linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57                                   struct buffer_head *bh_result, int create)
  58{
  59        int err = -EIO;
  60        int status;
  61        struct ocfs2_dinode *fe = NULL;
  62        struct buffer_head *bh = NULL;
  63        struct buffer_head *buffer_cache_bh = NULL;
  64        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65        void *kaddr;
  66
  67        trace_ocfs2_symlink_get_block(
  68                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  69                        (unsigned long long)iblock, bh_result, create);
  70
  71        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75                     (unsigned long long)iblock);
  76                goto bail;
  77        }
  78
  79        status = ocfs2_read_inode_block(inode, &bh);
  80        if (status < 0) {
  81                mlog_errno(status);
  82                goto bail;
  83        }
  84        fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87                                                    le32_to_cpu(fe->i_clusters))) {
  88                err = -ENOMEM;
  89                mlog(ML_ERROR, "block offset is outside the allocated size: "
  90                     "%llu\n", (unsigned long long)iblock);
  91                goto bail;
  92        }
  93
  94        /* We don't use the page cache to create symlink data, so if
  95         * need be, copy it over from the buffer cache. */
  96        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98                            iblock;
  99                buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100                if (!buffer_cache_bh) {
 101                        err = -ENOMEM;
 102                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103                        goto bail;
 104                }
 105
 106                /* we haven't locked out transactions, so a commit
 107                 * could've happened. Since we've got a reference on
 108                 * the bh, even if it commits while we're doing the
 109                 * copy, the data is still good. */
 110                if (buffer_jbd(buffer_cache_bh)
 111                    && ocfs2_inode_is_new(inode)) {
 112                        kaddr = kmap_atomic(bh_result->b_page);
 113                        if (!kaddr) {
 114                                mlog(ML_ERROR, "couldn't kmap!\n");
 115                                goto bail;
 116                        }
 117                        memcpy(kaddr + (bh_result->b_size * iblock),
 118                               buffer_cache_bh->b_data,
 119                               bh_result->b_size);
 120                        kunmap_atomic(kaddr);
 121                        set_buffer_uptodate(bh_result);
 122                }
 123                brelse(buffer_cache_bh);
 124        }
 125
 126        map_bh(bh_result, inode->i_sb,
 127               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129        err = 0;
 130
 131bail:
 132        brelse(bh);
 133
 134        return err;
 135}
 136
 137int ocfs2_get_block(struct inode *inode, sector_t iblock,
 138                    struct buffer_head *bh_result, int create)
 139{
 140        int err = 0;
 141        unsigned int ext_flags;
 142        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 143        u64 p_blkno, count, past_eof;
 144        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 145
 146        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 147                              (unsigned long long)iblock, bh_result, create);
 148
 149        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 150                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 151                     inode, inode->i_ino);
 152
 153        if (S_ISLNK(inode->i_mode)) {
 154                /* this always does I/O for some reason. */
 155                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 156                goto bail;
 157        }
 158
 159        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 160                                          &ext_flags);
 161        if (err) {
 162                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 163                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 164                     (unsigned long long)p_blkno);
 165                goto bail;
 166        }
 167
 168        if (max_blocks < count)
 169                count = max_blocks;
 170
 171        /*
 172         * ocfs2 never allocates in this function - the only time we
 173         * need to use BH_New is when we're extending i_size on a file
 174         * system which doesn't support holes, in which case BH_New
 175         * allows __block_write_begin() to zero.
 176         *
 177         * If we see this on a sparse file system, then a truncate has
 178         * raced us and removed the cluster. In this case, we clear
 179         * the buffers dirty and uptodate bits and let the buffer code
 180         * ignore it as a hole.
 181         */
 182        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 183                clear_buffer_dirty(bh_result);
 184                clear_buffer_uptodate(bh_result);
 185                goto bail;
 186        }
 187
 188        /* Treat the unwritten extent as a hole for zeroing purposes. */
 189        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 190                map_bh(bh_result, inode->i_sb, p_blkno);
 191
 192        bh_result->b_size = count << inode->i_blkbits;
 193
 194        if (!ocfs2_sparse_alloc(osb)) {
 195                if (p_blkno == 0) {
 196                        err = -EIO;
 197                        mlog(ML_ERROR,
 198                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 199                             (unsigned long long)iblock,
 200                             (unsigned long long)p_blkno,
 201                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 202                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 203                        dump_stack();
 204                        goto bail;
 205                }
 206        }
 207
 208        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 209
 210        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 211                                  (unsigned long long)past_eof);
 212        if (create && (iblock >= past_eof))
 213                set_buffer_new(bh_result);
 214
 215bail:
 216        if (err < 0)
 217                err = -EIO;
 218
 219        return err;
 220}
 221
 222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 223                           struct buffer_head *di_bh)
 224{
 225        void *kaddr;
 226        loff_t size;
 227        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 228
 229        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 230                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 231                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 232                return -EROFS;
 233        }
 234
 235        size = i_size_read(inode);
 236
 237        if (size > PAGE_CACHE_SIZE ||
 238            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 239                ocfs2_error(inode->i_sb,
 240                            "Inode %llu has with inline data has bad size: %Lu",
 241                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 242                            (unsigned long long)size);
 243                return -EROFS;
 244        }
 245
 246        kaddr = kmap_atomic(page);
 247        if (size)
 248                memcpy(kaddr, di->id2.i_data.id_data, size);
 249        /* Clear the remaining part of the page */
 250        memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 251        flush_dcache_page(page);
 252        kunmap_atomic(kaddr);
 253
 254        SetPageUptodate(page);
 255
 256        return 0;
 257}
 258
 259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 260{
 261        int ret;
 262        struct buffer_head *di_bh = NULL;
 263
 264        BUG_ON(!PageLocked(page));
 265        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 266
 267        ret = ocfs2_read_inode_block(inode, &di_bh);
 268        if (ret) {
 269                mlog_errno(ret);
 270                goto out;
 271        }
 272
 273        ret = ocfs2_read_inline_data(inode, page, di_bh);
 274out:
 275        unlock_page(page);
 276
 277        brelse(di_bh);
 278        return ret;
 279}
 280
 281static int ocfs2_readpage(struct file *file, struct page *page)
 282{
 283        struct inode *inode = page->mapping->host;
 284        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 285        loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 286        int ret, unlock = 1;
 287
 288        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 289                             (page ? page->index : 0));
 290
 291        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 292        if (ret != 0) {
 293                if (ret == AOP_TRUNCATED_PAGE)
 294                        unlock = 0;
 295                mlog_errno(ret);
 296                goto out;
 297        }
 298
 299        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 300                /*
 301                 * Unlock the page and cycle ip_alloc_sem so that we don't
 302                 * busyloop waiting for ip_alloc_sem to unlock
 303                 */
 304                ret = AOP_TRUNCATED_PAGE;
 305                unlock_page(page);
 306                unlock = 0;
 307                down_read(&oi->ip_alloc_sem);
 308                up_read(&oi->ip_alloc_sem);
 309                goto out_inode_unlock;
 310        }
 311
 312        /*
 313         * i_size might have just been updated as we grabed the meta lock.  We
 314         * might now be discovering a truncate that hit on another node.
 315         * block_read_full_page->get_block freaks out if it is asked to read
 316         * beyond the end of a file, so we check here.  Callers
 317         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 318         * and notice that the page they just read isn't needed.
 319         *
 320         * XXX sys_readahead() seems to get that wrong?
 321         */
 322        if (start >= i_size_read(inode)) {
 323                zero_user(page, 0, PAGE_SIZE);
 324                SetPageUptodate(page);
 325                ret = 0;
 326                goto out_alloc;
 327        }
 328
 329        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 330                ret = ocfs2_readpage_inline(inode, page);
 331        else
 332                ret = block_read_full_page(page, ocfs2_get_block);
 333        unlock = 0;
 334
 335out_alloc:
 336        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 337out_inode_unlock:
 338        ocfs2_inode_unlock(inode, 0);
 339out:
 340        if (unlock)
 341                unlock_page(page);
 342        return ret;
 343}
 344
 345/*
 346 * This is used only for read-ahead. Failures or difficult to handle
 347 * situations are safe to ignore.
 348 *
 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 350 * are quite large (243 extents on 4k blocks), so most inodes don't
 351 * grow out to a tree. If need be, detecting boundary extents could
 352 * trivially be added in a future version of ocfs2_get_block().
 353 */
 354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 355                           struct list_head *pages, unsigned nr_pages)
 356{
 357        int ret, err = -EIO;
 358        struct inode *inode = mapping->host;
 359        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 360        loff_t start;
 361        struct page *last;
 362
 363        /*
 364         * Use the nonblocking flag for the dlm code to avoid page
 365         * lock inversion, but don't bother with retrying.
 366         */
 367        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 368        if (ret)
 369                return err;
 370
 371        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 372                ocfs2_inode_unlock(inode, 0);
 373                return err;
 374        }
 375
 376        /*
 377         * Don't bother with inline-data. There isn't anything
 378         * to read-ahead in that case anyway...
