linux/include/linux/mfd/cros_ec_commands.h
<<
>>
Prefs
   1/*
   2 * Host communication command constants for ChromeOS EC
   3 *
   4 * Copyright (C) 2012 Google, Inc
   5 *
   6 * This software is licensed under the terms of the GNU General Public
   7 * License version 2, as published by the Free Software Foundation, and
   8 * may be copied, distributed, and modified under those terms.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * The ChromeOS EC multi function device is used to mux all the requests
  16 * to the EC device for its multiple features: keyboard controller,
  17 * battery charging and regulator control, firmware update.
  18 *
  19 * NOTE: This file is copied verbatim from the ChromeOS EC Open Source
  20 * project in an attempt to make future updates easy to make.
  21 */
  22
  23#ifndef __CROS_EC_COMMANDS_H
  24#define __CROS_EC_COMMANDS_H
  25
  26/*
  27 * Current version of this protocol
  28 *
  29 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
  30 * determined in other ways.  Remove this once the kernel code no longer
  31 * depends on it.
  32 */
  33#define EC_PROTO_VERSION          0x00000002
  34
  35/* Command version mask */
  36#define EC_VER_MASK(version) (1UL << (version))
  37
  38/* I/O addresses for ACPI commands */
  39#define EC_LPC_ADDR_ACPI_DATA  0x62
  40#define EC_LPC_ADDR_ACPI_CMD   0x66
  41
  42/* I/O addresses for host command */
  43#define EC_LPC_ADDR_HOST_DATA  0x200
  44#define EC_LPC_ADDR_HOST_CMD   0x204
  45
  46/* I/O addresses for host command args and params */
  47/* Protocol version 2 */
  48#define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
  49#define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
  50                                         * EC_PROTO2_MAX_PARAM_SIZE */
  51/* Protocol version 3 */
  52#define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
  53#define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
  54
  55/* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
  56 * and they tell the kernel that so we have to think of it as two parts. */
  57#define EC_HOST_CMD_REGION0    0x800
  58#define EC_HOST_CMD_REGION1    0x880
  59#define EC_HOST_CMD_REGION_SIZE 0x80
  60
  61/* EC command register bit functions */
  62#define EC_LPC_CMDR_DATA        (1 << 0)  /* Data ready for host to read */
  63#define EC_LPC_CMDR_PENDING     (1 << 1)  /* Write pending to EC */
  64#define EC_LPC_CMDR_BUSY        (1 << 2)  /* EC is busy processing a command */
  65#define EC_LPC_CMDR_CMD         (1 << 3)  /* Last host write was a command */
  66#define EC_LPC_CMDR_ACPI_BRST   (1 << 4)  /* Burst mode (not used) */
  67#define EC_LPC_CMDR_SCI         (1 << 5)  /* SCI event is pending */
  68#define EC_LPC_CMDR_SMI         (1 << 6)  /* SMI event is pending */
  69
  70#define EC_LPC_ADDR_MEMMAP       0x900
  71#define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
  72#define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
  73
  74/* The offset address of each type of data in mapped memory. */
  75#define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
  76#define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
  77#define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
  78#define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
  79#define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
  80#define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
  81#define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
  82#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
  83#define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
  84#define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
  85/* Unused 0x28 - 0x2f */
  86#define EC_MEMMAP_SWITCHES         0x30 /* 8 bits */
  87/* Unused 0x31 - 0x33 */
  88#define EC_MEMMAP_HOST_EVENTS      0x34 /* 32 bits */
  89/* Reserve 0x38 - 0x3f for additional host event-related stuff */
  90/* Battery values are all 32 bits */
  91#define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
  92#define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
  93#define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
  94#define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, defined below */
  95#define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
  96#define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
  97#define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
  98#define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
  99/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
 100#define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
 101#define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
 102#define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
 103#define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
 104#define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
 105/* Unused 0x84 - 0x8f */
 106#define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
 107/* Unused 0x91 */
 108#define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometer data 0x92 - 0x9f */
 109#define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
 110/* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */
 111
 112
 113/* Define the format of the accelerometer mapped memory status byte. */
 114#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
 115#define EC_MEMMAP_ACC_STATUS_BUSY_BIT        (1 << 4)
 116#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    (1 << 7)
 117
 118/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
 119#define EC_TEMP_SENSOR_ENTRIES     16
 120/*
 121 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
 122 *
 123 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
 124 */
 125#define EC_TEMP_SENSOR_B_ENTRIES      8
 126
 127/* Special values for mapped temperature sensors */
 128#define EC_TEMP_SENSOR_NOT_PRESENT    0xff
 129#define EC_TEMP_SENSOR_ERROR          0xfe
 130#define EC_TEMP_SENSOR_NOT_POWERED    0xfd
 131#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
 132/*
 133 * The offset of temperature value stored in mapped memory.  This allows
 134 * reporting a temperature range of 200K to 454K = -73C to 181C.
 135 */
 136#define EC_TEMP_SENSOR_OFFSET      200
 137
 138/*
 139 * Number of ALS readings at EC_MEMMAP_ALS
 140 */
 141#define EC_ALS_ENTRIES             2
 142
 143/*
 144 * The default value a temperature sensor will return when it is present but
 145 * has not been read this boot.  This is a reasonable number to avoid
 146 * triggering alarms on the host.
 147 */
 148#define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
 149
 150#define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
 151#define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
 152#define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
 153
 154/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
 155#define EC_BATT_FLAG_AC_PRESENT   0x01
 156#define EC_BATT_FLAG_BATT_PRESENT 0x02
 157#define EC_BATT_FLAG_DISCHARGING  0x04
 158#define EC_BATT_FLAG_CHARGING     0x08
 159#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
 160
 161/* Switch flags at EC_MEMMAP_SWITCHES */
 162#define EC_SWITCH_LID_OPEN               0x01
 163#define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
 164#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
 165/* Was recovery requested via keyboard; now unused. */
 166#define EC_SWITCH_IGNORE1                0x08
 167/* Recovery requested via dedicated signal (from servo board) */
 168#define EC_SWITCH_DEDICATED_RECOVERY     0x10
 169/* Was fake developer mode switch; now unused.  Remove in next refactor. */
 170#define EC_SWITCH_IGNORE0                0x20
 171
 172/* Host command interface flags */
 173/* Host command interface supports LPC args (LPC interface only) */
 174#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
 175/* Host command interface supports version 3 protocol */
 176#define EC_HOST_CMD_FLAG_VERSION_3   0x02
 177
 178/* Wireless switch flags */
 179#define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
 180#define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
 181#define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
 182#define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
 183#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
 184
 185/*
 186 * This header file is used in coreboot both in C and ACPI code.  The ACPI code
 187 * is pre-processed to handle constants but the ASL compiler is unable to
 188 * handle actual C code so keep it separate.
 189 */
 190#ifndef __ACPI__
 191
 192/*
 193 * Define __packed if someone hasn't beat us to it.  Linux kernel style
 194 * checking prefers __packed over __attribute__((packed)).
 195 */
 196#ifndef __packed
 197#define __packed __attribute__((packed))
 198#endif
 199
 200/* LPC command status byte masks */
 201/* EC has written a byte in the data register and host hasn't read it yet */
 202#define EC_LPC_STATUS_TO_HOST     0x01
 203/* Host has written a command/data byte and the EC hasn't read it yet */
 204#define EC_LPC_STATUS_FROM_HOST   0x02
 205/* EC is processing a command */
 206#define EC_LPC_STATUS_PROCESSING  0x04
 207/* Last write to EC was a command, not data */
 208#define EC_LPC_STATUS_LAST_CMD    0x08
 209/* EC is in burst mode.  Unsupported by Chrome EC, so this bit is never set */
 210#define EC_LPC_STATUS_BURST_MODE  0x10
 211/* SCI event is pending (requesting SCI query) */
 212#define EC_LPC_STATUS_SCI_PENDING 0x20
 213/* SMI event is pending (requesting SMI query) */
 214#define EC_LPC_STATUS_SMI_PENDING 0x40
 215/* (reserved) */
 216#define EC_LPC_STATUS_RESERVED    0x80
 217
 218/*
 219 * EC is busy.  This covers both the EC processing a command, and the host has
 220 * written a new command but the EC hasn't picked it up yet.
 221 */
 222#define EC_LPC_STATUS_BUSY_MASK \
 223        (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
 224
 225/* Host command response codes */
 226enum ec_status {
 227        EC_RES_SUCCESS = 0,
 228        EC_RES_INVALID_COMMAND = 1,
 229        EC_RES_ERROR = 2,
 230        EC_RES_INVALID_PARAM = 3,
 231        EC_RES_ACCESS_DENIED = 4,
 232        EC_RES_INVALID_RESPONSE = 5,
 233        EC_RES_INVALID_VERSION = 6,
 234        EC_RES_INVALID_CHECKSUM = 7,
 235        EC_RES_IN_PROGRESS = 8,         /* Accepted, command in progress */
 236        EC_RES_UNAVAILABLE = 9,         /* No response available */
 237        EC_RES_TIMEOUT = 10,            /* We got a timeout */
 238        EC_RES_OVERFLOW = 11,           /* Table / data overflow */
 239        EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
 240        EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
 241        EC_RES_RESPONSE_TOO_BIG = 14    /* Response was too big to handle */
 242};
 243
 244/*
 245 * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
 246 * EC command uses code 0 to mean "no event pending".  We explicitly specify
 247 * each value in the enum listing so they won't change if we delete/insert an
 248 * item or rearrange the list (it needs to be stable across platforms, not
 249 * just within a single compiled instance).
 250 */
 251enum host_event_code {
 252        EC_HOST_EVENT_LID_CLOSED = 1,
 253        EC_HOST_EVENT_LID_OPEN = 2,
 254        EC_HOST_EVENT_POWER_BUTTON = 3,
 255        EC_HOST_EVENT_AC_CONNECTED = 4,
 256        EC_HOST_EVENT_AC_DISCONNECTED = 5,
 257        EC_HOST_EVENT_BATTERY_LOW = 6,
 258        EC_HOST_EVENT_BATTERY_CRITICAL = 7,
 259        EC_HOST_EVENT_BATTERY = 8,
 260        EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
 261        EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
 262        EC_HOST_EVENT_THERMAL = 11,
 263        EC_HOST_EVENT_USB_CHARGER = 12,
 264        EC_HOST_EVENT_KEY_PRESSED = 13,
 265        /*
 266         * EC has finished initializing the host interface.  The host can check
 267         * for this event following sending a EC_CMD_REBOOT_EC command to
 268         * determine when the EC is ready to accept subsequent commands.
