linux/fs/ext4/indirect.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/indirect.c
   3 *
   4 *  from
   5 *
   6 *  linux/fs/ext4/inode.c
   7 *
   8 * Copyright (C) 1992, 1993, 1994, 1995
   9 * Remy Card (card@masi.ibp.fr)
  10 * Laboratoire MASI - Institut Blaise Pascal
  11 * Universite Pierre et Marie Curie (Paris VI)
  12 *
  13 *  from
  14 *
  15 *  linux/fs/minix/inode.c
  16 *
  17 *  Copyright (C) 1991, 1992  Linus Torvalds
  18 *
  19 *  Goal-directed block allocation by Stephen Tweedie
  20 *      (sct@redhat.com), 1993, 1998
  21 */
  22
  23#include "ext4_jbd2.h"
  24#include "truncate.h"
  25#include <linux/uio.h>
  26
  27#include <trace/events/ext4.h>
  28
  29typedef struct {
  30        __le32  *p;
  31        __le32  key;
  32        struct buffer_head *bh;
  33} Indirect;
  34
  35static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  36{
  37        p->key = *(p->p = v);
  38        p->bh = bh;
  39}
  40
  41/**
  42 *      ext4_block_to_path - parse the block number into array of offsets
  43 *      @inode: inode in question (we are only interested in its superblock)
  44 *      @i_block: block number to be parsed
  45 *      @offsets: array to store the offsets in
  46 *      @boundary: set this non-zero if the referred-to block is likely to be
  47 *             followed (on disk) by an indirect block.
  48 *
  49 *      To store the locations of file's data ext4 uses a data structure common
  50 *      for UNIX filesystems - tree of pointers anchored in the inode, with
  51 *      data blocks at leaves and indirect blocks in intermediate nodes.
  52 *      This function translates the block number into path in that tree -
  53 *      return value is the path length and @offsets[n] is the offset of
  54 *      pointer to (n+1)th node in the nth one. If @block is out of range
  55 *      (negative or too large) warning is printed and zero returned.
  56 *
  57 *      Note: function doesn't find node addresses, so no IO is needed. All
  58 *      we need to know is the capacity of indirect blocks (taken from the
  59 *      inode->i_sb).
  60 */
  61
  62/*
  63 * Portability note: the last comparison (check that we fit into triple
  64 * indirect block) is spelled differently, because otherwise on an
  65 * architecture with 32-bit longs and 8Kb pages we might get into trouble
  66 * if our filesystem had 8Kb blocks. We might use long long, but that would
  67 * kill us on x86. Oh, well, at least the sign propagation does not matter -
  68 * i_block would have to be negative in the very beginning, so we would not
  69 * get there at all.
  70 */
  71
  72static int ext4_block_to_path(struct inode *inode,
  73                              ext4_lblk_t i_block,
  74                              ext4_lblk_t offsets[4], int *boundary)
  75{
  76        int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  77        int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  78        const long direct_blocks = EXT4_NDIR_BLOCKS,
  79                indirect_blocks = ptrs,
  80                double_blocks = (1 << (ptrs_bits * 2));
  81        int n = 0;
  82        int final = 0;
  83
  84        if (i_block < direct_blocks) {
  85                offsets[n++] = i_block;
  86                final = direct_blocks;
  87        } else if ((i_block -= direct_blocks) < indirect_blocks) {
  88                offsets[n++] = EXT4_IND_BLOCK;
  89                offsets[n++] = i_block;
  90                final = ptrs;
  91        } else if ((i_block -= indirect_blocks) < double_blocks) {
  92                offsets[n++] = EXT4_DIND_BLOCK;
  93                offsets[n++] = i_block >> ptrs_bits;
  94                offsets[n++] = i_block & (ptrs - 1);
  95                final = ptrs;
  96        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  97                offsets[n++] = EXT4_TIND_BLOCK;
  98                offsets[n++] = i_block >> (ptrs_bits * 2);
  99                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 100                offsets[n++] = i_block & (ptrs - 1);
 101                final = ptrs;
 102        } else {
 103                ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
 104                             i_block + direct_blocks +
 105                             indirect_blocks + double_blocks, inode->i_ino);
 106        }
 107        if (boundary)
 108                *boundary = final - 1 - (i_block & (ptrs - 1));
 109        return n;
 110}
 111
 112/**
 113 *      ext4_get_branch - read the chain of indirect blocks leading to data
 114 *      @inode: inode in question
 115 *      @depth: depth of the chain (1 - direct pointer, etc.)
 116 *      @offsets: offsets of pointers in inode/indirect blocks
 117 *      @chain: place to store the result
 118 *      @err: here we store the error value
 119 *
 120 *      Function fills the array of triples <key, p, bh> and returns %NULL
 121 *      if everything went OK or the pointer to the last filled triple
 122 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 123 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 124 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 125 *      number (it points into struct inode for i==0 and into the bh->b_data
 126 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 127 *      block for i>0 and NULL for i==0. In other words, it holds the block
 128 *      numbers of the chain, addresses they were taken from (and where we can
 129 *      verify that chain did not change) and buffer_heads hosting these
 130 *      numbers.
 131 *
 132 *      Function stops when it stumbles upon zero pointer (absent block)
 133 *              (pointer to last triple returned, *@err == 0)
 134 *      or when it gets an IO error reading an indirect block
 135 *              (ditto, *@err == -EIO)
 136 *      or when it reads all @depth-1 indirect blocks successfully and finds
 137 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 138 *
 139 *      Need to be called with
 140 *      down_read(&EXT4_I(inode)->i_data_sem)
 141 */
 142static Indirect *ext4_get_branch(struct inode *inode, int depth,
 143                                 ext4_lblk_t  *offsets,
 144                                 Indirect chain[4], int *err)
 145{
 146        struct super_block *sb = inode->i_sb;
 147        Indirect *p = chain;
 148        struct buffer_head *bh;
 149        int ret = -EIO;
 150
 151        *err = 0;
 152        /* i_data is not going away, no lock needed */
 153        add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
 154        if (!p->key)
 155                goto no_block;
 156        while (--depth) {
 157                bh = sb_getblk(sb, le32_to_cpu(p->key));
 158                if (unlikely(!bh)) {
 159                        ret = -ENOMEM;
 160                        goto failure;
 161                }
 162
 163                if (!bh_uptodate_or_lock(bh)) {
 164                        if (bh_submit_read(bh) < 0) {
 165                                put_bh(bh);
 166                                goto failure;
 167                        }
 168                        /* validate block references */
 169                        if (ext4_check_indirect_blockref(inode, bh)) {
 170                                put_bh(bh);
 171                                goto failure;
 172                        }
 173                }
 174
 175                add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
 176                /* Reader: end */
 177                if (!p->key)
 178                        goto no_block;
 179        }
 180        return NULL;
 181
 182failure:
 183        *err = ret;
 184no_block:
 185        return p;
 186}
 187
 188/**
 189 *      ext4_find_near - find a place for allocation with sufficient locality
 190 *      @inode: owner
 191 *      @ind: descriptor of indirect block.
