linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/timer.h>
  29#include <linux/bug.h>
  30#include <linux/delay.h>
  31#include <linux/atomic.h>
  32#include <linux/prefetch.h>
  33#include <asm/cache.h>
  34#include <asm/byteorder.h>
  35
  36#include <linux/percpu.h>
  37#include <linux/rculist.h>
  38#include <linux/dmaengine.h>
  39#include <linux/workqueue.h>
  40#include <linux/dynamic_queue_limits.h>
  41
  42#include <linux/ethtool.h>
  43#include <net/net_namespace.h>
  44#include <net/dsa.h>
  45#ifdef CONFIG_DCB
  46#include <net/dcbnl.h>
  47#endif
  48#include <net/netprio_cgroup.h>
  49
  50#include <linux/netdev_features.h>
  51#include <linux/neighbour.h>
  52#include <uapi/linux/netdevice.h>
  53#include <uapi/linux/if_bonding.h>
  54
  55struct netpoll_info;
  56struct device;
  57struct phy_device;
  58/* 802.11 specific */
  59struct wireless_dev;
  60/* 802.15.4 specific */
  61struct wpan_dev;
  62struct mpls_dev;
  63
  64void netdev_set_default_ethtool_ops(struct net_device *dev,
  65                                    const struct ethtool_ops *ops);
  66
  67/* Backlog congestion levels */
  68#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  69#define NET_RX_DROP             1       /* packet dropped */
  70
  71/*
  72 * Transmit return codes: transmit return codes originate from three different
  73 * namespaces:
  74 *
  75 * - qdisc return codes
  76 * - driver transmit return codes
  77 * - errno values
  78 *
  79 * Drivers are allowed to return any one of those in their hard_start_xmit()
  80 * function. Real network devices commonly used with qdiscs should only return
  81 * the driver transmit return codes though - when qdiscs are used, the actual
  82 * transmission happens asynchronously, so the value is not propagated to
  83 * higher layers. Virtual network devices transmit synchronously, in this case
  84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
  85 * others are propagated to higher layers.
  86 */
  87
  88/* qdisc ->enqueue() return codes. */
  89#define NET_XMIT_SUCCESS        0x00
  90#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  91#define NET_XMIT_CN             0x02    /* congestion notification      */
  92#define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
  93#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
  94
  95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
  96 * indicates that the device will soon be dropping packets, or already drops
  97 * some packets of the same priority; prompting us to send less aggressively. */
  98#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
  99#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 100
 101/* Driver transmit return codes */
 102#define NETDEV_TX_MASK          0xf0
 103
 104enum netdev_tx {
 105        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 106        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 107        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 108        NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
 109};
 110typedef enum netdev_tx netdev_tx_t;
 111
 112/*
 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 115 */
 116static inline bool dev_xmit_complete(int rc)
 117{
 118        /*
 119         * Positive cases with an skb consumed by a driver:
 120         * - successful transmission (rc == NETDEV_TX_OK)
 121         * - error while transmitting (rc < 0)
 122         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 123         */
 124        if (likely(rc < NET_XMIT_MASK))
 125                return true;
 126
 127        return false;
 128}
 129
 130/*
 131 *      Compute the worst case header length according to the protocols
 132 *      used.
 133 */
 134
 135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 136# if defined(CONFIG_MAC80211_MESH)
 137#  define LL_MAX_HEADER 128
 138# else
 139#  define LL_MAX_HEADER 96
 140# endif
 141#else
 142# define LL_MAX_HEADER 32
 143#endif
 144
 145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 146    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 147#define MAX_HEADER LL_MAX_HEADER
 148#else
 149#define MAX_HEADER (LL_MAX_HEADER + 48)
 150#endif
 151
 152/*
 153 *      Old network device statistics. Fields are native words
 154 *      (unsigned long) so they can be read and written atomically.
 155 */
 156
 157struct net_device_stats {
 158        unsigned long   rx_packets;
 159        unsigned long   tx_packets;
 160        unsigned long   rx_bytes;
 161        unsigned long   tx_bytes;
 162        unsigned long   rx_errors;
 163        unsigned long   tx_errors;
 164        unsigned long   rx_dropped;
 165        unsigned long   tx_dropped;
 166        unsigned long   multicast;
 167        unsigned long   collisions;
 168        unsigned long   rx_length_errors;
 169        unsigned long   rx_over_errors;
 170        unsigned long   rx_crc_errors;
 171        unsigned long   rx_frame_errors;
 172        unsigned long   rx_fifo_errors;
 173        unsigned long   rx_missed_errors;
 174        unsigned long   tx_aborted_errors;
 175        unsigned long   tx_carrier_errors;
 176        unsigned long   tx_fifo_errors;
 177        unsigned long   tx_heartbeat_errors;
 178        unsigned long   tx_window_errors;
 179        unsigned long   rx_compressed;
 180        unsigned long   tx_compressed;
 181};
 182
 183
 184#include <linux/cache.h>
 185#include <linux/skbuff.h>
 186
 187#ifdef CONFIG_RPS
 188#include <linux/static_key.h>
 189extern struct static_key rps_needed;
 190#endif
 191
 192struct neighbour;
 193struct neigh_parms;
 194struct sk_buff;
 195
 196struct netdev_hw_addr {
 197        struct list_head        list;
 198        unsigned char           addr[MAX_ADDR_LEN];
 199        unsigned char           type;
 200#define NETDEV_HW_ADDR_T_LAN            1
 201#define NETDEV_HW_ADDR_T_SAN            2
 202#define NETDEV_HW_ADDR_T_SLAVE          3
 203#define NETDEV_HW_ADDR_T_UNICAST        4
 204#define NETDEV_HW_ADDR_T_MULTICAST      5
 205        bool                    global_use;
 206        int                     sync_cnt;
 207        int                     refcount;
 208        int                     synced;
 209        struct rcu_head         rcu_head;
 210};
 211
 212struct netdev_hw_addr_list {
 213        struct list_head        list;
 214        int                     count;
 215};
 216
 217#define netdev_hw_addr_list_count(l) ((l)->count)
 218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 219#define netdev_hw_addr_list_for_each(ha, l) \
 220        list_for_each_entry(ha, &(l)->list, list)
 221
 222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 224#define netdev_for_each_uc_addr(ha, dev) \
 225        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 226
 227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 229#define netdev_for_each_mc_addr(ha, dev) \
 230        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 231
 232struct hh_cache {
 233        u16             hh_len;
 234        u16             __pad;
 235        seqlock_t       hh_lock;
 236
 237        /* cached hardware header; allow for machine alignment needs.        */
 238#define HH_DATA_MOD     16
 239#define HH_DATA_OFF(__len) \
 240        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 241#define HH_DATA_ALIGN(__len) \
 242        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 243        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 244};
 245
 246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
 247 * Alternative is:
 248 *   dev->hard_header_len ? (dev->hard_header_len +
 249 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 250 *
 251 * We could use other alignment values, but we must maintain the
 252 * relationship HH alignment <= LL alignment.
 253 */
 254#define LL_RESERVED_SPACE(dev) \
 255        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 257        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 258
 259struct header_ops {
 260        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 261                           unsigned short type, const void *daddr,
 262                           const void *saddr, unsigned int len);
 263        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 264        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 265        void    (*cache_update)(struct hh_cache *hh,
 266                                const struct net_device *dev,
 267                                const unsigned char *haddr);
 268};
 269
 270/* These flag bits are private to the generic network queueing
 271 * layer, they may not be explicitly referenced by any other
 272 * code.
 273 */
 274
 275enum netdev_state_t {
 276        __LINK_STATE_START,
 277        __LINK_STATE_PRESENT,
 278        __LINK_STATE_NOCARRIER,
 279        __LINK_STATE_LINKWATCH_PENDING,
 280        __LINK_STATE_DORMANT,
 281};
 282
 283
 284/*
 285 * This structure holds at boot time configured netdevice settings. They
 286 * are then used in the device probing.
 287 */
 288struct netdev_boot_setup {
 289        char name[IFNAMSIZ];
 290        struct ifmap map;
 291};
 292#define NETDEV_BOOT_SETUP_MAX 8
 293
 294int __init netdev_boot_setup(char *str);
 295
 296/*
 297 * Structure for NAPI scheduling similar to tasklet but with weighting
 298 */
 299struct napi_struct {
 300        /* The poll_list must only be managed by the entity which
 301         * changes the state of the NAPI_STATE_SCHED bit.  This means
 302         * whoever atomically sets that bit can add this napi_struct
 303         * to the per-cpu poll_list, and whoever clears that bit
 304         * can remove from the list right before clearing the bit.
 305         */
 306        struct list_head        poll_list;
 307
 308        unsigned long           state;
 309        int                     weight;
 310        unsigned int            gro_count;
 311        int                     (*poll)(struct napi_struct *, int);
 312#ifdef CONFIG_NETPOLL
 313        spinlock_t              poll_lock;
 314        int                     poll_owner;
 315#endif
 316        struct net_device       *dev;
 317        struct sk_buff          *gro_list;
 318        struct sk_buff          *skb;
 319        struct hrtimer          timer;
 320        struct list_head        dev_list;
 321        struct hlist_node       napi_hash_node;
 322        unsigned int            napi_id;
 323};
 324
 325enum {
 326        NAPI_STATE_SCHED,       /* Poll is scheduled */
 327        NAPI_STATE_DISABLE,     /* Disable pending */
 328        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 329        NAPI_STATE_HASHED,      /* In NAPI hash */
 330};
 331
 332enum gro_result {
 333        GRO_MERGED,
 334        GRO_MERGED_FREE,
 335        GRO_HELD,
 336        GRO_NORMAL,
 337        GRO_DROP,
 338};
 339typedef enum gro_result gro_result_t;
 340
 341/*
 342 * enum rx_handler_result - Possible return values for rx_handlers.
 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 344 * further.
 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 346 * case skb->dev was changed by rx_handler.
 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
 349 *
 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 351 * special processing of the skb, prior to delivery to protocol handlers.
 352 *
 353 * Currently, a net_device can only have a single rx_handler registered. Trying
 354 * to register a second rx_handler will return -EBUSY.
 355 *
 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 357 * To unregister a rx_handler on a net_device, use
 358 * netdev_rx_handler_unregister().
 359 *
 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 361 * do with the skb.
 362 *
 363 * If the rx_handler consumed to skb in some way, it should return
 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 365 * the skb to be delivered in some other ways.
 366 *
 367 * If the rx_handler changed skb->dev, to divert the skb to another
 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 369 * new device will be called if it exists.
 370 *
 371 * If the rx_handler consider the skb should be ignored, it should return
 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 373 * are registered on exact device (ptype->dev == skb->dev).
 374 *
 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
 376 * delivered, it should return RX_HANDLER_PASS.
 377 *
 378 * A device without a registered rx_handler will behave as if rx_handler
 379 * returned RX_HANDLER_PASS.
 380 */
 381
 382enum rx_handler_result {
 383        RX_HANDLER_CONSUMED,
 384        RX_HANDLER_ANOTHER,
 385        RX_HANDLER_EXACT,
 386        RX_HANDLER_PASS,
 387};
 388typedef enum rx_handler_result rx_handler_result_t;
 389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 390
 391void __napi_schedule(struct napi_struct *n);
 392void __napi_schedule_irqoff(struct napi_struct *n);
 393
 394static inline bool napi_disable_pending(struct napi_struct *n)
 395{
 396        return test_bit(NAPI_STATE_DISABLE, &n->state);
 397}
 398
 399/**
 400 *      napi_schedule_prep - check if napi can be scheduled
 401 *      @n: napi context
 402 *
 403 * Test if NAPI routine is already running, and if not mark
 404 * it as running.  This is used as a condition variable
 405 * insure only one NAPI poll instance runs.  We also make
 406 * sure there is no pending NAPI disable.
 407 */
 408static inline bool napi_schedule_prep(struct napi_struct *n)
 409{
 410        return !napi_disable_pending(n) &&
 411                !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
 412}
 413
 414/**
 415 *      napi_schedule - schedule NAPI poll
 416 *      @n: napi context
 417 *
 418 * Schedule NAPI poll routine to be called if it is not already
 419 * running.
 420 */
 421static inline void napi_schedule(struct napi_struct *n)
 422{
 423        if (napi_schedule_prep(n))
 424                __napi_schedule(n);
 425}
 426
 427/**
 428 *      napi_schedule_irqoff - schedule NAPI poll
 429 *      @n: napi context
 430 *
 431 * Variant of napi_schedule(), assuming hard irqs are masked.
 432 */
 433static inline void napi_schedule_irqoff(struct napi_struct *n)
 434{
 435        if (napi_schedule_prep(n))
 436                __napi_schedule_irqoff(n);
 437}
 438
 439/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 440static inline bool napi_reschedule(struct napi_struct *napi)
 441{
 442        if (napi_schedule_prep(napi)) {
 443                __napi_schedule(napi);
 444                return true;
 445        }
 446        return false;
 447}
 448
 449void __napi_complete(struct napi_struct *n);
 450void napi_complete_done(struct napi_struct *n, int work_done);
 451/**
 452 *      napi_complete - NAPI processing complete
 453 *      @n: napi context
 454 *
 455 * Mark NAPI processing as complete.
 456 * Consider using napi_complete_done() instead.
 457 */
 458static inline void napi_complete(struct napi_struct *n)
 459{
 460        return napi_complete_done(n, 0);
 461}
 462
 463/**
 464 *      napi_by_id - lookup a NAPI by napi_id
 465 *      @napi_id: hashed napi_id
 466 *
 467 * lookup @napi_id in napi_hash table
 468 * must be called under rcu_read_lock()
 469 */
 470struct napi_struct *napi_by_id(unsigned int napi_id);
 471
 472/**
 473 *      napi_hash_add - add a NAPI to global hashtable
 474 *      @napi: napi context
 475 *
 476 * generate a new napi_id and store a @napi under it in napi_hash
 477 */
 478void napi_hash_add(struct napi_struct *napi);
 479
 480/**
 481 *      napi_hash_del - remove a NAPI from global table
 482 *      @napi: napi context
 483 *
 484 * Warning: caller must observe rcu grace period
 485 * before freeing memory containing @napi
 486 */
 487void napi_hash_del(struct napi_struct *napi);
 488
 489/**
 490 *      napi_disable - prevent NAPI from scheduling
 491 *      @n: napi context
 492 *
 493 * Stop NAPI from being scheduled on this context.
 494 * Waits till any outstanding processing completes.
 495 */
 496void napi_disable(struct napi_struct *n);
 497
 498/**
 499 *      napi_enable - enable NAPI scheduling
 500 *      @n: napi context
 501 *
 502 * Resume NAPI from being scheduled on this context.
 503 * Must be paired with napi_disable.
 504 */
 505static inline void napi_enable(struct napi_struct *n)
 506{
 507        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 508        smp_mb__before_atomic();
 509        clear_bit(NAPI_STATE_SCHED, &n->state);
 510}
 511
 512#ifdef CONFIG_SMP
 513/**
 514 *      napi_synchronize - wait until NAPI is not running
 515 *      @n: napi context
 516 *
 517 * Wait until NAPI is done being scheduled on this context.
 518 * Waits till any outstanding processing completes but
 519 * does not disable future activations.
