linux/fs/mbcache.c
<<
>>
Prefs
   1/*
   2 * linux/fs/mbcache.c
   3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
   4 */
   5
   6/*
   7 * Filesystem Meta Information Block Cache (mbcache)
   8 *
   9 * The mbcache caches blocks of block devices that need to be located
  10 * by their device/block number, as well as by other criteria (such
  11 * as the block's contents).
  12 *
  13 * There can only be one cache entry in a cache per device and block number.
  14 * Additional indexes need not be unique in this sense. The number of
  15 * additional indexes (=other criteria) can be hardwired at compile time
  16 * or specified at cache create time.
  17 *
  18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
  19 * in the cache. A valid entry is in the main hash tables of the cache,
  20 * and may also be in the lru list. An invalid entry is not in any hashes
  21 * or lists.
  22 *
  23 * A valid cache entry is only in the lru list if no handles refer to it.
  24 * Invalid cache entries will be freed when the last handle to the cache
  25 * entry is released. Entries that cannot be freed immediately are put
  26 * back on the lru list.
  27 */
  28
  29/*
  30 * Lock descriptions and usage:
  31 *
  32 * Each hash chain of both the block and index hash tables now contains
  33 * a built-in lock used to serialize accesses to the hash chain.
  34 *
  35 * Accesses to global data structures mb_cache_list and mb_cache_lru_list
  36 * are serialized via the global spinlock mb_cache_spinlock.
  37 *
  38 * Each mb_cache_entry contains a spinlock, e_entry_lock, to serialize
  39 * accesses to its local data, such as e_used and e_queued.
  40 *
  41 * Lock ordering:
  42 *
  43 * Each block hash chain's lock has the highest lock order, followed by an
  44 * index hash chain's lock, mb_cache_bg_lock (used to implement mb_cache_entry's
  45 * lock), and mb_cach_spinlock, with the lowest order.  While holding
  46 * either a block or index hash chain lock, a thread can acquire an
  47 * mc_cache_bg_lock, which in turn can also acquire mb_cache_spinlock.
  48 *
  49 * Synchronization:
  50 *
  51 * Since both mb_cache_entry_get and mb_cache_entry_find scan the block and
  52 * index hash chian, it needs to lock the corresponding hash chain.  For each
  53 * mb_cache_entry within the chain, it needs to lock the mb_cache_entry to
  54 * prevent either any simultaneous release or free on the entry and also
  55 * to serialize accesses to either the e_used or e_queued member of the entry.
  56 *
  57 * To avoid having a dangling reference to an already freed
  58 * mb_cache_entry, an mb_cache_entry is only freed when it is not on a
  59 * block hash chain and also no longer being referenced, both e_used,
  60 * and e_queued are 0's.  When an mb_cache_entry is explicitly freed it is
  61 * first removed from a block hash chain.
  62 */
  63
  64#include <linux/kernel.h>
  65#include <linux/module.h>
  66
  67#include <linux/hash.h>
  68#include <linux/fs.h>
  69#include <linux/mm.h>
  70#include <linux/slab.h>
  71#include <linux/sched.h>
  72#include <linux/list_bl.h>
  73#include <linux/mbcache.h>
  74#include <linux/init.h>
  75#include <linux/blockgroup_lock.h>
  76#include <linux/log2.h>
  77
  78#ifdef MB_CACHE_DEBUG
  79# define mb_debug(f...) do { \
  80                printk(KERN_DEBUG f); \
  81                printk("\n"); \
  82        } while (0)
  83#define mb_assert(c) do { if (!(c)) \
  84                printk(KERN_ERR "assertion " #c " failed\n"); \
  85        } while(0)
  86#else
  87# define mb_debug(f...) do { } while(0)
  88# define mb_assert(c) do { } while(0)
  89#endif
  90#define mb_error(f...) do { \
  91                printk(KERN_ERR f); \
  92                printk("\n"); \
  93        } while(0)
  94
  95#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
  96
  97#define MB_CACHE_ENTRY_LOCK_BITS        ilog2(NR_BG_LOCKS)
  98#define MB_CACHE_ENTRY_LOCK_INDEX(ce)                   \
  99        (hash_long((unsigned long)ce, MB_CACHE_ENTRY_LOCK_BITS))
 100
 101static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
 102static struct blockgroup_lock *mb_cache_bg_lock;
 103static struct kmem_cache *mb_cache_kmem_cache;
 104
 105MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
 106MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
 107MODULE_LICENSE("GPL");
 108
 109EXPORT_SYMBOL(mb_cache_create);
 110EXPORT_SYMBOL(mb_cache_shrink);
 111EXPORT_SYMBOL(mb_cache_destroy);
 112EXPORT_SYMBOL(mb_cache_entry_alloc);
 113EXPORT_SYMBOL(mb_cache_entry_insert);
 114EXPORT_SYMBOL(mb_cache_entry_release);
 115EXPORT_SYMBOL(mb_cache_entry_free);
 116EXPORT_SYMBOL(mb_cache_entry_get);
 117#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
 118EXPORT_SYMBOL(mb_cache_entry_find_first);
 119EXPORT_SYMBOL(mb_cache_entry_find_next);
 120#endif
 121
 122/*
 123 * Global data: list of all mbcache's, lru list, and a spinlock for
 124 * accessing cache data structures on SMP machines. The lru list is
 125 * global across all mbcaches.
