linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <linux/raid/pq.h>
  29#include <linux/semaphore.h>
  30#include <asm/div64.h>
  31#include "ctree.h"
  32#include "extent_map.h"
  33#include "disk-io.h"
  34#include "transaction.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "raid56.h"
  38#include "async-thread.h"
  39#include "check-integrity.h"
  40#include "rcu-string.h"
  41#include "math.h"
  42#include "dev-replace.h"
  43#include "sysfs.h"
  44
  45static int init_first_rw_device(struct btrfs_trans_handle *trans,
  46                                struct btrfs_root *root,
  47                                struct btrfs_device *device);
  48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
  50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
  51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
  52
  53DEFINE_MUTEX(uuid_mutex);
  54static LIST_HEAD(fs_uuids);
  55struct list_head *btrfs_get_fs_uuids(void)
  56{
  57        return &fs_uuids;
  58}
  59
  60static struct btrfs_fs_devices *__alloc_fs_devices(void)
  61{
  62        struct btrfs_fs_devices *fs_devs;
  63
  64        fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
  65        if (!fs_devs)
  66                return ERR_PTR(-ENOMEM);
  67
  68        mutex_init(&fs_devs->device_list_mutex);
  69
  70        INIT_LIST_HEAD(&fs_devs->devices);
  71        INIT_LIST_HEAD(&fs_devs->resized_devices);
  72        INIT_LIST_HEAD(&fs_devs->alloc_list);
  73        INIT_LIST_HEAD(&fs_devs->list);
  74
  75        return fs_devs;
  76}
  77
  78/**
  79 * alloc_fs_devices - allocate struct btrfs_fs_devices
  80 * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
  81 *              generated.
  82 *
  83 * Return: a pointer to a new &struct btrfs_fs_devices on success;
  84 * ERR_PTR() on error.  Returned struct is not linked onto any lists and
  85 * can be destroyed with kfree() right away.
  86 */
  87static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
  88{
  89        struct btrfs_fs_devices *fs_devs;
  90
  91        fs_devs = __alloc_fs_devices();
  92        if (IS_ERR(fs_devs))
  93                return fs_devs;
  94
  95        if (fsid)
  96                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
  97        else
  98                generate_random_uuid(fs_devs->fsid);
  99
 100        return fs_devs;
 101}
 102
 103static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 104{
 105        struct btrfs_device *device;
 106        WARN_ON(fs_devices->opened);
 107        while (!list_empty(&fs_devices->devices)) {
 108                device = list_entry(fs_devices->devices.next,
 109                                    struct btrfs_device, dev_list);
 110                list_del(&device->dev_list);
 111                rcu_string_free(device->name);
 112                kfree(device);
 113        }
 114        kfree(fs_devices);
 115}
 116
 117static void btrfs_kobject_uevent(struct block_device *bdev,
 118                                 enum kobject_action action)
 119{
 120        int ret;
 121
 122        ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
 123        if (ret)
 124                pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
 125                        action,
 126                        kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
 127                        &disk_to_dev(bdev->bd_disk)->kobj);
 128}
 129
 130void btrfs_cleanup_fs_uuids(void)
 131{
 132        struct btrfs_fs_devices *fs_devices;
 133
 134        while (!list_empty(&fs_uuids)) {
 135                fs_devices = list_entry(fs_uuids.next,
 136                                        struct btrfs_fs_devices, list);
 137                list_del(&fs_devices->list);
 138                free_fs_devices(fs_devices);
 139        }
 140}
 141
 142static struct btrfs_device *__alloc_device(void)
 143{
 144        struct btrfs_device *dev;
 145
 146        dev = kzalloc(sizeof(*dev), GFP_NOFS);
 147        if (!dev)
 148                return ERR_PTR(-ENOMEM);
 149
 150        INIT_LIST_HEAD(&dev->dev_list);
 151        INIT_LIST_HEAD(&dev->dev_alloc_list);
 152        INIT_LIST_HEAD(&dev->resized_list);
 153
 154        spin_lock_init(&dev->io_lock);
 155
 156        spin_lock_init(&dev->reada_lock);
 157        atomic_set(&dev->reada_in_flight, 0);
 158        atomic_set(&dev->dev_stats_ccnt, 0);
 159        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
 160        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
 161
 162        return dev;
 163}
 164
 165static noinline struct btrfs_device *__find_device(struct list_head *head,
 166                                                   u64 devid, u8 *uuid)
 167{
 168        struct btrfs_device *dev;
 169
 170        list_for_each_entry(dev, head, dev_list) {
 171                if (dev->devid == devid &&
 172                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 173                        return dev;
 174                }
 175        }
 176        return NULL;
 177}
 178
 179static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 180{
 181        struct btrfs_fs_devices *fs_devices;
 182
 183        list_for_each_entry(fs_devices, &fs_uuids, list) {
 184                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 185                        return fs_devices;
 186        }
 187        return NULL;
 188}
 189
 190static int
 191btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 192                      int flush, struct block_device **bdev,
 193                      struct buffer_head **bh)
 194{
 195        int ret;
 196
 197        *bdev = blkdev_get_by_path(device_path, flags, holder);
 198
 199        if (IS_ERR(*bdev)) {
 200                ret = PTR_ERR(*bdev);
 201                printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
 202                goto error;
 203        }
 204
 205        if (flush)
 206                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 207        ret = set_blocksize(*bdev, 4096);
 208        if (ret) {
 209                blkdev_put(*bdev, flags);
 210                goto error;
 211        }
 212        invalidate_bdev(*bdev);
 213        *bh = btrfs_read_dev_super(*bdev);
 214        if (!*bh) {
 215                ret = -EINVAL;
 216                blkdev_put(*bdev, flags);
 217                goto error;
 218        }
 219
 220        return 0;
 221
 222error:
 223        *bdev = NULL;
 224        *bh = NULL;
 225        return ret;
 226}
 227
 228static void requeue_list(struct btrfs_pending_bios *pending_bios,
 229                        struct bio *head, struct bio *tail)
 230{
 231
 232        struct bio *old_head;
 233
 234        old_head = pending_bios->head;
 235        pending_bios->head = head;
 236        if (pending_bios->tail)
 237                tail->bi_next = old_head;
 238        else
 239                pending_bios->tail = tail;
 240}
 241
 242/*
 243 * we try to collect pending bios for a device so we don't get a large
 244 * number of procs sending bios down to the same device.  This greatly
 245 * improves the schedulers ability to collect and merge the bios.
 246 *
 247 * But, it also turns into a long list of bios to process and that is sure
 248 * to eventually make the worker thread block.  The solution here is to
 249 * make some progress and then put this work struct back at the end of
 250 * the list if the block device is congested.  This way, multiple devices
 251 * can make progress from a single worker thread.
 252 */
 253static noinline void run_scheduled_bios(struct btrfs_device *device)
 254{
 255        struct bio *pending;
 256        struct backing_dev_info *bdi;
 257        struct btrfs_fs_info *fs_info;
 258        struct btrfs_pending_bios *pending_bios;
 259        struct bio *tail;
 260        struct bio *cur;
 261        int again = 0;
 262        unsigned long num_run;
 263        unsigned long batch_run = 0;
 264        unsigned long limit;
 265        unsigned long last_waited = 0;
 266        int force_reg = 0;
 267        int sync_pending = 0;
 268        struct blk_plug plug;
 269
 270        /*
 271         * this function runs all the bios we've collected for
 272         * a particular device.  We don't want to wander off to
 273         * another device without first sending all of these down.
 274         * So, setup a plug here and finish it off before we return
 275         */
 276        blk_start_plug(&plug);
 277
 278        bdi = blk_get_backing_dev_info(device->bdev);
 279        fs_info = device->dev_root->fs_info;
 280        limit = btrfs_async_submit_limit(fs_info);
 281        limit = limit * 2 / 3;
 282
 283loop:
 284        spin_lock(&device->io_lock);
 285
 286loop_lock:
 287        num_run = 0;
 288
 289        /* take all the bios off the list at once and process them
 290         * later on (without the lock held).  But, remember the
 291         * tail and other pointers so the bios can be properly reinserted
 292         * into the list if we hit congestion
 293         */
 294        if (!force_reg && device->pending_sync_bios.head) {
 295                pending_bios = &device->pending_sync_bios;
 296                force_reg = 1;
 297        } else {
 298                pending_bios = &device->pending_bios;
 299                force_reg = 0;
 300        }
 301
 302        pending = pending_bios->head;
 303        tail = pending_bios->tail;
 304        WARN_ON(pending && !tail);
 305
 306        /*
 307         * if pending was null this time around, no bios need processing
 308         * at all and we can stop.  Otherwise it'll loop back up again
 309         * and do an additional check so no bios are missed.
 310         *
 311         * device->running_pending is used to synchronize with the
 312         * schedule_bio code.
 313         */
 314        if (device->pending_sync_bios.head == NULL &&
 315            device->pending_bios.head == NULL) {
 316                again = 0;
 317                device->running_pending = 0;
 318        } else {
 319                again = 1;
 320                device->running_pending = 1;
 321        }
 322
 323        pending_bios->head = NULL;
 324        pending_bios->tail = NULL;
 325
 326        spin_unlock(&device->io_lock);
 327
 328        while (pending) {
 329
 330                rmb();
 331                /* we want to work on both lists, but do more bios on the
 332                 * sync list than the regular list
 333                 */
 334                if ((num_run > 32 &&
 335                    pending_bios != &device->pending_sync_bios &&
 336                    device->pending_sync_bios.head) ||
 337                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 338                    device->pending_bios.head)) {
 339                        spin_lock(&device->io_lock);
 340                        requeue_list(pending_bios, pending, tail);
 341                        goto loop_lock;
 342                }
 343
 344                cur = pending;
 345                pending = pending->bi_next;
 346                cur->bi_next = NULL;
 347
 348                if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
 349                    waitqueue_active(&fs_info->async_submit_wait))
 350                        wake_up(&fs_info->async_submit_wait);
 351
 352                BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
 353
 354                /*
 355                 * if we're doing the sync list, record that our
 356                 * plug has some sync requests on it
 357                 *
 358                 * If we're doing the regular list and there are
 359                 * sync requests sitting around, unplug before
 360                 * we add more
 361                 */
 362                if (pending_bios == &device->pending_sync_bios) {
 363                        sync_pending = 1;
 364                } else if (sync_pending) {
 365                        blk_finish_plug(&plug);
 366                        blk_start_plug(&plug);
 367                        sync_pending = 0;
 368                }
 369
 370                btrfsic_submit_bio(cur->bi_rw, cur);
 371                num_run++;
 372                batch_run++;
 373
 374                cond_resched();
 375
 376                /*
 377                 * we made progress, there is more work to do and the bdi
 378                 * is now congested.  Back off and let other work structs
 379                 * run instead
 380                 */
 381                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 382                    fs_info->fs_devices->open_devices > 1) {
 383                        struct io_context *ioc;
 384
 385                        ioc = current->io_context;
 386
 387                        /*
 388                         * the main goal here is that we don't want to
 389                         * block if we're going to be able to submit
 390                         * more requests without blocking.
 391                         *
 392                         * This code does two great things, it pokes into
 393                         * the elevator code from a filesystem _and_
 394                         * it makes assumptions about how batching works.
 395                         */
 396                        if (ioc && ioc->nr_batch_requests > 0 &&
 397                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 398                            (last_waited == 0 ||
 399                             ioc->last_waited == last_waited)) {
 400                                /*
 401                                 * we want to go through our batch of
 402                                 * requests and stop.  So, we copy out
 403                                 * the ioc->last_waited time and test
 404                                 * against it before looping
 405                                 */
 406                                last_waited = ioc->last_waited;
 407                                cond_resched();
 408                                continue;
 409                        }
 410                        spin_lock(&device->io_lock);
 411                        requeue_list(pending_bios, pending, tail);
 412                        device->running_pending = 1;
 413
 414                        spin_unlock(&device->io_lock);
 415                        btrfs_queue_work(fs_info->submit_workers,
 416                                         &device->work);
 417                        goto done;
 418                }
 419                /* unplug every 64 requests just for good measure */
 420                if (batch_run % 64 == 0) {
 421                        blk_finish_plug(&plug);
 422                        blk_start_plug(&plug);
 423                        sync_pending = 0;
 424                }
 425        }
 426
 427        cond_resched();
 428        if (again)
 429                goto loop;
 430
 431        spin_lock(&device->io_lock);
 432        if (device->pending_bios.head || device->pending_sync_bios.head)
 433                goto loop_lock;
 434        spin_unlock(&device->io_lock);
 435
 436done:
 437        blk_finish_plug(&plug);
 438}
 439
 440static void pending_bios_fn(struct btrfs_work *work)
 441{
 442        struct btrfs_device *device;
 443
 444        device = container_of(work, struct btrfs_device, work);
 445        run_scheduled_bios(device);
 446}
 447
 448
 449void btrfs_free_stale_device(struct btrfs_device *cur_dev)
 450{
 451        struct btrfs_fs_devices *fs_devs;
 452        struct btrfs_device *dev;
 453
 454        if (!cur_dev->name)
 455                return;
 456
 457        list_for_each_entry(fs_devs, &fs_uuids, list) {
 458                int del = 1;
 459
 460                if (fs_devs->opened)
 461                        continue;
 462                if (fs_devs->seeding)
 463                        continue;
 464
 465                list_for_each_entry(dev, &fs_devs->devices, dev_list) {
 466
 467                        if (dev == cur_dev)
 468                                continue;
 469                        if (!dev->name)
 470                                continue;
 471
 472                        /*
 473                         * Todo: This won't be enough. What if the same device
 474                         * comes back (with new uuid and) with its mapper path?
 475                         * But for now, this does help as mostly an admin will
 476                         * either use mapper or non mapper path throughout.
 477                         */
 478                        rcu_read_lock();
 479                        del = strcmp(rcu_str_deref(dev->name),
 480                                                rcu_str_deref(cur_dev->name));
 481                        rcu_read_unlock();
 482                        if (!del)
 483                                break;
 484                }
 485
 486                if (!del) {
 487                        /* delete the stale device */
 488                        if (fs_devs->num_devices == 1) {
 489                                btrfs_sysfs_remove_fsid(fs_devs);
 490                                list_del(&fs_devs->list);
 491                                free_fs_devices(fs_devs);
 492                        } else {
 493                                fs_devs->num_devices--;
 494                                list_del(&dev->dev_list);
 495                                rcu_string_free(dev->name);
 496                                kfree(dev);
 497                        }
 498                        break;
 499                }
 500        }
 501}
 502
 503/*
 504 * Add new device to list of registered devices
 505 *
 506 * Returns:
 507 * 1   - first time device is seen
 508 * 0   - device already known
 509 * < 0 - error
 510 */
 511static noinline int device_list_add(const char *path,
 512                           struct btrfs_super_block *disk_super,
 513                           u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 514{
 515        struct btrfs_device *device;
 516        struct btrfs_fs_devices *fs_devices;
 517        struct rcu_string *name;
 518        int ret = 0;
 519        u64 found_transid = btrfs_super_generation(disk_super);
 520
 521        fs_devices = find_fsid(disk_super->fsid);
 522        if (!fs_devices) {
 523                fs_devices = alloc_fs_devices(disk_super->fsid);
 524                if (IS_ERR(fs_devices))
 525                        return PTR_ERR(fs_devices);
 526
 527                list_add(&fs_devices->list, &fs_uuids);
 528
 529                device = NULL;
 530        } else {
 531                device = __find_device(&fs_devices->devices, devid,
 532                                       disk_super->dev_item.uuid);
 533        }
 534
 535        if (!device) {
 536                if (fs_devices->opened)
 537                        return -EBUSY;
 538
 539                device = btrfs_alloc_device(NULL, &devid,
 540                                            disk_super->dev_item.uuid);
 541                if (IS_ERR(device)) {
 542                        /* we can safely leave the fs_devices entry around */
 543                        return PTR_ERR(device);
 544                }
 545
 546                name = rcu_string_strdup(path, GFP_NOFS);
 547                if (!name) {
 548                        kfree(device);
 549                        return -ENOMEM;
 550                }
 551                rcu_assign_pointer(device->name, name);
 552
 553                mutex_lock(&fs_devices->device_list_mutex);
 554                list_add_rcu(&device->dev_list, &fs_devices->devices);
 555                fs_devices->num_devices++;
 556                mutex_unlock(&fs_devices->device_list_mutex);
 557
 558                ret = 1;
 559                device->fs_devices = fs_devices;
 560        } else if (!device->name || strcmp(device->name->str, path)) {
 561                /*
 562                 * When FS is already mounted.
 563                 * 1. If you are here and if the device->name is NULL that
 564                 *    means this device was missing at time of FS mount.
 565                 * 2. If you are here and if the device->name is different
 566                 *    from 'path' that means either
 567                 *      a. The same device disappeared and reappeared with
 568                 *         different name. or
 569                 *      b. The missing-disk-which-was-replaced, has
 570                 *         reappeared now.
 571                 *
 572                 * We must allow 1 and 2a above. But 2b would be a spurious
 573                 * and unintentional.
 574                 *
 575                 * Further in case of 1 and 2a above, the disk at 'path'
 576                 * would have missed some transaction when it was away and
 577                 * in case of 2a the stale bdev has to be updated as well.
 578                 * 2b must not be allowed at all time.
 579                 */
 580
 581                /*
 582                 * For now, we do allow update to btrfs_fs_device through the
 583                 * btrfs dev scan cli after FS has been mounted.  We're still
 584                 * tracking a problem where systems fail mount by subvolume id
 585                 * when we reject replacement on a mounted FS.
 586                 */
 587                if (!fs_devices->opened && found_transid < device->generation) {
 588                        /*
 589                         * That is if the FS is _not_ mounted and if you
 590                         * are here, that means there is more than one
 591                         * disk with same uuid and devid.We keep the one
 592                         * with larger generation number or the last-in if
 593                         * generation are equal.
 594                         */
 595                        return -EEXIST;
 596                }
 597
 598                name = rcu_string_strdup(path, GFP_NOFS);
 599                if (!name)
 600                        return -ENOMEM;
 601                rcu_string_free(device->name);
 602                rcu_assign_pointer(device->name, name);
 603                if (device->missing) {
 604                        fs_devices->missing_devices--;
 605                        device->missing = 0;
 606                }
 607        }
 608
 609        /*
 610         * Unmount does not free the btrfs_device struct but would zero
 611         * generation along with most of the other members. So just update
 612         * it back. We need it to pick the disk with largest generation
 613         * (as above).
 614         */
 615        if (!fs_devices->opened)
 616                device->generation = found_transid;
 617
 618        /*
 619         * if there is new btrfs on an already registered device,
 620         * then remove the stale device entry.
 621         */
 622        btrfs_free_stale_device(device);
 623
 624        *fs_devices_ret = fs_devices;
 625
 626        return ret;
 627}
 628
 629static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 630{
 631        struct btrfs_fs_devices *fs_devices;
 632        struct btrfs_device *device;
 633        struct btrfs_device *orig_dev;
 634
 635        fs_devices = alloc_fs_devices(orig->fsid);
 636        if (IS_ERR(fs_devices))
 637                return fs_devices;
 638
 639        mutex_lock(&orig->device_list_mutex);
 640        fs_devices->total_devices = orig->total_devices;
 641
 642        /* We have held the volume lock, it is safe to get the devices. */
 643        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 644                struct rcu_string *name;
 645
 646                device = btrfs_alloc_device(NULL, &orig_dev->devid,
 647                                            orig_dev->uuid);
 648                if (IS_ERR(device))
 649                        goto error;
 650
 651                /*
 652                 * This is ok to do without rcu read locked because we hold the
 653                 * uuid mutex so nothing we touch in here is going to disappear.
 654                 */
 655                if (orig_dev->name) {
 656                        name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
 657                        if (!name) {
 658                                kfree(device);
 659                                goto error;
 660                        }
 661                        rcu_assign_pointer(device->name, name);
 662                }
 663
 664                list_add(&device->dev_list, &fs_devices->devices);
 665                device->fs_devices = fs_devices;
 666                fs_devices->num_devices++;
 667        }
 668        mutex_unlock(&orig->device_list_mutex);
 669        return fs_devices;
 670error:
 671        mutex_unlock(&orig->device_list_mutex);
 672        free_fs_devices(fs_devices);
 673        return ERR_PTR(-ENOMEM);
 674}
 675
 676void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
 677{
 678        struct btrfs_device *device, *next;
 679        struct btrfs_device *latest_dev = NULL;
 680
 681        mutex_lock(&uuid_mutex);
 682again:
 683        /* This is the initialized path, it is safe to release the devices. */
 684        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 685                if (device->in_fs_metadata) {
 686                        if (!device->is_tgtdev_for_dev_replace &&
 687                            (!latest_dev ||
 688                             device->generation > latest_dev->generation)) {
 689                                latest_dev = device;
 690                        }
 691                        continue;
 692                }
 693
 694                if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 695                        /*
 696                         * In the first step, keep the device which has
 697                         * the correct fsid and the devid that is used
 698                         * for the dev_replace procedure.
 699                         * In the second step, the dev_replace state is
 700                         * read from the device tree and it is known
 701                         * whether the procedure is really active or
 702                         * not, which means whether this device is
 703                         * used or whether it should be removed.
 704                         */
 705                        if (step == 0 || device->is_tgtdev_for_dev_replace) {
 706                                continue;
 707                        }
 708                }
 709                if (device->bdev) {
 710                        blkdev_put(device->bdev, device->mode);
 711                        device->bdev = NULL;
 712                        fs_devices->open_devices--;
 713                }
 714                if (device->writeable) {
 715                        list_del_init(&device->dev_alloc_list);
 716                        device->writeable = 0;
 717                        if (!device->is_tgtdev_for_dev_replace)
 718                                fs_devices->rw_devices--;
 719                }
 720                list_del_init(&device->dev_list);
 721                fs_devices->num_devices--;
 722                rcu_string_free(device->name);
 723                kfree(device);
 724        }
 725
 726        if (fs_devices->seed) {
 727                fs_devices = fs_devices->seed;
 728                goto again;
 729        }
 730
 731        fs_devices->latest_bdev = latest_dev->bdev;
 732
 733        mutex_unlock(&uuid_mutex);
 734}
 735
 736static void __free_device(struct work_struct *work)
 737{
 738        struct btrfs_device *device;
 739
 740        device = container_of(work, struct btrfs_device, rcu_work);
 741
 742        if (device->bdev)
 743                blkdev_put(device->bdev, device->mode);
 744
 745        rcu_string_free(device->name);
 746        kfree(device);
 747}
 748
 749static void free_device(struct rcu_head *head)
 750{
 751        struct btrfs_device *device;
 752
 753        device = container_of(head, struct btrfs_device, rcu);
 754
 755        INIT_WORK(&device->rcu_work, __free_device);
 756        schedule_work(&device->rcu_work);
 757}
 758
 759static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 760{
 761        struct btrfs_device *device, *tmp;
 762
 763        if (--fs_devices->opened > 0)
 764                return 0;
 765
 766        mutex_lock(&fs_devices->device_list_mutex);
 767        list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
 768                struct btrfs_device *new_device;
 769                struct rcu_string *name;
 770
 771                if (device->bdev)
 772                        fs_devices->open_devices--;
 773
 774                if (device->writeable &&
 775                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 776                        list_del_init(&device->dev_alloc_list);
 777                        fs_devices->rw_devices--;
 778                }
 779
 780                if (device->missing)
 781                        fs_devices->missing_devices--;
 782
 783                new_device = btrfs_alloc_device(NULL, &device->devid,
 784                                                device->uuid);
 785                BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
 786
 787                /* Safe because we are under uuid_mutex */
 788                if (device->name) {
 789                        name = rcu_string_strdup(device->name->str, GFP_NOFS);
 790                        BUG_ON(!name); /* -ENOMEM */
 791                        rcu_assign_pointer(new_device->name, name);
 792                }
 793
 794                list_replace_rcu(&device->dev_list, &new_device->dev_list);
 795                new_device->fs_devices = device->fs_devices;
 796
 797                call_rcu(&device->rcu, free_device);
 798        }
 799        mutex_unlock(&fs_devices->device_list_mutex);
 800
 801        WARN_ON(fs_devices->open_devices);
 802        WARN_ON(fs_devices->rw_devices);
 803        fs_devices->opened = 0;
 804        fs_devices->seeding = 0;
 805
 806        return 0;
 807}
 808
 809int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 810{
 811        struct btrfs_fs_devices *seed_devices = NULL;
 812        int ret;
 813
 814        mutex_lock(&uuid_mutex);
 815        ret = __btrfs_close_devices(fs_devices);
 816        if (!fs_devices->opened) {
 817                seed_devices = fs_devices->seed;
 818                fs_devices->seed = NULL;
 819        }
 820        mutex_unlock(&uuid_mutex);
 821
 822        while (seed_devices) {
 823                fs_devices = seed_devices;
 824                seed_devices = fs_devices->seed;
 825                __btrfs_close_devices(fs_devices);
 826                free_fs_devices(fs_devices);
 827        }
 828        /*
 829         * Wait for rcu kworkers under __btrfs_close_devices
 830         * to finish all blkdev_puts so device is really
 831         * free when umount is done.