 269         */
 270        EC_HOST_EVENT_INTERFACE_READY = 14,
 271        /* Keyboard recovery combo has been pressed */
 272        EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
 273
 274        /* Shutdown due to thermal overload */
 275        EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
 276        /* Shutdown due to battery level too low */
 277        EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
 278
 279        /* Suggest that the AP throttle itself */
 280        EC_HOST_EVENT_THROTTLE_START = 18,
 281        /* Suggest that the AP resume normal speed */
 282        EC_HOST_EVENT_THROTTLE_STOP = 19,
 283
 284        /* Hang detect logic detected a hang and host event timeout expired */
 285        EC_HOST_EVENT_HANG_DETECT = 20,
 286        /* Hang detect logic detected a hang and warm rebooted the AP */
 287        EC_HOST_EVENT_HANG_REBOOT = 21,
 288
 289        /*
 290         * The high bit of the event mask is not used as a host event code.  If
 291         * it reads back as set, then the entire event mask should be
 292         * considered invalid by the host.  This can happen when reading the
 293         * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
 294         * not initialized on the EC, or improperly configured on the host.
 295         */
 296        EC_HOST_EVENT_INVALID = 32
 297};
 298/* Host event mask */
 299#define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
 300
 301/* Arguments at EC_LPC_ADDR_HOST_ARGS */
 302struct ec_lpc_host_args {
 303        uint8_t flags;
 304        uint8_t command_version;
 305        uint8_t data_size;
 306        /*
 307         * Checksum; sum of command + flags + command_version + data_size +
 308         * all params/response data bytes.
 309         */
 310        uint8_t checksum;
 311} __packed;
 312
 313/* Flags for ec_lpc_host_args.flags */
 314/*
 315 * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
 316 * params.
 317 *
 318 * If EC gets a command and this flag is not set, this is an old-style command.
 319 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
 320 * unknown length.  EC must respond with an old-style response (that is,
 321 * withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
 322 */
 323#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
 324/*
 325 * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
 326 *
 327 * If EC responds to a command and this flag is not set, this is an old-style
 328 * response.  Command version is 0 and response data from EC is at
 329 * EC_LPC_ADDR_OLD_PARAM with unknown length.
 330 */
 331#define EC_HOST_ARGS_FLAG_TO_HOST   0x02
 332
 333/*****************************************************************************/
 334/*
 335 * Byte codes returned by EC over SPI interface.
 336 *
 337 * These can be used by the AP to debug the EC interface, and to determine
 338 * when the EC is not in a state where it will ever get around to responding
 339 * to the AP.
 340 *
 341 * Example of sequence of bytes read from EC for a current good transfer:
 342 *   1. -                  - AP asserts chip select (CS#)
 343 *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
 344 *   3. -                  - EC starts handling CS# interrupt
 345 *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
 346 *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
 347 *                           bytes looking for EC_SPI_FRAME_START
 348 *   6. -                  - EC finishes processing and sets up response
 349 *   7. EC_SPI_FRAME_START - AP reads frame byte
 350 *   8. (response packet)  - AP reads response packet
 351 *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
 352 *   10 -                  - AP deasserts chip select
 353 *   11 -                  - EC processes CS# interrupt and sets up DMA for
 354 *                           next request
 355 *
 356 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
 357 * the following byte values:
 358 *   EC_SPI_OLD_READY
 359 *   EC_SPI_RX_READY
 360 *   EC_SPI_RECEIVING
 361 *   EC_SPI_PROCESSING
 362 *
 363 * Then the EC found an error in the request, or was not ready for the request
 364 * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
 365 * because the EC is unable to tell when the AP is done sending its request.
 366 */
 367
 368/*
 369 * Framing byte which precedes a response packet from the EC.  After sending a
 370 * request, the AP will clock in bytes until it sees the framing byte, then
 371 * clock in the response packet.
 372 */
 373#define EC_SPI_FRAME_START    0xec
 374
 375/*
 376 * Padding bytes which are clocked out after the end of a response packet.
 377 */
 378#define EC_SPI_PAST_END       0xed
 379
 380/*
 381 * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
 382 * that the AP will send a valid packet header (starting with
 383 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
 384 */
 385#define EC_SPI_RX_READY       0xf8
 386
 387/*
 388 * EC has started receiving the request from the AP, but hasn't started
 389 * processing it yet.
 390 */
 391#define EC_SPI_RECEIVING      0xf9
 392
 393/* EC has received the entire request from the AP and is processing it. */
 394#define EC_SPI_PROCESSING     0xfa
 395
 396/*
 397 * EC received bad data from the AP, such as a packet header with an invalid
 398 * length.  EC will ignore all data until chip select deasserts.
 399 */
 400#define EC_SPI_RX_BAD_DATA    0xfb
 401
 402/*
 403 * EC received data from the AP before it was ready.  That is, the AP asserted
 404 * chip select and started clocking data before the EC was ready to receive it.
 405 * EC will ignore all data until chip select deasserts.
 406 */
 407#define EC_SPI_NOT_READY      0xfc
 408
 409/*
 410 * EC was ready to receive a request from the AP.  EC has treated the byte sent
 411 * by the AP as part of a request packet, or (for old-style ECs) is processing
 412 * a fully received packet but is not ready to respond yet.
 413 */
 414#define EC_SPI_OLD_READY      0xfd
 415
 416/*****************************************************************************/
 417
 418/*
 419 * Protocol version 2 for I2C and SPI send a request this way:
 420 *
 421 *      0       EC_CMD_VERSION0 + (command version)
 422 *      1       Command number
 423 *      2       Length of params = N
 424 *      3..N+2  Params, if any
 425 *      N+3     8-bit checksum of bytes 0..N+2
 426 *
 427 * The corresponding response is:
 428 *
 429 *      0       Result code (EC_RES_*)
 430 *      1       Length of params = M
 431 *      2..M+1  Params, if any
 432 *      M+2     8-bit checksum of bytes 0..M+1
 433 */
 434#define EC_PROTO2_REQUEST_HEADER_BYTES 3
 435#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
 436#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +    \
 437                                    EC_PROTO2_REQUEST_TRAILER_BYTES)
 438
 439#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
 440#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
 441#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +  \
 442                                     EC_PROTO2_RESPONSE_TRAILER_BYTES)
 443
 444/* Parameter length was limited by the LPC interface */
 445#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
 446
 447/* Maximum request and response packet sizes for protocol version 2 */
 448#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +        \
 449                                    EC_PROTO2_MAX_PARAM_SIZE)
 450#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +      \
 451                                     EC_PROTO2_MAX_PARAM_SIZE)
 452
 453/*****************************************************************************/
 454
 455/*
 456 * Value written to legacy command port / prefix byte to indicate protocol
 457 * 3+ structs are being used.  Usage is bus-dependent.
 458 */
 459#define EC_COMMAND_PROTOCOL_3 0xda
 460
 461#define EC_HOST_REQUEST_VERSION 3
 462
 463/* Version 3 request from host */
 464struct ec_host_request {
 465        /* Struct version (=3)
 466         *
 467         * EC will return EC_RES_INVALID_HEADER if it receives a header with a
 468         * version it doesn't know how to parse.
 469         */
 470        uint8_t struct_version;
 471
 472        /*
 473         * Checksum of request and data; sum of all bytes including checksum
 474         * should total to 0.
 475         */
 476        uint8_t checksum;
 477
 478        /* Command code */
 479        uint16_t command;
 480
 481        /* Command version */
 482        uint8_t command_version;
 483
 484        /* Unused byte in current protocol version; set to 0 */
 485        uint8_t reserved;
 486
 487        /* Length of data which follows this header */
 488        uint16_t data_len;
 489} __packed;
 490
 491#define EC_HOST_RESPONSE_VERSION 3
 492
 493/* Version 3 response from EC */
 494struct ec_host_response {
 495        /* Struct version (=3) */
 496        uint8_t struct_version;
 497
 498        /*
 499         * Checksum of response and data; sum of all bytes including checksum
 500         * should total to 0.
 501         */
 502        uint8_t checksum;
 503
 504        /* Result code (EC_RES_*) */
 505        uint16_t result;
 506
 507        /* Length of data which follows this header */
 508        uint16_t data_len;
 509
 510        /* Unused bytes in current protocol version; set to 0 */
 511        uint16_t reserved;
 512} __packed;
 513
 514/*****************************************************************************/
 515/*
 516 * Notes on commands:
 517 *
 518 * Each command is an 16-bit command value.  Commands which take params or
 519 * return response data specify structs for that data.  If no struct is
 520 * specified, the command does not input or output data, respectively.
 521 * Parameter/response length is implicit in the structs.  Some underlying
 522 * communication protocols (I2C, SPI) may add length or checksum headers, but
 523 * those are implementation-dependent and not defined here.
 524 */
 525
 526/*****************************************************************************/
 527/* General / test commands */
 528
 529/*
 530 * Get protocol version, used to deal with non-backward compatible protocol
 531 * changes.
 532 */
 533#define EC_CMD_PROTO_VERSION 0x00
 534
 535struct ec_response_proto_version {
 536        uint32_t version;
 537} __packed;
 538
 539/*
 540 * Hello.  This is a simple command to test the EC is responsive to
 541 * commands.
 542 */
 543#define EC_CMD_HELLO 0x01
 544
 545struct ec_params_hello {
 546        uint32_t in_data;  /* Pass anything here */
 547} __packed;
 548
 549struct ec_response_hello {
 550        uint32_t out_data;  /* Output will be in_data + 0x01020304 */
 551} __packed;
 552
 553/* Get version number */
 554#define EC_CMD_GET_VERSION 0x02
 555
 556enum ec_current_image {
 557        EC_IMAGE_UNKNOWN = 0,
 558        EC_IMAGE_RO,
 559        EC_IMAGE_RW
 560};
 561
 562struct ec_response_get_version {
 563        /* Null-terminated version strings for RO, RW */
 564        char version_string_ro[32];
 565        char version_string_rw[32];
 566        char reserved[32];       /* Was previously RW-B string */
 567        uint32_t current_image;  /* One of ec_current_image */
 568} __packed;
 569
 570/* Read test */
 571#define EC_CMD_READ_TEST 0x03
 572
 573struct ec_params_read_test {
 574        uint32_t offset;   /* Starting value for read buffer */
 575        uint32_t size;     /* Size to read in bytes */
 576} __packed;
 577
 578struct ec_response_read_test {
 579        uint32_t data[32];
 580} __packed;
 581
 582/*
 583 * Get build information
 584 *
 585 * Response is null-terminated string.
 586 */
 587#define EC_CMD_GET_BUILD_INFO 0x04
 588
 589/* Get chip info */
 590#define EC_CMD_GET_CHIP_INFO 0x05
 591
 592struct ec_response_get_chip_info {
 593        /* Null-terminated strings */
 594        char vendor[32];
 595        char name[32];
 596        char revision[32];  /* Mask version */
 597} __packed;
 598
 599/* Get board HW version */
 600#define EC_CMD_GET_BOARD_VERSION 0x06
 601
 602struct ec_response_board_version {
 603        uint16_t board_version;  /* A monotonously incrementing number. */
 604} __packed;
 605
 606/*
 607 * Read memory-mapped data.
 608 *
 609 * This is an alternate interface to memory-mapped data for bus protocols
 610 * which don't support direct-mapped memory - I2C, SPI, etc.
 611 *
 612 * Response is params.size bytes of data.