 520 */
 521static inline void napi_synchronize(const struct napi_struct *n)
 522{
 523        while (test_bit(NAPI_STATE_SCHED, &n->state))
 524                msleep(1);
 525}
 526#else
 527# define napi_synchronize(n)    barrier()
 528#endif
 529
 530enum netdev_queue_state_t {
 531        __QUEUE_STATE_DRV_XOFF,
 532        __QUEUE_STATE_STACK_XOFF,
 533        __QUEUE_STATE_FROZEN,
 534};
 535
 536#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 537#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 538#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 539
 540#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 541#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 542                                        QUEUE_STATE_FROZEN)
 543#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 544                                        QUEUE_STATE_FROZEN)
 545
 546/*
 547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 548 * netif_tx_* functions below are used to manipulate this flag.  The
 549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 550 * queue independently.  The netif_xmit_*stopped functions below are called
 551 * to check if the queue has been stopped by the driver or stack (either
 552 * of the XOFF bits are set in the state).  Drivers should not need to call
 553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 554 */
 555
 556struct netdev_queue {
 557/*
 558 * read mostly part
 559 */
 560        struct net_device       *dev;
 561        struct Qdisc __rcu      *qdisc;
 562        struct Qdisc            *qdisc_sleeping;
 563#ifdef CONFIG_SYSFS
 564        struct kobject          kobj;
 565#endif
 566#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 567        int                     numa_node;
 568#endif
 569/*
 570 * write mostly part
 571 */
 572        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 573        int                     xmit_lock_owner;
 574        /*
 575         * please use this field instead of dev->trans_start
 576         */
 577        unsigned long           trans_start;
 578
 579        /*
 580         * Number of TX timeouts for this queue
 581         * (/sys/class/net/DEV/Q/trans_timeout)
 582         */
 583        unsigned long           trans_timeout;
 584
 585        unsigned long           state;
 586
 587#ifdef CONFIG_BQL
 588        struct dql              dql;
 589#endif
 590        unsigned long           tx_maxrate;
 591} ____cacheline_aligned_in_smp;
 592
 593static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 594{
 595#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 596        return q->numa_node;
 597#else
 598        return NUMA_NO_NODE;
 599#endif
 600}
 601
 602static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 603{
 604#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 605        q->numa_node = node;
 606#endif
 607}
 608
 609#ifdef CONFIG_RPS
 610/*
 611 * This structure holds an RPS map which can be of variable length.  The
 612 * map is an array of CPUs.
 613 */
 614struct rps_map {
 615        unsigned int len;
 616        struct rcu_head rcu;
 617        u16 cpus[0];
 618};
 619#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 620
 621/*
 622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 623 * tail pointer for that CPU's input queue at the time of last enqueue, and
 624 * a hardware filter index.
 625 */
 626struct rps_dev_flow {
 627        u16 cpu;
 628        u16 filter;
 629        unsigned int last_qtail;
 630};
 631#define RPS_NO_FILTER 0xffff
 632
 633/*
 634 * The rps_dev_flow_table structure contains a table of flow mappings.
 635 */
 636struct rps_dev_flow_table {
 637        unsigned int mask;
 638        struct rcu_head rcu;
 639        struct rps_dev_flow flows[0];
 640};
 641#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 642    ((_num) * sizeof(struct rps_dev_flow)))
 643
 644/*
 645 * The rps_sock_flow_table contains mappings of flows to the last CPU
 646 * on which they were processed by the application (set in recvmsg).
 647 * Each entry is a 32bit value. Upper part is the high order bits
 648 * of flow hash, lower part is cpu number.
 649 * rps_cpu_mask is used to partition the space, depending on number of
 650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
 652 * meaning we use 32-6=26 bits for the hash.
 653 */
 654struct rps_sock_flow_table {
 655        u32     mask;
 656
 657        u32     ents[0] ____cacheline_aligned_in_smp;
 658};
 659#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 660
 661#define RPS_NO_CPU 0xffff
 662
 663extern u32 rps_cpu_mask;
 664extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 665
 666static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 667                                        u32 hash)
 668{
 669        if (table && hash) {
 670                unsigned int index = hash & table->mask;
 671                u32 val = hash & ~rps_cpu_mask;
 672
 673                /* We only give a hint, preemption can change cpu under us */
 674                val |= raw_smp_processor_id();
 675
 676                if (table->ents[index] != val)
 677                        table->ents[index] = val;
 678        }
 679}
 680
 681#ifdef CONFIG_RFS_ACCEL
 682bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 683                         u16 filter_id);
 684#endif
 685#endif /* CONFIG_RPS */
 686
 687/* This structure contains an instance of an RX queue. */
 688struct netdev_rx_queue {
 689#ifdef CONFIG_RPS
 690        struct rps_map __rcu            *rps_map;
 691        struct rps_dev_flow_table __rcu *rps_flow_table;
 692#endif
 693        struct kobject                  kobj;
 694        struct net_device               *dev;
 695} ____cacheline_aligned_in_smp;
 696
 697/*
 698 * RX queue sysfs structures and functions.
 699 */
 700struct rx_queue_attribute {
 701        struct attribute attr;
 702        ssize_t (*show)(struct netdev_rx_queue *queue,
 703            struct rx_queue_attribute *attr, char *buf);
 704        ssize_t (*store)(struct netdev_rx_queue *queue,
 705            struct rx_queue_attribute *attr, const char *buf, size_t len);
 706};
 707
 708#ifdef CONFIG_XPS
 709/*
 710 * This structure holds an XPS map which can be of variable length.  The
 711 * map is an array of queues.
 712 */
 713struct xps_map {
 714        unsigned int len;
 715        unsigned int alloc_len;
 716        struct rcu_head rcu;
 717        u16 queues[0];
 718};
 719#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 720#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
 721    / sizeof(u16))
 722
 723/*
 724 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 725 */
 726struct xps_dev_maps {
 727        struct rcu_head rcu;
 728        struct xps_map __rcu *cpu_map[0];
 729};
 730#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
 731    (nr_cpu_ids * sizeof(struct xps_map *)))
 732#endif /* CONFIG_XPS */
 733
 734#define TC_MAX_QUEUE    16
 735#define TC_BITMASK      15
 736/* HW offloaded queuing disciplines txq count and offset maps */
 737struct netdev_tc_txq {
 738        u16 count;
 739        u16 offset;
 740};
 741
 742#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 743/*
 744 * This structure is to hold information about the device
 745 * configured to run FCoE protocol stack.
 746 */
 747struct netdev_fcoe_hbainfo {
 748        char    manufacturer[64];
 749        char    serial_number[64];
 750        char    hardware_version[64];
 751        char    driver_version[64];
 752        char    optionrom_version[64];
 753        char    firmware_version[64];
 754        char    model[256];
 755        char    model_description[256];
 756};
 757#endif
 758
 759#define MAX_PHYS_ITEM_ID_LEN 32
 760
 761/* This structure holds a unique identifier to identify some
 762 * physical item (port for example) used by a netdevice.
 763 */
 764struct netdev_phys_item_id {
 765        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 766        unsigned char id_len;
 767};
 768
 769typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 770                                       struct sk_buff *skb);
 771
 772/*
 773 * This structure defines the management hooks for network devices.
 774 * The following hooks can be defined; unless noted otherwise, they are
 775 * optional and can be filled with a null pointer.
 776 *
 777 * int (*ndo_init)(struct net_device *dev);
 778 *     This function is called once when network device is registered.
 779 *     The network device can use this to any late stage initializaton
 780 *     or semantic validattion. It can fail with an error code which will
 781 *     be propogated back to register_netdev
 782 *
 783 * void (*ndo_uninit)(struct net_device *dev);
 784 *     This function is called when device is unregistered or when registration
 785 *     fails. It is not called if init fails.
 786 *
 787 * int (*ndo_open)(struct net_device *dev);
 788 *     This function is called when network device transistions to the up
 789 *     state.
 790 *
 791 * int (*ndo_stop)(struct net_device *dev);
 792 *     This function is called when network device transistions to the down
 793 *     state.
 794 *
 795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 796 *                               struct net_device *dev);
 797 *      Called when a packet needs to be transmitted.
 798 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 799 *      the queue before that can happen; it's for obsolete devices and weird
 800 *      corner cases, but the stack really does a non-trivial amount
 801 *      of useless work if you return NETDEV_TX_BUSY.
 802 *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
 803 *      Required can not be NULL.
 804 *
 805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 806 *                         void *accel_priv, select_queue_fallback_t fallback);
 807 *      Called to decide which queue to when device supports multiple
 808 *      transmit queues.
 809 *
 810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 811 *      This function is called to allow device receiver to make
 812 *      changes to configuration when multicast or promiscious is enabled.
 813 *
 814 * void (*ndo_set_rx_mode)(struct net_device *dev);
 815 *      This function is called device changes address list filtering.
 816 *      If driver handles unicast address filtering, it should set
 817 *      IFF_UNICAST_FLT to its priv_flags.
 818 *
 819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 820 *      This function  is called when the Media Access Control address
 821 *      needs to be changed. If this interface is not defined, the
 822 *      mac address can not be changed.
 823 *
 824 * int (*ndo_validate_addr)(struct net_device *dev);
 825 *      Test if Media Access Control address is valid for the device.
 826 *
 827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 828 *      Called when a user request an ioctl which can't be handled by
 829 *      the generic interface code. If not defined ioctl's return
 830 *      not supported error code.
 831 *
 832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 833 *      Used to set network devices bus interface parameters. This interface
 834 *      is retained for legacy reason, new devices should use the bus
 835 *      interface (PCI) for low level management.
 836 *
 837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 838 *      Called when a user wants to change the Maximum Transfer Unit
 839 *      of a device. If not defined, any request to change MTU will
 840 *      will return an error.
 841 *
 842 * void (*ndo_tx_timeout)(struct net_device *dev);
 843 *      Callback uses when the transmitter has not made any progress
 844 *      for dev->watchdog ticks.
 845 *
 846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 847 *                      struct rtnl_link_stats64 *storage);
 848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 849 *      Called when a user wants to get the network device usage
 850 *      statistics. Drivers must do one of the following:
 851 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
 852 *         rtnl_link_stats64 structure passed by the caller.
 853 *      2. Define @ndo_get_stats to update a net_device_stats structure
 854 *         (which should normally be dev->stats) and return a pointer to
 855 *         it. The structure may be changed asynchronously only if each
 856 *         field is written atomically.
 857 *      3. Update dev->stats asynchronously and atomically, and define
 858 *         neither operation.
 859 *
 860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
 861 *      If device support VLAN filtering this function is called when a
 862 *      VLAN id is registered.
 863 *
 864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
 865 *      If device support VLAN filtering this function is called when a
 866 *      VLAN id is unregistered.
 867 *
 868 * void (*ndo_poll_controller)(struct net_device *dev);
 869 *
 870 *      SR-IOV management functions.
 871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
 873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
 874 *                        int max_tx_rate);
 875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 876 * int (*ndo_get_vf_config)(struct net_device *dev,
 877 *                          int vf, struct ifla_vf_info *ivf);
 878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 880 *                        struct nlattr *port[]);
 881 *
 882 *      Enable or disable the VF ability to query its RSS Redirection Table and
 883 *      Hash Key. This is needed since on some devices VF share this information
 884 *      with PF and querying it may adduce a theoretical security risk.
 885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
 886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
 888 *      Called to setup 'tc' number of traffic classes in the net device. This
 889 *      is always called from the stack with the rtnl lock held and netif tx
 890 *      queues stopped. This allows the netdevice to perform queue management
 891 *      safely.
 892 *
 893 *      Fiber Channel over Ethernet (FCoE) offload functions.
 894 * int (*ndo_fcoe_enable)(struct net_device *dev);
 895 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
 896 *      so the underlying device can perform whatever needed configuration or
 897 *      initialization to support acceleration of FCoE traffic.
 898 *
 899 * int (*ndo_fcoe_disable)(struct net_device *dev);
 900 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
 901 *      so the underlying device can perform whatever needed clean-ups to
 902 *      stop supporting acceleration of FCoE traffic.
 903 *
 904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 905 *                           struct scatterlist *sgl, unsigned int sgc);
 906 *      Called when the FCoE Initiator wants to initialize an I/O that
 907 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 908 *      perform necessary setup and returns 1 to indicate the device is set up
 909 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 910 *
 911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 912 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
 913 *      indicated by the FC exchange id 'xid', so the underlying device can
 914 *      clean up and reuse resources for later DDP requests.
 915 *
 916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 917 *                            struct scatterlist *sgl, unsigned int sgc);
 918 *      Called when the FCoE Target wants to initialize an I/O that
 919 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 920 *      perform necessary setup and returns 1 to indicate the device is set up
 921 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 922 *
 923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
 924 *                             struct netdev_fcoe_hbainfo *hbainfo);
 925 *      Called when the FCoE Protocol stack wants information on the underlying
 926 *      device. This information is utilized by the FCoE protocol stack to
 927 *      register attributes with Fiber Channel management service as per the
 928 *      FC-GS Fabric Device Management Information(FDMI) specification.
 929 *
 930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
 931 *      Called when the underlying device wants to override default World Wide
 932 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
 933 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
 934 *      protocol stack to use.
 935 *
 936 *      RFS acceleration.
 937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
 938 *                          u16 rxq_index, u32 flow_id);
 939 *      Set hardware filter for RFS.  rxq_index is the target queue index;
 940 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
 941 *      Return the filter ID on success, or a negative error code.
 942 *
 943 *      Slave management functions (for bridge, bonding, etc).
 944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
 945 *      Called to make another netdev an underling.
 946 *
 947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
 948 *      Called to release previously enslaved netdev.
 949 *
 950 *      Feature/offload setting functions.
 951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
 952 *              netdev_features_t features);
 953 *      Adjusts the requested feature flags according to device-specific
 954 *      constraints, and returns the resulting flags. Must not modify
 955 *      the device state.
 956 *
 957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
 958 *      Called to update device configuration to new features. Passed
 959 *      feature set might be less than what was returned by ndo_fix_features()).
 960 *      Must return >0 or -errno if it changed dev->features itself.
 961 *
 962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
 963 *                    struct net_device *dev,
 964 *                    const unsigned char *addr, u16 vid, u16 flags)
 965 *      Adds an FDB entry to dev for addr.
 966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
 967 *                    struct net_device *dev,
 968 *                    const unsigned char *addr, u16 vid)
 969 *      Deletes the FDB entry from dev coresponding to addr.
 970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
 971 *                     struct net_device *dev, struct net_device *filter_dev,
 972 *                     int idx)
 973 *      Used to add FDB entries to dump requests. Implementers should add
 974 *      entries to skb and update idx with the number of entries.
 975 *
 976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
 977 *                           u16 flags)
 978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
 979 *                           struct net_device *dev, u32 filter_mask,
 980 *                           int nlflags)
 981 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
 982 *                           u16 flags);
 983 *
 984 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
 985 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
 986 *      which do not represent real hardware may define this to allow their
 987 *      userspace components to manage their virtual carrier state. Devices
 988 *      that determine carrier state from physical hardware properties (eg
 989 *      network cables) or protocol-dependent mechanisms (eg
 990 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
 991 *
 992 * int (*ndo_get_phys_port_id)(struct net_device *dev,
 993 *                             struct netdev_phys_item_id *ppid);
 994 *      Called to get ID of physical port of this device. If driver does
 995 *      not implement this, it is assumed that the hw is not able to have
 996 *      multiple net devices on single physical port.
 997 *
 998 * void (*ndo_add_vxlan_port)(struct  net_device *dev,
 999 *                            sa_family_t sa_family, __be16 port);
1000 *      Called by vxlan to notiy a driver about the UDP port and socket
1001 *      address family that vxlan is listnening to. It is called only when
1002 *      a new port starts listening. The operation is protected by the
1003 *      vxlan_net->sock_lock.