 379         */
 380        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 381                goto out_unlock;
 382
 383        /*
 384         * Check whether a remote node truncated this file - we just
 385         * drop out in that case as it's not worth handling here.
 386         */
 387        last = list_entry(pages->prev, struct page, lru);
 388        start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 389        if (start >= i_size_read(inode))
 390                goto out_unlock;
 391
 392        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 393
 394out_unlock:
 395        up_read(&oi->ip_alloc_sem);
 396        ocfs2_inode_unlock(inode, 0);
 397
 398        return err;
 399}
 400
 401/* Note: Because we don't support holes, our allocation has
 402 * already happened (allocation writes zeros to the file data)
 403 * so we don't have to worry about ordered writes in
 404 * ocfs2_writepage.
 405 *
 406 * ->writepage is called during the process of invalidating the page cache
 407 * during blocked lock processing.  It can't block on any cluster locks
 408 * to during block mapping.  It's relying on the fact that the block
 409 * mapping can't have disappeared under the dirty pages that it is
 410 * being asked to write back.
 411 */
 412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 413{
 414        trace_ocfs2_writepage(
 415                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 416                page->index);
 417
 418        return block_write_full_page(page, ocfs2_get_block, wbc);
 419}
 420
 421/* Taken from ext3. We don't necessarily need the full blown
 422 * functionality yet, but IMHO it's better to cut and paste the whole
 423 * thing so we can avoid introducing our own bugs (and easily pick up
 424 * their fixes when they happen) --Mark */
 425int walk_page_buffers(  handle_t *handle,
 426                        struct buffer_head *head,
 427                        unsigned from,
 428                        unsigned to,
 429                        int *partial,
 430                        int (*fn)(      handle_t *handle,
 431                                        struct buffer_head *bh))
 432{
 433        struct buffer_head *bh;
 434        unsigned block_start, block_end;
 435        unsigned blocksize = head->b_size;
 436        int err, ret = 0;
 437        struct buffer_head *next;
 438
 439        for (   bh = head, block_start = 0;
 440                ret == 0 && (bh != head || !block_start);
 441                block_start = block_end, bh = next)
 442        {
 443                next = bh->b_this_page;
 444                block_end = block_start + blocksize;
 445                if (block_end <= from || block_start >= to) {
 446                        if (partial && !buffer_uptodate(bh))
 447                                *partial = 1;
 448                        continue;
 449                }
 450                err = (*fn)(handle, bh);
 451                if (!ret)
 452                        ret = err;
 453        }
 454        return ret;
 455}
 456
 457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 458{
 459        sector_t status;
 460        u64 p_blkno = 0;
 461        int err = 0;
 462        struct inode *inode = mapping->host;
 463
 464        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 465                         (unsigned long long)block);
 466
 467        /* We don't need to lock journal system files, since they aren't
 468         * accessed concurrently from multiple nodes.
 469         */
 470        if (!INODE_JOURNAL(inode)) {
 471                err = ocfs2_inode_lock(inode, NULL, 0);
 472                if (err) {
 473                        if (err != -ENOENT)
 474                                mlog_errno(err);
 475                        goto bail;
 476                }
 477                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 478        }
 479
 480        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 481                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 482                                                  NULL);
 483
 484        if (!INODE_JOURNAL(inode)) {
 485                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 486                ocfs2_inode_unlock(inode, 0);
 487        }
 488
 489        if (err) {
 490                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 491                     (unsigned long long)block);
 492                mlog_errno(err);
 493                goto bail;
 494        }
 495
 496bail:
 497        status = err ? 0 : p_blkno;
 498
 499        return status;
 500}
 501
 502/*
 503 * TODO: Make this into a generic get_blocks function.
 504 *
 505 * From do_direct_io in direct-io.c:
 506 *  "So what we do is to permit the ->get_blocks function to populate
 507 *   bh.b_size with the size of IO which is permitted at this offset and
 508 *   this i_blkbits."
 509 *
 510 * This function is called directly from get_more_blocks in direct-io.c.
 511 *
 512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 513 *                                      fs_count, map_bh, dio->rw == WRITE);
 514 */
 515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 516                                     struct buffer_head *bh_result, int create)
 517{
 518        int ret;
 519        u32 cpos = 0;
 520        int alloc_locked = 0;
 521        u64 p_blkno, inode_blocks, contig_blocks;
 522        unsigned int ext_flags;
 523        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 524        unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 525        unsigned long len = bh_result->b_size;
 526        unsigned int clusters_to_alloc = 0, contig_clusters = 0;
 527
 528        cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
 529
 530        /* This function won't even be called if the request isn't all
 531         * nicely aligned and of the right size, so there's no need
 532         * for us to check any of that. */
 533
 534        inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 535
 536        /* This figures out the size of the next contiguous block, and
 537         * our logical offset */
 538        ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 539                                          &contig_blocks, &ext_flags);
 540        if (ret) {
 541                mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 542                     (unsigned long long)iblock);
 543                ret = -EIO;
 544                goto bail;
 545        }
 546
 547        /* We should already CoW the refcounted extent in case of create. */
 548        BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 549
 550        /* allocate blocks if no p_blkno is found, and create == 1 */
 551        if (!p_blkno && create) {
 552                ret = ocfs2_inode_lock(inode, NULL, 1);
 553                if (ret < 0) {
 554                        mlog_errno(ret);
 555                        goto bail;
 556                }
 557
 558                alloc_locked = 1;
 559
 560                /* fill hole, allocate blocks can't be larger than the size
 561                 * of the hole */
 562                clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
 563                contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
 564                                contig_blocks);
 565                if (clusters_to_alloc > contig_clusters)
 566                        clusters_to_alloc = contig_clusters;
 567
 568                /* allocate extent and insert them into the extent tree */
 569                ret = ocfs2_extend_allocation(inode, cpos,
 570                                clusters_to_alloc, 0);
 571                if (ret < 0) {
 572                        mlog_errno(ret);
 573                        goto bail;
 574                }
 575
 576                ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 577                                &contig_blocks, &ext_flags);
 578                if (ret < 0) {
 579                        mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 580                                        (unsigned long long)iblock);
 581                        ret = -EIO;
 582                        goto bail;
 583                }
 584        }
 585
 586        /*
 587         * get_more_blocks() expects us to describe a hole by clearing
 588         * the mapped bit on bh_result().
 589         *
 590         * Consider an unwritten extent as a hole.
 591         */
 592        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 593                map_bh(bh_result, inode->i_sb, p_blkno);
 594        else
 595                clear_buffer_mapped(bh_result);
 596
 597        /* make sure we don't map more than max_blocks blocks here as
 598           that's all the kernel will handle at this point. */
 599        if (max_blocks < contig_blocks)
 600                contig_blocks = max_blocks;
 601        bh_result->b_size = contig_blocks << blocksize_bits;
 602bail:
 603        if (alloc_locked)
 604                ocfs2_inode_unlock(inode, 1);
 605        return ret;
 606}
 607
 608/*
 609 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 610 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 611 * to protect io on one node from truncation on another.