 613 */
 614#define EC_CMD_READ_MEMMAP 0x07
 615
 616struct ec_params_read_memmap {
 617        uint8_t offset;   /* Offset in memmap (EC_MEMMAP_*) */
 618        uint8_t size;     /* Size to read in bytes */
 619} __packed;
 620
 621/* Read versions supported for a command */
 622#define EC_CMD_GET_CMD_VERSIONS 0x08
 623
 624struct ec_params_get_cmd_versions {
 625        uint8_t cmd;      /* Command to check */
 626} __packed;
 627
 628struct ec_response_get_cmd_versions {
 629        /*
 630         * Mask of supported versions; use EC_VER_MASK() to compare with a
 631         * desired version.
 632         */
 633        uint32_t version_mask;
 634} __packed;
 635
 636/*
 637 * Check EC communcations status (busy). This is needed on i2c/spi but not
 638 * on lpc since it has its own out-of-band busy indicator.
 639 *
 640 * lpc must read the status from the command register. Attempting this on
 641 * lpc will overwrite the args/parameter space and corrupt its data.
 642 */
 643#define EC_CMD_GET_COMMS_STATUS         0x09
 644
 645/* Avoid using ec_status which is for return values */
 646enum ec_comms_status {
 647        EC_COMMS_STATUS_PROCESSING      = 1 << 0,       /* Processing cmd */
 648};
 649
 650struct ec_response_get_comms_status {
 651        uint32_t flags;         /* Mask of enum ec_comms_status */
 652} __packed;
 653
 654/* Fake a variety of responses, purely for testing purposes. */
 655#define EC_CMD_TEST_PROTOCOL            0x0a
 656
 657/* Tell the EC what to send back to us. */
 658struct ec_params_test_protocol {
 659        uint32_t ec_result;
 660        uint32_t ret_len;
 661        uint8_t buf[32];
 662} __packed;
 663
 664/* Here it comes... */
 665struct ec_response_test_protocol {
 666        uint8_t buf[32];
 667} __packed;
 668
 669/* Get prococol information */
 670#define EC_CMD_GET_PROTOCOL_INFO        0x0b
 671
 672/* Flags for ec_response_get_protocol_info.flags */
 673/* EC_RES_IN_PROGRESS may be returned if a command is slow */
 674#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
 675
 676struct ec_response_get_protocol_info {
 677        /* Fields which exist if at least protocol version 3 supported */
 678
 679        /* Bitmask of protocol versions supported (1 << n means version n)*/
 680        uint32_t protocol_versions;
 681
 682        /* Maximum request packet size, in bytes */
 683        uint16_t max_request_packet_size;
 684
 685        /* Maximum response packet size, in bytes */
 686        uint16_t max_response_packet_size;
 687
 688        /* Flags; see EC_PROTOCOL_INFO_* */
 689        uint32_t flags;
 690} __packed;
 691
 692
 693/*****************************************************************************/
 694/* Get/Set miscellaneous values */
 695
 696/* The upper byte of .flags tells what to do (nothing means "get") */
 697#define EC_GSV_SET        0x80000000
 698
 699/* The lower three bytes of .flags identifies the parameter, if that has
 700   meaning for an individual command. */
 701#define EC_GSV_PARAM_MASK 0x00ffffff
 702
 703struct ec_params_get_set_value {
 704        uint32_t flags;
 705        uint32_t value;
 706} __packed;
 707
 708struct ec_response_get_set_value {
 709        uint32_t flags;
 710        uint32_t value;
 711} __packed;
 712
 713/* More than one command can use these structs to get/set paramters. */
 714#define EC_CMD_GSV_PAUSE_IN_S5  0x0c
 715
 716
 717/*****************************************************************************/
 718/* Flash commands */
 719
 720/* Get flash info */
 721#define EC_CMD_FLASH_INFO 0x10
 722
 723/* Version 0 returns these fields */
 724struct ec_response_flash_info {
 725        /* Usable flash size, in bytes */
 726        uint32_t flash_size;
 727        /*
 728         * Write block size.  Write offset and size must be a multiple
 729         * of this.
 730         */
 731        uint32_t write_block_size;
 732        /*
 733         * Erase block size.  Erase offset and size must be a multiple
 734         * of this.
 735         */
 736        uint32_t erase_block_size;
 737        /*
 738         * Protection block size.  Protection offset and size must be a
 739         * multiple of this.
 740         */
 741        uint32_t protect_block_size;
 742} __packed;
 743
 744/* Flags for version 1+ flash info command */
 745/* EC flash erases bits to 0 instead of 1 */
 746#define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
 747
 748/*
 749 * Version 1 returns the same initial fields as version 0, with additional
 750 * fields following.
 751 *
 752 * gcc anonymous structs don't seem to get along with the __packed directive;
 753 * if they did we'd define the version 0 struct as a sub-struct of this one.
 754 */
 755struct ec_response_flash_info_1 {
 756        /* Version 0 fields; see above for description */
 757        uint32_t flash_size;
 758        uint32_t write_block_size;
 759        uint32_t erase_block_size;
 760        uint32_t protect_block_size;
 761
 762        /* Version 1 adds these fields: */
 763        /*
 764         * Ideal write size in bytes.  Writes will be fastest if size is
 765         * exactly this and offset is a multiple of this.  For example, an EC
 766         * may have a write buffer which can do half-page operations if data is
 767         * aligned, and a slower word-at-a-time write mode.
 768         */
 769        uint32_t write_ideal_size;
 770
 771        /* Flags; see EC_FLASH_INFO_* */
 772        uint32_t flags;
 773} __packed;
 774
 775/*
 776 * Read flash
 777 *
 778 * Response is params.size bytes of data.
 779 */
 780#define EC_CMD_FLASH_READ 0x11
 781
 782struct ec_params_flash_read {
 783        uint32_t offset;   /* Byte offset to read */
 784        uint32_t size;     /* Size to read in bytes */
 785} __packed;
 786
 787/* Write flash */
 788#define EC_CMD_FLASH_WRITE 0x12
 789#define EC_VER_FLASH_WRITE 1
 790
 791/* Version 0 of the flash command supported only 64 bytes of data */
 792#define EC_FLASH_WRITE_VER0_SIZE 64
 793
 794struct ec_params_flash_write {
 795        uint32_t offset;   /* Byte offset to write */
 796        uint32_t size;     /* Size to write in bytes */
 797        /* Followed by data to write */
 798} __packed;
 799
 800/* Erase flash */
 801#define EC_CMD_FLASH_ERASE 0x13
 802
 803struct ec_params_flash_erase {
 804        uint32_t offset;   /* Byte offset to erase */
 805        uint32_t size;     /* Size to erase in bytes */
 806} __packed;
 807
 808/*
 809 * Get/set flash protection.
 810 *
 811 * If mask!=0, sets/clear the requested bits of flags.  Depending on the
 812 * firmware write protect GPIO, not all flags will take effect immediately;
 813 * some flags require a subsequent hard reset to take effect.  Check the
 814 * returned flags bits to see what actually happened.
 815 *
 816 * If mask=0, simply returns the current flags state.
 817 */
 818#define EC_CMD_FLASH_PROTECT 0x15
 819#define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
 820
 821/* Flags for flash protection */
 822/* RO flash code protected when the EC boots */
 823#define EC_FLASH_PROTECT_RO_AT_BOOT         (1 << 0)
 824/*
 825 * RO flash code protected now.  If this bit is set, at-boot status cannot
 826 * be changed.
 827 */
 828#define EC_FLASH_PROTECT_RO_NOW             (1 << 1)
 829/* Entire flash code protected now, until reboot. */
 830#define EC_FLASH_PROTECT_ALL_NOW            (1 << 2)
 831/* Flash write protect GPIO is asserted now */
 832#define EC_FLASH_PROTECT_GPIO_ASSERTED      (1 << 3)
 833/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
 834#define EC_FLASH_PROTECT_ERROR_STUCK        (1 << 4)
 835/*
 836 * Error - flash protection is in inconsistent state.  At least one bank of
 837 * flash which should be protected is not protected.  Usually fixed by
 838 * re-requesting the desired flags, or by a hard reset if that fails.
 839 */
 840#define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
 841/* Entile flash code protected when the EC boots */
 842#define EC_FLASH_PROTECT_ALL_AT_BOOT        (1 << 6)
 843
 844struct ec_params_flash_protect {
 845        uint32_t mask;   /* Bits in flags to apply */
 846        uint32_t flags;  /* New flags to apply */
 847} __packed;
 848
 849struct ec_response_flash_protect {
 850        /* Current value of flash protect flags */
 851        uint32_t flags;
 852        /*
 853         * Flags which are valid on this platform.  This allows the caller
 854         * to distinguish between flags which aren't set vs. flags which can't
 855         * be set on this platform.
 856         */
 857        uint32_t valid_flags;
 858        /* Flags which can be changed given the current protection state */
 859        uint32_t writable_flags;
 860} __packed;
 861
 862/*
 863 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
 864 * write protect.  These commands may be reused with version > 0.
 865 */
 866
 867/* Get the region offset/size */
 868#define EC_CMD_FLASH_REGION_INFO 0x16
 869#define EC_VER_FLASH_REGION_INFO 1
 870
 871enum ec_flash_region {
 872        /* Region which holds read-only EC image */
 873        EC_FLASH_REGION_RO = 0,
 874        /* Region which holds rewritable EC image */
 875        EC_FLASH_REGION_RW,
 876        /*
 877         * Region which should be write-protected in the factory (a superset of
 878         * EC_FLASH_REGION_RO)
 879         */
 880        EC_FLASH_REGION_WP_RO,
 881        /* Number of regions */
 882        EC_FLASH_REGION_COUNT,
 883};
 884
 885struct ec_params_flash_region_info {
 886        uint32_t region;  /* enum ec_flash_region */
 887} __packed;
 888
 889struct ec_response_flash_region_info {
 890        uint32_t offset;
 891        uint32_t size;
 892} __packed;
 893
 894/* Read/write VbNvContext */
 895#define EC_CMD_VBNV_CONTEXT 0x17
 896#define EC_VER_VBNV_CONTEXT 1
 897#define EC_VBNV_BLOCK_SIZE 16
 898
 899enum ec_vbnvcontext_op {
 900        EC_VBNV_CONTEXT_OP_READ,
 901        EC_VBNV_CONTEXT_OP_WRITE,
 902};
 903
 904struct ec_params_vbnvcontext {
 905        uint32_t op;
 906        uint8_t block[EC_VBNV_BLOCK_SIZE];
 907} __packed;
 908
 909struct ec_response_vbnvcontext {
 910        uint8_t block[EC_VBNV_BLOCK_SIZE];
 911} __packed;
 912
 913/*****************************************************************************/
 914/* PWM commands */
 915
 916/* Get fan target RPM */
 917#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
 918
 919struct ec_response_pwm_get_fan_rpm {
 920        uint32_t rpm;
 921} __packed;
 922
 923/* Set target fan RPM */
 924#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
 925
 926struct ec_params_pwm_set_fan_target_rpm {
 927        uint32_t rpm;
 928} __packed;
 929
 930/* Get keyboard backlight */
 931#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
 932
 933struct ec_response_pwm_get_keyboard_backlight {
 934        uint8_t percent;
 935        uint8_t enabled;
 936} __packed;
 937
 938/* Set keyboard backlight */
 939#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
 940
 941struct ec_params_pwm_set_keyboard_backlight {
 942        uint8_t percent;
 943} __packed;
 944
 945/* Set target fan PWM duty cycle */
 946#define EC_CMD_PWM_SET_FAN_DUTY 0x24
 947
 948struct ec_params_pwm_set_fan_duty {
 949        uint32_t percent;
 950} __packed;
 951
 952/*****************************************************************************/
 953/*
 954 * Lightbar commands. This looks worse than it is. Since we only use one HOST
 955 * command to say "talk to the lightbar", we put the "and tell it to do X" part
 956 * into a subcommand. We'll make separate structs for subcommands with
 957 * different input args, so that we know how much to expect.