1004 *
1005 * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1006 *                            sa_family_t sa_family, __be16 port);
1007 *      Called by vxlan to notify the driver about a UDP port and socket
1008 *      address family that vxlan is not listening to anymore. The operation
1009 *      is protected by the vxlan_net->sock_lock.
1010 *
1011 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012 *                               struct net_device *dev)
1013 *      Called by upper layer devices to accelerate switching or other
1014 *      station functionality into hardware. 'pdev is the lowerdev
1015 *      to use for the offload and 'dev' is the net device that will
1016 *      back the offload. Returns a pointer to the private structure
1017 *      the upper layer will maintain.
1018 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019 *      Called by upper layer device to delete the station created
1020 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021 *      the station and priv is the structure returned by the add
1022 *      operation.
1023 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024 *                                    struct net_device *dev,
1025 *                                    void *priv);
1026 *      Callback to use for xmit over the accelerated station. This
1027 *      is used in place of ndo_start_xmit on accelerated net
1028 *      devices.
1029 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030 *                                          struct net_device *dev
1031 *                                          netdev_features_t features);
1032 *      Called by core transmit path to determine if device is capable of
1033 *      performing offload operations on a given packet. This is to give
1034 *      the device an opportunity to implement any restrictions that cannot
1035 *      be otherwise expressed by feature flags. The check is called with
1036 *      the set of features that the stack has calculated and it returns
1037 *      those the driver believes to be appropriate.
1038 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039 *                           int queue_index, u32 maxrate);
1040 *      Called when a user wants to set a max-rate limitation of specific
1041 *      TX queue.
1042 * int (*ndo_get_iflink)(const struct net_device *dev);
1043 *      Called to get the iflink value of this device.
1044 */
1045struct net_device_ops {
1046        int                     (*ndo_init)(struct net_device *dev);
1047        void                    (*ndo_uninit)(struct net_device *dev);
1048        int                     (*ndo_open)(struct net_device *dev);
1049        int                     (*ndo_stop)(struct net_device *dev);
1050        netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1051                                                   struct net_device *dev);
1052        u16                     (*ndo_select_queue)(struct net_device *dev,
1053                                                    struct sk_buff *skb,
1054                                                    void *accel_priv,
1055                                                    select_queue_fallback_t fallback);
1056        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1057                                                       int flags);
1058        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1059        int                     (*ndo_set_mac_address)(struct net_device *dev,
1060                                                       void *addr);
1061        int                     (*ndo_validate_addr)(struct net_device *dev);
1062        int                     (*ndo_do_ioctl)(struct net_device *dev,
1063                                                struct ifreq *ifr, int cmd);
1064        int                     (*ndo_set_config)(struct net_device *dev,
1065                                                  struct ifmap *map);
1066        int                     (*ndo_change_mtu)(struct net_device *dev,
1067                                                  int new_mtu);
1068        int                     (*ndo_neigh_setup)(struct net_device *dev,
1069                                                   struct neigh_parms *);
1070        void                    (*ndo_tx_timeout) (struct net_device *dev);
1071
1072        struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1073                                                     struct rtnl_link_stats64 *storage);
1074        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1075
1076        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1077                                                       __be16 proto, u16 vid);
1078        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1079                                                        __be16 proto, u16 vid);
1080#ifdef CONFIG_NET_POLL_CONTROLLER
1081        void                    (*ndo_poll_controller)(struct net_device *dev);
1082        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1083                                                     struct netpoll_info *info);
1084        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1085#endif
1086#ifdef CONFIG_NET_RX_BUSY_POLL
1087        int                     (*ndo_busy_poll)(struct napi_struct *dev);
1088#endif
1089        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1090                                                  int queue, u8 *mac);
1091        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1092                                                   int queue, u16 vlan, u8 qos);
1093        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1094                                                   int vf, int min_tx_rate,
1095                                                   int max_tx_rate);
1096        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1097                                                       int vf, bool setting);
1098        int                     (*ndo_get_vf_config)(struct net_device *dev,
1099                                                     int vf,
1100                                                     struct ifla_vf_info *ivf);
1101        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1102                                                         int vf, int link_state);
1103        int                     (*ndo_get_vf_stats)(struct net_device *dev,
1104                                                    int vf,
1105                                                    struct ifla_vf_stats
1106                                                    *vf_stats);
1107        int                     (*ndo_set_vf_port)(struct net_device *dev,
1108                                                   int vf,
1109                                                   struct nlattr *port[]);
1110        int                     (*ndo_get_vf_port)(struct net_device *dev,
1111                                                   int vf, struct sk_buff *skb);
1112        int                     (*ndo_set_vf_rss_query_en)(
1113                                                   struct net_device *dev,
1114                                                   int vf, bool setting);
1115        int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1116#if IS_ENABLED(CONFIG_FCOE)
1117        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1118        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1119        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1120                                                      u16 xid,
1121                                                      struct scatterlist *sgl,
1122                                                      unsigned int sgc);
1123        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1124                                                     u16 xid);
1125        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1126                                                       u16 xid,
1127                                                       struct scatterlist *sgl,
1128                                                       unsigned int sgc);
1129        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1130                                                        struct netdev_fcoe_hbainfo *hbainfo);
1131#endif
1132
1133#if IS_ENABLED(CONFIG_LIBFCOE)
1134#define NETDEV_FCOE_WWNN 0
1135#define NETDEV_FCOE_WWPN 1
1136        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1137                                                    u64 *wwn, int type);
1138#endif
1139
1140#ifdef CONFIG_RFS_ACCEL
1141        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1142                                                     const struct sk_buff *skb,
1143                                                     u16 rxq_index,
1144                                                     u32 flow_id);
1145#endif
1146        int                     (*ndo_add_slave)(struct net_device *dev,
1147                                                 struct net_device *slave_dev);
1148        int                     (*ndo_del_slave)(struct net_device *dev,
1149                                                 struct net_device *slave_dev);
1150        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1151                                                    netdev_features_t features);
1152        int                     (*ndo_set_features)(struct net_device *dev,
1153                                                    netdev_features_t features);
1154        int                     (*ndo_neigh_construct)(struct neighbour *n);
1155        void                    (*ndo_neigh_destroy)(struct neighbour *n);
1156
1157        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1158                                               struct nlattr *tb[],
1159                                               struct net_device *dev,
1160                                               const unsigned char *addr,
1161                                               u16 vid,
1162                                               u16 flags);
1163        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1164                                               struct nlattr *tb[],
1165                                               struct net_device *dev,
1166                                               const unsigned char *addr,
1167                                               u16 vid);
1168        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1169                                                struct netlink_callback *cb,
1170                                                struct net_device *dev,
1171                                                struct net_device *filter_dev,
1172                                                int idx);
1173
1174        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1175                                                      struct nlmsghdr *nlh,
1176                                                      u16 flags);
1177        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1178                                                      u32 pid, u32 seq,
1179                                                      struct net_device *dev,
1180                                                      u32 filter_mask,
1181                                                      int nlflags);
1182        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1183                                                      struct nlmsghdr *nlh,
1184                                                      u16 flags);
1185        int                     (*ndo_change_carrier)(struct net_device *dev,
1186                                                      bool new_carrier);
1187        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1188                                                        struct netdev_phys_item_id *ppid);
1189        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1190                                                          char *name, size_t len);
1191        void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1192                                                      sa_family_t sa_family,
1193                                                      __be16 port);
1194        void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1195                                                      sa_family_t sa_family,
1196                                                      __be16 port);
1197
1198        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1199                                                        struct net_device *dev);
1200        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1201                                                        void *priv);
1202
1203        netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1204                                                        struct net_device *dev,
1205                                                        void *priv);
1206        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1207        netdev_features_t       (*ndo_features_check) (struct sk_buff *skb,
1208                                                       struct net_device *dev,
1209                                                       netdev_features_t features);
1210        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1211                                                      int queue_index,
1212                                                      u32 maxrate);
1213        int                     (*ndo_get_iflink)(const struct net_device *dev);
1214};
1215
1216/**
1217 * enum net_device_priv_flags - &struct net_device priv_flags
1218 *
1219 * These are the &struct net_device, they are only set internally
1220 * by drivers and used in the kernel. These flags are invisible to
1221 * userspace, this means that the order of these flags can change
1222 * during any kernel release.
1223 *
1224 * You should have a pretty good reason to be extending these flags.
1225 *
1226 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1227 * @IFF_EBRIDGE: Ethernet bridging device
1228 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1229 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1230 * @IFF_MASTER_ALB: bonding master, balance-alb
1231 * @IFF_BONDING: bonding master or slave
1232 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1233 * @IFF_ISATAP: ISATAP interface (RFC4214)
1234 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1235 * @IFF_WAN_HDLC: WAN HDLC device
1236 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1237 *      release skb->dst
1238 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1239 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1240 * @IFF_MACVLAN_PORT: device used as macvlan port
1241 * @IFF_BRIDGE_PORT: device used as bridge port
1242 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1243 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1244 * @IFF_UNICAST_FLT: Supports unicast filtering
1245 * @IFF_TEAM_PORT: device used as team port
1246 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1247 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1248 *      change when it's running
1249 * @IFF_MACVLAN: Macvlan device
1250 */
1251enum netdev_priv_flags {
1252        IFF_802_1Q_VLAN                 = 1<<0,
1253        IFF_EBRIDGE                     = 1<<1,
1254        IFF_SLAVE_INACTIVE              = 1<<2,
1255        IFF_MASTER_8023AD               = 1<<3,
1256        IFF_MASTER_ALB                  = 1<<4,
1257        IFF_BONDING                     = 1<<5,
1258        IFF_SLAVE_NEEDARP               = 1<<6,
1259        IFF_ISATAP                      = 1<<7,
1260        IFF_MASTER_ARPMON               = 1<<8,
1261        IFF_WAN_HDLC                    = 1<<9,
1262        IFF_XMIT_DST_RELEASE            = 1<<10,
1263        IFF_DONT_BRIDGE                 = 1<<11,
1264        IFF_DISABLE_NETPOLL             = 1<<12,
1265        IFF_MACVLAN_PORT                = 1<<13,
1266        IFF_BRIDGE_PORT                 = 1<<14,
1267        IFF_OVS_DATAPATH                = 1<<15,
1268        IFF_TX_SKB_SHARING              = 1<<16,
1269        IFF_UNICAST_FLT                 = 1<<17,
1270        IFF_TEAM_PORT                   = 1<<18,
1271        IFF_SUPP_NOFCS                  = 1<<19,
1272        IFF_LIVE_ADDR_CHANGE            = 1<<20,
1273        IFF_MACVLAN                     = 1<<21,
1274        IFF_XMIT_DST_RELEASE_PERM       = 1<<22,
1275        IFF_IPVLAN_MASTER               = 1<<23,
1276        IFF_IPVLAN_SLAVE                = 1<<24,
1277};
1278
1279#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1280#define IFF_EBRIDGE                     IFF_EBRIDGE
1281#define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1282#define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1283#define IFF_MASTER_ALB                  IFF_MASTER_ALB
1284#define IFF_BONDING                     IFF_BONDING
1285#define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1286#define IFF_ISATAP                      IFF_ISATAP
1287#define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1288#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1289#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1290#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1291#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1292#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1293#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1294#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1295#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1296#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1297#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1298#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1299#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1300#define IFF_MACVLAN                     IFF_MACVLAN
1301#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1302#define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1303#define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1304
1305/**
1306 *      struct net_device - The DEVICE structure.
1307 *              Actually, this whole structure is a big mistake.  It mixes I/O
1308 *              data with strictly "high-level" data, and it has to know about
1309 *              almost every data structure used in the INET module.
1310 *
1311 *      @name:  This is the first field of the "visible" part of this structure
1312 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1313 *              of the interface.
1314 *
1315 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1316 *      @ifalias:       SNMP alias
1317 *      @mem_end:       Shared memory end
1318 *      @mem_start:     Shared memory start
1319 *      @base_addr:     Device I/O address
1320 *      @irq:           Device IRQ number
1321 *
1322 *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1323 *
1324 *      @state:         Generic network queuing layer state, see netdev_state_t
1325 *      @dev_list:      The global list of network devices
1326 *      @napi_list:     List entry, that is used for polling napi devices
1327 *      @unreg_list:    List entry, that is used, when we are unregistering the
1328 *                      device, see the function unregister_netdev
1329 *      @close_list:    List entry, that is used, when we are closing the device
1330 *
1331 *      @adj_list:      Directly linked devices, like slaves for bonding
1332 *      @all_adj_list:  All linked devices, *including* neighbours
1333 *      @features:      Currently active device features
1334 *      @hw_features:   User-changeable features
1335 *
1336 *      @wanted_features:       User-requested features
1337 *      @vlan_features:         Mask of features inheritable by VLAN devices
1338 *
1339 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1340 *                              This field indicates what encapsulation
1341 *                              offloads the hardware is capable of doing,
1342 *                              and drivers will need to set them appropriately.
1343 *
1344 *      @mpls_features: Mask of features inheritable by MPLS
1345 *
1346 *      @ifindex:       interface index
1347 *      @group:         The group, that the device belongs to
1348 *
1349 *      @stats:         Statistics struct, which was left as a legacy, use
1350 *                      rtnl_link_stats64 instead
1351 *
1352 *      @rx_dropped:    Dropped packets by core network,
1353 *                      do not use this in drivers
1354 *      @tx_dropped:    Dropped packets by core network,
1355 *                      do not use this in drivers
1356 *
1357 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1358 *                              instead of ioctl,
1359 *                              see <net/iw_handler.h> for details.
1360 *      @wireless_data: Instance data managed by the core of wireless extensions
1361 *
1362 *      @netdev_ops:    Includes several pointers to callbacks,
1363 *                      if one wants to override the ndo_*() functions
1364 *      @ethtool_ops:   Management operations
1365 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1366 *                      of Layer 2 headers.
1367 *
1368 *      @flags:         Interface flags (a la BSD)
1369 *      @priv_flags:    Like 'flags' but invisible to userspace,
1370 *                      see if.h for the definitions
1371 *      @gflags:        Global flags ( kept as legacy )
1372 *      @padded:        How much padding added by alloc_netdev()
1373 *      @operstate:     RFC2863 operstate
1374 *      @link_mode:     Mapping policy to operstate
1375 *      @if_port:       Selectable AUI, TP, ...