 126 */
 127
 128static LIST_HEAD(mb_cache_list);
 129static LIST_HEAD(mb_cache_lru_list);
 130static DEFINE_SPINLOCK(mb_cache_spinlock);
 131
 132static inline void
 133__spin_lock_mb_cache_entry(struct mb_cache_entry *ce)
 134{
 135        spin_lock(bgl_lock_ptr(mb_cache_bg_lock,
 136                MB_CACHE_ENTRY_LOCK_INDEX(ce)));
 137}
 138
 139static inline void
 140__spin_unlock_mb_cache_entry(struct mb_cache_entry *ce)
 141{
 142        spin_unlock(bgl_lock_ptr(mb_cache_bg_lock,
 143                MB_CACHE_ENTRY_LOCK_INDEX(ce)));
 144}
 145
 146static inline int
 147__mb_cache_entry_is_block_hashed(struct mb_cache_entry *ce)
 148{
 149        return !hlist_bl_unhashed(&ce->e_block_list);
 150}
 151
 152
 153static inline void
 154__mb_cache_entry_unhash_block(struct mb_cache_entry *ce)
 155{
 156        if (__mb_cache_entry_is_block_hashed(ce))
 157                hlist_bl_del_init(&ce->e_block_list);
 158}
 159
 160static inline int
 161__mb_cache_entry_is_index_hashed(struct mb_cache_entry *ce)
 162{
 163        return !hlist_bl_unhashed(&ce->e_index.o_list);
 164}
 165
 166static inline void
 167__mb_cache_entry_unhash_index(struct mb_cache_entry *ce)
 168{
 169        if (__mb_cache_entry_is_index_hashed(ce))
 170                hlist_bl_del_init(&ce->e_index.o_list);
 171}
 172
 173/*
 174 * __mb_cache_entry_unhash_unlock()
 175 *
 176 * This function is called to unhash both the block and index hash
 177 * chain.
 178 * It assumes both the block and index hash chain is locked upon entry.
 179 * It also unlock both hash chains both exit
 180 */
 181static inline void
 182__mb_cache_entry_unhash_unlock(struct mb_cache_entry *ce)
 183{
 184        __mb_cache_entry_unhash_index(ce);
 185        hlist_bl_unlock(ce->e_index_hash_p);
 186        __mb_cache_entry_unhash_block(ce);
 187        hlist_bl_unlock(ce->e_block_hash_p);
 188}
 189
 190static void
 191__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
 192{
 193        struct mb_cache *cache = ce->e_cache;
 194
 195        mb_assert(!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt)));
 196        kmem_cache_free(cache->c_entry_cache, ce);
 197        atomic_dec(&cache->c_entry_count);
 198}
 199
 200static void
 201__mb_cache_entry_release(struct mb_cache_entry *ce)
 202{
 203        /* First lock the entry to serialize access to its local data. */
 204        __spin_lock_mb_cache_entry(ce);
 205        /* Wake up all processes queuing for this cache entry. */
 206        if (ce->e_queued)
 207                wake_up_all(&mb_cache_queue);
 208        if (ce->e_used >= MB_CACHE_WRITER)
 209                ce->e_used -= MB_CACHE_WRITER;
 210        /*
 211         * Make sure that all cache entries on lru_list have
 212         * both e_used and e_qued of 0s.
