linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <linux/page-flags-layout.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coalesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38enum {
  39        MIGRATE_UNMOVABLE,
  40        MIGRATE_RECLAIMABLE,
  41        MIGRATE_MOVABLE,
  42        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  43        MIGRATE_RESERVE = MIGRATE_PCPTYPES,
  44#ifdef CONFIG_CMA
  45        /*
  46         * MIGRATE_CMA migration type is designed to mimic the way
  47         * ZONE_MOVABLE works.  Only movable pages can be allocated
  48         * from MIGRATE_CMA pageblocks and page allocator never
  49         * implicitly change migration type of MIGRATE_CMA pageblock.
  50         *
  51         * The way to use it is to change migratetype of a range of
  52         * pageblocks to MIGRATE_CMA which can be done by
  53         * __free_pageblock_cma() function.  What is important though
  54         * is that a range of pageblocks must be aligned to
  55         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  56         * a single pageblock.
  57         */
  58        MIGRATE_CMA,
  59#endif
  60#ifdef CONFIG_MEMORY_ISOLATION
  61        MIGRATE_ISOLATE,        /* can't allocate from here */
  62#endif
  63        MIGRATE_TYPES
  64};
  65
  66#ifdef CONFIG_CMA
  67#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  68#else
  69#  define is_migrate_cma(migratetype) false
  70#endif
  71
  72#define for_each_migratetype_order(order, type) \
  73        for (order = 0; order < MAX_ORDER; order++) \
  74                for (type = 0; type < MIGRATE_TYPES; type++)
  75
  76extern int page_group_by_mobility_disabled;
  77
  78#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  79#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  80
  81#define get_pageblock_migratetype(page)                                 \
  82        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  83                        PB_migrate_end, MIGRATETYPE_MASK)
  84
  85static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  86{
  87        BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
  88        return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
  89                                        MIGRATETYPE_MASK);
  90}
  91
  92struct free_area {
  93        struct list_head        free_list[MIGRATE_TYPES];
  94        unsigned long           nr_free;
  95};
  96
  97struct pglist_data;
  98
  99/*
 100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 101 * So add a wild amount of padding here to ensure that they fall into separate
 102 * cachelines.  There are very few zone structures in the machine, so space
 103 * consumption is not a concern here.
 104 */
 105#if defined(CONFIG_SMP)
 106struct zone_padding {
 107        char x[0];
 108} ____cacheline_internodealigned_in_smp;
 109#define ZONE_PADDING(name)      struct zone_padding name;
 110#else
 111#define ZONE_PADDING(name)
 112#endif
 113
 114enum zone_stat_item {
 115        /* First 128 byte cacheline (assuming 64 bit words) */
 116        NR_FREE_PAGES,
 117        NR_ALLOC_BATCH,
 118        NR_LRU_BASE,
 119        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 120        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 121        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 122        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 123        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 124        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 125        NR_ANON_PAGES,  /* Mapped anonymous pages */
 126        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 127                           only modified from process context */
 128        NR_FILE_PAGES,
 129        NR_FILE_DIRTY,
 130        NR_WRITEBACK,
 131        NR_SLAB_RECLAIMABLE,
 132        NR_SLAB_UNRECLAIMABLE,
 133        NR_PAGETABLE,           /* used for pagetables */
 134        NR_KERNEL_STACK,
 135        /* Second 128 byte cacheline */
 136        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 137        NR_BOUNCE,
 138        NR_VMSCAN_WRITE,
 139        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 140        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 141        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 142        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 143        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 144        NR_DIRTIED,             /* page dirtyings since bootup */
 145        NR_WRITTEN,             /* page writings since bootup */
 146        NR_PAGES_SCANNED,       /* pages scanned since last reclaim */
 147#ifdef CONFIG_NUMA
 148        NUMA_HIT,               /* allocated in intended node */
 149        NUMA_MISS,              /* allocated in non intended node */
 150        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 151        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 152        NUMA_LOCAL,             /* allocation from local node */
 153        NUMA_OTHER,             /* allocation from other node */
 154#endif
 155        WORKINGSET_REFAULT,
 156        WORKINGSET_ACTIVATE,
 157        WORKINGSET_NODERECLAIM,
 158        NR_ANON_TRANSPARENT_HUGEPAGES,
 159        NR_FREE_CMA_PAGES,
 160        NR_VM_ZONE_STAT_ITEMS };
 161
 162/*
 163 * We do arithmetic on the LRU lists in various places in the code,
 164 * so it is important to keep the active lists LRU_ACTIVE higher in
 165 * the array than the corresponding inactive lists, and to keep
 166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 167 *
 168 * This has to be kept in sync with the statistics in zone_stat_item
 169 * above and the descriptions in vmstat_text in mm/vmstat.c
 170 */
 171#define LRU_BASE 0
 172#define LRU_ACTIVE 1
 173#define LRU_FILE 2
 174
 175enum lru_list {
 176        LRU_INACTIVE_ANON = LRU_BASE,
 177        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 178        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 179        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 180        LRU_UNEVICTABLE,
 181        NR_LRU_LISTS
 182};
 183
 184#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 185
 186#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 187
 188static inline int is_file_lru(enum lru_list lru)
 189{
 190        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 191}
 192
 193static inline int is_active_lru(enum lru_list lru)
 194{
 195        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 196}
 197
 198static inline int is_unevictable_lru(enum lru_list lru)
 199{
 200        return (lru == LRU_UNEVICTABLE);
 201}
 202
 203struct zone_reclaim_stat {
 204        /*
 205         * The pageout code in vmscan.c keeps track of how many of the
 206         * mem/swap backed and file backed pages are referenced.
