linux/fs/inode.c
<<
>>
Prefs
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
  21#include <trace/events/writeback.h>
  22#include "internal.h"
  23
  24/*
  25 * Inode locking rules:
  26 *
  27 * inode->i_lock protects:
  28 *   inode->i_state, inode->i_hash, __iget()
  29 * Inode LRU list locks protect:
  30 *   inode->i_sb->s_inode_lru, inode->i_lru
  31 * inode_sb_list_lock protects:
  32 *   sb->s_inodes, inode->i_sb_list
  33 * bdi->wb.list_lock protects:
  34 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
  35 * inode_hash_lock protects:
  36 *   inode_hashtable, inode->i_hash
  37 *
  38 * Lock ordering:
  39 *
  40 * inode_sb_list_lock
  41 *   inode->i_lock
  42 *     Inode LRU list locks
  43 *
  44 * bdi->wb.list_lock
  45 *   inode->i_lock
  46 *
  47 * inode_hash_lock
  48 *   inode_sb_list_lock
  49 *   inode->i_lock
  50 *
  51 * iunique_lock
  52 *   inode_hash_lock
  53 */
  54
  55static unsigned int i_hash_mask __read_mostly;
  56static unsigned int i_hash_shift __read_mostly;
  57static struct hlist_head *inode_hashtable __read_mostly;
  58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  59
  60__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
  61
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70/*
  71 * Statistics gathering..
  72 */
  73struct inodes_stat_t inodes_stat;
  74
  75static DEFINE_PER_CPU(unsigned long, nr_inodes);
  76static DEFINE_PER_CPU(unsigned long, nr_unused);
  77
  78static struct kmem_cache *inode_cachep __read_mostly;
  79
  80static long get_nr_inodes(void)
  81{
  82        int i;
  83        long sum = 0;
  84        for_each_possible_cpu(i)
  85                sum += per_cpu(nr_inodes, i);
  86        return sum < 0 ? 0 : sum;
  87}
  88
  89static inline long get_nr_inodes_unused(void)
  90{
  91        int i;
  92        long sum = 0;
  93        for_each_possible_cpu(i)
  94                sum += per_cpu(nr_unused, i);
  95        return sum < 0 ? 0 : sum;
  96}
  97
  98long get_nr_dirty_inodes(void)
  99{
 100        /* not actually dirty inodes, but a wild approximation */
 101        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 102        return nr_dirty > 0 ? nr_dirty : 0;
 103}
 104
 105/*
 106 * Handle nr_inode sysctl
 107 */
 108#ifdef CONFIG_SYSCTL
 109int proc_nr_inodes(struct ctl_table *table, int write,
 110                   void __user *buffer, size_t *lenp, loff_t *ppos)
 111{
 112        inodes_stat.nr_inodes = get_nr_inodes();
 113        inodes_stat.nr_unused = get_nr_inodes_unused();
 114        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116#endif
 117
 118static int no_open(struct inode *inode, struct file *file)
 119{
 120        return -ENXIO;
 121}
 122
 123/**
 124 * inode_init_always - perform inode structure intialisation
 125 * @sb: superblock inode belongs to
 126 * @inode: inode to initialise
 127 *
 128 * These are initializations that need to be done on every inode
 129 * allocation as the fields are not initialised by slab allocation.
 130 */
 131int inode_init_always(struct super_block *sb, struct inode *inode)
 132{
 133        static const struct inode_operations empty_iops;
 134        static const struct file_operations no_open_fops = {.open = no_open};
 135        struct address_space *const mapping = &inode->i_data;
 136
 137        inode->i_sb = sb;
 138        inode->i_blkbits = sb->s_blocksize_bits;
 139        inode->i_flags = 0;
 140        atomic_set(&inode->i_count, 1);
 141        inode->i_op = &empty_iops;
 142        inode->i_fop = &no_open_fops;
 143        inode->__i_nlink = 1;
 144        inode->i_opflags = 0;
 145        i_uid_write(inode, 0);
 146        i_gid_write(inode, 0);
 147        atomic_set(&inode->i_writecount, 0);
 148        inode->i_size = 0;
 149        inode->i_blocks = 0;
 150        inode->i_bytes = 0;
 151        inode->i_generation = 0;
 152        inode->i_pipe = NULL;
 153        inode->i_bdev = NULL;
 154        inode->i_cdev = NULL;
 155        inode->i_link = NULL;
 156        inode->i_rdev = 0;
 157        inode->dirtied_when = 0;
 158
 159        if (security_inode_alloc(inode))
 160                goto out;
 161        spin_lock_init(&inode->i_lock);
 162        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 163
 164        mutex_init(&inode->i_mutex);
 165        lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 166
 167        atomic_set(&inode->i_dio_count, 0);
 168
 169        mapping->a_ops = &empty_aops;
 170        mapping->host = inode;
 171        mapping->flags = 0;
 172        atomic_set(&mapping->i_mmap_writable, 0);
 173        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 174        mapping->private_data = NULL;
 175        mapping->writeback_index = 0;
 176        inode->i_private = NULL;
 177        inode->i_mapping = mapping;
 178        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 179#ifdef CONFIG_FS_POSIX_ACL
 180        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 181#endif
 182
 183#ifdef CONFIG_FSNOTIFY
 184        inode->i_fsnotify_mask = 0;
 185#endif
 186        inode->i_flctx = NULL;
 187        this_cpu_inc(nr_inodes);
 188
 189        return 0;
 190out:
 191        return -ENOMEM;
 192}
 193EXPORT_SYMBOL(inode_init_always);
 194
 195static struct inode *alloc_inode(struct super_block *sb)
 196{
 197        struct inode *inode;
 198
 199        if (sb->s_op->alloc_inode)
 200                inode = sb->s_op->alloc_inode(sb);
 201        else
 202                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 203
 204        if (!inode)
 205                return NULL;
 206
 207        if (unlikely(inode_init_always(sb, inode))) {
 208                if (inode->i_sb->s_op->destroy_inode)
 209                        inode->i_sb->s_op->destroy_inode(inode);
 210                else
 211                        kmem_cache_free(inode_cachep, inode);
 212                return NULL;
 213        }
 214
 215        return inode;
 216}
 217
 218void free_inode_nonrcu(struct inode *inode)
 219{
 220        kmem_cache_free(inode_cachep, inode);
 221}
 222EXPORT_SYMBOL(free_inode_nonrcu);
 223
 224void __destroy_inode(struct inode *inode)
 225{
 226        BUG_ON(inode_has_buffers(inode));
 227        inode_detach_wb(inode);
 228        security_inode_free(inode);
 229        fsnotify_inode_delete(inode);
 230        locks_free_lock_context(inode->i_flctx);
 231        if (!inode->i_nlink) {
 232                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 233                atomic_long_dec(&inode->i_sb->s_remove_count);
 234        }
 235
 236#ifdef CONFIG_FS_POSIX_ACL
 237        if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 238                posix_acl_release(inode->i_acl);
 239        if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 240                posix_acl_release(inode->i_default_acl);
 241#endif
 242        this_cpu_dec(nr_inodes);
 243}
 244EXPORT_SYMBOL(__destroy_inode);
 245
 246static void i_callback(struct rcu_head *head)
 247{
 248        struct inode *inode = container_of(head, struct inode, i_rcu);
 249        kmem_cache_free(inode_cachep, inode);
 250}
 251
 252static void destroy_inode(struct inode *inode)
 253{
 254        BUG_ON(!list_empty(&inode->i_lru));
 255        __destroy_inode(inode);
 256        if (inode->i_sb->s_op->destroy_inode)
 257                inode->i_sb->s_op->destroy_inode(inode);
 258        else
 259                call_rcu(&inode->i_rcu, i_callback);
 260}
 261
 262/**
 263 * drop_nlink - directly drop an inode's link count
 264 * @inode: inode
 265 *
 266 * This is a low-level filesystem helper to replace any
 267 * direct filesystem manipulation of i_nlink.  In cases
 268 * where we are attempting to track writes to the
 269 * filesystem, a decrement to zero means an imminent
 270 * write when the file is truncated and actually unlinked
 271 * on the filesystem.
