linux/fs/squashfs/cache.c
<<
>>
Prefs
   1/*
   2 * Squashfs - a compressed read only filesystem for Linux
   3 *
   4 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
   5 * Phillip Lougher <phillip@squashfs.org.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version 2,
  10 * or (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  20 *
  21 * cache.c
  22 */
  23
  24/*
  25 * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
  26 * recently accessed data Squashfs uses two small metadata and fragment caches.
  27 *
  28 * This file implements a generic cache implementation used for both caches,
  29 * plus functions layered ontop of the generic cache implementation to
  30 * access the metadata and fragment caches.
  31 *
  32 * To avoid out of memory and fragmentation issues with vmalloc the cache
  33 * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
  34 *
  35 * It should be noted that the cache is not used for file datablocks, these
  36 * are decompressed and cached in the page-cache in the normal way.  The
  37 * cache is only used to temporarily cache fragment and metadata blocks
  38 * which have been read as as a result of a metadata (i.e. inode or
  39 * directory) or fragment access.  Because metadata and fragments are packed
  40 * together into blocks (to gain greater compression) the read of a particular
  41 * piece of metadata or fragment will retrieve other metadata/fragments which
  42 * have been packed with it, these because of locality-of-reference may be read
  43 * in the near future. Temporarily caching them ensures they are available for
  44 * near future access without requiring an additional read and decompress.
  45 */
  46
  47#include <linux/fs.h>
  48#include <linux/vfs.h>
  49#include <linux/slab.h>
  50#include <linux/vmalloc.h>
  51#include <linux/sched.h>
  52#include <linux/spinlock.h>
  53#include <linux/wait.h>
  54#include <linux/pagemap.h>
  55
  56#include "squashfs_fs.h"
  57#include "squashfs_fs_sb.h"
  58#include "squashfs.h"
  59#include "page_actor.h"
  60
  61/*
  62 * Look-up block in cache, and increment usage count.  If not in cache, read
  63 * and decompress it from disk.
  64 */
  65struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
  66        struct squashfs_cache *cache, u64 block, int length)
  67{
  68        int i, n;
  69        struct squashfs_cache_entry *entry;
  70
  71        spin_lock(&cache->lock);
  72
  73        while (1) {
  74                for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
  75                        if (cache->entry[i].block == block) {
  76                                cache->curr_blk = i;
  77                                break;
  78                        }
  79                        i = (i + 1) % cache->entries;
  80                }
  81
  82                if (n == cache->entries) {
  83                        /*
  84                         * Block not in cache, if all cache entries are used
  85                         * go to sleep waiting for one to become available.
  86                         */
  87                        if (cache->unused == 0) {
  88                                cache->num_waiters++;
  89                                spin_unlock(&cache->lock);
  90                                wait_event(cache->wait_queue, cache->unused);
  91                                spin_lock(&cache->lock);
  92                                cache->num_waiters--;
  93                                continue;
  94                        }
  95
  96                        /*
  97                         * At least one unused cache entry.  A simple
  98                         * round-robin strategy is used to choose the entry to
  99                         * be evicted from the cache.
 100                         */
 101                        i = cache->next_blk;
 102                        for (n = 0; n < cache->entries; n++) {
 103                                if (cache->entry[i].refcount == 0)
 104                                        break;
 105                                i = (i + 1) % cache->entries;
 106                        }
 107
 108                        cache->next_blk = (i + 1) % cache->entries;
 109                        entry = &cache->entry[i];
 110
 111                        /*
 112                         * Initialise chosen cache entry, and fill it in from
 113                         * disk.
 114                         */
 115                        cache->unused--;
 116                        entry->block = block;
 117                        entry->refcount = 1;
 118                        entry->pending = 1;
 119                        entry->num_waiters = 0;
 120                        entry->error = 0;
 121                        spin_unlock(&cache->lock);
 122
 123                        entry->length = squashfs_read_data(sb, block, length,
 124                                &entry->next_index, entry->actor);
 125
 126                        spin_lock(&cache->lock);
 127
 128                        if (entry->length < 0)
 129                                entry->error = entry->length;
 130
 131                        entry->pending = 0;
 132
 133                        /*
 134                         * While filling this entry one or more other processes
 135                         * have looked it up in the cache, and have slept
 136                         * waiting for it to become available.
 137                         */
 138                        if (entry->num_waiters) {
 139                                spin_unlock(&cache->lock);
 140                                wake_up_all(&entry->wait_queue);
 141                        } else
 142                                spin_unlock(&cache->lock);
 143
 144                        goto out;
 145                }
 146
 147                /*
 148                 * Block already in cache.  Increment refcount so it doesn't
 149                 * get reused until we're finished with it, if it was
 150                 * previously unused there's one less cache entry available
 151                 * for reuse.