 958 */
 959#define EC_CMD_LIGHTBAR_CMD 0x28
 960
 961struct rgb_s {
 962        uint8_t r, g, b;
 963};
 964
 965#define LB_BATTERY_LEVELS 4
 966/* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
 967 * host command, but the alignment is the same regardless. Keep it that way.
 968 */
 969struct lightbar_params_v0 {
 970        /* Timing */
 971        int32_t google_ramp_up;
 972        int32_t google_ramp_down;
 973        int32_t s3s0_ramp_up;
 974        int32_t s0_tick_delay[2];               /* AC=0/1 */
 975        int32_t s0a_tick_delay[2];              /* AC=0/1 */
 976        int32_t s0s3_ramp_down;
 977        int32_t s3_sleep_for;
 978        int32_t s3_ramp_up;
 979        int32_t s3_ramp_down;
 980
 981        /* Oscillation */
 982        uint8_t new_s0;
 983        uint8_t osc_min[2];                     /* AC=0/1 */
 984        uint8_t osc_max[2];                     /* AC=0/1 */
 985        uint8_t w_ofs[2];                       /* AC=0/1 */
 986
 987        /* Brightness limits based on the backlight and AC. */
 988        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
 989        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
 990        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
 991
 992        /* Battery level thresholds */
 993        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
 994
 995        /* Map [AC][battery_level] to color index */
 996        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
 997        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
 998
 999        /* Color palette */
1000        struct rgb_s color[8];                  /* 0-3 are Google colors */
1001} __packed;
1002
1003struct lightbar_params_v1 {
1004        /* Timing */
1005        int32_t google_ramp_up;
1006        int32_t google_ramp_down;
1007        int32_t s3s0_ramp_up;
1008        int32_t s0_tick_delay[2];               /* AC=0/1 */
1009        int32_t s0a_tick_delay[2];              /* AC=0/1 */
1010        int32_t s0s3_ramp_down;
1011        int32_t s3_sleep_for;
1012        int32_t s3_ramp_up;
1013        int32_t s3_ramp_down;
1014        int32_t tap_tick_delay;
1015        int32_t tap_display_time;
1016
1017        /* Tap-for-battery params */
1018        uint8_t tap_pct_red;
1019        uint8_t tap_pct_green;
1020        uint8_t tap_seg_min_on;
1021        uint8_t tap_seg_max_on;
1022        uint8_t tap_seg_osc;
1023        uint8_t tap_idx[3];
1024
1025        /* Oscillation */
1026        uint8_t osc_min[2];                     /* AC=0/1 */
1027        uint8_t osc_max[2];                     /* AC=0/1 */
1028        uint8_t w_ofs[2];                       /* AC=0/1 */
1029
1030        /* Brightness limits based on the backlight and AC. */
1031        uint8_t bright_bl_off_fixed[2];         /* AC=0/1 */
1032        uint8_t bright_bl_on_min[2];            /* AC=0/1 */
1033        uint8_t bright_bl_on_max[2];            /* AC=0/1 */
1034
1035        /* Battery level thresholds */
1036        uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1037
1038        /* Map [AC][battery_level] to color index */
1039        uint8_t s0_idx[2][LB_BATTERY_LEVELS];   /* AP is running */
1040        uint8_t s3_idx[2][LB_BATTERY_LEVELS];   /* AP is sleeping */
1041
1042        /* Color palette */
1043        struct rgb_s color[8];                  /* 0-3 are Google colors */
1044} __packed;
1045
1046struct ec_params_lightbar {
1047        uint8_t cmd;                  /* Command (see enum lightbar_command) */
1048        union {
1049                struct {
1050                        /* no args */
1051                } dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1052                        version, get_brightness, get_demo;
1053
1054                struct {
1055                        uint8_t num;
1056                } set_brightness, seq, demo;
1057
1058                struct {
1059                        uint8_t ctrl, reg, value;
1060                } reg;
1061
1062                struct {
1063                        uint8_t led, red, green, blue;
1064                } set_rgb;
1065
1066                struct {
1067                        uint8_t led;
1068                } get_rgb;
1069
1070                struct lightbar_params_v0 set_params_v0;
1071                struct lightbar_params_v1 set_params_v1;
1072        };
1073} __packed;
1074
1075struct ec_response_lightbar {
1076        union {
1077                struct {
1078                        struct {
1079                                uint8_t reg;
1080                                uint8_t ic0;
1081                                uint8_t ic1;
1082                        } vals[23];
1083                } dump;
1084
1085                struct  {
1086                        uint8_t num;
1087                } get_seq, get_brightness, get_demo;
1088
1089                struct lightbar_params_v0 get_params_v0;
1090                struct lightbar_params_v1 get_params_v1;
1091
1092                struct {
1093                        uint32_t num;
1094                        uint32_t flags;
1095                } version;
1096
1097                struct {
1098                        uint8_t red, green, blue;
1099                } get_rgb;
1100
1101                struct {
1102                        /* no return params */
1103                } off, on, init, set_brightness, seq, reg, set_rgb,
1104                        demo, set_params_v0, set_params_v1;
1105        };
1106} __packed;
1107
1108/* Lightbar commands */
1109enum lightbar_command {
1110        LIGHTBAR_CMD_DUMP = 0,
1111        LIGHTBAR_CMD_OFF = 1,
1112        LIGHTBAR_CMD_ON = 2,
1113        LIGHTBAR_CMD_INIT = 3,
1114        LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1115        LIGHTBAR_CMD_SEQ = 5,
1116        LIGHTBAR_CMD_REG = 6,
1117        LIGHTBAR_CMD_SET_RGB = 7,
1118        LIGHTBAR_CMD_GET_SEQ = 8,
1119        LIGHTBAR_CMD_DEMO = 9,
1120        LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1121        LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1122        LIGHTBAR_CMD_VERSION = 12,
1123        LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1124        LIGHTBAR_CMD_GET_RGB = 14,
1125        LIGHTBAR_CMD_GET_DEMO = 15,
1126        LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1127        LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1128        LIGHTBAR_NUM_CMDS
1129};
1130
1131/*****************************************************************************/
1132/* LED control commands */
1133
1134#define EC_CMD_LED_CONTROL 0x29
1135
1136enum ec_led_id {
1137        /* LED to indicate battery state of charge */
1138        EC_LED_ID_BATTERY_LED = 0,
1139        /*
1140         * LED to indicate system power state (on or in suspend).
1141         * May be on power button or on C-panel.
1142         */
1143        EC_LED_ID_POWER_LED,
1144        /* LED on power adapter or its plug */
1145        EC_LED_ID_ADAPTER_LED,
1146
1147        EC_LED_ID_COUNT
1148};
1149
1150/* LED control flags */
1151#define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1152#define EC_LED_FLAGS_AUTO  (1 << 1) /* Switch LED back to automatic control */
1153
1154enum ec_led_colors {
1155        EC_LED_COLOR_RED = 0,
1156        EC_LED_COLOR_GREEN,
1157        EC_LED_COLOR_BLUE,
1158        EC_LED_COLOR_YELLOW,
1159        EC_LED_COLOR_WHITE,
1160
1161        EC_LED_COLOR_COUNT
1162};
1163
1164struct ec_params_led_control {
1165        uint8_t led_id;     /* Which LED to control */
1166        uint8_t flags;      /* Control flags */
1167
1168        uint8_t brightness[EC_LED_COLOR_COUNT];
1169} __packed;
1170
1171struct ec_response_led_control {
1172        /*
1173         * Available brightness value range.
1174         *
1175         * Range 0 means color channel not present.
1176         * Range 1 means on/off control.
1177         * Other values means the LED is control by PWM.
1178         */
1179        uint8_t brightness_range[EC_LED_COLOR_COUNT];
1180} __packed;
1181
1182/*****************************************************************************/
1183/* Verified boot commands */
1184
1185/*
1186 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1187 * reused for other purposes with version > 0.
1188 */
1189
1190/* Verified boot hash command */
1191#define EC_CMD_VBOOT_HASH 0x2A
1192
1193struct ec_params_vboot_hash {
1194        uint8_t cmd;             /* enum ec_vboot_hash_cmd */
1195        uint8_t hash_type;       /* enum ec_vboot_hash_type */
1196        uint8_t nonce_size;      /* Nonce size; may be 0 */
1197        uint8_t reserved0;       /* Reserved; set 0 */
1198        uint32_t offset;         /* Offset in flash to hash */
1199        uint32_t size;           /* Number of bytes to hash */
1200        uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
1201} __packed;
1202
1203struct ec_response_vboot_hash {
1204        uint8_t status;          /* enum ec_vboot_hash_status */
1205        uint8_t hash_type;       /* enum ec_vboot_hash_type */
1206        uint8_t digest_size;     /* Size of hash digest in bytes */
1207        uint8_t reserved0;       /* Ignore; will be 0 */
1208        uint32_t offset;         /* Offset in flash which was hashed */
1209        uint32_t size;           /* Number of bytes hashed */
1210        uint8_t hash_digest[64]; /* Hash digest data */
1211} __packed;
1212
1213enum ec_vboot_hash_cmd {
1214        EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
1215        EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
1216        EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
1217        EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
1218};
1219
1220enum ec_vboot_hash_type {
1221        EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1222};
1223
1224enum ec_vboot_hash_status {
1225        EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1226        EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1227        EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1228};
1229
1230/*
1231 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1232 * If one of these is specified, the EC will automatically update offset and
1233 * size to the correct values for the specified image (RO or RW).
1234 */
1235#define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
1236#define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
1237
1238/*****************************************************************************/
1239/*
1240 * Motion sense commands. We'll make separate structs for sub-commands with
1241 * different input args, so that we know how much to expect.
1242 */
1243#define EC_CMD_MOTION_SENSE_CMD 0x2B
1244
1245/* Motion sense commands */
1246enum motionsense_command {
1247        /*
1248         * Dump command returns all motion sensor data including motion sense
1249         * module flags and individual sensor flags.