 207         * The higher the rotated/scanned ratio, the more valuable
 208         * that cache is.
 209         *
 210         * The anon LRU stats live in [0], file LRU stats in [1]
 211         */
 212        unsigned long           recent_rotated[2];
 213        unsigned long           recent_scanned[2];
 214};
 215
 216struct lruvec {
 217        struct list_head lists[NR_LRU_LISTS];
 218        struct zone_reclaim_stat reclaim_stat;
 219#ifdef CONFIG_MEMCG
 220        struct zone *zone;
 221#endif
 222};
 223
 224/* Mask used at gathering information at once (see memcontrol.c) */
 225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 227#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 228
 229/* Isolate clean file */
 230#define ISOLATE_CLEAN           ((__force isolate_mode_t)0x1)
 231/* Isolate unmapped file */
 232#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 233/* Isolate for asynchronous migration */
 234#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 235/* Isolate unevictable pages */
 236#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 237
 238/* LRU Isolation modes. */
 239typedef unsigned __bitwise__ isolate_mode_t;
 240
 241enum zone_watermarks {
 242        WMARK_MIN,
 243        WMARK_LOW,
 244        WMARK_HIGH,
 245        NR_WMARK
 246};
 247
 248#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 249#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 251
 252struct per_cpu_pages {
 253        int count;              /* number of pages in the list */
 254        int high;               /* high watermark, emptying needed */
 255        int batch;              /* chunk size for buddy add/remove */
 256
 257        /* Lists of pages, one per migrate type stored on the pcp-lists */
 258        struct list_head lists[MIGRATE_PCPTYPES];
 259};
 260
 261struct per_cpu_pageset {
 262        struct per_cpu_pages pcp;
 263#ifdef CONFIG_NUMA
 264        s8 expire;
 265#endif
 266#ifdef CONFIG_SMP
 267        s8 stat_threshold;
 268        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 269#endif
 270};
 271
 272#endif /* !__GENERATING_BOUNDS.H */
 273
 274enum zone_type {
 275#ifdef CONFIG_ZONE_DMA
 276        /*
 277         * ZONE_DMA is used when there are devices that are not able
 278         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 279         * carve out the portion of memory that is needed for these devices.
 280         * The range is arch specific.
 281         *
 282         * Some examples
 283         *
 284         * Architecture         Limit
 285         * ---------------------------
 286         * parisc, ia64, sparc  <4G
 287         * s390                 <2G
 288         * arm                  Various
 289         * alpha                Unlimited or 0-16MB.
 290         *
 291         * i386, x86_64 and multiple other arches
 292         *                      <16M.
 293         */
 294        ZONE_DMA,
 295#endif
 296#ifdef CONFIG_ZONE_DMA32
 297        /*
 298         * x86_64 needs two ZONE_DMAs because it supports devices that are
 299         * only able to do DMA to the lower 16M but also 32 bit devices that
 300         * can only do DMA areas below 4G.
 301         */
 302        ZONE_DMA32,
 303#endif
 304        /*
 305         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 306         * performed on pages in ZONE_NORMAL if the DMA devices support
 307         * transfers to all addressable memory.
 308         */
 309        ZONE_NORMAL,
 310#ifdef CONFIG_HIGHMEM
 311        /*
 312         * A memory area that is only addressable by the kernel through
 313         * mapping portions into its own address space. This is for example
 314         * used by i386 to allow the kernel to address the memory beyond
 315         * 900MB. The kernel will set up special mappings (page
 316         * table entries on i386) for each page that the kernel needs to
 317         * access.
 318         */
 319        ZONE_HIGHMEM,
 320#endif
 321        ZONE_MOVABLE,
 322        __MAX_NR_ZONES
 323};
 324
 325#ifndef __GENERATING_BOUNDS_H
 326
 327struct zone {
 328        /* Read-mostly fields */
 329
 330        /* zone watermarks, access with *_wmark_pages(zone) macros */
 331        unsigned long watermark[NR_WMARK];
 332
 333        /*
 334         * We don't know if the memory that we're going to allocate will be freeable
 335         * or/and it will be released eventually, so to avoid totally wasting several
 336         * GB of ram we must reserve some of the lower zone memory (otherwise we risk
 337         * to run OOM on the lower zones despite there's tons of freeable ram
 338         * on the higher zones). This array is recalculated at runtime if the
 339         * sysctl_lowmem_reserve_ratio sysctl changes.