 152                 */
 153                entry = &cache->entry[i];
 154                if (entry->refcount == 0)
 155                        cache->unused--;
 156                entry->refcount++;
 157
 158                /*
 159                 * If the entry is currently being filled in by another process
 160                 * go to sleep waiting for it to become available.
 161                 */
 162                if (entry->pending) {
 163                        entry->num_waiters++;
 164                        spin_unlock(&cache->lock);
 165                        wait_event(entry->wait_queue, !entry->pending);
 166                } else
 167                        spin_unlock(&cache->lock);
 168
 169                goto out;
 170        }
 171
 172out:
 173        TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
 174                cache->name, i, entry->block, entry->refcount, entry->error);
 175
 176        if (entry->error)
 177                ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
 178                                                        block);
 179        return entry;
 180}
 181
 182
 183/*
 184 * Release cache entry, once usage count is zero it can be reused.
 185 */
 186void squashfs_cache_put(struct squashfs_cache_entry *entry)
 187{
 188        struct squashfs_cache *cache = entry->cache;
 189
 190        spin_lock(&cache->lock);
 191        entry->refcount--;
 192        if (entry->refcount == 0) {
 193                cache->unused++;
 194                /*
 195                 * If there's any processes waiting for a block to become
 196                 * available, wake one up.
 197                 */
 198                if (cache->num_waiters) {
 199                        spin_unlock(&cache->lock);
 200                        wake_up(&cache->wait_queue);
 201                        return;
 202                }
 203        }
 204        spin_unlock(&cache->lock);
 205}
 206
 207/*
 208 * Delete cache reclaiming all kmalloced buffers.
 209 */
 210void squashfs_cache_delete(struct squashfs_cache *cache)
 211{
 212        int i, j;
 213
 214        if (cache == NULL)
 215                return;
 216
 217        for (i = 0; i < cache->entries; i++) {
 218                if (cache->entry[i].data) {
 219                        for (j = 0; j < cache->pages; j++)
 220                                kfree(cache->entry[i].data[j]);
 221                        kfree(cache->entry[i].data);
 222                }
 223                kfree(cache->entry[i].actor);
 224        }
 225
 226        kfree(cache->entry);
 227        kfree(cache);
 228}
 229
 230
 231/*
 232 * Initialise cache allocating the specified number of entries, each of
 233 * size block_size.  To avoid vmalloc fragmentation issues each entry
 234 * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
 235 */
 236struct squashfs_cache *squashfs_cache_init(char *name, int entries,
 237        int block_size)
 238{
 239        int i, j;
 240        struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
 241
 242        if (cache == NULL) {
 243                ERROR("Failed to allocate %s cache\n", name);
 244                return NULL;
 245        }
 246
 247        cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
 248        if (cache->entry == NULL) {
 249                ERROR("Failed to allocate %s cache\n", name);
 250                goto cleanup;
 251        }
 252
 253        cache->curr_blk = 0;
 254        cache->next_blk = 0;
 255        cache->unused = entries;
 256        cache->entries = entries;
 257        cache->block_size = block_size;
 258        cache->pages = block_size >> PAGE_CACHE_SHIFT;
 259        cache->pages = cache->pages ? cache->pages : 1;
 260        cache->name = name;
 261        cache->num_waiters = 0;
 262        spin_lock_init(&cache->lock);
 263        init_waitqueue_head(&cache->wait_queue);
 264
 265        for (i = 0; i < entries; i++) {
 266                struct squashfs_cache_entry *entry = &cache->entry[i];
 267
 268                init_waitqueue_head(&cache->entry[i].wait_queue);
 269                entry->cache = cache;
 270                entry->block = SQUASHFS_INVALID_BLK;
 271                entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
 272                if (entry->data == NULL) {
 273                        ERROR("Failed to allocate %s cache entry\n", name);
 274                        goto cleanup;
 275                }
 276
 277                for (j = 0; j < cache->pages; j++) {
 278                        entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
 279                        if (entry->data[j] == NULL) {
 280                                ERROR("Failed to allocate %s buffer\n", name);
 281                                goto cleanup;
 282                        }
 283                }
 284
 285                entry->actor = squashfs_page_actor_init(entry->data,
 286                                                cache->pages, 0);
 287                if (entry->actor == NULL) {
 288                        ERROR("Failed to allocate %s cache entry\n", name);
 289                        goto cleanup;
 290                }
 291        }
 292
 293        return cache;
 294
 295cleanup:
 296        squashfs_cache_delete(cache);
 297        return NULL;
 298}
 299
 300
 301/*
 302 * Copy up to length bytes from cache entry to buffer starting at offset bytes
 303 * into the cache entry.  If there's not length bytes then copy the number of
 304 * bytes available.  In all cases return the number of bytes copied.