 213         */
 214        ce->e_used--;
 215        if (!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))) {
 216                if (!__mb_cache_entry_is_block_hashed(ce)) {
 217                        __spin_unlock_mb_cache_entry(ce);
 218                        goto forget;
 219                }
 220                /*
 221                 * Need access to lru list, first drop entry lock,
 222                 * then reacquire the lock in the proper order.
 223                 */
 224                spin_lock(&mb_cache_spinlock);
 225                if (list_empty(&ce->e_lru_list))
 226                        list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
 227                spin_unlock(&mb_cache_spinlock);
 228        }
 229        __spin_unlock_mb_cache_entry(ce);
 230        return;
 231forget:
 232        mb_assert(list_empty(&ce->e_lru_list));
 233        __mb_cache_entry_forget(ce, GFP_KERNEL);
 234}
 235
 236/*
 237 * mb_cache_shrink_scan()  memory pressure callback
 238 *
 239 * This function is called by the kernel memory management when memory
 240 * gets low.
 241 *
 242 * @shrink: (ignored)
 243 * @sc: shrink_control passed from reclaim
 244 *
 245 * Returns the number of objects freed.
 246 */
 247static unsigned long
 248mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 249{
 250        LIST_HEAD(free_list);
 251        struct mb_cache_entry *entry, *tmp;
 252        int nr_to_scan = sc->nr_to_scan;
 253        gfp_t gfp_mask = sc->gfp_mask;
 254        unsigned long freed = 0;
 255
 256        mb_debug("trying to free %d entries", nr_to_scan);
 257        spin_lock(&mb_cache_spinlock);
 258        while ((nr_to_scan-- > 0) && !list_empty(&mb_cache_lru_list)) {
 259                struct mb_cache_entry *ce =
 260                        list_entry(mb_cache_lru_list.next,
 261                                struct mb_cache_entry, e_lru_list);
 262                list_del_init(&ce->e_lru_list);
 263                if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))
 264                        continue;
 265                spin_unlock(&mb_cache_spinlock);
 266                /* Prevent any find or get operation on the entry */
 267                hlist_bl_lock(ce->e_block_hash_p);
 268                hlist_bl_lock(ce->e_index_hash_p);
 269                /* Ignore if it is touched by a find/get */
 270                if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt) ||
 271                        !list_empty(&ce->e_lru_list)) {
 272                        hlist_bl_unlock(ce->e_index_hash_p);
 273                        hlist_bl_unlock(ce->e_block_hash_p);
 274                        spin_lock(&mb_cache_spinlock);
 275                        continue;
 276                }
 277                __mb_cache_entry_unhash_unlock(ce);
 278                list_add_tail(&ce->e_lru_list, &free_list);
 279                spin_lock(&mb_cache_spinlock);
 280        }
 281        spin_unlock(&mb_cache_spinlock);
 282
 283        list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
 284                __mb_cache_entry_forget(entry, gfp_mask);
 285                freed++;
 286        }
 287        return freed;
 288}
 289
 290static unsigned long
 291mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 292{
 293        struct mb_cache *cache;
 294        unsigned long count = 0;
 295
 296        spin_lock(&mb_cache_spinlock);
 297        list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
 298                mb_debug("cache %s (%d)", cache->c_name,
 299                          atomic_read(&cache->c_entry_count));
 300                count += atomic_read(&cache->c_entry_count);
 301        }
 302        spin_unlock(&mb_cache_spinlock);
 303
 304        return vfs_pressure_ratio(count);
 305}
 306
 307static struct shrinker mb_cache_shrinker = {
 308        .count_objects = mb_cache_shrink_count,
 309        .scan_objects = mb_cache_shrink_scan,
 310        .seeks = DEFAULT_SEEKS,
 311};
 312
 313/*
 314 * mb_cache_create()  create a new cache
 315 *
 316 * All entries in one cache are equal size. Cache entries may be from
 317 * multiple devices. If this is the first mbcache created, registers
 318 * the cache with kernel memory management. Returns NULL if no more
 319 * memory was available.