 272 */
 273void drop_nlink(struct inode *inode)
 274{
 275        WARN_ON(inode->i_nlink == 0);
 276        inode->__i_nlink--;
 277        if (!inode->i_nlink)
 278                atomic_long_inc(&inode->i_sb->s_remove_count);
 279}
 280EXPORT_SYMBOL(drop_nlink);
 281
 282/**
 283 * clear_nlink - directly zero an inode's link count
 284 * @inode: inode
 285 *
 286 * This is a low-level filesystem helper to replace any
 287 * direct filesystem manipulation of i_nlink.  See
 288 * drop_nlink() for why we care about i_nlink hitting zero.
 289 */
 290void clear_nlink(struct inode *inode)
 291{
 292        if (inode->i_nlink) {
 293                inode->__i_nlink = 0;
 294                atomic_long_inc(&inode->i_sb->s_remove_count);
 295        }
 296}
 297EXPORT_SYMBOL(clear_nlink);
 298
 299/**
 300 * set_nlink - directly set an inode's link count
 301 * @inode: inode
 302 * @nlink: new nlink (should be non-zero)
 303 *
 304 * This is a low-level filesystem helper to replace any
 305 * direct filesystem manipulation of i_nlink.
 306 */
 307void set_nlink(struct inode *inode, unsigned int nlink)
 308{
 309        if (!nlink) {
 310                clear_nlink(inode);
 311        } else {
 312                /* Yes, some filesystems do change nlink from zero to one */
 313                if (inode->i_nlink == 0)
 314                        atomic_long_dec(&inode->i_sb->s_remove_count);
 315
 316                inode->__i_nlink = nlink;
 317        }
 318}
 319EXPORT_SYMBOL(set_nlink);
 320
 321/**
 322 * inc_nlink - directly increment an inode's link count
 323 * @inode: inode
 324 *
 325 * This is a low-level filesystem helper to replace any
 326 * direct filesystem manipulation of i_nlink.  Currently,
 327 * it is only here for parity with dec_nlink().
 328 */
 329void inc_nlink(struct inode *inode)
 330{
 331        if (unlikely(inode->i_nlink == 0)) {
 332                WARN_ON(!(inode->i_state & I_LINKABLE));
 333                atomic_long_dec(&inode->i_sb->s_remove_count);
 334        }
 335
 336        inode->__i_nlink++;
 337}
 338EXPORT_SYMBOL(inc_nlink);
 339
 340void address_space_init_once(struct address_space *mapping)
 341{
 342        memset(mapping, 0, sizeof(*mapping));
 343        INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 344        spin_lock_init(&mapping->tree_lock);
 345        init_rwsem(&mapping->i_mmap_rwsem);
 346        INIT_LIST_HEAD(&mapping->private_list);
 347        spin_lock_init(&mapping->private_lock);
 348        mapping->i_mmap = RB_ROOT;
 349}
 350EXPORT_SYMBOL(address_space_init_once);
 351
 352/*
 353 * These are initializations that only need to be done
 354 * once, because the fields are idempotent across use
 355 * of the inode, so let the slab aware of that.
 356 */
 357void inode_init_once(struct inode *inode)
 358{
 359        memset(inode, 0, sizeof(*inode));
 360        INIT_HLIST_NODE(&inode->i_hash);
 361        INIT_LIST_HEAD(&inode->i_devices);
 362        INIT_LIST_HEAD(&inode->i_wb_list);
 363        INIT_LIST_HEAD(&inode->i_lru);
 364        address_space_init_once(&inode->i_data);
 365        i_size_ordered_init(inode);
 366#ifdef CONFIG_FSNOTIFY
 367        INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 368#endif
 369}
 370EXPORT_SYMBOL(inode_init_once);
 371
 372static void init_once(void *foo)
 373{
 374        struct inode *inode = (struct inode *) foo;
 375
 376        inode_init_once(inode);
 377}
 378
 379/*
 380 * inode->i_lock must be held
 381 */
 382void __iget(struct inode *inode)
 383{
 384        atomic_inc(&inode->i_count);
 385}
 386
 387/*
 388 * get additional reference to inode; caller must already hold one.
 389 */
 390void ihold(struct inode *inode)
 391{
 392        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 393}
 394EXPORT_SYMBOL(ihold);
 395
 396static void inode_lru_list_add(struct inode *inode)
 397{
 398        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 399                this_cpu_inc(nr_unused);
 400}
 401
 402/*
 403 * Add inode to LRU if needed (inode is unused and clean).
 404 *
 405 * Needs inode->i_lock held.
 406 */
 407void inode_add_lru(struct inode *inode)
 408{
 409        if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 410                                I_FREEING | I_WILL_FREE)) &&
 411            !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
 412                inode_lru_list_add(inode);
 413}
 414
 415
 416static void inode_lru_list_del(struct inode *inode)
 417{
 418
 419        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 420                this_cpu_dec(nr_unused);
 421}
 422
 423/**
 424 * inode_sb_list_add - add inode to the superblock list of inodes
 425 * @inode: inode to add
 426 */
 427void inode_sb_list_add(struct inode *inode)
 428{
 429        spin_lock(&inode_sb_list_lock);
 430        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 431        spin_unlock(&inode_sb_list_lock);
 432}
 433EXPORT_SYMBOL_GPL(inode_sb_list_add);
 434
 435static inline void inode_sb_list_del(struct inode *inode)
 436{
 437        if (!list_empty(&inode->i_sb_list)) {
 438                spin_lock(&inode_sb_list_lock);
 439                list_del_init(&inode->i_sb_list);
 440                spin_unlock(&inode_sb_list_lock);
 441        }
 442}
 443
 444static unsigned long hash(struct super_block *sb, unsigned long hashval)
 445{
 446        unsigned long tmp;
 447
 448        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 449                        L1_CACHE_BYTES;
 450        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 451        return tmp & i_hash_mask;
 452}
 453
 454/**
 455 *      __insert_inode_hash - hash an inode
 456 *      @inode: unhashed inode
 457 *      @hashval: unsigned long value used to locate this object in the
 458 *              inode_hashtable.
 459 *
 460 *      Add an inode to the inode hash for this superblock.
 461 */
 462void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 463{
 464        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 465
 466        spin_lock(&inode_hash_lock);
 467        spin_lock(&inode->i_lock);
 468        hlist_add_head(&inode->i_hash, b);
 469        spin_unlock(&inode->i_lock);
 470        spin_unlock(&inode_hash_lock);
 471}
 472EXPORT_SYMBOL(__insert_inode_hash);
 473
 474/**
 475 *      __remove_inode_hash - remove an inode from the hash
 476 *      @inode: inode to unhash
 477 *
 478 *      Remove an inode from the superblock.
 479 */
 480void __remove_inode_hash(struct inode *inode)
 481{
 482        spin_lock(&inode_hash_lock);
 483        spin_lock(&inode->i_lock);
 484        hlist_del_init(&inode->i_hash);
 485        spin_unlock(&inode->i_lock);
 486        spin_unlock(&inode_hash_lock);
 487}
 488EXPORT_SYMBOL(__remove_inode_hash);
 489
 490void clear_inode(struct inode *inode)
 491{
 492        might_sleep();
 493        /*
 494         * We have to cycle tree_lock here because reclaim can be still in the
 495         * process of removing the last page (in __delete_from_page_cache())
 496         * and we must not free mapping under it.
 497         */
 498        spin_lock_irq(&inode->i_data.tree_lock);
 499        BUG_ON(inode->i_data.nrpages);
 500        BUG_ON(inode->i_data.nrshadows);
 501        spin_unlock_irq(&inode->i_data.tree_lock);
 502        BUG_ON(!list_empty(&inode->i_data.private_list));
 503        BUG_ON(!(inode->i_state & I_FREEING));
 504        BUG_ON(inode->i_state & I_CLEAR);
 505        /* don't need i_lock here, no concurrent mods to i_state */
 506        inode->i_state = I_FREEING | I_CLEAR;
 507}
 508EXPORT_SYMBOL(clear_inode);
 509
 510/*
 511 * Free the inode passed in, removing it from the lists it is still connected
 512 * to. We remove any pages still attached to the inode and wait for any IO that
 513 * is still in progress before finally destroying the inode.