1376 *      @dma:           DMA channel
1377 *      @mtu:           Interface MTU value
1378 *      @type:          Interface hardware type
1379 *      @hard_header_len: Hardware header length
1380 *
1381 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1382 *                        cases can this be guaranteed
1383 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1384 *                        cases can this be guaranteed. Some cases also use
1385 *                        LL_MAX_HEADER instead to allocate the skb
1386 *
1387 *      interface address info:
1388 *
1389 *      @perm_addr:             Permanent hw address
1390 *      @addr_assign_type:      Hw address assignment type
1391 *      @addr_len:              Hardware address length
1392 *      @neigh_priv_len;        Used in neigh_alloc(),
1393 *                              initialized only in atm/clip.c
1394 *      @dev_id:                Used to differentiate devices that share
1395 *                              the same link layer address
1396 *      @dev_port:              Used to differentiate devices that share
1397 *                              the same function
1398 *      @addr_list_lock:        XXX: need comments on this one
1399 *      @uc_promisc:            Counter, that indicates, that promiscuous mode
1400 *                              has been enabled due to the need to listen to
1401 *                              additional unicast addresses in a device that
1402 *                              does not implement ndo_set_rx_mode()
1403 *      @uc:                    unicast mac addresses
1404 *      @mc:                    multicast mac addresses
1405 *      @dev_addrs:             list of device hw addresses
1406 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1407 *      @promiscuity:           Number of times, the NIC is told to work in
1408 *                              Promiscuous mode, if it becomes 0 the NIC will
1409 *                              exit from working in Promiscuous mode
1410 *      @allmulti:              Counter, enables or disables allmulticast mode
1411 *
1412 *      @vlan_info:     VLAN info
1413 *      @dsa_ptr:       dsa specific data
1414 *      @tipc_ptr:      TIPC specific data
1415 *      @atalk_ptr:     AppleTalk link
1416 *      @ip_ptr:        IPv4 specific data
1417 *      @dn_ptr:        DECnet specific data
1418 *      @ip6_ptr:       IPv6 specific data
1419 *      @ax25_ptr:      AX.25 specific data
1420 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1421 *
1422 *      @last_rx:       Time of last Rx
1423 *      @dev_addr:      Hw address (before bcast,
1424 *                      because most packets are unicast)
1425 *
1426 *      @_rx:                   Array of RX queues
1427 *      @num_rx_queues:         Number of RX queues
1428 *                              allocated at register_netdev() time
1429 *      @real_num_rx_queues:    Number of RX queues currently active in device
1430 *
1431 *      @rx_handler:            handler for received packets
1432 *      @rx_handler_data:       XXX: need comments on this one
1433 *      @ingress_queue:         XXX: need comments on this one
1434 *      @broadcast:             hw bcast address
1435 *
1436 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1437 *                      indexed by RX queue number. Assigned by driver.
1438 *                      This must only be set if the ndo_rx_flow_steer
1439 *                      operation is defined
1440 *      @index_hlist:           Device index hash chain
1441 *
1442 *      @_tx:                   Array of TX queues
1443 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1444 *      @real_num_tx_queues:    Number of TX queues currently active in device
1445 *      @qdisc:                 Root qdisc from userspace point of view
1446 *      @tx_queue_len:          Max frames per queue allowed
1447 *      @tx_global_lock:        XXX: need comments on this one
1448 *
1449 *      @xps_maps:      XXX: need comments on this one
1450 *
1451 *      @trans_start:           Time (in jiffies) of last Tx
1452 *      @watchdog_timeo:        Represents the timeout that is used by
1453 *                              the watchdog ( see dev_watchdog() )
1454 *      @watchdog_timer:        List of timers
1455 *
1456 *      @pcpu_refcnt:           Number of references to this device
1457 *      @todo_list:             Delayed register/unregister
1458 *      @link_watch_list:       XXX: need comments on this one
1459 *
1460 *      @reg_state:             Register/unregister state machine
1461 *      @dismantle:             Device is going to be freed
1462 *      @rtnl_link_state:       This enum represents the phases of creating
1463 *                              a new link
1464 *
1465 *      @destructor:            Called from unregister,
1466 *                              can be used to call free_netdev
1467 *      @npinfo:                XXX: need comments on this one
1468 *      @nd_net:                Network namespace this network device is inside
1469 *
1470 *      @ml_priv:       Mid-layer private
1471 *      @lstats:        Loopback statistics
1472 *      @tstats:        Tunnel statistics
1473 *      @dstats:        Dummy statistics
1474 *      @vstats:        Virtual ethernet statistics
1475 *
1476 *      @garp_port:     GARP
1477 *      @mrp_port:      MRP
1478 *
1479 *      @dev:           Class/net/name entry
1480 *      @sysfs_groups:  Space for optional device, statistics and wireless
1481 *                      sysfs groups
1482 *
1483 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1484 *      @rtnl_link_ops: Rtnl_link_ops
1485 *
1486 *      @gso_max_size:  Maximum size of generic segmentation offload
1487 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1488 *                      NIC for GSO
1489 *      @gso_min_segs:  Minimum number of segments that can be passed to the
1490 *                      NIC for GSO
1491 *
1492 *      @dcbnl_ops:     Data Center Bridging netlink ops
1493 *      @num_tc:        Number of traffic classes in the net device
1494 *      @tc_to_txq:     XXX: need comments on this one
1495 *      @prio_tc_map    XXX: need comments on this one
1496 *
1497 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1498 *
1499 *      @priomap:       XXX: need comments on this one
1500 *      @phydev:        Physical device may attach itself
1501 *                      for hardware timestamping
1502 *
1503 *      @qdisc_tx_busylock:     XXX: need comments on this one
1504 *
1505 *      FIXME: cleanup struct net_device such that network protocol info
1506 *      moves out.
1507 */
1508
1509struct net_device {
1510        char                    name[IFNAMSIZ];
1511        struct hlist_node       name_hlist;
1512        char                    *ifalias;
1513        /*
1514         *      I/O specific fields
1515         *      FIXME: Merge these and struct ifmap into one
1516         */
1517        unsigned long           mem_end;
1518        unsigned long           mem_start;
1519        unsigned long           base_addr;
1520        int                     irq;
1521
1522        atomic_t                carrier_changes;
1523
1524        /*
1525         *      Some hardware also needs these fields (state,dev_list,
1526         *      napi_list,unreg_list,close_list) but they are not
1527         *      part of the usual set specified in Space.c.
1528         */
1529
1530        unsigned long           state;
1531
1532        struct list_head        dev_list;
1533        struct list_head        napi_list;
1534        struct list_head        unreg_list;
1535        struct list_head        close_list;
1536        struct list_head        ptype_all;
1537        struct list_head        ptype_specific;
1538
1539        struct {
1540                struct list_head upper;
1541                struct list_head lower;
1542        } adj_list;
1543
1544        struct {
1545                struct list_head upper;
1546                struct list_head lower;
1547        } all_adj_list;
1548
1549        netdev_features_t       features;
1550        netdev_features_t       hw_features;
1551        netdev_features_t       wanted_features;
1552        netdev_features_t       vlan_features;
1553        netdev_features_t       hw_enc_features;
1554        netdev_features_t       mpls_features;
1555
1556        int                     ifindex;
1557        int                     group;
1558
1559        struct net_device_stats stats;
1560
1561        atomic_long_t           rx_dropped;
1562        atomic_long_t           tx_dropped;
1563
1564#ifdef CONFIG_WIRELESS_EXT
1565        const struct iw_handler_def *   wireless_handlers;
1566        struct iw_public_data * wireless_data;
1567#endif
1568        const struct net_device_ops *netdev_ops;
1569        const struct ethtool_ops *ethtool_ops;
1570#ifdef CONFIG_NET_SWITCHDEV
1571        const struct switchdev_ops *switchdev_ops;
1572#endif
1573
1574        const struct header_ops *header_ops;
1575
1576        unsigned int            flags;
1577        unsigned int            priv_flags;
1578
1579        unsigned short          gflags;
1580        unsigned short          padded;
1581
1582        unsigned char           operstate;
1583        unsigned char           link_mode;
1584
1585        unsigned char           if_port;
1586        unsigned char           dma;
1587
1588        unsigned int            mtu;
1589        unsigned short          type;
1590        unsigned short          hard_header_len;
1591
1592        unsigned short          needed_headroom;
1593        unsigned short          needed_tailroom;
1594
1595        /* Interface address info. */
1596        unsigned char           perm_addr[MAX_ADDR_LEN];
1597        unsigned char           addr_assign_type;
1598        unsigned char           addr_len;
1599        unsigned short          neigh_priv_len;
1600        unsigned short          dev_id;
1601        unsigned short          dev_port;
1602        spinlock_t              addr_list_lock;
1603        unsigned char           name_assign_type;
1604        bool                    uc_promisc;
1605        struct netdev_hw_addr_list      uc;
1606        struct netdev_hw_addr_list      mc;
1607        struct netdev_hw_addr_list      dev_addrs;
1608
1609#ifdef CONFIG_SYSFS
1610        struct kset             *queues_kset;
1611#endif
1612        unsigned int            promiscuity;
1613        unsigned int            allmulti;
1614
1615
1616        /* Protocol specific pointers */
1617
1618#if IS_ENABLED(CONFIG_VLAN_8021Q)
1619        struct vlan_info __rcu  *vlan_info;
1620#endif
1621#if IS_ENABLED(CONFIG_NET_DSA)
1622        struct dsa_switch_tree  *dsa_ptr;
1623#endif
1624#if IS_ENABLED(CONFIG_TIPC)
1625        struct tipc_bearer __rcu *tipc_ptr;
1626#endif
1627        void                    *atalk_ptr;
1628        struct in_device __rcu  *ip_ptr;
1629        struct dn_dev __rcu     *dn_ptr;
1630        struct inet6_dev __rcu  *ip6_ptr;
1631        void                    *ax25_ptr;
1632        struct wireless_dev     *ieee80211_ptr;
1633        struct wpan_dev         *ieee802154_ptr;
1634#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1635        struct mpls_dev __rcu   *mpls_ptr;
1636#endif
1637
1638/*
1639 * Cache lines mostly used on receive path (including eth_type_trans())
1640 */
1641        unsigned long           last_rx;
1642
1643        /* Interface address info used in eth_type_trans() */
1644        unsigned char           *dev_addr;
1645
1646
1647#ifdef CONFIG_SYSFS
1648        struct netdev_rx_queue  *_rx;
1649
1650        unsigned int            num_rx_queues;
1651        unsigned int            real_num_rx_queues;
1652
1653#endif
1654
1655        unsigned long           gro_flush_timeout;
1656        rx_handler_func_t __rcu *rx_handler;
1657        void __rcu              *rx_handler_data;
1658
1659#ifdef CONFIG_NET_CLS_ACT
1660        struct tcf_proto __rcu  *ingress_cl_list;
1661#endif
1662        struct netdev_queue __rcu *ingress_queue;
1663#ifdef CONFIG_NETFILTER_INGRESS
1664        struct list_head        nf_hooks_ingress;
1665#endif
1666
1667        unsigned char           broadcast[MAX_ADDR_LEN];
1668#ifdef CONFIG_RFS_ACCEL
1669        struct cpu_rmap         *rx_cpu_rmap;
1670#endif
1671        struct hlist_node       index_hlist;
1672
1673/*
1674 * Cache lines mostly used on transmit path
1675 */
1676        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1677        unsigned int            num_tx_queues;
1678        unsigned int            real_num_tx_queues;
1679        struct Qdisc            *qdisc;
1680        unsigned long           tx_queue_len;
1681        spinlock_t              tx_global_lock;
1682        int                     watchdog_timeo;
1683
1684#ifdef CONFIG_XPS
1685        struct xps_dev_maps __rcu *xps_maps;
1686#endif
1687
1688        /* These may be needed for future network-power-down code. */
1689
1690        /*
1691         * trans_start here is expensive for high speed devices on SMP,
1692         * please use netdev_queue->trans_start instead.
1693         */
1694        unsigned long           trans_start;
1695
1696        struct timer_list       watchdog_timer;
1697
1698        int __percpu            *pcpu_refcnt;
1699        struct list_head        todo_list;
1700
1701        struct list_head        link_watch_list;
1702
1703        enum { NETREG_UNINITIALIZED=0,
1704               NETREG_REGISTERED,       /* completed register_netdevice */
1705               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1706               NETREG_UNREGISTERED,     /* completed unregister todo */
1707               NETREG_RELEASED,         /* called free_netdev */
1708               NETREG_DUMMY,            /* dummy device for NAPI poll */
1709        } reg_state:8;
1710
1711        bool dismantle;
1712
1713        enum {
1714                RTNL_LINK_INITIALIZED,
1715                RTNL_LINK_INITIALIZING,
1716        } rtnl_link_state:16;
1717
1718        void (*destructor)(struct net_device *dev);
1719
1720#ifdef CONFIG_NETPOLL
1721        struct netpoll_info __rcu       *npinfo;
1722#endif
1723
1724        possible_net_t                  nd_net;
1725
1726        /* mid-layer private */
1727        union {
1728                void                                    *ml_priv;
1729                struct pcpu_lstats __percpu             *lstats;
1730                struct pcpu_sw_netstats __percpu        *tstats;
1731                struct pcpu_dstats __percpu             *dstats;
1732                struct pcpu_vstats __percpu             *vstats;
1733        };
1734
1735        struct garp_port __rcu  *garp_port;
1736        struct mrp_port __rcu   *mrp_port;
1737
1738        struct device   dev;
1739        const struct attribute_group *sysfs_groups[4];
1740        const struct attribute_group *sysfs_rx_queue_group;
1741
1742        const struct rtnl_link_ops *rtnl_link_ops;
1743
1744        /* for setting kernel sock attribute on TCP connection setup */
1745#define GSO_MAX_SIZE            65536
1746        unsigned int            gso_max_size;
1747#define GSO_MAX_SEGS            65535
1748        u16                     gso_max_segs;
1749        u16                     gso_min_segs;
1750#ifdef CONFIG_DCB
1751        const struct dcbnl_rtnl_ops *dcbnl_ops;
1752#endif
1753        u8 num_tc;
1754        struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1755        u8 prio_tc_map[TC_BITMASK + 1];
1756
1757#if IS_ENABLED(CONFIG_FCOE)
1758        unsigned int            fcoe_ddp_xid;
1759#endif
1760#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1761        struct netprio_map __rcu *priomap;
1762#endif
1763        struct phy_device *phydev;
1764        struct lock_class_key *qdisc_tx_busylock;
1765};
1766#define to_net_dev(d) container_of(d, struct net_device, dev)
1767
1768#define NETDEV_ALIGN            32
1769
1770static inline
1771int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1772{
1773        return dev->prio_tc_map[prio & TC_BITMASK];
1774}
1775
1776static inline
1777int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1778{
1779        if (tc >= dev->num_tc)
1780                return -EINVAL;
1781
1782        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1783        return 0;
1784}
1785
1786static inline
1787void netdev_reset_tc(struct net_device *dev)
1788{
1789        dev->num_tc = 0;
1790        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1791        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1792}
1793
1794static inline
1795int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1796{
1797        if (tc >= dev->num_tc)
1798                return -EINVAL;
1799
1800        dev->tc_to_txq[tc].count = count;
1801        dev->tc_to_txq[tc].offset = offset;
1802        return 0;
1803}
1804
1805static inline
1806int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1807{
1808        if (num_tc > TC_MAX_QUEUE)
1809                return -EINVAL;
1810
1811        dev->num_tc = num_tc;
1812        return 0;
1813}
1814
1815static inline
1816int netdev_get_num_tc(struct net_device *dev)
1817{
1818        return dev->num_tc;
1819}
1820
1821static inline
1822struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1823                                         unsigned int index)
1824{
1825        return &dev->_tx[index];
1826}
1827
1828static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1829                                                    const struct sk_buff *skb)
1830{
1831        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1832}
1833
1834static inline void netdev_for_each_tx_queue(struct net_device *dev,
1835                                            void (*f)(struct net_device *,
1836                                                      struct netdev_queue *,
1837                                                      void *),
1838                                            void *arg)
1839{
1840        unsigned int i;
1841
1842        for (i = 0; i < dev->num_tx_queues; i++)
1843                f(dev, &dev->_tx[i], arg);
1844}
1845
1846struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1847                                    struct sk_buff *skb,
1848                                    void *accel_priv);
1849
1850/*
1851 * Net namespace inlines
1852 */
1853static inline
1854struct net *dev_net(const struct net_device *dev)
1855{
1856        return read_pnet(&dev->nd_net);
1857}
1858
1859static inline
1860void dev_net_set(struct net_device *dev, struct net *net)
1861{
1862        write_pnet(&dev->nd_net, net);
1863}
1864
1865static inline bool netdev_uses_dsa(struct net_device *dev)
1866{
1867#if IS_ENABLED(CONFIG_NET_DSA)
1868        if (dev->dsa_ptr != NULL)
1869                return dsa_uses_tagged_protocol(dev->dsa_ptr);
1870#endif
1871        return false;
1872}
1873
1874/**
1875 *      netdev_priv - access network device private data
1876 *      @dev: network device
1877 *
1878 * Get network device private data
1879 */
1880static inline void *netdev_priv(const struct net_device *dev)
1881{
1882        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1883}
1884
1885/* Set the sysfs physical device reference for the network logical device
1886 * if set prior to registration will cause a symlink during initialization.