 832         */
 833        rcu_barrier();
 834        return ret;
 835}
 836
 837static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 838                                fmode_t flags, void *holder)
 839{
 840        struct request_queue *q;
 841        struct block_device *bdev;
 842        struct list_head *head = &fs_devices->devices;
 843        struct btrfs_device *device;
 844        struct btrfs_device *latest_dev = NULL;
 845        struct buffer_head *bh;
 846        struct btrfs_super_block *disk_super;
 847        u64 devid;
 848        int seeding = 1;
 849        int ret = 0;
 850
 851        flags |= FMODE_EXCL;
 852
 853        list_for_each_entry(device, head, dev_list) {
 854                if (device->bdev)
 855                        continue;
 856                if (!device->name)
 857                        continue;
 858
 859                /* Just open everything we can; ignore failures here */
 860                if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 861                                            &bdev, &bh))
 862                        continue;
 863
 864                disk_super = (struct btrfs_super_block *)bh->b_data;
 865                devid = btrfs_stack_device_id(&disk_super->dev_item);
 866                if (devid != device->devid)
 867                        goto error_brelse;
 868
 869                if (memcmp(device->uuid, disk_super->dev_item.uuid,
 870                           BTRFS_UUID_SIZE))
 871                        goto error_brelse;
 872
 873                device->generation = btrfs_super_generation(disk_super);
 874                if (!latest_dev ||
 875                    device->generation > latest_dev->generation)
 876                        latest_dev = device;
 877
 878                if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 879                        device->writeable = 0;
 880                } else {
 881                        device->writeable = !bdev_read_only(bdev);
 882                        seeding = 0;
 883                }
 884
 885                q = bdev_get_queue(bdev);
 886                if (blk_queue_discard(q))
 887                        device->can_discard = 1;
 888
 889                device->bdev = bdev;
 890                device->in_fs_metadata = 0;
 891                device->mode = flags;
 892
 893                if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 894                        fs_devices->rotating = 1;
 895
 896                fs_devices->open_devices++;
 897                if (device->writeable &&
 898                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 899                        fs_devices->rw_devices++;
 900                        list_add(&device->dev_alloc_list,
 901                                 &fs_devices->alloc_list);
 902                }
 903                brelse(bh);
 904                continue;
 905
 906error_brelse:
 907                brelse(bh);
 908                blkdev_put(bdev, flags);
 909                continue;
 910        }
 911        if (fs_devices->open_devices == 0) {
 912                ret = -EINVAL;
 913                goto out;
 914        }
 915        fs_devices->seeding = seeding;
 916        fs_devices->opened = 1;
 917        fs_devices->latest_bdev = latest_dev->bdev;
 918        fs_devices->total_rw_bytes = 0;
 919out:
 920        return ret;
 921}
 922
 923int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 924                       fmode_t flags, void *holder)
 925{
 926        int ret;
 927
 928        mutex_lock(&uuid_mutex);
 929        if (fs_devices->opened) {
 930                fs_devices->opened++;
 931                ret = 0;
 932        } else {
 933                ret = __btrfs_open_devices(fs_devices, flags, holder);
 934        }
 935        mutex_unlock(&uuid_mutex);
 936        return ret;
 937}
 938
 939/*
 940 * Look for a btrfs signature on a device. This may be called out of the mount path
 941 * and we are not allowed to call set_blocksize during the scan. The superblock
 942 * is read via pagecache
 943 */
 944int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 945                          struct btrfs_fs_devices **fs_devices_ret)
 946{
 947        struct btrfs_super_block *disk_super;
 948        struct block_device *bdev;
 949        struct page *page;
 950        void *p;
 951        int ret = -EINVAL;
 952        u64 devid;
 953        u64 transid;
 954        u64 total_devices;
 955        u64 bytenr;
 956        pgoff_t index;
 957
 958        /*
 959         * we would like to check all the supers, but that would make
 960         * a btrfs mount succeed after a mkfs from a different FS.
 961         * So, we need to add a special mount option to scan for
 962         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
 963         */
 964        bytenr = btrfs_sb_offset(0);
 965        flags |= FMODE_EXCL;
 966        mutex_lock(&uuid_mutex);
 967
 968        bdev = blkdev_get_by_path(path, flags, holder);
 969
 970        if (IS_ERR(bdev)) {
 971                ret = PTR_ERR(bdev);
 972                goto error;
 973        }
 974
 975        /* make sure our super fits in the device */
 976        if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
 977                goto error_bdev_put;
 978
 979        /* make sure our super fits in the page */
 980        if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
 981                goto error_bdev_put;
 982
 983        /* make sure our super doesn't straddle pages on disk */
 984        index = bytenr >> PAGE_CACHE_SHIFT;
 985        if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
 986                goto error_bdev_put;
 987
 988        /* pull in the page with our super */
 989        page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
 990                                   index, GFP_NOFS);
 991
 992        if (IS_ERR_OR_NULL(page))
 993                goto error_bdev_put;
 994
 995        p = kmap(page);
 996
 997        /* align our pointer to the offset of the super block */
 998        disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
 999
1000        if (btrfs_super_bytenr(disk_super) != bytenr ||
1001            btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1002                goto error_unmap;
1003
1004        devid = btrfs_stack_device_id(&disk_super->dev_item);
1005        transid = btrfs_super_generation(disk_super);
1006        total_devices = btrfs_super_num_devices(disk_super);
1007
1008        ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1009        if (ret > 0) {
1010                if (disk_super->label[0]) {
1011                        if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012                                disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013                        printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014                } else {
1015                        printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016                }
1017
1018                printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019                ret = 0;
1020        }
1021        if (!ret && fs_devices_ret)
1022                (*fs_devices_ret)->total_devices = total_devices;
1023
1024error_unmap:
1025        kunmap(page);
1026        page_cache_release(page);
1027
1028error_bdev_put:
1029        blkdev_put(bdev, flags);
1030error:
1031        mutex_unlock(&uuid_mutex);
1032        return ret;
1033}
1034
1035/* helper to account the used device space in the range */
1036int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037                                   u64 end, u64 *length)
1038{
1039        struct btrfs_key key;
1040        struct btrfs_root *root = device->dev_root;
1041        struct btrfs_dev_extent *dev_extent;
1042        struct btrfs_path *path;
1043        u64 extent_end;
1044        int ret;
1045        int slot;
1046        struct extent_buffer *l;
1047
1048        *length = 0;
1049
1050        if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1051                return 0;
1052
1053        path = btrfs_alloc_path();
1054        if (!path)
1055                return -ENOMEM;
1056        path->reada = 2;
1057
1058        key.objectid = device->devid;
1059        key.offset = start;
1060        key.type = BTRFS_DEV_EXTENT_KEY;
1061
1062        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063        if (ret < 0)
1064                goto out;
1065        if (ret > 0) {
1066                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067                if (ret < 0)
1068                        goto out;
1069        }
1070
1071        while (1) {
1072                l = path->nodes[0];
1073                slot = path->slots[0];
1074                if (slot >= btrfs_header_nritems(l)) {
1075                        ret = btrfs_next_leaf(root, path);
1076                        if (ret == 0)
1077                                continue;
1078                        if (ret < 0)
1079                                goto out;
1080
1081                        break;
1082                }
1083                btrfs_item_key_to_cpu(l, &key, slot);
1084
1085                if (key.objectid < device->devid)
1086                        goto next;
1087
1088                if (key.objectid > device->devid)
1089                        break;
1090
1091                if (key.type != BTRFS_DEV_EXTENT_KEY)
1092                        goto next;
1093
1094                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095                extent_end = key.offset + btrfs_dev_extent_length(l,
1096                                                                  dev_extent);
1097                if (key.offset <= start && extent_end > end) {
1098                        *length = end - start + 1;
1099                        break;
1100                } else if (key.offset <= start && extent_end > start)
1101                        *length += extent_end - start;
1102                else if (key.offset > start && extent_end <= end)
1103                        *length += extent_end - key.offset;
1104                else if (key.offset > start && key.offset <= end) {
1105                        *length += end - key.offset + 1;
1106                        break;
1107                } else if (key.offset > end)
1108                        break;
1109
1110next:
1111                path->slots[0]++;
1112        }
1113        ret = 0;
1114out:
1115        btrfs_free_path(path);
1116        return ret;
1117}
1118
1119static int contains_pending_extent(struct btrfs_trans_handle *trans,
1120                                   struct btrfs_device *device,
1121                                   u64 *start, u64 len)
1122{
1123        struct extent_map *em;
1124        struct list_head *search_list = &trans->transaction->pending_chunks;
1125        int ret = 0;
1126        u64 physical_start = *start;
1127
1128again:
1129        list_for_each_entry(em, search_list, list) {
1130                struct map_lookup *map;
1131                int i;
1132
1133                map = (struct map_lookup *)em->bdev;
1134                for (i = 0; i < map->num_stripes; i++) {
1135                        u64 end;
1136
1137                        if (map->stripes[i].dev != device)
1138                                continue;
1139                        if (map->stripes[i].physical >= physical_start + len ||
1140                            map->stripes[i].physical + em->orig_block_len <=
1141                            physical_start)
1142                                continue;
1143                        /*
1144                         * Make sure that while processing the pinned list we do
1145                         * not override our *start with a lower value, because
1146                         * we can have pinned chunks that fall within this
1147                         * device hole and that have lower physical addresses
1148                         * than the pending chunks we processed before. If we
1149                         * do not take this special care we can end up getting
1150                         * 2 pending chunks that start at the same physical
1151                         * device offsets because the end offset of a pinned
1152                         * chunk can be equal to the start offset of some
1153                         * pending chunk.
1154                         */
1155                        end = map->stripes[i].physical + em->orig_block_len;
1156                        if (end > *start) {
1157                                *start = end;
1158                                ret = 1;
1159                        }
1160                }
1161        }
1162        if (search_list == &trans->transaction->pending_chunks) {
1163                search_list = &trans->root->fs_info->pinned_chunks;
1164                goto again;
1165        }
1166
1167        return ret;
1168}
1169
1170
1171/*
1172 * find_free_dev_extent - find free space in the specified device
1173 * @device:     the device which we search the free space in
1174 * @num_bytes:  the size of the free space that we need
1175 * @start:      store the start of the free space.
1176 * @len:        the size of the free space. that we find, or the size of the max
1177 *              free space if we don't find suitable free space
1178 *
1179 * this uses a pretty simple search, the expectation is that it is
1180 * called very infrequently and that a given device has a small number
1181 * of extents
1182 *
1183 * @start is used to store the start of the free space if we find. But if we
1184 * don't find suitable free space, it will be used to store the start position
1185 * of the max free space.
1186 *
1187 * @len is used to store the size of the free space that we find.
1188 * But if we don't find suitable free space, it is used to store the size of
1189 * the max free space.
1190 */
1191int find_free_dev_extent(struct btrfs_trans_handle *trans,
1192                         struct btrfs_device *device, u64 num_bytes,
1193                         u64 *start, u64 *len)
1194{
1195        struct btrfs_key key;
1196        struct btrfs_root *root = device->dev_root;
1197        struct btrfs_dev_extent *dev_extent;
1198        struct btrfs_path *path;
1199        u64 hole_size;
1200        u64 max_hole_start;
1201        u64 max_hole_size;
1202        u64 extent_end;
1203        u64 search_start;
1204        u64 search_end = device->total_bytes;
1205        int ret;
1206        int slot;
1207        struct extent_buffer *l;
1208
1209        /* FIXME use last free of some kind */
1210
1211        /* we don't want to overwrite the superblock on the drive,
1212         * so we make sure to start at an offset of at least 1MB
1213         */
1214        search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1215
1216        path = btrfs_alloc_path();
1217        if (!path)
1218                return -ENOMEM;
1219
1220        max_hole_start = search_start;
1221        max_hole_size = 0;
1222
1223again:
1224        if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1225                ret = -ENOSPC;
1226                goto out;
1227        }
1228
1229        path->reada = 2;
1230        path->search_commit_root = 1;
1231        path->skip_locking = 1;
1232
1233        key.objectid = device->devid;
1234        key.offset = search_start;
1235        key.type = BTRFS_DEV_EXTENT_KEY;
1236
1237        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1238        if (ret < 0)
1239                goto out;
1240        if (ret > 0) {
1241                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1242                if (ret < 0)
1243                        goto out;
1244        }
1245
1246        while (1) {
1247                l = path->nodes[0];
1248                slot = path->slots[0];
1249                if (slot >= btrfs_header_nritems(l)) {
1250                        ret = btrfs_next_leaf(root, path);
1251                        if (ret == 0)
1252                                continue;
1253                        if (ret < 0)
1254                                goto out;
1255
1256                        break;
1257                }
1258                btrfs_item_key_to_cpu(l, &key, slot);
1259
1260                if (key.objectid < device->devid)
1261                        goto next;
1262
1263                if (key.objectid > device->devid)
1264                        break;
1265
1266                if (key.type != BTRFS_DEV_EXTENT_KEY)
1267                        goto next;
1268
1269                if (key.offset > search_start) {
1270                        hole_size = key.offset - search_start;
1271
1272                        /*
1273                         * Have to check before we set max_hole_start, otherwise
1274                         * we could end up sending back this offset anyway.
1275                         */
1276                        if (contains_pending_extent(trans, device,
1277                                                    &search_start,
1278                                                    hole_size)) {
1279                                if (key.offset >= search_start) {
1280                                        hole_size = key.offset - search_start;
1281                                } else {
1282                                        WARN_ON_ONCE(1);
1283                                        hole_size = 0;
1284                                }
1285                        }
1286
1287                        if (hole_size > max_hole_size) {
1288                                max_hole_start = search_start;
1289                                max_hole_size = hole_size;
1290                        }
1291
1292                        /*
1293                         * If this free space is greater than which we need,
1294                         * it must be the max free space that we have found
1295                         * until now, so max_hole_start must point to the start
1296                         * of this free space and the length of this free space
1297                         * is stored in max_hole_size. Thus, we return
1298                         * max_hole_start and max_hole_size and go back to the
1299                         * caller.
1300                         */
1301                        if (hole_size >= num_bytes) {
1302                                ret = 0;
1303                                goto out;
1304                        }
1305                }
1306
1307                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1308                extent_end = key.offset + btrfs_dev_extent_length(l,
1309                                                                  dev_extent);
1310                if (extent_end > search_start)
1311                        search_start = extent_end;
1312next:
1313                path->slots[0]++;
1314                cond_resched();
1315        }
1316
1317        /*
1318         * At this point, search_start should be the end of
1319         * allocated dev extents, and when shrinking the device,
1320         * search_end may be smaller than search_start.
1321         */
1322        if (search_end > search_start) {
1323                hole_size = search_end - search_start;
1324
1325                if (contains_pending_extent(trans, device, &search_start,
1326                                            hole_size)) {
1327                        btrfs_release_path(path);
1328                        goto again;
1329                }
1330
1331                if (hole_size > max_hole_size) {
1332                        max_hole_start = search_start;
1333                        max_hole_size = hole_size;
1334                }
1335        }
1336
1337        /* See above. */
1338        if (max_hole_size < num_bytes)
1339                ret = -ENOSPC;
1340        else
1341                ret = 0;
1342
1343out:
1344        btrfs_free_path(path);
1345        *start = max_hole_start;
1346        if (len)
1347                *len = max_hole_size;
1348        return ret;
1349}
1350
1351static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1352                          struct btrfs_device *device,
1353                          u64 start, u64 *dev_extent_len)
1354{
1355        int ret;
1356        struct btrfs_path *path;
1357        struct btrfs_root *root = device->dev_root;
1358        struct btrfs_key key;
1359        struct btrfs_key found_key;
1360        struct extent_buffer *leaf = NULL;
1361        struct btrfs_dev_extent *extent = NULL;
1362
1363        path = btrfs_alloc_path();
1364        if (!path)
1365                return -ENOMEM;
1366
1367        key.objectid = device->devid;
1368        key.offset = start;
1369        key.type = BTRFS_DEV_EXTENT_KEY;
1370again:
1371        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1372        if (ret > 0) {
1373                ret = btrfs_previous_item(root, path, key.objectid,
1374                                          BTRFS_DEV_EXTENT_KEY);
1375                if (ret)
1376                        goto out;
1377                leaf = path->nodes[0];
1378                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1379                extent = btrfs_item_ptr(leaf, path->slots[0],
1380                                        struct btrfs_dev_extent);
1381                BUG_ON(found_key.offset > start || found_key.offset +
1382                       btrfs_dev_extent_length(leaf, extent) < start);
1383                key = found_key;
1384                btrfs_release_path(path);
1385                goto again;
1386        } else if (ret == 0) {
1387                leaf = path->nodes[0];
1388                extent = btrfs_item_ptr(leaf, path->slots[0],
1389                                        struct btrfs_dev_extent);
1390        } else {
1391                btrfs_error(root->fs_info, ret, "Slot search failed");
1392                goto out;
1393        }
1394
1395        *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1396
1397        ret = btrfs_del_item(trans, root, path);
1398        if (ret) {
1399                btrfs_error(root->fs_info, ret,
1400                            "Failed to remove dev extent item");
1401        } else {
1402                trans->transaction->have_free_bgs = 1;
1403        }
1404out:
1405        btrfs_free_path(path);
1406        return ret;
1407}
1408
1409static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1410                                  struct btrfs_device *device,
1411                                  u64 chunk_tree, u64 chunk_objectid,
1412                                  u64 chunk_offset, u64 start, u64 num_bytes)
1413{
1414        int ret;
1415        struct btrfs_path *path;
1416        struct btrfs_root *root = device->dev_root;
1417        struct btrfs_dev_extent *extent;
1418        struct extent_buffer *leaf;
1419        struct btrfs_key key;
1420
1421        WARN_ON(!device->in_fs_metadata);
1422        WARN_ON(device->is_tgtdev_for_dev_replace);
1423        path = btrfs_alloc_path();
1424        if (!path)
1425                return -ENOMEM;
1426
1427        key.objectid = device->devid;
1428        key.offset = start;
1429        key.type = BTRFS_DEV_EXTENT_KEY;
1430        ret = btrfs_insert_empty_item(trans, root, path, &key,
1431                                      sizeof(*extent));
1432        if (ret)
1433                goto out;
1434
1435        leaf = path->nodes[0];
1436        extent = btrfs_item_ptr(leaf, path->slots[0],
1437                                struct btrfs_dev_extent);
1438        btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1439        btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1440        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1441
1442        write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1443                    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1444
1445        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1446        btrfs_mark_buffer_dirty(leaf);
1447out:
1448        btrfs_free_path(path);
1449        return ret;
1450}
1451
1452static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1453{
1454        struct extent_map_tree *em_tree;
1455        struct extent_map *em;
1456        struct rb_node *n;
1457        u64 ret = 0;
1458
1459        em_tree = &fs_info->mapping_tree.map_tree;
1460        read_lock(&em_tree->lock);
1461        n = rb_last(&em_tree->map);
1462        if (n) {
1463                em = rb_entry(n, struct extent_map, rb_node);
1464                ret = em->start + em->len;
1465        }
1466        read_unlock(&em_tree->lock);
1467
1468        return ret;
1469}
1470
1471static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1472                                    u64 *devid_ret)
1473{
1474        int ret;
1475        struct btrfs_key key;
1476        struct btrfs_key found_key;
1477        struct btrfs_path *path;
1478
1479        path = btrfs_alloc_path();
1480        if (!path)
1481                return -ENOMEM;
1482
1483        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1484        key.type = BTRFS_DEV_ITEM_KEY;
1485        key.offset = (u64)-1;
1486
1487        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1488        if (ret < 0)
1489                goto error;
1490
1491        BUG_ON(ret == 0); /* Corruption */
1492
1493        ret = btrfs_previous_item(fs_info->chunk_root, path,
1494                                  BTRFS_DEV_ITEMS_OBJECTID,
1495                                  BTRFS_DEV_ITEM_KEY);
1496        if (ret) {
1497                *devid_ret = 1;
1498        } else {
1499                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1500                                      path->slots[0]);
1501                *devid_ret = found_key.offset + 1;
1502        }
1503        ret = 0;
1504error:
1505        btrfs_free_path(path);
1506        return ret;
1507}
1508
1509/*
1510 * the device information is stored in the chunk root
1511 * the btrfs_device struct should be fully filled in
1512 */
1513static int btrfs_add_device(struct btrfs_trans_handle *trans,
1514                            struct btrfs_root *root,
1515                            struct btrfs_device *device)
1516{
1517        int ret;
1518        struct btrfs_path *path;
1519        struct btrfs_dev_item *dev_item;
1520        struct extent_buffer *leaf;
1521        struct btrfs_key key;
1522        unsigned long ptr;
1523
1524        root = root->fs_info->chunk_root;
1525
1526        path = btrfs_alloc_path();
1527        if (!path)
1528                return -ENOMEM;
1529
1530        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1531        key.type = BTRFS_DEV_ITEM_KEY;
1532        key.offset = device->devid;
1533
1534        ret = btrfs_insert_empty_item(trans, root, path, &key,
1535                                      sizeof(*dev_item));
1536        if (ret)
1537                goto out;
1538
1539        leaf = path->nodes[0];
1540        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1541
1542        btrfs_set_device_id(leaf, dev_item, device->devid);
1543        btrfs_set_device_generation(leaf, dev_item, 0);
1544        btrfs_set_device_type(leaf, dev_item, device->type);
1545        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1546        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1547        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1548        btrfs_set_device_total_bytes(leaf, dev_item,
1549                                     btrfs_device_get_disk_total_bytes(device));
1550        btrfs_set_device_bytes_used(leaf, dev_item,
1551                                    btrfs_device_get_bytes_used(device));
1552        btrfs_set_device_group(leaf, dev_item, 0);
1553        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1554        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1555        btrfs_set_device_start_offset(leaf, dev_item, 0);
1556
1557        ptr = btrfs_device_uuid(dev_item);
1558        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1559        ptr = btrfs_device_fsid(dev_item);
1560        write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1561        btrfs_mark_buffer_dirty(leaf);
1562
1563        ret = 0;
1564out:
1565        btrfs_free_path(path);
1566        return ret;
1567}
1568
1569/*
1570 * Function to update ctime/mtime for a given device path.
1571 * Mainly used for ctime/mtime based probe like libblkid.
1572 */
1573static void update_dev_time(char *path_name)
1574{
1575        struct file *filp;
1576
1577        filp = filp_open(path_name, O_RDWR, 0);
1578        if (IS_ERR(filp))
1579                return;
1580        file_update_time(filp);
1581        filp_close(filp, NULL);
1582        return;
1583}
1584
1585static int btrfs_rm_dev_item(struct btrfs_root *root,
1586                             struct btrfs_device *device)
1587{
1588        int ret;
1589        struct btrfs_path *path;
1590        struct btrfs_key key;
1591        struct btrfs_trans_handle *trans;
1592
1593        root = root->fs_info->chunk_root;
1594
1595        path = btrfs_alloc_path();
1596        if (!path)
1597                return -ENOMEM;
1598
1599        trans = btrfs_start_transaction(root, 0);
1600        if (IS_ERR(trans)) {
1601                btrfs_free_path(path);
1602                return PTR_ERR(trans);
1603        }
1604        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1605        key.type = BTRFS_DEV_ITEM_KEY;
1606        key.offset = device->devid;
1607
1608        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1609        if (ret < 0)
1610                goto out;
1611
1612        if (ret > 0) {
1613                ret = -ENOENT;
1614                goto out;
1615        }
1616
1617        ret = btrfs_del_item(trans, root, path);
1618        if (ret)
1619                goto out;
1620out:
1621        btrfs_free_path(path);
1622        btrfs_commit_transaction(trans, root);
1623        return ret;
1624}
1625
1626int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1627{
1628        struct btrfs_device *device;
1629        struct btrfs_device *next_device;
1630        struct block_device *bdev;
1631        struct buffer_head *bh = NULL;
1632        struct btrfs_super_block *disk_super;
1633        struct btrfs_fs_devices *cur_devices;
1634        u64 all_avail;
1635        u64 devid;
1636        u64 num_devices;
1637        u8 *dev_uuid;
1638        unsigned seq;
1639        int ret = 0;
1640        bool clear_super = false;
1641
1642        mutex_lock(&uuid_mutex);
1643
1644        do {
1645                seq = read_seqbegin(&root->fs_info->profiles_lock);
1646
1647                all_avail = root->fs_info->avail_data_alloc_bits |
1648                            root->fs_info->avail_system_alloc_bits |
1649                            root->fs_info->avail_metadata_alloc_bits;
1650        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1651
1652        num_devices = root->fs_info->fs_devices->num_devices;
1653        btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1654        if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1655                WARN_ON(num_devices < 1);
1656                num_devices--;
1657        }
1658        btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1659
1660        if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1661                ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1662                goto out;
1663        }
1664
1665        if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1666                ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1667                goto out;
1668        }
1669
1670        if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1671            root->fs_info->fs_devices->rw_devices <= 2) {
1672                ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1673                goto out;
1674        }
1675        if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1676            root->fs_info->fs_devices->rw_devices <= 3) {
1677                ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1678                goto out;
1679        }
1680
1681        if (strcmp(device_path, "missing") == 0) {
1682                struct list_head *devices;
1683                struct btrfs_device *tmp;
1684
1685                device = NULL;
1686                devices = &root->fs_info->fs_devices->devices;
1687                /*
1688                 * It is safe to read the devices since the volume_mutex
1689                 * is held.
1690                 */
1691                list_for_each_entry(tmp, devices, dev_list) {
1692                        if (tmp->in_fs_metadata &&
1693                            !tmp->is_tgtdev_for_dev_replace &&
1694                            !tmp->bdev) {
1695                                device = tmp;
1696                                break;
1697                        }
1698                }
1699                bdev = NULL;
1700                bh = NULL;
1701                disk_super = NULL;
1702                if (!device) {
1703                        ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1704                        goto out;
1705                }
1706        } else {
1707                ret = btrfs_get_bdev_and_sb(device_path,
1708                                            FMODE_WRITE | FMODE_EXCL,
1709                                            root->fs_info->bdev_holder, 0,
1710                                            &bdev, &bh);
1711                if (ret)
1712                        goto out;
1713                disk_super = (struct btrfs_super_block *)bh->b_data;
1714                devid = btrfs_stack_device_id(&disk_super->dev_item);
1715                dev_uuid = disk_super->dev_item.uuid;
1716                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1717                                           disk_super->fsid);
1718                if (!device) {
1719                        ret = -ENOENT;
1720                        goto error_brelse;
1721                }
1722        }
1723
1724        if (device->is_tgtdev_for_dev_replace) {
1725                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1726                goto error_brelse;
1727        }
1728
1729        if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1730                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1731                goto error_brelse;
1732        }
1733
1734        if (device->writeable) {
1735                lock_chunks(root);
1736                list_del_init(&device->dev_alloc_list);
1737                device->fs_devices->rw_devices--;
1738                unlock_chunks(root);
1739                clear_super = true;
1740        }
1741
1742        mutex_unlock(&uuid_mutex);
1743        ret = btrfs_shrink_device(device, 0);
1744        mutex_lock(&uuid_mutex);
1745        if (ret)
1746                goto error_undo;
1747
1748        /*
1749         * TODO: the superblock still includes this device in its num_devices
1750         * counter although write_all_supers() is not locked out. This
1751         * could give a filesystem state which requires a degraded mount.
1752         */
1753        ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1754        if (ret)
1755                goto error_undo;
1756
1757        device->in_fs_metadata = 0;
1758        btrfs_scrub_cancel_dev(root->fs_info, device);
1759
1760        /*
1761         * the device list mutex makes sure that we don't change
1762         * the device list while someone else is writing out all
1763         * the device supers. Whoever is writing all supers, should
1764         * lock the device list mutex before getting the number of
1765         * devices in the super block (super_copy). Conversely,
1766         * whoever updates the number of devices in the super block
1767         * (super_copy) should hold the device list mutex.