1250         */
1251        MOTIONSENSE_CMD_DUMP = 0,
1252
1253        /*
1254         * Info command returns data describing the details of a given sensor,
1255         * including enum motionsensor_type, enum motionsensor_location, and
1256         * enum motionsensor_chip.
1257         */
1258        MOTIONSENSE_CMD_INFO = 1,
1259
1260        /*
1261         * EC Rate command is a setter/getter command for the EC sampling rate
1262         * of all motion sensors in milliseconds.
1263         */
1264        MOTIONSENSE_CMD_EC_RATE = 2,
1265
1266        /*
1267         * Sensor ODR command is a setter/getter command for the output data
1268         * rate of a specific motion sensor in millihertz.
1269         */
1270        MOTIONSENSE_CMD_SENSOR_ODR = 3,
1271
1272        /*
1273         * Sensor range command is a setter/getter command for the range of
1274         * a specified motion sensor in +/-G's or +/- deg/s.
1275         */
1276        MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1277
1278        /*
1279         * Setter/getter command for the keyboard wake angle. When the lid
1280         * angle is greater than this value, keyboard wake is disabled in S3,
1281         * and when the lid angle goes less than this value, keyboard wake is
1282         * enabled. Note, the lid angle measurement is an approximate,
1283         * un-calibrated value, hence the wake angle isn't exact.
1284         */
1285        MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
1286
1287        /* Number of motionsense sub-commands. */
1288        MOTIONSENSE_NUM_CMDS
1289};
1290
1291enum motionsensor_id {
1292        EC_MOTION_SENSOR_ACCEL_BASE = 0,
1293        EC_MOTION_SENSOR_ACCEL_LID = 1,
1294        EC_MOTION_SENSOR_GYRO = 2,
1295
1296        /*
1297         * Note, if more sensors are added and this count changes, the padding
1298         * in ec_response_motion_sense dump command must be modified.
1299         */
1300        EC_MOTION_SENSOR_COUNT = 3
1301};
1302
1303/* List of motion sensor types. */
1304enum motionsensor_type {
1305        MOTIONSENSE_TYPE_ACCEL = 0,
1306        MOTIONSENSE_TYPE_GYRO = 1,
1307};
1308
1309/* List of motion sensor locations. */
1310enum motionsensor_location {
1311        MOTIONSENSE_LOC_BASE = 0,
1312        MOTIONSENSE_LOC_LID = 1,
1313};
1314
1315/* List of motion sensor chips. */
1316enum motionsensor_chip {
1317        MOTIONSENSE_CHIP_KXCJ9 = 0,
1318};
1319
1320/* Module flag masks used for the dump sub-command. */
1321#define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
1322
1323/* Sensor flag masks used for the dump sub-command. */
1324#define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
1325
1326/*
1327 * Send this value for the data element to only perform a read. If you
1328 * send any other value, the EC will interpret it as data to set and will
1329 * return the actual value set.
1330 */
1331#define EC_MOTION_SENSE_NO_VALUE -1
1332
1333struct ec_params_motion_sense {
1334        uint8_t cmd;
1335        union {
1336                /* Used for MOTIONSENSE_CMD_DUMP. */
1337                struct {
1338                        /* no args */
1339                } dump;
1340
1341                /*
1342                 * Used for MOTIONSENSE_CMD_EC_RATE and
1343                 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1344                 */
1345                struct {
1346                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1347                        int16_t data;
1348                } ec_rate, kb_wake_angle;
1349
1350                /* Used for MOTIONSENSE_CMD_INFO. */
1351                struct {
1352                        /* Should be element of enum motionsensor_id. */
1353                        uint8_t sensor_num;
1354                } info;
1355
1356                /*
1357                 * Used for MOTIONSENSE_CMD_SENSOR_ODR and
1358                 * MOTIONSENSE_CMD_SENSOR_RANGE.
1359                 */
1360                struct {
1361                        /* Should be element of enum motionsensor_id. */
1362                        uint8_t sensor_num;
1363
1364                        /* Rounding flag, true for round-up, false for down. */
1365                        uint8_t roundup;
1366
1367                        uint16_t reserved;
1368
1369                        /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1370                        int32_t data;
1371                } sensor_odr, sensor_range;
1372        };
1373} __packed;
1374
1375struct ec_response_motion_sense {
1376        union {
1377                /* Used for MOTIONSENSE_CMD_DUMP. */
1378                struct {
1379                        /* Flags representing the motion sensor module. */
1380                        uint8_t module_flags;
1381
1382                        /* Flags for each sensor in enum motionsensor_id. */
1383                        uint8_t sensor_flags[EC_MOTION_SENSOR_COUNT];
1384
1385                        /* Array of all sensor data. Each sensor is 3-axis. */
1386                        int16_t data[3*EC_MOTION_SENSOR_COUNT];
1387                } dump;
1388
1389                /* Used for MOTIONSENSE_CMD_INFO. */
1390                struct {
1391                        /* Should be element of enum motionsensor_type. */
1392                        uint8_t type;
1393
1394                        /* Should be element of enum motionsensor_location. */
1395                        uint8_t location;
1396
1397                        /* Should be element of enum motionsensor_chip. */
1398                        uint8_t chip;
1399                } info;
1400
1401                /*
1402                 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
1403                 * MOTIONSENSE_CMD_SENSOR_RANGE, and
1404                 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1405                 */
1406                struct {
1407                        /* Current value of the parameter queried. */
1408                        int32_t ret;
1409                } ec_rate, sensor_odr, sensor_range, kb_wake_angle;
1410        };
1411} __packed;
1412
1413/*****************************************************************************/
1414/* USB charging control commands */
1415
1416/* Set USB port charging mode */
1417#define EC_CMD_USB_CHARGE_SET_MODE 0x30
1418
1419struct ec_params_usb_charge_set_mode {
1420        uint8_t usb_port_id;
1421        uint8_t mode;
1422} __packed;
1423
1424/*****************************************************************************/
1425/* Persistent storage for host */
1426
1427/* Maximum bytes that can be read/written in a single command */
1428#define EC_PSTORE_SIZE_MAX 64
1429
1430/* Get persistent storage info */
1431#define EC_CMD_PSTORE_INFO 0x40
1432
1433struct ec_response_pstore_info {
1434        /* Persistent storage size, in bytes */
1435        uint32_t pstore_size;
1436        /* Access size; read/write offset and size must be a multiple of this */
1437        uint32_t access_size;
1438} __packed;
1439
1440/*
1441 * Read persistent storage
1442 *
1443 * Response is params.size bytes of data.
1444 */
1445#define EC_CMD_PSTORE_READ 0x41
1446
1447struct ec_params_pstore_read {
1448        uint32_t offset;   /* Byte offset to read */
1449        uint32_t size;     /* Size to read in bytes */
1450} __packed;
1451
1452/* Write persistent storage */
1453#define EC_CMD_PSTORE_WRITE 0x42
1454
1455struct ec_params_pstore_write {
1456        uint32_t offset;   /* Byte offset to write */
1457        uint32_t size;     /* Size to write in bytes */
1458        uint8_t data[EC_PSTORE_SIZE_MAX];
1459} __packed;
1460
1461/*****************************************************************************/
1462/* Real-time clock */
1463
1464/* RTC params and response structures */
1465struct ec_params_rtc {
1466        uint32_t time;
1467} __packed;
1468
1469struct ec_response_rtc {
1470        uint32_t time;
1471} __packed;
1472
1473/* These use ec_response_rtc */
1474#define EC_CMD_RTC_GET_VALUE 0x44
1475#define EC_CMD_RTC_GET_ALARM 0x45
1476
1477/* These all use ec_params_rtc */
1478#define EC_CMD_RTC_SET_VALUE 0x46
1479#define EC_CMD_RTC_SET_ALARM 0x47
1480
1481/*****************************************************************************/
1482/* Port80 log access */
1483
1484/* Maximum entries that can be read/written in a single command */
1485#define EC_PORT80_SIZE_MAX 32
1486
1487/* Get last port80 code from previous boot */
1488#define EC_CMD_PORT80_LAST_BOOT 0x48
1489#define EC_CMD_PORT80_READ 0x48
1490
1491enum ec_port80_subcmd {
1492        EC_PORT80_GET_INFO = 0,
1493        EC_PORT80_READ_BUFFER,
1494};
1495
1496struct ec_params_port80_read {
1497        uint16_t subcmd;
1498        union {
1499                struct {
1500                        uint32_t offset;
1501                        uint32_t num_entries;
1502                } read_buffer;
1503        };
1504} __packed;
1505
1506struct ec_response_port80_read {
1507        union {
1508                struct {
1509                        uint32_t writes;
1510                        uint32_t history_size;
1511                        uint32_t last_boot;
1512                } get_info;
1513                struct {
1514                        uint16_t codes[EC_PORT80_SIZE_MAX];
1515                } data;
1516        };
1517} __packed;
1518
1519struct ec_response_port80_last_boot {
1520        uint16_t code;
1521} __packed;
1522
1523/*****************************************************************************/
1524/* Thermal engine commands. Note that there are two implementations. We'll
1525 * reuse the command number, but the data and behavior is incompatible.
1526 * Version 0 is what originally shipped on Link.
1527 * Version 1 separates the CPU thermal limits from the fan control.
1528 */
1529
1530#define EC_CMD_THERMAL_SET_THRESHOLD 0x50
1531#define EC_CMD_THERMAL_GET_THRESHOLD 0x51
1532
1533/* The version 0 structs are opaque. You have to know what they are for
1534 * the get/set commands to make any sense.
1535 */
1536
1537/* Version 0 - set */
1538struct ec_params_thermal_set_threshold {
1539        uint8_t sensor_type;
1540        uint8_t threshold_id;
1541        uint16_t value;
1542} __packed;
1543
1544/* Version 0 - get */
1545struct ec_params_thermal_get_threshold {
1546        uint8_t sensor_type;
1547        uint8_t threshold_id;
1548} __packed;
1549
1550struct ec_response_thermal_get_threshold {
1551        uint16_t value;
1552} __packed;
1553
1554
1555/* The version 1 structs are visible. */
1556enum ec_temp_thresholds {
1557        EC_TEMP_THRESH_WARN = 0,
1558        EC_TEMP_THRESH_HIGH,
1559        EC_TEMP_THRESH_HALT,
1560
1561        EC_TEMP_THRESH_COUNT
1562};
1563
1564/* Thermal configuration for one temperature sensor. Temps are in degrees K.
1565 * Zero values will be silently ignored by the thermal task.
1566 */
1567struct ec_thermal_config {
1568        uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
1569        uint32_t temp_fan_off;          /* no active cooling needed */
1570        uint32_t temp_fan_max;          /* max active cooling needed */
1571} __packed;
1572
1573/* Version 1 - get config for one sensor. */
1574struct ec_params_thermal_get_threshold_v1 {
1575        uint32_t sensor_num;
1576} __packed;
1577/* This returns a struct ec_thermal_config */
1578
1579/* Version 1 - set config for one sensor.