 320 *
 321 * @name: name of the cache (informal)
 322 * @bucket_bits: log2(number of hash buckets)
 323 */
 324struct mb_cache *
 325mb_cache_create(const char *name, int bucket_bits)
 326{
 327        int n, bucket_count = 1 << bucket_bits;
 328        struct mb_cache *cache = NULL;
 329
 330        if (!mb_cache_bg_lock) {
 331                mb_cache_bg_lock = kmalloc(sizeof(struct blockgroup_lock),
 332                        GFP_KERNEL);
 333                if (!mb_cache_bg_lock)
 334                        return NULL;
 335                bgl_lock_init(mb_cache_bg_lock);
 336        }
 337
 338        cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
 339        if (!cache)
 340                return NULL;
 341        cache->c_name = name;
 342        atomic_set(&cache->c_entry_count, 0);
 343        cache->c_bucket_bits = bucket_bits;
 344        cache->c_block_hash = kmalloc(bucket_count *
 345                sizeof(struct hlist_bl_head), GFP_KERNEL);
 346        if (!cache->c_block_hash)
 347                goto fail;
 348        for (n=0; n<bucket_count; n++)
 349                INIT_HLIST_BL_HEAD(&cache->c_block_hash[n]);
 350        cache->c_index_hash = kmalloc(bucket_count *
 351                sizeof(struct hlist_bl_head), GFP_KERNEL);
 352        if (!cache->c_index_hash)
 353                goto fail;
 354        for (n=0; n<bucket_count; n++)
 355                INIT_HLIST_BL_HEAD(&cache->c_index_hash[n]);
 356        if (!mb_cache_kmem_cache) {
 357                mb_cache_kmem_cache = kmem_cache_create(name,
 358                        sizeof(struct mb_cache_entry), 0,
 359                        SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
 360                if (!mb_cache_kmem_cache)
 361                        goto fail2;
 362        }
 363        cache->c_entry_cache = mb_cache_kmem_cache;
 364
 365        /*
 366         * Set an upper limit on the number of cache entries so that the hash
 367         * chains won't grow too long.
 368         */
 369        cache->c_max_entries = bucket_count << 4;
 370
 371        spin_lock(&mb_cache_spinlock);
 372        list_add(&cache->c_cache_list, &mb_cache_list);
 373        spin_unlock(&mb_cache_spinlock);
 374        return cache;
 375
 376fail2:
 377        kfree(cache->c_index_hash);
 378
 379fail:
 380        kfree(cache->c_block_hash);
 381        kfree(cache);
 382        return NULL;
 383}
 384
 385
 386/*
 387 * mb_cache_shrink()
 388 *
 389 * Removes all cache entries of a device from the cache. All cache entries
 390 * currently in use cannot be freed, and thus remain in the cache. All others
 391 * are freed.
 392 *
 393 * @bdev: which device's cache entries to shrink
 394 */
 395void
 396mb_cache_shrink(struct block_device *bdev)
 397{
 398        LIST_HEAD(free_list);
 399        struct list_head *l;
 400        struct mb_cache_entry *ce, *tmp;
 401
 402        l = &mb_cache_lru_list;
 403        spin_lock(&mb_cache_spinlock);
 404        while (!list_is_last(l, &mb_cache_lru_list)) {
 405                l = l->next;
 406                ce = list_entry(l, struct mb_cache_entry, e_lru_list);
 407                if (ce->e_bdev == bdev) {
 408                        list_del_init(&ce->e_lru_list);
 409                        if (ce->e_used || ce->e_queued ||
 410                                atomic_read(&ce->e_refcnt))
 411                                continue;
 412                        spin_unlock(&mb_cache_spinlock);
 413                        /*
 414                         * Prevent any find or get operation on the entry.