 612 */
 613static void ocfs2_dio_end_io(struct kiocb *iocb,
 614                             loff_t offset,
 615                             ssize_t bytes,
 616                             void *private)
 617{
 618        struct inode *inode = file_inode(iocb->ki_filp);
 619        int level;
 620
 621        /* this io's submitter should not have unlocked this before we could */
 622        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 623
 624        if (ocfs2_iocb_is_unaligned_aio(iocb)) {
 625                ocfs2_iocb_clear_unaligned_aio(iocb);
 626
 627                mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
 628        }
 629
 630        ocfs2_iocb_clear_rw_locked(iocb);
 631
 632        level = ocfs2_iocb_rw_locked_level(iocb);
 633        ocfs2_rw_unlock(inode, level);
 634}
 635
 636static int ocfs2_releasepage(struct page *page, gfp_t wait)
 637{
 638        if (!page_has_buffers(page))
 639                return 0;
 640        return try_to_free_buffers(page);
 641}
 642
 643static int ocfs2_is_overwrite(struct ocfs2_super *osb,
 644                struct inode *inode, loff_t offset)
 645{
 646        int ret = 0;
 647        u32 v_cpos = 0;
 648        u32 p_cpos = 0;
 649        unsigned int num_clusters = 0;
 650        unsigned int ext_flags = 0;
 651
 652        v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
 653        ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
 654                        &num_clusters, &ext_flags);
 655        if (ret < 0) {
 656                mlog_errno(ret);
 657                return ret;
 658        }
 659
 660        if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 661                return 1;
 662
 663        return 0;
 664}
 665
 666static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
 667                struct inode *inode, loff_t offset,
 668                u64 zero_len, int cluster_align)
 669{
 670        u32 p_cpos = 0;
 671        u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
 672        unsigned int num_clusters = 0;
 673        unsigned int ext_flags = 0;
 674        int ret = 0;
 675
 676        if (offset <= i_size_read(inode) || cluster_align)
 677                return 0;
 678
 679        ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
 680                        &ext_flags);
 681        if (ret < 0) {
 682                mlog_errno(ret);
 683                return ret;
 684        }
 685
 686        if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
 687                u64 s = i_size_read(inode);
 688                sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
 689                        (do_div(s, osb->s_clustersize) >> 9);
 690
 691                ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
 692                                zero_len >> 9, GFP_NOFS, false);
 693                if (ret < 0)
 694                        mlog_errno(ret);
 695        }
 696
 697        return ret;
 698}
 699
 700static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
 701                struct inode *inode, loff_t offset)
 702{
 703        u64 zero_start, zero_len, total_zero_len;
 704        u32 p_cpos = 0, clusters_to_add;
 705        u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
 706        unsigned int num_clusters = 0;
 707        unsigned int ext_flags = 0;
 708        u32 size_div, offset_div;
 709        int ret = 0;
 710
 711        {
 712                u64 o = offset;
 713                u64 s = i_size_read(inode);
 714
 715                offset_div = do_div(o, osb->s_clustersize);
 716                size_div = do_div(s, osb->s_clustersize);
 717        }
 718
 719        if (offset <= i_size_read(inode))
 720                return 0;
 721
 722        clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
 723                ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
 724        total_zero_len = offset - i_size_read(inode);
 725        if (clusters_to_add)
 726                total_zero_len -= offset_div;
 727
 728        /* Allocate clusters to fill out holes, and this is only needed
 729         * when we add more than one clusters. Otherwise the cluster will
 730         * be allocated during direct IO */
 731        if (clusters_to_add > 1) {
 732                ret = ocfs2_extend_allocation(inode,
 733                                OCFS2_I(inode)->ip_clusters,
 734                                clusters_to_add - 1, 0);
 735                if (ret) {
 736                        mlog_errno(ret);
 737                        goto out;
 738                }
 739        }
 740
 741        while (total_zero_len) {
 742                ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
 743                                &ext_flags);
 744                if (ret < 0) {
 745                        mlog_errno(ret);
 746                        goto out;
 747                }
 748
 749                zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
 750                        size_div;
 751                zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
 752                        size_div;
 753                zero_len = min(total_zero_len, zero_len);
 754
 755                if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
 756                        ret = blkdev_issue_zeroout(osb->sb->s_bdev,
 757                                        zero_start >> 9, zero_len >> 9,
 758                                        GFP_NOFS, false);
 759                        if (ret < 0) {
 760                                mlog_errno(ret);
 761                                goto out;
 762                        }
 763                }
 764
 765                total_zero_len -= zero_len;
 766                v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
 767
 768                /* Only at first iteration can be cluster not aligned.
 769                 * So set size_div to 0 for the rest */
 770                size_div = 0;
 771        }
 772
 773out:
 774        return ret;
 775}
 776
 777static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
 778                struct iov_iter *iter,
 779                loff_t offset)
 780{
 781        ssize_t ret = 0;
 782        ssize_t written = 0;
 783        bool orphaned = false;
 784        int is_overwrite = 0;
 785        struct file *file = iocb->ki_filp;
 786        struct inode *inode = file_inode(file)->i_mapping->host;
 787        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 788        struct buffer_head *di_bh = NULL;
 789        size_t count = iter->count;
 790        journal_t *journal = osb->journal->j_journal;
 791        u64 zero_len_head, zero_len_tail;
 792        int cluster_align_head, cluster_align_tail;
 793        loff_t final_size = offset + count;
 794        int append_write = offset >= i_size_read(inode) ? 1 : 0;
 795        unsigned int num_clusters = 0;
 796        unsigned int ext_flags = 0;
 797
 798        {
 799                u64 o = offset;
 800                u64 s = i_size_read(inode);
 801
 802                zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
 803                cluster_align_head = !zero_len_head;
 804
 805                zero_len_tail = osb->s_clustersize -
 806                        do_div(s, osb->s_clustersize);
 807                if ((offset - i_size_read(inode)) < zero_len_tail)
 808                        zero_len_tail = offset - i_size_read(inode);
 809                cluster_align_tail = !zero_len_tail;
 810        }
 811
 812        /*
 813         * when final_size > inode->i_size, inode->i_size will be
 814         * updated after direct write, so add the inode to orphan
 815         * dir first.
 816         */
 817        if (final_size > i_size_read(inode)) {
 818                ret = ocfs2_add_inode_to_orphan(osb, inode);
 819                if (ret < 0) {
 820                        mlog_errno(ret);
 821                        goto out;
 822                }
 823                orphaned = true;
 824        }
 825
 826        if (append_write) {
 827                ret = ocfs2_inode_lock(inode, NULL, 1);
 828                if (ret < 0) {
 829                        mlog_errno(ret);
 830                        goto clean_orphan;
 831                }
 832
 833                /* zeroing out the previously allocated cluster tail
 834                 * that but not zeroed */
 835                if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 836                        ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
 837                                        zero_len_tail, cluster_align_tail);
 838                else
 839                        ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
 840                                        offset);
 841                if (ret < 0) {
 842                        mlog_errno(ret);
 843                        ocfs2_inode_unlock(inode, 1);
 844                        goto clean_orphan;
 845                }
 846
 847                is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
 848                if (is_overwrite < 0) {
 849                        mlog_errno(is_overwrite);
 850                        ocfs2_inode_unlock(inode, 1);
 851                        goto clean_orphan;
 852                }
 853
 854                ocfs2_inode_unlock(inode, 1);
 855        }
 856
 857        written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
 858                                       offset, ocfs2_direct_IO_get_blocks,
 859                                       ocfs2_dio_end_io, NULL, 0);
 860        if (unlikely(written < 0)) {
 861                loff_t i_size = i_size_read(inode);
 862
 863                if (offset + count > i_size) {
 864                        ret = ocfs2_inode_lock(inode, &di_bh, 1);
 865                        if (ret < 0) {
 866                                mlog_errno(ret);
 867                                goto clean_orphan;
 868                        }
 869
 870                        if (i_size == i_size_read(inode)) {
 871                                ret = ocfs2_truncate_file(inode, di_bh,
 872                                                i_size);
 873                                if (ret < 0) {
 874                                        if (ret != -ENOSPC)
 875                                                mlog_errno(ret);
 876
 877                                        ocfs2_inode_unlock(inode, 1);
 878                                        brelse(di_bh);
 879                                        goto clean_orphan;
 880                                }
 881                        }
 882
 883                        ocfs2_inode_unlock(inode, 1);
 884                        brelse(di_bh);
 885
 886                        ret = jbd2_journal_force_commit(journal);
 887                        if (ret < 0)
 888                                mlog_errno(ret);
 889                }
 890        } else if (written > 0 && append_write && !is_overwrite &&
 891                        !cluster_align_head) {
 892                /* zeroing out the allocated cluster head */
 893                u32 p_cpos = 0;
 894                u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
 895
 896                ret = ocfs2_inode_lock(inode, NULL, 0);
 897                if (ret < 0) {
 898                        mlog_errno(ret);
 899                        goto clean_orphan;
 900                }
 901
 902                ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
 903                                &num_clusters, &ext_flags);
 904                if (ret < 0) {
 905                        mlog_errno(ret);
 906                        ocfs2_inode_unlock(inode, 0);
 907                        goto clean_orphan;
 908                }
 909
 910                BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
 911
 912                ret = blkdev_issue_zeroout(osb->sb->s_bdev,
 913                                (u64)p_cpos << (osb->s_clustersize_bits - 9),
 914                                zero_len_head >> 9, GFP_NOFS, false);
 915                if (ret < 0)
 916                        mlog_errno(ret);
 917
 918                ocfs2_inode_unlock(inode, 0);
 919        }
 920
 921clean_orphan:
 922        if (orphaned) {
 923                int tmp_ret;
 924                int update_isize = written > 0 ? 1 : 0;
 925                loff_t end = update_isize ? offset + written : 0;
 926
 927                tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
 928                if (tmp_ret < 0) {
 929                        ret = tmp_ret;
 930                        mlog_errno(ret);
 931                        goto out;
 932                }
 933
 934                tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
 935                                update_isize, end);
 936                if (tmp_ret < 0) {
 937                        ret = tmp_ret;
 938                        mlog_errno(ret);
 939                        goto out;
 940                }
 941
 942                ocfs2_inode_unlock(inode, 1);
 943
 944                tmp_ret = jbd2_journal_force_commit(journal);
 945                if (tmp_ret < 0) {
 946                        ret = tmp_ret;
 947                        mlog_errno(tmp_ret);
 948                }
 949        }
 950
 951out:
 952        if (ret >= 0)
 953                ret = written;
 954        return ret;
 955}
 956
 957static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
 958                               loff_t offset)
 959{
 960        struct file *file = iocb->ki_filp;
 961        struct inode *inode = file_inode(file)->i_mapping->host;
 962        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 963        int full_coherency = !(osb->s_mount_opt &
 964                        OCFS2_MOUNT_COHERENCY_BUFFERED);
 965
 966        /*
 967         * Fallback to buffered I/O if we see an inode without
 968         * extents.