1887 */
1888#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1889
1890/* Set the sysfs device type for the network logical device to allow
1891 * fine-grained identification of different network device types. For
1892 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1893 */
1894#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1895
1896/* Default NAPI poll() weight
1897 * Device drivers are strongly advised to not use bigger value
1898 */
1899#define NAPI_POLL_WEIGHT 64
1900
1901/**
1902 *      netif_napi_add - initialize a napi context
1903 *      @dev:  network device
1904 *      @napi: napi context
1905 *      @poll: polling function
1906 *      @weight: default weight
1907 *
1908 * netif_napi_add() must be used to initialize a napi context prior to calling
1909 * *any* of the other napi related functions.
1910 */
1911void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1912                    int (*poll)(struct napi_struct *, int), int weight);
1913
1914/**
1915 *  netif_napi_del - remove a napi context
1916 *  @napi: napi context
1917 *
1918 *  netif_napi_del() removes a napi context from the network device napi list
1919 */
1920void netif_napi_del(struct napi_struct *napi);
1921
1922struct napi_gro_cb {
1923        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1924        void *frag0;
1925
1926        /* Length of frag0. */
1927        unsigned int frag0_len;
1928
1929        /* This indicates where we are processing relative to skb->data. */
1930        int data_offset;
1931
1932        /* This is non-zero if the packet cannot be merged with the new skb. */
1933        u16     flush;
1934
1935        /* Save the IP ID here and check when we get to the transport layer */
1936        u16     flush_id;
1937
1938        /* Number of segments aggregated. */
1939        u16     count;
1940
1941        /* Start offset for remote checksum offload */
1942        u16     gro_remcsum_start;
1943
1944        /* jiffies when first packet was created/queued */
1945        unsigned long age;
1946
1947        /* Used in ipv6_gro_receive() and foo-over-udp */
1948        u16     proto;
1949
1950        /* This is non-zero if the packet may be of the same flow. */
1951        u8      same_flow:1;
1952
1953        /* Used in udp_gro_receive */
1954        u8      udp_mark:1;
1955
1956        /* GRO checksum is valid */
1957        u8      csum_valid:1;
1958
1959        /* Number of checksums via CHECKSUM_UNNECESSARY */
1960        u8      csum_cnt:3;
1961
1962        /* Free the skb? */
1963        u8      free:2;
1964#define NAPI_GRO_FREE             1
1965#define NAPI_GRO_FREE_STOLEN_HEAD 2
1966
1967        /* Used in foo-over-udp, set in udp[46]_gro_receive */
1968        u8      is_ipv6:1;
1969
1970        /* 7 bit hole */
1971
1972        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1973        __wsum  csum;
1974
1975        /* used in skb_gro_receive() slow path */
1976        struct sk_buff *last;
1977};
1978
1979#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1980
1981struct packet_type {
1982        __be16                  type;   /* This is really htons(ether_type). */
1983        struct net_device       *dev;   /* NULL is wildcarded here           */
1984        int                     (*func) (struct sk_buff *,
1985                                         struct net_device *,
1986                                         struct packet_type *,
1987                                         struct net_device *);
1988        bool                    (*id_match)(struct packet_type *ptype,
1989                                            struct sock *sk);
1990        void                    *af_packet_priv;
1991        struct list_head        list;
1992};
1993
1994struct offload_callbacks {
1995        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1996                                                netdev_features_t features);
1997        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1998                                                 struct sk_buff *skb);
1999        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2000};
2001
2002struct packet_offload {
2003        __be16                   type;  /* This is really htons(ether_type). */
2004        u16                      priority;
2005        struct offload_callbacks callbacks;
2006        struct list_head         list;
2007};
2008
2009struct udp_offload;
2010
2011struct udp_offload_callbacks {
2012        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2013                                                 struct sk_buff *skb,
2014                                                 struct udp_offload *uoff);
2015        int                     (*gro_complete)(struct sk_buff *skb,
2016                                                int nhoff,
2017                                                struct udp_offload *uoff);
2018};
2019
2020struct udp_offload {
2021        __be16                   port;
2022        u8                       ipproto;
2023        struct udp_offload_callbacks callbacks;
2024};
2025
2026/* often modified stats are per cpu, other are shared (netdev->stats) */
2027struct pcpu_sw_netstats {
2028        u64     rx_packets;
2029        u64     rx_bytes;
2030        u64     tx_packets;
2031        u64     tx_bytes;
2032        struct u64_stats_sync   syncp;
2033};
2034
2035#define netdev_alloc_pcpu_stats(type)                           \
2036({                                                              \
2037        typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2038        if (pcpu_stats) {                                       \
2039                int __cpu;                                      \
2040                for_each_possible_cpu(__cpu) {                  \
2041                        typeof(type) *stat;                     \
2042                        stat = per_cpu_ptr(pcpu_stats, __cpu);  \
2043                        u64_stats_init(&stat->syncp);           \
2044                }                                               \
2045        }                                                       \
2046        pcpu_stats;                                             \
2047})
2048
2049#include <linux/notifier.h>
2050
2051/* netdevice notifier chain. Please remember to update the rtnetlink
2052 * notification exclusion list in rtnetlink_event() when adding new
2053 * types.
2054 */
2055#define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2056#define NETDEV_DOWN     0x0002
2057#define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2058                                   detected a hardware crash and restarted
2059                                   - we can use this eg to kick tcp sessions
2060                                   once done */
2061#define NETDEV_CHANGE   0x0004  /* Notify device state change */
2062#define NETDEV_REGISTER 0x0005
2063#define NETDEV_UNREGISTER       0x0006
2064#define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2065#define NETDEV_CHANGEADDR       0x0008
2066#define NETDEV_GOING_DOWN       0x0009
2067#define NETDEV_CHANGENAME       0x000A
2068#define NETDEV_FEAT_CHANGE      0x000B
2069#define NETDEV_BONDING_FAILOVER 0x000C
2070#define NETDEV_PRE_UP           0x000D
2071#define NETDEV_PRE_TYPE_CHANGE  0x000E
2072#define NETDEV_POST_TYPE_CHANGE 0x000F
2073#define NETDEV_POST_INIT        0x0010
2074#define NETDEV_UNREGISTER_FINAL 0x0011
2075#define NETDEV_RELEASE          0x0012
2076#define NETDEV_NOTIFY_PEERS     0x0013
2077#define NETDEV_JOIN             0x0014
2078#define NETDEV_CHANGEUPPER      0x0015
2079#define NETDEV_RESEND_IGMP      0x0016
2080#define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2081#define NETDEV_CHANGEINFODATA   0x0018
2082#define NETDEV_BONDING_INFO     0x0019
2083
2084int register_netdevice_notifier(struct notifier_block *nb);
2085int unregister_netdevice_notifier(struct notifier_block *nb);
2086
2087struct netdev_notifier_info {
2088        struct net_device *dev;
2089};
2090
2091struct netdev_notifier_change_info {
2092        struct netdev_notifier_info info; /* must be first */
2093        unsigned int flags_changed;
2094};
2095
2096static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2097                                             struct net_device *dev)
2098{
2099        info->dev = dev;
2100}
2101
2102static inline struct net_device *
2103netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2104{
2105        return info->dev;
2106}
2107
2108int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2109
2110
2111extern rwlock_t                         dev_base_lock;          /* Device list lock */
2112
2113#define for_each_netdev(net, d)         \
2114                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2115#define for_each_netdev_reverse(net, d) \
2116                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2117#define for_each_netdev_rcu(net, d)             \
2118                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2119#define for_each_netdev_safe(net, d, n) \
2120                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2121#define for_each_netdev_continue(net, d)                \
2122                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2123#define for_each_netdev_continue_rcu(net, d)            \
2124        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2125#define for_each_netdev_in_bond_rcu(bond, slave)        \
2126                for_each_netdev_rcu(&init_net, slave)   \
2127                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2128#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2129
2130static inline struct net_device *next_net_device(struct net_device *dev)
2131{
2132        struct list_head *lh;
2133        struct net *net;
2134
2135        net = dev_net(dev);
2136        lh = dev->dev_list.next;
2137        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2138}
2139
2140static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2141{
2142        struct list_head *lh;
2143        struct net *net;
2144
2145        net = dev_net(dev);
2146        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2147        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2148}
2149
2150static inline struct net_device *first_net_device(struct net *net)
2151{
2152        return list_empty(&net->dev_base_head) ? NULL :
2153                net_device_entry(net->dev_base_head.next);
2154}
2155
2156static inline struct net_device *first_net_device_rcu(struct net *net)
2157{
2158        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2159
2160        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2161}
2162
2163int netdev_boot_setup_check(struct net_device *dev);
2164unsigned long netdev_boot_base(const char *prefix, int unit);
2165struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2166                                       const char *hwaddr);
2167struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2168struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2169void dev_add_pack(struct packet_type *pt);
2170void dev_remove_pack(struct packet_type *pt);
2171void __dev_remove_pack(struct packet_type *pt);
2172void dev_add_offload(struct packet_offload *po);
2173void dev_remove_offload(struct packet_offload *po);
2174
2175int dev_get_iflink(const struct net_device *dev);
2176struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2177                                      unsigned short mask);
2178struct net_device *dev_get_by_name(struct net *net, const char *name);
2179struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2180struct net_device *__dev_get_by_name(struct net *net, const char *name);
2181int dev_alloc_name(struct net_device *dev, const char *name);
2182int dev_open(struct net_device *dev);
2183int dev_close(struct net_device *dev);
2184int dev_close_many(struct list_head *head, bool unlink);
2185void dev_disable_lro(struct net_device *dev);
2186int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2187int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2188static inline int dev_queue_xmit(struct sk_buff *skb)
2189{
2190        return dev_queue_xmit_sk(skb->sk, skb);
2191}
2192int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2193int register_netdevice(struct net_device *dev);
2194void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2195void unregister_netdevice_many(struct list_head *head);
2196static inline void unregister_netdevice(struct net_device *dev)
2197{
2198        unregister_netdevice_queue(dev, NULL);
2199}
2200
2201int netdev_refcnt_read(const struct net_device *dev);
2202void free_netdev(struct net_device *dev);
2203void netdev_freemem(struct net_device *dev);
2204void synchronize_net(void);
2205int init_dummy_netdev(struct net_device *dev);
2206
2207DECLARE_PER_CPU(int, xmit_recursion);
2208static inline int dev_recursion_level(void)
2209{
2210        return this_cpu_read(xmit_recursion);
2211}
2212
2213struct net_device *dev_get_by_index(struct net *net, int ifindex);
2214struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2215struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2216int netdev_get_name(struct net *net, char *name, int ifindex);
2217int dev_restart(struct net_device *dev);
2218int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2219
2220static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2221{
2222        return NAPI_GRO_CB(skb)->data_offset;
2223}
2224
2225static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2226{
2227        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2228}
2229
2230static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2231{
2232        NAPI_GRO_CB(skb)->data_offset += len;
2233}
2234
2235static inline void *skb_gro_header_fast(struct sk_buff *skb,
2236                                        unsigned int offset)
2237{
2238        return NAPI_GRO_CB(skb)->frag0 + offset;
2239}
2240
2241static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2242{
2243        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2244}
2245
2246static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2247                                        unsigned int offset)
2248{
2249        if (!pskb_may_pull(skb, hlen))
2250                return NULL;
2251
2252        NAPI_GRO_CB(skb)->frag0 = NULL;
2253        NAPI_GRO_CB(skb)->frag0_len = 0;
2254        return skb->data + offset;
2255}
2256
2257static inline void *skb_gro_network_header(struct sk_buff *skb)
2258{
2259        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2260               skb_network_offset(skb);
2261}
2262
2263static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2264                                        const void *start, unsigned int len)
2265{
2266        if (NAPI_GRO_CB(skb)->csum_valid)
2267                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2268                                                  csum_partial(start, len, 0));
2269}
2270
2271/* GRO checksum functions. These are logical equivalents of the normal
2272 * checksum functions (in skbuff.h) except that they operate on the GRO
2273 * offsets and fields in sk_buff.
2274 */
2275
2276__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2277
2278static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2279{
2280        return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2281                skb_gro_offset(skb));
2282}
2283
2284static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2285                                                      bool zero_okay,
2286                                                      __sum16 check)
2287{
2288        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2289                skb_checksum_start_offset(skb) <
2290                 skb_gro_offset(skb)) &&
2291                !skb_at_gro_remcsum_start(skb) &&
2292                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2293                (!zero_okay || check));
2294}
2295
2296static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2297                                                           __wsum psum)
2298{
2299        if (NAPI_GRO_CB(skb)->csum_valid &&
2300            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2301                return 0;
2302
2303        NAPI_GRO_CB(skb)->csum = psum;
2304
2305        return __skb_gro_checksum_complete(skb);
2306}
2307
2308static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2309{
2310        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2311                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2312                NAPI_GRO_CB(skb)->csum_cnt--;
2313        } else {
2314                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2315                 * verified a new top level checksum or an encapsulated one
2316                 * during GRO. This saves work if we fallback to normal path.