 514 *
 515 * An inode must already be marked I_FREEING so that we avoid the inode being
 516 * moved back onto lists if we race with other code that manipulates the lists
 517 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 518 *
 519 * An inode must already be removed from the LRU list before being evicted from
 520 * the cache. This should occur atomically with setting the I_FREEING state
 521 * flag, so no inodes here should ever be on the LRU when being evicted.
 522 */
 523static void evict(struct inode *inode)
 524{
 525        const struct super_operations *op = inode->i_sb->s_op;
 526
 527        BUG_ON(!(inode->i_state & I_FREEING));
 528        BUG_ON(!list_empty(&inode->i_lru));
 529
 530        if (!list_empty(&inode->i_wb_list))
 531                inode_wb_list_del(inode);
 532
 533        inode_sb_list_del(inode);
 534
 535        /*
 536         * Wait for flusher thread to be done with the inode so that filesystem
 537         * does not start destroying it while writeback is still running. Since
 538         * the inode has I_FREEING set, flusher thread won't start new work on
 539         * the inode.  We just have to wait for running writeback to finish.
 540         */
 541        inode_wait_for_writeback(inode);
 542
 543        if (op->evict_inode) {
 544                op->evict_inode(inode);
 545        } else {
 546                truncate_inode_pages_final(&inode->i_data);
 547                clear_inode(inode);
 548        }
 549        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 550                bd_forget(inode);
 551        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 552                cd_forget(inode);
 553
 554        remove_inode_hash(inode);
 555
 556        spin_lock(&inode->i_lock);
 557        wake_up_bit(&inode->i_state, __I_NEW);
 558        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 559        spin_unlock(&inode->i_lock);
 560
 561        destroy_inode(inode);
 562}
 563
 564/*
 565 * dispose_list - dispose of the contents of a local list
 566 * @head: the head of the list to free
 567 *
 568 * Dispose-list gets a local list with local inodes in it, so it doesn't
 569 * need to worry about list corruption and SMP locks.
 570 */
 571static void dispose_list(struct list_head *head)
 572{
 573        while (!list_empty(head)) {
 574                struct inode *inode;
 575
 576                inode = list_first_entry(head, struct inode, i_lru);
 577                list_del_init(&inode->i_lru);
 578
 579                evict(inode);
 580        }
 581}
 582
 583/**
 584 * evict_inodes - evict all evictable inodes for a superblock
 585 * @sb:         superblock to operate on
 586 *
 587 * Make sure that no inodes with zero refcount are retained.  This is
 588 * called by superblock shutdown after having MS_ACTIVE flag removed,
 589 * so any inode reaching zero refcount during or after that call will
 590 * be immediately evicted.
 591 */
 592void evict_inodes(struct super_block *sb)
 593{
 594        struct inode *inode, *next;
 595        LIST_HEAD(dispose);
 596
 597        spin_lock(&inode_sb_list_lock);
 598        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 599                if (atomic_read(&inode->i_count))
 600                        continue;
 601
 602                spin_lock(&inode->i_lock);
 603                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 604                        spin_unlock(&inode->i_lock);
 605                        continue;
 606                }
 607
 608                inode->i_state |= I_FREEING;
 609                inode_lru_list_del(inode);
 610                spin_unlock(&inode->i_lock);
 611                list_add(&inode->i_lru, &dispose);
 612        }
 613        spin_unlock(&inode_sb_list_lock);
 614
 615        dispose_list(&dispose);
 616}
 617
 618/**
 619 * invalidate_inodes    - attempt to free all inodes on a superblock
 620 * @sb:         superblock to operate on
 621 * @kill_dirty: flag to guide handling of dirty inodes
 622 *
 623 * Attempts to free all inodes for a given superblock.  If there were any
 624 * busy inodes return a non-zero value, else zero.
 625 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 626 * them as busy.
 627 */
 628int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 629{
 630        int busy = 0;
 631        struct inode *inode, *next;
 632        LIST_HEAD(dispose);
 633
 634        spin_lock(&inode_sb_list_lock);
 635        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 636                spin_lock(&inode->i_lock);
 637                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 638                        spin_unlock(&inode->i_lock);
 639                        continue;
 640                }
 641                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 642                        spin_unlock(&inode->i_lock);
 643                        busy = 1;
 644                        continue;
 645                }
 646                if (atomic_read(&inode->i_count)) {
 647                        spin_unlock(&inode->i_lock);
 648                        busy = 1;
 649                        continue;
 650                }
 651
 652                inode->i_state |= I_FREEING;
 653                inode_lru_list_del(inode);
 654                spin_unlock(&inode->i_lock);
 655                list_add(&inode->i_lru, &dispose);
 656        }
 657        spin_unlock(&inode_sb_list_lock);
 658
 659        dispose_list(&dispose);
 660
 661        return busy;
 662}
 663
 664/*
 665 * Isolate the inode from the LRU in preparation for freeing it.
 666 *
 667 * Any inodes which are pinned purely because of attached pagecache have their
 668 * pagecache removed.  If the inode has metadata buffers attached to
 669 * mapping->private_list then try to remove them.
 670 *
 671 * If the inode has the I_REFERENCED flag set, then it means that it has been
 672 * used recently - the flag is set in iput_final(). When we encounter such an
 673 * inode, clear the flag and move it to the back of the LRU so it gets another
 674 * pass through the LRU before it gets reclaimed. This is necessary because of
 675 * the fact we are doing lazy LRU updates to minimise lock contention so the
 676 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 677 * with this flag set because they are the inodes that are out of order.
 678 */
 679static enum lru_status inode_lru_isolate(struct list_head *item,
 680                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 681{
 682        struct list_head *freeable = arg;
 683        struct inode    *inode = container_of(item, struct inode, i_lru);
 684
 685        /*
 686         * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 687         * If we fail to get the lock, just skip it.
 688         */
 689        if (!spin_trylock(&inode->i_lock))
 690                return LRU_SKIP;
 691
 692        /*
 693         * Referenced or dirty inodes are still in use. Give them another pass
 694         * through the LRU as we canot reclaim them now.
 695         */
 696        if (atomic_read(&inode->i_count) ||
 697            (inode->i_state & ~I_REFERENCED)) {
 698                list_lru_isolate(lru, &inode->i_lru);
 699                spin_unlock(&inode->i_lock);
 700                this_cpu_dec(nr_unused);
 701                return LRU_REMOVED;
 702        }
 703
 704        /* recently referenced inodes get one more pass */
 705        if (inode->i_state & I_REFERENCED) {
 706                inode->i_state &= ~I_REFERENCED;
 707                spin_unlock(&inode->i_lock);
 708                return LRU_ROTATE;
 709        }
 710
 711        if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 712                __iget(inode);
 713                spin_unlock(&inode->i_lock);
 714                spin_unlock(lru_lock);
 715                if (remove_inode_buffers(inode)) {
 716                        unsigned long reap;
 717                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 718                        if (current_is_kswapd())
 719                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 720                        else
 721                                __count_vm_events(PGINODESTEAL, reap);
 722                        if (current->reclaim_state)
 723                                current->reclaim_state->reclaimed_slab += reap;
 724                }
 725                iput(inode);
 726                spin_lock(lru_lock);
 727                return LRU_RETRY;
 728        }
 729
 730        WARN_ON(inode->i_state & I_NEW);
 731        inode->i_state |= I_FREEING;
 732        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 733        spin_unlock(&inode->i_lock);
 734
 735        this_cpu_dec(nr_unused);
 736        return LRU_REMOVED;
 737}
 738
 739/*
 740 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 741 * This is called from the superblock shrinker function with a number of inodes
 742 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 743 * then are freed outside inode_lock by dispose_list().
 744 */
 745long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 746{
 747        LIST_HEAD(freeable);
 748        long freed;
 749
 750        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 751                                     inode_lru_isolate, &freeable);
 752        dispose_list(&freeable);
 753        return freed;
 754}
 755
 756static void __wait_on_freeing_inode(struct inode *inode);
 757/*
 758 * Called with the inode lock held.