 969         */
 970        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 971                return 0;
 972
 973        /* Fallback to buffered I/O if we are appending and
 974         * concurrent O_DIRECT writes are allowed.
 975         */
 976        if (i_size_read(inode) <= offset && !full_coherency)
 977                return 0;
 978
 979        if (iov_iter_rw(iter) == READ)
 980                return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
 981                                            iter, offset,
 982                                            ocfs2_direct_IO_get_blocks,
 983                                            ocfs2_dio_end_io, NULL, 0);
 984        else
 985                return ocfs2_direct_IO_write(iocb, iter, offset);
 986}
 987
 988static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 989                                            u32 cpos,
 990                                            unsigned int *start,
 991                                            unsigned int *end)
 992{
 993        unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 994
 995        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 996                unsigned int cpp;
 997
 998                cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 999
1000                cluster_start = cpos % cpp;
1001                cluster_start = cluster_start << osb->s_clustersize_bits;
1002
1003                cluster_end = cluster_start + osb->s_clustersize;
1004        }
1005
1006        BUG_ON(cluster_start > PAGE_SIZE);
1007        BUG_ON(cluster_end > PAGE_SIZE);
1008
1009        if (start)
1010                *start = cluster_start;
1011        if (end)
1012                *end = cluster_end;
1013}
1014
1015/*
1016 * 'from' and 'to' are the region in the page to avoid zeroing.
1017 *
1018 * If pagesize > clustersize, this function will avoid zeroing outside
1019 * of the cluster boundary.
1020 *
1021 * from == to == 0 is code for "zero the entire cluster region"
1022 */
1023static void ocfs2_clear_page_regions(struct page *page,
1024                                     struct ocfs2_super *osb, u32 cpos,
1025                                     unsigned from, unsigned to)
1026{
1027        void *kaddr;
1028        unsigned int cluster_start, cluster_end;
1029
1030        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1031
1032        kaddr = kmap_atomic(page);
1033
1034        if (from || to) {
1035                if (from > cluster_start)
1036                        memset(kaddr + cluster_start, 0, from - cluster_start);
1037                if (to < cluster_end)
1038                        memset(kaddr + to, 0, cluster_end - to);
1039        } else {
1040                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1041        }
1042
1043        kunmap_atomic(kaddr);
1044}
1045
1046/*
1047 * Nonsparse file systems fully allocate before we get to the write
1048 * code. This prevents ocfs2_write() from tagging the write as an
1049 * allocating one, which means ocfs2_map_page_blocks() might try to
1050 * read-in the blocks at the tail of our file. Avoid reading them by
1051 * testing i_size against each block offset.
1052 */
1053static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1054                                 unsigned int block_start)
1055{
1056        u64 offset = page_offset(page) + block_start;
1057
1058        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1059                return 1;
1060
1061        if (i_size_read(inode) > offset)
1062                return 1;
1063
1064        return 0;
1065}
1066
1067/*
1068 * Some of this taken from __block_write_begin(). We already have our
1069 * mapping by now though, and the entire write will be allocating or
1070 * it won't, so not much need to use BH_New.
1071 *
1072 * This will also skip zeroing, which is handled externally.
1073 */
1074int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1075                          struct inode *inode, unsigned int from,
1076                          unsigned int to, int new)
1077{
1078        int ret = 0;
1079        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1080        unsigned int block_end, block_start;
1081        unsigned int bsize = 1 << inode->i_blkbits;
1082
1083        if (!page_has_buffers(page))
1084                create_empty_buffers(page, bsize, 0);
1085
1086        head = page_buffers(page);
1087        for (bh = head, block_start = 0; bh != head || !block_start;
1088             bh = bh->b_this_page, block_start += bsize) {
1089                block_end = block_start + bsize;
1090
1091                clear_buffer_new(bh);
1092
1093                /*
1094                 * Ignore blocks outside of our i/o range -
1095                 * they may belong to unallocated clusters.
1096                 */
1097                if (block_start >= to || block_end <= from) {
1098                        if (PageUptodate(page))
1099                                set_buffer_uptodate(bh);
1100                        continue;
1101                }
1102
1103                /*
1104                 * For an allocating write with cluster size >= page
1105                 * size, we always write the entire page.
1106                 */
1107                if (new)
1108                        set_buffer_new(bh);
1109
1110                if (!buffer_mapped(bh)) {
1111                        map_bh(bh, inode->i_sb, *p_blkno);
1112                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1113                }
1114
1115                if (PageUptodate(page)) {
1116                        if (!buffer_uptodate(bh))
1117                                set_buffer_uptodate(bh);
1118                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119                           !buffer_new(bh) &&
1120                           ocfs2_should_read_blk(inode, page, block_start) &&
1121                           (block_start < from || block_end > to)) {
1122                        ll_rw_block(READ, 1, &bh);
1123                        *wait_bh++=bh;
1124                }
1125
1126                *p_blkno = *p_blkno + 1;
1127        }
1128
1129        /*
1130         * If we issued read requests - let them complete.
1131         */
1132        while(wait_bh > wait) {
1133                wait_on_buffer(*--wait_bh);
1134                if (!buffer_uptodate(*wait_bh))
1135                        ret = -EIO;
1136        }
1137
1138        if (ret == 0 || !new)
1139                return ret;
1140
1141        /*
1142         * If we get -EIO above, zero out any newly allocated blocks
1143         * to avoid exposing stale data.
1144         */
1145        bh = head;
1146        block_start = 0;
1147        do {
1148                block_end = block_start + bsize;
1149                if (block_end <= from)
1150                        goto next_bh;
1151                if (block_start >= to)
1152                        break;
1153
1154                zero_user(page, block_start, bh->b_size);
1155                set_buffer_uptodate(bh);
1156                mark_buffer_dirty(bh);
1157
1158next_bh:
1159                block_start = block_end;
1160                bh = bh->b_this_page;
1161        } while (bh != head);
1162
1163        return ret;
1164}
1165
1166#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1167#define OCFS2_MAX_CTXT_PAGES    1
1168#else
1169#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1170#endif
1171
1172#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1173
1174/*
1175 * Describe the state of a single cluster to be written to.
1176 */
1177struct ocfs2_write_cluster_desc {
1178        u32             c_cpos;
1179        u32             c_phys;
1180        /*
1181         * Give this a unique field because c_phys eventually gets
1182         * filled.
1183         */
1184        unsigned        c_new;
1185        unsigned        c_unwritten;
1186        unsigned        c_needs_zero;
1187};
1188
1189struct ocfs2_write_ctxt {
1190        /* Logical cluster position / len of write */
1191        u32                             w_cpos;
1192        u32                             w_clen;
1193
1194        /* First cluster allocated in a nonsparse extend */
1195        u32                             w_first_new_cpos;
1196
1197        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1198
1199        /*
1200         * This is true if page_size > cluster_size.
1201         *
1202         * It triggers a set of special cases during write which might
1203         * have to deal with allocating writes to partial pages.
1204         */
1205        unsigned int                    w_large_pages;
1206
1207        /*
1208         * Pages involved in this write.
1209         *
1210         * w_target_page is the page being written to by the user.
1211         *
1212         * w_pages is an array of pages which always contains
1213         * w_target_page, and in the case of an allocating write with
1214         * page_size < cluster size, it will contain zero'd and mapped
1215         * pages adjacent to w_target_page which need to be written
1216         * out in so that future reads from that region will get
1217         * zero's.
1218         */
1219        unsigned int                    w_num_pages;
1220        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1221        struct page                     *w_target_page;
1222
1223        /*
1224         * w_target_locked is used for page_mkwrite path indicating no unlocking
1225         * against w_target_page in ocfs2_write_end_nolock.
1226         */
1227        unsigned int                    w_target_locked:1;
1228
1229        /*
1230         * ocfs2_write_end() uses this to know what the real range to
1231         * write in the target should be.
1232         */
1233        unsigned int                    w_target_from;
1234        unsigned int                    w_target_to;
1235
1236        /*
1237         * We could use journal_current_handle() but this is cleaner,
1238         * IMHO -Mark
1239         */
1240        handle_t                        *w_handle;
1241
1242        struct buffer_head              *w_di_bh;
1243
1244        struct ocfs2_cached_dealloc_ctxt w_dealloc;
1245};
1246
1247void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1248{
1249        int i;
1250
1251        for(i = 0; i < num_pages; i++) {
1252                if (pages[i]) {
1253                        unlock_page(pages[i]);
1254                        mark_page_accessed(pages[i]);
1255                        page_cache_release(pages[i]);
1256                }
1257        }
1258}
1259
1260static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1261{
1262        int i;
1263
1264        /*
1265         * w_target_locked is only set to true in the page_mkwrite() case.