1768         */
1769
1770        cur_devices = device->fs_devices;
1771        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1772        list_del_rcu(&device->dev_list);
1773
1774        device->fs_devices->num_devices--;
1775        device->fs_devices->total_devices--;
1776
1777        if (device->missing)
1778                device->fs_devices->missing_devices--;
1779
1780        next_device = list_entry(root->fs_info->fs_devices->devices.next,
1781                                 struct btrfs_device, dev_list);
1782        if (device->bdev == root->fs_info->sb->s_bdev)
1783                root->fs_info->sb->s_bdev = next_device->bdev;
1784        if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1785                root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1786
1787        if (device->bdev) {
1788                device->fs_devices->open_devices--;
1789                /* remove sysfs entry */
1790                btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
1791        }
1792
1793        call_rcu(&device->rcu, free_device);
1794
1795        num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1796        btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1797        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1798
1799        if (cur_devices->open_devices == 0) {
1800                struct btrfs_fs_devices *fs_devices;
1801                fs_devices = root->fs_info->fs_devices;
1802                while (fs_devices) {
1803                        if (fs_devices->seed == cur_devices) {
1804                                fs_devices->seed = cur_devices->seed;
1805                                break;
1806                        }
1807                        fs_devices = fs_devices->seed;
1808                }
1809                cur_devices->seed = NULL;
1810                __btrfs_close_devices(cur_devices);
1811                free_fs_devices(cur_devices);
1812        }
1813
1814        root->fs_info->num_tolerated_disk_barrier_failures =
1815                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1816
1817        /*
1818         * at this point, the device is zero sized.  We want to
1819         * remove it from the devices list and zero out the old super
1820         */
1821        if (clear_super && disk_super) {
1822                u64 bytenr;
1823                int i;
1824
1825                /* make sure this device isn't detected as part of
1826                 * the FS anymore
1827                 */
1828                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1829                set_buffer_dirty(bh);
1830                sync_dirty_buffer(bh);
1831
1832                /* clear the mirror copies of super block on the disk
1833                 * being removed, 0th copy is been taken care above and
1834                 * the below would take of the rest
1835                 */
1836                for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1837                        bytenr = btrfs_sb_offset(i);
1838                        if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1839                                        i_size_read(bdev->bd_inode))
1840                                break;
1841
1842                        brelse(bh);
1843                        bh = __bread(bdev, bytenr / 4096,
1844                                        BTRFS_SUPER_INFO_SIZE);
1845                        if (!bh)
1846                                continue;
1847
1848                        disk_super = (struct btrfs_super_block *)bh->b_data;
1849
1850                        if (btrfs_super_bytenr(disk_super) != bytenr ||
1851                                btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1852                                continue;
1853                        }
1854                        memset(&disk_super->magic, 0,
1855                                                sizeof(disk_super->magic));
1856                        set_buffer_dirty(bh);
1857                        sync_dirty_buffer(bh);
1858                }
1859        }
1860
1861        ret = 0;
1862
1863        if (bdev) {
1864                /* Notify udev that device has changed */
1865                btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1866
1867                /* Update ctime/mtime for device path for libblkid */
1868                update_dev_time(device_path);
1869        }
1870
1871error_brelse:
1872        brelse(bh);
1873        if (bdev)
1874                blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1875out:
1876        mutex_unlock(&uuid_mutex);
1877        return ret;
1878error_undo:
1879        if (device->writeable) {
1880                lock_chunks(root);
1881                list_add(&device->dev_alloc_list,
1882                         &root->fs_info->fs_devices->alloc_list);
1883                device->fs_devices->rw_devices++;
1884                unlock_chunks(root);
1885        }
1886        goto error_brelse;
1887}
1888
1889void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1890                                        struct btrfs_device *srcdev)
1891{
1892        struct btrfs_fs_devices *fs_devices;
1893
1894        WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1895
1896        /*
1897         * in case of fs with no seed, srcdev->fs_devices will point
1898         * to fs_devices of fs_info. However when the dev being replaced is
1899         * a seed dev it will point to the seed's local fs_devices. In short
1900         * srcdev will have its correct fs_devices in both the cases.
1901         */
1902        fs_devices = srcdev->fs_devices;
1903
1904        list_del_rcu(&srcdev->dev_list);
1905        list_del_rcu(&srcdev->dev_alloc_list);
1906        fs_devices->num_devices--;
1907        if (srcdev->missing)
1908                fs_devices->missing_devices--;
1909
1910        if (srcdev->writeable) {
1911                fs_devices->rw_devices--;
1912                /* zero out the old super if it is writable */
1913                btrfs_scratch_superblock(srcdev);
1914        }
1915
1916        if (srcdev->bdev)
1917                fs_devices->open_devices--;
1918}
1919
1920void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1921                                      struct btrfs_device *srcdev)
1922{
1923        struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1924
1925        call_rcu(&srcdev->rcu, free_device);
1926
1927        /*
1928         * unless fs_devices is seed fs, num_devices shouldn't go
1929         * zero
1930         */
1931        BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1932
1933        /* if this is no devs we rather delete the fs_devices */
1934        if (!fs_devices->num_devices) {
1935                struct btrfs_fs_devices *tmp_fs_devices;
1936
1937                tmp_fs_devices = fs_info->fs_devices;
1938                while (tmp_fs_devices) {
1939                        if (tmp_fs_devices->seed == fs_devices) {
1940                                tmp_fs_devices->seed = fs_devices->seed;
1941                                break;
1942                        }
1943                        tmp_fs_devices = tmp_fs_devices->seed;
1944                }
1945                fs_devices->seed = NULL;
1946                __btrfs_close_devices(fs_devices);
1947                free_fs_devices(fs_devices);
1948        }
1949}
1950
1951void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1952                                      struct btrfs_device *tgtdev)
1953{
1954        struct btrfs_device *next_device;
1955
1956        mutex_lock(&uuid_mutex);
1957        WARN_ON(!tgtdev);
1958        mutex_lock(&fs_info->fs_devices->device_list_mutex);
1959
1960        btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1961
1962        if (tgtdev->bdev) {
1963                btrfs_scratch_superblock(tgtdev);
1964                fs_info->fs_devices->open_devices--;
1965        }
1966        fs_info->fs_devices->num_devices--;
1967
1968        next_device = list_entry(fs_info->fs_devices->devices.next,
1969                                 struct btrfs_device, dev_list);
1970        if (tgtdev->bdev == fs_info->sb->s_bdev)
1971                fs_info->sb->s_bdev = next_device->bdev;
1972        if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1973                fs_info->fs_devices->latest_bdev = next_device->bdev;
1974        list_del_rcu(&tgtdev->dev_list);
1975
1976        call_rcu(&tgtdev->rcu, free_device);
1977
1978        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1979        mutex_unlock(&uuid_mutex);
1980}
1981
1982static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1983                                     struct btrfs_device **device)
1984{
1985        int ret = 0;
1986        struct btrfs_super_block *disk_super;
1987        u64 devid;
1988        u8 *dev_uuid;
1989        struct block_device *bdev;
1990        struct buffer_head *bh;
1991
1992        *device = NULL;
1993        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1994                                    root->fs_info->bdev_holder, 0, &bdev, &bh);
1995        if (ret)
1996                return ret;
1997        disk_super = (struct btrfs_super_block *)bh->b_data;
1998        devid = btrfs_stack_device_id(&disk_super->dev_item);
1999        dev_uuid = disk_super->dev_item.uuid;
2000        *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2001                                    disk_super->fsid);
2002        brelse(bh);
2003        if (!*device)
2004                ret = -ENOENT;
2005        blkdev_put(bdev, FMODE_READ);
2006        return ret;
2007}
2008
2009int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2010                                         char *device_path,
2011                                         struct btrfs_device **device)
2012{
2013        *device = NULL;
2014        if (strcmp(device_path, "missing") == 0) {
2015                struct list_head *devices;
2016                struct btrfs_device *tmp;
2017
2018                devices = &root->fs_info->fs_devices->devices;
2019                /*
2020                 * It is safe to read the devices since the volume_mutex
2021                 * is held by the caller.
2022                 */
2023                list_for_each_entry(tmp, devices, dev_list) {
2024                        if (tmp->in_fs_metadata && !tmp->bdev) {
2025                                *device = tmp;
2026                                break;
2027                        }
2028                }
2029
2030                if (!*device) {
2031                        btrfs_err(root->fs_info, "no missing device found");
2032                        return -ENOENT;
2033                }
2034
2035                return 0;
2036        } else {
2037                return btrfs_find_device_by_path(root, device_path, device);
2038        }
2039}
2040
2041/*
2042 * does all the dirty work required for changing file system's UUID.
2043 */
2044static int btrfs_prepare_sprout(struct btrfs_root *root)
2045{
2046        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2047        struct btrfs_fs_devices *old_devices;
2048        struct btrfs_fs_devices *seed_devices;
2049        struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2050        struct btrfs_device *device;
2051        u64 super_flags;
2052
2053        BUG_ON(!mutex_is_locked(&uuid_mutex));
2054        if (!fs_devices->seeding)
2055                return -EINVAL;
2056
2057        seed_devices = __alloc_fs_devices();
2058        if (IS_ERR(seed_devices))
2059                return PTR_ERR(seed_devices);
2060
2061        old_devices = clone_fs_devices(fs_devices);
2062        if (IS_ERR(old_devices)) {
2063                kfree(seed_devices);
2064                return PTR_ERR(old_devices);
2065        }
2066
2067        list_add(&old_devices->list, &fs_uuids);
2068
2069        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2070        seed_devices->opened = 1;
2071        INIT_LIST_HEAD(&seed_devices->devices);
2072        INIT_LIST_HEAD(&seed_devices->alloc_list);
2073        mutex_init(&seed_devices->device_list_mutex);
2074
2075        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2076        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2077                              synchronize_rcu);
2078        list_for_each_entry(device, &seed_devices->devices, dev_list)
2079                device->fs_devices = seed_devices;
2080
2081        lock_chunks(root);
2082        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2083        unlock_chunks(root);
2084
2085        fs_devices->seeding = 0;
2086        fs_devices->num_devices = 0;
2087        fs_devices->open_devices = 0;
2088        fs_devices->missing_devices = 0;
2089        fs_devices->rotating = 0;
2090        fs_devices->seed = seed_devices;
2091
2092        generate_random_uuid(fs_devices->fsid);
2093        memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2094        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2095        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2096
2097        super_flags = btrfs_super_flags(disk_super) &
2098                      ~BTRFS_SUPER_FLAG_SEEDING;
2099        btrfs_set_super_flags(disk_super, super_flags);
2100
2101        return 0;
2102}
2103
2104/*
2105 * strore the expected generation for seed devices in device items.
2106 */
2107static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2108                               struct btrfs_root *root)
2109{
2110        struct btrfs_path *path;
2111        struct extent_buffer *leaf;
2112        struct btrfs_dev_item *dev_item;
2113        struct btrfs_device *device;
2114        struct btrfs_key key;
2115        u8 fs_uuid[BTRFS_UUID_SIZE];
2116        u8 dev_uuid[BTRFS_UUID_SIZE];
2117        u64 devid;
2118        int ret;
2119
2120        path = btrfs_alloc_path();
2121        if (!path)
2122                return -ENOMEM;
2123
2124        root = root->fs_info->chunk_root;
2125        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2126        key.offset = 0;
2127        key.type = BTRFS_DEV_ITEM_KEY;
2128
2129        while (1) {
2130                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2131                if (ret < 0)
2132                        goto error;
2133
2134                leaf = path->nodes[0];
2135next_slot:
2136                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2137                        ret = btrfs_next_leaf(root, path);
2138                        if (ret > 0)
2139                                break;
2140                        if (ret < 0)
2141                                goto error;
2142                        leaf = path->nodes[0];
2143                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2144                        btrfs_release_path(path);
2145                        continue;
2146                }
2147
2148                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2149                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2150                    key.type != BTRFS_DEV_ITEM_KEY)
2151                        break;
2152
2153                dev_item = btrfs_item_ptr(leaf, path->slots[0],
2154                                          struct btrfs_dev_item);
2155                devid = btrfs_device_id(leaf, dev_item);
2156                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2157                                   BTRFS_UUID_SIZE);
2158                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2159                                   BTRFS_UUID_SIZE);
2160                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2161                                           fs_uuid);
2162                BUG_ON(!device); /* Logic error */
2163
2164                if (device->fs_devices->seeding) {
2165                        btrfs_set_device_generation(leaf, dev_item,
2166                                                    device->generation);
2167                        btrfs_mark_buffer_dirty(leaf);
2168                }
2169
2170                path->slots[0]++;
2171                goto next_slot;
2172        }
2173        ret = 0;
2174error:
2175        btrfs_free_path(path);
2176        return ret;
2177}
2178
2179int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2180{
2181        struct request_queue *q;
2182        struct btrfs_trans_handle *trans;
2183        struct btrfs_device *device;
2184        struct block_device *bdev;
2185        struct list_head *devices;
2186        struct super_block *sb = root->fs_info->sb;
2187        struct rcu_string *name;
2188        u64 tmp;
2189        int seeding_dev = 0;
2190        int ret = 0;
2191
2192        if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2193                return -EROFS;
2194
2195        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2196                                  root->fs_info->bdev_holder);
2197        if (IS_ERR(bdev))
2198                return PTR_ERR(bdev);
2199
2200        if (root->fs_info->fs_devices->seeding) {
2201                seeding_dev = 1;
2202                down_write(&sb->s_umount);
2203                mutex_lock(&uuid_mutex);
2204        }
2205
2206        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2207
2208        devices = &root->fs_info->fs_devices->devices;
2209
2210        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2211        list_for_each_entry(device, devices, dev_list) {
2212                if (device->bdev == bdev) {
2213                        ret = -EEXIST;
2214                        mutex_unlock(
2215                                &root->fs_info->fs_devices->device_list_mutex);
2216                        goto error;
2217                }
2218        }
2219        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2220
2221        device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2222        if (IS_ERR(device)) {
2223                /* we can safely leave the fs_devices entry around */
2224                ret = PTR_ERR(device);
2225                goto error;
2226        }
2227
2228        name = rcu_string_strdup(device_path, GFP_NOFS);
2229        if (!name) {
2230                kfree(device);
2231                ret = -ENOMEM;
2232                goto error;
2233        }
2234        rcu_assign_pointer(device->name, name);
2235
2236        trans = btrfs_start_transaction(root, 0);
2237        if (IS_ERR(trans)) {
2238                rcu_string_free(device->name);
2239                kfree(device);
2240                ret = PTR_ERR(trans);
2241                goto error;
2242        }
2243
2244        q = bdev_get_queue(bdev);
2245        if (blk_queue_discard(q))
2246                device->can_discard = 1;
2247        device->writeable = 1;
2248        device->generation = trans->transid;
2249        device->io_width = root->sectorsize;
2250        device->io_align = root->sectorsize;
2251        device->sector_size = root->sectorsize;
2252        device->total_bytes = i_size_read(bdev->bd_inode);
2253        device->disk_total_bytes = device->total_bytes;
2254        device->commit_total_bytes = device->total_bytes;
2255        device->dev_root = root->fs_info->dev_root;
2256        device->bdev = bdev;
2257        device->in_fs_metadata = 1;
2258        device->is_tgtdev_for_dev_replace = 0;
2259        device->mode = FMODE_EXCL;
2260        device->dev_stats_valid = 1;
2261        set_blocksize(device->bdev, 4096);
2262
2263        if (seeding_dev) {
2264                sb->s_flags &= ~MS_RDONLY;
2265                ret = btrfs_prepare_sprout(root);
2266                BUG_ON(ret); /* -ENOMEM */
2267        }
2268
2269        device->fs_devices = root->fs_info->fs_devices;
2270
2271        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2272        lock_chunks(root);
2273        list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2274        list_add(&device->dev_alloc_list,
2275                 &root->fs_info->fs_devices->alloc_list);
2276        root->fs_info->fs_devices->num_devices++;
2277        root->fs_info->fs_devices->open_devices++;
2278        root->fs_info->fs_devices->rw_devices++;
2279        root->fs_info->fs_devices->total_devices++;
2280        root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2281
2282        spin_lock(&root->fs_info->free_chunk_lock);
2283        root->fs_info->free_chunk_space += device->total_bytes;
2284        spin_unlock(&root->fs_info->free_chunk_lock);
2285
2286        if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2287                root->fs_info->fs_devices->rotating = 1;
2288
2289        tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2290        btrfs_set_super_total_bytes(root->fs_info->super_copy,
2291                                    tmp + device->total_bytes);
2292
2293        tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2294        btrfs_set_super_num_devices(root->fs_info->super_copy,
2295                                    tmp + 1);
2296
2297        /* add sysfs device entry */
2298        btrfs_kobj_add_device(root->fs_info->fs_devices, device);
2299
2300        /*
2301         * we've got more storage, clear any full flags on the space
2302         * infos
2303         */
2304        btrfs_clear_space_info_full(root->fs_info);
2305
2306        unlock_chunks(root);
2307        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308
2309        if (seeding_dev) {
2310                lock_chunks(root);
2311                ret = init_first_rw_device(trans, root, device);
2312                unlock_chunks(root);
2313                if (ret) {
2314                        btrfs_abort_transaction(trans, root, ret);
2315                        goto error_trans;
2316                }
2317        }
2318
2319        ret = btrfs_add_device(trans, root, device);
2320        if (ret) {
2321                btrfs_abort_transaction(trans, root, ret);
2322                goto error_trans;
2323        }
2324
2325        if (seeding_dev) {
2326                char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2327
2328                ret = btrfs_finish_sprout(trans, root);
2329                if (ret) {
2330                        btrfs_abort_transaction(trans, root, ret);
2331                        goto error_trans;
2332                }
2333
2334                /* Sprouting would change fsid of the mounted root,
2335                 * so rename the fsid on the sysfs
2336                 */
2337                snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2338                                                root->fs_info->fsid);
2339                if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2340                                                                fsid_buf))
2341                        pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2342        }
2343
2344        root->fs_info->num_tolerated_disk_barrier_failures =
2345                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2346        ret = btrfs_commit_transaction(trans, root);
2347
2348        if (seeding_dev) {
2349                mutex_unlock(&uuid_mutex);
2350                up_write(&sb->s_umount);
2351
2352                if (ret) /* transaction commit */
2353                        return ret;
2354
2355                ret = btrfs_relocate_sys_chunks(root);
2356                if (ret < 0)
2357                        btrfs_error(root->fs_info, ret,
2358                                    "Failed to relocate sys chunks after "
2359                                    "device initialization. This can be fixed "
2360                                    "using the \"btrfs balance\" command.");
2361                trans = btrfs_attach_transaction(root);
2362                if (IS_ERR(trans)) {
2363                        if (PTR_ERR(trans) == -ENOENT)
2364                                return 0;
2365                        return PTR_ERR(trans);
2366                }
2367                ret = btrfs_commit_transaction(trans, root);
2368        }
2369
2370        /* Update ctime/mtime for libblkid */
2371        update_dev_time(device_path);
2372        return ret;
2373
2374error_trans:
2375        btrfs_end_transaction(trans, root);
2376        rcu_string_free(device->name);
2377        btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
2378        kfree(device);
2379error:
2380        blkdev_put(bdev, FMODE_EXCL);
2381        if (seeding_dev) {
2382                mutex_unlock(&uuid_mutex);
2383                up_write(&sb->s_umount);
2384        }
2385        return ret;
2386}
2387
2388int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2389                                  struct btrfs_device *srcdev,
2390                                  struct btrfs_device **device_out)
2391{
2392        struct request_queue *q;
2393        struct btrfs_device *device;
2394        struct block_device *bdev;
2395        struct btrfs_fs_info *fs_info = root->fs_info;
2396        struct list_head *devices;
2397        struct rcu_string *name;
2398        u64 devid = BTRFS_DEV_REPLACE_DEVID;
2399        int ret = 0;
2400
2401        *device_out = NULL;
2402        if (fs_info->fs_devices->seeding) {
2403                btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2404                return -EINVAL;
2405        }
2406
2407        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2408                                  fs_info->bdev_holder);
2409        if (IS_ERR(bdev)) {
2410                btrfs_err(fs_info, "target device %s is invalid!", device_path);
2411                return PTR_ERR(bdev);
2412        }
2413
2414        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2415
2416        devices = &fs_info->fs_devices->devices;
2417        list_for_each_entry(device, devices, dev_list) {
2418                if (device->bdev == bdev) {
2419                        btrfs_err(fs_info, "target device is in the filesystem!");
2420                        ret = -EEXIST;
2421                        goto error;
2422                }
2423        }
2424
2425
2426        if (i_size_read(bdev->bd_inode) <
2427            btrfs_device_get_total_bytes(srcdev)) {
2428                btrfs_err(fs_info, "target device is smaller than source device!");
2429                ret = -EINVAL;
2430                goto error;
2431        }
2432
2433
2434        device = btrfs_alloc_device(NULL, &devid, NULL);
2435        if (IS_ERR(device)) {
2436                ret = PTR_ERR(device);
2437                goto error;
2438        }
2439
2440        name = rcu_string_strdup(device_path, GFP_NOFS);
2441        if (!name) {
2442                kfree(device);
2443                ret = -ENOMEM;
2444                goto error;
2445        }
2446        rcu_assign_pointer(device->name, name);
2447
2448        q = bdev_get_queue(bdev);
2449        if (blk_queue_discard(q))
2450                device->can_discard = 1;
2451        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2452        device->writeable = 1;
2453        device->generation = 0;
2454        device->io_width = root->sectorsize;
2455        device->io_align = root->sectorsize;
2456        device->sector_size = root->sectorsize;
2457        device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2458        device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2459        device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2460        ASSERT(list_empty(&srcdev->resized_list));
2461        device->commit_total_bytes = srcdev->commit_total_bytes;
2462        device->commit_bytes_used = device->bytes_used;
2463        device->dev_root = fs_info->dev_root;
2464        device->bdev = bdev;
2465        device->in_fs_metadata = 1;
2466        device->is_tgtdev_for_dev_replace = 1;
2467        device->mode = FMODE_EXCL;
2468        device->dev_stats_valid = 1;
2469        set_blocksize(device->bdev, 4096);
2470        device->fs_devices = fs_info->fs_devices;
2471        list_add(&device->dev_list, &fs_info->fs_devices->devices);
2472        fs_info->fs_devices->num_devices++;
2473        fs_info->fs_devices->open_devices++;
2474        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2475
2476        *device_out = device;
2477        return ret;
2478
2479error:
2480        blkdev_put(bdev, FMODE_EXCL);
2481        return ret;
2482}
2483
2484void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2485                                              struct btrfs_device *tgtdev)
2486{
2487        WARN_ON(fs_info->fs_devices->rw_devices == 0);
2488        tgtdev->io_width = fs_info->dev_root->sectorsize;
2489        tgtdev->io_align = fs_info->dev_root->sectorsize;
2490        tgtdev->sector_size = fs_info->dev_root->sectorsize;
2491        tgtdev->dev_root = fs_info->dev_root;
2492        tgtdev->in_fs_metadata = 1;
2493}
2494
2495static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2496                                        struct btrfs_device *device)
2497{
2498        int ret;
2499        struct btrfs_path *path;
2500        struct btrfs_root *root;
2501        struct btrfs_dev_item *dev_item;
2502        struct extent_buffer *leaf;
2503        struct btrfs_key key;
2504
2505        root = device->dev_root->fs_info->chunk_root;
2506
2507        path = btrfs_alloc_path();
2508        if (!path)
2509                return -ENOMEM;
2510
2511        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2512        key.type = BTRFS_DEV_ITEM_KEY;
2513        key.offset = device->devid;
2514
2515        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2516        if (ret < 0)
2517                goto out;
2518
2519        if (ret > 0) {
2520                ret = -ENOENT;
2521                goto out;
2522        }
2523
2524        leaf = path->nodes[0];
2525        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2526
2527        btrfs_set_device_id(leaf, dev_item, device->devid);
2528        btrfs_set_device_type(leaf, dev_item, device->type);
2529        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2530        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2531        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2532        btrfs_set_device_total_bytes(leaf, dev_item,
2533                                     btrfs_device_get_disk_total_bytes(device));
2534        btrfs_set_device_bytes_used(leaf, dev_item,
2535                                    btrfs_device_get_bytes_used(device));
2536        btrfs_mark_buffer_dirty(leaf);
2537
2538out:
2539        btrfs_free_path(path);
2540        return ret;
2541}
2542
2543int btrfs_grow_device(struct btrfs_trans_handle *trans,
2544                      struct btrfs_device *device, u64 new_size)
2545{
2546        struct btrfs_super_block *super_copy =
2547                device->dev_root->fs_info->super_copy;
2548        struct btrfs_fs_devices *fs_devices;
2549        u64 old_total;
2550        u64 diff;
2551
2552        if (!device->writeable)
2553                return -EACCES;
2554
2555        lock_chunks(device->dev_root);
2556        old_total = btrfs_super_total_bytes(super_copy);
2557        diff = new_size - device->total_bytes;
2558
2559        if (new_size <= device->total_bytes ||
2560            device->is_tgtdev_for_dev_replace) {
2561                unlock_chunks(device->dev_root);
2562                return -EINVAL;
2563        }
2564
2565        fs_devices = device->dev_root->fs_info->fs_devices;
2566
2567        btrfs_set_super_total_bytes(super_copy, old_total + diff);
2568        device->fs_devices->total_rw_bytes += diff;
2569
2570        btrfs_device_set_total_bytes(device, new_size);
2571        btrfs_device_set_disk_total_bytes(device, new_size);
2572        btrfs_clear_space_info_full(device->dev_root->fs_info);
2573        if (list_empty(&device->resized_list))
2574                list_add_tail(&device->resized_list,
2575                              &fs_devices->resized_devices);
2576        unlock_chunks(device->dev_root);
2577
2578        return btrfs_update_device(trans, device);
2579}
2580
2581static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2582                            struct btrfs_root *root, u64 chunk_objectid,
2583                            u64 chunk_offset)
2584{
2585        int ret;
2586        struct btrfs_path *path;
2587        struct btrfs_key key;
2588
2589        root = root->fs_info->chunk_root;
2590        path = btrfs_alloc_path();
2591        if (!path)
2592                return -ENOMEM;
2593
2594        key.objectid = chunk_objectid;
2595        key.offset = chunk_offset;
2596        key.type = BTRFS_CHUNK_ITEM_KEY;
2597
2598        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2599        if (ret < 0)
2600                goto out;
2601        else if (ret > 0) { /* Logic error or corruption */
2602                btrfs_error(root->fs_info, -ENOENT,
2603                            "Failed lookup while freeing chunk.");
2604                ret = -ENOENT;
2605                goto out;
2606        }
2607
2608        ret = btrfs_del_item(trans, root, path);
2609        if (ret < 0)
2610                btrfs_error(root->fs_info, ret,
2611                            "Failed to delete chunk item.");
2612out:
2613        btrfs_free_path(path);
2614        return ret;
2615}
2616
2617static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2618                        chunk_offset)
2619{
2620        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2621        struct btrfs_disk_key *disk_key;
2622        struct btrfs_chunk *chunk;
2623        u8 *ptr;
2624        int ret = 0;
2625        u32 num_stripes;
2626        u32 array_size;
2627        u32 len = 0;
2628        u32 cur;
2629        struct btrfs_key key;
2630
2631        lock_chunks(root);
2632        array_size = btrfs_super_sys_array_size(super_copy);
2633
2634        ptr = super_copy->sys_chunk_array;
2635        cur = 0;
2636
2637        while (cur < array_size) {
2638                disk_key = (struct btrfs_disk_key *)ptr;
2639                btrfs_disk_key_to_cpu(&key, disk_key);
2640
2641                len = sizeof(*disk_key);
2642
2643                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2644                        chunk = (struct btrfs_chunk *)(ptr + len);
2645                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2646                        len += btrfs_chunk_item_size(num_stripes);
2647                } else {
2648                        ret = -EIO;
2649                        break;
2650                }
2651                if (key.objectid == chunk_objectid &&
2652                    key.offset == chunk_offset) {
2653                        memmove(ptr, ptr + len, array_size - (cur + len));
2654                        array_size -= len;
2655                        btrfs_set_super_sys_array_size(super_copy, array_size);
2656                } else {
2657                        ptr += len;
2658                        cur += len;
2659                }
2660        }
2661        unlock_chunks(root);
2662        return ret;
2663}
2664
2665int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2666                       struct btrfs_root *root, u64 chunk_offset)
2667{
2668        struct extent_map_tree *em_tree;
2669        struct extent_map *em;
2670        struct btrfs_root *extent_root = root->fs_info->extent_root;
2671        struct map_lookup *map;
2672        u64 dev_extent_len = 0;
2673        u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2674        int i, ret = 0;
2675
2676        /* Just in case */
2677        root = root->fs_info->chunk_root;
2678        em_tree = &root->fs_info->mapping_tree.map_tree;
2679
2680        read_lock(&em_tree->lock);
2681        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2682        read_unlock(&em_tree->lock);
2683
2684        if (!em || em->start > chunk_offset ||
2685            em->start + em->len < chunk_offset) {
2686                /*
2687                 * This is a logic error, but we don't want to just rely on the
2688                 * user having built with ASSERT enabled, so if ASSERT doens't
2689                 * do anything we still error out.