 759 */
 760static struct inode *find_inode(struct super_block *sb,
 761                                struct hlist_head *head,
 762                                int (*test)(struct inode *, void *),
 763                                void *data)
 764{
 765        struct inode *inode = NULL;
 766
 767repeat:
 768        hlist_for_each_entry(inode, head, i_hash) {
 769                if (inode->i_sb != sb)
 770                        continue;
 771                if (!test(inode, data))
 772                        continue;
 773                spin_lock(&inode->i_lock);
 774                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 775                        __wait_on_freeing_inode(inode);
 776                        goto repeat;
 777                }
 778                __iget(inode);
 779                spin_unlock(&inode->i_lock);
 780                return inode;
 781        }
 782        return NULL;
 783}
 784
 785/*
 786 * find_inode_fast is the fast path version of find_inode, see the comment at
 787 * iget_locked for details.
 788 */
 789static struct inode *find_inode_fast(struct super_block *sb,
 790                                struct hlist_head *head, unsigned long ino)
 791{
 792        struct inode *inode = NULL;
 793
 794repeat:
 795        hlist_for_each_entry(inode, head, i_hash) {
 796                if (inode->i_ino != ino)
 797                        continue;
 798                if (inode->i_sb != sb)
 799                        continue;
 800                spin_lock(&inode->i_lock);
 801                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 802                        __wait_on_freeing_inode(inode);
 803                        goto repeat;
 804                }
 805                __iget(inode);
 806                spin_unlock(&inode->i_lock);
 807                return inode;
 808        }
 809        return NULL;
 810}
 811
 812/*
 813 * Each cpu owns a range of LAST_INO_BATCH numbers.
 814 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 815 * to renew the exhausted range.
 816 *
 817 * This does not significantly increase overflow rate because every CPU can
 818 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 819 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 820 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 821 * overflow rate by 2x, which does not seem too significant.
 822 *
 823 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 824 * error if st_ino won't fit in target struct field. Use 32bit counter
 825 * here to attempt to avoid that.
 826 */
 827#define LAST_INO_BATCH 1024
 828static DEFINE_PER_CPU(unsigned int, last_ino);
 829
 830unsigned int get_next_ino(void)
 831{
 832        unsigned int *p = &get_cpu_var(last_ino);
 833        unsigned int res = *p;
 834
 835#ifdef CONFIG_SMP
 836        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 837                static atomic_t shared_last_ino;
 838                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 839
 840                res = next - LAST_INO_BATCH;
 841        }
 842#endif
 843
 844        res++;
 845        /* get_next_ino should not provide a 0 inode number */
 846        if (unlikely(!res))
 847                res++;
 848        *p = res;
 849        put_cpu_var(last_ino);
 850        return res;
 851}
 852EXPORT_SYMBOL(get_next_ino);
 853
 854/**
 855 *      new_inode_pseudo        - obtain an inode
 856 *      @sb: superblock
 857 *
 858 *      Allocates a new inode for given superblock.
 859 *      Inode wont be chained in superblock s_inodes list
 860 *      This means :
 861 *      - fs can't be unmount
 862 *      - quotas, fsnotify, writeback can't work
 863 */
 864struct inode *new_inode_pseudo(struct super_block *sb)
 865{
 866        struct inode *inode = alloc_inode(sb);
 867
 868        if (inode) {
 869                spin_lock(&inode->i_lock);
 870                inode->i_state = 0;
 871                spin_unlock(&inode->i_lock);
 872                INIT_LIST_HEAD(&inode->i_sb_list);
 873        }
 874        return inode;
 875}
 876
 877/**
 878 *      new_inode       - obtain an inode
 879 *      @sb: superblock
 880 *
 881 *      Allocates a new inode for given superblock. The default gfp_mask
 882 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 883 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 884 *      for the page cache are not reclaimable or migratable,
 885 *      mapping_set_gfp_mask() must be called with suitable flags on the
 886 *      newly created inode's mapping
 887 *
 888 */
 889struct inode *new_inode(struct super_block *sb)
 890{
 891        struct inode *inode;
 892
 893        spin_lock_prefetch(&inode_sb_list_lock);
 894
 895        inode = new_inode_pseudo(sb);
 896        if (inode)
 897                inode_sb_list_add(inode);
 898        return inode;
 899}
 900EXPORT_SYMBOL(new_inode);
 901
 902#ifdef CONFIG_DEBUG_LOCK_ALLOC
 903void lockdep_annotate_inode_mutex_key(struct inode *inode)
 904{
 905        if (S_ISDIR(inode->i_mode)) {
 906                struct file_system_type *type = inode->i_sb->s_type;
 907
 908                /* Set new key only if filesystem hasn't already changed it */
 909                if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
 910                        /*
 911                         * ensure nobody is actually holding i_mutex
 912                         */
 913                        mutex_destroy(&inode->i_mutex);
 914                        mutex_init(&inode->i_mutex);
 915                        lockdep_set_class(&inode->i_mutex,
 916                                          &type->i_mutex_dir_key);
 917                }
 918        }
 919}
 920EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 921#endif
 922
 923/**
 924 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 925 * @inode:      new inode to unlock
 926 *
 927 * Called when the inode is fully initialised to clear the new state of the
 928 * inode and wake up anyone waiting for the inode to finish initialisation.
 929 */
 930void unlock_new_inode(struct inode *inode)
 931{
 932        lockdep_annotate_inode_mutex_key(inode);
 933        spin_lock(&inode->i_lock);
 934        WARN_ON(!(inode->i_state & I_NEW));
 935        inode->i_state &= ~I_NEW;
 936        smp_mb();
 937        wake_up_bit(&inode->i_state, __I_NEW);
 938        spin_unlock(&inode->i_lock);
 939}
 940EXPORT_SYMBOL(unlock_new_inode);
 941
 942/**
 943 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 944 *
 945 * Lock any non-NULL argument that is not a directory.
 946 * Zero, one or two objects may be locked by this function.
 947 *
 948 * @inode1: first inode to lock
 949 * @inode2: second inode to lock
 950 */
 951void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 952{
 953        if (inode1 > inode2)
 954                swap(inode1, inode2);
 955
 956        if (inode1 && !S_ISDIR(inode1->i_mode))
 957                mutex_lock(&inode1->i_mutex);
 958        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 959                mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
 960}
 961EXPORT_SYMBOL(lock_two_nondirectories);
 962
 963/**
 964 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 965 * @inode1: first inode to unlock
 966 * @inode2: second inode to unlock
 967 */
 968void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 969{
 970        if (inode1 && !S_ISDIR(inode1->i_mode))
 971                mutex_unlock(&inode1->i_mutex);
 972        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 973                mutex_unlock(&inode2->i_mutex);
 974}
 975EXPORT_SYMBOL(unlock_two_nondirectories);
 976
 977/**
 978 * iget5_locked - obtain an inode from a mounted file system
 979 * @sb:         super block of file system
 980 * @hashval:    hash value (usually inode number) to get
 981 * @test:       callback used for comparisons between inodes
 982 * @set:        callback used to initialize a new struct inode
 983 * @data:       opaque data pointer to pass to @test and @set
 984 *
 985 * Search for the inode specified by @hashval and @data in the inode cache,
 986 * and if present it is return it with an increased reference count. This is
 987 * a generalized version of iget_locked() for file systems where the inode
 988 * number is not sufficient for unique identification of an inode.
 989 *
 990 * If the inode is not in cache, allocate a new inode and return it locked,
 991 * hashed, and with the I_NEW flag set. The file system gets to fill it in
 992 * before unlocking it via unlock_new_inode().
 993 *
 994 * Note both @test and @set are called with the inode_hash_lock held, so can't
 995 * sleep.