1266         * The intent is to allow us to lock the target page from write_begin()
1267         * to write_end(). The caller must hold a ref on w_target_page.
1268         */
1269        if (wc->w_target_locked) {
1270                BUG_ON(!wc->w_target_page);
1271                for (i = 0; i < wc->w_num_pages; i++) {
1272                        if (wc->w_target_page == wc->w_pages[i]) {
1273                                wc->w_pages[i] = NULL;
1274                                break;
1275                        }
1276                }
1277                mark_page_accessed(wc->w_target_page);
1278                page_cache_release(wc->w_target_page);
1279        }
1280        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1281}
1282
1283static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1284{
1285        ocfs2_unlock_pages(wc);
1286        brelse(wc->w_di_bh);
1287        kfree(wc);
1288}
1289
1290static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1291                                  struct ocfs2_super *osb, loff_t pos,
1292                                  unsigned len, struct buffer_head *di_bh)
1293{
1294        u32 cend;
1295        struct ocfs2_write_ctxt *wc;
1296
1297        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1298        if (!wc)
1299                return -ENOMEM;
1300
1301        wc->w_cpos = pos >> osb->s_clustersize_bits;
1302        wc->w_first_new_cpos = UINT_MAX;
1303        cend = (pos + len - 1) >> osb->s_clustersize_bits;
1304        wc->w_clen = cend - wc->w_cpos + 1;
1305        get_bh(di_bh);
1306        wc->w_di_bh = di_bh;
1307
1308        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1309                wc->w_large_pages = 1;
1310        else
1311                wc->w_large_pages = 0;
1312
1313        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1314
1315        *wcp = wc;
1316
1317        return 0;
1318}
1319
1320/*
1321 * If a page has any new buffers, zero them out here, and mark them uptodate
1322 * and dirty so they'll be written out (in order to prevent uninitialised
1323 * block data from leaking). And clear the new bit.
1324 */
1325static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1326{
1327        unsigned int block_start, block_end;
1328        struct buffer_head *head, *bh;
1329
1330        BUG_ON(!PageLocked(page));
1331        if (!page_has_buffers(page))
1332                return;
1333
1334        bh = head = page_buffers(page);
1335        block_start = 0;
1336        do {
1337                block_end = block_start + bh->b_size;
1338
1339                if (buffer_new(bh)) {
1340                        if (block_end > from && block_start < to) {
1341                                if (!PageUptodate(page)) {
1342                                        unsigned start, end;
1343
1344                                        start = max(from, block_start);
1345                                        end = min(to, block_end);
1346
1347                                        zero_user_segment(page, start, end);
1348                                        set_buffer_uptodate(bh);
1349                                }
1350
1351                                clear_buffer_new(bh);
1352                                mark_buffer_dirty(bh);
1353                        }
1354                }
1355
1356                block_start = block_end;
1357                bh = bh->b_this_page;
1358        } while (bh != head);
1359}
1360
1361/*
1362 * Only called when we have a failure during allocating write to write
1363 * zero's to the newly allocated region.
1364 */
1365static void ocfs2_write_failure(struct inode *inode,
1366                                struct ocfs2_write_ctxt *wc,
1367                                loff_t user_pos, unsigned user_len)
1368{
1369        int i;
1370        unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1371                to = user_pos + user_len;
1372        struct page *tmppage;
1373
1374        ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1375
1376        for(i = 0; i < wc->w_num_pages; i++) {
1377                tmppage = wc->w_pages[i];
1378
1379                if (page_has_buffers(tmppage)) {
1380                        if (ocfs2_should_order_data(inode))
1381                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
1382
1383                        block_commit_write(tmppage, from, to);
1384                }
1385        }
1386}
1387
1388static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1389                                        struct ocfs2_write_ctxt *wc,
1390                                        struct page *page, u32 cpos,
1391                                        loff_t user_pos, unsigned user_len,
1392                                        int new)
1393{
1394        int ret;
1395        unsigned int map_from = 0, map_to = 0;
1396        unsigned int cluster_start, cluster_end;
1397        unsigned int user_data_from = 0, user_data_to = 0;
1398
1399        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1400                                        &cluster_start, &cluster_end);
1401
1402        /* treat the write as new if the a hole/lseek spanned across
1403         * the page boundary.
1404         */
1405        new = new | ((i_size_read(inode) <= page_offset(page)) &&
1406                        (page_offset(page) <= user_pos));
1407
1408        if (page == wc->w_target_page) {
1409                map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1410                map_to = map_from + user_len;
1411
1412                if (new)
1413                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1414                                                    cluster_start, cluster_end,
1415                                                    new);
1416                else
1417                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1418                                                    map_from, map_to, new);
1419                if (ret) {
1420                        mlog_errno(ret);
1421                        goto out;
1422                }
1423
1424                user_data_from = map_from;
1425                user_data_to = map_to;
1426                if (new) {
1427                        map_from = cluster_start;
1428                        map_to = cluster_end;
1429                }
1430        } else {
1431                /*
1432                 * If we haven't allocated the new page yet, we
1433                 * shouldn't be writing it out without copying user
1434                 * data. This is likely a math error from the caller.
1435                 */
1436                BUG_ON(!new);
1437
1438                map_from = cluster_start;
1439                map_to = cluster_end;
1440
1441                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1442                                            cluster_start, cluster_end, new);
1443                if (ret) {
1444                        mlog_errno(ret);
1445                        goto out;
1446                }
1447        }
1448
1449        /*
1450         * Parts of newly allocated pages need to be zero'd.
1451         *
1452         * Above, we have also rewritten 'to' and 'from' - as far as
1453         * the rest of the function is concerned, the entire cluster
1454         * range inside of a page needs to be written.
1455         *
1456         * We can skip this if the page is up to date - it's already
1457         * been zero'd from being read in as a hole.
1458         */
1459        if (new && !PageUptodate(page))
1460                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1461                                         cpos, user_data_from, user_data_to);
1462
1463        flush_dcache_page(page);
1464
1465out:
1466        return ret;
1467}
1468
1469/*
1470 * This function will only grab one clusters worth of pages.
1471 */
1472static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1473                                      struct ocfs2_write_ctxt *wc,
1474                                      u32 cpos, loff_t user_pos,
1475                                      unsigned user_len, int new,
1476                                      struct page *mmap_page)
1477{
1478        int ret = 0, i;
1479        unsigned long start, target_index, end_index, index;
1480        struct inode *inode = mapping->host;
1481        loff_t last_byte;
1482
1483        target_index = user_pos >> PAGE_CACHE_SHIFT;
1484
1485        /*
1486         * Figure out how many pages we'll be manipulating here. For
1487         * non allocating write, we just change the one
1488         * page. Otherwise, we'll need a whole clusters worth.  If we're
1489         * writing past i_size, we only need enough pages to cover the
1490         * last page of the write.
1491         */
1492        if (new) {
1493                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1494                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1495                /*
1496                 * We need the index *past* the last page we could possibly
1497                 * touch.  This is the page past the end of the write or
1498                 * i_size, whichever is greater.
1499                 */
1500                last_byte = max(user_pos + user_len, i_size_read(inode));
1501                BUG_ON(last_byte < 1);
1502                end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1503                if ((start + wc->w_num_pages) > end_index)
1504                        wc->w_num_pages = end_index - start;
1505        } else {
1506                wc->w_num_pages = 1;
1507                start = target_index;
1508        }
1509
1510        for(i = 0; i < wc->w_num_pages; i++) {
1511                index = start + i;
1512
1513                if (index == target_index && mmap_page) {
1514                        /*
1515                         * ocfs2_pagemkwrite() is a little different
1516                         * and wants us to directly use the page
1517                         * passed in.
1518                         */
1519                        lock_page(mmap_page);
1520
1521                        /* Exit and let the caller retry */
1522                        if (mmap_page->mapping != mapping) {
1523                                WARN_ON(mmap_page->mapping);
1524                                unlock_page(mmap_page);
1525                                ret = -EAGAIN;
1526                                goto out;
1527                        }
1528
1529                        page_cache_get(mmap_page);
1530                        wc->w_pages[i] = mmap_page;
1531                        wc->w_target_locked = true;
1532                } else {
1533                        wc->w_pages[i] = find_or_create_page(mapping, index,
1534                                                             GFP_NOFS);
1535                        if (!wc->w_pages[i]) {
1536                                ret = -ENOMEM;
1537                                mlog_errno(ret);
1538                                goto out;
1539                        }
1540                }
1541                wait_for_stable_page(wc->w_pages[i]);
1542
1543                if (index == target_index)
1544                        wc->w_target_page = wc->w_pages[i];
1545        }
1546out:
1547        if (ret)
1548                wc->w_target_locked = false;
1549        return ret;
1550}
1551
1552/*
1553 * Prepare a single cluster for write one cluster into the file.