 192 *
 193 *      This function returns the preferred place for block allocation.
 194 *      It is used when heuristic for sequential allocation fails.
 195 *      Rules are:
 196 *        + if there is a block to the left of our position - allocate near it.
 197 *        + if pointer will live in indirect block - allocate near that block.
 198 *        + if pointer will live in inode - allocate in the same
 199 *          cylinder group.
 200 *
 201 * In the latter case we colour the starting block by the callers PID to
 202 * prevent it from clashing with concurrent allocations for a different inode
 203 * in the same block group.   The PID is used here so that functionally related
 204 * files will be close-by on-disk.
 205 *
 206 *      Caller must make sure that @ind is valid and will stay that way.
 207 */
 208static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 209{
 210        struct ext4_inode_info *ei = EXT4_I(inode);
 211        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 212        __le32 *p;
 213
 214        /* Try to find previous block */
 215        for (p = ind->p - 1; p >= start; p--) {
 216                if (*p)
 217                        return le32_to_cpu(*p);
 218        }
 219
 220        /* No such thing, so let's try location of indirect block */
 221        if (ind->bh)
 222                return ind->bh->b_blocknr;
 223
 224        /*
 225         * It is going to be referred to from the inode itself? OK, just put it
 226         * into the same cylinder group then.
 227         */
 228        return ext4_inode_to_goal_block(inode);
 229}
 230
 231/**
 232 *      ext4_find_goal - find a preferred place for allocation.
 233 *      @inode: owner
 234 *      @block:  block we want
 235 *      @partial: pointer to the last triple within a chain
 236 *
 237 *      Normally this function find the preferred place for block allocation,
 238 *      returns it.
 239 *      Because this is only used for non-extent files, we limit the block nr
 240 *      to 32 bits.
 241 */
 242static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
 243                                   Indirect *partial)
 244{
 245        ext4_fsblk_t goal;
 246
 247        /*
 248         * XXX need to get goal block from mballoc's data structures
 249         */
 250
 251        goal = ext4_find_near(inode, partial);
 252        goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
 253        return goal;
 254}
 255
 256/**
 257 *      ext4_blks_to_allocate - Look up the block map and count the number
 258 *      of direct blocks need to be allocated for the given branch.
 259 *
 260 *      @branch: chain of indirect blocks
 261 *      @k: number of blocks need for indirect blocks
 262 *      @blks: number of data blocks to be mapped.
 263 *      @blocks_to_boundary:  the offset in the indirect block
 264 *
 265 *      return the total number of blocks to be allocate, including the
 266 *      direct and indirect blocks.
 267 */
 268static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
 269                                 int blocks_to_boundary)
 270{
 271        unsigned int count = 0;
 272
 273        /*
 274         * Simple case, [t,d]Indirect block(s) has not allocated yet
 275         * then it's clear blocks on that path have not allocated
 276         */
 277        if (k > 0) {
 278                /* right now we don't handle cross boundary allocation */
 279                if (blks < blocks_to_boundary + 1)
 280                        count += blks;
 281                else
 282                        count += blocks_to_boundary + 1;
 283                return count;
 284        }
 285
 286        count++;
 287        while (count < blks && count <= blocks_to_boundary &&
 288                le32_to_cpu(*(branch[0].p + count)) == 0) {
 289                count++;
 290        }
 291        return count;
 292}
 293
 294/**
 295 *      ext4_alloc_branch - allocate and set up a chain of blocks.
 296 *      @handle: handle for this transaction
 297 *      @inode: owner
 298 *      @indirect_blks: number of allocated indirect blocks
 299 *      @blks: number of allocated direct blocks
 300 *      @goal: preferred place for allocation
 301 *      @offsets: offsets (in the blocks) to store the pointers to next.
 302 *      @branch: place to store the chain in.
 303 *
 304 *      This function allocates blocks, zeroes out all but the last one,
 305 *      links them into chain and (if we are synchronous) writes them to disk.
 306 *      In other words, it prepares a branch that can be spliced onto the
 307 *      inode. It stores the information about that chain in the branch[], in
 308 *      the same format as ext4_get_branch() would do. We are calling it after
 309 *      we had read the existing part of chain and partial points to the last
 310 *      triple of that (one with zero ->key). Upon the exit we have the same
 311 *      picture as after the successful ext4_get_block(), except that in one
 312 *      place chain is disconnected - *branch->p is still zero (we did not
 313 *      set the last link), but branch->key contains the number that should
 314 *      be placed into *branch->p to fill that gap.
 315 *
 316 *      If allocation fails we free all blocks we've allocated (and forget
 317 *      their buffer_heads) and return the error value the from failed
 318 *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 319 *      as described above and return 0.
 320 */
 321static int ext4_alloc_branch(handle_t *handle,
 322                             struct ext4_allocation_request *ar,
 323                             int indirect_blks, ext4_lblk_t *offsets,
 324                             Indirect *branch)
 325{
 326        struct buffer_head *            bh;
 327        ext4_fsblk_t                    b, new_blocks[4];
 328        __le32                          *p;
 329        int                             i, j, err, len = 1;
 330
 331        for (i = 0; i <= indirect_blks; i++) {
 332                if (i == indirect_blks) {
 333                        new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
 334                } else
 335                        ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
 336                                        ar->inode, ar->goal,
 337                                        ar->flags & EXT4_MB_DELALLOC_RESERVED,
 338                                        NULL, &err);
 339                if (err) {
 340                        i--;
 341                        goto failed;
 342                }
 343                branch[i].key = cpu_to_le32(new_blocks[i]);
 344                if (i == 0)
 345                        continue;
 346
 347                bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
 348                if (unlikely(!bh)) {
 349                        err = -ENOMEM;
 350                        goto failed;
 351                }
 352                lock_buffer(bh);
 353                BUFFER_TRACE(bh, "call get_create_access");
 354                err = ext4_journal_get_create_access(handle, bh);
 355                if (err) {
 356                        unlock_buffer(bh);
 357                        goto failed;
 358                }
 359
 360                memset(bh->b_data, 0, bh->b_size);
 361                p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
 362                b = new_blocks[i];
 363
 364                if (i == indirect_blks)
 365                        len = ar->len;
 366                for (j = 0; j < len; j++)
 367                        *p++ = cpu_to_le32(b++);
 368
 369                BUFFER_TRACE(bh, "marking uptodate");
 370                set_buffer_uptodate(bh);
 371                unlock_buffer(bh);
 372
 373                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 374                err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
 375                if (err)
 376                        goto failed;
 377        }
 378        return 0;
 379failed:
 380        for (; i >= 0; i--) {
 381                /*
 382                 * We want to ext4_forget() only freshly allocated indirect
 383                 * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
 384                 * buffer at branch[0].bh is indirect block / inode already
 385                 * existing before ext4_alloc_branch() was called.