2690                 */
2691                ASSERT(0);
2692                if (em)
2693                        free_extent_map(em);
2694                return -EINVAL;
2695        }
2696        map = (struct map_lookup *)em->bdev;
2697        lock_chunks(root->fs_info->chunk_root);
2698        check_system_chunk(trans, extent_root, map->type);
2699        unlock_chunks(root->fs_info->chunk_root);
2700
2701        for (i = 0; i < map->num_stripes; i++) {
2702                struct btrfs_device *device = map->stripes[i].dev;
2703                ret = btrfs_free_dev_extent(trans, device,
2704                                            map->stripes[i].physical,
2705                                            &dev_extent_len);
2706                if (ret) {
2707                        btrfs_abort_transaction(trans, root, ret);
2708                        goto out;
2709                }
2710
2711                if (device->bytes_used > 0) {
2712                        lock_chunks(root);
2713                        btrfs_device_set_bytes_used(device,
2714                                        device->bytes_used - dev_extent_len);
2715                        spin_lock(&root->fs_info->free_chunk_lock);
2716                        root->fs_info->free_chunk_space += dev_extent_len;
2717                        spin_unlock(&root->fs_info->free_chunk_lock);
2718                        btrfs_clear_space_info_full(root->fs_info);
2719                        unlock_chunks(root);
2720                }
2721
2722                if (map->stripes[i].dev) {
2723                        ret = btrfs_update_device(trans, map->stripes[i].dev);
2724                        if (ret) {
2725                                btrfs_abort_transaction(trans, root, ret);
2726                                goto out;
2727                        }
2728                }
2729        }
2730        ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2731        if (ret) {
2732                btrfs_abort_transaction(trans, root, ret);
2733                goto out;
2734        }
2735
2736        trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2737
2738        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2739                ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2740                if (ret) {
2741                        btrfs_abort_transaction(trans, root, ret);
2742                        goto out;
2743                }
2744        }
2745
2746        ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2747        if (ret) {
2748                btrfs_abort_transaction(trans, extent_root, ret);
2749                goto out;
2750        }
2751
2752out:
2753        /* once for us */
2754        free_extent_map(em);
2755        return ret;
2756}
2757
2758static int btrfs_relocate_chunk(struct btrfs_root *root,
2759                                u64 chunk_objectid,
2760                                u64 chunk_offset)
2761{
2762        struct btrfs_root *extent_root;
2763        struct btrfs_trans_handle *trans;
2764        int ret;
2765
2766        root = root->fs_info->chunk_root;
2767        extent_root = root->fs_info->extent_root;
2768
2769        /*
2770         * Prevent races with automatic removal of unused block groups.
2771         * After we relocate and before we remove the chunk with offset
2772         * chunk_offset, automatic removal of the block group can kick in,
2773         * resulting in a failure when calling btrfs_remove_chunk() below.
2774         *
2775         * Make sure to acquire this mutex before doing a tree search (dev
2776         * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2777         * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2778         * we release the path used to search the chunk/dev tree and before
2779         * the current task acquires this mutex and calls us.
2780         */
2781        ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2782
2783        ret = btrfs_can_relocate(extent_root, chunk_offset);
2784        if (ret)
2785                return -ENOSPC;
2786
2787        /* step one, relocate all the extents inside this chunk */
2788        ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2789        if (ret)
2790                return ret;
2791
2792        trans = btrfs_start_transaction(root, 0);
2793        if (IS_ERR(trans)) {
2794                ret = PTR_ERR(trans);
2795                btrfs_std_error(root->fs_info, ret);
2796                return ret;
2797        }
2798
2799        /*
2800         * step two, delete the device extents and the
2801         * chunk tree entries
2802         */
2803        ret = btrfs_remove_chunk(trans, root, chunk_offset);
2804        btrfs_end_transaction(trans, root);
2805        return ret;
2806}
2807
2808static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2809{
2810        struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2811        struct btrfs_path *path;
2812        struct extent_buffer *leaf;
2813        struct btrfs_chunk *chunk;
2814        struct btrfs_key key;
2815        struct btrfs_key found_key;
2816        u64 chunk_type;
2817        bool retried = false;
2818        int failed = 0;
2819        int ret;
2820
2821        path = btrfs_alloc_path();
2822        if (!path)
2823                return -ENOMEM;
2824
2825again:
2826        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2827        key.offset = (u64)-1;
2828        key.type = BTRFS_CHUNK_ITEM_KEY;
2829
2830        while (1) {
2831                mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2832                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2833                if (ret < 0) {
2834                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2835                        goto error;
2836                }
2837                BUG_ON(ret == 0); /* Corruption */
2838
2839                ret = btrfs_previous_item(chunk_root, path, key.objectid,
2840                                          key.type);
2841                if (ret)
2842                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2843                if (ret < 0)
2844                        goto error;
2845                if (ret > 0)
2846                        break;
2847
2848                leaf = path->nodes[0];
2849                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2850
2851                chunk = btrfs_item_ptr(leaf, path->slots[0],
2852                                       struct btrfs_chunk);
2853                chunk_type = btrfs_chunk_type(leaf, chunk);
2854                btrfs_release_path(path);
2855
2856                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2857                        ret = btrfs_relocate_chunk(chunk_root,
2858                                                   found_key.objectid,
2859                                                   found_key.offset);
2860                        if (ret == -ENOSPC)
2861                                failed++;
2862                        else
2863                                BUG_ON(ret);
2864                }
2865                mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2866
2867                if (found_key.offset == 0)
2868                        break;
2869                key.offset = found_key.offset - 1;
2870        }
2871        ret = 0;
2872        if (failed && !retried) {
2873                failed = 0;
2874                retried = true;
2875                goto again;
2876        } else if (WARN_ON(failed && retried)) {
2877                ret = -ENOSPC;
2878        }
2879error:
2880        btrfs_free_path(path);
2881        return ret;
2882}
2883
2884static int insert_balance_item(struct btrfs_root *root,
2885                               struct btrfs_balance_control *bctl)
2886{
2887        struct btrfs_trans_handle *trans;
2888        struct btrfs_balance_item *item;
2889        struct btrfs_disk_balance_args disk_bargs;
2890        struct btrfs_path *path;
2891        struct extent_buffer *leaf;
2892        struct btrfs_key key;
2893        int ret, err;
2894
2895        path = btrfs_alloc_path();
2896        if (!path)
2897                return -ENOMEM;
2898
2899        trans = btrfs_start_transaction(root, 0);
2900        if (IS_ERR(trans)) {
2901                btrfs_free_path(path);
2902                return PTR_ERR(trans);
2903        }
2904
2905        key.objectid = BTRFS_BALANCE_OBJECTID;
2906        key.type = BTRFS_BALANCE_ITEM_KEY;
2907        key.offset = 0;
2908
2909        ret = btrfs_insert_empty_item(trans, root, path, &key,
2910                                      sizeof(*item));
2911        if (ret)
2912                goto out;
2913
2914        leaf = path->nodes[0];
2915        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2916
2917        memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2918
2919        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2920        btrfs_set_balance_data(leaf, item, &disk_bargs);
2921        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2922        btrfs_set_balance_meta(leaf, item, &disk_bargs);
2923        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2924        btrfs_set_balance_sys(leaf, item, &disk_bargs);
2925
2926        btrfs_set_balance_flags(leaf, item, bctl->flags);
2927
2928        btrfs_mark_buffer_dirty(leaf);
2929out:
2930        btrfs_free_path(path);
2931        err = btrfs_commit_transaction(trans, root);
2932        if (err && !ret)
2933                ret = err;
2934        return ret;
2935}
2936
2937static int del_balance_item(struct btrfs_root *root)
2938{
2939        struct btrfs_trans_handle *trans;
2940        struct btrfs_path *path;
2941        struct btrfs_key key;
2942        int ret, err;
2943
2944        path = btrfs_alloc_path();
2945        if (!path)
2946                return -ENOMEM;
2947
2948        trans = btrfs_start_transaction(root, 0);
2949        if (IS_ERR(trans)) {
2950                btrfs_free_path(path);
2951                return PTR_ERR(trans);
2952        }
2953
2954        key.objectid = BTRFS_BALANCE_OBJECTID;
2955        key.type = BTRFS_BALANCE_ITEM_KEY;
2956        key.offset = 0;
2957
2958        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2959        if (ret < 0)
2960                goto out;
2961        if (ret > 0) {
2962                ret = -ENOENT;
2963                goto out;
2964        }
2965
2966        ret = btrfs_del_item(trans, root, path);
2967out:
2968        btrfs_free_path(path);
2969        err = btrfs_commit_transaction(trans, root);
2970        if (err && !ret)
2971                ret = err;
2972        return ret;
2973}
2974
2975/*
2976 * This is a heuristic used to reduce the number of chunks balanced on
2977 * resume after balance was interrupted.
2978 */
2979static void update_balance_args(struct btrfs_balance_control *bctl)
2980{
2981        /*
2982         * Turn on soft mode for chunk types that were being converted.
2983         */
2984        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2985                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2986        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2987                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2988        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2989                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2990
2991        /*
2992         * Turn on usage filter if is not already used.  The idea is
2993         * that chunks that we have already balanced should be
2994         * reasonably full.  Don't do it for chunks that are being
2995         * converted - that will keep us from relocating unconverted
2996         * (albeit full) chunks.
2997         */
2998        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2999            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3000                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3001                bctl->data.usage = 90;
3002        }
3003        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3004            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3005                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3006                bctl->sys.usage = 90;
3007        }
3008        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3009            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3010                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3011                bctl->meta.usage = 90;
3012        }
3013}
3014
3015/*
3016 * Should be called with both balance and volume mutexes held to
3017 * serialize other volume operations (add_dev/rm_dev/resize) with
3018 * restriper.  Same goes for unset_balance_control.
3019 */
3020static void set_balance_control(struct btrfs_balance_control *bctl)
3021{
3022        struct btrfs_fs_info *fs_info = bctl->fs_info;
3023
3024        BUG_ON(fs_info->balance_ctl);
3025
3026        spin_lock(&fs_info->balance_lock);
3027        fs_info->balance_ctl = bctl;
3028        spin_unlock(&fs_info->balance_lock);
3029}
3030
3031static void unset_balance_control(struct btrfs_fs_info *fs_info)
3032{
3033        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3034
3035        BUG_ON(!fs_info->balance_ctl);
3036
3037        spin_lock(&fs_info->balance_lock);
3038        fs_info->balance_ctl = NULL;
3039        spin_unlock(&fs_info->balance_lock);
3040
3041        kfree(bctl);
3042}
3043
3044/*
3045 * Balance filters.  Return 1 if chunk should be filtered out
3046 * (should not be balanced).
3047 */
3048static int chunk_profiles_filter(u64 chunk_type,
3049                                 struct btrfs_balance_args *bargs)
3050{
3051        chunk_type = chunk_to_extended(chunk_type) &
3052                                BTRFS_EXTENDED_PROFILE_MASK;
3053
3054        if (bargs->profiles & chunk_type)
3055                return 0;
3056
3057        return 1;
3058}
3059
3060static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3061                              struct btrfs_balance_args *bargs)
3062{
3063        struct btrfs_block_group_cache *cache;
3064        u64 chunk_used, user_thresh;
3065        int ret = 1;
3066
3067        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3068        chunk_used = btrfs_block_group_used(&cache->item);
3069
3070        if (bargs->usage == 0)
3071                user_thresh = 1;
3072        else if (bargs->usage > 100)
3073                user_thresh = cache->key.offset;
3074        else
3075                user_thresh = div_factor_fine(cache->key.offset,
3076                                              bargs->usage);
3077
3078        if (chunk_used < user_thresh)
3079                ret = 0;
3080
3081        btrfs_put_block_group(cache);
3082        return ret;
3083}
3084
3085static int chunk_devid_filter(struct extent_buffer *leaf,
3086                              struct btrfs_chunk *chunk,
3087                              struct btrfs_balance_args *bargs)
3088{
3089        struct btrfs_stripe *stripe;
3090        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3091        int i;
3092
3093        for (i = 0; i < num_stripes; i++) {
3094                stripe = btrfs_stripe_nr(chunk, i);
3095                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3096                        return 0;
3097        }
3098
3099        return 1;
3100}
3101
3102/* [pstart, pend) */
3103static int chunk_drange_filter(struct extent_buffer *leaf,
3104                               struct btrfs_chunk *chunk,
3105                               u64 chunk_offset,
3106                               struct btrfs_balance_args *bargs)
3107{
3108        struct btrfs_stripe *stripe;
3109        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3110        u64 stripe_offset;
3111        u64 stripe_length;
3112        int factor;
3113        int i;
3114
3115        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3116                return 0;
3117
3118        if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3119             BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3120                factor = num_stripes / 2;
3121        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3122                factor = num_stripes - 1;
3123        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3124                factor = num_stripes - 2;
3125        } else {
3126                factor = num_stripes;
3127        }
3128
3129        for (i = 0; i < num_stripes; i++) {
3130                stripe = btrfs_stripe_nr(chunk, i);
3131                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3132                        continue;
3133
3134                stripe_offset = btrfs_stripe_offset(leaf, stripe);
3135                stripe_length = btrfs_chunk_length(leaf, chunk);
3136                stripe_length = div_u64(stripe_length, factor);
3137
3138                if (stripe_offset < bargs->pend &&
3139                    stripe_offset + stripe_length > bargs->pstart)
3140                        return 0;
3141        }
3142
3143        return 1;
3144}
3145
3146/* [vstart, vend) */
3147static int chunk_vrange_filter(struct extent_buffer *leaf,
3148                               struct btrfs_chunk *chunk,
3149                               u64 chunk_offset,
3150                               struct btrfs_balance_args *bargs)
3151{
3152        if (chunk_offset < bargs->vend &&
3153            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3154                /* at least part of the chunk is inside this vrange */
3155                return 0;
3156
3157        return 1;
3158}
3159
3160static int chunk_soft_convert_filter(u64 chunk_type,
3161                                     struct btrfs_balance_args *bargs)
3162{
3163        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3164                return 0;
3165
3166        chunk_type = chunk_to_extended(chunk_type) &
3167                                BTRFS_EXTENDED_PROFILE_MASK;
3168
3169        if (bargs->target == chunk_type)
3170                return 1;
3171
3172        return 0;
3173}
3174
3175static int should_balance_chunk(struct btrfs_root *root,
3176                                struct extent_buffer *leaf,
3177                                struct btrfs_chunk *chunk, u64 chunk_offset)
3178{
3179        struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3180        struct btrfs_balance_args *bargs = NULL;
3181        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3182
3183        /* type filter */
3184        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3185              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3186                return 0;
3187        }
3188
3189        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3190                bargs = &bctl->data;
3191        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3192                bargs = &bctl->sys;
3193        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3194                bargs = &bctl->meta;
3195
3196        /* profiles filter */
3197        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3198            chunk_profiles_filter(chunk_type, bargs)) {
3199                return 0;
3200        }
3201
3202        /* usage filter */
3203        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3204            chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3205                return 0;
3206        }
3207
3208        /* devid filter */
3209        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3210            chunk_devid_filter(leaf, chunk, bargs)) {
3211                return 0;
3212        }
3213
3214        /* drange filter, makes sense only with devid filter */
3215        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3216            chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3217                return 0;
3218        }
3219
3220        /* vrange filter */
3221        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3222            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3223                return 0;
3224        }
3225
3226        /* soft profile changing mode */
3227        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3228            chunk_soft_convert_filter(chunk_type, bargs)) {
3229                return 0;
3230        }
3231
3232        /*
3233         * limited by count, must be the last filter
3234         */
3235        if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3236                if (bargs->limit == 0)
3237                        return 0;
3238                else
3239                        bargs->limit--;
3240        }
3241
3242        return 1;
3243}
3244
3245static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3246{
3247        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3248        struct btrfs_root *chunk_root = fs_info->chunk_root;
3249        struct btrfs_root *dev_root = fs_info->dev_root;
3250        struct list_head *devices;
3251        struct btrfs_device *device;
3252        u64 old_size;
3253        u64 size_to_free;
3254        struct btrfs_chunk *chunk;
3255        struct btrfs_path *path;
3256        struct btrfs_key key;
3257        struct btrfs_key found_key;
3258        struct btrfs_trans_handle *trans;
3259        struct extent_buffer *leaf;
3260        int slot;
3261        int ret;
3262        int enospc_errors = 0;
3263        bool counting = true;
3264        u64 limit_data = bctl->data.limit;
3265        u64 limit_meta = bctl->meta.limit;
3266        u64 limit_sys = bctl->sys.limit;
3267
3268        /* step one make some room on all the devices */
3269        devices = &fs_info->fs_devices->devices;
3270        list_for_each_entry(device, devices, dev_list) {
3271                old_size = btrfs_device_get_total_bytes(device);
3272                size_to_free = div_factor(old_size, 1);
3273                size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3274                if (!device->writeable ||
3275                    btrfs_device_get_total_bytes(device) -
3276                    btrfs_device_get_bytes_used(device) > size_to_free ||
3277                    device->is_tgtdev_for_dev_replace)
3278                        continue;
3279
3280                ret = btrfs_shrink_device(device, old_size - size_to_free);
3281                if (ret == -ENOSPC)
3282                        break;
3283                BUG_ON(ret);
3284
3285                trans = btrfs_start_transaction(dev_root, 0);
3286                BUG_ON(IS_ERR(trans));
3287
3288                ret = btrfs_grow_device(trans, device, old_size);
3289                BUG_ON(ret);
3290
3291                btrfs_end_transaction(trans, dev_root);
3292        }
3293
3294        /* step two, relocate all the chunks */
3295        path = btrfs_alloc_path();
3296        if (!path) {
3297                ret = -ENOMEM;
3298                goto error;
3299        }
3300
3301        /* zero out stat counters */
3302        spin_lock(&fs_info->balance_lock);
3303        memset(&bctl->stat, 0, sizeof(bctl->stat));
3304        spin_unlock(&fs_info->balance_lock);
3305again:
3306        if (!counting) {
3307                bctl->data.limit = limit_data;
3308                bctl->meta.limit = limit_meta;
3309                bctl->sys.limit = limit_sys;
3310        }
3311        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3312        key.offset = (u64)-1;
3313        key.type = BTRFS_CHUNK_ITEM_KEY;
3314
3315        while (1) {
3316                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3317                    atomic_read(&fs_info->balance_cancel_req)) {
3318                        ret = -ECANCELED;
3319                        goto error;
3320                }
3321
3322                mutex_lock(&fs_info->delete_unused_bgs_mutex);
3323                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3324                if (ret < 0) {
3325                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3326                        goto error;
3327                }
3328
3329                /*
3330                 * this shouldn't happen, it means the last relocate
3331                 * failed
3332                 */
3333                if (ret == 0)
3334                        BUG(); /* FIXME break ? */
3335
3336                ret = btrfs_previous_item(chunk_root, path, 0,
3337                                          BTRFS_CHUNK_ITEM_KEY);
3338                if (ret) {
3339                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3340                        ret = 0;
3341                        break;
3342                }
3343
3344                leaf = path->nodes[0];
3345                slot = path->slots[0];
3346                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3347
3348                if (found_key.objectid != key.objectid) {
3349                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3350                        break;
3351                }
3352
3353                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3354
3355                if (!counting) {
3356                        spin_lock(&fs_info->balance_lock);
3357                        bctl->stat.considered++;
3358                        spin_unlock(&fs_info->balance_lock);
3359                }
3360
3361                ret = should_balance_chunk(chunk_root, leaf, chunk,
3362                                           found_key.offset);
3363                btrfs_release_path(path);
3364                if (!ret) {
3365                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3366                        goto loop;
3367                }
3368
3369                if (counting) {
3370                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3371                        spin_lock(&fs_info->balance_lock);
3372                        bctl->stat.expected++;
3373                        spin_unlock(&fs_info->balance_lock);
3374                        goto loop;
3375                }
3376
3377                ret = btrfs_relocate_chunk(chunk_root,
3378                                           found_key.objectid,
3379                                           found_key.offset);
3380                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3381                if (ret && ret != -ENOSPC)
3382                        goto error;
3383                if (ret == -ENOSPC) {
3384                        enospc_errors++;
3385                } else {
3386                        spin_lock(&fs_info->balance_lock);
3387                        bctl->stat.completed++;
3388                        spin_unlock(&fs_info->balance_lock);
3389                }
3390loop:
3391                if (found_key.offset == 0)
3392                        break;
3393                key.offset = found_key.offset - 1;
3394        }
3395
3396        if (counting) {
3397                btrfs_release_path(path);
3398                counting = false;
3399                goto again;
3400        }
3401error:
3402        btrfs_free_path(path);
3403        if (enospc_errors) {
3404                btrfs_info(fs_info, "%d enospc errors during balance",
3405                       enospc_errors);
3406                if (!ret)
3407                        ret = -ENOSPC;
3408        }
3409
3410        return ret;
3411}
3412
3413/**
3414 * alloc_profile_is_valid - see if a given profile is valid and reduced
3415 * @flags: profile to validate
3416 * @extended: if true @flags is treated as an extended profile
3417 */
3418static int alloc_profile_is_valid(u64 flags, int extended)
3419{
3420        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3421                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3422
3423        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3424
3425        /* 1) check that all other bits are zeroed */
3426        if (flags & ~mask)
3427                return 0;
3428
3429        /* 2) see if profile is reduced */
3430        if (flags == 0)
3431                return !extended; /* "0" is valid for usual profiles */
3432
3433        /* true if exactly one bit set */
3434        return (flags & (flags - 1)) == 0;
3435}
3436
3437static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3438{
3439        /* cancel requested || normal exit path */
3440        return atomic_read(&fs_info->balance_cancel_req) ||
3441                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3442                 atomic_read(&fs_info->balance_cancel_req) == 0);
3443}
3444
3445static void __cancel_balance(struct btrfs_fs_info *fs_info)
3446{
3447        int ret;
3448
3449        unset_balance_control(fs_info);
3450        ret = del_balance_item(fs_info->tree_root);
3451        if (ret)
3452                btrfs_std_error(fs_info, ret);
3453
3454        atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3455}
3456
3457/*
3458 * Should be called with both balance and volume mutexes held
3459 */
3460int btrfs_balance(struct btrfs_balance_control *bctl,
3461                  struct btrfs_ioctl_balance_args *bargs)
3462{
3463        struct btrfs_fs_info *fs_info = bctl->fs_info;
3464        u64 allowed;
3465        int mixed = 0;
3466        int ret;
3467        u64 num_devices;
3468        unsigned seq;
3469
3470        if (btrfs_fs_closing(fs_info) ||
3471            atomic_read(&fs_info->balance_pause_req) ||
3472            atomic_read(&fs_info->balance_cancel_req)) {
3473                ret = -EINVAL;
3474                goto out;
3475        }
3476
3477        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3478        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3479                mixed = 1;
3480
3481        /*
3482         * In case of mixed groups both data and meta should be picked,
3483         * and identical options should be given for both of them.