 340         */
 341        long lowmem_reserve[MAX_NR_ZONES];
 342
 343#ifdef CONFIG_NUMA
 344        int node;
 345#endif
 346
 347        /*
 348         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 349         * this zone's LRU.  Maintained by the pageout code.
 350         */
 351        unsigned int inactive_ratio;
 352
 353        struct pglist_data      *zone_pgdat;
 354        struct per_cpu_pageset __percpu *pageset;
 355
 356        /*
 357         * This is a per-zone reserve of pages that should not be
 358         * considered dirtyable memory.
 359         */
 360        unsigned long           dirty_balance_reserve;
 361
 362#ifndef CONFIG_SPARSEMEM
 363        /*
 364         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 365         * In SPARSEMEM, this map is stored in struct mem_section
 366         */
 367        unsigned long           *pageblock_flags;
 368#endif /* CONFIG_SPARSEMEM */
 369
 370#ifdef CONFIG_NUMA
 371        /*
 372         * zone reclaim becomes active if more unmapped pages exist.
 373         */
 374        unsigned long           min_unmapped_pages;
 375        unsigned long           min_slab_pages;
 376#endif /* CONFIG_NUMA */
 377
 378        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 379        unsigned long           zone_start_pfn;
 380
 381        /*
 382         * spanned_pages is the total pages spanned by the zone, including
 383         * holes, which is calculated as:
 384         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 385         *
 386         * present_pages is physical pages existing within the zone, which
 387         * is calculated as:
 388         *      present_pages = spanned_pages - absent_pages(pages in holes);
 389         *
 390         * managed_pages is present pages managed by the buddy system, which
 391         * is calculated as (reserved_pages includes pages allocated by the
 392         * bootmem allocator):
 393         *      managed_pages = present_pages - reserved_pages;
 394         *
 395         * So present_pages may be used by memory hotplug or memory power
 396         * management logic to figure out unmanaged pages by checking
 397         * (present_pages - managed_pages). And managed_pages should be used
 398         * by page allocator and vm scanner to calculate all kinds of watermarks
 399         * and thresholds.
 400         *
 401         * Locking rules:
 402         *
 403         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 404         * It is a seqlock because it has to be read outside of zone->lock,
 405         * and it is done in the main allocator path.  But, it is written
 406         * quite infrequently.
 407         *
 408         * The span_seq lock is declared along with zone->lock because it is
 409         * frequently read in proximity to zone->lock.  It's good to
 410         * give them a chance of being in the same cacheline.
 411         *
 412         * Write access to present_pages at runtime should be protected by
 413         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 414         * present_pages should get_online_mems() to get a stable value.
 415         *
 416         * Read access to managed_pages should be safe because it's unsigned
 417         * long. Write access to zone->managed_pages and totalram_pages are
 418         * protected by managed_page_count_lock at runtime. Idealy only
 419         * adjust_managed_page_count() should be used instead of directly
 420         * touching zone->managed_pages and totalram_pages.
 421         */
 422        unsigned long           managed_pages;
 423        unsigned long           spanned_pages;
 424        unsigned long           present_pages;
 425
 426        const char              *name;
 427
 428        /*
 429         * Number of MIGRATE_RESERVE page block. To maintain for just
 430         * optimization. Protected by zone->lock.
 431         */
 432        int                     nr_migrate_reserve_block;
 433
 434#ifdef CONFIG_MEMORY_ISOLATION
 435        /*
 436         * Number of isolated pageblock. It is used to solve incorrect
 437         * freepage counting problem due to racy retrieving migratetype
 438         * of pageblock. Protected by zone->lock.
 439         */
 440        unsigned long           nr_isolate_pageblock;
 441#endif
 442
 443#ifdef CONFIG_MEMORY_HOTPLUG
 444        /* see spanned/present_pages for more description */
 445        seqlock_t               span_seqlock;
 446#endif
 447
 448        /*
 449         * wait_table           -- the array holding the hash table
 450         * wait_table_hash_nr_entries   -- the size of the hash table array
 451         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
 452         *
 453         * The purpose of all these is to keep track of the people
 454         * waiting for a page to become available and make them
 455         * runnable again when possible. The trouble is that this
 456         * consumes a lot of space, especially when so few things
 457         * wait on pages at a given time. So instead of using
 458         * per-page waitqueues, we use a waitqueue hash table.
 459         *
 460         * The bucket discipline is to sleep on the same queue when
 461         * colliding and wake all in that wait queue when removing.
 462         * When something wakes, it must check to be sure its page is
 463         * truly available, a la thundering herd. The cost of a
 464         * collision is great, but given the expected load of the
 465         * table, they should be so rare as to be outweighed by the
 466         * benefits from the saved space.
 467         *
 468         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 469         * primary users of these fields, and in mm/page_alloc.c
 470         * free_area_init_core() performs the initialization of them.
