linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/cache.h>
  38#include <linux/spinlock.h>
  39#include <linux/threads.h>
  40#include <linux/cpumask.h>
  41#include <linux/seqlock.h>
  42#include <linux/lockdep.h>
  43#include <linux/completion.h>
  44#include <linux/debugobjects.h>
  45#include <linux/bug.h>
  46#include <linux/compiler.h>
  47#include <linux/ktime.h>
  48
  49#include <asm/barrier.h>
  50
  51extern int rcu_expedited; /* for sysctl */
  52
  53#ifdef CONFIG_TINY_RCU
  54/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
  55static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
  56{
  57        return false;
  58}
  59
  60static inline void rcu_expedite_gp(void)
  61{
  62}
  63
  64static inline void rcu_unexpedite_gp(void)
  65{
  66}
  67#else /* #ifdef CONFIG_TINY_RCU */
  68bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
  69void rcu_expedite_gp(void);
  70void rcu_unexpedite_gp(void);
  71#endif /* #else #ifdef CONFIG_TINY_RCU */
  72
  73enum rcutorture_type {
  74        RCU_FLAVOR,
  75        RCU_BH_FLAVOR,
  76        RCU_SCHED_FLAVOR,
  77        RCU_TASKS_FLAVOR,
  78        SRCU_FLAVOR,
  79        INVALID_RCU_FLAVOR
  80};
  81
  82#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
  83void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  84                            unsigned long *gpnum, unsigned long *completed);
  85void rcutorture_record_test_transition(void);
  86void rcutorture_record_progress(unsigned long vernum);
  87void do_trace_rcu_torture_read(const char *rcutorturename,
  88                               struct rcu_head *rhp,
  89                               unsigned long secs,
  90                               unsigned long c_old,
  91                               unsigned long c);
  92#else
  93static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
  94                                          int *flags,
  95                                          unsigned long *gpnum,
  96                                          unsigned long *completed)
  97{
  98        *flags = 0;
  99        *gpnum = 0;
 100        *completed = 0;
 101}
 102static inline void rcutorture_record_test_transition(void)
 103{
 104}
 105static inline void rcutorture_record_progress(unsigned long vernum)
 106{
 107}
 108#ifdef CONFIG_RCU_TRACE
 109void do_trace_rcu_torture_read(const char *rcutorturename,
 110                               struct rcu_head *rhp,
 111                               unsigned long secs,
 112                               unsigned long c_old,
 113                               unsigned long c);
 114#else
 115#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 116        do { } while (0)
 117#endif
 118#endif
 119
 120#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
 121#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
 122#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
 123#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
 124#define ulong2long(a)           (*(long *)(&(a)))
 125
 126/* Exported common interfaces */
 127
 128#ifdef CONFIG_PREEMPT_RCU
 129
 130/**
 131 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 132 * @head: structure to be used for queueing the RCU updates.
 133 * @func: actual callback function to be invoked after the grace period
 134 *
 135 * The callback function will be invoked some time after a full grace
 136 * period elapses, in other words after all pre-existing RCU read-side
 137 * critical sections have completed.  However, the callback function
 138 * might well execute concurrently with RCU read-side critical sections
 139 * that started after call_rcu() was invoked.  RCU read-side critical
 140 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 141 * and may be nested.
 142 *
 143 * Note that all CPUs must agree that the grace period extended beyond
 144 * all pre-existing RCU read-side critical section.  On systems with more
 145 * than one CPU, this means that when "func()" is invoked, each CPU is
 146 * guaranteed to have executed a full memory barrier since the end of its
 147 * last RCU read-side critical section whose beginning preceded the call
 148 * to call_rcu().  It also means that each CPU executing an RCU read-side
 149 * critical section that continues beyond the start of "func()" must have
 150 * executed a memory barrier after the call_rcu() but before the beginning
 151 * of that RCU read-side critical section.  Note that these guarantees
 152 * include CPUs that are offline, idle, or executing in user mode, as
 153 * well as CPUs that are executing in the kernel.