 996 */
 997struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
 998                int (*test)(struct inode *, void *),
 999                int (*set)(struct inode *, void *), void *data)
1000{
1001        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1002        struct inode *inode;
1003
1004        spin_lock(&inode_hash_lock);
1005        inode = find_inode(sb, head, test, data);
1006        spin_unlock(&inode_hash_lock);
1007
1008        if (inode) {
1009                wait_on_inode(inode);
1010                return inode;
1011        }
1012
1013        inode = alloc_inode(sb);
1014        if (inode) {
1015                struct inode *old;
1016
1017                spin_lock(&inode_hash_lock);
1018                /* We released the lock, so.. */
1019                old = find_inode(sb, head, test, data);
1020                if (!old) {
1021                        if (set(inode, data))
1022                                goto set_failed;
1023
1024                        spin_lock(&inode->i_lock);
1025                        inode->i_state = I_NEW;
1026                        hlist_add_head(&inode->i_hash, head);
1027                        spin_unlock(&inode->i_lock);
1028                        inode_sb_list_add(inode);
1029                        spin_unlock(&inode_hash_lock);
1030
1031                        /* Return the locked inode with I_NEW set, the
1032                         * caller is responsible for filling in the contents
1033                         */
1034                        return inode;
1035                }
1036
1037                /*
1038                 * Uhhuh, somebody else created the same inode under
1039                 * us. Use the old inode instead of the one we just
1040                 * allocated.
1041                 */
1042                spin_unlock(&inode_hash_lock);
1043                destroy_inode(inode);
1044                inode = old;
1045                wait_on_inode(inode);
1046        }
1047        return inode;
1048
1049set_failed:
1050        spin_unlock(&inode_hash_lock);
1051        destroy_inode(inode);
1052        return NULL;
1053}
1054EXPORT_SYMBOL(iget5_locked);
1055
1056/**
1057 * iget_locked - obtain an inode from a mounted file system
1058 * @sb:         super block of file system
1059 * @ino:        inode number to get
1060 *
1061 * Search for the inode specified by @ino in the inode cache and if present
1062 * return it with an increased reference count. This is for file systems
1063 * where the inode number is sufficient for unique identification of an inode.
1064 *
1065 * If the inode is not in cache, allocate a new inode and return it locked,
1066 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1067 * before unlocking it via unlock_new_inode().
1068 */
1069struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1070{
1071        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1072        struct inode *inode;
1073
1074        spin_lock(&inode_hash_lock);
1075        inode = find_inode_fast(sb, head, ino);
1076        spin_unlock(&inode_hash_lock);
1077        if (inode) {
1078                wait_on_inode(inode);
1079                return inode;
1080        }
1081
1082        inode = alloc_inode(sb);
1083        if (inode) {
1084                struct inode *old;
1085
1086                spin_lock(&inode_hash_lock);
1087                /* We released the lock, so.. */
1088                old = find_inode_fast(sb, head, ino);
1089                if (!old) {
1090                        inode->i_ino = ino;
1091                        spin_lock(&inode->i_lock);
1092                        inode->i_state = I_NEW;
1093                        hlist_add_head(&inode->i_hash, head);
1094                        spin_unlock(&inode->i_lock);
1095                        inode_sb_list_add(inode);
1096                        spin_unlock(&inode_hash_lock);
1097
1098                        /* Return the locked inode with I_NEW set, the
1099                         * caller is responsible for filling in the contents
1100                         */
1101                        return inode;
1102                }
1103
1104                /*
1105                 * Uhhuh, somebody else created the same inode under
1106                 * us. Use the old inode instead of the one we just
1107                 * allocated.
1108                 */
1109                spin_unlock(&inode_hash_lock);
1110                destroy_inode(inode);
1111                inode = old;
1112                wait_on_inode(inode);
1113        }
1114        return inode;
1115}
1116EXPORT_SYMBOL(iget_locked);
1117
1118/*
1119 * search the inode cache for a matching inode number.
1120 * If we find one, then the inode number we are trying to
1121 * allocate is not unique and so we should not use it.
1122 *
1123 * Returns 1 if the inode number is unique, 0 if it is not.
1124 */
1125static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1126{
1127        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1128        struct inode *inode;
1129
1130        spin_lock(&inode_hash_lock);
1131        hlist_for_each_entry(inode, b, i_hash) {
1132                if (inode->i_ino == ino && inode->i_sb == sb) {
1133                        spin_unlock(&inode_hash_lock);
1134                        return 0;
1135                }
1136        }
1137        spin_unlock(&inode_hash_lock);
1138
1139        return 1;
1140}
1141
1142/**
1143 *      iunique - get a unique inode number
1144 *      @sb: superblock
1145 *      @max_reserved: highest reserved inode number
1146 *
1147 *      Obtain an inode number that is unique on the system for a given
1148 *      superblock. This is used by file systems that have no natural
1149 *      permanent inode numbering system. An inode number is returned that
1150 *      is higher than the reserved limit but unique.
1151 *
1152 *      BUGS:
1153 *      With a large number of inodes live on the file system this function
1154 *      currently becomes quite slow.
1155 */
1156ino_t iunique(struct super_block *sb, ino_t max_reserved)
1157{
1158        /*
1159         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1160         * error if st_ino won't fit in target struct field. Use 32bit counter
1161         * here to attempt to avoid that.
1162         */
1163        static DEFINE_SPINLOCK(iunique_lock);
1164        static unsigned int counter;
1165        ino_t res;
1166
1167        spin_lock(&iunique_lock);
1168        do {
1169                if (counter <= max_reserved)
1170                        counter = max_reserved + 1;
1171                res = counter++;
1172        } while (!test_inode_iunique(sb, res));
1173        spin_unlock(&iunique_lock);
1174
1175        return res;
1176}
1177EXPORT_SYMBOL(iunique);
1178
1179struct inode *igrab(struct inode *inode)
1180{
1181        spin_lock(&inode->i_lock);
1182        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1183                __iget(inode);
1184                spin_unlock(&inode->i_lock);
1185        } else {
1186                spin_unlock(&inode->i_lock);
1187                /*
1188                 * Handle the case where s_op->clear_inode is not been
1189                 * called yet, and somebody is calling igrab
1190                 * while the inode is getting freed.
1191                 */
1192                inode = NULL;
1193        }
1194        return inode;
1195}
1196EXPORT_SYMBOL(igrab);
1197
1198/**
1199 * ilookup5_nowait - search for an inode in the inode cache
1200 * @sb:         super block of file system to search
1201 * @hashval:    hash value (usually inode number) to search for
1202 * @test:       callback used for comparisons between inodes
1203 * @data:       opaque data pointer to pass to @test
1204 *
1205 * Search for the inode specified by @hashval and @data in the inode cache.
1206 * If the inode is in the cache, the inode is returned with an incremented
1207 * reference count.
1208 *
1209 * Note: I_NEW is not waited upon so you have to be very careful what you do
1210 * with the returned inode.  You probably should be using ilookup5() instead.
1211 *
1212 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1213 */
1214struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1215                int (*test)(struct inode *, void *), void *data)
1216{
1217        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1218        struct inode *inode;
1219
1220        spin_lock(&inode_hash_lock);
1221        inode = find_inode(sb, head, test, data);
1222        spin_unlock(&inode_hash_lock);
1223
1224        return inode;
1225}
1226EXPORT_SYMBOL(ilookup5_nowait);
1227
1228/**
1229 * ilookup5 - search for an inode in the inode cache
1230 * @sb:         super block of file system to search
1231 * @hashval:    hash value (usually inode number) to search for
1232 * @test:       callback used for comparisons between inodes
1233 * @data:       opaque data pointer to pass to @test
1234 *
1235 * Search for the inode specified by @hashval and @data in the inode cache,
1236 * and if the inode is in the cache, return the inode with an incremented
1237 * reference count.  Waits on I_NEW before returning the inode.
1238 * returned with an incremented reference count.
1239 *
1240 * This is a generalized version of ilookup() for file systems where the
1241 * inode number is not sufficient for unique identification of an inode.
1242 *
1243 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1244 */
1245struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1246                int (*test)(struct inode *, void *), void *data)
1247{
1248        struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1249
1250        if (inode)
1251                wait_on_inode(inode);
1252        return inode;
1253}
1254EXPORT_SYMBOL(ilookup5);
1255
1256/**
1257 * ilookup - search for an inode in the inode cache
1258 * @sb:         super block of file system to search
1259 * @ino:        inode number to search for
1260 *
1261 * Search for the inode @ino in the inode cache, and if the inode is in the
1262 * cache, the inode is returned with an incremented reference count.