 415                         */
 416                        hlist_bl_lock(ce->e_block_hash_p);
 417                        hlist_bl_lock(ce->e_index_hash_p);
 418                        /* Ignore if it is touched by a find/get */
 419                        if (ce->e_used || ce->e_queued ||
 420                                atomic_read(&ce->e_refcnt) ||
 421                                !list_empty(&ce->e_lru_list)) {
 422                                hlist_bl_unlock(ce->e_index_hash_p);
 423                                hlist_bl_unlock(ce->e_block_hash_p);
 424                                l = &mb_cache_lru_list;
 425                                spin_lock(&mb_cache_spinlock);
 426                                continue;
 427                        }
 428                        __mb_cache_entry_unhash_unlock(ce);
 429                        mb_assert(!(ce->e_used || ce->e_queued ||
 430                                atomic_read(&ce->e_refcnt)));
 431                        list_add_tail(&ce->e_lru_list, &free_list);
 432                        l = &mb_cache_lru_list;
 433                        spin_lock(&mb_cache_spinlock);
 434                }
 435        }
 436        spin_unlock(&mb_cache_spinlock);
 437
 438        list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
 439                __mb_cache_entry_forget(ce, GFP_KERNEL);
 440        }
 441}
 442
 443
 444/*
 445 * mb_cache_destroy()
 446 *
 447 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
 448 * and then destroys it. If this was the last mbcache, un-registers the
 449 * mbcache from kernel memory management.
 450 */
 451void
 452mb_cache_destroy(struct mb_cache *cache)
 453{
 454        LIST_HEAD(free_list);
 455        struct mb_cache_entry *ce, *tmp;
 456
 457        spin_lock(&mb_cache_spinlock);
 458        list_for_each_entry_safe(ce, tmp, &mb_cache_lru_list, e_lru_list) {
 459                if (ce->e_cache == cache)
 460                        list_move_tail(&ce->e_lru_list, &free_list);
 461        }
 462        list_del(&cache->c_cache_list);
 463        spin_unlock(&mb_cache_spinlock);
 464
 465        list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
 466                list_del_init(&ce->e_lru_list);
 467                /*
 468                 * Prevent any find or get operation on the entry.
 469                 */
 470                hlist_bl_lock(ce->e_block_hash_p);
 471                hlist_bl_lock(ce->e_index_hash_p);
 472                mb_assert(!(ce->e_used || ce->e_queued ||
 473                        atomic_read(&ce->e_refcnt)));
 474                __mb_cache_entry_unhash_unlock(ce);
 475                __mb_cache_entry_forget(ce, GFP_KERNEL);
 476        }
 477
 478        if (atomic_read(&cache->c_entry_count) > 0) {
 479                mb_error("cache %s: %d orphaned entries",
 480                          cache->c_name,
 481                          atomic_read(&cache->c_entry_count));
 482        }
 483
 484        if (list_empty(&mb_cache_list)) {
 485                kmem_cache_destroy(mb_cache_kmem_cache);
 486                mb_cache_kmem_cache = NULL;
 487        }
 488        kfree(cache->c_index_hash);
 489        kfree(cache->c_block_hash);
 490        kfree(cache);
 491}
 492
 493/*
 494 * mb_cache_entry_alloc()
 495 *
 496 * Allocates a new cache entry. The new entry will not be valid initially,
 497 * and thus cannot be looked up yet. It should be filled with data, and
 498 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
 499 * if no more memory was available.
 500 */
 501struct mb_cache_entry *
 502mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
 503{
 504        struct mb_cache_entry *ce;
 505
 506        if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
 507                struct list_head *l;
 508
 509                l = &mb_cache_lru_list;
 510                spin_lock(&mb_cache_spinlock);
 511                while (!list_is_last(l, &mb_cache_lru_list)) {
 512                        l = l->next;
 513                        ce = list_entry(l, struct mb_cache_entry, e_lru_list);
 514                        if (ce->e_cache == cache) {
 515                                list_del_init(&ce->e_lru_list);
 516                                if (ce->e_used || ce->e_queued ||
 517                                        atomic_read(&ce->e_refcnt))
 518                                        continue;
 519                                spin_unlock(&mb_cache_spinlock);
 520                                /*
 521                                 * Prevent any find or get operation on the
 522                                 * entry.