 471         */
 472        wait_queue_head_t       *wait_table;
 473        unsigned long           wait_table_hash_nr_entries;
 474        unsigned long           wait_table_bits;
 475
 476        ZONE_PADDING(_pad1_)
 477        /* free areas of different sizes */
 478        struct free_area        free_area[MAX_ORDER];
 479
 480        /* zone flags, see below */
 481        unsigned long           flags;
 482
 483        /* Write-intensive fields used from the page allocator */
 484        spinlock_t              lock;
 485
 486        ZONE_PADDING(_pad2_)
 487
 488        /* Write-intensive fields used by page reclaim */
 489
 490        /* Fields commonly accessed by the page reclaim scanner */
 491        spinlock_t              lru_lock;
 492        struct lruvec           lruvec;
 493
 494        /* Evictions & activations on the inactive file list */
 495        atomic_long_t           inactive_age;
 496
 497        /*
 498         * When free pages are below this point, additional steps are taken
 499         * when reading the number of free pages to avoid per-cpu counter
 500         * drift allowing watermarks to be breached
 501         */
 502        unsigned long percpu_drift_mark;
 503
 504#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 505        /* pfn where compaction free scanner should start */
 506        unsigned long           compact_cached_free_pfn;
 507        /* pfn where async and sync compaction migration scanner should start */
 508        unsigned long           compact_cached_migrate_pfn[2];
 509#endif
 510
 511#ifdef CONFIG_COMPACTION
 512        /*
 513         * On compaction failure, 1<<compact_defer_shift compactions
 514         * are skipped before trying again. The number attempted since
 515         * last failure is tracked with compact_considered.
 516         */
 517        unsigned int            compact_considered;
 518        unsigned int            compact_defer_shift;
 519        int                     compact_order_failed;
 520#endif
 521
 522#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 523        /* Set to true when the PG_migrate_skip bits should be cleared */
 524        bool                    compact_blockskip_flush;
 525#endif
 526
 527        ZONE_PADDING(_pad3_)
 528        /* Zone statistics */
 529        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 530} ____cacheline_internodealigned_in_smp;
 531
 532enum zone_flags {
 533        ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
 534        ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
 535        ZONE_CONGESTED,                 /* zone has many dirty pages backed by
 536                                         * a congested BDI
 537                                         */
 538        ZONE_DIRTY,                     /* reclaim scanning has recently found
 539                                         * many dirty file pages at the tail
 540                                         * of the LRU.
 541                                         */
 542        ZONE_WRITEBACK,                 /* reclaim scanning has recently found
 543                                         * many pages under writeback
 544                                         */
 545        ZONE_FAIR_DEPLETED,             /* fair zone policy batch depleted */
 546};
 547
 548static inline unsigned long zone_end_pfn(const struct zone *zone)
 549{
 550        return zone->zone_start_pfn + zone->spanned_pages;
 551}
 552
 553static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 554{
 555        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 556}
 557
 558static inline bool zone_is_initialized(struct zone *zone)
 559{
 560        return !!zone->wait_table;
 561}
 562
 563static inline bool zone_is_empty(struct zone *zone)
 564{
 565        return zone->spanned_pages == 0;
 566}
 567
 568/*
 569 * The "priority" of VM scanning is how much of the queues we will scan in one
 570 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 571 * queues ("queue_length >> 12") during an aging round.
 572 */
 573#define DEF_PRIORITY 12
 574
 575/* Maximum number of zones on a zonelist */
 576#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 577
 578#ifdef CONFIG_NUMA
 579
 580/*
 581 * The NUMA zonelists are doubled because we need zonelists that restrict the
 582 * allocations to a single node for __GFP_THISNODE.
 583 *
 584 * [0]  : Zonelist with fallback
 585 * [1]  : No fallback (__GFP_THISNODE)
 586 */
 587#define MAX_ZONELISTS 2
 588
 589
 590/*
 591 * We cache key information from each zonelist for smaller cache
 592 * footprint when scanning for free pages in get_page_from_freelist().
 593 *
 594 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 595 *    up short of free memory since the last time (last_fullzone_zap)
 596 *    we zero'd fullzones.
 597 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 598 *    id, so that we can efficiently evaluate whether that node is
 599 *    set in the current tasks mems_allowed.
 600 *
 601 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 602 * indexed by a zones offset in the zonelist zones[] array.
 603 *
 604 * The get_page_from_freelist() routine does two scans.  During the
 605 * first scan, we skip zones whose corresponding bit in 'fullzones'
 606 * is set or whose corresponding node in current->mems_allowed (which
 607 * comes from cpusets) is not set.  During the second scan, we bypass
 608 * this zonelist_cache, to ensure we look methodically at each zone.
 609 *
 610 * Once per second, we zero out (zap) fullzones, forcing us to
 611 * reconsider nodes that might have regained more free memory.
 612 * The field last_full_zap is the time we last zapped fullzones.
 613 *
 614 * This mechanism reduces the amount of time we waste repeatedly
 615 * reexaming zones for free memory when they just came up low on
 616 * memory momentarilly ago.
 617 *
 618 * The zonelist_cache struct members logically belong in struct
 619 * zonelist.  However, the mempolicy zonelists constructed for
 620 * MPOL_BIND are intentionally variable length (and usually much
 621 * shorter).  A general purpose mechanism for handling structs with
 622 * multiple variable length members is more mechanism than we want
 623 * here.  We resort to some special case hackery instead.