 305 */
 306int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
 307                int offset, int length)
 308{
 309        int remaining = length;
 310
 311        if (length == 0)
 312                return 0;
 313        else if (buffer == NULL)
 314                return min(length, entry->length - offset);
 315
 316        while (offset < entry->length) {
 317                void *buff = entry->data[offset / PAGE_CACHE_SIZE]
 318                                + (offset % PAGE_CACHE_SIZE);
 319                int bytes = min_t(int, entry->length - offset,
 320                                PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
 321
 322                if (bytes >= remaining) {
 323                        memcpy(buffer, buff, remaining);
 324                        remaining = 0;
 325                        break;
 326                }
 327
 328                memcpy(buffer, buff, bytes);
 329                buffer += bytes;
 330                remaining -= bytes;
 331                offset += bytes;
 332        }
 333
 334        return length - remaining;
 335}
 336
 337
 338/*
 339 * Read length bytes from metadata position <block, offset> (block is the
 340 * start of the compressed block on disk, and offset is the offset into
 341 * the block once decompressed).  Data is packed into consecutive blocks,
 342 * and length bytes may require reading more than one block.
 343 */
 344int squashfs_read_metadata(struct super_block *sb, void *buffer,
 345                u64 *block, int *offset, int length)
 346{
 347        struct squashfs_sb_info *msblk = sb->s_fs_info;
 348        int bytes, res = length;
 349        struct squashfs_cache_entry *entry;
 350
 351        TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
 352
 353        while (length) {
 354                entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
 355                if (entry->error) {
 356                        res = entry->error;
 357                        goto error;
 358                } else if (*offset >= entry->length) {
 359                        res = -EIO;
 360                        goto error;
 361                }
 362
 363                bytes = squashfs_copy_data(buffer, entry, *offset, length);
 364                if (buffer)
 365                        buffer += bytes;
 366                length -= bytes;
 367                *offset += bytes;
 368
 369                if (*offset == entry->length) {
 370                        *block = entry->next_index;
 371                        *offset = 0;
 372                }
 373
 374                squashfs_cache_put(entry);
 375        }
 376
 377        return res;
 378
 379error:
 380        squashfs_cache_put(entry);
 381        return res;
 382}
 383
 384
 385/*
 386 * Look-up in the fragmment cache the fragment located at <start_block> in the
 387 * filesystem.  If necessary read and decompress it from disk.
 388 */
 389struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
 390                                u64 start_block, int length)
 391{
 392        struct squashfs_sb_info *msblk = sb->s_fs_info;
 393
 394        return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
 395                length);
 396}
 397
 398
 399/*
 400 * Read and decompress the datablock located at <start_block> in the
 401 * filesystem.  The cache is used here to avoid duplicating locking and
 402 * read/decompress code.
 403 */
 404struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
 405                                u64 start_block, int length)
 406{
 407        struct squashfs_sb_info *msblk = sb->s_fs_info;
 408
 409        return squashfs_cache_get(sb, msblk->read_page, start_block, length);
 410}
 411
 412
 413/*
 414 * Read a filesystem table (uncompressed sequence of bytes) from disk
 415 */
 416void *squashfs_read_table(struct super_block *sb, u64 block, int length)
 417{
 418        int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 419        int i, res;
 420        void *table, *buffer, **data;
 421        struct squashfs_page_actor *actor;
 422
 423        table = buffer = kmalloc(length, GFP_KERNEL);
 424        if (table == NULL)
 425                return ERR_PTR(-ENOMEM);
 426
 427        data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
 428        if (data == NULL) {
 429                res = -ENOMEM;
 430                goto failed;
 431        }
 432
 433        actor = squashfs_page_actor_init(data, pages, length);
 434        if (actor == NULL) {
 435                res = -ENOMEM;
 436                goto failed2;
 437        }
 438
 439        for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
 440                data[i] = buffer;
 441
 442        res = squashfs_read_data(sb, block, length |
 443                SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
 444
 445        kfree(data);
 446        kfree(actor);
 447
 448        if (res < 0)
 449                goto failed;
 450
 451        return table;
 452
 453failed2:
 454        kfree(data);
 455failed:
 456        kfree(table);
 457        return ERR_PTR(res);
 458}
 459