 386                 */
 387                if (i > 0 && i != indirect_blks && branch[i].bh)
 388                        ext4_forget(handle, 1, ar->inode, branch[i].bh,
 389                                    branch[i].bh->b_blocknr);
 390                ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
 391                                 (i == indirect_blks) ? ar->len : 1, 0);
 392        }
 393        return err;
 394}
 395
 396/**
 397 * ext4_splice_branch - splice the allocated branch onto inode.
 398 * @handle: handle for this transaction
 399 * @inode: owner
 400 * @block: (logical) number of block we are adding
 401 * @chain: chain of indirect blocks (with a missing link - see
 402 *      ext4_alloc_branch)
 403 * @where: location of missing link
 404 * @num:   number of indirect blocks we are adding
 405 * @blks:  number of direct blocks we are adding
 406 *
 407 * This function fills the missing link and does all housekeeping needed in
 408 * inode (->i_blocks, etc.). In case of success we end up with the full
 409 * chain to new block and return 0.
 410 */
 411static int ext4_splice_branch(handle_t *handle,
 412                              struct ext4_allocation_request *ar,
 413                              Indirect *where, int num)
 414{
 415        int i;
 416        int err = 0;
 417        ext4_fsblk_t current_block;
 418
 419        /*
 420         * If we're splicing into a [td]indirect block (as opposed to the
 421         * inode) then we need to get write access to the [td]indirect block
 422         * before the splice.
 423         */
 424        if (where->bh) {
 425                BUFFER_TRACE(where->bh, "get_write_access");
 426                err = ext4_journal_get_write_access(handle, where->bh);
 427                if (err)
 428                        goto err_out;
 429        }
 430        /* That's it */
 431
 432        *where->p = where->key;
 433
 434        /*
 435         * Update the host buffer_head or inode to point to more just allocated
 436         * direct blocks blocks
 437         */
 438        if (num == 0 && ar->len > 1) {
 439                current_block = le32_to_cpu(where->key) + 1;
 440                for (i = 1; i < ar->len; i++)
 441                        *(where->p + i) = cpu_to_le32(current_block++);
 442        }
 443
 444        /* We are done with atomic stuff, now do the rest of housekeeping */
 445        /* had we spliced it onto indirect block? */
 446        if (where->bh) {
 447                /*
 448                 * If we spliced it onto an indirect block, we haven't
 449                 * altered the inode.  Note however that if it is being spliced
 450                 * onto an indirect block at the very end of the file (the
 451                 * file is growing) then we *will* alter the inode to reflect
 452                 * the new i_size.  But that is not done here - it is done in
 453                 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 454                 */
 455                jbd_debug(5, "splicing indirect only\n");
 456                BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
 457                err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
 458                if (err)
 459                        goto err_out;
 460        } else {
 461                /*
 462                 * OK, we spliced it into the inode itself on a direct block.
 463                 */
 464                ext4_mark_inode_dirty(handle, ar->inode);
 465                jbd_debug(5, "splicing direct\n");
 466        }
 467        return err;
 468
 469err_out:
 470        for (i = 1; i <= num; i++) {
 471                /*
 472                 * branch[i].bh is newly allocated, so there is no
 473                 * need to revoke the block, which is why we don't
 474                 * need to set EXT4_FREE_BLOCKS_METADATA.
 475                 */
 476                ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
 477                                 EXT4_FREE_BLOCKS_FORGET);
 478        }
 479        ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
 480                         ar->len, 0);
 481
 482        return err;
 483}
 484
 485/*
 486 * The ext4_ind_map_blocks() function handles non-extents inodes
 487 * (i.e., using the traditional indirect/double-indirect i_blocks
 488 * scheme) for ext4_map_blocks().
 489 *
 490 * Allocation strategy is simple: if we have to allocate something, we will
 491 * have to go the whole way to leaf. So let's do it before attaching anything
 492 * to tree, set linkage between the newborn blocks, write them if sync is
 493 * required, recheck the path, free and repeat if check fails, otherwise
 494 * set the last missing link (that will protect us from any truncate-generated
 495 * removals - all blocks on the path are immune now) and possibly force the
 496 * write on the parent block.
 497 * That has a nice additional property: no special recovery from the failed
 498 * allocations is needed - we simply release blocks and do not touch anything
 499 * reachable from inode.
 500 *
 501 * `handle' can be NULL if create == 0.
 502 *
 503 * return > 0, # of blocks mapped or allocated.
 504 * return = 0, if plain lookup failed.
 505 * return < 0, error case.
 506 *
 507 * The ext4_ind_get_blocks() function should be called with
 508 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 509 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 510 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 511 * blocks.
 512 */
 513int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
 514                        struct ext4_map_blocks *map,
 515                        int flags)
 516{
 517        struct ext4_allocation_request ar;
 518        int err = -EIO;
 519        ext4_lblk_t offsets[4];
 520        Indirect chain[4];
 521        Indirect *partial;
 522        int indirect_blks;
 523        int blocks_to_boundary = 0;
 524        int depth;
 525        int count = 0;
 526        ext4_fsblk_t first_block = 0;
 527
 528        trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
 529        J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
 530        J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
 531        depth = ext4_block_to_path(inode, map->m_lblk, offsets,
 532                                   &blocks_to_boundary);
 533
 534        if (depth == 0)
 535                goto out;
 536
 537        partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 538
 539        /* Simplest case - block found, no allocation needed */
 540        if (!partial) {
 541                first_block = le32_to_cpu(chain[depth - 1].key);
 542                count++;
 543                /*map more blocks*/
 544                while (count < map->m_len && count <= blocks_to_boundary) {
 545                        ext4_fsblk_t blk;
 546
 547                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 548
 549                        if (blk == first_block + count)
 550                                count++;
 551                        else
 552                                break;
 553                }
 554                goto got_it;
 555        }
 556
 557        /* Next simple case - plain lookup or failed read of indirect block */
 558        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
 559                goto cleanup;
 560
 561        /*
 562         * Okay, we need to do block allocation.
 563        */
 564        if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 565                                       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
 566                EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
 567                                 "non-extent mapped inodes with bigalloc");
 568                return -EUCLEAN;
 569        }
 570
 571        /* Set up for the direct block allocation */
 572        memset(&ar, 0, sizeof(ar));
 573        ar.inode = inode;
 574        ar.logical = map->m_lblk;
 575        if (S_ISREG(inode->i_mode))
 576                ar.flags = EXT4_MB_HINT_DATA;
 577        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 578                ar.flags |= EXT4_MB_DELALLOC_RESERVED;
 579        if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
 580                ar.flags |= EXT4_MB_USE_RESERVED;
 581
 582        ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
 583
 584        /* the number of blocks need to allocate for [d,t]indirect blocks */
 585        indirect_blks = (chain + depth) - partial - 1;
 586
 587        /*
 588         * Next look up the indirect map to count the totoal number of
 589         * direct blocks to allocate for this branch.