1580 * Use read-modify-write for best results! */
1581struct ec_params_thermal_set_threshold_v1 {
1582        uint32_t sensor_num;
1583        struct ec_thermal_config cfg;
1584} __packed;
1585/* This returns no data */
1586
1587/****************************************************************************/
1588
1589/* Toggle automatic fan control */
1590#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
1591
1592/* Get TMP006 calibration data */
1593#define EC_CMD_TMP006_GET_CALIBRATION 0x53
1594
1595struct ec_params_tmp006_get_calibration {
1596        uint8_t index;
1597} __packed;
1598
1599struct ec_response_tmp006_get_calibration {
1600        float s0;
1601        float b0;
1602        float b1;
1603        float b2;
1604} __packed;
1605
1606/* Set TMP006 calibration data */
1607#define EC_CMD_TMP006_SET_CALIBRATION 0x54
1608
1609struct ec_params_tmp006_set_calibration {
1610        uint8_t index;
1611        uint8_t reserved[3];  /* Reserved; set 0 */
1612        float s0;
1613        float b0;
1614        float b1;
1615        float b2;
1616} __packed;
1617
1618/* Read raw TMP006 data */
1619#define EC_CMD_TMP006_GET_RAW 0x55
1620
1621struct ec_params_tmp006_get_raw {
1622        uint8_t index;
1623} __packed;
1624
1625struct ec_response_tmp006_get_raw {
1626        int32_t t;  /* In 1/100 K */
1627        int32_t v;  /* In nV */
1628};
1629
1630/*****************************************************************************/
1631/* MKBP - Matrix KeyBoard Protocol */
1632
1633/*
1634 * Read key state
1635 *
1636 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
1637 * expected response size.
1638 */
1639#define EC_CMD_MKBP_STATE 0x60
1640
1641/* Provide information about the matrix : number of rows and columns */
1642#define EC_CMD_MKBP_INFO 0x61
1643
1644struct ec_response_mkbp_info {
1645        uint32_t rows;
1646        uint32_t cols;
1647        uint8_t switches;
1648} __packed;
1649
1650/* Simulate key press */
1651#define EC_CMD_MKBP_SIMULATE_KEY 0x62
1652
1653struct ec_params_mkbp_simulate_key {
1654        uint8_t col;
1655        uint8_t row;
1656        uint8_t pressed;
1657} __packed;
1658
1659/* Configure keyboard scanning */
1660#define EC_CMD_MKBP_SET_CONFIG 0x64
1661#define EC_CMD_MKBP_GET_CONFIG 0x65
1662
1663/* flags */
1664enum mkbp_config_flags {
1665        EC_MKBP_FLAGS_ENABLE = 1,       /* Enable keyboard scanning */
1666};
1667
1668enum mkbp_config_valid {
1669        EC_MKBP_VALID_SCAN_PERIOD               = 1 << 0,
1670        EC_MKBP_VALID_POLL_TIMEOUT              = 1 << 1,
1671        EC_MKBP_VALID_MIN_POST_SCAN_DELAY       = 1 << 3,
1672        EC_MKBP_VALID_OUTPUT_SETTLE             = 1 << 4,
1673        EC_MKBP_VALID_DEBOUNCE_DOWN             = 1 << 5,
1674        EC_MKBP_VALID_DEBOUNCE_UP               = 1 << 6,
1675        EC_MKBP_VALID_FIFO_MAX_DEPTH            = 1 << 7,
1676};
1677
1678/* Configuration for our key scanning algorithm */
1679struct ec_mkbp_config {
1680        uint32_t valid_mask;            /* valid fields */
1681        uint8_t flags;          /* some flags (enum mkbp_config_flags) */
1682        uint8_t valid_flags;            /* which flags are valid */
1683        uint16_t scan_period_us;        /* period between start of scans */
1684        /* revert to interrupt mode after no activity for this long */
1685        uint32_t poll_timeout_us;
1686        /*
1687         * minimum post-scan relax time. Once we finish a scan we check
1688         * the time until we are due to start the next one. If this time is
1689         * shorter this field, we use this instead.
1690         */
1691        uint16_t min_post_scan_delay_us;
1692        /* delay between setting up output and waiting for it to settle */
1693        uint16_t output_settle_us;
1694        uint16_t debounce_down_us;      /* time for debounce on key down */
1695        uint16_t debounce_up_us;        /* time for debounce on key up */
1696        /* maximum depth to allow for fifo (0 = no keyscan output) */
1697        uint8_t fifo_max_depth;
1698} __packed;
1699
1700struct ec_params_mkbp_set_config {
1701        struct ec_mkbp_config config;
1702} __packed;
1703
1704struct ec_response_mkbp_get_config {
1705        struct ec_mkbp_config config;
1706} __packed;
1707
1708/* Run the key scan emulation */
1709#define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
1710
1711enum ec_keyscan_seq_cmd {
1712        EC_KEYSCAN_SEQ_STATUS = 0,      /* Get status information */
1713        EC_KEYSCAN_SEQ_CLEAR = 1,       /* Clear sequence */
1714        EC_KEYSCAN_SEQ_ADD = 2,         /* Add item to sequence */
1715        EC_KEYSCAN_SEQ_START = 3,       /* Start running sequence */
1716        EC_KEYSCAN_SEQ_COLLECT = 4,     /* Collect sequence summary data */
1717};
1718
1719enum ec_collect_flags {
1720        /*
1721         * Indicates this scan was processed by the EC. Due to timing, some
1722         * scans may be skipped.
1723         */
1724        EC_KEYSCAN_SEQ_FLAG_DONE        = 1 << 0,
1725};
1726
1727struct ec_collect_item {
1728        uint8_t flags;          /* some flags (enum ec_collect_flags) */
1729};
1730
1731struct ec_params_keyscan_seq_ctrl {
1732        uint8_t cmd;    /* Command to send (enum ec_keyscan_seq_cmd) */
1733        union {
1734                struct {
1735                        uint8_t active;         /* still active */
1736                        uint8_t num_items;      /* number of items */
1737                        /* Current item being presented */
1738                        uint8_t cur_item;
1739                } status;
1740                struct {
1741                        /*
1742                         * Absolute time for this scan, measured from the
1743                         * start of the sequence.
1744                         */
1745                        uint32_t time_us;
1746                        uint8_t scan[0];        /* keyscan data */
1747                } add;
1748                struct {
1749                        uint8_t start_item;     /* First item to return */
1750                        uint8_t num_items;      /* Number of items to return */
1751                } collect;
1752        };
1753} __packed;
1754
1755struct ec_result_keyscan_seq_ctrl {
1756        union {
1757                struct {
1758                        uint8_t num_items;      /* Number of items */
1759                        /* Data for each item */
1760                        struct ec_collect_item item[0];
1761                } collect;
1762        };
1763} __packed;
1764
1765/*****************************************************************************/
1766/* Temperature sensor commands */
1767
1768/* Read temperature sensor info */
1769#define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
1770
1771struct ec_params_temp_sensor_get_info {
1772        uint8_t id;
1773} __packed;
1774
1775struct ec_response_temp_sensor_get_info {
1776        char sensor_name[32];
1777        uint8_t sensor_type;
1778} __packed;
1779
1780/*****************************************************************************/
1781
1782/*
1783 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
1784 * commands accidentally sent to the wrong interface.  See the ACPI section
1785 * below.
1786 */
1787
1788/*****************************************************************************/
1789/* Host event commands */
1790
1791/*
1792 * Host event mask params and response structures, shared by all of the host
1793 * event commands below.
1794 */
1795struct ec_params_host_event_mask {
1796        uint32_t mask;
1797} __packed;
1798
1799struct ec_response_host_event_mask {
1800        uint32_t mask;
1801} __packed;
1802
1803/* These all use ec_response_host_event_mask */
1804#define EC_CMD_HOST_EVENT_GET_B         0x87
1805#define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x88
1806#define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x89
1807#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
1808
1809/* These all use ec_params_host_event_mask */
1810#define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x8a
1811#define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x8b
1812#define EC_CMD_HOST_EVENT_CLEAR         0x8c
1813#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
1814#define EC_CMD_HOST_EVENT_CLEAR_B       0x8f
1815
1816/*****************************************************************************/
1817/* Switch commands */
1818
1819/* Enable/disable LCD backlight */
1820#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
1821
1822struct ec_params_switch_enable_backlight {
1823        uint8_t enabled;
1824} __packed;
1825
1826/* Enable/disable WLAN/Bluetooth */
1827#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
1828#define EC_VER_SWITCH_ENABLE_WIRELESS 1
1829
1830/* Version 0 params; no response */
1831struct ec_params_switch_enable_wireless_v0 {
1832        uint8_t enabled;
1833} __packed;
1834
1835/* Version 1 params */
1836struct ec_params_switch_enable_wireless_v1 {
1837        /* Flags to enable now */
1838        uint8_t now_flags;
1839
1840        /* Which flags to copy from now_flags */
1841        uint8_t now_mask;
1842
1843        /*
1844         * Flags to leave enabled in S3, if they're on at the S0->S3
1845         * transition.  (Other flags will be disabled by the S0->S3
1846         * transition.)
1847         */
1848        uint8_t suspend_flags;
1849
1850        /* Which flags to copy from suspend_flags */
1851        uint8_t suspend_mask;
1852} __packed;
1853
1854/* Version 1 response */
1855struct ec_response_switch_enable_wireless_v1 {
1856        /* Flags to enable now */
1857        uint8_t now_flags;
1858
1859        /* Flags to leave enabled in S3 */
1860        uint8_t suspend_flags;
1861} __packed;
1862
1863/*****************************************************************************/
1864/* GPIO commands. Only available on EC if write protect has been disabled. */
1865
1866/* Set GPIO output value */
1867#define EC_CMD_GPIO_SET 0x92
1868
1869struct ec_params_gpio_set {
1870        char name[32];
1871        uint8_t val;
1872} __packed;
1873
1874/* Get GPIO value */
1875#define EC_CMD_GPIO_GET 0x93
1876
1877/* Version 0 of input params and response */
1878struct ec_params_gpio_get {
1879        char name[32];
1880} __packed;
1881struct ec_response_gpio_get {
1882        uint8_t val;
1883} __packed;
1884
1885/* Version 1 of input params and response */
1886struct ec_params_gpio_get_v1 {
1887        uint8_t subcmd;
1888        union {
1889                struct {
1890                        char name[32];
1891                } get_value_by_name;
1892                struct {
1893                        uint8_t index;
1894                } get_info;
1895        };
1896} __packed;
1897
1898struct ec_response_gpio_get_v1 {
1899        union {
1900                struct {
1901                        uint8_t val;
1902                } get_value_by_name, get_count;
1903                struct {
1904                        uint8_t val;
1905                        char name[32];
1906                        uint32_t flags;
1907                } get_info;
1908        };
1909} __packed;
1910
1911enum gpio_get_subcmd {
1912        EC_GPIO_GET_BY_NAME = 0,
1913        EC_GPIO_GET_COUNT = 1,
1914        EC_GPIO_GET_INFO = 2,
1915};
1916
1917/*****************************************************************************/
1918/* I2C commands. Only available when flash write protect is unlocked. */
1919
1920/*
1921 * TODO(crosbug.com/p/23570): These commands are deprecated, and will be
1922 * removed soon.  Use EC_CMD_I2C_XFER instead.