1263 */
1264struct inode *ilookup(struct super_block *sb, unsigned long ino)
1265{
1266        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1267        struct inode *inode;
1268
1269        spin_lock(&inode_hash_lock);
1270        inode = find_inode_fast(sb, head, ino);
1271        spin_unlock(&inode_hash_lock);
1272
1273        if (inode)
1274                wait_on_inode(inode);
1275        return inode;
1276}
1277EXPORT_SYMBOL(ilookup);
1278
1279/**
1280 * find_inode_nowait - find an inode in the inode cache
1281 * @sb:         super block of file system to search
1282 * @hashval:    hash value (usually inode number) to search for
1283 * @match:      callback used for comparisons between inodes
1284 * @data:       opaque data pointer to pass to @match
1285 *
1286 * Search for the inode specified by @hashval and @data in the inode
1287 * cache, where the helper function @match will return 0 if the inode
1288 * does not match, 1 if the inode does match, and -1 if the search
1289 * should be stopped.  The @match function must be responsible for
1290 * taking the i_lock spin_lock and checking i_state for an inode being
1291 * freed or being initialized, and incrementing the reference count
1292 * before returning 1.  It also must not sleep, since it is called with
1293 * the inode_hash_lock spinlock held.
1294 *
1295 * This is a even more generalized version of ilookup5() when the
1296 * function must never block --- find_inode() can block in
1297 * __wait_on_freeing_inode() --- or when the caller can not increment
1298 * the reference count because the resulting iput() might cause an
1299 * inode eviction.  The tradeoff is that the @match funtion must be
1300 * very carefully implemented.
1301 */
1302struct inode *find_inode_nowait(struct super_block *sb,
1303                                unsigned long hashval,
1304                                int (*match)(struct inode *, unsigned long,
1305                                             void *),
1306                                void *data)
1307{
1308        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1309        struct inode *inode, *ret_inode = NULL;
1310        int mval;
1311
1312        spin_lock(&inode_hash_lock);
1313        hlist_for_each_entry(inode, head, i_hash) {
1314                if (inode->i_sb != sb)
1315                        continue;
1316                mval = match(inode, hashval, data);
1317                if (mval == 0)
1318                        continue;
1319                if (mval == 1)
1320                        ret_inode = inode;
1321                goto out;
1322        }
1323out:
1324        spin_unlock(&inode_hash_lock);
1325        return ret_inode;
1326}
1327EXPORT_SYMBOL(find_inode_nowait);
1328
1329int insert_inode_locked(struct inode *inode)
1330{
1331        struct super_block *sb = inode->i_sb;
1332        ino_t ino = inode->i_ino;
1333        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1334
1335        while (1) {
1336                struct inode *old = NULL;
1337                spin_lock(&inode_hash_lock);
1338                hlist_for_each_entry(old, head, i_hash) {
1339                        if (old->i_ino != ino)
1340                                continue;
1341                        if (old->i_sb != sb)
1342                                continue;
1343                        spin_lock(&old->i_lock);
1344                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1345                                spin_unlock(&old->i_lock);
1346                                continue;
1347                        }
1348                        break;
1349                }
1350                if (likely(!old)) {
1351                        spin_lock(&inode->i_lock);
1352                        inode->i_state |= I_NEW;
1353                        hlist_add_head(&inode->i_hash, head);
1354                        spin_unlock(&inode->i_lock);
1355                        spin_unlock(&inode_hash_lock);
1356                        return 0;
1357                }
1358                __iget(old);
1359                spin_unlock(&old->i_lock);
1360                spin_unlock(&inode_hash_lock);
1361                wait_on_inode(old);
1362                if (unlikely(!inode_unhashed(old))) {
1363                        iput(old);
1364                        return -EBUSY;
1365                }
1366                iput(old);
1367        }
1368}
1369EXPORT_SYMBOL(insert_inode_locked);
1370
1371int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1372                int (*test)(struct inode *, void *), void *data)
1373{
1374        struct super_block *sb = inode->i_sb;
1375        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1376
1377        while (1) {
1378                struct inode *old = NULL;
1379
1380                spin_lock(&inode_hash_lock);
1381                hlist_for_each_entry(old, head, i_hash) {
1382                        if (old->i_sb != sb)
1383                                continue;
1384                        if (!test(old, data))
1385                                continue;
1386                        spin_lock(&old->i_lock);
1387                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1388                                spin_unlock(&old->i_lock);
1389                                continue;
1390                        }
1391                        break;
1392                }
1393                if (likely(!old)) {
1394                        spin_lock(&inode->i_lock);
1395                        inode->i_state |= I_NEW;
1396                        hlist_add_head(&inode->i_hash, head);
1397                        spin_unlock(&inode->i_lock);
1398                        spin_unlock(&inode_hash_lock);
1399                        return 0;
1400                }
1401                __iget(old);
1402                spin_unlock(&old->i_lock);
1403                spin_unlock(&inode_hash_lock);
1404                wait_on_inode(old);
1405                if (unlikely(!inode_unhashed(old))) {
1406                        iput(old);
1407                        return -EBUSY;
1408                }
1409                iput(old);
1410        }
1411}
1412EXPORT_SYMBOL(insert_inode_locked4);
1413
1414
1415int generic_delete_inode(struct inode *inode)
1416{
1417        return 1;
1418}
1419EXPORT_SYMBOL(generic_delete_inode);
1420
1421/*
1422 * Called when we're dropping the last reference
1423 * to an inode.
1424 *
1425 * Call the FS "drop_inode()" function, defaulting to
1426 * the legacy UNIX filesystem behaviour.  If it tells
1427 * us to evict inode, do so.  Otherwise, retain inode
1428 * in cache if fs is alive, sync and evict if fs is
1429 * shutting down.
1430 */
1431static void iput_final(struct inode *inode)
1432{
1433        struct super_block *sb = inode->i_sb;
1434        const struct super_operations *op = inode->i_sb->s_op;
1435        int drop;
1436
1437        WARN_ON(inode->i_state & I_NEW);
1438
1439        if (op->drop_inode)
1440                drop = op->drop_inode(inode);
1441        else
1442                drop = generic_drop_inode(inode);
1443
1444        if (!drop && (sb->s_flags & MS_ACTIVE)) {
1445                inode->i_state |= I_REFERENCED;
1446                inode_add_lru(inode);
1447                spin_unlock(&inode->i_lock);
1448                return;
1449        }
1450
1451        if (!drop) {
1452                inode->i_state |= I_WILL_FREE;
1453                spin_unlock(&inode->i_lock);
1454                write_inode_now(inode, 1);
1455                spin_lock(&inode->i_lock);
1456                WARN_ON(inode->i_state & I_NEW);
1457                inode->i_state &= ~I_WILL_FREE;
1458        }
1459
1460        inode->i_state |= I_FREEING;
1461        if (!list_empty(&inode->i_lru))
1462                inode_lru_list_del(inode);
1463        spin_unlock(&inode->i_lock);
1464
1465        evict(inode);
1466}
1467
1468/**
1469 *      iput    - put an inode
1470 *      @inode: inode to put
1471 *
1472 *      Puts an inode, dropping its usage count. If the inode use count hits
1473 *      zero, the inode is then freed and may also be destroyed.
1474 *
1475 *      Consequently, iput() can sleep.
1476 */
1477void iput(struct inode *inode)
1478{
1479        if (!inode)
1480                return;
1481        BUG_ON(inode->i_state & I_CLEAR);
1482retry:
1483        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1484                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1485                        atomic_inc(&inode->i_count);
1486                        inode->i_state &= ~I_DIRTY_TIME;
1487                        spin_unlock(&inode->i_lock);
1488                        trace_writeback_lazytime_iput(inode);
1489                        mark_inode_dirty_sync(inode);
1490                        goto retry;
1491                }
1492                iput_final(inode);
1493        }
1494}
1495EXPORT_SYMBOL(iput);
1496
1497/**
1498 *      bmap    - find a block number in a file
1499 *      @inode: inode of file
1500 *      @block: block to find
1501 *
1502 *      Returns the block number on the device holding the inode that
1503 *      is the disk block number for the block of the file requested.
