EXPORT_SYMBOL(tty_set_operations);
3407
3408void put_tty_driver(struct tty_driver *d)
3409{
3410        tty_driver_kref_put(d);
3411}
3412EXPORT_SYMBOL(put_tty_driver);
3413
3414/*
3415 * Called by a tty driver to register itself.
3416 */
3417int tty_register_driver(struct tty_driver *driver)
3418{
3419        int error;
3420        int i;
3421        dev_t dev;
3422        struct device *d;
3423
3424        if (!driver->major) {
3425                error = alloc_chrdev_region(&dev, driver->minor_start,
3426                                                driver->num, driver->name);
3427                if (!error) {
3428                        driver->major = MAJOR(dev);
3429                        driver->minor_start = MINOR(dev);
3430                }
3431        } else {
3432                dev = MKDEV(driver->major, driver->minor_start);
3433                error = register_chrdev_region(dev, driver->num, driver->name);
3434        }
3435        if (error < 0)
3436                goto err;
3437
3438        if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3439                error = tty_cdev_add(driver, dev, 0, driver->num);
3440                if (error)
3441                        goto err_unreg_char;
3442        }
3443
3444        mutex_lock(&tty_mutex);
3445        list_add(&driver->tty_drivers, &tty_drivers);
3446        mutex_unlock(&tty_mutex);
3447
3448        if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3449                for (i = 0; i < driver->num; i++) {
3450                        d = tty_register_device(driver, i, NULL);
3451                        if (IS_ERR(d)) {
3452                                error = PTR_ERR(d);
3453                                goto err_unreg_devs;
3454                        }
3455                }
3456        }
3457        proc_tty_register_driver(driver);
3458        driver->flags |= TTY_DRIVER_INSTALLED;
3459        return 0;
3460
3461err_unreg_devs:
3462        for (i--; i >= 0; i--)
3463                tty_unregister_device(driver, i);
3464
3465        mutex_lock(&tty_mutex);
3466        list_del(&driver->tty_drivers);
3467        mutex_unlock(&tty_mutex);
3468
3469err_unreg_char:
3470        unregister_chrdev_region(dev, driver->num);
3471err:
3472        return error;
3473}
3474EXPORT_SYMBOL(tty_register_driver);
3475
3476/*
3477 * Called by a tty driver to unregister itself.
3478 */
3479int tty_unregister_driver(struct tty_driver *driver)
3480{
3481#if 0
3482        /* FIXME */
3483        if (driver->refcount)
3484                return -EBUSY;
3485#endif
3486        unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3487                                driver->num);
3488        mutex_lock(&tty_mutex);
3489        list_del(&driver->tty_drivers);
3490        mutex_unlock(&tty_mutex);
3491        return 0;
3492}
3493
3494EXPORT_SYMBOL(tty_unregister_driver);
3495
3496dev_t tty_devnum(struct tty_struct *tty)
3497{
3498        return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3499}
3500EXPORT_SYMBOL(tty_devnum);
3501
3502void tty_default_fops(struct file_operations *fops)
3503{
3504        *fops = tty_fops;
3505}
3506
3507/*
3508 * Initialize the console device. This is called *early*, so
3509 * we can't necessarily depend on lots of kernel help here.
3510 * Just do some early initializations, and do the complex setup
3511 * later.
3512 */
3513void __init console_init(void)
3514{
3515        initcall_t *call;
3516
3517        /* Setup the default TTY line discipline. */
3518        tty_ldisc_begin();
3519
3520        /*
3521         * set up the console device so that later boot sequences can
3522         * inform about problems etc..
3523         */
3524        call = __con_initcall_start;
3525        while (call < __con_initcall_end) {
3526                (*call)();
3527                call++;
3528        }
3529}
3530
3531static char *tty_devnode(struct device *dev, umode_t *mode)
3532{
3533        if (!mode)
3534                return NULL;
3535        if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3536            dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3537                *mode = 0666;
3538        return NULL;
3539}
3540
3541static int __init tty_class_init(void)
3542{
3543        tty_class = class_create(THIS_MODULE, "tty");
3544        if (IS_ERR(tty_class))
3545                return PTR_ERR(tty_class);
3546        tty_class->devnode = tty_devnode;
3547        return 0;
3548}
3549
3550postcore_initcall(tty_class_init);
3551
3552/* 3/2004 jmc: why do these devices exist? */
3553static struct cdev tty_cdev, console_cdev;
3554
3555static ssize_t show_cons_active(struct device *dev,
3556                                struct device_attribute *attr, char *buf)
3557{
3558        struct console *cs[16];
3559        int i = 0;
3560        struct console *c;
3561        ssize_t count = 0;
3562
3563        console_lock();
3564        for_each_console(c) {
3565                if (!c->device)
3566                        continue;
3567                if (!c->write)
3568                        continue;
3569                if ((c->flags & CON_ENABLED) == 0)
3570                        continue;
3571                cs[i++] = c;
3572                if (i >= ARRAY_SIZE(cs))
3573                        break;
3574        }
3575        while (i--) {
3576                int index = cs[i]->index;
3577                struct tty_driver *drv = cs[i]->device(cs[i], &index);
3578
3579                /* don't resolve tty0 as some programs depend on it */
3580                if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3581                        count += tty_line_name(drv, index, buf + count);
3582                else
3583                        count += sprintf(buf + count, "%s%d",
3584                                         cs[i]->name, cs[i]->index);
3585
3586                count += sprintf(buf + count, "%c", i ? ' ':'\n');
3587        }
3588        console_unlock();
3589
3590        return count;
3591}
3592static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3593
3594static struct attribute *cons_dev_attrs[] = {
3595        &dev_attr_active.attr,
3596        NULL
3597};
3598
3599ATTRIBUTE_GROUPS(cons_dev);
3600
3601static struct device *consdev;
3602
3603void console_sysfs_notify(void)
3604{
3605        if (consdev)
3606                sysfs_notify(&consdev->kobj, NULL, "active");
3607}
3608
3609/*
3610 * Ok, now we can initialize the rest of the tty devices and can count
3611 * on memory allocations, interrupts etc..
3612 */
3613int __init tty_init(void)
3614{
3615        cdev_init(&tty_cdev, &tty_fops);
3616        if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3617            register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3618                panic("Couldn't register /dev/tty driver\n");
3619        device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3620
3621        cdev_init(&console_cdev, &console_fops);
3622        if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3623            register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3624                panic("Couldn't register /dev/console driver\n");
3625        consdev = device_create_with_groups(tty_class, NULL,
3626                                            MKDEV(TTYAUX_MAJOR, 1), NULL,
3627                                            cons_dev_groups, "console");
3628        if (IS_ERR(consdev))
3629                consdev = NULL;
3630
3631#ifdef CONFIG_VT
3632        vty_init(&console_fops);
3633#endif
3634        return 0;
3635}
3636
3637