1923 */
1924
1925/* Read I2C bus */
1926#define EC_CMD_I2C_READ 0x94
1927
1928struct ec_params_i2c_read {
1929        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
1930        uint8_t read_size; /* Either 8 or 16. */
1931        uint8_t port;
1932        uint8_t offset;
1933} __packed;
1934struct ec_response_i2c_read {
1935        uint16_t data;
1936} __packed;
1937
1938/* Write I2C bus */
1939#define EC_CMD_I2C_WRITE 0x95
1940
1941struct ec_params_i2c_write {
1942        uint16_t data;
1943        uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
1944        uint8_t write_size; /* Either 8 or 16. */
1945        uint8_t port;
1946        uint8_t offset;
1947} __packed;
1948
1949/*****************************************************************************/
1950/* Charge state commands. Only available when flash write protect unlocked. */
1951
1952/* Force charge state machine to stop charging the battery or force it to
1953 * discharge the battery.
1954 */
1955#define EC_CMD_CHARGE_CONTROL 0x96
1956#define EC_VER_CHARGE_CONTROL 1
1957
1958enum ec_charge_control_mode {
1959        CHARGE_CONTROL_NORMAL = 0,
1960        CHARGE_CONTROL_IDLE,
1961        CHARGE_CONTROL_DISCHARGE,
1962};
1963
1964struct ec_params_charge_control {
1965        uint32_t mode;  /* enum charge_control_mode */
1966} __packed;
1967
1968/*****************************************************************************/
1969/* Console commands. Only available when flash write protect is unlocked. */
1970
1971/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
1972#define EC_CMD_CONSOLE_SNAPSHOT 0x97
1973
1974/*
1975 * Read next chunk of data from saved snapshot.
1976 *
1977 * Response is null-terminated string.  Empty string, if there is no more
1978 * remaining output.
1979 */
1980#define EC_CMD_CONSOLE_READ 0x98
1981
1982/*****************************************************************************/
1983
1984/*
1985 * Cut off battery power immediately or after the host has shut down.
1986 *
1987 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
1988 *        EC_RES_SUCCESS if the command was successful.
1989 *        EC_RES_ERROR if the cut off command failed.
1990 */
1991
1992#define EC_CMD_BATTERY_CUT_OFF 0x99
1993
1994#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN      (1 << 0)
1995
1996struct ec_params_battery_cutoff {
1997        uint8_t flags;
1998} __packed;
1999
2000/*****************************************************************************/
2001/* USB port mux control. */
2002
2003/*
2004 * Switch USB mux or return to automatic switching.
2005 */
2006#define EC_CMD_USB_MUX 0x9a
2007
2008struct ec_params_usb_mux {
2009        uint8_t mux;
2010} __packed;
2011
2012/*****************************************************************************/
2013/* LDOs / FETs control. */
2014
2015enum ec_ldo_state {
2016        EC_LDO_STATE_OFF = 0,   /* the LDO / FET is shut down */
2017        EC_LDO_STATE_ON = 1,    /* the LDO / FET is ON / providing power */
2018};
2019
2020/*
2021 * Switch on/off a LDO.
2022 */
2023#define EC_CMD_LDO_SET 0x9b
2024
2025struct ec_params_ldo_set {
2026        uint8_t index;
2027        uint8_t state;
2028} __packed;
2029
2030/*
2031 * Get LDO state.
2032 */
2033#define EC_CMD_LDO_GET 0x9c
2034
2035struct ec_params_ldo_get {
2036        uint8_t index;
2037} __packed;
2038
2039struct ec_response_ldo_get {
2040        uint8_t state;
2041} __packed;
2042
2043/*****************************************************************************/
2044/* Power info. */
2045
2046/*
2047 * Get power info.
2048 */
2049#define EC_CMD_POWER_INFO 0x9d
2050
2051struct ec_response_power_info {
2052        uint32_t usb_dev_type;
2053        uint16_t voltage_ac;
2054        uint16_t voltage_system;
2055        uint16_t current_system;
2056        uint16_t usb_current_limit;
2057} __packed;
2058
2059/*****************************************************************************/
2060/* I2C passthru command */
2061
2062#define EC_CMD_I2C_PASSTHRU 0x9e
2063
2064/* Read data; if not present, message is a write */
2065#define EC_I2C_FLAG_READ        (1 << 15)
2066
2067/* Mask for address */
2068#define EC_I2C_ADDR_MASK        0x3ff
2069
2070#define EC_I2C_STATUS_NAK       (1 << 0) /* Transfer was not acknowledged */
2071#define EC_I2C_STATUS_TIMEOUT   (1 << 1) /* Timeout during transfer */
2072
2073/* Any error */
2074#define EC_I2C_STATUS_ERROR     (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
2075
2076struct ec_params_i2c_passthru_msg {
2077        uint16_t addr_flags;    /* I2C slave address (7 or 10 bits) and flags */
2078        uint16_t len;           /* Number of bytes to read or write */
2079} __packed;
2080
2081struct ec_params_i2c_passthru {
2082        uint8_t port;           /* I2C port number */
2083        uint8_t num_msgs;       /* Number of messages */
2084        struct ec_params_i2c_passthru_msg msg[];
2085        /* Data to write for all messages is concatenated here */
2086} __packed;
2087
2088struct ec_response_i2c_passthru {
2089        uint8_t i2c_status;     /* Status flags (EC_I2C_STATUS_...) */
2090        uint8_t num_msgs;       /* Number of messages processed */
2091        uint8_t data[];         /* Data read by messages concatenated here */
2092} __packed;
2093
2094/*****************************************************************************/
2095/* Power button hang detect */
2096
2097#define EC_CMD_HANG_DETECT 0x9f
2098
2099/* Reasons to start hang detection timer */
2100/* Power button pressed */
2101#define EC_HANG_START_ON_POWER_PRESS  (1 << 0)
2102
2103/* Lid closed */
2104#define EC_HANG_START_ON_LID_CLOSE    (1 << 1)
2105
2106 /* Lid opened */
2107#define EC_HANG_START_ON_LID_OPEN     (1 << 2)
2108
2109/* Start of AP S3->S0 transition (booting or resuming from suspend) */
2110#define EC_HANG_START_ON_RESUME       (1 << 3)
2111
2112/* Reasons to cancel hang detection */
2113
2114/* Power button released */
2115#define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
2116
2117/* Any host command from AP received */
2118#define EC_HANG_STOP_ON_HOST_COMMAND  (1 << 9)
2119
2120/* Stop on end of AP S0->S3 transition (suspending or shutting down) */
2121#define EC_HANG_STOP_ON_SUSPEND       (1 << 10)
2122
2123/*
2124 * If this flag is set, all the other fields are ignored, and the hang detect
2125 * timer is started.  This provides the AP a way to start the hang timer
2126 * without reconfiguring any of the other hang detect settings.  Note that
2127 * you must previously have configured the timeouts.
2128 */
2129#define EC_HANG_START_NOW             (1 << 30)
2130
2131/*
2132 * If this flag is set, all the other fields are ignored (including
2133 * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
2134 * without reconfiguring any of the other hang detect settings.
2135 */
2136#define EC_HANG_STOP_NOW              (1 << 31)
2137
2138struct ec_params_hang_detect {
2139        /* Flags; see EC_HANG_* */
2140        uint32_t flags;
2141
2142        /* Timeout in msec before generating host event, if enabled */
2143        uint16_t host_event_timeout_msec;
2144
2145        /* Timeout in msec before generating warm reboot, if enabled */
2146        uint16_t warm_reboot_timeout_msec;
2147} __packed;
2148
2149/*****************************************************************************/
2150/* Commands for battery charging */
2151
2152/*
2153 * This is the single catch-all host command to exchange data regarding the
2154 * charge state machine (v2 and up).
2155 */
2156#define EC_CMD_CHARGE_STATE 0xa0
2157
2158/* Subcommands for this host command */
2159enum charge_state_command {
2160        CHARGE_STATE_CMD_GET_STATE,
2161        CHARGE_STATE_CMD_GET_PARAM,
2162        CHARGE_STATE_CMD_SET_PARAM,
2163        CHARGE_STATE_NUM_CMDS
2164};
2165
2166/*
2167 * Known param numbers are defined here. Ranges are reserved for board-specific
2168 * params, which are handled by the particular implementations.
2169 */
2170enum charge_state_params {
2171        CS_PARAM_CHG_VOLTAGE,         /* charger voltage limit */
2172        CS_PARAM_CHG_CURRENT,         /* charger current limit */
2173        CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
2174        CS_PARAM_CHG_STATUS,          /* charger-specific status */
2175        CS_PARAM_CHG_OPTION,          /* charger-specific options */
2176        /* How many so far? */
2177        CS_NUM_BASE_PARAMS,
2178
2179        /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
2180        CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
2181        CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
2182
2183        /* Other custom param ranges go here... */
2184};
2185
2186struct ec_params_charge_state {
2187        uint8_t cmd;                            /* enum charge_state_command */
2188        union {
2189                struct {
2190                        /* no args */
2191                } get_state;
2192
2193                struct {
2194                        uint32_t param;         /* enum charge_state_param */
2195                } get_param;
2196
2197                struct {
2198                        uint32_t param;         /* param to set */
2199                        uint32_t value;         /* value to set */
2200                } set_param;
2201        };
2202} __packed;
2203
2204struct ec_response_charge_state {
2205        union {
2206                struct {
2207                        int ac;
2208                        int chg_voltage;
2209                        int chg_current;
2210                        int chg_input_current;
2211                        int batt_state_of_charge;
2212                } get_state;
2213
2214                struct {
2215                        uint32_t value;
2216                } get_param;
2217                struct {
2218                        /* no return values */
2219                } set_param;
2220        };
2221} __packed;
2222
2223
2224/*
2225 * Set maximum battery charging current.
2226 */
2227#define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
2228
2229struct ec_params_current_limit {
2230        uint32_t limit; /* in mA */
2231} __packed;
2232
2233/*
2234 * Set maximum external power current.
2235 */
2236#define EC_CMD_EXT_POWER_CURRENT_LIMIT 0xa2
2237
2238struct ec_params_ext_power_current_limit {
2239        uint32_t limit; /* in mA */
2240} __packed;
2241
2242/*****************************************************************************/
2243/* Smart battery pass-through */
2244
2245/* Get / Set 16-bit smart battery registers */
2246#define EC_CMD_SB_READ_WORD   0xb0
2247#define EC_CMD_SB_WRITE_WORD  0xb1
2248
2249/* Get / Set string smart battery parameters
2250 * formatted as SMBUS "block".