 590         */
 591        ar.len = ext4_blks_to_allocate(partial, indirect_blks,
 592                                       map->m_len, blocks_to_boundary);
 593
 594        /*
 595         * Block out ext4_truncate while we alter the tree
 596         */
 597        err = ext4_alloc_branch(handle, &ar, indirect_blks,
 598                                offsets + (partial - chain), partial);
 599
 600        /*
 601         * The ext4_splice_branch call will free and forget any buffers
 602         * on the new chain if there is a failure, but that risks using
 603         * up transaction credits, especially for bitmaps where the
 604         * credits cannot be returned.  Can we handle this somehow?  We
 605         * may need to return -EAGAIN upwards in the worst case.  --sct
 606         */
 607        if (!err)
 608                err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
 609        if (err)
 610                goto cleanup;
 611
 612        map->m_flags |= EXT4_MAP_NEW;
 613
 614        ext4_update_inode_fsync_trans(handle, inode, 1);
 615        count = ar.len;
 616got_it:
 617        map->m_flags |= EXT4_MAP_MAPPED;
 618        map->m_pblk = le32_to_cpu(chain[depth-1].key);
 619        map->m_len = count;
 620        if (count > blocks_to_boundary)
 621                map->m_flags |= EXT4_MAP_BOUNDARY;
 622        err = count;
 623        /* Clean up and exit */
 624        partial = chain + depth - 1;    /* the whole chain */
 625cleanup:
 626        while (partial > chain) {
 627                BUFFER_TRACE(partial->bh, "call brelse");
 628                brelse(partial->bh);
 629                partial--;
 630        }
 631out:
 632        trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
 633        return err;
 634}
 635
 636/*
 637 * O_DIRECT for ext3 (or indirect map) based files
 638 *
 639 * If the O_DIRECT write will extend the file then add this inode to the
 640 * orphan list.  So recovery will truncate it back to the original size
 641 * if the machine crashes during the write.
 642 *
 643 * If the O_DIRECT write is intantiating holes inside i_size and the machine
 644 * crashes then stale disk data _may_ be exposed inside the file. But current
 645 * VFS code falls back into buffered path in that case so we are safe.
 646 */
 647ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
 648                           loff_t offset)
 649{
 650        struct file *file = iocb->ki_filp;
 651        struct inode *inode = file->f_mapping->host;
 652        struct ext4_inode_info *ei = EXT4_I(inode);
 653        handle_t *handle;
 654        ssize_t ret;
 655        int orphan = 0;
 656        size_t count = iov_iter_count(iter);
 657        int retries = 0;
 658
 659        if (iov_iter_rw(iter) == WRITE) {
 660                loff_t final_size = offset + count;
 661
 662                if (final_size > inode->i_size) {
 663                        /* Credits for sb + inode write */
 664                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 665                        if (IS_ERR(handle)) {
 666                                ret = PTR_ERR(handle);
 667                                goto out;
 668                        }
 669                        ret = ext4_orphan_add(handle, inode);
 670                        if (ret) {
 671                                ext4_journal_stop(handle);
 672                                goto out;
 673                        }
 674                        orphan = 1;
 675                        ei->i_disksize = inode->i_size;
 676                        ext4_journal_stop(handle);
 677                }
 678        }
 679
 680retry:
 681        if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) {
 682                /*
 683                 * Nolock dioread optimization may be dynamically disabled
 684                 * via ext4_inode_block_unlocked_dio(). Check inode's state
 685                 * while holding extra i_dio_count ref.
 686                 */
 687                inode_dio_begin(inode);
 688                smp_mb();
 689                if (unlikely(ext4_test_inode_state(inode,
 690                                                    EXT4_STATE_DIOREAD_LOCK))) {
 691                        inode_dio_end(inode);
 692                        goto locked;
 693                }
 694                if (IS_DAX(inode))
 695                        ret = dax_do_io(iocb, inode, iter, offset,
 696                                        ext4_get_block, NULL, 0);
 697                else
 698                        ret = __blockdev_direct_IO(iocb, inode,
 699                                                   inode->i_sb->s_bdev, iter,
 700                                                   offset, ext4_get_block, NULL,
 701                                                   NULL, 0);
 702                inode_dio_end(inode);
 703        } else {
 704locked:
 705                if (IS_DAX(inode))
 706                        ret = dax_do_io(iocb, inode, iter, offset,
 707                                        ext4_get_block, NULL, DIO_LOCKING);
 708                else
 709                        ret = blockdev_direct_IO(iocb, inode, iter, offset,
 710                                                 ext4_get_block);
 711
 712                if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
 713                        loff_t isize = i_size_read(inode);
 714                        loff_t end = offset + count;
 715
 716                        if (end > isize)
 717                                ext4_truncate_failed_write(inode);
 718                }
 719        }
 720        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 721                goto retry;
 722
 723        if (orphan) {
 724                int err;
 725
 726                /* Credits for sb + inode write */
 727                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 728                if (IS_ERR(handle)) {
 729                        /* This is really bad luck. We've written the data
 730                         * but cannot extend i_size. Bail out and pretend
 731                         * the write failed... */
 732                        ret = PTR_ERR(handle);
 733                        if (inode->i_nlink)
 734                                ext4_orphan_del(NULL, inode);
 735
 736                        goto out;
 737                }
 738                if (inode->i_nlink)
 739                        ext4_orphan_del(handle, inode);
 740                if (ret > 0) {
 741                        loff_t end = offset + ret;
 742                        if (end > inode->i_size) {
 743                                ei->i_disksize = end;
 744                                i_size_write(inode, end);
 745                                /*
 746                                 * We're going to return a positive `ret'
 747                                 * here due to non-zero-length I/O, so there's
 748                                 * no way of reporting error returns from
 749                                 * ext4_mark_inode_dirty() to userspace.  So
 750                                 * ignore it.