3484         */
3485        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3486        if (mixed && (bctl->flags & allowed)) {
3487                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3488                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3489                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3490                        btrfs_err(fs_info, "with mixed groups data and "
3491                                   "metadata balance options must be the same");
3492                        ret = -EINVAL;
3493                        goto out;
3494                }
3495        }
3496
3497        num_devices = fs_info->fs_devices->num_devices;
3498        btrfs_dev_replace_lock(&fs_info->dev_replace);
3499        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3500                BUG_ON(num_devices < 1);
3501                num_devices--;
3502        }
3503        btrfs_dev_replace_unlock(&fs_info->dev_replace);
3504        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3505        if (num_devices == 1)
3506                allowed |= BTRFS_BLOCK_GROUP_DUP;
3507        else if (num_devices > 1)
3508                allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3509        if (num_devices > 2)
3510                allowed |= BTRFS_BLOCK_GROUP_RAID5;
3511        if (num_devices > 3)
3512                allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3513                            BTRFS_BLOCK_GROUP_RAID6);
3514        if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3515            (!alloc_profile_is_valid(bctl->data.target, 1) ||
3516             (bctl->data.target & ~allowed))) {
3517                btrfs_err(fs_info, "unable to start balance with target "
3518                           "data profile %llu",
3519                       bctl->data.target);
3520                ret = -EINVAL;
3521                goto out;
3522        }
3523        if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3524            (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3525             (bctl->meta.target & ~allowed))) {
3526                btrfs_err(fs_info,
3527                           "unable to start balance with target metadata profile %llu",
3528                       bctl->meta.target);
3529                ret = -EINVAL;
3530                goto out;
3531        }
3532        if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3533            (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3534             (bctl->sys.target & ~allowed))) {
3535                btrfs_err(fs_info,
3536                           "unable to start balance with target system profile %llu",
3537                       bctl->sys.target);
3538                ret = -EINVAL;
3539                goto out;
3540        }
3541
3542        /* allow dup'ed data chunks only in mixed mode */
3543        if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3544            (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3545                btrfs_err(fs_info, "dup for data is not allowed");
3546                ret = -EINVAL;
3547                goto out;
3548        }
3549
3550        /* allow to reduce meta or sys integrity only if force set */
3551        allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3552                        BTRFS_BLOCK_GROUP_RAID10 |
3553                        BTRFS_BLOCK_GROUP_RAID5 |
3554                        BTRFS_BLOCK_GROUP_RAID6;
3555        do {
3556                seq = read_seqbegin(&fs_info->profiles_lock);
3557
3558                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3559                     (fs_info->avail_system_alloc_bits & allowed) &&
3560                     !(bctl->sys.target & allowed)) ||
3561                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3562                     (fs_info->avail_metadata_alloc_bits & allowed) &&
3563                     !(bctl->meta.target & allowed))) {
3564                        if (bctl->flags & BTRFS_BALANCE_FORCE) {
3565                                btrfs_info(fs_info, "force reducing metadata integrity");
3566                        } else {
3567                                btrfs_err(fs_info, "balance will reduce metadata "
3568                                           "integrity, use force if you want this");
3569                                ret = -EINVAL;
3570                                goto out;
3571                        }
3572                }
3573        } while (read_seqretry(&fs_info->profiles_lock, seq));
3574
3575        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3576                int num_tolerated_disk_barrier_failures;
3577                u64 target = bctl->sys.target;
3578
3579                num_tolerated_disk_barrier_failures =
3580                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3581                if (num_tolerated_disk_barrier_failures > 0 &&
3582                    (target &
3583                     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3584                      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3585                        num_tolerated_disk_barrier_failures = 0;
3586                else if (num_tolerated_disk_barrier_failures > 1 &&
3587                         (target &
3588                          (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3589                        num_tolerated_disk_barrier_failures = 1;
3590
3591                fs_info->num_tolerated_disk_barrier_failures =
3592                        num_tolerated_disk_barrier_failures;
3593        }
3594
3595        ret = insert_balance_item(fs_info->tree_root, bctl);
3596        if (ret && ret != -EEXIST)
3597                goto out;
3598
3599        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3600                BUG_ON(ret == -EEXIST);
3601                set_balance_control(bctl);
3602        } else {
3603                BUG_ON(ret != -EEXIST);
3604                spin_lock(&fs_info->balance_lock);
3605                update_balance_args(bctl);
3606                spin_unlock(&fs_info->balance_lock);
3607        }
3608
3609        atomic_inc(&fs_info->balance_running);
3610        mutex_unlock(&fs_info->balance_mutex);
3611
3612        ret = __btrfs_balance(fs_info);
3613
3614        mutex_lock(&fs_info->balance_mutex);
3615        atomic_dec(&fs_info->balance_running);
3616
3617        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3618                fs_info->num_tolerated_disk_barrier_failures =
3619                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3620        }
3621
3622        if (bargs) {
3623                memset(bargs, 0, sizeof(*bargs));
3624                update_ioctl_balance_args(fs_info, 0, bargs);
3625        }
3626
3627        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3628            balance_need_close(fs_info)) {
3629                __cancel_balance(fs_info);
3630        }
3631
3632        wake_up(&fs_info->balance_wait_q);
3633
3634        return ret;
3635out:
3636        if (bctl->flags & BTRFS_BALANCE_RESUME)
3637                __cancel_balance(fs_info);
3638        else {
3639                kfree(bctl);
3640                atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3641        }
3642        return ret;
3643}
3644
3645static int balance_kthread(void *data)
3646{
3647        struct btrfs_fs_info *fs_info = data;
3648        int ret = 0;
3649
3650        mutex_lock(&fs_info->volume_mutex);
3651        mutex_lock(&fs_info->balance_mutex);
3652
3653        if (fs_info->balance_ctl) {
3654                btrfs_info(fs_info, "continuing balance");
3655                ret = btrfs_balance(fs_info->balance_ctl, NULL);
3656        }
3657
3658        mutex_unlock(&fs_info->balance_mutex);
3659        mutex_unlock(&fs_info->volume_mutex);
3660
3661        return ret;
3662}
3663
3664int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3665{
3666        struct task_struct *tsk;
3667
3668        spin_lock(&fs_info->balance_lock);
3669        if (!fs_info->balance_ctl) {
3670                spin_unlock(&fs_info->balance_lock);
3671                return 0;
3672        }
3673        spin_unlock(&fs_info->balance_lock);
3674
3675        if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3676                btrfs_info(fs_info, "force skipping balance");
3677                return 0;
3678        }
3679
3680        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3681        return PTR_ERR_OR_ZERO(tsk);
3682}
3683
3684int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3685{
3686        struct btrfs_balance_control *bctl;
3687        struct btrfs_balance_item *item;
3688        struct btrfs_disk_balance_args disk_bargs;
3689        struct btrfs_path *path;
3690        struct extent_buffer *leaf;
3691        struct btrfs_key key;
3692        int ret;
3693
3694        path = btrfs_alloc_path();
3695        if (!path)
3696                return -ENOMEM;
3697
3698        key.objectid = BTRFS_BALANCE_OBJECTID;
3699        key.type = BTRFS_BALANCE_ITEM_KEY;
3700        key.offset = 0;
3701
3702        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3703        if (ret < 0)
3704                goto out;
3705        if (ret > 0) { /* ret = -ENOENT; */
3706                ret = 0;
3707                goto out;
3708        }
3709
3710        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3711        if (!bctl) {
3712                ret = -ENOMEM;
3713                goto out;
3714        }
3715
3716        leaf = path->nodes[0];
3717        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3718
3719        bctl->fs_info = fs_info;
3720        bctl->flags = btrfs_balance_flags(leaf, item);
3721        bctl->flags |= BTRFS_BALANCE_RESUME;
3722
3723        btrfs_balance_data(leaf, item, &disk_bargs);
3724        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3725        btrfs_balance_meta(leaf, item, &disk_bargs);
3726        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3727        btrfs_balance_sys(leaf, item, &disk_bargs);
3728        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3729
3730        WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3731
3732        mutex_lock(&fs_info->volume_mutex);
3733        mutex_lock(&fs_info->balance_mutex);
3734
3735        set_balance_control(bctl);
3736
3737        mutex_unlock(&fs_info->balance_mutex);
3738        mutex_unlock(&fs_info->volume_mutex);
3739out:
3740        btrfs_free_path(path);
3741        return ret;
3742}
3743
3744int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3745{
3746        int ret = 0;
3747
3748        mutex_lock(&fs_info->balance_mutex);
3749        if (!fs_info->balance_ctl) {
3750                mutex_unlock(&fs_info->balance_mutex);
3751                return -ENOTCONN;
3752        }
3753
3754        if (atomic_read(&fs_info->balance_running)) {
3755                atomic_inc(&fs_info->balance_pause_req);
3756                mutex_unlock(&fs_info->balance_mutex);
3757
3758                wait_event(fs_info->balance_wait_q,
3759                           atomic_read(&fs_info->balance_running) == 0);
3760
3761                mutex_lock(&fs_info->balance_mutex);
3762                /* we are good with balance_ctl ripped off from under us */
3763                BUG_ON(atomic_read(&fs_info->balance_running));
3764                atomic_dec(&fs_info->balance_pause_req);
3765        } else {
3766                ret = -ENOTCONN;
3767        }
3768
3769        mutex_unlock(&fs_info->balance_mutex);
3770        return ret;
3771}
3772
3773int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3774{
3775        if (fs_info->sb->s_flags & MS_RDONLY)
3776                return -EROFS;
3777
3778        mutex_lock(&fs_info->balance_mutex);
3779        if (!fs_info->balance_ctl) {
3780                mutex_unlock(&fs_info->balance_mutex);
3781                return -ENOTCONN;
3782        }
3783
3784        atomic_inc(&fs_info->balance_cancel_req);
3785        /*
3786         * if we are running just wait and return, balance item is
3787         * deleted in btrfs_balance in this case
3788         */
3789        if (atomic_read(&fs_info->balance_running)) {
3790                mutex_unlock(&fs_info->balance_mutex);
3791                wait_event(fs_info->balance_wait_q,
3792                           atomic_read(&fs_info->balance_running) == 0);
3793                mutex_lock(&fs_info->balance_mutex);
3794        } else {
3795                /* __cancel_balance needs volume_mutex */
3796                mutex_unlock(&fs_info->balance_mutex);
3797                mutex_lock(&fs_info->volume_mutex);
3798                mutex_lock(&fs_info->balance_mutex);
3799
3800                if (fs_info->balance_ctl)
3801                        __cancel_balance(fs_info);
3802
3803                mutex_unlock(&fs_info->volume_mutex);
3804        }
3805
3806        BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3807        atomic_dec(&fs_info->balance_cancel_req);
3808        mutex_unlock(&fs_info->balance_mutex);
3809        return 0;
3810}
3811
3812static int btrfs_uuid_scan_kthread(void *data)
3813{
3814        struct btrfs_fs_info *fs_info = data;
3815        struct btrfs_root *root = fs_info->tree_root;
3816        struct btrfs_key key;
3817        struct btrfs_key max_key;
3818        struct btrfs_path *path = NULL;
3819        int ret = 0;
3820        struct extent_buffer *eb;
3821        int slot;
3822        struct btrfs_root_item root_item;
3823        u32 item_size;
3824        struct btrfs_trans_handle *trans = NULL;
3825
3826        path = btrfs_alloc_path();
3827        if (!path) {
3828                ret = -ENOMEM;
3829                goto out;
3830        }
3831
3832        key.objectid = 0;
3833        key.type = BTRFS_ROOT_ITEM_KEY;
3834        key.offset = 0;
3835
3836        max_key.objectid = (u64)-1;
3837        max_key.type = BTRFS_ROOT_ITEM_KEY;
3838        max_key.offset = (u64)-1;
3839
3840        while (1) {
3841                ret = btrfs_search_forward(root, &key, path, 0);
3842                if (ret) {
3843                        if (ret > 0)
3844                                ret = 0;
3845                        break;
3846                }
3847
3848                if (key.type != BTRFS_ROOT_ITEM_KEY ||
3849                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3850                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3851                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3852                        goto skip;
3853
3854                eb = path->nodes[0];
3855                slot = path->slots[0];
3856                item_size = btrfs_item_size_nr(eb, slot);
3857                if (item_size < sizeof(root_item))
3858                        goto skip;
3859
3860                read_extent_buffer(eb, &root_item,
3861                                   btrfs_item_ptr_offset(eb, slot),
3862                                   (int)sizeof(root_item));
3863                if (btrfs_root_refs(&root_item) == 0)
3864                        goto skip;
3865
3866                if (!btrfs_is_empty_uuid(root_item.uuid) ||
3867                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3868                        if (trans)
3869                                goto update_tree;
3870
3871                        btrfs_release_path(path);
3872                        /*
3873                         * 1 - subvol uuid item
3874                         * 1 - received_subvol uuid item
3875                         */
3876                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3877                        if (IS_ERR(trans)) {
3878                                ret = PTR_ERR(trans);
3879                                break;
3880                        }
3881                        continue;
3882                } else {
3883                        goto skip;
3884                }
3885update_tree:
3886                if (!btrfs_is_empty_uuid(root_item.uuid)) {
3887                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3888                                                  root_item.uuid,
3889                                                  BTRFS_UUID_KEY_SUBVOL,
3890                                                  key.objectid);
3891                        if (ret < 0) {
3892                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
3893                                        ret);
3894                                break;
3895                        }
3896                }
3897
3898                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3899                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3900                                                  root_item.received_uuid,
3901                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3902                                                  key.objectid);
3903                        if (ret < 0) {
3904                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
3905                                        ret);
3906                                break;
3907                        }
3908                }
3909
3910skip:
3911                if (trans) {
3912                        ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3913                        trans = NULL;
3914                        if (ret)
3915                                break;
3916                }
3917
3918                btrfs_release_path(path);
3919                if (key.offset < (u64)-1) {
3920                        key.offset++;
3921                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3922                        key.offset = 0;
3923                        key.type = BTRFS_ROOT_ITEM_KEY;
3924                } else if (key.objectid < (u64)-1) {
3925                        key.offset = 0;
3926                        key.type = BTRFS_ROOT_ITEM_KEY;
3927                        key.objectid++;
3928                } else {
3929                        break;
3930                }
3931                cond_resched();
3932        }
3933
3934out:
3935        btrfs_free_path(path);
3936        if (trans && !IS_ERR(trans))
3937                btrfs_end_transaction(trans, fs_info->uuid_root);
3938        if (ret)
3939                btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3940        else
3941                fs_info->update_uuid_tree_gen = 1;
3942        up(&fs_info->uuid_tree_rescan_sem);
3943        return 0;
3944}
3945
3946/*
3947 * Callback for btrfs_uuid_tree_iterate().
3948 * returns:
3949 * 0    check succeeded, the entry is not outdated.
3950 * < 0  if an error occured.
3951 * > 0  if the check failed, which means the caller shall remove the entry.
3952 */
3953static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3954                                       u8 *uuid, u8 type, u64 subid)
3955{
3956        struct btrfs_key key;
3957        int ret = 0;
3958        struct btrfs_root *subvol_root;
3959
3960        if (type != BTRFS_UUID_KEY_SUBVOL &&
3961            type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3962                goto out;
3963
3964        key.objectid = subid;
3965        key.type = BTRFS_ROOT_ITEM_KEY;
3966        key.offset = (u64)-1;
3967        subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3968        if (IS_ERR(subvol_root)) {
3969                ret = PTR_ERR(subvol_root);
3970                if (ret == -ENOENT)
3971                        ret = 1;
3972                goto out;
3973        }
3974
3975        switch (type) {
3976        case BTRFS_UUID_KEY_SUBVOL:
3977                if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3978                        ret = 1;
3979                break;
3980        case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3981                if (memcmp(uuid, subvol_root->root_item.received_uuid,
3982                           BTRFS_UUID_SIZE))
3983                        ret = 1;
3984                break;
3985        }
3986
3987out:
3988        return ret;
3989}
3990
3991static int btrfs_uuid_rescan_kthread(void *data)
3992{
3993        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3994        int ret;
3995
3996        /*
3997         * 1st step is to iterate through the existing UUID tree and
3998         * to delete all entries that contain outdated data.
3999         * 2nd step is to add all missing entries to the UUID tree.
4000         */
4001        ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4002        if (ret < 0) {
4003                btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4004                up(&fs_info->uuid_tree_rescan_sem);
4005                return ret;
4006        }
4007        return btrfs_uuid_scan_kthread(data);
4008}
4009
4010int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4011{
4012        struct btrfs_trans_handle *trans;
4013        struct btrfs_root *tree_root = fs_info->tree_root;
4014        struct btrfs_root *uuid_root;
4015        struct task_struct *task;
4016        int ret;
4017
4018        /*
4019         * 1 - root node
4020         * 1 - root item
4021         */
4022        trans = btrfs_start_transaction(tree_root, 2);
4023        if (IS_ERR(trans))
4024                return PTR_ERR(trans);
4025
4026        uuid_root = btrfs_create_tree(trans, fs_info,
4027                                      BTRFS_UUID_TREE_OBJECTID);
4028        if (IS_ERR(uuid_root)) {
4029                ret = PTR_ERR(uuid_root);
4030                btrfs_abort_transaction(trans, tree_root, ret);
4031                return ret;
4032        }
4033
4034        fs_info->uuid_root = uuid_root;
4035
4036        ret = btrfs_commit_transaction(trans, tree_root);
4037        if (ret)
4038                return ret;
4039
4040        down(&fs_info->uuid_tree_rescan_sem);
4041        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4042        if (IS_ERR(task)) {
4043                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4044                btrfs_warn(fs_info, "failed to start uuid_scan task");
4045                up(&fs_info->uuid_tree_rescan_sem);
4046                return PTR_ERR(task);
4047        }
4048
4049        return 0;
4050}
4051
4052int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4053{
4054        struct task_struct *task;
4055
4056        down(&fs_info->uuid_tree_rescan_sem);
4057        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4058        if (IS_ERR(task)) {
4059                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4060                btrfs_warn(fs_info, "failed to start uuid_rescan task");
4061                up(&fs_info->uuid_tree_rescan_sem);
4062                return PTR_ERR(task);
4063        }
4064
4065        return 0;
4066}
4067
4068/*
4069 * shrinking a device means finding all of the device extents past
4070 * the new size, and then following the back refs to the chunks.
4071 * The chunk relocation code actually frees the device extent
4072 */
4073int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4074{
4075        struct btrfs_trans_handle *trans;
4076        struct btrfs_root *root = device->dev_root;
4077        struct btrfs_dev_extent *dev_extent = NULL;
4078        struct btrfs_path *path;
4079        u64 length;
4080        u64 chunk_objectid;
4081        u64 chunk_offset;
4082        int ret;
4083        int slot;
4084        int failed = 0;
4085        bool retried = false;
4086        bool checked_pending_chunks = false;
4087        struct extent_buffer *l;
4088        struct btrfs_key key;
4089        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4090        u64 old_total = btrfs_super_total_bytes(super_copy);
4091        u64 old_size = btrfs_device_get_total_bytes(device);
4092        u64 diff = old_size - new_size;
4093
4094        if (device->is_tgtdev_for_dev_replace)
4095                return -EINVAL;
4096
4097        path = btrfs_alloc_path();
4098        if (!path)
4099                return -ENOMEM;
4100
4101        path->reada = 2;
4102
4103        lock_chunks(root);
4104
4105        btrfs_device_set_total_bytes(device, new_size);
4106        if (device->writeable) {
4107                device->fs_devices->total_rw_bytes -= diff;
4108                spin_lock(&root->fs_info->free_chunk_lock);
4109                root->fs_info->free_chunk_space -= diff;
4110                spin_unlock(&root->fs_info->free_chunk_lock);
4111        }
4112        unlock_chunks(root);
4113
4114again:
4115        key.objectid = device->devid;
4116        key.offset = (u64)-1;
4117        key.type = BTRFS_DEV_EXTENT_KEY;
4118
4119        do {
4120                mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4121                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4122                if (ret < 0) {
4123                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4124                        goto done;
4125                }
4126
4127                ret = btrfs_previous_item(root, path, 0, key.type);
4128                if (ret)
4129                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4130                if (ret < 0)
4131                        goto done;
4132                if (ret) {
4133                        ret = 0;
4134                        btrfs_release_path(path);
4135                        break;
4136                }
4137
4138                l = path->nodes[0];
4139                slot = path->slots[0];
4140                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4141
4142                if (key.objectid != device->devid) {
4143                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4144                        btrfs_release_path(path);
4145                        break;
4146                }
4147
4148                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4149                length = btrfs_dev_extent_length(l, dev_extent);
4150
4151                if (key.offset + length <= new_size) {
4152                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4153                        btrfs_release_path(path);
4154                        break;
4155                }
4156
4157                chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4158                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4159                btrfs_release_path(path);
4160
4161                ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4162                mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4163                if (ret && ret != -ENOSPC)
4164                        goto done;
4165                if (ret == -ENOSPC)
4166                        failed++;
4167        } while (key.offset-- > 0);
4168
4169        if (failed && !retried) {
4170                failed = 0;
4171                retried = true;
4172                goto again;
4173        } else if (failed && retried) {
4174                ret = -ENOSPC;
4175                goto done;
4176        }
4177
4178        /* Shrinking succeeded, else we would be at "done". */
4179        trans = btrfs_start_transaction(root, 0);
4180        if (IS_ERR(trans)) {
4181                ret = PTR_ERR(trans);
4182                goto done;
4183        }
4184
4185        lock_chunks(root);
4186
4187        /*
4188         * We checked in the above loop all device extents that were already in
4189         * the device tree. However before we have updated the device's
4190         * total_bytes to the new size, we might have had chunk allocations that
4191         * have not complete yet (new block groups attached to transaction
4192         * handles), and therefore their device extents were not yet in the
4193         * device tree and we missed them in the loop above. So if we have any
4194         * pending chunk using a device extent that overlaps the device range
4195         * that we can not use anymore, commit the current transaction and
4196         * repeat the search on the device tree - this way we guarantee we will
4197         * not have chunks using device extents that end beyond 'new_size'.
4198         */
4199        if (!checked_pending_chunks) {
4200                u64 start = new_size;
4201                u64 len = old_size - new_size;
4202
4203                if (contains_pending_extent(trans, device, &start, len)) {
4204                        unlock_chunks(root);
4205                        checked_pending_chunks = true;
4206                        failed = 0;
4207                        retried = false;
4208                        ret = btrfs_commit_transaction(trans, root);
4209                        if (ret)
4210                                goto done;
4211                        goto again;
4212                }
4213        }
4214
4215        btrfs_device_set_disk_total_bytes(device, new_size);
4216        if (list_empty(&device->resized_list))
4217                list_add_tail(&device->resized_list,
4218                              &root->fs_info->fs_devices->resized_devices);
4219
4220        WARN_ON(diff > old_total);
4221        btrfs_set_super_total_bytes(super_copy, old_total - diff);
4222        unlock_chunks(root);
4223
4224        /* Now btrfs_update_device() will change the on-disk size. */
4225        ret = btrfs_update_device(trans, device);
4226        btrfs_end_transaction(trans, root);
4227done:
4228        btrfs_free_path(path);
4229        if (ret) {
4230                lock_chunks(root);
4231                btrfs_device_set_total_bytes(device, old_size);
4232                if (device->writeable)
4233                        device->fs_devices->total_rw_bytes += diff;
4234                spin_lock(&root->fs_info->free_chunk_lock);
4235                root->fs_info->free_chunk_space += diff;
4236                spin_unlock(&root->fs_info->free_chunk_lock);
4237                unlock_chunks(root);
4238        }
4239        return ret;
4240}
4241
4242static int btrfs_add_system_chunk(struct btrfs_root *root,
4243                           struct btrfs_key *key,
4244                           struct btrfs_chunk *chunk, int item_size)
4245{
4246        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4247        struct btrfs_disk_key disk_key;
4248        u32 array_size;
4249        u8 *ptr;
4250
4251        lock_chunks(root);
4252        array_size = btrfs_super_sys_array_size(super_copy);
4253        if (array_size + item_size + sizeof(disk_key)
4254                        > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4255                unlock_chunks(root);
4256                return -EFBIG;
4257        }
4258
4259        ptr = super_copy->sys_chunk_array + array_size;
4260        btrfs_cpu_key_to_disk(&disk_key, key);
4261        memcpy(ptr, &disk_key, sizeof(disk_key));
4262        ptr += sizeof(disk_key);
4263        memcpy(ptr, chunk, item_size);
4264        item_size += sizeof(disk_key);
4265        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4266        unlock_chunks(root);
4267
4268        return 0;
4269}
4270
4271/*
4272 * sort the devices in descending order by max_avail, total_avail
4273 */
4274static int btrfs_cmp_device_info(const void *a, const void *b)
4275{
4276        const struct btrfs_device_info *di_a = a;
4277        const struct btrfs_device_info *di_b = b;
4278
4279        if (di_a->max_avail > di_b->max_avail)
4280                return -1;
4281        if (di_a->max_avail < di_b->max_avail)
4282                return 1;
4283        if (di_a->total_avail > di_b->total_avail)
4284                return -1;
4285        if (di_a->total_avail < di_b->total_avail)
4286                return 1;
4287        return 0;
4288}
4289
4290static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4291        [BTRFS_RAID_RAID10] = {
4292                .sub_stripes    = 2,
4293                .dev_stripes    = 1,
4294                .devs_max       = 0,    /* 0 == as many as possible */
4295                .devs_min       = 4,
4296                .devs_increment = 2,
4297                .ncopies        = 2,
4298        },
4299        [BTRFS_RAID_RAID1] = {
4300                .sub_stripes    = 1,
4301                .dev_stripes    = 1,
4302                .devs_max       = 2,
4303                .devs_min       = 2,
4304                .devs_increment = 2,
4305                .ncopies        = 2,
4306        },
4307        [BTRFS_RAID_DUP] = {
4308                .sub_stripes    = 1,
4309                .dev_stripes    = 2,
4310                .devs_max       = 1,
4311                .devs_min       = 1,
4312                .devs_increment = 1,
4313                .ncopies        = 2,
4314        },
4315        [BTRFS_RAID_RAID0] = {
4316                .sub_stripes    = 1,
4317                .dev_stripes    = 1,
4318                .devs_max       = 0,
4319                .devs_min       = 2,
4320                .devs_increment = 1,
4321                .ncopies        = 1,
4322        },
4323        [BTRFS_RAID_SINGLE] = {
4324                .sub_stripes    = 1,
4325                .dev_stripes    = 1,
4326                .devs_max       = 1,
4327                .devs_min       = 1,
4328                .devs_increment = 1,
4329                .ncopies        = 1,
4330        },
4331        [BTRFS_RAID_RAID5] = {
4332                .sub_stripes    = 1,
4333                .dev_stripes    = 1,
4334                .devs_max       = 0,
4335                .devs_min       = 2,
4336                .devs_increment = 1,
4337                .ncopies        = 2,
4338        },
4339        [BTRFS_RAID_RAID6] = {
4340                .sub_stripes    = 1,
4341                .dev_stripes    = 1,
4342                .devs_max       = 0,
4343                .devs_min       = 3,
4344                .devs_increment = 1,
4345                .ncopies        = 3,
4346        },
4347};
4348
4349static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4350{
4351        /* TODO allow them to set a preferred stripe size */
4352        return 64 * 1024;
4353}
4354
4355static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4356{
4357        if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4358                return;
4359
4360        btrfs_set_fs_incompat(info, RAID56);
4361}
4362
4363#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4364                        - sizeof(struct btrfs_item)             \
4365                        - sizeof(struct btrfs_chunk))           \
4366                        / sizeof(struct btrfs_stripe) + 1)
4367
4368#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4369                                - 2 * sizeof(struct btrfs_disk_key)     \
4370                                - 2 * sizeof(struct btrfs_chunk))       \
4371                                / sizeof(struct btrfs_stripe) + 1)
4372
4373static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4374                               struct btrfs_root *extent_root, u64 start,
4375                               u64 type)
4376{
4377        struct btrfs_fs_info *info = extent_root->fs_info;
4378        struct btrfs_fs_devices *fs_devices = info->fs_devices;
4379        struct list_head *cur;
4380        struct map_lookup *map = NULL;
4381        struct extent_map_tree *em_tree;
4382        struct extent_map *em;
4383        struct btrfs_device_info *devices_info = NULL;
4384        u64 total_avail;
4385        int num_stripes;        /* total number of stripes to allocate */
4386        int data_stripes;       /* number of stripes that count for
4387                                   block group size */
4388        int sub_stripes;        /* sub_stripes info for map */
4389        int dev_stripes;        /* stripes per dev */
4390        int devs_max;           /* max devs to use */
4391        int devs_min;           /* min devs needed */
4392        int devs_increment;     /* ndevs has to be a multiple of this */
4393        int ncopies;            /* how many copies to data has */
4394        int ret;
4395        u64 max_stripe_size;
4396        u64 max_chunk_size;
4397        u64 stripe_size;
4398        u64 num_bytes;
4399        u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4400        int ndevs;
4401        int i;
4402        int j;
4403        int index;
4404
4405        BUG_ON(!alloc_profile_is_valid(type, 0));
4406
4407        if (list_empty(&fs_devices->alloc_list))
4408                return -ENOSPC;
4409
4410        index = __get_raid_index(type);
4411
4412        sub_stripes = btrfs_raid_array[index].sub_stripes;
4413        dev_stripes = btrfs_raid_array[index].dev_stripes;
4414        devs_max = btrfs_raid_array[index].devs_max;
4415        devs_min = btrfs_raid_array[index].devs_min;
4416        devs_increment = btrfs_raid_array[index].devs_increment;
4417        ncopies = btrfs_raid_array[index].ncopies;
4418
4419        if (type & BTRFS_BLOCK_GROUP_DATA) {
4420                max_stripe_size = 1024 * 1024 * 1024;
4421                max_chunk_size = 10 * max_stripe_size;
4422                if (!devs_max)
4423                        devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4424        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4425                /* for larger filesystems, use larger metadata chunks */
4426                if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4427                        max_stripe_size = 1024 * 1024 * 1024;
4428                else
4429                        max_stripe_size = 256 * 1024 * 1024;
4430                max_chunk_size = max_stripe_size;
4431                if (!devs_max)
4432                        devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4433        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4434                max_stripe_size = 32 * 1024 * 1024;
4435                max_chunk_size = 2 * max_stripe_size;
4436                if (!devs_max)
4437                        devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4438        } else {
4439                btrfs_err(info, "invalid chunk type 0x%llx requested",
4440                       type);
4441                BUG_ON(1);
4442        }
4443
4444        /* we don't want a chunk larger than 10% of writeable space */
4445        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4446                             max_chunk_size);
4447
4448        devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4449                               GFP_NOFS);
4450        if (!devices_info)
4451                return -ENOMEM;
4452
4453        cur = fs_devices->alloc_list.next;
4454
4455        /*
4456         * in the first pass through the devices list, we gather information
4457         * about the available holes on each device.