 523                                 */
 524                                hlist_bl_lock(ce->e_block_hash_p);
 525                                hlist_bl_lock(ce->e_index_hash_p);
 526                                /* Ignore if it is touched by a find/get */
 527                                if (ce->e_used || ce->e_queued ||
 528                                        atomic_read(&ce->e_refcnt) ||
 529                                        !list_empty(&ce->e_lru_list)) {
 530                                        hlist_bl_unlock(ce->e_index_hash_p);
 531                                        hlist_bl_unlock(ce->e_block_hash_p);
 532                                        l = &mb_cache_lru_list;
 533                                        spin_lock(&mb_cache_spinlock);
 534                                        continue;
 535                                }
 536                                mb_assert(list_empty(&ce->e_lru_list));
 537                                mb_assert(!(ce->e_used || ce->e_queued ||
 538                                        atomic_read(&ce->e_refcnt)));
 539                                __mb_cache_entry_unhash_unlock(ce);
 540                                goto found;
 541                        }
 542                }
 543                spin_unlock(&mb_cache_spinlock);
 544        }
 545
 546        ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
 547        if (!ce)
 548                return NULL;
 549        atomic_inc(&cache->c_entry_count);
 550        INIT_LIST_HEAD(&ce->e_lru_list);
 551        INIT_HLIST_BL_NODE(&ce->e_block_list);
 552        INIT_HLIST_BL_NODE(&ce->e_index.o_list);
 553        ce->e_cache = cache;
 554        ce->e_queued = 0;
 555        atomic_set(&ce->e_refcnt, 0);
 556found:
 557        ce->e_block_hash_p = &cache->c_block_hash[0];
 558        ce->e_index_hash_p = &cache->c_index_hash[0];
 559        ce->e_used = 1 + MB_CACHE_WRITER;
 560        return ce;
 561}
 562
 563
 564/*
 565 * mb_cache_entry_insert()
 566 *
 567 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
 568 * the cache. After this, the cache entry can be looked up, but is not yet
 569 * in the lru list as the caller still holds a handle to it. Returns 0 on
 570 * success, or -EBUSY if a cache entry for that device + inode exists
 571 * already (this may happen after a failed lookup, but when another process
 572 * has inserted the same cache entry in the meantime).
 573 *
 574 * @bdev: device the cache entry belongs to
 575 * @block: block number
 576 * @key: lookup key
 577 */
 578int
 579mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
 580                      sector_t block, unsigned int key)
 581{
 582        struct mb_cache *cache = ce->e_cache;
 583        unsigned int bucket;
 584        struct hlist_bl_node *l;
 585        struct hlist_bl_head *block_hash_p;
 586        struct hlist_bl_head *index_hash_p;
 587        struct mb_cache_entry *lce;
 588
 589        mb_assert(ce);
 590        bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
 591                           cache->c_bucket_bits);
 592        block_hash_p = &cache->c_block_hash[bucket];
 593        hlist_bl_lock(block_hash_p);
 594        hlist_bl_for_each_entry(lce, l, block_hash_p, e_block_list) {
 595                if (lce->e_bdev == bdev && lce->e_block == block) {
 596                        hlist_bl_unlock(block_hash_p);
 597                        return -EBUSY;
 598                }
 599        }
 600        mb_assert(!__mb_cache_entry_is_block_hashed(ce));
 601        __mb_cache_entry_unhash_block(ce);
 602        __mb_cache_entry_unhash_index(ce);
 603        ce->e_bdev = bdev;
 604        ce->e_block = block;
 605        ce->e_block_hash_p = block_hash_p;
 606        ce->e_index.o_key = key;
 607        hlist_bl_add_head(&ce->e_block_list, block_hash_p);
 608        hlist_bl_unlock(block_hash_p);
 609        bucket = hash_long(key, cache->c_bucket_bits);
 610        index_hash_p = &cache->c_index_hash[bucket];
 611        hlist_bl_lock(index_hash_p);
 612        ce->e_index_hash_p = index_hash_p;
 613        hlist_bl_add_head(&ce->e_index.o_list, index_hash_p);
 614        hlist_bl_unlock(index_hash_p);
 615        return 0;
 616}
 617
 618
 619/*
 620 * mb_cache_entry_release()
 621 *
 622 * Release a handle to a cache entry. When the last handle to a cache entry
 623 * is released it is either freed (if it is invalid) or otherwise inserted
 624 * in to the lru list.