1554 */
1555static int ocfs2_write_cluster(struct address_space *mapping,
1556                               u32 phys, unsigned int unwritten,
1557                               unsigned int should_zero,
1558                               struct ocfs2_alloc_context *data_ac,
1559                               struct ocfs2_alloc_context *meta_ac,
1560                               struct ocfs2_write_ctxt *wc, u32 cpos,
1561                               loff_t user_pos, unsigned user_len)
1562{
1563        int ret, i, new;
1564        u64 v_blkno, p_blkno;
1565        struct inode *inode = mapping->host;
1566        struct ocfs2_extent_tree et;
1567
1568        new = phys == 0 ? 1 : 0;
1569        if (new) {
1570                u32 tmp_pos;
1571
1572                /*
1573                 * This is safe to call with the page locks - it won't take
1574                 * any additional semaphores or cluster locks.
1575                 */
1576                tmp_pos = cpos;
1577                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1578                                           &tmp_pos, 1, 0, wc->w_di_bh,
1579                                           wc->w_handle, data_ac,
1580                                           meta_ac, NULL);
1581                /*
1582                 * This shouldn't happen because we must have already
1583                 * calculated the correct meta data allocation required. The
1584                 * internal tree allocation code should know how to increase
1585                 * transaction credits itself.
1586                 *
1587                 * If need be, we could handle -EAGAIN for a
1588                 * RESTART_TRANS here.
1589                 */
1590                mlog_bug_on_msg(ret == -EAGAIN,
1591                                "Inode %llu: EAGAIN return during allocation.\n",
1592                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1593                if (ret < 0) {
1594                        mlog_errno(ret);
1595                        goto out;
1596                }
1597        } else if (unwritten) {
1598                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1599                                              wc->w_di_bh);
1600                ret = ocfs2_mark_extent_written(inode, &et,
1601                                                wc->w_handle, cpos, 1, phys,
1602                                                meta_ac, &wc->w_dealloc);
1603                if (ret < 0) {
1604                        mlog_errno(ret);
1605                        goto out;
1606                }
1607        }
1608
1609        if (should_zero)
1610                v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1611        else
1612                v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1613
1614        /*
1615         * The only reason this should fail is due to an inability to
1616         * find the extent added.
1617         */
1618        ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1619                                          NULL);
1620        if (ret < 0) {
1621                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1622                            "at logical block %llu",
1623                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
1624                            (unsigned long long)v_blkno);
1625                goto out;
1626        }
1627
1628        BUG_ON(p_blkno == 0);
1629
1630        for(i = 0; i < wc->w_num_pages; i++) {
1631                int tmpret;
1632
1633                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1634                                                      wc->w_pages[i], cpos,
1635                                                      user_pos, user_len,
1636                                                      should_zero);
1637                if (tmpret) {
1638                        mlog_errno(tmpret);
1639                        if (ret == 0)
1640                                ret = tmpret;
1641                }
1642        }
1643
1644        /*
1645         * We only have cleanup to do in case of allocating write.
1646         */
1647        if (ret && new)
1648                ocfs2_write_failure(inode, wc, user_pos, user_len);
1649
1650out:
1651
1652        return ret;
1653}
1654
1655static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1656                                       struct ocfs2_alloc_context *data_ac,
1657                                       struct ocfs2_alloc_context *meta_ac,
1658                                       struct ocfs2_write_ctxt *wc,
1659                                       loff_t pos, unsigned len)
1660{
1661        int ret, i;
1662        loff_t cluster_off;
1663        unsigned int local_len = len;
1664        struct ocfs2_write_cluster_desc *desc;
1665        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1666
1667        for (i = 0; i < wc->w_clen; i++) {
1668                desc = &wc->w_desc[i];
1669
1670                /*
1671                 * We have to make sure that the total write passed in
1672                 * doesn't extend past a single cluster.
1673                 */
1674                local_len = len;
1675                cluster_off = pos & (osb->s_clustersize - 1);
1676                if ((cluster_off + local_len) > osb->s_clustersize)
1677                        local_len = osb->s_clustersize - cluster_off;
1678
1679                ret = ocfs2_write_cluster(mapping, desc->c_phys,
1680                                          desc->c_unwritten,
1681                                          desc->c_needs_zero,
1682                                          data_ac, meta_ac,
1683                                          wc, desc->c_cpos, pos, local_len);
1684                if (ret) {
1685                        mlog_errno(ret);
1686                        goto out;
1687                }
1688
1689                len -= local_len;
1690                pos += local_len;
1691        }
1692
1693        ret = 0;
1694out:
1695        return ret;
1696}
1697
1698/*
1699 * ocfs2_write_end() wants to know which parts of the target page it
1700 * should complete the write on. It's easiest to compute them ahead of
1701 * time when a more complete view of the write is available.
1702 */
1703static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1704                                        struct ocfs2_write_ctxt *wc,
1705                                        loff_t pos, unsigned len, int alloc)
1706{
1707        struct ocfs2_write_cluster_desc *desc;
1708
1709        wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1710        wc->w_target_to = wc->w_target_from + len;
1711
1712        if (alloc == 0)
1713                return;
1714
1715        /*
1716         * Allocating write - we may have different boundaries based
1717         * on page size and cluster size.
1718         *
1719         * NOTE: We can no longer compute one value from the other as
1720         * the actual write length and user provided length may be
1721         * different.
1722         */
1723
1724        if (wc->w_large_pages) {
1725                /*
1726                 * We only care about the 1st and last cluster within
1727                 * our range and whether they should be zero'd or not. Either
1728                 * value may be extended out to the start/end of a
1729                 * newly allocated cluster.
1730                 */
1731                desc = &wc->w_desc[0];
1732                if (desc->c_needs_zero)
1733                        ocfs2_figure_cluster_boundaries(osb,
1734                                                        desc->c_cpos,
1735                                                        &wc->w_target_from,
1736                                                        NULL);
1737
1738                desc = &wc->w_desc[wc->w_clen - 1];
1739                if (desc->c_needs_zero)
1740                        ocfs2_figure_cluster_boundaries(osb,
1741                                                        desc->c_cpos,
1742                                                        NULL,
1743                                                        &wc->w_target_to);
1744        } else {
1745                wc->w_target_from = 0;
1746                wc->w_target_to = PAGE_CACHE_SIZE;
1747        }
1748}
1749
1750/*
1751 * Populate each single-cluster write descriptor in the write context
1752 * with information about the i/o to be done.
1753 *
1754 * Returns the number of clusters that will have to be allocated, as
1755 * well as a worst case estimate of the number of extent records that
1756 * would have to be created during a write to an unwritten region.
1757 */
1758static int ocfs2_populate_write_desc(struct inode *inode,
1759                                     struct ocfs2_write_ctxt *wc,
1760                                     unsigned int *clusters_to_alloc,
1761                                     unsigned int *extents_to_split)
1762{
1763        int ret;
1764        struct ocfs2_write_cluster_desc *desc;
1765        unsigned int num_clusters = 0;
1766        unsigned int ext_flags = 0;
1767        u32 phys = 0;
1768        int i;
1769
1770        *clusters_to_alloc = 0;
1771        *extents_to_split = 0;
1772
1773        for (i = 0; i < wc->w_clen; i++) {
1774                desc = &wc->w_desc[i];
1775                desc->c_cpos = wc->w_cpos + i;
1776
1777                if (num_clusters == 0) {
1778                        /*
1779                         * Need to look up the next extent record.
1780                         */
1781                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1782                                                 &num_clusters, &ext_flags);
1783                        if (ret) {
1784                                mlog_errno(ret);
1785                                goto out;
1786                        }
1787
1788                        /* We should already CoW the refcountd extent. */
1789                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1790
1791                        /*
1792                         * Assume worst case - that we're writing in
1793                         * the middle of the extent.
1794                         *
1795                         * We can assume that the write proceeds from
1796                         * left to right, in which case the extent
1797                         * insert code is smart enough to coalesce the
1798                         * next splits into the previous records created.
1799                         */
1800                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1801                                *extents_to_split = *extents_to_split + 2;
1802                } else if (phys) {
1803                        /*
1804                         * Only increment phys if it doesn't describe
1805                         * a hole.
1806                         */
1807                        phys++;
1808                }
1809
1810                /*
1811                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1812                 * file that got extended.  w_first_new_cpos tells us
1813                 * where the newly allocated clusters are so we can
1814                 * zero them.