 624 *
 625 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 626 * part because they are shorter), so we put the fixed length stuff
 627 * at the front of the zonelist struct, ending in a variable length
 628 * zones[], as is needed by MPOL_BIND.
 629 *
 630 * Then we put the optional zonelist cache on the end of the zonelist
 631 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 632 * the fixed length portion at the front of the struct.  This pointer
 633 * both enables us to find the zonelist cache, and in the case of
 634 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 635 * to know that the zonelist cache is not there.
 636 *
 637 * The end result is that struct zonelists come in two flavors:
 638 *  1) The full, fixed length version, shown below, and
 639 *  2) The custom zonelists for MPOL_BIND.
 640 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 641 *
 642 * Even though there may be multiple CPU cores on a node modifying
 643 * fullzones or last_full_zap in the same zonelist_cache at the same
 644 * time, we don't lock it.  This is just hint data - if it is wrong now
 645 * and then, the allocator will still function, perhaps a bit slower.
 646 */
 647
 648
 649struct zonelist_cache {
 650        unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
 651        DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
 652        unsigned long last_full_zap;            /* when last zap'd (jiffies) */
 653};
 654#else
 655#define MAX_ZONELISTS 1
 656struct zonelist_cache;
 657#endif
 658
 659/*
 660 * This struct contains information about a zone in a zonelist. It is stored
 661 * here to avoid dereferences into large structures and lookups of tables
 662 */
 663struct zoneref {
 664        struct zone *zone;      /* Pointer to actual zone */
 665        int zone_idx;           /* zone_idx(zoneref->zone) */
 666};
 667
 668/*
 669 * One allocation request operates on a zonelist. A zonelist
 670 * is a list of zones, the first one is the 'goal' of the
 671 * allocation, the other zones are fallback zones, in decreasing
 672 * priority.
 673 *
 674 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 675 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
 676 * *
 677 * To speed the reading of the zonelist, the zonerefs contain the zone index
 678 * of the entry being read. Helper functions to access information given
 679 * a struct zoneref are
 680 *
 681 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 682 * zonelist_zone_idx()  - Return the index of the zone for an entry
 683 * zonelist_node_idx()  - Return the index of the node for an entry
 684 */
 685struct zonelist {
 686        struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
 687        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 688#ifdef CONFIG_NUMA
 689        struct zonelist_cache zlcache;                       // optional ...
 690#endif
 691};
 692
 693#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 694struct node_active_region {
 695        unsigned long start_pfn;
 696        unsigned long end_pfn;
 697        int nid;
 698};
 699#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 700
 701#ifndef CONFIG_DISCONTIGMEM
 702/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 703extern struct page *mem_map;
 704#endif
 705
 706/*
 707 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 708 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 709 * zone denotes.
 710 *
 711 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 712 * it's memory layout.
 713 *
 714 * Memory statistics and page replacement data structures are maintained on a
 715 * per-zone basis.
 716 */
 717struct bootmem_data;
 718typedef struct pglist_data {
 719        struct zone node_zones[MAX_NR_ZONES];
 720        struct zonelist node_zonelists[MAX_ZONELISTS];
 721        int nr_zones;
 722#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 723        struct page *node_mem_map;
 724#ifdef CONFIG_PAGE_EXTENSION
 725        struct page_ext *node_page_ext;
 726#endif
 727#endif
 728#ifndef CONFIG_NO_BOOTMEM
 729        struct bootmem_data *bdata;
 730#endif
 731#ifdef CONFIG_MEMORY_HOTPLUG
 732        /*
 733         * Must be held any time you expect node_start_pfn, node_present_pages
 734         * or node_spanned_pages stay constant.  Holding this will also
 735         * guarantee that any pfn_valid() stays that way.
 736         *
 737         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 738         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
 739         *
 740         * Nests above zone->lock and zone->span_seqlock
 741         */
 742        spinlock_t node_size_lock;
 743#endif
 744        unsigned long node_start_pfn;
 745        unsigned long node_present_pages; /* total number of physical pages */
 746        unsigned long node_spanned_pages; /* total size of physical page
 747                                             range, including holes */
 748        int node_id;
 749        wait_queue_head_t kswapd_wait;
 750        wait_queue_head_t pfmemalloc_wait;
 751        struct task_struct *kswapd;     /* Protected by
 752                                           mem_hotplug_begin/end() */
 753        int kswapd_max_order;
 754        enum zone_type classzone_idx;
 755#ifdef CONFIG_NUMA_BALANCING
 756        /* Lock serializing the migrate rate limiting window */
 757        spinlock_t numabalancing_migrate_lock;
 758
 759        /* Rate limiting time interval */
 760        unsigned long numabalancing_migrate_next_window;
 761
 762        /* Number of pages migrated during the rate limiting time interval */
 763        unsigned long numabalancing_migrate_nr_pages;
 764#endif
 765
 766#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 767        /*
 768         * If memory initialisation on large machines is deferred then this
 769         * is the first PFN that needs to be initialised.