2317                 */
2318                __skb_incr_checksum_unnecessary(skb);
2319        }
2320}
2321
2322#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2323                                    compute_pseudo)                     \
2324({                                                                      \
2325        __sum16 __ret = 0;                                              \
2326        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2327                __ret = __skb_gro_checksum_validate_complete(skb,       \
2328                                compute_pseudo(skb, proto));            \
2329        if (__ret)                                                      \
2330                __skb_mark_checksum_bad(skb);                           \
2331        else                                                            \
2332                skb_gro_incr_csum_unnecessary(skb);                     \
2333        __ret;                                                          \
2334})
2335
2336#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2337        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2338
2339#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2340                                             compute_pseudo)            \
2341        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2342
2343#define skb_gro_checksum_simple_validate(skb)                           \
2344        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2345
2346static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2347{
2348        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2349                !NAPI_GRO_CB(skb)->csum_valid);
2350}
2351
2352static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2353                                              __sum16 check, __wsum pseudo)
2354{
2355        NAPI_GRO_CB(skb)->csum = ~pseudo;
2356        NAPI_GRO_CB(skb)->csum_valid = 1;
2357}
2358
2359#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2360do {                                                                    \
2361        if (__skb_gro_checksum_convert_check(skb))                      \
2362                __skb_gro_checksum_convert(skb, check,                  \
2363                                           compute_pseudo(skb, proto)); \
2364} while (0)
2365
2366struct gro_remcsum {
2367        int offset;
2368        __wsum delta;
2369};
2370
2371static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2372{
2373        grc->offset = 0;
2374        grc->delta = 0;
2375}
2376
2377static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2378                                           int start, int offset,
2379                                           struct gro_remcsum *grc,
2380                                           bool nopartial)
2381{
2382        __wsum delta;
2383
2384        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2385
2386        if (!nopartial) {
2387                NAPI_GRO_CB(skb)->gro_remcsum_start =
2388                    ((unsigned char *)ptr + start) - skb->head;
2389                return;
2390        }
2391
2392        delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2393
2394        /* Adjust skb->csum since we changed the packet */
2395        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2396
2397        grc->offset = (ptr + offset) - (void *)skb->head;
2398        grc->delta = delta;
2399}
2400
2401static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2402                                           struct gro_remcsum *grc)
2403{
2404        if (!grc->delta)
2405                return;
2406
2407        remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2408}
2409
2410static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2411                                  unsigned short type,
2412                                  const void *daddr, const void *saddr,
2413                                  unsigned int len)
2414{
2415        if (!dev->header_ops || !dev->header_ops->create)
2416                return 0;
2417
2418        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2419}
2420
2421static inline int dev_parse_header(const struct sk_buff *skb,
2422                                   unsigned char *haddr)
2423{
2424        const struct net_device *dev = skb->dev;
2425
2426        if (!dev->header_ops || !dev->header_ops->parse)
2427                return 0;
2428        return dev->header_ops->parse(skb, haddr);
2429}
2430
2431typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2432int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2433static inline int unregister_gifconf(unsigned int family)
2434{
2435        return register_gifconf(family, NULL);
2436}
2437
2438#ifdef CONFIG_NET_FLOW_LIMIT
2439#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2440struct sd_flow_limit {
2441        u64                     count;
2442        unsigned int            num_buckets;
2443        unsigned int            history_head;
2444        u16                     history[FLOW_LIMIT_HISTORY];
2445        u8                      buckets[];
2446};
2447
2448extern int netdev_flow_limit_table_len;
2449#endif /* CONFIG_NET_FLOW_LIMIT */
2450
2451/*
2452 * Incoming packets are placed on per-cpu queues
2453 */
2454struct softnet_data {
2455        struct list_head        poll_list;
2456        struct sk_buff_head     process_queue;
2457
2458        /* stats */
2459        unsigned int            processed;
2460        unsigned int            time_squeeze;
2461        unsigned int            cpu_collision;
2462        unsigned int            received_rps;
2463#ifdef CONFIG_RPS
2464        struct softnet_data     *rps_ipi_list;
2465#endif
2466#ifdef CONFIG_NET_FLOW_LIMIT
2467        struct sd_flow_limit __rcu *flow_limit;
2468#endif
2469        struct Qdisc            *output_queue;
2470        struct Qdisc            **output_queue_tailp;
2471        struct sk_buff          *completion_queue;
2472
2473#ifdef CONFIG_RPS
2474        /* Elements below can be accessed between CPUs for RPS */
2475        struct call_single_data csd ____cacheline_aligned_in_smp;
2476        struct softnet_data     *rps_ipi_next;
2477        unsigned int            cpu;
2478        unsigned int            input_queue_head;
2479        unsigned int            input_queue_tail;
2480#endif
2481        unsigned int            dropped;
2482        struct sk_buff_head     input_pkt_queue;
2483        struct napi_struct      backlog;
2484
2485};
2486
2487static inline void input_queue_head_incr(struct softnet_data *sd)
2488{
2489#ifdef CONFIG_RPS
2490        sd->input_queue_head++;
2491#endif
2492}
2493
2494static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2495                                              unsigned int *qtail)
2496{
2497#ifdef CONFIG_RPS
2498        *qtail = ++sd->input_queue_tail;
2499#endif
2500}
2501
2502DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2503
2504void __netif_schedule(struct Qdisc *q);
2505void netif_schedule_queue(struct netdev_queue *txq);
2506
2507static inline void netif_tx_schedule_all(struct net_device *dev)
2508{
2509        unsigned int i;
2510
2511        for (i = 0; i < dev->num_tx_queues; i++)
2512                netif_schedule_queue(netdev_get_tx_queue(dev, i));
2513}
2514
2515static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2516{
2517        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2518}
2519
2520/**
2521 *      netif_start_queue - allow transmit
2522 *      @dev: network device
2523 *
2524 *      Allow upper layers to call the device hard_start_xmit routine.
2525 */
2526static inline void netif_start_queue(struct net_device *dev)
2527{
2528        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2529}
2530
2531static inline void netif_tx_start_all_queues(struct net_device *dev)
2532{
2533        unsigned int i;
2534
2535        for (i = 0; i < dev->num_tx_queues; i++) {
2536                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2537                netif_tx_start_queue(txq);
2538        }
2539}
2540
2541void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2542
2543/**
2544 *      netif_wake_queue - restart transmit
2545 *      @dev: network device
2546 *
2547 *      Allow upper layers to call the device hard_start_xmit routine.
2548 *      Used for flow control when transmit resources are available.
2549 */
2550static inline void netif_wake_queue(struct net_device *dev)
2551{
2552        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2553}
2554
2555static inline void netif_tx_wake_all_queues(struct net_device *dev)
2556{
2557        unsigned int i;
2558
2559        for (i = 0; i < dev->num_tx_queues; i++) {
2560                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2561                netif_tx_wake_queue(txq);
2562        }
2563}
2564
2565static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2566{
2567        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2568}
2569
2570/**
2571 *      netif_stop_queue - stop transmitted packets
2572 *      @dev: network device
2573 *
2574 *      Stop upper layers calling the device hard_start_xmit routine.
2575 *      Used for flow control when transmit resources are unavailable.
2576 */
2577static inline void netif_stop_queue(struct net_device *dev)
2578{
2579        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2580}
2581
2582void netif_tx_stop_all_queues(struct net_device *dev);
2583
2584static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2585{
2586        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2587}
2588
2589/**
2590 *      netif_queue_stopped - test if transmit queue is flowblocked
2591 *      @dev: network device
2592 *
2593 *      Test if transmit queue on device is currently unable to send.
2594 */
2595static inline bool netif_queue_stopped(const struct net_device *dev)
2596{
2597        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2598}
2599
2600static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2601{
2602        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2603}
2604
2605static inline bool
2606netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2607{
2608        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2609}
2610
2611static inline bool
2612netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2613{
2614        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2615}
2616
2617/**
2618 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2619 *      @dev_queue: pointer to transmit queue
2620 *
2621 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2622 * to give appropriate hint to the cpu.
2623 */
2624static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2625{
2626#ifdef CONFIG_BQL
2627        prefetchw(&dev_queue->dql.num_queued);
2628#endif
2629}
2630
2631/**
2632 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2633 *      @dev_queue: pointer to transmit queue
2634 *
2635 * BQL enabled drivers might use this helper in their TX completion path,
2636 * to give appropriate hint to the cpu.
2637 */
2638static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2639{
2640#ifdef CONFIG_BQL
2641        prefetchw(&dev_queue->dql.limit);
2642#endif
2643}
2644
2645static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2646                                        unsigned int bytes)
2647{
2648#ifdef CONFIG_BQL
2649        dql_queued(&dev_queue->dql, bytes);
2650
2651        if (likely(dql_avail(&dev_queue->dql) >= 0))
2652                return;
2653
2654        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2655
2656        /*
2657         * The XOFF flag must be set before checking the dql_avail below,
2658         * because in netdev_tx_completed_queue we update the dql_completed
2659         * before checking the XOFF flag.
2660         */
2661        smp_mb();
2662
2663        /* check again in case another CPU has just made room avail */
2664        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2665                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2666#endif
2667}
2668
2669/**
2670 *      netdev_sent_queue - report the number of bytes queued to hardware
2671 *      @dev: network device
2672 *      @bytes: number of bytes queued to the hardware device queue
2673 *
2674 *      Report the number of bytes queued for sending/completion to the network
2675 *      device hardware queue. @bytes should be a good approximation and should
2676 *      exactly match netdev_completed_queue() @bytes
2677 */
2678static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2679{
2680        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2681}
2682
2683static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2684                                             unsigned int pkts, unsigned int bytes)
2685{
2686#ifdef CONFIG_BQL
2687        if (unlikely(!bytes))
2688                return;
2689
2690        dql_completed(&dev_queue->dql, bytes);
2691
2692        /*
2693         * Without the memory barrier there is a small possiblity that
2694         * netdev_tx_sent_queue will miss the update and cause the queue to
2695         * be stopped forever
2696         */
2697        smp_mb();
2698
2699        if (dql_avail(&dev_queue->dql) < 0)
2700                return;
2701
2702        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2703                netif_schedule_queue(dev_queue);
2704#endif
2705}
2706
2707/**
2708 *      netdev_completed_queue - report bytes and packets completed by device
2709 *      @dev: network device
2710 *      @pkts: actual number of packets sent over the medium
2711 *      @bytes: actual number of bytes sent over the medium
2712 *
2713 *      Report the number of bytes and packets transmitted by the network device
2714 *      hardware queue over the physical medium, @bytes must exactly match the
2715 *      @bytes amount passed to netdev_sent_queue()
2716 */
2717static inline void netdev_completed_queue(struct net_device *dev,
2718                                          unsigned int pkts, unsigned int bytes)
2719{
2720        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2721}
2722
2723static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2724{
2725#ifdef CONFIG_BQL
2726        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2727        dql_reset(&q->dql);
2728#endif
2729}
2730
2731/**
2732 *      netdev_reset_queue - reset the packets and bytes count of a network device
2733 *      @dev_queue: network device
2734 *
2735 *      Reset the bytes and packet count of a network device and clear the
2736 *      software flow control OFF bit for this network device
2737 */
2738static inline void netdev_reset_queue(struct net_device *dev_queue)
2739{
2740        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2741}
2742
2743/**
2744 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2745 *      @dev: network device
2746 *      @queue_index: given tx queue index
2747 *
2748 *      Returns 0 if given tx queue index >= number of device tx queues,
2749 *      otherwise returns the originally passed tx queue index.
2750 */
2751static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2752{
2753        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2754                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2755                                     dev->name, queue_index,
2756                                     dev->real_num_tx_queues);
2757                return 0;
2758        }
2759
2760        return queue_index;
2761}
2762
2763/**
2764 *      netif_running - test if up
2765 *      @dev: network device
2766 *
2767 *      Test if the device has been brought up.
2768 */
2769static inline bool netif_running(const struct net_device *dev)
2770{
2771        return test_bit(__LINK_STATE_START, &dev->state);
2772}
2773
2774/*
2775 * Routines to manage the subqueues on a device.  We only need start
2776 * stop, and a check if it's stopped.  All other device management is
2777 * done at the overall netdevice level.
2778 * Also test the device if we're multiqueue.
2779 */
2780
2781/**
2782 *      netif_start_subqueue - allow sending packets on subqueue
2783 *      @dev: network device
2784 *      @queue_index: sub queue index
2785 *
2786 * Start individual transmit queue of a device with multiple transmit queues.
2787 */
2788static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2789{
2790        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2791
2792        netif_tx_start_queue(txq);
2793}
2794
2795/**
2796 *      netif_stop_subqueue - stop sending packets on subqueue
2797 *      @dev: network device
2798 *      @queue_index: sub queue index
2799 *
2800 * Stop individual transmit queue of a device with multiple transmit queues.
2801 */
2802static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2803{
2804        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2805        netif_tx_stop_queue(txq);
2806}
2807
2808/**
2809 *      netif_subqueue_stopped - test status of subqueue
2810 *      @dev: network device
2811 *      @queue_index: sub queue index
2812 *
2813 * Check individual transmit queue of a device with multiple transmit queues.
2814 */
2815static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2816                                            u16 queue_index)
2817{
2818        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2819
2820        return netif_tx_queue_stopped(txq);
2821}
2822
2823static inline bool netif_subqueue_stopped(const struct net_device *dev,
2824                                          struct sk_buff *skb)
2825{
2826        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2827}
2828
2829void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2830
2831#ifdef CONFIG_XPS
2832int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2833                        u16 index);
2834#else
2835static inline int netif_set_xps_queue(struct net_device *dev,
2836                                      const struct cpumask *mask,
2837                                      u16 index)
2838{
2839        return 0;
2840}
2841#endif
2842
2843u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2844                  unsigned int num_tx_queues);
2845
2846/*
2847 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2848 * as a distribution range limit for the returned value.
2849 */
2850static inline u16 skb_tx_hash(const struct net_device *dev,
2851                              struct sk_buff *skb)
2852{
2853        return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2854}
2855
2856/**
2857 *      netif_is_multiqueue - test if device has multiple transmit queues
2858 *      @dev: network device
2859 *
2860 * Check if device has multiple transmit queues
2861 */
2862static inline bool netif_is_multiqueue(const struct net_device *dev)
2863{
2864        return dev->num_tx_queues > 1;
2865}
2866
2867int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2868
2869#ifdef CONFIG_SYSFS
2870int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2871#else
2872static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2873                                                unsigned int rxq)
2874{
2875        return 0;
2876}
2877#endif
2878
2879#ifdef CONFIG_SYSFS
2880static inline unsigned int get_netdev_rx_queue_index(
2881                struct netdev_rx_queue *queue)
2882{
2883        struct net_device *dev = queue->dev;
2884        int index = queue - dev->_rx;
2885
2886        BUG_ON(index >= dev->num_rx_queues);
2887        return index;
2888}
2889#endif
2890
2891#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2892int netif_get_num_default_rss_queues(void);
2893
2894enum skb_free_reason {
2895        SKB_REASON_CONSUMED,
2896        SKB_REASON_DROPPED,
2897};
2898
2899void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2900void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2901
2902/*
2903 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2904 * interrupt context or with hardware interrupts being disabled.
2905 * (in_irq() || irqs_disabled())
2906 *
2907 * We provide four helpers that can be used in following contexts :
2908 *
2909 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2910 *  replacing kfree_skb(skb)
2911 *
2912 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2913 *  Typically used in place of consume_skb(skb) in TX completion path
2914 *
2915 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2916 *  replacing kfree_skb(skb)
2917 *
2918 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2919 *  and consumed a packet. Used in place of consume_skb(skb)
2920 */
2921static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2922{
2923        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2924}
2925
2926static inline void dev_consume_skb_irq(struct sk_buff *skb)
2927{
2928        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2929}
2930
2931static inline void dev_kfree_skb_any(struct sk_buff *skb)
2932{
2933        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2934}
2935
2936static inline void dev_consume_skb_any(struct sk_buff *skb)
2937{
2938        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2939}
2940
2941int netif_rx(struct sk_buff *skb);
2942int netif_rx_ni(struct sk_buff *skb);
2943int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2944static inline int netif_receive_skb(struct sk_buff *skb)
2945{
2946        return netif_receive_skb_sk(skb->sk, skb);
2947}
2948gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2949void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2950struct sk_buff *napi_get_frags(struct napi_struct *napi);
2951gro_result_t napi_gro_frags(struct napi_struct *napi);
2952struct packet_offload *gro_find_receive_by_type(__be16 type);
2953struct packet_offload *gro_find_complete_by_type(__be16 type);
2954
2955static inline void napi_free_frags(struct napi_struct *napi)
2956{
2957        kfree_skb(napi->skb);
2958        napi->skb = NULL;
2959}
2960
2961int netdev_rx_handler_register(struct net_device *dev,
2962                               rx_handler_func_t *rx_handler,
2963                               void *rx_handler_data);
2964void netdev_rx_handler_unregister(struct net_device *dev);
2965
2966bool dev_valid_name(const char *name);
2967int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2968int dev_ethtool(struct net *net, struct ifreq *);
2969unsigned int dev_get_flags(const struct net_device *);
2970int __dev_change_flags(struct net_device *, unsigned int flags);
2971int dev_change_flags(struct net_device *, unsigned int);
2972void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2973                        unsigned int gchanges);
2974int dev_change_name(struct net_device *, const char *);
2975int dev_set_alias(struct net_device *, const char *, size_t);
2976int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2977int dev_set_mtu(struct net_device *, int);
2978void dev_set_group(struct net_device *, int);
2979int dev_set_mac_address(struct net_device *, struct sockaddr *);
2980int dev_change_carrier(struct net_device *, bool new_carrier);
2981int dev_get_phys_port_id(struct net_device *dev,
2982                         struct netdev_phys_item_id *ppid);
2983int dev_get_phys_port_name(struct net_device *dev,
2984                           char *name, size_t len);
2985struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2986struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2987                                    struct netdev_queue *txq, int *ret);
2988int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2989int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2990bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2991
2992extern int              netdev_budget;
2993
2994/* Called by rtnetlink.c:rtnl_unlock() */
2995void netdev_run_todo(void);
2996
2997/**
2998 *      dev_put - release reference to device
2999 *      @dev: network device
3000 *
3001 * Release reference to device to allow it to be freed.