1815                 */
1816                if (desc->c_cpos >= wc->w_first_new_cpos) {
1817                        BUG_ON(phys == 0);
1818                        desc->c_needs_zero = 1;
1819                }
1820
1821                desc->c_phys = phys;
1822                if (phys == 0) {
1823                        desc->c_new = 1;
1824                        desc->c_needs_zero = 1;
1825                        *clusters_to_alloc = *clusters_to_alloc + 1;
1826                }
1827
1828                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1829                        desc->c_unwritten = 1;
1830                        desc->c_needs_zero = 1;
1831                }
1832
1833                num_clusters--;
1834        }
1835
1836        ret = 0;
1837out:
1838        return ret;
1839}
1840
1841static int ocfs2_write_begin_inline(struct address_space *mapping,
1842                                    struct inode *inode,
1843                                    struct ocfs2_write_ctxt *wc)
1844{
1845        int ret;
1846        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1847        struct page *page;
1848        handle_t *handle;
1849        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1850
1851        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1852        if (IS_ERR(handle)) {
1853                ret = PTR_ERR(handle);
1854                mlog_errno(ret);
1855                goto out;
1856        }
1857
1858        page = find_or_create_page(mapping, 0, GFP_NOFS);
1859        if (!page) {
1860                ocfs2_commit_trans(osb, handle);
1861                ret = -ENOMEM;
1862                mlog_errno(ret);
1863                goto out;
1864        }
1865        /*
1866         * If we don't set w_num_pages then this page won't get unlocked
1867         * and freed on cleanup of the write context.
1868         */
1869        wc->w_pages[0] = wc->w_target_page = page;
1870        wc->w_num_pages = 1;
1871
1872        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1873                                      OCFS2_JOURNAL_ACCESS_WRITE);
1874        if (ret) {
1875                ocfs2_commit_trans(osb, handle);
1876
1877                mlog_errno(ret);
1878                goto out;
1879        }
1880
1881        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1882                ocfs2_set_inode_data_inline(inode, di);
1883
1884        if (!PageUptodate(page)) {
1885                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1886                if (ret) {
1887                        ocfs2_commit_trans(osb, handle);
1888
1889                        goto out;
1890                }
1891        }
1892
1893        wc->w_handle = handle;
1894out:
1895        return ret;
1896}
1897
1898int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1899{
1900        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1901
1902        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1903                return 1;
1904        return 0;
1905}
1906
1907static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1908                                          struct inode *inode, loff_t pos,
1909                                          unsigned len, struct page *mmap_page,
1910                                          struct ocfs2_write_ctxt *wc)
1911{
1912        int ret, written = 0;
1913        loff_t end = pos + len;
1914        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1915        struct ocfs2_dinode *di = NULL;
1916
1917        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1918                                             len, (unsigned long long)pos,
1919                                             oi->ip_dyn_features);
1920
1921        /*
1922         * Handle inodes which already have inline data 1st.
1923         */
1924        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1925                if (mmap_page == NULL &&
1926                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1927                        goto do_inline_write;
1928
1929                /*
1930                 * The write won't fit - we have to give this inode an
1931                 * inline extent list now.
1932                 */
1933                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1934                if (ret)
1935                        mlog_errno(ret);
1936                goto out;
1937        }
1938
1939        /*
1940         * Check whether the inode can accept inline data.
1941         */
1942        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1943                return 0;
1944
1945        /*
1946         * Check whether the write can fit.
1947         */
1948        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1949        if (mmap_page ||
1950            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1951                return 0;
1952
1953do_inline_write:
1954        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1955        if (ret) {
1956                mlog_errno(ret);
1957                goto out;
1958        }
1959
1960        /*
1961         * This signals to the caller that the data can be written
1962         * inline.
1963         */
1964        written = 1;
1965out:
1966        return written ? written : ret;
1967}
1968
1969/*
1970 * This function only does anything for file systems which can't
1971 * handle sparse files.
1972 *
1973 * What we want to do here is fill in any hole between the current end
1974 * of allocation and the end of our write. That way the rest of the
1975 * write path can treat it as an non-allocating write, which has no
1976 * special case code for sparse/nonsparse files.
1977 */
1978static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1979                                        struct buffer_head *di_bh,
1980                                        loff_t pos, unsigned len,
1981                                        struct ocfs2_write_ctxt *wc)
1982{
1983        int ret;
1984        loff_t newsize = pos + len;
1985
1986        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1987
1988        if (newsize <= i_size_read(inode))
1989                return 0;
1990
1991        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1992        if (ret)
1993                mlog_errno(ret);
1994
1995        wc->w_first_new_cpos =
1996                ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1997
1998        return ret;
1999}
2000
2001static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2002                           loff_t pos)
2003{
2004        int ret = 0;
2005
2006        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2007        if (pos > i_size_read(inode))
2008                ret = ocfs2_zero_extend(inode, di_bh, pos);
2009
2010        return ret;
2011}
2012
2013/*
2014 * Try to flush truncate logs if we can free enough clusters from it.
2015 * As for return value, "< 0" means error, "0" no space and "1" means
2016 * we have freed enough spaces and let the caller try to allocate again.
2017 */
2018static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2019                                          unsigned int needed)
2020{
2021        tid_t target;
2022        int ret = 0;
2023        unsigned int truncated_clusters;
2024
2025        mutex_lock(&osb->osb_tl_inode->i_mutex);
2026        truncated_clusters = osb->truncated_clusters;
2027        mutex_unlock(&osb->osb_tl_inode->i_mutex);
2028
2029        /*
2030         * Check whether we can succeed in allocating if we free
2031         * the truncate log.
2032         */
2033        if (truncated_clusters < needed)
2034                goto out;
2035
2036        ret = ocfs2_flush_truncate_log(osb);
2037        if (ret) {
2038                mlog_errno(ret);
2039                goto out;
2040        }
2041
2042        if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2043                jbd2_log_wait_commit(osb->journal->j_journal, target);
2044                ret = 1;
2045        }
2046out:
2047        return ret;
2048}
2049
2050int ocfs2_write_begin_nolock(struct file *filp,
2051                             struct address_space *mapping,
2052                             loff_t pos, unsigned len, unsigned flags,
2053                             struct page **pagep, void **fsdata,
2054                             struct buffer_head *di_bh, struct page *mmap_page)
2055{
2056        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2057        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2058        struct ocfs2_write_ctxt *wc;
2059        struct inode *inode = mapping->host;
2060        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2061        struct ocfs2_dinode *di;
2062        struct ocfs2_alloc_context *data_ac = NULL;
2063        struct ocfs2_alloc_context *meta_ac = NULL;
2064        handle_t *handle;
2065        struct ocfs2_extent_tree et;
2066        int try_free = 1, ret1;
2067
2068try_again:
2069        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2070        if (ret) {
2071                mlog_errno(ret);
2072                return ret;
2073        }
2074
2075        if (ocfs2_supports_inline_data(osb)) {
2076                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2077                                                     mmap_page, wc);
2078                if (ret == 1) {
2079                        ret = 0;
2080                        goto success;
2081                }
2082                if (ret < 0) {
2083                        mlog_errno(ret);
2084                        goto out;
2085                }
2086        }
2087
2088        if (ocfs2_sparse_alloc(osb))
2089                ret = ocfs2_zero_tail(inode, di_bh, pos);
2090        else
2091                ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2092                                                   wc);
2093        if (ret) {
2094                mlog_errno(ret);
2095                goto out;
2096        }
2097
2098        ret = ocfs2_check_range_for_refcount(inode, pos, len);
2099        if (ret < 0) {
2100                mlog_errno(ret);
2101                goto out;
2102        } else if (ret == 1) {
2103                clusters_need = wc->w_clen;
2104                ret = ocfs2_refcount_cow(inode, di_bh,
2105                                         wc->w_cpos, wc->w_clen, UINT_MAX);
2106                if (ret) {
2107                        mlog_errno(ret);
2108                        goto out;
2109                }
2110        }
2111
2112        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2113                                        &extents_to_split);
2114        if (ret) {
2115                mlog_errno(ret);
2116                goto out;
2117        }
2118        clusters_need += clusters_to_alloc;
2119
2120        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2121
2122        trace_ocfs2_write_begin_nolock(
2123                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
2124                        (long long)i_size_read(inode),
2125                        le32_to_cpu(di->i_clusters),
2126                        pos, len, flags, mmap_page,
2127                        clusters_to_alloc, extents_to_split);
2128
2129        /*
2130         * We set w_target_from, w_target_to here so that
2131         * ocfs2_write_end() knows which range in the target page to
2132         * write out. An allocation requires that we write the entire
2133         * cluster range.
2134         */
2135        if (clusters_to_alloc || extents_to_split) {
2136                /*
2137                 * XXX: We are stretching the limits of
2138                 * ocfs2_lock_allocators(). It greatly over-estimates
2139                 * the work to be done.
2140                 */
2141                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2142                                              wc->w_di_bh);
2143                ret = ocfs2_lock_allocators(inode, &et,
2144                                            clusters_to_alloc, extents_to_split,
2145                                            &data_ac, &meta_ac);
2146                if (ret) {
2147                        mlog_errno(ret);
2148                        goto out;
2149                }
2150
2151                if (data_ac)
2152                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2153
2154                credits = ocfs2_calc_extend_credits(inode->i_sb,
2155                                                    &di->id2.i_list);
2156
2157        }
2158
2159        /*
2160         * We have to zero sparse allocated clusters, unwritten extent clusters,
2161         * and non-sparse clusters we just extended.  For non-sparse writes,
2162         * we know zeros will only be needed in the first and/or last cluster.