1504 *      That is, asked for block 4 of inode 1 the function will return the
1505 *      disk block relative to the disk start that holds that block of the
1506 *      file.
1507 */
1508sector_t bmap(struct inode *inode, sector_t block)
1509{
1510        sector_t res = 0;
1511        if (inode->i_mapping->a_ops->bmap)
1512                res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1513        return res;
1514}
1515EXPORT_SYMBOL(bmap);
1516
1517/*
1518 * With relative atime, only update atime if the previous atime is
1519 * earlier than either the ctime or mtime or if at least a day has
1520 * passed since the last atime update.
1521 */
1522static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1523                             struct timespec now)
1524{
1525
1526        if (!(mnt->mnt_flags & MNT_RELATIME))
1527                return 1;
1528        /*
1529         * Is mtime younger than atime? If yes, update atime:
1530         */
1531        if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1532                return 1;
1533        /*
1534         * Is ctime younger than atime? If yes, update atime:
1535         */
1536        if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1537                return 1;
1538
1539        /*
1540         * Is the previous atime value older than a day? If yes,
1541         * update atime:
1542         */
1543        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1544                return 1;
1545        /*
1546         * Good, we can skip the atime update:
1547         */
1548        return 0;
1549}
1550
1551int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1552{
1553        int iflags = I_DIRTY_TIME;
1554
1555        if (flags & S_ATIME)
1556                inode->i_atime = *time;
1557        if (flags & S_VERSION)
1558                inode_inc_iversion(inode);
1559        if (flags & S_CTIME)
1560                inode->i_ctime = *time;
1561        if (flags & S_MTIME)
1562                inode->i_mtime = *time;
1563
1564        if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1565                iflags |= I_DIRTY_SYNC;
1566        __mark_inode_dirty(inode, iflags);
1567        return 0;
1568}
1569EXPORT_SYMBOL(generic_update_time);
1570
1571/*
1572 * This does the actual work of updating an inodes time or version.  Must have
1573 * had called mnt_want_write() before calling this.
1574 */
1575static int update_time(struct inode *inode, struct timespec *time, int flags)
1576{
1577        int (*update_time)(struct inode *, struct timespec *, int);
1578
1579        update_time = inode->i_op->update_time ? inode->i_op->update_time :
1580                generic_update_time;
1581
1582        return update_time(inode, time, flags);
1583}
1584
1585/**
1586 *      touch_atime     -       update the access time
1587 *      @path: the &struct path to update
1588 *
1589 *      Update the accessed time on an inode and mark it for writeback.
1590 *      This function automatically handles read only file systems and media,
1591 *      as well as the "noatime" flag and inode specific "noatime" markers.
1592 */
1593bool atime_needs_update(const struct path *path, struct inode *inode)
1594{
1595        struct vfsmount *mnt = path->mnt;
1596        struct timespec now;
1597
1598        if (inode->i_flags & S_NOATIME)
1599                return false;
1600        if (IS_NOATIME(inode))
1601                return false;
1602        if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1603                return false;
1604
1605        if (mnt->mnt_flags & MNT_NOATIME)
1606                return false;
1607        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1608                return false;
1609
1610        now = current_fs_time(inode->i_sb);
1611
1612        if (!relatime_need_update(mnt, inode, now))
1613                return false;
1614
1615        if (timespec_equal(&inode->i_atime, &now))
1616                return false;
1617
1618        return true;
1619}
1620
1621void touch_atime(const struct path *path)
1622{
1623        struct vfsmount *mnt = path->mnt;
1624        struct inode *inode = d_inode(path->dentry);
1625        struct timespec now;
1626
1627        if (!atime_needs_update(path, inode))
1628                return;
1629
1630        if (!sb_start_write_trylock(inode->i_sb))
1631                return;
1632
1633        if (__mnt_want_write(mnt) != 0)
1634                goto skip_update;
1635        /*
1636         * File systems can error out when updating inodes if they need to
1637         * allocate new space to modify an inode (such is the case for
1638         * Btrfs), but since we touch atime while walking down the path we
1639         * really don't care if we failed to update the atime of the file,
1640         * so just ignore the return value.
1641         * We may also fail on filesystems that have the ability to make parts
1642         * of the fs read only, e.g. subvolumes in Btrfs.
1643         */
1644        now = current_fs_time(inode->i_sb);
1645        update_time(inode, &now, S_ATIME);
1646        __mnt_drop_write(mnt);
1647skip_update:
1648        sb_end_write(inode->i_sb);
1649}
1650EXPORT_SYMBOL(touch_atime);
1651
1652/*
1653 * The logic we want is
1654 *
1655 *      if suid or (sgid and xgrp)
1656 *              remove privs
1657 */
1658int should_remove_suid(struct dentry *dentry)
1659{
1660        umode_t mode = d_inode(dentry)->i_mode;
1661        int kill = 0;
1662
1663        /* suid always must be killed */
1664        if (unlikely(mode & S_ISUID))
1665                kill = ATTR_KILL_SUID;
1666
1667        /*
1668         * sgid without any exec bits is just a mandatory locking mark; leave
1669         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1670         */
1671        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1672                kill |= ATTR_KILL_SGID;
1673
1674        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1675                return kill;
1676
1677        return 0;
1678}
1679EXPORT_SYMBOL(should_remove_suid);
1680
1681/*
1682 * Return mask of changes for notify_change() that need to be done as a
1683 * response to write or truncate. Return 0 if nothing has to be changed.
1684 * Negative value on error (change should be denied).
1685 */
1686int dentry_needs_remove_privs(struct dentry *dentry)
1687{
1688        struct inode *inode = d_inode(dentry);
1689        int mask = 0;
1690        int ret;
1691
1692        if (IS_NOSEC(inode))
1693                return 0;
1694
1695        mask = should_remove_suid(dentry);
1696        ret = security_inode_need_killpriv(dentry);
1697        if (ret < 0)
1698                return ret;
1699        if (ret)
1700                mask |= ATTR_KILL_PRIV;
1701        return mask;
1702}
1703EXPORT_SYMBOL(dentry_needs_remove_privs);
1704
1705static int __remove_privs(struct dentry *dentry, int kill)
1706{
1707        struct iattr newattrs;
1708
1709        newattrs.ia_valid = ATTR_FORCE | kill;
1710        /*
1711         * Note we call this on write, so notify_change will not
1712         * encounter any conflicting delegations:
1713         */
1714        return notify_change(dentry, &newattrs, NULL);
1715}
1716
1717/*
1718 * Remove special file priviledges (suid, capabilities) when file is written
1719 * to or truncated.
1720 */
1721int file_remove_privs(struct file *file)
1722{
1723        struct dentry *dentry = file->f_path.dentry;
1724        struct inode *inode = d_inode(dentry);
1725        int kill;
1726        int error = 0;
1727
1728        /* Fast path for nothing security related */
1729        if (IS_NOSEC(inode))
1730                return 0;
1731
1732        kill = file_needs_remove_privs(file);
1733        if (kill < 0)
1734                return kill;
1735        if (kill)
1736                error = __remove_privs(dentry, kill);
1737        if (!error)
1738                inode_has_no_xattr(inode);
1739
1740        return error;
1741}
1742EXPORT_SYMBOL(file_remove_privs);
1743
1744/**
1745 *      file_update_time        -       update mtime and ctime time
1746 *      @file: file accessed
1747 *
1748 *      Update the mtime and ctime members of an inode and mark the inode
1749 *      for writeback.  Note that this function is meant exclusively for
1750 *      usage in the file write path of filesystems, and filesystems may
1751 *      choose to explicitly ignore update via this function with the
1752 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1753 *      timestamps are handled by the server.  This can return an error for
1754 *      file systems who need to allocate space in order to update an inode.