 770         */
 771        unsigned long first_deferred_pfn;
 772#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 773} pg_data_t;
 774
 775#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 776#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 777#ifdef CONFIG_FLAT_NODE_MEM_MAP
 778#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 779#else
 780#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 781#endif
 782#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 783
 784#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 785#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 786
 787static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 788{
 789        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 790}
 791
 792static inline bool pgdat_is_empty(pg_data_t *pgdat)
 793{
 794        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 795}
 796
 797#include <linux/memory_hotplug.h>
 798
 799extern struct mutex zonelists_mutex;
 800void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
 801void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 802bool zone_watermark_ok(struct zone *z, unsigned int order,
 803                unsigned long mark, int classzone_idx, int alloc_flags);
 804bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 805                unsigned long mark, int classzone_idx, int alloc_flags);
 806enum memmap_context {
 807        MEMMAP_EARLY,
 808        MEMMAP_HOTPLUG,
 809};
 810extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 811                                     unsigned long size,
 812                                     enum memmap_context context);
 813
 814extern void lruvec_init(struct lruvec *lruvec);
 815
 816static inline struct zone *lruvec_zone(struct lruvec *lruvec)
 817{
 818#ifdef CONFIG_MEMCG
 819        return lruvec->zone;
 820#else
 821        return container_of(lruvec, struct zone, lruvec);
 822#endif
 823}
 824
 825#ifdef CONFIG_HAVE_MEMORY_PRESENT
 826void memory_present(int nid, unsigned long start, unsigned long end);
 827#else
 828static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 829#endif
 830
 831#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 832int local_memory_node(int node_id);
 833#else
 834static inline int local_memory_node(int node_id) { return node_id; };
 835#endif
 836
 837#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 838unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 839#endif
 840
 841/*
 842 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 843 */
 844#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 845
 846static inline int populated_zone(struct zone *zone)
 847{
 848        return (!!zone->present_pages);
 849}
 850
 851extern int movable_zone;
 852
 853#ifdef CONFIG_HIGHMEM
 854static inline int zone_movable_is_highmem(void)
 855{
 856#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 857        return movable_zone == ZONE_HIGHMEM;
 858#else
 859        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 860#endif
 861}
 862#endif
 863
 864static inline int is_highmem_idx(enum zone_type idx)
 865{
 866#ifdef CONFIG_HIGHMEM
 867        return (idx == ZONE_HIGHMEM ||
 868                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 869#else
 870        return 0;
 871#endif
 872}
 873
 874/**
 875 * is_highmem - helper function to quickly check if a struct zone is a 
 876 *              highmem zone or not.  This is an attempt to keep references
 877 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 878 * @zone - pointer to struct zone variable
 879 */
 880static inline int is_highmem(struct zone *zone)
 881{
 882#ifdef CONFIG_HIGHMEM
 883        int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
 884        return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
 885               (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
 886                zone_movable_is_highmem());
 887#else
 888        return 0;
 889#endif
 890}
 891
 892/* These two functions are used to setup the per zone pages min values */
 893struct ctl_table;
 894int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 895                                        void __user *, size_t *, loff_t *);
 896extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 897int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 898                                        void __user *, size_t *, loff_t *);
 899int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 900                                        void __user *, size_t *, loff_t *);
 901int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 902                        void __user *, size_t *, loff_t *);
 903int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 904                        void __user *, size_t *, loff_t *);
 905
 906extern int numa_zonelist_order_handler(struct ctl_table *, int,
 907                        void __user *, size_t *, loff_t *);
 908extern char numa_zonelist_order[];
 909#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 910
 911#ifndef CONFIG_NEED_MULTIPLE_NODES
 912
 913extern struct pglist_data contig_page_data;
 914#define NODE_DATA(nid)          (&contig_page_data)
 915#define NODE_MEM_MAP(nid)       mem_map
 916
 917#else /* CONFIG_NEED_MULTIPLE_NODES */
 918
 919#include <asm/mmzone.h>
 920
 921#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 922
 923extern struct pglist_data *first_online_pgdat(void);
 924extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 925extern struct zone *next_zone(struct zone *zone);
 926
 927/**
 928 * for_each_online_pgdat - helper macro to iterate over all online nodes
 929 * @pgdat - pointer to a pg_data_t variable
 930 */
 931#define for_each_online_pgdat(pgdat)                    \
 932        for (pgdat = first_online_pgdat();              \
 933             pgdat;                                     \
 934             pgdat = next_online_pgdat(pgdat))
 935/**
 936 * for_each_zone - helper macro to iterate over all memory zones
 937 * @zone - pointer to struct zone variable
 938 *
 939 * The user only needs to declare the zone variable, for_each_zone
 940 * fills it in.