2163         */
2164        if (clusters_to_alloc || extents_to_split ||
2165            (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2166                            wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2167                cluster_of_pages = 1;
2168        else
2169                cluster_of_pages = 0;
2170
2171        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2172
2173        handle = ocfs2_start_trans(osb, credits);
2174        if (IS_ERR(handle)) {
2175                ret = PTR_ERR(handle);
2176                mlog_errno(ret);
2177                goto out;
2178        }
2179
2180        wc->w_handle = handle;
2181
2182        if (clusters_to_alloc) {
2183                ret = dquot_alloc_space_nodirty(inode,
2184                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2185                if (ret)
2186                        goto out_commit;
2187        }
2188        /*
2189         * We don't want this to fail in ocfs2_write_end(), so do it
2190         * here.
2191         */
2192        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2193                                      OCFS2_JOURNAL_ACCESS_WRITE);
2194        if (ret) {
2195                mlog_errno(ret);
2196                goto out_quota;
2197        }
2198
2199        /*
2200         * Fill our page array first. That way we've grabbed enough so
2201         * that we can zero and flush if we error after adding the
2202         * extent.
2203         */
2204        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2205                                         cluster_of_pages, mmap_page);
2206        if (ret && ret != -EAGAIN) {
2207                mlog_errno(ret);
2208                goto out_quota;
2209        }
2210
2211        /*
2212         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2213         * the target page. In this case, we exit with no error and no target
2214         * page. This will trigger the caller, page_mkwrite(), to re-try
2215         * the operation.
2216         */
2217        if (ret == -EAGAIN) {
2218                BUG_ON(wc->w_target_page);
2219                ret = 0;
2220                goto out_quota;
2221        }
2222
2223        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2224                                          len);
2225        if (ret) {
2226                mlog_errno(ret);
2227                goto out_quota;
2228        }
2229
2230        if (data_ac)
2231                ocfs2_free_alloc_context(data_ac);
2232        if (meta_ac)
2233                ocfs2_free_alloc_context(meta_ac);
2234
2235success:
2236        *pagep = wc->w_target_page;
2237        *fsdata = wc;
2238        return 0;
2239out_quota:
2240        if (clusters_to_alloc)
2241                dquot_free_space(inode,
2242                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2243out_commit:
2244        ocfs2_commit_trans(osb, handle);
2245
2246out:
2247        ocfs2_free_write_ctxt(wc);
2248
2249        if (data_ac) {
2250                ocfs2_free_alloc_context(data_ac);
2251                data_ac = NULL;
2252        }
2253        if (meta_ac) {
2254                ocfs2_free_alloc_context(meta_ac);
2255                meta_ac = NULL;
2256        }
2257
2258        if (ret == -ENOSPC && try_free) {
2259                /*
2260                 * Try to free some truncate log so that we can have enough
2261                 * clusters to allocate.
2262                 */
2263                try_free = 0;
2264
2265                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2266                if (ret1 == 1)
2267                        goto try_again;
2268
2269                if (ret1 < 0)
2270                        mlog_errno(ret1);
2271        }
2272
2273        return ret;
2274}
2275
2276static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2277                             loff_t pos, unsigned len, unsigned flags,
2278                             struct page **pagep, void **fsdata)
2279{
2280        int ret;
2281        struct buffer_head *di_bh = NULL;
2282        struct inode *inode = mapping->host;
2283
2284        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2285        if (ret) {
2286                mlog_errno(ret);
2287                return ret;
2288        }
2289
2290        /*
2291         * Take alloc sem here to prevent concurrent lookups. That way
2292         * the mapping, zeroing and tree manipulation within
2293         * ocfs2_write() will be safe against ->readpage(). This
2294         * should also serve to lock out allocation from a shared
2295         * writeable region.
2296         */
2297        down_write(&OCFS2_I(inode)->ip_alloc_sem);
2298
2299        ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2300                                       fsdata, di_bh, NULL);
2301        if (ret) {
2302                mlog_errno(ret);
2303                goto out_fail;
2304        }
2305
2306        brelse(di_bh);
2307
2308        return 0;
2309
2310out_fail:
2311        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2312
2313        brelse(di_bh);
2314        ocfs2_inode_unlock(inode, 1);
2315
2316        return ret;
2317}
2318
2319static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2320                                   unsigned len, unsigned *copied,
2321                                   struct ocfs2_dinode *di,
2322                                   struct ocfs2_write_ctxt *wc)
2323{
2324        void *kaddr;
2325
2326        if (unlikely(*copied < len)) {
2327                if (!PageUptodate(wc->w_target_page)) {
2328                        *copied = 0;
2329                        return;
2330                }
2331        }
2332
2333        kaddr = kmap_atomic(wc->w_target_page);
2334        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2335        kunmap_atomic(kaddr);
2336
2337        trace_ocfs2_write_end_inline(
2338             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2339             (unsigned long long)pos, *copied,
2340             le16_to_cpu(di->id2.i_data.id_count),
2341             le16_to_cpu(di->i_dyn_features));
2342}
2343
2344int ocfs2_write_end_nolock(struct address_space *mapping,
2345                           loff_t pos, unsigned len, unsigned copied,
2346                           struct page *page, void *fsdata)
2347{
2348        int i;
2349        unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2350        struct inode *inode = mapping->host;
2351        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2352        struct ocfs2_write_ctxt *wc = fsdata;
2353        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2354        handle_t *handle = wc->w_handle;
2355        struct page *tmppage;
2356
2357        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2358                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2359                goto out_write_size;
2360        }
2361
2362        if (unlikely(copied < len)) {
2363                if (!PageUptodate(wc->w_target_page))
2364                        copied = 0;
2365
2366                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2367                                       start+len);
2368        }
2369        flush_dcache_page(wc->w_target_page);
2370
2371        for(i = 0; i < wc->w_num_pages; i++) {
2372                tmppage = wc->w_pages[i];
2373
2374                if (tmppage == wc->w_target_page) {
2375                        from = wc->w_target_from;
2376                        to = wc->w_target_to;
2377
2378                        BUG_ON(from > PAGE_CACHE_SIZE ||
2379                               to > PAGE_CACHE_SIZE ||
2380                               to < from);
2381                } else {
2382                        /*
2383                         * Pages adjacent to the target (if any) imply
2384                         * a hole-filling write in which case we want
2385                         * to flush their entire range.
2386                         */
2387                        from = 0;
2388                        to = PAGE_CACHE_SIZE;
2389                }
2390
2391                if (page_has_buffers(tmppage)) {
2392                        if (ocfs2_should_order_data(inode))
2393                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
2394                        block_commit_write(tmppage, from, to);
2395                }
2396        }
2397
2398out_write_size:
2399        pos += copied;
2400        if (pos > i_size_read(inode)) {
2401                i_size_write(inode, pos);
2402                mark_inode_dirty(inode);
2403        }
2404        inode->i_blocks = ocfs2_inode_sector_count(inode);
2405        di->i_size = cpu_to_le64((u64)i_size_read(inode));
2406        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2407        di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2408        di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2409        ocfs2_update_inode_fsync_trans(handle, inode, 1);
2410        ocfs2_journal_dirty(handle, wc->w_di_bh);
2411
2412        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2413         * lock, or it will cause a deadlock since journal commit threads holds
2414         * this lock and will ask for the page lock when flushing the data.
2415         * put it here to preserve the unlock order.
2416         */
2417        ocfs2_unlock_pages(wc);
2418
2419        ocfs2_commit_trans(osb, handle);
2420
2421        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2422
2423        brelse(wc->w_di_bh);
2424        kfree(wc);
2425
2426        return copied;
2427}
2428
2429static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2430                           loff_t pos, unsigned len, unsigned copied,
2431                           struct page *page, void *fsdata)
2432{
2433        int ret;
2434        struct inode *inode = mapping->host;
2435
2436        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2437
2438        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2439        ocfs2_inode_unlock(inode, 1);
2440
2441        return ret;
2442}
2443
2444const struct address_space_operations ocfs2_aops = {
2445        .readpage               = ocfs2_readpage,
2446        .readpages              = ocfs2_readpages,
2447        .writepage              = ocfs2_writepage,
2448        .write_begin            = ocfs2_write_begin,
2449        .write_end              = ocfs2_write_end,
2450        .bmap                   = ocfs2_bmap,
2451        .direct_IO              = ocfs2_direct_IO,
2452        .invalidatepage         = block_invalidatepage,
2453        .releasepage            = ocfs2_releasepage,
2454        .migratepage            = buffer_migrate_page,
2455        .is_partially_uptodate  = block_is_partially_uptodate,
2456        .error_remove_page      = generic_error_remove_page,
2457};
2458