1755 */
1756
1757int file_update_time(struct file *file)
1758{
1759        struct inode *inode = file_inode(file);
1760        struct timespec now;
1761        int sync_it = 0;
1762        int ret;
1763
1764        /* First try to exhaust all avenues to not sync */
1765        if (IS_NOCMTIME(inode))
1766                return 0;
1767
1768        now = current_fs_time(inode->i_sb);
1769        if (!timespec_equal(&inode->i_mtime, &now))
1770                sync_it = S_MTIME;
1771
1772        if (!timespec_equal(&inode->i_ctime, &now))
1773                sync_it |= S_CTIME;
1774
1775        if (IS_I_VERSION(inode))
1776                sync_it |= S_VERSION;
1777
1778        if (!sync_it)
1779                return 0;
1780
1781        /* Finally allowed to write? Takes lock. */
1782        if (__mnt_want_write_file(file))
1783                return 0;
1784
1785        ret = update_time(inode, &now, sync_it);
1786        __mnt_drop_write_file(file);
1787
1788        return ret;
1789}
1790EXPORT_SYMBOL(file_update_time);
1791
1792int inode_needs_sync(struct inode *inode)
1793{
1794        if (IS_SYNC(inode))
1795                return 1;
1796        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1797                return 1;
1798        return 0;
1799}
1800EXPORT_SYMBOL(inode_needs_sync);
1801
1802/*
1803 * If we try to find an inode in the inode hash while it is being
1804 * deleted, we have to wait until the filesystem completes its
1805 * deletion before reporting that it isn't found.  This function waits
1806 * until the deletion _might_ have completed.  Callers are responsible
1807 * to recheck inode state.
1808 *
1809 * It doesn't matter if I_NEW is not set initially, a call to
1810 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1811 * will DTRT.
1812 */
1813static void __wait_on_freeing_inode(struct inode *inode)
1814{
1815        wait_queue_head_t *wq;
1816        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1817        wq = bit_waitqueue(&inode->i_state, __I_NEW);
1818        prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1819        spin_unlock(&inode->i_lock);
1820        spin_unlock(&inode_hash_lock);
1821        schedule();
1822        finish_wait(wq, &wait.wait);
1823        spin_lock(&inode_hash_lock);
1824}
1825
1826static __initdata unsigned long ihash_entries;
1827static int __init set_ihash_entries(char *str)
1828{
1829        if (!str)
1830                return 0;
1831        ihash_entries = simple_strtoul(str, &str, 0);
1832        return 1;
1833}
1834__setup("ihash_entries=", set_ihash_entries);
1835
1836/*
1837 * Initialize the waitqueues and inode hash table.
1838 */
1839void __init inode_init_early(void)
1840{
1841        unsigned int loop;
1842
1843        /* If hashes are distributed across NUMA nodes, defer
1844         * hash allocation until vmalloc space is available.
1845         */
1846        if (hashdist)
1847                return;
1848
1849        inode_hashtable =
1850                alloc_large_system_hash("Inode-cache",
1851                                        sizeof(struct hlist_head),
1852                                        ihash_entries,
1853                                        14,
1854                                        HASH_EARLY,
1855                                        &i_hash_shift,
1856                                        &i_hash_mask,
1857                                        0,
1858                                        0);
1859
1860        for (loop = 0; loop < (1U << i_hash_shift); loop++)
1861                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1862}
1863
1864void __init inode_init(void)
1865{
1866        unsigned int loop;
1867
1868        /* inode slab cache */
1869        inode_cachep = kmem_cache_create("inode_cache",
1870                                         sizeof(struct inode),
1871                                         0,
1872                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1873                                         SLAB_MEM_SPREAD),
1874                                         init_once);
1875
1876        /* Hash may have been set up in inode_init_early */
1877        if (!hashdist)
1878                return;
1879
1880        inode_hashtable =
1881                alloc_large_system_hash("Inode-cache",
1882                                        sizeof(struct hlist_head),
1883                                        ihash_entries,
1884                                        14,
1885                                        0,
1886                                        &i_hash_shift,
1887                                        &i_hash_mask,
1888                                        0,
1889                                        0);
1890
1891        for (loop = 0; loop < (1U << i_hash_shift); loop++)
1892                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1893}
1894
1895void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1896{
1897        inode->i_mode = mode;
1898        if (S_ISCHR(mode)) {
1899                inode->i_fop = &def_chr_fops;
1900                inode->i_rdev = rdev;
1901        } else if (S_ISBLK(mode)) {
1902                inode->i_fop = &def_blk_fops;
1903                inode->i_rdev = rdev;
1904        } else if (S_ISFIFO(mode))
1905                inode->i_fop = &pipefifo_fops;
1906        else if (S_ISSOCK(mode))
1907                ;       /* leave it no_open_fops */
1908        else
1909                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1910                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1911                                  inode->i_ino);
1912}
1913EXPORT_SYMBOL(init_special_inode);
1914
1915/**
1916 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1917 * @inode: New inode
1918 * @dir: Directory inode
1919 * @mode: mode of the new inode
1920 */
1921void inode_init_owner(struct inode *inode, const struct inode *dir,
1922                        umode_t mode)
1923{
1924        inode->i_uid = current_fsuid();
1925        if (dir && dir->i_mode & S_ISGID) {
1926                inode->i_gid = dir->i_gid;
1927                if (S_ISDIR(mode))
1928                        mode |= S_ISGID;
1929        } else
1930                inode->i_gid = current_fsgid();
1931        inode->i_mode = mode;
1932}
1933EXPORT_SYMBOL(inode_init_owner);
1934
1935/**
1936 * inode_owner_or_capable - check current task permissions to inode
1937 * @inode: inode being checked
1938 *
1939 * Return true if current either has CAP_FOWNER in a namespace with the
1940 * inode owner uid mapped, or owns the file.
1941 */
1942bool inode_owner_or_capable(const struct inode *inode)
1943{
1944        struct user_namespace *ns;
1945
1946        if (uid_eq(current_fsuid(), inode->i_uid))
1947                return true;
1948
1949        ns = current_user_ns();
1950        if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1951                return true;
1952        return false;
1953}
1954EXPORT_SYMBOL(inode_owner_or_capable);
1955
1956/*
1957 * Direct i/o helper functions
1958 */
1959static void __inode_dio_wait(struct inode *inode)
1960{
1961        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1962        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1963
1964        do {
1965                prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1966                if (atomic_read(&inode->i_dio_count))
1967                        schedule();
1968        } while (atomic_read(&inode->i_dio_count));
1969        finish_wait(wq, &q.wait);
1970}
1971
1972/**
1973 * inode_dio_wait - wait for outstanding DIO requests to finish
1974 * @inode: inode to wait for
1975 *
1976 * Waits for all pending direct I/O requests to finish so that we can
1977 * proceed with a truncate or equivalent operation.
1978 *
1979 * Must be called under a lock that serializes taking new references
1980 * to i_dio_count, usually by inode->i_mutex.
1981 */
1982void inode_dio_wait(struct inode *inode)
1983{
1984        if (atomic_read(&inode->i_dio_count))
1985                __inode_dio_wait(inode);
1986}
1987EXPORT_SYMBOL(inode_dio_wait);
1988
1989/*
1990 * inode_set_flags - atomically set some inode flags
1991 *
1992 * Note: the caller should be holding i_mutex, or else be sure that
1993 * they have exclusive access to the inode structure (i.e., while the
1994 * inode is being instantiated).  The reason for the cmpxchg() loop
1995 * --- which wouldn't be necessary if all code paths which modify
1996 * i_flags actually followed this rule, is that there is at least one
1997 * code path which doesn't today so we use cmpxchg() out of an abundance
1998 * of caution.
1999 *
2000 * In the long run, i_mutex is overkill, and we should probably look
2001 * at using the i_lock spinlock to protect i_flags, and then make sure
2002 * it is so documented in include/linux/fs.h and that all code follows
2003 * the locking convention!!
2004 */
2005void inode_set_flags(struct inode *inode, unsigned int flags,
2006                     unsigned int mask)
2007{
2008        unsigned int old_flags, new_flags;
2009
2010        WARN_ON_ONCE(flags & ~mask);
2011        do {
2012                old_flags = ACCESS_ONCE(inode->i_flags);
2013                new_flags = (old_flags & ~mask) | flags;
2014        } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2015                                  new_flags) != old_flags));
2016}
2017EXPORT_SYMBOL(inode_set_flags);
2018