4458         */
4459        ndevs = 0;
4460        while (cur != &fs_devices->alloc_list) {
4461                struct btrfs_device *device;
4462                u64 max_avail;
4463                u64 dev_offset;
4464
4465                device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4466
4467                cur = cur->next;
4468
4469                if (!device->writeable) {
4470                        WARN(1, KERN_ERR
4471                               "BTRFS: read-only device in alloc_list\n");
4472                        continue;
4473                }
4474
4475                if (!device->in_fs_metadata ||
4476                    device->is_tgtdev_for_dev_replace)
4477                        continue;
4478
4479                if (device->total_bytes > device->bytes_used)
4480                        total_avail = device->total_bytes - device->bytes_used;
4481                else
4482                        total_avail = 0;
4483
4484                /* If there is no space on this device, skip it. */
4485                if (total_avail == 0)
4486                        continue;
4487
4488                ret = find_free_dev_extent(trans, device,
4489                                           max_stripe_size * dev_stripes,
4490                                           &dev_offset, &max_avail);
4491                if (ret && ret != -ENOSPC)
4492                        goto error;
4493
4494                if (ret == 0)
4495                        max_avail = max_stripe_size * dev_stripes;
4496
4497                if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4498                        continue;
4499
4500                if (ndevs == fs_devices->rw_devices) {
4501                        WARN(1, "%s: found more than %llu devices\n",
4502                             __func__, fs_devices->rw_devices);
4503                        break;
4504                }
4505                devices_info[ndevs].dev_offset = dev_offset;
4506                devices_info[ndevs].max_avail = max_avail;
4507                devices_info[ndevs].total_avail = total_avail;
4508                devices_info[ndevs].dev = device;
4509                ++ndevs;
4510        }
4511
4512        /*
4513         * now sort the devices by hole size / available space
4514         */
4515        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4516             btrfs_cmp_device_info, NULL);
4517
4518        /* round down to number of usable stripes */
4519        ndevs -= ndevs % devs_increment;
4520
4521        if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4522                ret = -ENOSPC;
4523                goto error;
4524        }
4525
4526        if (devs_max && ndevs > devs_max)
4527                ndevs = devs_max;
4528        /*
4529         * the primary goal is to maximize the number of stripes, so use as many
4530         * devices as possible, even if the stripes are not maximum sized.
4531         */
4532        stripe_size = devices_info[ndevs-1].max_avail;
4533        num_stripes = ndevs * dev_stripes;
4534
4535        /*
4536         * this will have to be fixed for RAID1 and RAID10 over
4537         * more drives
4538         */
4539        data_stripes = num_stripes / ncopies;
4540
4541        if (type & BTRFS_BLOCK_GROUP_RAID5) {
4542                raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4543                                 btrfs_super_stripesize(info->super_copy));
4544                data_stripes = num_stripes - 1;
4545        }
4546        if (type & BTRFS_BLOCK_GROUP_RAID6) {
4547                raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4548                                 btrfs_super_stripesize(info->super_copy));
4549                data_stripes = num_stripes - 2;
4550        }
4551
4552        /*
4553         * Use the number of data stripes to figure out how big this chunk
4554         * is really going to be in terms of logical address space,
4555         * and compare that answer with the max chunk size
4556         */
4557        if (stripe_size * data_stripes > max_chunk_size) {
4558                u64 mask = (1ULL << 24) - 1;
4559
4560                stripe_size = div_u64(max_chunk_size, data_stripes);
4561
4562                /* bump the answer up to a 16MB boundary */
4563                stripe_size = (stripe_size + mask) & ~mask;
4564
4565                /* but don't go higher than the limits we found
4566                 * while searching for free extents
4567                 */
4568                if (stripe_size > devices_info[ndevs-1].max_avail)
4569                        stripe_size = devices_info[ndevs-1].max_avail;
4570        }
4571
4572        stripe_size = div_u64(stripe_size, dev_stripes);
4573
4574        /* align to BTRFS_STRIPE_LEN */
4575        stripe_size = div_u64(stripe_size, raid_stripe_len);
4576        stripe_size *= raid_stripe_len;
4577
4578        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4579        if (!map) {
4580                ret = -ENOMEM;
4581                goto error;
4582        }
4583        map->num_stripes = num_stripes;
4584
4585        for (i = 0; i < ndevs; ++i) {
4586                for (j = 0; j < dev_stripes; ++j) {
4587                        int s = i * dev_stripes + j;
4588                        map->stripes[s].dev = devices_info[i].dev;
4589                        map->stripes[s].physical = devices_info[i].dev_offset +
4590                                                   j * stripe_size;
4591                }
4592        }
4593        map->sector_size = extent_root->sectorsize;
4594        map->stripe_len = raid_stripe_len;
4595        map->io_align = raid_stripe_len;
4596        map->io_width = raid_stripe_len;
4597        map->type = type;
4598        map->sub_stripes = sub_stripes;
4599
4600        num_bytes = stripe_size * data_stripes;
4601
4602        trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4603
4604        em = alloc_extent_map();
4605        if (!em) {
4606                kfree(map);
4607                ret = -ENOMEM;
4608                goto error;
4609        }
4610        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4611        em->bdev = (struct block_device *)map;
4612        em->start = start;
4613        em->len = num_bytes;
4614        em->block_start = 0;
4615        em->block_len = em->len;
4616        em->orig_block_len = stripe_size;
4617
4618        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4619        write_lock(&em_tree->lock);
4620        ret = add_extent_mapping(em_tree, em, 0);
4621        if (!ret) {
4622                list_add_tail(&em->list, &trans->transaction->pending_chunks);
4623                atomic_inc(&em->refs);
4624        }
4625        write_unlock(&em_tree->lock);
4626        if (ret) {
4627                free_extent_map(em);
4628                goto error;
4629        }
4630
4631        ret = btrfs_make_block_group(trans, extent_root, 0, type,
4632                                     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4633                                     start, num_bytes);
4634        if (ret)
4635                goto error_del_extent;
4636
4637        for (i = 0; i < map->num_stripes; i++) {
4638                num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4639                btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4640        }
4641
4642        spin_lock(&extent_root->fs_info->free_chunk_lock);
4643        extent_root->fs_info->free_chunk_space -= (stripe_size *
4644                                                   map->num_stripes);
4645        spin_unlock(&extent_root->fs_info->free_chunk_lock);
4646
4647        free_extent_map(em);
4648        check_raid56_incompat_flag(extent_root->fs_info, type);
4649
4650        kfree(devices_info);
4651        return 0;
4652
4653error_del_extent:
4654        write_lock(&em_tree->lock);
4655        remove_extent_mapping(em_tree, em);
4656        write_unlock(&em_tree->lock);
4657
4658        /* One for our allocation */
4659        free_extent_map(em);
4660        /* One for the tree reference */
4661        free_extent_map(em);
4662        /* One for the pending_chunks list reference */
4663        free_extent_map(em);
4664error:
4665        kfree(devices_info);
4666        return ret;
4667}
4668
4669int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4670                                struct btrfs_root *extent_root,
4671                                u64 chunk_offset, u64 chunk_size)
4672{
4673        struct btrfs_key key;
4674        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4675        struct btrfs_device *device;
4676        struct btrfs_chunk *chunk;
4677        struct btrfs_stripe *stripe;
4678        struct extent_map_tree *em_tree;
4679        struct extent_map *em;
4680        struct map_lookup *map;
4681        size_t item_size;
4682        u64 dev_offset;
4683        u64 stripe_size;
4684        int i = 0;
4685        int ret;
4686
4687        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4688        read_lock(&em_tree->lock);
4689        em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4690        read_unlock(&em_tree->lock);
4691
4692        if (!em) {
4693                btrfs_crit(extent_root->fs_info, "unable to find logical "
4694                           "%Lu len %Lu", chunk_offset, chunk_size);
4695                return -EINVAL;
4696        }
4697
4698        if (em->start != chunk_offset || em->len != chunk_size) {
4699                btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4700                          " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4701                          chunk_size, em->start, em->len);
4702                free_extent_map(em);
4703                return -EINVAL;
4704        }
4705
4706        map = (struct map_lookup *)em->bdev;
4707        item_size = btrfs_chunk_item_size(map->num_stripes);
4708        stripe_size = em->orig_block_len;
4709
4710        chunk = kzalloc(item_size, GFP_NOFS);
4711        if (!chunk) {
4712                ret = -ENOMEM;
4713                goto out;
4714        }
4715
4716        for (i = 0; i < map->num_stripes; i++) {
4717                device = map->stripes[i].dev;
4718                dev_offset = map->stripes[i].physical;
4719
4720                ret = btrfs_update_device(trans, device);
4721                if (ret)
4722                        goto out;
4723                ret = btrfs_alloc_dev_extent(trans, device,
4724                                             chunk_root->root_key.objectid,
4725                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4726                                             chunk_offset, dev_offset,
4727                                             stripe_size);
4728                if (ret)
4729                        goto out;
4730        }
4731
4732        stripe = &chunk->stripe;
4733        for (i = 0; i < map->num_stripes; i++) {
4734                device = map->stripes[i].dev;
4735                dev_offset = map->stripes[i].physical;
4736
4737                btrfs_set_stack_stripe_devid(stripe, device->devid);
4738                btrfs_set_stack_stripe_offset(stripe, dev_offset);
4739                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4740                stripe++;
4741        }
4742
4743        btrfs_set_stack_chunk_length(chunk, chunk_size);
4744        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4745        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4746        btrfs_set_stack_chunk_type(chunk, map->type);
4747        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4748        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4749        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4750        btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4751        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4752
4753        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4754        key.type = BTRFS_CHUNK_ITEM_KEY;
4755        key.offset = chunk_offset;
4756
4757        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4758        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4759                /*
4760                 * TODO: Cleanup of inserted chunk root in case of
4761                 * failure.
4762                 */
4763                ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4764                                             item_size);
4765        }
4766
4767out:
4768        kfree(chunk);
4769        free_extent_map(em);
4770        return ret;
4771}
4772
4773/*
4774 * Chunk allocation falls into two parts. The first part does works
4775 * that make the new allocated chunk useable, but not do any operation
4776 * that modifies the chunk tree. The second part does the works that
4777 * require modifying the chunk tree. This division is important for the
4778 * bootstrap process of adding storage to a seed btrfs.
4779 */
4780int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4781                      struct btrfs_root *extent_root, u64 type)
4782{
4783        u64 chunk_offset;
4784
4785        ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4786        chunk_offset = find_next_chunk(extent_root->fs_info);
4787        return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4788}
4789
4790static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4791                                         struct btrfs_root *root,
4792                                         struct btrfs_device *device)
4793{
4794        u64 chunk_offset;
4795        u64 sys_chunk_offset;
4796        u64 alloc_profile;
4797        struct btrfs_fs_info *fs_info = root->fs_info;
4798        struct btrfs_root *extent_root = fs_info->extent_root;
4799        int ret;
4800
4801        chunk_offset = find_next_chunk(fs_info);
4802        alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4803        ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4804                                  alloc_profile);
4805        if (ret)
4806                return ret;
4807
4808        sys_chunk_offset = find_next_chunk(root->fs_info);
4809        alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4810        ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4811                                  alloc_profile);
4812        return ret;
4813}
4814
4815static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4816{
4817        int max_errors;
4818
4819        if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4820                         BTRFS_BLOCK_GROUP_RAID10 |
4821                         BTRFS_BLOCK_GROUP_RAID5 |
4822                         BTRFS_BLOCK_GROUP_DUP)) {
4823                max_errors = 1;
4824        } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4825                max_errors = 2;
4826        } else {
4827                max_errors = 0;
4828        }
4829
4830        return max_errors;
4831}
4832
4833int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4834{
4835        struct extent_map *em;
4836        struct map_lookup *map;
4837        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4838        int readonly = 0;
4839        int miss_ndevs = 0;
4840        int i;
4841
4842        read_lock(&map_tree->map_tree.lock);
4843        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4844        read_unlock(&map_tree->map_tree.lock);
4845        if (!em)
4846                return 1;
4847
4848        map = (struct map_lookup *)em->bdev;
4849        for (i = 0; i < map->num_stripes; i++) {
4850                if (map->stripes[i].dev->missing) {
4851                        miss_ndevs++;
4852                        continue;
4853                }
4854
4855                if (!map->stripes[i].dev->writeable) {
4856                        readonly = 1;
4857                        goto end;
4858                }
4859        }
4860
4861        /*
4862         * If the number of missing devices is larger than max errors,
4863         * we can not write the data into that chunk successfully, so
4864         * set it readonly.
4865         */
4866        if (miss_ndevs > btrfs_chunk_max_errors(map))
4867                readonly = 1;
4868end:
4869        free_extent_map(em);
4870        return readonly;
4871}
4872
4873void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4874{
4875        extent_map_tree_init(&tree->map_tree);
4876}
4877
4878void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4879{
4880        struct extent_map *em;
4881
4882        while (1) {
4883                write_lock(&tree->map_tree.lock);
4884                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4885                if (em)
4886                        remove_extent_mapping(&tree->map_tree, em);
4887                write_unlock(&tree->map_tree.lock);
4888                if (!em)
4889                        break;
4890                /* once for us */
4891                free_extent_map(em);
4892                /* once for the tree */
4893                free_extent_map(em);
4894        }
4895}
4896
4897int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4898{
4899        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4900        struct extent_map *em;
4901        struct map_lookup *map;
4902        struct extent_map_tree *em_tree = &map_tree->map_tree;
4903        int ret;
4904
4905        read_lock(&em_tree->lock);
4906        em = lookup_extent_mapping(em_tree, logical, len);
4907        read_unlock(&em_tree->lock);
4908
4909        /*
4910         * We could return errors for these cases, but that could get ugly and
4911         * we'd probably do the same thing which is just not do anything else
4912         * and exit, so return 1 so the callers don't try to use other copies.
4913         */
4914        if (!em) {
4915                btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4916                            logical+len);
4917                return 1;
4918        }
4919
4920        if (em->start > logical || em->start + em->len < logical) {
4921                btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4922                            "%Lu-%Lu", logical, logical+len, em->start,
4923                            em->start + em->len);
4924                free_extent_map(em);
4925                return 1;
4926        }
4927
4928        map = (struct map_lookup *)em->bdev;
4929        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4930                ret = map->num_stripes;
4931        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4932                ret = map->sub_stripes;
4933        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4934                ret = 2;
4935        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4936                ret = 3;
4937        else
4938                ret = 1;
4939        free_extent_map(em);
4940
4941        btrfs_dev_replace_lock(&fs_info->dev_replace);
4942        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4943                ret++;
4944        btrfs_dev_replace_unlock(&fs_info->dev_replace);
4945
4946        return ret;
4947}
4948
4949unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4950                                    struct btrfs_mapping_tree *map_tree,
4951                                    u64 logical)
4952{
4953        struct extent_map *em;
4954        struct map_lookup *map;
4955        struct extent_map_tree *em_tree = &map_tree->map_tree;
4956        unsigned long len = root->sectorsize;
4957
4958        read_lock(&em_tree->lock);
4959        em = lookup_extent_mapping(em_tree, logical, len);
4960        read_unlock(&em_tree->lock);
4961        BUG_ON(!em);
4962
4963        BUG_ON(em->start > logical || em->start + em->len < logical);
4964        map = (struct map_lookup *)em->bdev;
4965        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4966                len = map->stripe_len * nr_data_stripes(map);
4967        free_extent_map(em);
4968        return len;
4969}
4970
4971int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4972                           u64 logical, u64 len, int mirror_num)
4973{
4974        struct extent_map *em;
4975        struct map_lookup *map;
4976        struct extent_map_tree *em_tree = &map_tree->map_tree;
4977        int ret = 0;
4978
4979        read_lock(&em_tree->lock);
4980        em = lookup_extent_mapping(em_tree, logical, len);
4981        read_unlock(&em_tree->lock);
4982        BUG_ON(!em);
4983
4984        BUG_ON(em->start > logical || em->start + em->len < logical);
4985        map = (struct map_lookup *)em->bdev;
4986        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4987                ret = 1;
4988        free_extent_map(em);
4989        return ret;
4990}
4991
4992static int find_live_mirror(struct btrfs_fs_info *fs_info,
4993                            struct map_lookup *map, int first, int num,
4994                            int optimal, int dev_replace_is_ongoing)
4995{
4996        int i;
4997        int tolerance;
4998        struct btrfs_device *srcdev;
4999
5000        if (dev_replace_is_ongoing &&
5001            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5002             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5003                srcdev = fs_info->dev_replace.srcdev;
5004        else
5005                srcdev = NULL;
5006
5007        /*
5008         * try to avoid the drive that is the source drive for a
5009         * dev-replace procedure, only choose it if no other non-missing
5010         * mirror is available
5011         */
5012        for (tolerance = 0; tolerance < 2; tolerance++) {
5013                if (map->stripes[optimal].dev->bdev &&
5014                    (tolerance || map->stripes[optimal].dev != srcdev))
5015                        return optimal;
5016                for (i = first; i < first + num; i++) {
5017                        if (map->stripes[i].dev->bdev &&
5018                            (tolerance || map->stripes[i].dev != srcdev))
5019                                return i;
5020                }
5021        }
5022
5023        /* we couldn't find one that doesn't fail.  Just return something
5024         * and the io error handling code will clean up eventually
5025         */
5026        return optimal;
5027}
5028
5029static inline int parity_smaller(u64 a, u64 b)
5030{
5031        return a > b;
5032}
5033
5034/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5035static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5036{
5037        struct btrfs_bio_stripe s;
5038        int i;
5039        u64 l;
5040        int again = 1;
5041
5042        while (again) {
5043                again = 0;
5044                for (i = 0; i < num_stripes - 1; i++) {
5045                        if (parity_smaller(bbio->raid_map[i],
5046                                           bbio->raid_map[i+1])) {
5047                                s = bbio->stripes[i];
5048                                l = bbio->raid_map[i];
5049                                bbio->stripes[i] = bbio->stripes[i+1];
5050                                bbio->raid_map[i] = bbio->raid_map[i+1];
5051                                bbio->stripes[i+1] = s;
5052                                bbio->raid_map[i+1] = l;
5053
5054                                again = 1;
5055                        }
5056                }
5057        }
5058}
5059
5060static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5061{
5062        struct btrfs_bio *bbio = kzalloc(
5063                 /* the size of the btrfs_bio */
5064                sizeof(struct btrfs_bio) +
5065                /* plus the variable array for the stripes */
5066                sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5067                /* plus the variable array for the tgt dev */
5068                sizeof(int) * (real_stripes) +
5069                /*
5070                 * plus the raid_map, which includes both the tgt dev
5071                 * and the stripes
5072                 */
5073                sizeof(u64) * (total_stripes),
5074                GFP_NOFS);
5075        if (!bbio)
5076                return NULL;
5077
5078        atomic_set(&bbio->error, 0);
5079        atomic_set(&bbio->refs, 1);
5080
5081        return bbio;
5082}
5083
5084void btrfs_get_bbio(struct btrfs_bio *bbio)
5085{
5086        WARN_ON(!atomic_read(&bbio->refs));
5087        atomic_inc(&bbio->refs);
5088}
5089
5090void btrfs_put_bbio(struct btrfs_bio *bbio)
5091{
5092        if (!bbio)
5093                return;
5094        if (atomic_dec_and_test(&bbio->refs))
5095                kfree(bbio);
5096}
5097
5098static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5099                             u64 logical, u64 *length,
5100                             struct btrfs_bio **bbio_ret,
5101                             int mirror_num, int need_raid_map)
5102{
5103        struct extent_map *em;
5104        struct map_lookup *map;
5105        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5106        struct extent_map_tree *em_tree = &map_tree->map_tree;
5107        u64 offset;
5108        u64 stripe_offset;
5109        u64 stripe_end_offset;
5110        u64 stripe_nr;
5111        u64 stripe_nr_orig;
5112        u64 stripe_nr_end;
5113        u64 stripe_len;
5114        u32 stripe_index;
5115        int i;
5116        int ret = 0;
5117        int num_stripes;
5118        int max_errors = 0;
5119        int tgtdev_indexes = 0;
5120        struct btrfs_bio *bbio = NULL;
5121        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5122        int dev_replace_is_ongoing = 0;
5123        int num_alloc_stripes;
5124        int patch_the_first_stripe_for_dev_replace = 0;
5125        u64 physical_to_patch_in_first_stripe = 0;
5126        u64 raid56_full_stripe_start = (u64)-1;
5127
5128        read_lock(&em_tree->lock);
5129        em = lookup_extent_mapping(em_tree, logical, *length);
5130        read_unlock(&em_tree->lock);
5131
5132        if (!em) {
5133                btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5134                        logical, *length);
5135                return -EINVAL;
5136        }
5137
5138        if (em->start > logical || em->start + em->len < logical) {
5139                btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5140                           "found %Lu-%Lu", logical, em->start,
5141                           em->start + em->len);
5142                free_extent_map(em);
5143                return -EINVAL;
5144        }
5145
5146        map = (struct map_lookup *)em->bdev;
5147        offset = logical - em->start;
5148
5149        stripe_len = map->stripe_len;
5150        stripe_nr = offset;
5151        /*
5152         * stripe_nr counts the total number of stripes we have to stride
5153         * to get to this block
5154         */
5155        stripe_nr = div64_u64(stripe_nr, stripe_len);
5156
5157        stripe_offset = stripe_nr * stripe_len;
5158        BUG_ON(offset < stripe_offset);
5159
5160        /* stripe_offset is the offset of this block in its stripe*/
5161        stripe_offset = offset - stripe_offset;
5162
5163        /* if we're here for raid56, we need to know the stripe aligned start */
5164        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5165                unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5166                raid56_full_stripe_start = offset;
5167
5168                /* allow a write of a full stripe, but make sure we don't
5169                 * allow straddling of stripes
5170                 */
5171                raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5172                                full_stripe_len);
5173                raid56_full_stripe_start *= full_stripe_len;
5174        }
5175
5176        if (rw & REQ_DISCARD) {
5177                /* we don't discard raid56 yet */
5178                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5179                        ret = -EOPNOTSUPP;
5180                        goto out;
5181                }
5182                *length = min_t(u64, em->len - offset, *length);
5183        } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5184                u64 max_len;
5185                /* For writes to RAID[56], allow a full stripeset across all disks.
5186                   For other RAID types and for RAID[56] reads, just allow a single
5187                   stripe (on a single disk). */
5188                if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5189                    (rw & REQ_WRITE)) {
5190                        max_len = stripe_len * nr_data_stripes(map) -
5191                                (offset - raid56_full_stripe_start);
5192                } else {
5193                        /* we limit the length of each bio to what fits in a stripe */
5194                        max_len = stripe_len - stripe_offset;
5195                }
5196                *length = min_t(u64, em->len - offset, max_len);
5197        } else {
5198                *length = em->len - offset;
5199        }
5200
5201        /* This is for when we're called from btrfs_merge_bio_hook() and all
5202           it cares about is the length */
5203        if (!bbio_ret)
5204                goto out;
5205
5206        btrfs_dev_replace_lock(dev_replace);
5207        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5208        if (!dev_replace_is_ongoing)
5209                btrfs_dev_replace_unlock(dev_replace);
5210
5211        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5212            !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5213            dev_replace->tgtdev != NULL) {
5214                /*
5215                 * in dev-replace case, for repair case (that's the only
5216                 * case where the mirror is selected explicitly when
5217                 * calling btrfs_map_block), blocks left of the left cursor
5218                 * can also be read from the target drive.