 751                                 */
 752                                ext4_mark_inode_dirty(handle, inode);
 753                        }
 754                }
 755                err = ext4_journal_stop(handle);
 756                if (ret == 0)
 757                        ret = err;
 758        }
 759out:
 760        return ret;
 761}
 762
 763/*
 764 * Calculate the number of metadata blocks need to reserve
 765 * to allocate a new block at @lblocks for non extent file based file
 766 */
 767int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
 768{
 769        struct ext4_inode_info *ei = EXT4_I(inode);
 770        sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
 771        int blk_bits;
 772
 773        if (lblock < EXT4_NDIR_BLOCKS)
 774                return 0;
 775
 776        lblock -= EXT4_NDIR_BLOCKS;
 777
 778        if (ei->i_da_metadata_calc_len &&
 779            (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
 780                ei->i_da_metadata_calc_len++;
 781                return 0;
 782        }
 783        ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
 784        ei->i_da_metadata_calc_len = 1;
 785        blk_bits = order_base_2(lblock);
 786        return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
 787}
 788
 789/*
 790 * Calculate number of indirect blocks touched by mapping @nrblocks logically
 791 * contiguous blocks
 792 */
 793int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
 794{
 795        /*
 796         * With N contiguous data blocks, we need at most
 797         * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
 798         * 2 dindirect blocks, and 1 tindirect block
 799         */
 800        return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
 801}
 802
 803/*
 804 * Truncate transactions can be complex and absolutely huge.  So we need to
 805 * be able to restart the transaction at a conventient checkpoint to make
 806 * sure we don't overflow the journal.
 807 *
 808 * Try to extend this transaction for the purposes of truncation.  If
 809 * extend fails, we need to propagate the failure up and restart the
 810 * transaction in the top-level truncate loop. --sct
 811 *
 812 * Returns 0 if we managed to create more room.  If we can't create more
 813 * room, and the transaction must be restarted we return 1.
 814 */
 815static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 816{
 817        if (!ext4_handle_valid(handle))
 818                return 0;
 819        if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
 820                return 0;
 821        if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
 822                return 0;
 823        return 1;
 824}
 825
 826/*
 827 * Probably it should be a library function... search for first non-zero word
 828 * or memcmp with zero_page, whatever is better for particular architecture.
 829 * Linus?
 830 */
 831static inline int all_zeroes(__le32 *p, __le32 *q)
 832{
 833        while (p < q)
 834                if (*p++)
 835                        return 0;
 836        return 1;
 837}
 838
 839/**
 840 *      ext4_find_shared - find the indirect blocks for partial truncation.
 841 *      @inode:   inode in question
 842 *      @depth:   depth of the affected branch
 843 *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
 844 *      @chain:   place to store the pointers to partial indirect blocks
 845 *      @top:     place to the (detached) top of branch
 846 *
 847 *      This is a helper function used by ext4_truncate().
 848 *
 849 *      When we do truncate() we may have to clean the ends of several
 850 *      indirect blocks but leave the blocks themselves alive. Block is
 851 *      partially truncated if some data below the new i_size is referred
 852 *      from it (and it is on the path to the first completely truncated
 853 *      data block, indeed).  We have to free the top of that path along
 854 *      with everything to the right of the path. Since no allocation
 855 *      past the truncation point is possible until ext4_truncate()
 856 *      finishes, we may safely do the latter, but top of branch may
 857 *      require special attention - pageout below the truncation point
 858 *      might try to populate it.
 859 *
 860 *      We atomically detach the top of branch from the tree, store the
 861 *      block number of its root in *@top, pointers to buffer_heads of
 862 *      partially truncated blocks - in @chain[].bh and pointers to
 863 *      their last elements that should not be removed - in
 864 *      @chain[].p. Return value is the pointer to last filled element
 865 *      of @chain.
 866 *
 867 *      The work left to caller to do the actual freeing of subtrees:
 868 *              a) free the subtree starting from *@top
 869 *              b) free the subtrees whose roots are stored in
 870 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 871 *              c) free the subtrees growing from the inode past the @chain[0].
 872 *                      (no partially truncated stuff there).  */
 873
 874static Indirect *ext4_find_shared(struct inode *inode, int depth,
 875                                  ext4_lblk_t offsets[4], Indirect chain[4],
 876                                  __le32 *top)
 877{
 878        Indirect *partial, *p;
 879        int k, err;
 880
 881        *top = 0;
 882        /* Make k index the deepest non-null offset + 1 */
 883        for (k = depth; k > 1 && !offsets[k-1]; k--)
 884                ;
 885        partial = ext4_get_branch(inode, k, offsets, chain, &err);
 886        /* Writer: pointers */
 887        if (!partial)
 888                partial = chain + k-1;
 889        /*
 890         * If the branch acquired continuation since we've looked at it -
 891         * fine, it should all survive and (new) top doesn't belong to us.
 892         */
 893        if (!partial->key && *partial->p)
 894                /* Writer: end */
 895                goto no_top;
 896        for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
 897                ;
 898        /*
 899         * OK, we've found the last block that must survive. The rest of our
 900         * branch should be detached before unlocking. However, if that rest
 901         * of branch is all ours and does not grow immediately from the inode
 902         * it's easier to cheat and just decrement partial->p.
 903         */
 904        if (p == chain + k - 1 && p > chain) {
 905                p->p--;
 906        } else {
 907                *top = *p->p;
 908                /* Nope, don't do this in ext4.  Must leave the tree intact */
 909#if 0
 910                *p->p = 0;
 911#endif
 912        }
 913        /* Writer: end */
 914
 915        while (partial > p) {
 916                brelse(partial->bh);
 917                partial--;
 918        }
 919no_top:
 920        return partial;
 921}
 922
 923/*
 924 * Zero a number of block pointers in either an inode or an indirect block.
 925 * If we restart the transaction we must again get write access to the
 926 * indirect block for further modification.
 927 *
 928 * We release `count' blocks on disk, but (last - first) may be greater
 929 * than `count' because there can be holes in there.
 930 *
 931 * Return 0 on success, 1 on invalid block range
 932 * and < 0 on fatal error.
 933 */
 934static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
 935                             struct buffer_head *bh,
 936                             ext4_fsblk_t block_to_free,
 937                             unsigned long count, __le32 *first,
 938                             __le32 *last)
 939{
 940        __le32 *p;
 941        int     flags = EXT4_FREE_BLOCKS_VALIDATED;
 942        int     err;
 943
 944        if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
 945                flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
 946        else if (ext4_should_journal_data(inode))
 947                flags |= EXT4_FREE_BLOCKS_FORGET;
 948
 949        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
 950                                   count)) {
 951                EXT4_ERROR_INODE(inode, "attempt to clear invalid "
 952                                 "blocks %llu len %lu",
 953                                 (unsigned long long) block_to_free, count);
 954                return 1;
 955        }
 956
 957        if (try_to_extend_transaction(handle, inode)) {
 958                if (bh) {
 959                        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 960                        err = ext4_handle_dirty_metadata(handle, inode, bh);
 961                        if (unlikely(err))
 962                                goto out_err;
 963                }
 964                err = ext4_mark_inode_dirty(handle, inode);
 965                if (unlikely(err))
 966                        goto out_err;
 967                err = ext4_truncate_restart_trans(handle, inode,
 968                                        ext4_blocks_for_truncate(inode));
 969                if (unlikely(err))
 970                        goto out_err;
 971                if (bh) {
 972                        BUFFER_TRACE(bh, "retaking write access");
 973                        err = ext4_journal_get_write_access(handle, bh);
 974                        if (unlikely(err))
 975                                goto out_err;
 976                }
 977        }
 978
 979        for (p = first; p < last; p++)
 980                *p = 0;
 981
 982        ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
 983        return 0;
 984out_err:
 985        ext4_std_error(inode->i_sb, err);
 986        return err;
 987}
 988
 989/**
 990 * ext4_free_data - free a list of data blocks
 991 * @handle:     handle for this transaction
 992 * @inode:      inode we are dealing with
 993 * @this_bh:    indirect buffer_head which contains *@first and *@last
 994 * @first:      array of block numbers
 995 * @last:       points immediately past the end of array
 996 *
 997 * We are freeing all blocks referred from that array (numbers are stored as
 998 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 999 *
1000 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1001 * blocks are contiguous then releasing them at one time will only affect one
1002 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1003 * actually use a lot of journal space.