3002 */
3003static inline void dev_put(struct net_device *dev)
3004{
3005        this_cpu_dec(*dev->pcpu_refcnt);
3006}
3007
3008/**
3009 *      dev_hold - get reference to device
3010 *      @dev: network device
3011 *
3012 * Hold reference to device to keep it from being freed.
3013 */
3014static inline void dev_hold(struct net_device *dev)
3015{
3016        this_cpu_inc(*dev->pcpu_refcnt);
3017}
3018
3019/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3020 * and _off may be called from IRQ context, but it is caller
3021 * who is responsible for serialization of these calls.
3022 *
3023 * The name carrier is inappropriate, these functions should really be
3024 * called netif_lowerlayer_*() because they represent the state of any
3025 * kind of lower layer not just hardware media.
3026 */
3027
3028void linkwatch_init_dev(struct net_device *dev);
3029void linkwatch_fire_event(struct net_device *dev);
3030void linkwatch_forget_dev(struct net_device *dev);
3031
3032/**
3033 *      netif_carrier_ok - test if carrier present
3034 *      @dev: network device
3035 *
3036 * Check if carrier is present on device
3037 */
3038static inline bool netif_carrier_ok(const struct net_device *dev)
3039{
3040        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3041}
3042
3043unsigned long dev_trans_start(struct net_device *dev);
3044
3045void __netdev_watchdog_up(struct net_device *dev);
3046
3047void netif_carrier_on(struct net_device *dev);
3048
3049void netif_carrier_off(struct net_device *dev);
3050
3051/**
3052 *      netif_dormant_on - mark device as dormant.
3053 *      @dev: network device
3054 *
3055 * Mark device as dormant (as per RFC2863).
3056 *
3057 * The dormant state indicates that the relevant interface is not
3058 * actually in a condition to pass packets (i.e., it is not 'up') but is
3059 * in a "pending" state, waiting for some external event.  For "on-
3060 * demand" interfaces, this new state identifies the situation where the
3061 * interface is waiting for events to place it in the up state.
3062 *
3063 */
3064static inline void netif_dormant_on(struct net_device *dev)
3065{
3066        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3067                linkwatch_fire_event(dev);
3068}
3069
3070/**
3071 *      netif_dormant_off - set device as not dormant.
3072 *      @dev: network device
3073 *
3074 * Device is not in dormant state.
3075 */
3076static inline void netif_dormant_off(struct net_device *dev)
3077{
3078        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3079                linkwatch_fire_event(dev);
3080}
3081
3082/**
3083 *      netif_dormant - test if carrier present
3084 *      @dev: network device
3085 *
3086 * Check if carrier is present on device
3087 */
3088static inline bool netif_dormant(const struct net_device *dev)
3089{
3090        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3091}
3092
3093
3094/**
3095 *      netif_oper_up - test if device is operational
3096 *      @dev: network device
3097 *
3098 * Check if carrier is operational
3099 */
3100static inline bool netif_oper_up(const struct net_device *dev)
3101{
3102        return (dev->operstate == IF_OPER_UP ||
3103                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3104}
3105
3106/**
3107 *      netif_device_present - is device available or removed
3108 *      @dev: network device
3109 *
3110 * Check if device has not been removed from system.
3111 */
3112static inline bool netif_device_present(struct net_device *dev)
3113{
3114        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3115}
3116
3117void netif_device_detach(struct net_device *dev);
3118
3119void netif_device_attach(struct net_device *dev);
3120
3121/*
3122 * Network interface message level settings
3123 */
3124
3125enum {
3126        NETIF_MSG_DRV           = 0x0001,
3127        NETIF_MSG_PROBE         = 0x0002,
3128        NETIF_MSG_LINK          = 0x0004,
3129        NETIF_MSG_TIMER         = 0x0008,
3130        NETIF_MSG_IFDOWN        = 0x0010,
3131        NETIF_MSG_IFUP          = 0x0020,
3132        NETIF_MSG_RX_ERR        = 0x0040,
3133        NETIF_MSG_TX_ERR        = 0x0080,
3134        NETIF_MSG_TX_QUEUED     = 0x0100,
3135        NETIF_MSG_INTR          = 0x0200,
3136        NETIF_MSG_TX_DONE       = 0x0400,
3137        NETIF_MSG_RX_STATUS     = 0x0800,
3138        NETIF_MSG_PKTDATA       = 0x1000,
3139        NETIF_MSG_HW            = 0x2000,
3140        NETIF_MSG_WOL           = 0x4000,
3141};
3142
3143#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3144#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3145#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3146#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3147#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3148#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3149#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3150#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3151#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3152#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3153#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3154#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3155#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3156#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3157#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3158
3159static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3160{
3161        /* use default */
3162        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3163                return default_msg_enable_bits;
3164        if (debug_value == 0)   /* no output */
3165                return 0;
3166        /* set low N bits */
3167        return (1 << debug_value) - 1;
3168}
3169
3170static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3171{
3172        spin_lock(&txq->_xmit_lock);
3173        txq->xmit_lock_owner = cpu;
3174}
3175
3176static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3177{
3178        spin_lock_bh(&txq->_xmit_lock);
3179        txq->xmit_lock_owner = smp_processor_id();
3180}
3181
3182static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3183{
3184        bool ok = spin_trylock(&txq->_xmit_lock);
3185        if (likely(ok))
3186                txq->xmit_lock_owner = smp_processor_id();
3187        return ok;
3188}
3189
3190static inline void __netif_tx_unlock(struct netdev_queue *txq)
3191{
3192        txq->xmit_lock_owner = -1;
3193        spin_unlock(&txq->_xmit_lock);
3194}
3195
3196static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3197{
3198        txq->xmit_lock_owner = -1;
3199        spin_unlock_bh(&txq->_xmit_lock);
3200}
3201
3202static inline void txq_trans_update(struct netdev_queue *txq)
3203{
3204        if (txq->xmit_lock_owner != -1)
3205                txq->trans_start = jiffies;
3206}
3207
3208/**
3209 *      netif_tx_lock - grab network device transmit lock
3210 *      @dev: network device
3211 *
3212 * Get network device transmit lock
3213 */
3214static inline void netif_tx_lock(struct net_device *dev)
3215{
3216        unsigned int i;
3217        int cpu;
3218
3219        spin_lock(&dev->tx_global_lock);
3220        cpu = smp_processor_id();
3221        for (i = 0; i < dev->num_tx_queues; i++) {
3222                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3223
3224                /* We are the only thread of execution doing a
3225                 * freeze, but we have to grab the _xmit_lock in
3226                 * order to synchronize with threads which are in
3227                 * the ->hard_start_xmit() handler and already
3228                 * checked the frozen bit.
3229                 */
3230                __netif_tx_lock(txq, cpu);
3231                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3232                __netif_tx_unlock(txq);
3233        }
3234}
3235
3236static inline void netif_tx_lock_bh(struct net_device *dev)
3237{
3238        local_bh_disable();
3239        netif_tx_lock(dev);
3240}
3241
3242static inline void netif_tx_unlock(struct net_device *dev)
3243{
3244        unsigned int i;
3245
3246        for (i = 0; i < dev->num_tx_queues; i++) {
3247                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3248
3249                /* No need to grab the _xmit_lock here.  If the
3250                 * queue is not stopped for another reason, we
3251                 * force a schedule.
3252                 */
3253                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3254                netif_schedule_queue(txq);
3255        }
3256        spin_unlock(&dev->tx_global_lock);
3257}
3258
3259static inline void netif_tx_unlock_bh(struct net_device *dev)
3260{
3261        netif_tx_unlock(dev);
3262        local_bh_enable();
3263}
3264
3265#define HARD_TX_LOCK(dev, txq, cpu) {                   \
3266        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3267                __netif_tx_lock(txq, cpu);              \
3268        }                                               \
3269}
3270
3271#define HARD_TX_TRYLOCK(dev, txq)                       \
3272        (((dev->features & NETIF_F_LLTX) == 0) ?        \
3273                __netif_tx_trylock(txq) :               \
3274                true )
3275
3276#define HARD_TX_UNLOCK(dev, txq) {                      \
3277        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3278                __netif_tx_unlock(txq);                 \
3279        }                                               \
3280}
3281
3282static inline void netif_tx_disable(struct net_device *dev)
3283{
3284        unsigned int i;
3285        int cpu;
3286
3287        local_bh_disable();
3288        cpu = smp_processor_id();
3289        for (i = 0; i < dev->num_tx_queues; i++) {
3290                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3291
3292                __netif_tx_lock(txq, cpu);
3293                netif_tx_stop_queue(txq);
3294                __netif_tx_unlock(txq);
3295        }
3296        local_bh_enable();
3297}
3298
3299static inline void netif_addr_lock(struct net_device *dev)
3300{
3301        spin_lock(&dev->addr_list_lock);
3302}
3303
3304static inline void netif_addr_lock_nested(struct net_device *dev)
3305{
3306        int subclass = SINGLE_DEPTH_NESTING;
3307
3308        if (dev->netdev_ops->ndo_get_lock_subclass)
3309                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3310
3311        spin_lock_nested(&dev->addr_list_lock, subclass);
3312}
3313
3314static inline void netif_addr_lock_bh(struct net_device *dev)
3315{
3316        spin_lock_bh(&dev->addr_list_lock);
3317}
3318
3319static inline void netif_addr_unlock(struct net_device *dev)
3320{
3321        spin_unlock(&dev->addr_list_lock);
3322}
3323
3324static inline void netif_addr_unlock_bh(struct net_device *dev)
3325{
3326        spin_unlock_bh(&dev->addr_list_lock);
3327}
3328
3329/*
3330 * dev_addrs walker. Should be used only for read access. Call with
3331 * rcu_read_lock held.
3332 */
3333#define for_each_dev_addr(dev, ha) \
3334                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3335
3336/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3337
3338void ether_setup(struct net_device *dev);
3339
3340/* Support for loadable net-drivers */
3341struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3342                                    unsigned char name_assign_type,
3343                                    void (*setup)(struct net_device *),
3344                                    unsigned int txqs, unsigned int rxqs);
3345#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3346        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3347
3348#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3349        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3350                         count)
3351
3352int register_netdev(struct net_device *dev);
3353void unregister_netdev(struct net_device *dev);
3354
3355/* General hardware address lists handling functions */
3356int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3357                   struct netdev_hw_addr_list *from_list, int addr_len);
3358void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3359                      struct netdev_hw_addr_list *from_list, int addr_len);
3360int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3361                       struct net_device *dev,
3362                       int (*sync)(struct net_device *, const unsigned char *),
3363                       int (*unsync)(struct net_device *,
3364                                     const unsigned char *));
3365void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3366                          struct net_device *dev,
3367                          int (*unsync)(struct net_device *,
3368                                        const unsigned char *));
3369void __hw_addr_init(struct netdev_hw_addr_list *list);
3370
3371/* Functions used for device addresses handling */
3372int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3373                 unsigned char addr_type);
3374int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3375                 unsigned char addr_type);
3376void dev_addr_flush(struct net_device *dev);
3377int dev_addr_init(struct net_device *dev);
3378
3379/* Functions used for unicast addresses handling */
3380int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3381int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3382int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3383int dev_uc_sync(struct net_device *to, struct net_device *from);
3384int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3385void dev_uc_unsync(struct net_device *to, struct net_device *from);
3386void dev_uc_flush(struct net_device *dev);
3387void dev_uc_init(struct net_device *dev);
3388
3389/**
3390 *  __dev_uc_sync - Synchonize device's unicast list
3391 *  @dev:  device to sync
3392 *  @sync: function to call if address should be added
3393 *  @unsync: function to call if address should be removed
3394 *
3395 *  Add newly added addresses to the interface, and release
3396 *  addresses that have been deleted.
3397 **/
3398static inline int __dev_uc_sync(struct net_device *dev,
3399                                int (*sync)(struct net_device *,
3400                                            const unsigned char *),
3401                                int (*unsync)(struct net_device *,
3402                                              const unsigned char *))
3403{
3404        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3405}
3406
3407/**
3408 *  __dev_uc_unsync - Remove synchronized addresses from device
3409 *  @dev:  device to sync
3410 *  @unsync: function to call if address should be removed
3411 *
3412 *  Remove all addresses that were added to the device by dev_uc_sync().
3413 **/
3414static inline void __dev_uc_unsync(struct net_device *dev,
3415                                   int (*unsync)(struct net_device *,
3416                                                 const unsigned char *))
3417{
3418        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3419}
3420
3421/* Functions used for multicast addresses handling */
3422int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3423int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3424int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3425int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3426int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3427int dev_mc_sync(struct net_device *to, struct net_device *from);
3428int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3429void dev_mc_unsync(struct net_device *to, struct net_device *from);
3430void dev_mc_flush(struct net_device *dev);
3431void dev_mc_init(struct net_device *dev);
3432
3433/**
3434 *  __dev_mc_sync - Synchonize device's multicast list
3435 *  @dev:  device to sync
3436 *  @sync: function to call if address should be added
3437 *  @unsync: function to call if address should be removed
3438 *
3439 *  Add newly added addresses to the interface, and release
3440 *  addresses that have been deleted.
3441 **/
3442static inline int __dev_mc_sync(struct net_device *dev,
3443                                int (*sync)(struct net_device *,
3444                                            const unsigned char *),
3445                                int (*unsync)(struct net_device *,
3446                                              const unsigned char *))
3447{
3448        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3449}
3450
3451/**
3452 *  __dev_mc_unsync - Remove synchronized addresses from device
3453 *  @dev:  device to sync
3454 *  @unsync: function to call if address should be removed
3455 *
3456 *  Remove all addresses that were added to the device by dev_mc_sync().