5219                 * For REQ_GET_READ_MIRRORS, the target drive is added as
5220                 * the last one to the array of stripes. For READ, it also
5221                 * needs to be supported using the same mirror number.
5222                 * If the requested block is not left of the left cursor,
5223                 * EIO is returned. This can happen because btrfs_num_copies()
5224                 * returns one more in the dev-replace case.
5225                 */
5226                u64 tmp_length = *length;
5227                struct btrfs_bio *tmp_bbio = NULL;
5228                int tmp_num_stripes;
5229                u64 srcdev_devid = dev_replace->srcdev->devid;
5230                int index_srcdev = 0;
5231                int found = 0;
5232                u64 physical_of_found = 0;
5233
5234                ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5235                             logical, &tmp_length, &tmp_bbio, 0, 0);
5236                if (ret) {
5237                        WARN_ON(tmp_bbio != NULL);
5238                        goto out;
5239                }
5240
5241                tmp_num_stripes = tmp_bbio->num_stripes;
5242                if (mirror_num > tmp_num_stripes) {
5243                        /*
5244                         * REQ_GET_READ_MIRRORS does not contain this
5245                         * mirror, that means that the requested area
5246                         * is not left of the left cursor
5247                         */
5248                        ret = -EIO;
5249                        btrfs_put_bbio(tmp_bbio);
5250                        goto out;
5251                }
5252
5253                /*
5254                 * process the rest of the function using the mirror_num
5255                 * of the source drive. Therefore look it up first.
5256                 * At the end, patch the device pointer to the one of the
5257                 * target drive.
5258                 */
5259                for (i = 0; i < tmp_num_stripes; i++) {
5260                        if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5261                                /*
5262                                 * In case of DUP, in order to keep it
5263                                 * simple, only add the mirror with the
5264                                 * lowest physical address
5265                                 */
5266                                if (found &&
5267                                    physical_of_found <=
5268                                     tmp_bbio->stripes[i].physical)
5269                                        continue;
5270                                index_srcdev = i;
5271                                found = 1;
5272                                physical_of_found =
5273                                        tmp_bbio->stripes[i].physical;
5274                        }
5275                }
5276
5277                if (found) {
5278                        mirror_num = index_srcdev + 1;
5279                        patch_the_first_stripe_for_dev_replace = 1;
5280                        physical_to_patch_in_first_stripe = physical_of_found;
5281                } else {
5282                        WARN_ON(1);
5283                        ret = -EIO;
5284                        btrfs_put_bbio(tmp_bbio);
5285                        goto out;
5286                }
5287
5288                btrfs_put_bbio(tmp_bbio);
5289        } else if (mirror_num > map->num_stripes) {
5290                mirror_num = 0;
5291        }
5292
5293        num_stripes = 1;
5294        stripe_index = 0;
5295        stripe_nr_orig = stripe_nr;
5296        stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5297        stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5298        stripe_end_offset = stripe_nr_end * map->stripe_len -
5299                            (offset + *length);
5300
5301        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5302                if (rw & REQ_DISCARD)
5303                        num_stripes = min_t(u64, map->num_stripes,
5304                                            stripe_nr_end - stripe_nr_orig);
5305                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5306                                &stripe_index);
5307                if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5308                        mirror_num = 1;
5309        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5310                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5311                        num_stripes = map->num_stripes;
5312                else if (mirror_num)
5313                        stripe_index = mirror_num - 1;
5314                else {
5315                        stripe_index = find_live_mirror(fs_info, map, 0,
5316                                            map->num_stripes,
5317                                            current->pid % map->num_stripes,
5318                                            dev_replace_is_ongoing);
5319                        mirror_num = stripe_index + 1;
5320                }
5321
5322        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5323                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5324                        num_stripes = map->num_stripes;
5325                } else if (mirror_num) {
5326                        stripe_index = mirror_num - 1;
5327                } else {
5328                        mirror_num = 1;
5329                }
5330
5331        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5332                u32 factor = map->num_stripes / map->sub_stripes;
5333
5334                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5335                stripe_index *= map->sub_stripes;
5336
5337                if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5338                        num_stripes = map->sub_stripes;
5339                else if (rw & REQ_DISCARD)
5340                        num_stripes = min_t(u64, map->sub_stripes *
5341                                            (stripe_nr_end - stripe_nr_orig),
5342                                            map->num_stripes);
5343                else if (mirror_num)
5344                        stripe_index += mirror_num - 1;
5345                else {
5346                        int old_stripe_index = stripe_index;
5347                        stripe_index = find_live_mirror(fs_info, map,
5348                                              stripe_index,
5349                                              map->sub_stripes, stripe_index +
5350                                              current->pid % map->sub_stripes,
5351                                              dev_replace_is_ongoing);
5352                        mirror_num = stripe_index - old_stripe_index + 1;
5353                }
5354
5355        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5356                if (need_raid_map &&
5357                    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5358                     mirror_num > 1)) {
5359                        /* push stripe_nr back to the start of the full stripe */
5360                        stripe_nr = div_u64(raid56_full_stripe_start,
5361                                        stripe_len * nr_data_stripes(map));
5362
5363                        /* RAID[56] write or recovery. Return all stripes */
5364                        num_stripes = map->num_stripes;
5365                        max_errors = nr_parity_stripes(map);
5366
5367                        *length = map->stripe_len;
5368                        stripe_index = 0;
5369                        stripe_offset = 0;
5370                } else {
5371                        /*
5372                         * Mirror #0 or #1 means the original data block.
5373                         * Mirror #2 is RAID5 parity block.
5374                         * Mirror #3 is RAID6 Q block.
5375                         */
5376                        stripe_nr = div_u64_rem(stripe_nr,
5377                                        nr_data_stripes(map), &stripe_index);
5378                        if (mirror_num > 1)
5379                                stripe_index = nr_data_stripes(map) +
5380                                                mirror_num - 2;
5381
5382                        /* We distribute the parity blocks across stripes */
5383                        div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5384                                        &stripe_index);
5385                        if (!(rw & (REQ_WRITE | REQ_DISCARD |
5386                                    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5387                                mirror_num = 1;
5388                }
5389        } else {
5390                /*
5391                 * after this, stripe_nr is the number of stripes on this
5392                 * device we have to walk to find the data, and stripe_index is
5393                 * the number of our device in the stripe array
5394                 */
5395                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5396                                &stripe_index);
5397                mirror_num = stripe_index + 1;
5398        }
5399        BUG_ON(stripe_index >= map->num_stripes);
5400
5401        num_alloc_stripes = num_stripes;
5402        if (dev_replace_is_ongoing) {
5403                if (rw & (REQ_WRITE | REQ_DISCARD))
5404                        num_alloc_stripes <<= 1;
5405                if (rw & REQ_GET_READ_MIRRORS)
5406                        num_alloc_stripes++;
5407                tgtdev_indexes = num_stripes;
5408        }
5409
5410        bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5411        if (!bbio) {
5412                ret = -ENOMEM;
5413                goto out;
5414        }
5415        if (dev_replace_is_ongoing)
5416                bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5417
5418        /* build raid_map */
5419        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5420            need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5421            mirror_num > 1)) {
5422                u64 tmp;
5423                unsigned rot;
5424
5425                bbio->raid_map = (u64 *)((void *)bbio->stripes +
5426                                 sizeof(struct btrfs_bio_stripe) *
5427                                 num_alloc_stripes +
5428                                 sizeof(int) * tgtdev_indexes);
5429
5430                /* Work out the disk rotation on this stripe-set */
5431                div_u64_rem(stripe_nr, num_stripes, &rot);
5432
5433                /* Fill in the logical address of each stripe */
5434                tmp = stripe_nr * nr_data_stripes(map);
5435                for (i = 0; i < nr_data_stripes(map); i++)
5436                        bbio->raid_map[(i+rot) % num_stripes] =
5437                                em->start + (tmp + i) * map->stripe_len;
5438
5439                bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5440                if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5441                        bbio->raid_map[(i+rot+1) % num_stripes] =
5442                                RAID6_Q_STRIPE;
5443        }
5444
5445        if (rw & REQ_DISCARD) {
5446                u32 factor = 0;
5447                u32 sub_stripes = 0;
5448                u64 stripes_per_dev = 0;
5449                u32 remaining_stripes = 0;
5450                u32 last_stripe = 0;
5451
5452                if (map->type &
5453                    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5454                        if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5455                                sub_stripes = 1;
5456                        else
5457                                sub_stripes = map->sub_stripes;
5458
5459                        factor = map->num_stripes / sub_stripes;
5460                        stripes_per_dev = div_u64_rem(stripe_nr_end -
5461                                                      stripe_nr_orig,
5462                                                      factor,
5463                                                      &remaining_stripes);
5464                        div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5465                        last_stripe *= sub_stripes;
5466                }
5467
5468                for (i = 0; i < num_stripes; i++) {
5469                        bbio->stripes[i].physical =
5470                                map->stripes[stripe_index].physical +
5471                                stripe_offset + stripe_nr * map->stripe_len;
5472                        bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5473
5474                        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5475                                         BTRFS_BLOCK_GROUP_RAID10)) {
5476                                bbio->stripes[i].length = stripes_per_dev *
5477                                                          map->stripe_len;
5478
5479                                if (i / sub_stripes < remaining_stripes)
5480                                        bbio->stripes[i].length +=
5481                                                map->stripe_len;
5482
5483                                /*
5484                                 * Special for the first stripe and
5485                                 * the last stripe:
5486                                 *
5487                                 * |-------|...|-------|
5488                                 *     |----------|
5489                                 *    off     end_off
5490                                 */
5491                                if (i < sub_stripes)
5492                                        bbio->stripes[i].length -=
5493                                                stripe_offset;
5494
5495                                if (stripe_index >= last_stripe &&
5496                                    stripe_index <= (last_stripe +
5497                                                     sub_stripes - 1))
5498                                        bbio->stripes[i].length -=
5499                                                stripe_end_offset;
5500
5501                                if (i == sub_stripes - 1)
5502                                        stripe_offset = 0;
5503                        } else
5504                                bbio->stripes[i].length = *length;
5505
5506                        stripe_index++;
5507                        if (stripe_index == map->num_stripes) {
5508                                /* This could only happen for RAID0/10 */
5509                                stripe_index = 0;
5510                                stripe_nr++;
5511                        }
5512                }
5513        } else {
5514                for (i = 0; i < num_stripes; i++) {
5515                        bbio->stripes[i].physical =
5516                                map->stripes[stripe_index].physical +
5517                                stripe_offset +
5518                                stripe_nr * map->stripe_len;
5519                        bbio->stripes[i].dev =
5520                                map->stripes[stripe_index].dev;
5521                        stripe_index++;
5522                }
5523        }
5524
5525        if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5526                max_errors = btrfs_chunk_max_errors(map);
5527
5528        if (bbio->raid_map)
5529                sort_parity_stripes(bbio, num_stripes);
5530
5531        tgtdev_indexes = 0;
5532        if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5533            dev_replace->tgtdev != NULL) {
5534                int index_where_to_add;
5535                u64 srcdev_devid = dev_replace->srcdev->devid;
5536
5537                /*
5538                 * duplicate the write operations while the dev replace
5539                 * procedure is running. Since the copying of the old disk
5540                 * to the new disk takes place at run time while the
5541                 * filesystem is mounted writable, the regular write
5542                 * operations to the old disk have to be duplicated to go
5543                 * to the new disk as well.
5544                 * Note that device->missing is handled by the caller, and
5545                 * that the write to the old disk is already set up in the
5546                 * stripes array.
5547                 */
5548                index_where_to_add = num_stripes;
5549                for (i = 0; i < num_stripes; i++) {
5550                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5551                                /* write to new disk, too */
5552                                struct btrfs_bio_stripe *new =
5553                                        bbio->stripes + index_where_to_add;
5554                                struct btrfs_bio_stripe *old =
5555                                        bbio->stripes + i;
5556
5557                                new->physical = old->physical;
5558                                new->length = old->length;
5559                                new->dev = dev_replace->tgtdev;
5560                                bbio->tgtdev_map[i] = index_where_to_add;
5561                                index_where_to_add++;
5562                                max_errors++;
5563                                tgtdev_indexes++;
5564                        }
5565                }
5566                num_stripes = index_where_to_add;
5567        } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5568                   dev_replace->tgtdev != NULL) {
5569                u64 srcdev_devid = dev_replace->srcdev->devid;
5570                int index_srcdev = 0;
5571                int found = 0;
5572                u64 physical_of_found = 0;
5573
5574                /*
5575                 * During the dev-replace procedure, the target drive can
5576                 * also be used to read data in case it is needed to repair
5577                 * a corrupt block elsewhere. This is possible if the
5578                 * requested area is left of the left cursor. In this area,
5579                 * the target drive is a full copy of the source drive.
5580                 */
5581                for (i = 0; i < num_stripes; i++) {
5582                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5583                                /*
5584                                 * In case of DUP, in order to keep it
5585                                 * simple, only add the mirror with the
5586                                 * lowest physical address
5587                                 */
5588                                if (found &&
5589                                    physical_of_found <=
5590                                     bbio->stripes[i].physical)
5591                                        continue;
5592                                index_srcdev = i;
5593                                found = 1;
5594                                physical_of_found = bbio->stripes[i].physical;
5595                        }
5596                }
5597                if (found) {
5598                        if (physical_of_found + map->stripe_len <=
5599                            dev_replace->cursor_left) {
5600                                struct btrfs_bio_stripe *tgtdev_stripe =
5601                                        bbio->stripes + num_stripes;
5602
5603                                tgtdev_stripe->physical = physical_of_found;
5604                                tgtdev_stripe->length =
5605                                        bbio->stripes[index_srcdev].length;
5606                                tgtdev_stripe->dev = dev_replace->tgtdev;
5607                                bbio->tgtdev_map[index_srcdev] = num_stripes;
5608
5609                                tgtdev_indexes++;
5610                                num_stripes++;
5611                        }
5612                }
5613        }
5614
5615        *bbio_ret = bbio;
5616        bbio->map_type = map->type;
5617        bbio->num_stripes = num_stripes;
5618        bbio->max_errors = max_errors;
5619        bbio->mirror_num = mirror_num;
5620        bbio->num_tgtdevs = tgtdev_indexes;
5621
5622        /*
5623         * this is the case that REQ_READ && dev_replace_is_ongoing &&
5624         * mirror_num == num_stripes + 1 && dev_replace target drive is
5625         * available as a mirror
5626         */
5627        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5628                WARN_ON(num_stripes > 1);
5629                bbio->stripes[0].dev = dev_replace->tgtdev;
5630                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5631                bbio->mirror_num = map->num_stripes + 1;
5632        }
5633out:
5634        if (dev_replace_is_ongoing)
5635                btrfs_dev_replace_unlock(dev_replace);
5636        free_extent_map(em);
5637        return ret;
5638}
5639
5640int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5641                      u64 logical, u64 *length,
5642                      struct btrfs_bio **bbio_ret, int mirror_num)
5643{
5644        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5645                                 mirror_num, 0);
5646}
5647
5648/* For Scrub/replace */
5649int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5650                     u64 logical, u64 *length,
5651                     struct btrfs_bio **bbio_ret, int mirror_num,
5652                     int need_raid_map)
5653{
5654        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5655                                 mirror_num, need_raid_map);
5656}
5657
5658int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5659                     u64 chunk_start, u64 physical, u64 devid,
5660                     u64 **logical, int *naddrs, int *stripe_len)
5661{
5662        struct extent_map_tree *em_tree = &map_tree->map_tree;
5663        struct extent_map *em;
5664        struct map_lookup *map;
5665        u64 *buf;
5666        u64 bytenr;
5667        u64 length;
5668        u64 stripe_nr;
5669        u64 rmap_len;
5670        int i, j, nr = 0;
5671
5672        read_lock(&em_tree->lock);
5673        em = lookup_extent_mapping(em_tree, chunk_start, 1);
5674        read_unlock(&em_tree->lock);
5675
5676        if (!em) {
5677                printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5678                       chunk_start);
5679                return -EIO;
5680        }
5681
5682        if (em->start != chunk_start) {
5683                printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5684                       em->start, chunk_start);
5685                free_extent_map(em);
5686                return -EIO;
5687        }
5688        map = (struct map_lookup *)em->bdev;
5689
5690        length = em->len;
5691        rmap_len = map->stripe_len;
5692
5693        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5694                length = div_u64(length, map->num_stripes / map->sub_stripes);
5695        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5696                length = div_u64(length, map->num_stripes);
5697        else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5698                length = div_u64(length, nr_data_stripes(map));
5699                rmap_len = map->stripe_len * nr_data_stripes(map);
5700        }
5701
5702        buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5703        BUG_ON(!buf); /* -ENOMEM */
5704
5705        for (i = 0; i < map->num_stripes; i++) {
5706                if (devid && map->stripes[i].dev->devid != devid)
5707                        continue;
5708                if (map->stripes[i].physical > physical ||
5709                    map->stripes[i].physical + length <= physical)
5710                        continue;
5711
5712                stripe_nr = physical - map->stripes[i].physical;
5713                stripe_nr = div_u64(stripe_nr, map->stripe_len);
5714
5715                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5716                        stripe_nr = stripe_nr * map->num_stripes + i;
5717                        stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5718                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5719                        stripe_nr = stripe_nr * map->num_stripes + i;
5720                } /* else if RAID[56], multiply by nr_data_stripes().
5721                   * Alternatively, just use rmap_len below instead of
5722                   * map->stripe_len */
5723
5724                bytenr = chunk_start + stripe_nr * rmap_len;
5725                WARN_ON(nr >= map->num_stripes);
5726                for (j = 0; j < nr; j++) {
5727                        if (buf[j] == bytenr)
5728                                break;
5729                }
5730                if (j == nr) {
5731                        WARN_ON(nr >= map->num_stripes);
5732                        buf[nr++] = bytenr;
5733                }
5734        }
5735
5736        *logical = buf;
5737        *naddrs = nr;
5738        *stripe_len = rmap_len;
5739
5740        free_extent_map(em);
5741        return 0;
5742}
5743
5744static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5745{
5746        bio->bi_private = bbio->private;
5747        bio->bi_end_io = bbio->end_io;
5748        bio_endio(bio, err);
5749
5750        btrfs_put_bbio(bbio);
5751}
5752
5753static void btrfs_end_bio(struct bio *bio, int err)
5754{
5755        struct btrfs_bio *bbio = bio->bi_private;
5756        int is_orig_bio = 0;
5757
5758        if (err) {
5759                atomic_inc(&bbio->error);
5760                if (err == -EIO || err == -EREMOTEIO) {
5761                        unsigned int stripe_index =
5762                                btrfs_io_bio(bio)->stripe_index;
5763                        struct btrfs_device *dev;
5764
5765                        BUG_ON(stripe_index >= bbio->num_stripes);
5766                        dev = bbio->stripes[stripe_index].dev;
5767                        if (dev->bdev) {
5768                                if (bio->bi_rw & WRITE)
5769                                        btrfs_dev_stat_inc(dev,
5770                                                BTRFS_DEV_STAT_WRITE_ERRS);
5771                                else
5772                                        btrfs_dev_stat_inc(dev,
5773                                                BTRFS_DEV_STAT_READ_ERRS);
5774                                if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5775                                        btrfs_dev_stat_inc(dev,
5776                                                BTRFS_DEV_STAT_FLUSH_ERRS);
5777                                btrfs_dev_stat_print_on_error(dev);
5778                        }
5779                }
5780        }
5781
5782        if (bio == bbio->orig_bio)
5783                is_orig_bio = 1;
5784
5785        btrfs_bio_counter_dec(bbio->fs_info);
5786
5787        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5788                if (!is_orig_bio) {
5789                        bio_put(bio);
5790                        bio = bbio->orig_bio;
5791                }
5792
5793                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5794                /* only send an error to the higher layers if it is
5795                 * beyond the tolerance of the btrfs bio
5796                 */
5797                if (atomic_read(&bbio->error) > bbio->max_errors) {
5798                        err = -EIO;
5799                } else {
5800                        /*
5801                         * this bio is actually up to date, we didn't
5802                         * go over the max number of errors
5803                         */
5804                        set_bit(BIO_UPTODATE, &bio->bi_flags);
5805                        err = 0;
5806                }
5807
5808                btrfs_end_bbio(bbio, bio, err);
5809        } else if (!is_orig_bio) {
5810                bio_put(bio);
5811        }
5812}
5813
5814/*
5815 * see run_scheduled_bios for a description of why bios are collected for
5816 * async submit.
5817 *
5818 * This will add one bio to the pending list for a device and make sure
5819 * the work struct is scheduled.
5820 */
5821static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5822                                        struct btrfs_device *device,
5823                                        int rw, struct bio *bio)
5824{
5825        int should_queue = 1;
5826        struct btrfs_pending_bios *pending_bios;
5827
5828        if (device->missing || !device->bdev) {
5829                bio_endio(bio, -EIO);
5830                return;
5831        }
5832
5833        /* don't bother with additional async steps for reads, right now */
5834        if (!(rw & REQ_WRITE)) {
5835                bio_get(bio);
5836                btrfsic_submit_bio(rw, bio);
5837                bio_put(bio);
5838                return;
5839        }
5840
5841        /*
5842         * nr_async_bios allows us to reliably return congestion to the
5843         * higher layers.  Otherwise, the async bio makes it appear we have
5844         * made progress against dirty pages when we've really just put it
5845         * on a queue for later
5846         */
5847        atomic_inc(&root->fs_info->nr_async_bios);
5848        WARN_ON(bio->bi_next);
5849        bio->bi_next = NULL;
5850        bio->bi_rw |= rw;
5851
5852        spin_lock(&device->io_lock);
5853        if (bio->bi_rw & REQ_SYNC)
5854                pending_bios = &device->pending_sync_bios;
5855        else
5856                pending_bios = &device->pending_bios;
5857
5858        if (pending_bios->tail)
5859                pending_bios->tail->bi_next = bio;
5860
5861        pending_bios->tail = bio;
5862        if (!pending_bios->head)
5863                pending_bios->head = bio;
5864        if (device->running_pending)
5865                should_queue = 0;
5866
5867        spin_unlock(&device->io_lock);
5868
5869        if (should_queue)
5870                btrfs_queue_work(root->fs_info->submit_workers,
5871                                 &device->work);
5872}
5873
5874static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5875                       sector_t sector)
5876{
5877        struct bio_vec *prev;
5878        struct request_queue *q = bdev_get_queue(bdev);
5879        unsigned int max_sectors = queue_max_sectors(q);
5880        struct bvec_merge_data bvm = {
5881                .bi_bdev = bdev,
5882                .bi_sector = sector,
5883                .bi_rw = bio->bi_rw,
5884        };
5885
5886        if (WARN_ON(bio->bi_vcnt == 0))
5887                return 1;
5888
5889        prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5890        if (bio_sectors(bio) > max_sectors)
5891                return 0;
5892
5893        if (!q->merge_bvec_fn)
5894                return 1;
5895
5896        bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5897        if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5898                return 0;
5899        return 1;
5900}
5901
5902static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5903                              struct bio *bio, u64 physical, int dev_nr,
5904                              int rw, int async)
5905{
5906        struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5907
5908        bio->bi_private = bbio;
5909        btrfs_io_bio(bio)->stripe_index = dev_nr;
5910        bio->bi_end_io = btrfs_end_bio;
5911        bio->bi_iter.bi_sector = physical >> 9;
5912#ifdef DEBUG
5913        {
5914                struct rcu_string *name;
5915
5916                rcu_read_lock();
5917                name = rcu_dereference(dev->name);
5918                pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5919                         "(%s id %llu), size=%u\n", rw,
5920                         (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5921                         name->str, dev->devid, bio->bi_iter.bi_size);
5922                rcu_read_unlock();
5923        }
5924#endif
5925        bio->bi_bdev = dev->bdev;
5926
5927        btrfs_bio_counter_inc_noblocked(root->fs_info);
5928
5929        if (async)
5930                btrfs_schedule_bio(root, dev, rw, bio);
5931        else
5932                btrfsic_submit_bio(rw, bio);
5933}
5934
5935static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5936                              struct bio *first_bio, struct btrfs_device *dev,
5937                              int dev_nr, int rw, int async)
5938{
5939        struct bio_vec *bvec = first_bio->bi_io_vec;
5940        struct bio *bio;
5941        int nr_vecs = bio_get_nr_vecs(dev->bdev);
5942        u64 physical = bbio->stripes[dev_nr].physical;
5943
5944again:
5945        bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5946        if (!bio)
5947                return -ENOMEM;
5948
5949        while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5950                if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5951                                 bvec->bv_offset) < bvec->bv_len) {
5952                        u64 len = bio->bi_iter.bi_size;
5953
5954                        atomic_inc(&bbio->stripes_pending);
5955                        submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5956                                          rw, async);
5957                        physical += len;
5958                        goto again;
5959                }
5960                bvec++;
5961        }
5962
5963        submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5964        return 0;
5965}
5966
5967static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5968{
5969        atomic_inc(&bbio->error);
5970        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5971                /* Shoud be the original bio. */
5972                WARN_ON(bio != bbio->orig_bio);
5973
5974                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5975                bio->bi_iter.bi_sector = logical >> 9;
5976
5977                btrfs_end_bbio(bbio, bio, -EIO);
5978        }
5979}
5980
5981int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5982                  int mirror_num, int async_submit)
5983{
5984        struct btrfs_device *dev;
5985        struct bio *first_bio = bio;
5986        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5987        u64 length = 0;
5988        u64 map_length;
5989        int ret;
5990        int dev_nr;
5991        int total_devs;
5992        struct btrfs_bio *bbio = NULL;
5993
5994        length = bio->bi_iter.bi_size;
5995        map_length = length;
5996
5997        btrfs_bio_counter_inc_blocked(root->fs_info);
5998        ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5999                              mirror_num, 1);
6000        if (ret) {
6001                btrfs_bio_counter_dec(root->fs_info);
6002                return ret;
6003        }
6004
6005        total_devs = bbio->num_stripes;
6006        bbio->orig_bio = first_bio;
6007        bbio->private = first_bio->bi_private;
6008        bbio->end_io = first_bio->bi_end_io;
6009        bbio->fs_info = root->fs_info;
6010        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6011
6012        if (bbio->raid_map) {
6013                /* In this case, map_length has been set to the length of
6014                   a single stripe; not the whole write */
6015                if (rw & WRITE) {
6016                        ret = raid56_parity_write(root, bio, bbio, map_length);
6017                } else {
6018                        ret = raid56_parity_recover(root, bio, bbio, map_length,
6019                                                    mirror_num, 1);
6020                }
6021
6022                btrfs_bio_counter_dec(root->fs_info);
6023                return ret;
6024        }
6025
6026        if (map_length < length) {
6027                btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6028                        logical, length, map_length);
6029                BUG();
6030        }
6031
6032        for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6033                dev = bbio->stripes[dev_nr].dev;
6034                if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6035                        bbio_error(bbio, first_bio, logical);
6036                        continue;
6037                }
6038
6039                /*
6040                 * Check and see if we're ok with this bio based on it's size
6041                 * and offset with the given device.