 941 */
 942#define for_each_zone(zone)                             \
 943        for (zone = (first_online_pgdat())->node_zones; \
 944             zone;                                      \
 945             zone = next_zone(zone))
 946
 947#define for_each_populated_zone(zone)                   \
 948        for (zone = (first_online_pgdat())->node_zones; \
 949             zone;                                      \
 950             zone = next_zone(zone))                    \
 951                if (!populated_zone(zone))              \
 952                        ; /* do nothing */              \
 953                else
 954
 955static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 956{
 957        return zoneref->zone;
 958}
 959
 960static inline int zonelist_zone_idx(struct zoneref *zoneref)
 961{
 962        return zoneref->zone_idx;
 963}
 964
 965static inline int zonelist_node_idx(struct zoneref *zoneref)
 966{
 967#ifdef CONFIG_NUMA
 968        /* zone_to_nid not available in this context */
 969        return zoneref->zone->node;
 970#else
 971        return 0;
 972#endif /* CONFIG_NUMA */
 973}
 974
 975/**
 976 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 977 * @z - The cursor used as a starting point for the search
 978 * @highest_zoneidx - The zone index of the highest zone to return
 979 * @nodes - An optional nodemask to filter the zonelist with
 980 *
 981 * This function returns the next zone at or below a given zone index that is
 982 * within the allowed nodemask using a cursor as the starting point for the
 983 * search. The zoneref returned is a cursor that represents the current zone
 984 * being examined. It should be advanced by one before calling
 985 * next_zones_zonelist again.
 986 */
 987struct zoneref *next_zones_zonelist(struct zoneref *z,
 988                                        enum zone_type highest_zoneidx,
 989                                        nodemask_t *nodes);
 990
 991/**
 992 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 993 * @zonelist - The zonelist to search for a suitable zone
 994 * @highest_zoneidx - The zone index of the highest zone to return
 995 * @nodes - An optional nodemask to filter the zonelist with
 996 * @zone - The first suitable zone found is returned via this parameter
 997 *
 998 * This function returns the first zone at or below a given zone index that is
 999 * within the allowed nodemask. The zoneref returned is a cursor that can be
1000 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1001 * one before calling.
1002 */
1003static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1004                                        enum zone_type highest_zoneidx,
1005                                        nodemask_t *nodes,
1006                                        struct zone **zone)
1007{
1008        struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
1009                                                        highest_zoneidx, nodes);
1010        *zone = zonelist_zone(z);
1011        return z;
1012}
1013
1014/**
1015 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1016 * @zone - The current zone in the iterator
1017 * @z - The current pointer within zonelist->zones being iterated
1018 * @zlist - The zonelist being iterated
1019 * @highidx - The zone index of the highest zone to return
1020 * @nodemask - Nodemask allowed by the allocator
1021 *
1022 * This iterator iterates though all zones at or below a given zone index and
1023 * within a given nodemask
1024 */
1025#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1026        for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1027                zone;                                                   \
1028                z = next_zones_zonelist(++z, highidx, nodemask),        \
1029                        zone = zonelist_zone(z))                        \
1030
1031/**
1032 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1033 * @zone - The current zone in the iterator
1034 * @z - The current pointer within zonelist->zones being iterated
1035 * @zlist - The zonelist being iterated
1036 * @highidx - The zone index of the highest zone to return
1037 *
1038 * This iterator iterates though all zones at or below a given zone index.
1039 */
1040#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1041        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1042
1043#ifdef CONFIG_SPARSEMEM
1044#include <asm/sparsemem.h>
1045#endif
1046
1047#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1048        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1049static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1050{
1051        return 0;
1052}
1053#endif
1054
1055#ifdef CONFIG_FLATMEM
1056#define pfn_to_nid(pfn)         (0)
1057#endif
1058
1059#ifdef CONFIG_SPARSEMEM
1060
1061/*
1062 * SECTION_SHIFT                #bits space required to store a section #
1063 *
1064 * PA_SECTION_SHIFT             physical address to/from section number
1065 * PFN_SECTION_SHIFT            pfn to/from section number
1066 */
1067#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1068#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1069
1070#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1071
1072#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1073#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1074
1075#define SECTION_BLOCKFLAGS_BITS \
1076        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1077
1078#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1079#error Allocator MAX_ORDER exceeds SECTION_SIZE
1080#endif
1081
1082#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1083#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1084
1085#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1086#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1087
1088struct page;
1089struct page_ext;
1090struct mem_section {
1091        /*
1092         * This is, logically, a pointer to an array of struct
1093         * pages.  However, it is stored with some other magic.
1094         * (see sparse.c::sparse_init_one_section())
1095         *
1096         * Additionally during early boot we encode node id of
1097         * the location of the section here to guide allocation.
1098         * (see sparse.c::memory_present())
1099         *
1100         * Making it a UL at least makes someone do a cast
1101         * before using it wrong.
1102         */
1103        unsigned long section_mem_map;
1104
1105        /* See declaration of similar field in struct zone */
1106        unsigned long *pageblock_flags;
1107#ifdef CONFIG_PAGE_EXTENSION
1108        /*
1109         * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1110         * section. (see page_ext.h about this.)
1111         */
1112        struct page_ext *page_ext;
1113        unsigned long pad;
1114#endif
1115        /*
1116         * WARNING: mem_section must be a power-of-2 in size for the
1117         * calculation and use of SECTION_ROOT_MASK to make sense.