 154 *
 155 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 156 * resulting RCU callback function "func()", then both CPU A and CPU B are
 157 * guaranteed to execute a full memory barrier during the time interval
 158 * between the call to call_rcu() and the invocation of "func()" -- even
 159 * if CPU A and CPU B are the same CPU (but again only if the system has
 160 * more than one CPU).
 161 */
 162void call_rcu(struct rcu_head *head,
 163              void (*func)(struct rcu_head *head));
 164
 165#else /* #ifdef CONFIG_PREEMPT_RCU */
 166
 167/* In classic RCU, call_rcu() is just call_rcu_sched(). */
 168#define call_rcu        call_rcu_sched
 169
 170#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 171
 172/**
 173 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 174 * @head: structure to be used for queueing the RCU updates.
 175 * @func: actual callback function to be invoked after the grace period
 176 *
 177 * The callback function will be invoked some time after a full grace
 178 * period elapses, in other words after all currently executing RCU
 179 * read-side critical sections have completed. call_rcu_bh() assumes
 180 * that the read-side critical sections end on completion of a softirq
 181 * handler. This means that read-side critical sections in process
 182 * context must not be interrupted by softirqs. This interface is to be
 183 * used when most of the read-side critical sections are in softirq context.
 184 * RCU read-side critical sections are delimited by :
 185 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 186 *  OR
 187 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 188 *  These may be nested.
 189 *
 190 * See the description of call_rcu() for more detailed information on
 191 * memory ordering guarantees.
 192 */
 193void call_rcu_bh(struct rcu_head *head,
 194                 void (*func)(struct rcu_head *head));
 195
 196/**
 197 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 198 * @head: structure to be used for queueing the RCU updates.
 199 * @func: actual callback function to be invoked after the grace period
 200 *
 201 * The callback function will be invoked some time after a full grace
 202 * period elapses, in other words after all currently executing RCU
 203 * read-side critical sections have completed. call_rcu_sched() assumes
 204 * that the read-side critical sections end on enabling of preemption
 205 * or on voluntary preemption.
 206 * RCU read-side critical sections are delimited by :
 207 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 208 *  OR
 209 *  anything that disables preemption.
 210 *  These may be nested.
 211 *
 212 * See the description of call_rcu() for more detailed information on
 213 * memory ordering guarantees.
 214 */
 215void call_rcu_sched(struct rcu_head *head,
 216                    void (*func)(struct rcu_head *rcu));
 217
 218void synchronize_sched(void);
 219
 220/*
 221 * Structure allowing asynchronous waiting on RCU.
 222 */
 223struct rcu_synchronize {
 224        struct rcu_head head;
 225        struct completion completion;
 226};
 227void wakeme_after_rcu(struct rcu_head *head);
 228
 229/**
 230 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 231 * @head: structure to be used for queueing the RCU updates.
 232 * @func: actual callback function to be invoked after the grace period
 233 *
 234 * The callback function will be invoked some time after a full grace
 235 * period elapses, in other words after all currently executing RCU
 236 * read-side critical sections have completed. call_rcu_tasks() assumes
 237 * that the read-side critical sections end at a voluntary context
 238 * switch (not a preemption!), entry into idle, or transition to usermode
 239 * execution.  As such, there are no read-side primitives analogous to
 240 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 241 * to determine that all tasks have passed through a safe state, not so
 242 * much for data-strcuture synchronization.
 243 *
 244 * See the description of call_rcu() for more detailed information on
 245 * memory ordering guarantees.