6042                 */
6043                if (!bio_size_ok(dev->bdev, first_bio,
6044                                 bbio->stripes[dev_nr].physical >> 9)) {
6045                        ret = breakup_stripe_bio(root, bbio, first_bio, dev,
6046                                                 dev_nr, rw, async_submit);
6047                        BUG_ON(ret);
6048                        continue;
6049                }
6050
6051                if (dev_nr < total_devs - 1) {
6052                        bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6053                        BUG_ON(!bio); /* -ENOMEM */
6054                } else
6055                        bio = first_bio;
6056
6057                submit_stripe_bio(root, bbio, bio,
6058                                  bbio->stripes[dev_nr].physical, dev_nr, rw,
6059                                  async_submit);
6060        }
6061        btrfs_bio_counter_dec(root->fs_info);
6062        return 0;
6063}
6064
6065struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6066                                       u8 *uuid, u8 *fsid)
6067{
6068        struct btrfs_device *device;
6069        struct btrfs_fs_devices *cur_devices;
6070
6071        cur_devices = fs_info->fs_devices;
6072        while (cur_devices) {
6073                if (!fsid ||
6074                    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6075                        device = __find_device(&cur_devices->devices,
6076                                               devid, uuid);
6077                        if (device)
6078                                return device;
6079                }
6080                cur_devices = cur_devices->seed;
6081        }
6082        return NULL;
6083}
6084
6085static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6086                                            struct btrfs_fs_devices *fs_devices,
6087                                            u64 devid, u8 *dev_uuid)
6088{
6089        struct btrfs_device *device;
6090
6091        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6092        if (IS_ERR(device))
6093                return NULL;
6094
6095        list_add(&device->dev_list, &fs_devices->devices);
6096        device->fs_devices = fs_devices;
6097        fs_devices->num_devices++;
6098
6099        device->missing = 1;
6100        fs_devices->missing_devices++;
6101
6102        return device;
6103}
6104
6105/**
6106 * btrfs_alloc_device - allocate struct btrfs_device
6107 * @fs_info:    used only for generating a new devid, can be NULL if
6108 *              devid is provided (i.e. @devid != NULL).
6109 * @devid:      a pointer to devid for this device.  If NULL a new devid
6110 *              is generated.
6111 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6112 *              is generated.
6113 *
6114 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6115 * on error.  Returned struct is not linked onto any lists and can be
6116 * destroyed with kfree() right away.
6117 */
6118struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6119                                        const u64 *devid,
6120                                        const u8 *uuid)
6121{
6122        struct btrfs_device *dev;
6123        u64 tmp;
6124
6125        if (WARN_ON(!devid && !fs_info))
6126                return ERR_PTR(-EINVAL);
6127
6128        dev = __alloc_device();
6129        if (IS_ERR(dev))
6130                return dev;
6131
6132        if (devid)
6133                tmp = *devid;
6134        else {
6135                int ret;
6136
6137                ret = find_next_devid(fs_info, &tmp);
6138                if (ret) {
6139                        kfree(dev);
6140                        return ERR_PTR(ret);
6141                }
6142        }
6143        dev->devid = tmp;
6144
6145        if (uuid)
6146                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6147        else
6148                generate_random_uuid(dev->uuid);
6149
6150        btrfs_init_work(&dev->work, btrfs_submit_helper,
6151                        pending_bios_fn, NULL, NULL);
6152
6153        return dev;
6154}
6155
6156static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6157                          struct extent_buffer *leaf,
6158                          struct btrfs_chunk *chunk)
6159{
6160        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6161        struct map_lookup *map;
6162        struct extent_map *em;
6163        u64 logical;
6164        u64 length;
6165        u64 devid;
6166        u8 uuid[BTRFS_UUID_SIZE];
6167        int num_stripes;
6168        int ret;
6169        int i;
6170
6171        logical = key->offset;
6172        length = btrfs_chunk_length(leaf, chunk);
6173
6174        read_lock(&map_tree->map_tree.lock);
6175        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6176        read_unlock(&map_tree->map_tree.lock);
6177
6178        /* already mapped? */
6179        if (em && em->start <= logical && em->start + em->len > logical) {
6180                free_extent_map(em);
6181                return 0;
6182        } else if (em) {
6183                free_extent_map(em);
6184        }
6185
6186        em = alloc_extent_map();
6187        if (!em)
6188                return -ENOMEM;
6189        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6190        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6191        if (!map) {
6192                free_extent_map(em);
6193                return -ENOMEM;
6194        }
6195
6196        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6197        em->bdev = (struct block_device *)map;
6198        em->start = logical;
6199        em->len = length;
6200        em->orig_start = 0;
6201        em->block_start = 0;
6202        em->block_len = em->len;
6203
6204        map->num_stripes = num_stripes;
6205        map->io_width = btrfs_chunk_io_width(leaf, chunk);
6206        map->io_align = btrfs_chunk_io_align(leaf, chunk);
6207        map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6208        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6209        map->type = btrfs_chunk_type(leaf, chunk);
6210        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6211        for (i = 0; i < num_stripes; i++) {
6212                map->stripes[i].physical =
6213                        btrfs_stripe_offset_nr(leaf, chunk, i);
6214                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6215                read_extent_buffer(leaf, uuid, (unsigned long)
6216                                   btrfs_stripe_dev_uuid_nr(chunk, i),
6217                                   BTRFS_UUID_SIZE);
6218                map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6219                                                        uuid, NULL);
6220                if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6221                        free_extent_map(em);
6222                        return -EIO;
6223                }
6224                if (!map->stripes[i].dev) {
6225                        map->stripes[i].dev =
6226                                add_missing_dev(root, root->fs_info->fs_devices,
6227                                                devid, uuid);
6228                        if (!map->stripes[i].dev) {
6229                                free_extent_map(em);
6230                                return -EIO;
6231                        }
6232                        btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6233                                                devid, uuid);
6234                }
6235                map->stripes[i].dev->in_fs_metadata = 1;
6236        }
6237
6238        write_lock(&map_tree->map_tree.lock);
6239        ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6240        write_unlock(&map_tree->map_tree.lock);
6241        BUG_ON(ret); /* Tree corruption */
6242        free_extent_map(em);
6243
6244        return 0;
6245}
6246
6247static void fill_device_from_item(struct extent_buffer *leaf,
6248                                 struct btrfs_dev_item *dev_item,
6249                                 struct btrfs_device *device)
6250{
6251        unsigned long ptr;
6252
6253        device->devid = btrfs_device_id(leaf, dev_item);
6254        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6255        device->total_bytes = device->disk_total_bytes;
6256        device->commit_total_bytes = device->disk_total_bytes;
6257        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6258        device->commit_bytes_used = device->bytes_used;
6259        device->type = btrfs_device_type(leaf, dev_item);
6260        device->io_align = btrfs_device_io_align(leaf, dev_item);
6261        device->io_width = btrfs_device_io_width(leaf, dev_item);
6262        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6263        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6264        device->is_tgtdev_for_dev_replace = 0;
6265
6266        ptr = btrfs_device_uuid(dev_item);
6267        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6268}
6269
6270static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6271                                                  u8 *fsid)
6272{
6273        struct btrfs_fs_devices *fs_devices;
6274        int ret;
6275
6276        BUG_ON(!mutex_is_locked(&uuid_mutex));
6277
6278        fs_devices = root->fs_info->fs_devices->seed;
6279        while (fs_devices) {
6280                if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6281                        return fs_devices;
6282
6283                fs_devices = fs_devices->seed;
6284        }
6285
6286        fs_devices = find_fsid(fsid);
6287        if (!fs_devices) {
6288                if (!btrfs_test_opt(root, DEGRADED))
6289                        return ERR_PTR(-ENOENT);
6290
6291                fs_devices = alloc_fs_devices(fsid);
6292                if (IS_ERR(fs_devices))
6293                        return fs_devices;
6294
6295                fs_devices->seeding = 1;
6296                fs_devices->opened = 1;
6297                return fs_devices;
6298        }
6299
6300        fs_devices = clone_fs_devices(fs_devices);
6301        if (IS_ERR(fs_devices))
6302                return fs_devices;
6303
6304        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6305                                   root->fs_info->bdev_holder);
6306        if (ret) {
6307                free_fs_devices(fs_devices);
6308                fs_devices = ERR_PTR(ret);
6309                goto out;
6310        }
6311
6312        if (!fs_devices->seeding) {
6313                __btrfs_close_devices(fs_devices);
6314                free_fs_devices(fs_devices);
6315                fs_devices = ERR_PTR(-EINVAL);
6316                goto out;
6317        }
6318
6319        fs_devices->seed = root->fs_info->fs_devices->seed;
6320        root->fs_info->fs_devices->seed = fs_devices;
6321out:
6322        return fs_devices;
6323}
6324
6325static int read_one_dev(struct btrfs_root *root,
6326                        struct extent_buffer *leaf,
6327                        struct btrfs_dev_item *dev_item)
6328{
6329        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6330        struct btrfs_device *device;
6331        u64 devid;
6332        int ret;
6333        u8 fs_uuid[BTRFS_UUID_SIZE];
6334        u8 dev_uuid[BTRFS_UUID_SIZE];
6335
6336        devid = btrfs_device_id(leaf, dev_item);
6337        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6338                           BTRFS_UUID_SIZE);
6339        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6340                           BTRFS_UUID_SIZE);
6341
6342        if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6343                fs_devices = open_seed_devices(root, fs_uuid);
6344                if (IS_ERR(fs_devices))
6345                        return PTR_ERR(fs_devices);
6346        }
6347
6348        device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6349        if (!device) {
6350                if (!btrfs_test_opt(root, DEGRADED))
6351                        return -EIO;
6352
6353                device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6354                if (!device)
6355                        return -ENOMEM;
6356                btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6357                                devid, dev_uuid);
6358        } else {
6359                if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6360                        return -EIO;
6361
6362                if(!device->bdev && !device->missing) {
6363                        /*
6364                         * this happens when a device that was properly setup
6365                         * in the device info lists suddenly goes bad.
6366                         * device->bdev is NULL, and so we have to set
6367                         * device->missing to one here
6368                         */
6369                        device->fs_devices->missing_devices++;
6370                        device->missing = 1;
6371                }
6372
6373                /* Move the device to its own fs_devices */
6374                if (device->fs_devices != fs_devices) {
6375                        ASSERT(device->missing);
6376
6377                        list_move(&device->dev_list, &fs_devices->devices);
6378                        device->fs_devices->num_devices--;
6379                        fs_devices->num_devices++;
6380
6381                        device->fs_devices->missing_devices--;
6382                        fs_devices->missing_devices++;
6383
6384                        device->fs_devices = fs_devices;
6385                }
6386        }
6387
6388        if (device->fs_devices != root->fs_info->fs_devices) {
6389                BUG_ON(device->writeable);
6390                if (device->generation !=
6391                    btrfs_device_generation(leaf, dev_item))
6392                        return -EINVAL;
6393        }
6394
6395        fill_device_from_item(leaf, dev_item, device);
6396        device->in_fs_metadata = 1;
6397        if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6398                device->fs_devices->total_rw_bytes += device->total_bytes;
6399                spin_lock(&root->fs_info->free_chunk_lock);
6400                root->fs_info->free_chunk_space += device->total_bytes -
6401                        device->bytes_used;
6402                spin_unlock(&root->fs_info->free_chunk_lock);
6403        }
6404        ret = 0;
6405        return ret;
6406}
6407
6408int btrfs_read_sys_array(struct btrfs_root *root)
6409{
6410        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6411        struct extent_buffer *sb;
6412        struct btrfs_disk_key *disk_key;
6413        struct btrfs_chunk *chunk;
6414        u8 *array_ptr;
6415        unsigned long sb_array_offset;
6416        int ret = 0;
6417        u32 num_stripes;
6418        u32 array_size;
6419        u32 len = 0;
6420        u32 cur_offset;
6421        struct btrfs_key key;
6422
6423        ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6424        /*
6425         * This will create extent buffer of nodesize, superblock size is
6426         * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6427         * overallocate but we can keep it as-is, only the first page is used.
6428         */
6429        sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6430        if (!sb)
6431                return -ENOMEM;
6432        btrfs_set_buffer_uptodate(sb);
6433        btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6434        /*
6435         * The sb extent buffer is artifical and just used to read the system array.
6436         * btrfs_set_buffer_uptodate() call does not properly mark all it's
6437         * pages up-to-date when the page is larger: extent does not cover the
6438         * whole page and consequently check_page_uptodate does not find all
6439         * the page's extents up-to-date (the hole beyond sb),
6440         * write_extent_buffer then triggers a WARN_ON.
6441         *
6442         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6443         * but sb spans only this function. Add an explicit SetPageUptodate call
6444         * to silence the warning eg. on PowerPC 64.
6445         */
6446        if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6447                SetPageUptodate(sb->pages[0]);
6448
6449        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6450        array_size = btrfs_super_sys_array_size(super_copy);
6451
6452        array_ptr = super_copy->sys_chunk_array;
6453        sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6454        cur_offset = 0;
6455
6456        while (cur_offset < array_size) {
6457                disk_key = (struct btrfs_disk_key *)array_ptr;
6458                len = sizeof(*disk_key);
6459                if (cur_offset + len > array_size)
6460                        goto out_short_read;
6461
6462                btrfs_disk_key_to_cpu(&key, disk_key);
6463
6464                array_ptr += len;
6465                sb_array_offset += len;
6466                cur_offset += len;
6467
6468                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6469                        chunk = (struct btrfs_chunk *)sb_array_offset;
6470                        /*
6471                         * At least one btrfs_chunk with one stripe must be
6472                         * present, exact stripe count check comes afterwards
6473                         */
6474                        len = btrfs_chunk_item_size(1);
6475                        if (cur_offset + len > array_size)
6476                                goto out_short_read;
6477
6478                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6479                        len = btrfs_chunk_item_size(num_stripes);
6480                        if (cur_offset + len > array_size)
6481                                goto out_short_read;
6482
6483                        ret = read_one_chunk(root, &key, sb, chunk);
6484                        if (ret)
6485                                break;
6486                } else {
6487                        ret = -EIO;
6488                        break;
6489                }
6490                array_ptr += len;
6491                sb_array_offset += len;
6492                cur_offset += len;
6493        }
6494        free_extent_buffer(sb);
6495        return ret;
6496
6497out_short_read:
6498        printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6499                        len, cur_offset);
6500        free_extent_buffer(sb);
6501        return -EIO;
6502}
6503
6504int btrfs_read_chunk_tree(struct btrfs_root *root)
6505{
6506        struct btrfs_path *path;
6507        struct extent_buffer *leaf;
6508        struct btrfs_key key;
6509        struct btrfs_key found_key;
6510        int ret;
6511        int slot;
6512
6513        root = root->fs_info->chunk_root;
6514
6515        path = btrfs_alloc_path();
6516        if (!path)
6517                return -ENOMEM;
6518
6519        mutex_lock(&uuid_mutex);
6520        lock_chunks(root);
6521
6522        /*
6523         * Read all device items, and then all the chunk items. All
6524         * device items are found before any chunk item (their object id
6525         * is smaller than the lowest possible object id for a chunk
6526         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6527         */
6528        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6529        key.offset = 0;
6530        key.type = 0;
6531        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6532        if (ret < 0)
6533                goto error;
6534        while (1) {
6535                leaf = path->nodes[0];
6536                slot = path->slots[0];
6537                if (slot >= btrfs_header_nritems(leaf)) {
6538                        ret = btrfs_next_leaf(root, path);
6539                        if (ret == 0)
6540                                continue;
6541                        if (ret < 0)
6542                                goto error;
6543                        break;
6544                }
6545                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6546                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6547                        struct btrfs_dev_item *dev_item;
6548                        dev_item = btrfs_item_ptr(leaf, slot,
6549                                                  struct btrfs_dev_item);
6550                        ret = read_one_dev(root, leaf, dev_item);
6551                        if (ret)
6552                                goto error;
6553                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6554                        struct btrfs_chunk *chunk;
6555                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6556                        ret = read_one_chunk(root, &found_key, leaf, chunk);
6557                        if (ret)
6558                                goto error;
6559                }
6560                path->slots[0]++;
6561        }
6562        ret = 0;
6563error:
6564        unlock_chunks(root);
6565        mutex_unlock(&uuid_mutex);
6566
6567        btrfs_free_path(path);
6568        return ret;
6569}
6570
6571void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6572{
6573        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6574        struct btrfs_device *device;
6575
6576        while (fs_devices) {
6577                mutex_lock(&fs_devices->device_list_mutex);
6578                list_for_each_entry(device, &fs_devices->devices, dev_list)
6579                        device->dev_root = fs_info->dev_root;
6580                mutex_unlock(&fs_devices->device_list_mutex);
6581
6582                fs_devices = fs_devices->seed;
6583        }
6584}
6585
6586static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6587{
6588        int i;
6589
6590        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6591                btrfs_dev_stat_reset(dev, i);
6592}
6593
6594int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6595{
6596        struct btrfs_key key;
6597        struct btrfs_key found_key;
6598        struct btrfs_root *dev_root = fs_info->dev_root;
6599        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6600        struct extent_buffer *eb;
6601        int slot;
6602        int ret = 0;
6603        struct btrfs_device *device;
6604        struct btrfs_path *path = NULL;
6605        int i;
6606
6607        path = btrfs_alloc_path();
6608        if (!path) {
6609                ret = -ENOMEM;
6610                goto out;
6611        }
6612
6613        mutex_lock(&fs_devices->device_list_mutex);
6614        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6615                int item_size;
6616                struct btrfs_dev_stats_item *ptr;
6617
6618                key.objectid = 0;
6619                key.type = BTRFS_DEV_STATS_KEY;
6620                key.offset = device->devid;
6621                ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6622                if (ret) {
6623                        __btrfs_reset_dev_stats(device);
6624                        device->dev_stats_valid = 1;
6625                        btrfs_release_path(path);
6626                        continue;
6627                }
6628                slot = path->slots[0];
6629                eb = path->nodes[0];
6630                btrfs_item_key_to_cpu(eb, &found_key, slot);
6631                item_size = btrfs_item_size_nr(eb, slot);
6632
6633                ptr = btrfs_item_ptr(eb, slot,
6634                                     struct btrfs_dev_stats_item);
6635
6636                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6637                        if (item_size >= (1 + i) * sizeof(__le64))
6638                                btrfs_dev_stat_set(device, i,
6639                                        btrfs_dev_stats_value(eb, ptr, i));
6640                        else
6641                                btrfs_dev_stat_reset(device, i);
6642                }
6643
6644                device->dev_stats_valid = 1;
6645                btrfs_dev_stat_print_on_load(device);
6646                btrfs_release_path(path);
6647        }
6648        mutex_unlock(&fs_devices->device_list_mutex);
6649
6650out:
6651        btrfs_free_path(path);
6652        return ret < 0 ? ret : 0;
6653}
6654
6655static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6656                                struct btrfs_root *dev_root,
6657                                struct btrfs_device *device)
6658{
6659        struct btrfs_path *path;
6660        struct btrfs_key key;
6661        struct extent_buffer *eb;
6662        struct btrfs_dev_stats_item *ptr;
6663        int ret;
6664        int i;
6665
6666        key.objectid = 0;
6667        key.type = BTRFS_DEV_STATS_KEY;
6668        key.offset = device->devid;
6669
6670        path = btrfs_alloc_path();
6671        BUG_ON(!path);
6672        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6673        if (ret < 0) {
6674                printk_in_rcu(KERN_WARNING "BTRFS: "
6675                        "error %d while searching for dev_stats item for device %s!\n",
6676                              ret, rcu_str_deref(device->name));
6677                goto out;
6678        }
6679
6680        if (ret == 0 &&
6681            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6682                /* need to delete old one and insert a new one */
6683                ret = btrfs_del_item(trans, dev_root, path);
6684                if (ret != 0) {
6685                        printk_in_rcu(KERN_WARNING "BTRFS: "
6686                                "delete too small dev_stats item for device %s failed %d!\n",
6687                                      rcu_str_deref(device->name), ret);
6688                        goto out;
6689                }
6690                ret = 1;
6691        }
6692
6693        if (ret == 1) {
6694                /* need to insert a new item */
6695                btrfs_release_path(path);
6696                ret = btrfs_insert_empty_item(trans, dev_root, path,
6697                                              &key, sizeof(*ptr));
6698                if (ret < 0) {
6699                        printk_in_rcu(KERN_WARNING "BTRFS: "
6700                                          "insert dev_stats item for device %s failed %d!\n",
6701                                      rcu_str_deref(device->name), ret);
6702                        goto out;
6703                }
6704        }
6705
6706        eb = path->nodes[0];
6707        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6708        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6709                btrfs_set_dev_stats_value(eb, ptr, i,
6710                                          btrfs_dev_stat_read(device, i));
6711        btrfs_mark_buffer_dirty(eb);
6712
6713out:
6714        btrfs_free_path(path);
6715        return ret;
6716}
6717
6718/*
6719 * called from commit_transaction. Writes all changed device stats to disk.
6720 */
6721int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6722                        struct btrfs_fs_info *fs_info)
6723{
6724        struct btrfs_root *dev_root = fs_info->dev_root;
6725        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6726        struct btrfs_device *device;
6727        int stats_cnt;
6728        int ret = 0;
6729
6730        mutex_lock(&fs_devices->device_list_mutex);
6731        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6732                if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6733                        continue;
6734
6735                stats_cnt = atomic_read(&device->dev_stats_ccnt);
6736                ret = update_dev_stat_item(trans, dev_root, device);
6737                if (!ret)
6738                        atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6739        }
6740        mutex_unlock(&fs_devices->device_list_mutex);
6741
6742        return ret;
6743}
6744
6745void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6746{
6747        btrfs_dev_stat_inc(dev, index);
6748        btrfs_dev_stat_print_on_error(dev);
6749}
6750
6751static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6752{
6753        if (!dev->dev_stats_valid)
6754                return;
6755        printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6756                           "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6757                           rcu_str_deref(dev->name),
6758                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6759                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6760                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6761                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6762                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6763}
6764
6765static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6766{
6767        int i;
6768
6769        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6770                if (btrfs_dev_stat_read(dev, i) != 0)
6771                        break;
6772        if (i == BTRFS_DEV_STAT_VALUES_MAX)
6773                return; /* all values == 0, suppress message */
6774
6775        printk_in_rcu(KERN_INFO "BTRFS: "
6776                   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6777               rcu_str_deref(dev->name),
6778               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6779               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6780               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6781               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6782               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6783}
6784
6785int btrfs_get_dev_stats(struct btrfs_root *root,
6786                        struct btrfs_ioctl_get_dev_stats *stats)
6787{
6788        struct btrfs_device *dev;
6789        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6790        int i;
6791
6792        mutex_lock(&fs_devices->device_list_mutex);
6793        dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6794        mutex_unlock(&fs_devices->device_list_mutex);
6795
6796        if (!dev) {
6797                btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6798                return -ENODEV;
6799        } else if (!dev->dev_stats_valid) {
6800                btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6801                return -ENODEV;
6802        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6803                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6804                        if (stats->nr_items > i)
6805                                stats->values[i] =
6806                                        btrfs_dev_stat_read_and_reset(dev, i);
6807                        else
6808                                btrfs_dev_stat_reset(dev, i);
6809                }
6810        } else {
6811                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6812                        if (stats->nr_items > i)
6813                                stats->values[i] = btrfs_dev_stat_read(dev, i);
6814        }
6815        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6816                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6817        return 0;
6818}
6819
6820int btrfs_scratch_superblock(struct btrfs_device *device)
6821{
6822        struct buffer_head *bh;
6823        struct btrfs_super_block *disk_super;
6824
6825        bh = btrfs_read_dev_super(device->bdev);
6826        if (!bh)
6827                return -EINVAL;
6828        disk_super = (struct btrfs_super_block *)bh->b_data;
6829
6830        memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6831        set_buffer_dirty(bh);
6832        sync_dirty_buffer(bh);
6833        brelse(bh);
6834
6835        return 0;
6836}
6837
6838/*
6839 * Update the size of all devices, which is used for writing out the
6840 * super blocks.
6841 */
6842void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6843{
6844        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6845        struct btrfs_device *curr, *next;
6846
6847        if (list_empty(&fs_devices->resized_devices))
6848                return;
6849
6850        mutex_lock(&fs_devices->device_list_mutex);
6851        lock_chunks(fs_info->dev_root);
6852        list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6853                                 resized_list) {
6854                list_del_init(&curr->resized_list);
6855                curr->commit_total_bytes = curr->disk_total_bytes;
6856        }
6857        unlock_chunks(fs_info->dev_root);
6858        mutex_unlock(&fs_devices->device_list_mutex);
6859}
6860
6861/* Must be invoked during the transaction commit */
6862void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6863                                        struct btrfs_transaction *transaction)
6864{
6865        struct extent_map *em;
6866        struct map_lookup *map;
6867        struct btrfs_device *dev;
6868        int i;
6869
6870        if (list_empty(&transaction->pending_chunks))
6871                return;
6872
6873        /* In order to kick the device replace finish process */
6874        lock_chunks(root);
6875        list_for_each_entry(em, &transaction->pending_chunks, list) {
6876                map = (struct map_lookup *)em->bdev;
6877
6878                for (i = 0; i < map->num_stripes; i++) {
6879                        dev = map->stripes[i].dev;
6880                        dev->commit_bytes_used = dev->bytes_used;
6881                }
6882        }
6883        unlock_chunks(root);
6884}
6885
6886void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6887{
6888        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6889        while (fs_devices) {
6890                fs_devices->fs_info = fs_info;
6891                fs_devices = fs_devices->seed;
6892        }
6893}
6894
6895void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6896{
6897        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6898        while (fs_devices) {
6899                fs_devices->fs_info = NULL;
6900                fs_devices = fs_devices->seed;
6901        }
6902}
6903