 625 */
 626void
 627mb_cache_entry_release(struct mb_cache_entry *ce)
 628{
 629        __mb_cache_entry_release(ce);
 630}
 631
 632
 633/*
 634 * mb_cache_entry_free()
 635 *
 636 */
 637void
 638mb_cache_entry_free(struct mb_cache_entry *ce)
 639{
 640        mb_assert(ce);
 641        mb_assert(list_empty(&ce->e_lru_list));
 642        hlist_bl_lock(ce->e_index_hash_p);
 643        __mb_cache_entry_unhash_index(ce);
 644        hlist_bl_unlock(ce->e_index_hash_p);
 645        hlist_bl_lock(ce->e_block_hash_p);
 646        __mb_cache_entry_unhash_block(ce);
 647        hlist_bl_unlock(ce->e_block_hash_p);
 648        __mb_cache_entry_release(ce);
 649}
 650
 651
 652/*
 653 * mb_cache_entry_get()
 654 *
 655 * Get a cache entry  by device / block number. (There can only be one entry
 656 * in the cache per device and block.) Returns NULL if no such cache entry
 657 * exists. The returned cache entry is locked for exclusive access ("single
 658 * writer").
 659 */
 660struct mb_cache_entry *
 661mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
 662                   sector_t block)
 663{
 664        unsigned int bucket;
 665        struct hlist_bl_node *l;
 666        struct mb_cache_entry *ce;
 667        struct hlist_bl_head *block_hash_p;
 668
 669        bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
 670                           cache->c_bucket_bits);
 671        block_hash_p = &cache->c_block_hash[bucket];
 672        /* First serialize access to the block corresponding hash chain. */
 673        hlist_bl_lock(block_hash_p);
 674        hlist_bl_for_each_entry(ce, l, block_hash_p, e_block_list) {
 675                mb_assert(ce->e_block_hash_p == block_hash_p);
 676                if (ce->e_bdev == bdev && ce->e_block == block) {
 677                        /*
 678                         * Prevent a free from removing the entry.
 679                         */
 680                        atomic_inc(&ce->e_refcnt);
 681                        hlist_bl_unlock(block_hash_p);
 682                        __spin_lock_mb_cache_entry(ce);
 683                        atomic_dec(&ce->e_refcnt);
 684                        if (ce->e_used > 0) {
 685                                DEFINE_WAIT(wait);
 686                                while (ce->e_used > 0) {
 687                                        ce->e_queued++;
 688                                        prepare_to_wait(&mb_cache_queue, &wait,
 689                                                        TASK_UNINTERRUPTIBLE);
 690                                        __spin_unlock_mb_cache_entry(ce);
 691                                        schedule();
 692                                        __spin_lock_mb_cache_entry(ce);
 693                                        ce->e_queued--;
 694                                }
 695                                finish_wait(&mb_cache_queue, &wait);
 696                        }
 697                        ce->e_used += 1 + MB_CACHE_WRITER;
 698                        __spin_unlock_mb_cache_entry(ce);
 699
 700                        if (!list_empty(&ce->e_lru_list)) {
 701                                spin_lock(&mb_cache_spinlock);
 702                                list_del_init(&ce->e_lru_list);
 703                                spin_unlock(&mb_cache_spinlock);
 704                        }
 705                        if (!__mb_cache_entry_is_block_hashed(ce)) {
 706                                __mb_cache_entry_release(ce);
 707                                return NULL;
 708                        }
 709                        return ce;
 710                }
 711        }
 712        hlist_bl_unlock(block_hash_p);
 713        return NULL;
 714}
 715
 716#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
 717
 718static struct mb_cache_entry *
 719__mb_cache_entry_find(struct hlist_bl_node *l, struct hlist_bl_head *head,
 720                      struct block_device *bdev, unsigned int key)
 721{
 722
 723        /* The index hash chain is alredy acquire by caller. */
 724        while (l != NULL) {
 725                struct mb_cache_entry *ce =
 726                        hlist_bl_entry(l, struct mb_cache_entry,
 727                                e_index.o_list);
 728                mb_assert(ce->e_index_hash_p == head);
 729                if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
 730                        /*
 731                         * Prevent a free from removing the entry.