1004 *
1005 * @this_bh will be %NULL if @first and @last point into the inode's direct
1006 * block pointers.
1007 */
1008static void ext4_free_data(handle_t *handle, struct inode *inode,
1009                           struct buffer_head *this_bh,
1010                           __le32 *first, __le32 *last)
1011{
1012        ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1013        unsigned long count = 0;            /* Number of blocks in the run */
1014        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1015                                               corresponding to
1016                                               block_to_free */
1017        ext4_fsblk_t nr;                    /* Current block # */
1018        __le32 *p;                          /* Pointer into inode/ind
1019                                               for current block */
1020        int err = 0;
1021
1022        if (this_bh) {                          /* For indirect block */
1023                BUFFER_TRACE(this_bh, "get_write_access");
1024                err = ext4_journal_get_write_access(handle, this_bh);
1025                /* Important: if we can't update the indirect pointers
1026                 * to the blocks, we can't free them. */
1027                if (err)
1028                        return;
1029        }
1030
1031        for (p = first; p < last; p++) {
1032                nr = le32_to_cpu(*p);
1033                if (nr) {
1034                        /* accumulate blocks to free if they're contiguous */
1035                        if (count == 0) {
1036                                block_to_free = nr;
1037                                block_to_free_p = p;
1038                                count = 1;
1039                        } else if (nr == block_to_free + count) {
1040                                count++;
1041                        } else {
1042                                err = ext4_clear_blocks(handle, inode, this_bh,
1043                                                        block_to_free, count,
1044                                                        block_to_free_p, p);
1045                                if (err)
1046                                        break;
1047                                block_to_free = nr;
1048                                block_to_free_p = p;
1049                                count = 1;
1050                        }
1051                }
1052        }
1053
1054        if (!err && count > 0)
1055                err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1056                                        count, block_to_free_p, p);
1057        if (err < 0)
1058                /* fatal error */
1059                return;
1060
1061        if (this_bh) {
1062                BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1063
1064                /*
1065                 * The buffer head should have an attached journal head at this
1066                 * point. However, if the data is corrupted and an indirect
1067                 * block pointed to itself, it would have been detached when
1068                 * the block was cleared. Check for this instead of OOPSing.
1069                 */
1070                if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1071                        ext4_handle_dirty_metadata(handle, inode, this_bh);
1072                else
1073                        EXT4_ERROR_INODE(inode,
1074                                         "circular indirect block detected at "
1075                                         "block %llu",
1076                                (unsigned long long) this_bh->b_blocknr);
1077        }
1078}
1079
1080/**
1081 *      ext4_free_branches - free an array of branches
1082 *      @handle: JBD handle for this transaction
1083 *      @inode: inode we are dealing with
1084 *      @parent_bh: the buffer_head which contains *@first and *@last
1085 *      @first: array of block numbers
1086 *      @last:  pointer immediately past the end of array
1087 *      @depth: depth of the branches to free
1088 *
1089 *      We are freeing all blocks referred from these branches (numbers are
1090 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1091 *      appropriately.
1092 */
1093static void ext4_free_branches(handle_t *handle, struct inode *inode,
1094                               struct buffer_head *parent_bh,
1095                               __le32 *first, __le32 *last, int depth)
1096{
1097        ext4_fsblk_t nr;
1098        __le32 *p;
1099
1100        if (ext4_handle_is_aborted(handle))
1101                return;
1102
1103        if (depth--) {
1104                struct buffer_head *bh;
1105                int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1106                p = last;
1107                while (--p >= first) {
1108                        nr = le32_to_cpu(*p);
1109                        if (!nr)
1110                                continue;               /* A hole */
1111
1112                        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1113                                                   nr, 1)) {
1114                                EXT4_ERROR_INODE(inode,
1115                                                 "invalid indirect mapped "
1116                                                 "block %lu (level %d)",
1117                                                 (unsigned long) nr, depth);
1118                                break;
1119                        }
1120
1121                        /* Go read the buffer for the next level down */
1122                        bh = sb_bread(inode->i_sb, nr);
1123
1124                        /*
1125                         * A read failure? Report error and clear slot
1126                         * (should be rare).
1127                         */
1128                        if (!bh) {
1129                                EXT4_ERROR_INODE_BLOCK(inode, nr,
1130                                                       "Read failure");
1131                                continue;
1132                        }
1133
1134                        /* This zaps the entire block.  Bottom up. */
1135                        BUFFER_TRACE(bh, "free child branches");
1136                        ext4_free_branches(handle, inode, bh,
1137                                        (__le32 *) bh->b_data,
1138                                        (__le32 *) bh->b_data + addr_per_block,
1139                                        depth);
1140                        brelse(bh);
1141
1142                        /*
1143                         * Everything below this this pointer has been
1144                         * released.  Now let this top-of-subtree go.
1145                         *
1146                         * We want the freeing of this indirect block to be
1147                         * atomic in the journal with the updating of the
1148                         * bitmap block which owns it.  So make some room in
1149                         * the journal.
1150                         *
1151                         * We zero the parent pointer *after* freeing its
1152                         * pointee in the bitmaps, so if extend_transaction()
1153                         * for some reason fails to put the bitmap changes and
1154                         * the release into the same transaction, recovery
1155                         * will merely complain about releasing a free block,
1156                         * rather than leaking blocks.
1157                         */
1158                        if (ext4_handle_is_aborted(handle))
1159                                return;
1160                        if (try_to_extend_transaction(handle, inode)) {
1161                                ext4_mark_inode_dirty(handle, inode);
1162                                ext4_truncate_restart_trans(handle, inode,
1163                                            ext4_blocks_for_truncate(inode));
1164                        }
1165
1166                        /*
1167                         * The forget flag here is critical because if
1168                         * we are journaling (and not doing data
1169                         * journaling), we have to make sure a revoke
1170                         * record is written to prevent the journal
1171                         * replay from overwriting the (former)
1172                         * indirect block if it gets reallocated as a
1173                         * data block.  This must happen in the same
1174                         * transaction where the data blocks are
1175                         * actually freed.