2251 */
2252#define EC_CMD_SB_READ_BLOCK  0xb2
2253#define EC_CMD_SB_WRITE_BLOCK 0xb3
2254
2255struct ec_params_sb_rd {
2256        uint8_t reg;
2257} __packed;
2258
2259struct ec_response_sb_rd_word {
2260        uint16_t value;
2261} __packed;
2262
2263struct ec_params_sb_wr_word {
2264        uint8_t reg;
2265        uint16_t value;
2266} __packed;
2267
2268struct ec_response_sb_rd_block {
2269        uint8_t data[32];
2270} __packed;
2271
2272struct ec_params_sb_wr_block {
2273        uint8_t reg;
2274        uint16_t data[32];
2275} __packed;
2276
2277/*****************************************************************************/
2278/* Battery vendor parameters
2279 *
2280 * Get or set vendor-specific parameters in the battery. Implementations may
2281 * differ between boards or batteries. On a set operation, the response
2282 * contains the actual value set, which may be rounded or clipped from the
2283 * requested value.
2284 */
2285
2286#define EC_CMD_BATTERY_VENDOR_PARAM 0xb4
2287
2288enum ec_battery_vendor_param_mode {
2289        BATTERY_VENDOR_PARAM_MODE_GET = 0,
2290        BATTERY_VENDOR_PARAM_MODE_SET,
2291};
2292
2293struct ec_params_battery_vendor_param {
2294        uint32_t param;
2295        uint32_t value;
2296        uint8_t mode;
2297} __packed;
2298
2299struct ec_response_battery_vendor_param {
2300        uint32_t value;
2301} __packed;
2302
2303/*****************************************************************************/
2304/* System commands */
2305
2306/*
2307 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
2308 * necessarily reboot the EC.  Rename to "image" or something similar?
2309 */
2310#define EC_CMD_REBOOT_EC 0xd2
2311
2312/* Command */
2313enum ec_reboot_cmd {
2314        EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
2315        EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
2316        EC_REBOOT_JUMP_RW = 2,       /* Jump to RW without rebooting */
2317        /* (command 3 was jump to RW-B) */
2318        EC_REBOOT_COLD = 4,          /* Cold-reboot */
2319        EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
2320        EC_REBOOT_HIBERNATE = 6      /* Hibernate EC */
2321};
2322
2323/* Flags for ec_params_reboot_ec.reboot_flags */
2324#define EC_REBOOT_FLAG_RESERVED0      (1 << 0)  /* Was recovery request */
2325#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1)  /* Reboot after AP shutdown */
2326
2327struct ec_params_reboot_ec {
2328        uint8_t cmd;           /* enum ec_reboot_cmd */
2329        uint8_t flags;         /* See EC_REBOOT_FLAG_* */
2330} __packed;
2331
2332/*
2333 * Get information on last EC panic.
2334 *
2335 * Returns variable-length platform-dependent panic information.  See panic.h
2336 * for details.
2337 */
2338#define EC_CMD_GET_PANIC_INFO 0xd3
2339
2340/*****************************************************************************/
2341/*
2342 * ACPI commands
2343 *
2344 * These are valid ONLY on the ACPI command/data port.
2345 */
2346
2347/*
2348 * ACPI Read Embedded Controller
2349 *
2350 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2351 *
2352 * Use the following sequence:
2353 *
2354 *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
2355 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2356 *    - Write address to EC_LPC_ADDR_ACPI_DATA
2357 *    - Wait for EC_LPC_CMDR_DATA bit to set
2358 *    - Read value from EC_LPC_ADDR_ACPI_DATA
2359 */
2360#define EC_CMD_ACPI_READ 0x80
2361
2362/*
2363 * ACPI Write Embedded Controller
2364 *
2365 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2366 *
2367 * Use the following sequence:
2368 *
2369 *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
2370 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2371 *    - Write address to EC_LPC_ADDR_ACPI_DATA
2372 *    - Wait for EC_LPC_CMDR_PENDING bit to clear
2373 *    - Write value to EC_LPC_ADDR_ACPI_DATA
2374 */
2375#define EC_CMD_ACPI_WRITE 0x81
2376
2377/*
2378 * ACPI Query Embedded Controller
2379 *
2380 * This clears the lowest-order bit in the currently pending host events, and
2381 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
2382 * event 0x80000000 = 32), or 0 if no event was pending.
2383 */
2384#define EC_CMD_ACPI_QUERY_EVENT 0x84
2385
2386/* Valid addresses in ACPI memory space, for read/write commands */
2387
2388/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
2389#define EC_ACPI_MEM_VERSION            0x00
2390/*
2391 * Test location; writing value here updates test compliment byte to (0xff -
2392 * value).
2393 */
2394#define EC_ACPI_MEM_TEST               0x01
2395/* Test compliment; writes here are ignored. */
2396#define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
2397
2398/* Keyboard backlight brightness percent (0 - 100) */
2399#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
2400/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
2401#define EC_ACPI_MEM_FAN_DUTY           0x04
2402
2403/*
2404 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
2405 * independent thresholds attached to them. The current value of the ID
2406 * register determines which sensor is affected by the THRESHOLD and COMMIT
2407 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
2408 * as the memory-mapped sensors. The COMMIT register applies those settings.
2409 *
2410 * The spec does not mandate any way to read back the threshold settings
2411 * themselves, but when a threshold is crossed the AP needs a way to determine
2412 * which sensor(s) are responsible. Each reading of the ID register clears and
2413 * returns one sensor ID that has crossed one of its threshold (in either
2414 * direction) since the last read. A value of 0xFF means "no new thresholds
2415 * have tripped". Setting or enabling the thresholds for a sensor will clear
2416 * the unread event count for that sensor.
2417 */
2418#define EC_ACPI_MEM_TEMP_ID            0x05
2419#define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
2420#define EC_ACPI_MEM_TEMP_COMMIT        0x07
2421/*
2422 * Here are the bits for the COMMIT register:
2423 *   bit 0 selects the threshold index for the chosen sensor (0/1)
2424 *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
2425 * Each write to the commit register affects one threshold.
2426 */
2427#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
2428#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
2429/*
2430 * Example:
2431 *
2432 * Set the thresholds for sensor 2 to 50 C and 60 C:
2433 *   write 2 to [0x05]      --  select temp sensor 2
2434 *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
2435 *   write 0x2 to [0x07]    --  enable threshold 0 with this value
2436 *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
2437 *   write 0x3 to [0x07]    --  enable threshold 1 with this value
2438 *
2439 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
2440 *   write 2 to [0x05]      --  select temp sensor 2
2441 *   write 0x1 to [0x07]    --  disable threshold 1
2442 */
2443
2444/* DPTF battery charging current limit */
2445#define EC_ACPI_MEM_CHARGING_LIMIT     0x08
2446
2447/* Charging limit is specified in 64 mA steps */
2448#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
2449/* Value to disable DPTF battery charging limit */
2450#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
2451
2452/* Current version of ACPI memory address space */
2453#define EC_ACPI_MEM_VERSION_CURRENT 1
2454
2455
2456/*****************************************************************************/
2457/*
2458 * Special commands
2459 *
2460 * These do not follow the normal rules for commands.  See each command for
2461 * details.
2462 */
2463
2464/*
2465 * Reboot NOW
2466 *
2467 * This command will work even when the EC LPC interface is busy, because the
2468 * reboot command is processed at interrupt level.  Note that when the EC
2469 * reboots, the host will reboot too, so there is no response to this command.
2470 *
2471 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
2472 */
2473#define EC_CMD_REBOOT 0xd1  /* Think "die" */
2474
2475/*
2476 * Resend last response (not supported on LPC).
2477 *
2478 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
2479 * there was no previous command, or the previous command's response was too
2480 * big to save.
2481 */
2482#define EC_CMD_RESEND_RESPONSE 0xdb
2483
2484/*
2485 * This header byte on a command indicate version 0. Any header byte less
2486 * than this means that we are talking to an old EC which doesn't support
2487 * versioning. In that case, we assume version 0.
2488 *
2489 * Header bytes greater than this indicate a later version. For example,
2490 * EC_CMD_VERSION0 + 1 means we are using version 1.
2491 *
2492 * The old EC interface must not use commands 0xdc or higher.
2493 */
2494#define EC_CMD_VERSION0 0xdc
2495
2496#endif  /* !__ACPI__ */
2497
2498/*****************************************************************************/
2499/*
2500 * PD commands
2501 *
2502 * These commands are for PD MCU communication.
2503 */
2504
2505/* EC to PD MCU exchange status command */
2506#define EC_CMD_PD_EXCHANGE_STATUS 0x100
2507
2508/* Status of EC being sent to PD */
2509struct ec_params_pd_status {
2510        int8_t batt_soc; /* battery state of charge */
2511} __packed;
2512
2513/* Status of PD being sent back to EC */
2514struct ec_response_pd_status {
2515        int8_t status;        /* PD MCU status */
2516        uint32_t curr_lim_ma; /* input current limit */
2517} __packed;
2518
2519/* Set USB type-C port role and muxes */
2520#define EC_CMD_USB_PD_CONTROL 0x101
2521
2522enum usb_pd_control_role {
2523        USB_PD_CTRL_ROLE_NO_CHANGE = 0,
2524        USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
2525        USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
2526        USB_PD_CTRL_ROLE_FORCE_SINK = 3,
2527        USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
2528};
2529
2530enum usb_pd_control_mux {
2531        USB_PD_CTRL_MUX_NO_CHANGE = 0,
2532        USB_PD_CTRL_MUX_NONE = 1,
2533        USB_PD_CTRL_MUX_USB = 2,
2534        USB_PD_CTRL_MUX_DP = 3,
2535        USB_PD_CTRL_MUX_DOCK = 4,
2536        USB_PD_CTRL_MUX_AUTO = 5,
2537};
2538
2539struct ec_params_usb_pd_control {
2540        uint8_t port;
2541        uint8_t role;
2542        uint8_t mux;
2543} __packed;
2544
2545/*****************************************************************************/
2546/*
2547 * Passthru commands
2548 *
2549 * Some platforms have sub-processors chained to each other.  For example.
2550 *
2551 *     AP <--> EC <--> PD MCU
2552 *
2553 * The top 2 bits of the command number are used to indicate which device the
2554 * command is intended for.  Device 0 is always the device receiving the
2555 * command; other device mapping is board-specific.
2556 *
2557 * When a device receives a command to be passed to a sub-processor, it passes
2558 * it on with the device number set back to 0.  This allows the sub-processor
2559 * to remain blissfully unaware of whether the command originated on the next
2560 * device up the chain, or was passed through from the AP.
2561 *
2562 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
2563 *     AP sends command 0x4002 to the EC
2564 *     EC sends command 0x0002 to the PD MCU
2565 *     EC forwards PD MCU response back to the AP
2566 */
2567
2568/* Offset and max command number for sub-device n */
2569#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
2570#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
2571
2572/*****************************************************************************/
2573/*
2574 * Deprecated constants. These constants have been renamed for clarity. The
2575 * meaning and size has not changed. Programs that use the old names should
2576 * switch to the new names soon, as the old names may not be carried forward
2577 * forever.
2578 */
2579#define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
2580#define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
2581#define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
2582
2583#endif  /* __CROS_EC_COMMANDS_H */
2584