 732                         */
 733                        atomic_inc(&ce->e_refcnt);
 734                        hlist_bl_unlock(head);
 735                        __spin_lock_mb_cache_entry(ce);
 736                        atomic_dec(&ce->e_refcnt);
 737                        ce->e_used++;
 738                        /* Incrementing before holding the lock gives readers
 739                           priority over writers. */
 740                        if (ce->e_used >= MB_CACHE_WRITER) {
 741                                DEFINE_WAIT(wait);
 742
 743                                while (ce->e_used >= MB_CACHE_WRITER) {
 744                                        ce->e_queued++;
 745                                        prepare_to_wait(&mb_cache_queue, &wait,
 746                                                        TASK_UNINTERRUPTIBLE);
 747                                        __spin_unlock_mb_cache_entry(ce);
 748                                        schedule();
 749                                        __spin_lock_mb_cache_entry(ce);
 750                                        ce->e_queued--;
 751                                }
 752                                finish_wait(&mb_cache_queue, &wait);
 753                        }
 754                        __spin_unlock_mb_cache_entry(ce);
 755                        if (!list_empty(&ce->e_lru_list)) {
 756                                spin_lock(&mb_cache_spinlock);
 757                                list_del_init(&ce->e_lru_list);
 758                                spin_unlock(&mb_cache_spinlock);
 759                        }
 760                        if (!__mb_cache_entry_is_block_hashed(ce)) {
 761                                __mb_cache_entry_release(ce);
 762                                return ERR_PTR(-EAGAIN);
 763                        }
 764                        return ce;
 765                }
 766                l = l->next;
 767        }
 768        hlist_bl_unlock(head);
 769        return NULL;
 770}
 771
 772
 773/*
 774 * mb_cache_entry_find_first()
 775 *
 776 * Find the first cache entry on a given device with a certain key in
 777 * an additional index. Additional matches can be found with
 778 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
 779 * returned cache entry is locked for shared access ("multiple readers").
 780 *
 781 * @cache: the cache to search
 782 * @bdev: the device the cache entry should belong to
 783 * @key: the key in the index
 784 */
 785struct mb_cache_entry *
 786mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
 787                          unsigned int key)
 788{
 789        unsigned int bucket = hash_long(key, cache->c_bucket_bits);
 790        struct hlist_bl_node *l;
 791        struct mb_cache_entry *ce = NULL;
 792        struct hlist_bl_head *index_hash_p;
 793
 794        index_hash_p = &cache->c_index_hash[bucket];
 795        hlist_bl_lock(index_hash_p);
 796        if (!hlist_bl_empty(index_hash_p)) {
 797                l = hlist_bl_first(index_hash_p);
 798                ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
 799        } else
 800                hlist_bl_unlock(index_hash_p);
 801        return ce;
 802}
 803
 804
 805/*
 806 * mb_cache_entry_find_next()
 807 *
 808 * Find the next cache entry on a given device with a certain key in an
 809 * additional index. Returns NULL if no match could be found. The previous
 810 * entry is atomatically released, so that mb_cache_entry_find_next() can
 811 * be called like this:
 812 *
 813 * entry = mb_cache_entry_find_first();
 814 * while (entry) {
 815 *      ...
 816 *      entry = mb_cache_entry_find_next(entry, ...);
 817 * }
 818 *
 819 * @prev: The previous match
 820 * @bdev: the device the cache entry should belong to
 821 * @key: the key in the index
 822 */
 823struct mb_cache_entry *
 824mb_cache_entry_find_next(struct mb_cache_entry *prev,
 825                         struct block_device *bdev, unsigned int key)
 826{
 827        struct mb_cache *cache = prev->e_cache;
 828        unsigned int bucket = hash_long(key, cache->c_bucket_bits);
 829        struct hlist_bl_node *l;
 830        struct mb_cache_entry *ce;
 831        struct hlist_bl_head *index_hash_p;
 832
 833        index_hash_p = &cache->c_index_hash[bucket];
 834        mb_assert(prev->e_index_hash_p == index_hash_p);
 835        hlist_bl_lock(index_hash_p);
 836        mb_assert(!hlist_bl_empty(index_hash_p));
 837        l = prev->e_index.o_list.next;
 838        ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
 839        __mb_cache_entry_release(prev);
 840        return ce;
 841}
 842
 843#endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
 844
 845static int __init init_mbcache(void)
 846{
 847        register_shrinker(&mb_cache_shrinker);
 848        return 0;
 849}
 850
 851static void __exit exit_mbcache(void)
 852{
 853        unregister_shrinker(&mb_cache_shrinker);
 854}
 855
 856module_init(init_mbcache)
 857module_exit(exit_mbcache)
 858
 859