 246 */
 247void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
 248void synchronize_rcu_tasks(void);
 249void rcu_barrier_tasks(void);
 250
 251#ifdef CONFIG_PREEMPT_RCU
 252
 253void __rcu_read_lock(void);
 254void __rcu_read_unlock(void);
 255void rcu_read_unlock_special(struct task_struct *t);
 256void synchronize_rcu(void);
 257
 258/*
 259 * Defined as a macro as it is a very low level header included from
 260 * areas that don't even know about current.  This gives the rcu_read_lock()
 261 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 262 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 263 */
 264#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 265
 266#else /* #ifdef CONFIG_PREEMPT_RCU */
 267
 268static inline void __rcu_read_lock(void)
 269{
 270        preempt_disable();
 271}
 272
 273static inline void __rcu_read_unlock(void)
 274{
 275        preempt_enable();
 276}
 277
 278static inline void synchronize_rcu(void)
 279{
 280        synchronize_sched();
 281}
 282
 283static inline int rcu_preempt_depth(void)
 284{
 285        return 0;
 286}
 287
 288#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 289
 290/* Internal to kernel */
 291void rcu_init(void);
 292void rcu_end_inkernel_boot(void);
 293void rcu_sched_qs(void);
 294void rcu_bh_qs(void);
 295void rcu_check_callbacks(int user);
 296struct notifier_block;
 297int rcu_cpu_notify(struct notifier_block *self,
 298                   unsigned long action, void *hcpu);
 299
 300#ifdef CONFIG_RCU_STALL_COMMON
 301void rcu_sysrq_start(void);
 302void rcu_sysrq_end(void);
 303#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 304static inline void rcu_sysrq_start(void)
 305{
 306}
 307static inline void rcu_sysrq_end(void)
 308{
 309}
 310#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 311
 312#ifdef CONFIG_RCU_USER_QS
 313void rcu_user_enter(void);
 314void rcu_user_exit(void);
 315#else
 316static inline void rcu_user_enter(void) { }
 317static inline void rcu_user_exit(void) { }
 318static inline void rcu_user_hooks_switch(struct task_struct *prev,
 319                                         struct task_struct *next) { }
 320#endif /* CONFIG_RCU_USER_QS */
 321
 322#ifdef CONFIG_RCU_NOCB_CPU
 323void rcu_init_nohz(void);
 324#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 325static inline void rcu_init_nohz(void)
 326{
 327}
 328#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 329
 330/**
 331 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 332 * @a: Code that RCU needs to pay attention to.
 333 *
 334 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 335 * in the inner idle loop, that is, between the rcu_idle_enter() and
 336 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 337 * critical sections.  However, things like powertop need tracepoints
 338 * in the inner idle loop.
 339 *
 340 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 341 * will tell RCU that it needs to pay attending, invoke its argument
 342 * (in this example, a call to the do_something_with_RCU() function),
 343 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 344 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
 345 * quite limited.  If deeper nesting is required, it will be necessary
 346 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
 347 */
 348#define RCU_NONIDLE(a) \
 349        do { \
 350                rcu_irq_enter(); \
 351                do { a; } while (0); \
 352                rcu_irq_exit(); \
 353        } while (0)
 354
 355/*
 356 * Note a voluntary context switch for RCU-tasks benefit.  This is a
 357 * macro rather than an inline function to avoid #include hell.
 358 */
 359#ifdef CONFIG_TASKS_RCU
 360#define TASKS_RCU(x) x
 361extern struct srcu_struct tasks_rcu_exit_srcu;
 362#define rcu_note_voluntary_context_switch(t) \
 363        do { \
 364                rcu_all_qs(); \
 365                if (READ_ONCE((t)->rcu_tasks_holdout)) \
 366                        WRITE_ONCE((t)->rcu_tasks_holdout, false); \
 367        } while (0)
 368#else /* #ifdef CONFIG_TASKS_RCU */
 369#define TASKS_RCU(x) do { } while (0)
 370#define rcu_note_voluntary_context_switch(t)    rcu_all_qs()
 371#endif /* #else #ifdef CONFIG_TASKS_RCU */
 372
 373/**
 374 * cond_resched_rcu_qs - Report potential quiescent states to RCU
 375 *
 376 * This macro resembles cond_resched(), except that it is defined to
 377 * report potential quiescent states to RCU-tasks even if the cond_resched()
 378 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 379 */
 380#define cond_resched_rcu_qs() \
 381do { \
 382        if (!cond_resched()) \
 383                rcu_note_voluntary_context_switch(current); \
 384} while (0)
 385
 386#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
 387bool __rcu_is_watching(void);
 388#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
 389
 390/*
 391 * Infrastructure to implement the synchronize_() primitives in
 392 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 393 */
 394
 395typedef void call_rcu_func_t(struct rcu_head *head,
 396                             void (*func)(struct rcu_head *head));
 397void wait_rcu_gp(call_rcu_func_t crf);
 398
 399#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
 400#include <linux/rcutree.h>
 401#elif defined(CONFIG_TINY_RCU)
 402#include <linux/rcutiny.h>
 403#else
 404#error "Unknown RCU implementation specified to kernel configuration"
 405#endif
 406
 407/*
 408 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 409 * initialization and destruction of rcu_head on the stack. rcu_head structures
 410 * allocated dynamically in the heap or defined statically don't need any
 411 * initialization.