1176                         */
1177                        ext4_free_blocks(handle, inode, NULL, nr, 1,
1178                                         EXT4_FREE_BLOCKS_METADATA|
1179                                         EXT4_FREE_BLOCKS_FORGET);
1180
1181                        if (parent_bh) {
1182                                /*
1183                                 * The block which we have just freed is
1184                                 * pointed to by an indirect block: journal it
1185                                 */
1186                                BUFFER_TRACE(parent_bh, "get_write_access");
1187                                if (!ext4_journal_get_write_access(handle,
1188                                                                   parent_bh)){
1189                                        *p = 0;
1190                                        BUFFER_TRACE(parent_bh,
1191                                        "call ext4_handle_dirty_metadata");
1192                                        ext4_handle_dirty_metadata(handle,
1193                                                                   inode,
1194                                                                   parent_bh);
1195                                }
1196                        }
1197                }
1198        } else {
1199                /* We have reached the bottom of the tree. */
1200                BUFFER_TRACE(parent_bh, "free data blocks");
1201                ext4_free_data(handle, inode, parent_bh, first, last);
1202        }
1203}
1204
1205void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1206{
1207        struct ext4_inode_info *ei = EXT4_I(inode);
1208        __le32 *i_data = ei->i_data;
1209        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1210        ext4_lblk_t offsets[4];
1211        Indirect chain[4];
1212        Indirect *partial;
1213        __le32 nr = 0;
1214        int n = 0;
1215        ext4_lblk_t last_block, max_block;
1216        unsigned blocksize = inode->i_sb->s_blocksize;
1217
1218        last_block = (inode->i_size + blocksize-1)
1219                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1220        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1221                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1222
1223        if (last_block != max_block) {
1224                n = ext4_block_to_path(inode, last_block, offsets, NULL);
1225                if (n == 0)
1226                        return;
1227        }
1228
1229        ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1230
1231        /*
1232         * The orphan list entry will now protect us from any crash which
1233         * occurs before the truncate completes, so it is now safe to propagate
1234         * the new, shorter inode size (held for now in i_size) into the
1235         * on-disk inode. We do this via i_disksize, which is the value which
1236         * ext4 *really* writes onto the disk inode.
1237         */
1238        ei->i_disksize = inode->i_size;
1239
1240        if (last_block == max_block) {
1241                /*
1242                 * It is unnecessary to free any data blocks if last_block is
1243                 * equal to the indirect block limit.
1244                 */
1245                return;
1246        } else if (n == 1) {            /* direct blocks */
1247                ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1248                               i_data + EXT4_NDIR_BLOCKS);
1249                goto do_indirects;
1250        }
1251
1252        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1253        /* Kill the top of shared branch (not detached) */
1254        if (nr) {
1255                if (partial == chain) {
1256                        /* Shared branch grows from the inode */
1257                        ext4_free_branches(handle, inode, NULL,
1258                                           &nr, &nr+1, (chain+n-1) - partial);
1259                        *partial->p = 0;
1260                        /*
1261                         * We mark the inode dirty prior to restart,
1262                         * and prior to stop.  No need for it here.
1263                         */
1264                } else {
1265                        /* Shared branch grows from an indirect block */
1266                        BUFFER_TRACE(partial->bh, "get_write_access");
1267                        ext4_free_branches(handle, inode, partial->bh,
1268                                        partial->p,
1269                                        partial->p+1, (chain+n-1) - partial);
1270                }
1271        }
1272        /* Clear the ends of indirect blocks on the shared branch */
1273        while (partial > chain) {
1274                ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1275                                   (__le32*)partial->bh->b_data+addr_per_block,
1276                                   (chain+n-1) - partial);
1277                BUFFER_TRACE(partial->bh, "call brelse");
1278                brelse(partial->bh);
1279                partial--;
1280        }
1281do_indirects:
1282        /* Kill the remaining (whole) subtrees */
1283        switch (offsets[0]) {
1284        default:
1285                nr = i_data[EXT4_IND_BLOCK];
1286                if (nr) {
1287                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1288                        i_data[EXT4_IND_BLOCK] = 0;
1289                }
1290        case EXT4_IND_BLOCK:
1291                nr = i_data[EXT4_DIND_BLOCK];
1292                if (nr) {
1293                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1294                        i_data[EXT4_DIND_BLOCK] = 0;
1295                }
1296        case EXT4_DIND_BLOCK:
1297                nr = i_data[EXT4_TIND_BLOCK];
1298                if (nr) {
1299                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1300                        i_data[EXT4_TIND_BLOCK] = 0;
1301                }
1302        case EXT4_TIND_BLOCK:
1303                ;
1304        }
1305}
1306
1307/**
1308 *      ext4_ind_remove_space - remove space from the range
1309 *      @handle: JBD handle for this transaction
1310 *      @inode: inode we are dealing with
1311 *      @start: First block to remove
1312 *      @end:   One block after the last block to remove (exclusive)
1313 *
1314 *      Free the blocks in the defined range (end is exclusive endpoint of
1315 *      range). This is used by ext4_punch_hole().
1316 */
1317int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1318                          ext4_lblk_t start, ext4_lblk_t end)
1319{
1320        struct ext4_inode_info *ei = EXT4_I(inode);
1321        __le32 *i_data = ei->i_data;
1322        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1323        ext4_lblk_t offsets[4], offsets2[4];
1324        Indirect chain[4], chain2[4];
1325        Indirect *partial, *partial2;
1326        ext4_lblk_t max_block;
1327        __le32 nr = 0, nr2 = 0;
1328        int n = 0, n2 = 0;
1329        unsigned blocksize = inode->i_sb->s_blocksize;
1330
1331        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1332                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1333        if (end >= max_block)
1334                end = max_block;
1335        if ((start >= end) || (start > max_block))
1336                return 0;
1337
1338        n = ext4_block_to_path(inode, start, offsets, NULL);
1339        n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1340
1341        BUG_ON(n > n2);
1342
1343        if ((n == 1) && (n == n2)) {
1344                /* We're punching only within direct block range */
1345                ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1346                               i_data + offsets2[0]);
1347                return 0;
1348        } else if (n2 > n) {
1349                /*
1350                 * Start and end are on a different levels so we're going to
1351                 * free partial block at start, and partial block at end of
1352                 * the range. If there are some levels in between then
1353                 * do_indirects label will take care of that.
1354                 */
1355
1356                if (n == 1) {
1357                        /*
1358                         * Start is at the direct block level, free
1359                         * everything to the end of the level.