3457 **/
3458static inline void __dev_mc_unsync(struct net_device *dev,
3459                                   int (*unsync)(struct net_device *,
3460                                                 const unsigned char *))
3461{
3462        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3463}
3464
3465/* Functions used for secondary unicast and multicast support */
3466void dev_set_rx_mode(struct net_device *dev);
3467void __dev_set_rx_mode(struct net_device *dev);
3468int dev_set_promiscuity(struct net_device *dev, int inc);
3469int dev_set_allmulti(struct net_device *dev, int inc);
3470void netdev_state_change(struct net_device *dev);
3471void netdev_notify_peers(struct net_device *dev);
3472void netdev_features_change(struct net_device *dev);
3473/* Load a device via the kmod */
3474void dev_load(struct net *net, const char *name);
3475struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3476                                        struct rtnl_link_stats64 *storage);
3477void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3478                             const struct net_device_stats *netdev_stats);
3479
3480extern int              netdev_max_backlog;
3481extern int              netdev_tstamp_prequeue;
3482extern int              weight_p;
3483extern int              bpf_jit_enable;
3484
3485bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3486struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3487                                                     struct list_head **iter);
3488struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3489                                                     struct list_head **iter);
3490
3491/* iterate through upper list, must be called under RCU read lock */
3492#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3493        for (iter = &(dev)->adj_list.upper, \
3494             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3495             updev; \
3496             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3497
3498/* iterate through upper list, must be called under RCU read lock */
3499#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3500        for (iter = &(dev)->all_adj_list.upper, \
3501             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3502             updev; \
3503             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3504
3505void *netdev_lower_get_next_private(struct net_device *dev,
3506                                    struct list_head **iter);
3507void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3508                                        struct list_head **iter);
3509
3510#define netdev_for_each_lower_private(dev, priv, iter) \
3511        for (iter = (dev)->adj_list.lower.next, \
3512             priv = netdev_lower_get_next_private(dev, &(iter)); \
3513             priv; \
3514             priv = netdev_lower_get_next_private(dev, &(iter)))
3515
3516#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3517        for (iter = &(dev)->adj_list.lower, \
3518             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3519             priv; \
3520             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3521
3522void *netdev_lower_get_next(struct net_device *dev,
3523                                struct list_head **iter);
3524#define netdev_for_each_lower_dev(dev, ldev, iter) \
3525        for (iter = &(dev)->adj_list.lower, \
3526             ldev = netdev_lower_get_next(dev, &(iter)); \
3527             ldev; \
3528             ldev = netdev_lower_get_next(dev, &(iter)))
3529
3530void *netdev_adjacent_get_private(struct list_head *adj_list);
3531void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3532struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3533struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3534int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3535int netdev_master_upper_dev_link(struct net_device *dev,
3536                                 struct net_device *upper_dev);
3537int netdev_master_upper_dev_link_private(struct net_device *dev,
3538                                         struct net_device *upper_dev,
3539                                         void *private);
3540void netdev_upper_dev_unlink(struct net_device *dev,
3541                             struct net_device *upper_dev);
3542void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3543void *netdev_lower_dev_get_private(struct net_device *dev,
3544                                   struct net_device *lower_dev);
3545
3546/* RSS keys are 40 or 52 bytes long */
3547#define NETDEV_RSS_KEY_LEN 52
3548extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3549void netdev_rss_key_fill(void *buffer, size_t len);
3550
3551int dev_get_nest_level(struct net_device *dev,
3552                       bool (*type_check)(struct net_device *dev));
3553int skb_checksum_help(struct sk_buff *skb);
3554struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3555                                  netdev_features_t features, bool tx_path);
3556struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3557                                    netdev_features_t features);
3558
3559struct netdev_bonding_info {
3560        ifslave slave;
3561        ifbond  master;
3562};
3563
3564struct netdev_notifier_bonding_info {
3565        struct netdev_notifier_info info; /* must be first */
3566        struct netdev_bonding_info  bonding_info;
3567};
3568
3569void netdev_bonding_info_change(struct net_device *dev,
3570                                struct netdev_bonding_info *bonding_info);
3571
3572static inline
3573struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3574{
3575        return __skb_gso_segment(skb, features, true);
3576}
3577__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3578
3579static inline bool can_checksum_protocol(netdev_features_t features,
3580                                         __be16 protocol)
3581{
3582        return ((features & NETIF_F_GEN_CSUM) ||
3583                ((features & NETIF_F_V4_CSUM) &&
3584                 protocol == htons(ETH_P_IP)) ||
3585                ((features & NETIF_F_V6_CSUM) &&
3586                 protocol == htons(ETH_P_IPV6)) ||
3587                ((features & NETIF_F_FCOE_CRC) &&
3588                 protocol == htons(ETH_P_FCOE)));
3589}
3590
3591#ifdef CONFIG_BUG
3592void netdev_rx_csum_fault(struct net_device *dev);
3593#else
3594static inline void netdev_rx_csum_fault(struct net_device *dev)
3595{
3596}
3597#endif
3598/* rx skb timestamps */
3599void net_enable_timestamp(void);
3600void net_disable_timestamp(void);
3601
3602#ifdef CONFIG_PROC_FS
3603int __init dev_proc_init(void);
3604#else
3605#define dev_proc_init() 0
3606#endif
3607
3608static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3609                                              struct sk_buff *skb, struct net_device *dev,
3610                                              bool more)
3611{
3612        skb->xmit_more = more ? 1 : 0;
3613        return ops->ndo_start_xmit(skb, dev);
3614}
3615
3616static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3617                                            struct netdev_queue *txq, bool more)
3618{
3619        const struct net_device_ops *ops = dev->netdev_ops;
3620        int rc;
3621
3622        rc = __netdev_start_xmit(ops, skb, dev, more);
3623        if (rc == NETDEV_TX_OK)
3624                txq_trans_update(txq);
3625
3626        return rc;
3627}
3628
3629int netdev_class_create_file_ns(struct class_attribute *class_attr,
3630                                const void *ns);
3631void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3632                                 const void *ns);
3633
3634static inline int netdev_class_create_file(struct class_attribute *class_attr)
3635{
3636        return netdev_class_create_file_ns(class_attr, NULL);
3637}
3638
3639static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3640{
3641        netdev_class_remove_file_ns(class_attr, NULL);
3642}
3643
3644extern struct kobj_ns_type_operations net_ns_type_operations;
3645
3646const char *netdev_drivername(const struct net_device *dev);
3647
3648void linkwatch_run_queue(void);
3649
3650static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3651                                                          netdev_features_t f2)
3652{
3653        if (f1 & NETIF_F_GEN_CSUM)
3654                f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3655        if (f2 & NETIF_F_GEN_CSUM)
3656                f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3657        f1 &= f2;
3658        if (f1 & NETIF_F_GEN_CSUM)
3659                f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3660
3661        return f1;
3662}
3663
3664static inline netdev_features_t netdev_get_wanted_features(
3665        struct net_device *dev)
3666{
3667        return (dev->features & ~dev->hw_features) | dev->wanted_features;
3668}
3669netdev_features_t netdev_increment_features(netdev_features_t all,
3670        netdev_features_t one, netdev_features_t mask);
3671
3672/* Allow TSO being used on stacked device :
3673 * Performing the GSO segmentation before last device
3674 * is a performance improvement.
3675 */
3676static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3677                                                        netdev_features_t mask)
3678{
3679        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3680}
3681
3682int __netdev_update_features(struct net_device *dev);
3683void netdev_update_features(struct net_device *dev);
3684void netdev_change_features(struct net_device *dev);
3685
3686void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3687                                        struct net_device *dev);
3688
3689netdev_features_t passthru_features_check(struct sk_buff *skb,
3690                                          struct net_device *dev,
3691                                          netdev_features_t features);
3692netdev_features_t netif_skb_features(struct sk_buff *skb);
3693
3694static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3695{
3696        netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3697
3698        /* check flags correspondence */
3699        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3700        BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3701        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3702        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3703        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3704        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3705        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3706        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3707        BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3708        BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3709        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3710        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3711        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3712
3713        return (features & feature) == feature;
3714}
3715
3716static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3717{
3718        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3719               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3720}
3721
3722static inline bool netif_needs_gso(struct sk_buff *skb,
3723                                   netdev_features_t features)
3724{
3725        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3726                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3727                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3728}
3729
3730static inline void netif_set_gso_max_size(struct net_device *dev,
3731                                          unsigned int size)
3732{
3733        dev->gso_max_size = size;
3734}
3735
3736static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3737                                        int pulled_hlen, u16 mac_offset,
3738                                        int mac_len)
3739{
3740        skb->protocol = protocol;
3741        skb->encapsulation = 1;
3742        skb_push(skb, pulled_hlen);
3743        skb_reset_transport_header(skb);
3744        skb->mac_header = mac_offset;
3745        skb->network_header = skb->mac_header + mac_len;
3746        skb->mac_len = mac_len;
3747}
3748
3749static inline bool netif_is_macvlan(struct net_device *dev)
3750{
3751        return dev->priv_flags & IFF_MACVLAN;
3752}
3753
3754static inline bool netif_is_macvlan_port(struct net_device *dev)
3755{
3756        return dev->priv_flags & IFF_MACVLAN_PORT;
3757}
3758
3759static inline bool netif_is_ipvlan(struct net_device *dev)
3760{
3761        return dev->priv_flags & IFF_IPVLAN_SLAVE;
3762}
3763
3764static inline bool netif_is_ipvlan_port(struct net_device *dev)
3765{
3766        return dev->priv_flags & IFF_IPVLAN_MASTER;
3767}
3768
3769static inline bool netif_is_bond_master(struct net_device *dev)
3770{
3771        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3772}
3773
3774static inline bool netif_is_bond_slave(struct net_device *dev)
3775{
3776        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3777}
3778
3779static inline bool netif_supports_nofcs(struct net_device *dev)
3780{
3781        return dev->priv_flags & IFF_SUPP_NOFCS;
3782}
3783
3784/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3785static inline void netif_keep_dst(struct net_device *dev)
3786{
3787        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3788}
3789
3790extern struct pernet_operations __net_initdata loopback_net_ops;
3791
3792/* Logging, debugging and troubleshooting/diagnostic helpers. */
3793
3794/* netdev_printk helpers, similar to dev_printk */
3795
3796static inline const char *netdev_name(const struct net_device *dev)
3797{
3798        if (!dev->name[0] || strchr(dev->name, '%'))
3799                return "(unnamed net_device)";
3800        return dev->name;
3801}
3802
3803static inline const char *netdev_reg_state(const struct net_device *dev)
3804{
3805        switch (dev->reg_state) {
3806        case NETREG_UNINITIALIZED: return " (uninitialized)";
3807        case NETREG_REGISTERED: return "";
3808        case NETREG_UNREGISTERING: return " (unregistering)";
3809        case NETREG_UNREGISTERED: return " (unregistered)";
3810        case NETREG_RELEASED: return " (released)";
3811        case NETREG_DUMMY: return " (dummy)";
3812        }
3813
3814        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3815        return " (unknown)";
3816}
3817
3818__printf(3, 4)
3819void netdev_printk(const char *level, const struct net_device *dev,
3820                   const char *format, ...);
3821__printf(2, 3)
3822void netdev_emerg(const struct net_device *dev, const char *format, ...);
3823__printf(2, 3)
3824void netdev_alert(const struct net_device *dev, const char *format, ...);
3825__printf(2, 3)
3826void netdev_crit(const struct net_device *dev, const char *format, ...);
3827__printf(2, 3)
3828void netdev_err(const struct net_device *dev, const char *format, ...);
3829__printf(2, 3)
3830void netdev_warn(const struct net_device *dev, const char *format, ...);
3831__printf(2, 3)
3832void netdev_notice(const struct net_device *dev, const char *format, ...);
3833__printf(2, 3)
3834void netdev_info(const struct net_device *dev, const char *format, ...);
3835
3836#define MODULE_ALIAS_NETDEV(device) \
3837        MODULE_ALIAS("netdev-" device)
3838
3839#if defined(CONFIG_DYNAMIC_DEBUG)
3840#define netdev_dbg(__dev, format, args...)                      \
3841do {                                                            \
3842        dynamic_netdev_dbg(__dev, format, ##args);              \
3843} while (0)
3844#elif defined(DEBUG)
3845#define netdev_dbg(__dev, format, args...)                      \
3846        netdev_printk(KERN_DEBUG, __dev, format, ##args)
3847#else
3848#define netdev_dbg(__dev, format, args...)                      \
3849({                                                              \
3850        if (0)                                                  \
3851                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3852})
3853#endif
3854
3855#if defined(VERBOSE_DEBUG)
3856#define netdev_vdbg     netdev_dbg
3857#else
3858
3859#define netdev_vdbg(dev, format, args...)                       \
3860({                                                              \
3861        if (0)                                                  \
3862                netdev_printk(KERN_DEBUG, dev, format, ##args); \
3863        0;                                                      \
3864})
3865#endif
3866
3867/*
3868 * netdev_WARN() acts like dev_printk(), but with the key difference
3869 * of using a WARN/WARN_ON to get the message out, including the
3870 * file/line information and a backtrace.
3871 */
3872#define netdev_WARN(dev, format, args...)                       \
3873        WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
3874             netdev_reg_state(dev), ##args)
3875
3876/* netif printk helpers, similar to netdev_printk */
3877
3878#define netif_printk(priv, type, level, dev, fmt, args...)      \
3879do {                                                            \
3880        if (netif_msg_##type(priv))                             \
3881                netdev_printk(level, (dev), fmt, ##args);       \
3882} while (0)
3883
3884#define netif_level(level, priv, type, dev, fmt, args...)       \
3885do {                                                            \
3886        if (netif_msg_##type(priv))                             \
3887                netdev_##level(dev, fmt, ##args);               \
3888} while (0)
3889
3890#define netif_emerg(priv, type, dev, fmt, args...)              \
3891        netif_level(emerg, priv, type, dev, fmt, ##args)
3892#define netif_alert(priv, type, dev, fmt, args...)              \
3893        netif_level(alert, priv, type, dev, fmt, ##args)
3894#define netif_crit(priv, type, dev, fmt, args...)               \
3895        netif_level(crit, priv, type, dev, fmt, ##args)
3896#define netif_err(priv, type, dev, fmt, args...)                \
3897        netif_level(err, priv, type, dev, fmt, ##args)
3898#define netif_warn(priv, type, dev, fmt, args...)               \
3899        netif_level(warn, priv, type, dev, fmt, ##args)
3900#define netif_notice(priv, type, dev, fmt, args...)             \
3901        netif_level(notice, priv, type, dev, fmt, ##args)
3902#define netif_info(priv, type, dev, fmt, args...)               \
3903        netif_level(info, priv, type, dev, fmt, ##args)
3904
3905#if defined(CONFIG_DYNAMIC_DEBUG)
3906#define netif_dbg(priv, type, netdev, format, args...)          \
3907do {                                                            \
3908        if (netif_msg_##type(priv))                             \
3909                dynamic_netdev_dbg(netdev, format, ##args);     \
3910} while (0)
3911#elif defined(DEBUG)
3912#define netif_dbg(priv, type, dev, format, args...)             \
3913        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3914#else
3915#define netif_dbg(priv, type, dev, format, args...)                     \
3916({                                                                      \
3917        if (0)                                                          \
3918                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3919        0;                                                              \
3920})
3921#endif
3922
3923#if defined(VERBOSE_DEBUG)
3924#define netif_vdbg      netif_dbg
3925#else
3926#define netif_vdbg(priv, type, dev, format, args...)            \
3927({                                                              \
3928        if (0)                                                  \
3929                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3930        0;                                                      \
3931})
3932#endif
3933
3934/*
3935 *      The list of packet types we will receive (as opposed to discard)
3936 *      and the routines to invoke.
3937 *
3938 *      Why 16. Because with 16 the only overlap we get on a hash of the
3939 *      low nibble of the protocol value is RARP/SNAP/X.25.
3940 *
3941 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3942 *             sure which should go first, but I bet it won't make much
3943 *             difference if we are running VLANs.  The good news is that
3944 *             this protocol won't be in the list unless compiled in, so
3945 *             the average user (w/out VLANs) will not be adversely affected.
3946 *             --BLG
3947 *
3948 *              0800    IP
3949 *              8100    802.1Q VLAN
3950 *              0001    802.3
3951 *              0002    AX.25
3952 *              0004    802.2
3953 *              8035    RARP
3954 *              0005    SNAP
3955 *              0805    X.25
3956 *              0806    ARP
3957 *              8137    IPX
3958 *              0009    Localtalk
3959 *              86DD    IPv6
3960 */
3961#define PTYPE_HASH_SIZE (16)
3962#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3963
3964#endif  /* _LINUX_NETDEVICE_H */
3965