1118         */
1119};
1120
1121#ifdef CONFIG_SPARSEMEM_EXTREME
1122#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1123#else
1124#define SECTIONS_PER_ROOT       1
1125#endif
1126
1127#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1128#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1129#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1130
1131#ifdef CONFIG_SPARSEMEM_EXTREME
1132extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1133#else
1134extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1135#endif
1136
1137static inline struct mem_section *__nr_to_section(unsigned long nr)
1138{
1139        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1140                return NULL;
1141        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1142}
1143extern int __section_nr(struct mem_section* ms);
1144extern unsigned long usemap_size(void);
1145
1146/*
1147 * We use the lower bits of the mem_map pointer to store
1148 * a little bit of information.  There should be at least
1149 * 3 bits here due to 32-bit alignment.
1150 */
1151#define SECTION_MARKED_PRESENT  (1UL<<0)
1152#define SECTION_HAS_MEM_MAP     (1UL<<1)
1153#define SECTION_MAP_LAST_BIT    (1UL<<2)
1154#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1155#define SECTION_NID_SHIFT       2
1156
1157static inline struct page *__section_mem_map_addr(struct mem_section *section)
1158{
1159        unsigned long map = section->section_mem_map;
1160        map &= SECTION_MAP_MASK;
1161        return (struct page *)map;
1162}
1163
1164static inline int present_section(struct mem_section *section)
1165{
1166        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1167}
1168
1169static inline int present_section_nr(unsigned long nr)
1170{
1171        return present_section(__nr_to_section(nr));
1172}
1173
1174static inline int valid_section(struct mem_section *section)
1175{
1176        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1177}
1178
1179static inline int valid_section_nr(unsigned long nr)
1180{
1181        return valid_section(__nr_to_section(nr));
1182}
1183
1184static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1185{
1186        return __nr_to_section(pfn_to_section_nr(pfn));
1187}
1188
1189#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1190static inline int pfn_valid(unsigned long pfn)
1191{
1192        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1193                return 0;
1194        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1195}
1196#endif
1197
1198static inline int pfn_present(unsigned long pfn)
1199{
1200        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1201                return 0;
1202        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1203}
1204
1205/*
1206 * These are _only_ used during initialisation, therefore they
1207 * can use __initdata ...  They could have names to indicate
1208 * this restriction.
1209 */
1210#ifdef CONFIG_NUMA
1211#define pfn_to_nid(pfn)                                                 \
1212({                                                                      \
1213        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1214        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1215})
1216#else
1217#define pfn_to_nid(pfn)         (0)
1218#endif
1219
1220#define early_pfn_valid(pfn)    pfn_valid(pfn)
1221void sparse_init(void);
1222#else
1223#define sparse_init()   do {} while (0)
1224#define sparse_index_init(_sec, _nid)  do {} while (0)
1225#endif /* CONFIG_SPARSEMEM */
1226
1227/*
1228 * During memory init memblocks map pfns to nids. The search is expensive and
1229 * this caches recent lookups. The implementation of __early_pfn_to_nid
1230 * may treat start/end as pfns or sections.
1231 */
1232struct mminit_pfnnid_cache {
1233        unsigned long last_start;
1234        unsigned long last_end;
1235        int last_nid;
1236};
1237
1238#ifndef early_pfn_valid
1239#define early_pfn_valid(pfn)    (1)
1240#endif
1241
1242void memory_present(int nid, unsigned long start, unsigned long end);
1243unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1244
1245/*
1246 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1247 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1248 * pfn_valid_within() should be used in this case; we optimise this away
1249 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1250 */
1251#ifdef CONFIG_HOLES_IN_ZONE
1252#define pfn_valid_within(pfn) pfn_valid(pfn)
1253#else
1254#define pfn_valid_within(pfn) (1)
1255#endif
1256
1257#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1258/*
1259 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1260 * associated with it or not. In FLATMEM, it is expected that holes always
1261 * have valid memmap as long as there is valid PFNs either side of the hole.
1262 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1263 * entire section.
1264 *
1265 * However, an ARM, and maybe other embedded architectures in the future
1266 * free memmap backing holes to save memory on the assumption the memmap is
1267 * never used. The page_zone linkages are then broken even though pfn_valid()
1268 * returns true. A walker of the full memmap must then do this additional
1269 * check to ensure the memmap they are looking at is sane by making sure
1270 * the zone and PFN linkages are still valid. This is expensive, but walkers
1271 * of the full memmap are extremely rare.
1272 */
1273int memmap_valid_within(unsigned long pfn,
1274                                        struct page *page, struct zone *zone);
1275#else
1276static inline int memmap_valid_within(unsigned long pfn,
1277                                        struct page *page, struct zone *zone)
1278{
1279        return 1;
1280}
1281#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1282
1283#endif /* !__GENERATING_BOUNDS.H */
1284#endif /* !__ASSEMBLY__ */
1285#endif /* _LINUX_MMZONE_H */
1286