1360                         */
1361                        ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1362                                       i_data + EXT4_NDIR_BLOCKS);
1363                        goto end_range;
1364                }
1365
1366
1367                partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1368                if (nr) {
1369                        if (partial == chain) {
1370                                /* Shared branch grows from the inode */
1371                                ext4_free_branches(handle, inode, NULL,
1372                                           &nr, &nr+1, (chain+n-1) - partial);
1373                                *partial->p = 0;
1374                        } else {
1375                                /* Shared branch grows from an indirect block */
1376                                BUFFER_TRACE(partial->bh, "get_write_access");
1377                                ext4_free_branches(handle, inode, partial->bh,
1378                                        partial->p,
1379                                        partial->p+1, (chain+n-1) - partial);
1380                        }
1381                }
1382
1383                /*
1384                 * Clear the ends of indirect blocks on the shared branch
1385                 * at the start of the range
1386                 */
1387                while (partial > chain) {
1388                        ext4_free_branches(handle, inode, partial->bh,
1389                                partial->p + 1,
1390                                (__le32 *)partial->bh->b_data+addr_per_block,
1391                                (chain+n-1) - partial);
1392                        BUFFER_TRACE(partial->bh, "call brelse");
1393                        brelse(partial->bh);
1394                        partial--;
1395                }
1396
1397end_range:
1398                partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1399                if (nr2) {
1400                        if (partial2 == chain2) {
1401                                /*
1402                                 * Remember, end is exclusive so here we're at
1403                                 * the start of the next level we're not going
1404                                 * to free. Everything was covered by the start
1405                                 * of the range.
1406                                 */
1407                                goto do_indirects;
1408                        }
1409                } else {
1410                        /*
1411                         * ext4_find_shared returns Indirect structure which
1412                         * points to the last element which should not be
1413                         * removed by truncate. But this is end of the range
1414                         * in punch_hole so we need to point to the next element
1415                         */
1416                        partial2->p++;
1417                }
1418
1419                /*
1420                 * Clear the ends of indirect blocks on the shared branch
1421                 * at the end of the range
1422                 */
1423                while (partial2 > chain2) {
1424                        ext4_free_branches(handle, inode, partial2->bh,
1425                                           (__le32 *)partial2->bh->b_data,
1426                                           partial2->p,
1427                                           (chain2+n2-1) - partial2);
1428                        BUFFER_TRACE(partial2->bh, "call brelse");
1429                        brelse(partial2->bh);
1430                        partial2--;
1431                }
1432                goto do_indirects;
1433        }
1434
1435        /* Punch happened within the same level (n == n2) */
1436        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1437        partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1438
1439        /* Free top, but only if partial2 isn't its subtree. */
1440        if (nr) {
1441                int level = min(partial - chain, partial2 - chain2);
1442                int i;
1443                int subtree = 1;
1444
1445                for (i = 0; i <= level; i++) {
1446                        if (offsets[i] != offsets2[i]) {
1447                                subtree = 0;
1448                                break;
1449                        }
1450                }
1451
1452                if (!subtree) {
1453                        if (partial == chain) {
1454                                /* Shared branch grows from the inode */
1455                                ext4_free_branches(handle, inode, NULL,
1456                                                   &nr, &nr+1,
1457                                                   (chain+n-1) - partial);
1458                                *partial->p = 0;
1459                        } else {
1460                                /* Shared branch grows from an indirect block */
1461                                BUFFER_TRACE(partial->bh, "get_write_access");
1462                                ext4_free_branches(handle, inode, partial->bh,
1463                                                   partial->p,
1464                                                   partial->p+1,
1465                                                   (chain+n-1) - partial);
1466                        }
1467                }
1468        }
1469
1470        if (!nr2) {
1471                /*
1472                 * ext4_find_shared returns Indirect structure which
1473                 * points to the last element which should not be
1474                 * removed by truncate. But this is end of the range
1475                 * in punch_hole so we need to point to the next element
1476                 */
1477                partial2->p++;
1478        }
1479
1480        while (partial > chain || partial2 > chain2) {
1481                int depth = (chain+n-1) - partial;
1482                int depth2 = (chain2+n2-1) - partial2;
1483
1484                if (partial > chain && partial2 > chain2 &&
1485                    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1486                        /*
1487                         * We've converged on the same block. Clear the range,
1488                         * then we're done.
1489                         */
1490                        ext4_free_branches(handle, inode, partial->bh,
1491                                           partial->p + 1,
1492                                           partial2->p,
1493                                           (chain+n-1) - partial);
1494                        BUFFER_TRACE(partial->bh, "call brelse");
1495                        brelse(partial->bh);
1496                        BUFFER_TRACE(partial2->bh, "call brelse");
1497                        brelse(partial2->bh);
1498                        return 0;
1499                }
1500
1501                /*
1502                 * The start and end partial branches may not be at the same
1503                 * level even though the punch happened within one level. So, we
1504                 * give them a chance to arrive at the same level, then walk
1505                 * them in step with each other until we converge on the same
1506                 * block.
1507                 */
1508                if (partial > chain && depth <= depth2) {
1509                        ext4_free_branches(handle, inode, partial->bh,
1510                                           partial->p + 1,
1511                                           (__le32 *)partial->bh->b_data+addr_per_block,
1512                                           (chain+n-1) - partial);
1513                        BUFFER_TRACE(partial->bh, "call brelse");
1514                        brelse(partial->bh);
1515                        partial--;
1516                }
1517                if (partial2 > chain2 && depth2 <= depth) {
1518                        ext4_free_branches(handle, inode, partial2->bh,
1519                                           (__le32 *)partial2->bh->b_data,
1520                                           partial2->p,
1521                                           (chain2+n2-1) - partial2);
1522                        BUFFER_TRACE(partial2->bh, "call brelse");
1523                        brelse(partial2->bh);
1524                        partial2--;
1525                }
1526        }
1527        return 0;
1528
1529do_indirects:
1530        /* Kill the remaining (whole) subtrees */
1531        switch (offsets[0]) {
1532        default:
1533                if (++n >= n2)
1534                        return 0;
1535                nr = i_data[EXT4_IND_BLOCK];
1536                if (nr) {
1537                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1538                        i_data[EXT4_IND_BLOCK] = 0;
1539                }
1540        case EXT4_IND_BLOCK:
1541                if (++n >= n2)
1542                        return 0;
1543                nr = i_data[EXT4_DIND_BLOCK];
1544                if (nr) {
1545                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1546                        i_data[EXT4_DIND_BLOCK] = 0;
1547                }
1548        case EXT4_DIND_BLOCK:
1549                if (++n >= n2)
1550                        return 0;
1551                nr = i_data[EXT4_TIND_BLOCK];
1552                if (nr) {
1553                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1554                        i_data[EXT4_TIND_BLOCK] = 0;
1555                }
1556        case EXT4_TIND_BLOCK:
1557                ;
1558        }
1559        return 0;
1560}
1561