 412 */
 413#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 414void init_rcu_head(struct rcu_head *head);
 415void destroy_rcu_head(struct rcu_head *head);
 416void init_rcu_head_on_stack(struct rcu_head *head);
 417void destroy_rcu_head_on_stack(struct rcu_head *head);
 418#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 419static inline void init_rcu_head(struct rcu_head *head)
 420{
 421}
 422
 423static inline void destroy_rcu_head(struct rcu_head *head)
 424{
 425}
 426
 427static inline void init_rcu_head_on_stack(struct rcu_head *head)
 428{
 429}
 430
 431static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
 432{
 433}
 434#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 435
 436#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 437bool rcu_lockdep_current_cpu_online(void);
 438#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 439static inline bool rcu_lockdep_current_cpu_online(void)
 440{
 441        return true;
 442}
 443#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 444
 445#ifdef CONFIG_DEBUG_LOCK_ALLOC
 446
 447static inline void rcu_lock_acquire(struct lockdep_map *map)
 448{
 449        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 450}
 451
 452static inline void rcu_lock_release(struct lockdep_map *map)
 453{
 454        lock_release(map, 1, _THIS_IP_);
 455}
 456
 457extern struct lockdep_map rcu_lock_map;
 458extern struct lockdep_map rcu_bh_lock_map;
 459extern struct lockdep_map rcu_sched_lock_map;
 460extern struct lockdep_map rcu_callback_map;
 461int debug_lockdep_rcu_enabled(void);
 462
 463int rcu_read_lock_held(void);
 464int rcu_read_lock_bh_held(void);
 465
 466/**
 467 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 468 *
 469 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 470 * RCU-sched read-side critical section.  In absence of
 471 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 472 * critical section unless it can prove otherwise.  Note that disabling
 473 * of preemption (including disabling irqs) counts as an RCU-sched
 474 * read-side critical section.  This is useful for debug checks in functions
 475 * that required that they be called within an RCU-sched read-side
 476 * critical section.
 477 *
 478 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 479 * and while lockdep is disabled.
 480 *
 481 * Note that if the CPU is in the idle loop from an RCU point of
 482 * view (ie: that we are in the section between rcu_idle_enter() and
 483 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 484 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 485 * that are in such a section, considering these as in extended quiescent
 486 * state, so such a CPU is effectively never in an RCU read-side critical
 487 * section regardless of what RCU primitives it invokes.  This state of
 488 * affairs is required --- we need to keep an RCU-free window in idle
 489 * where the CPU may possibly enter into low power mode. This way we can
 490 * notice an extended quiescent state to other CPUs that started a grace
 491 * period. Otherwise we would delay any grace period as long as we run in
 492 * the idle task.
 493 *
 494 * Similarly, we avoid claiming an SRCU read lock held if the current
 495 * CPU is offline.
 496 */
 497#ifdef CONFIG_PREEMPT_COUNT
 498static inline int rcu_read_lock_sched_held(void)
 499{
 500        int lockdep_opinion = 0;
 501
 502        if (!debug_lockdep_rcu_enabled())
 503                return 1;
 504        if (!rcu_is_watching())
 505                return 0;
 506        if (!rcu_lockdep_current_cpu_online())
 507                return 0;
 508        if (debug_locks)
 509                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 510        return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
 511}
 512#else /* #ifdef CONFIG_PREEMPT_COUNT */
 513static inline int rcu_read_lock_sched_held(void)
 514{
 515        return 1;
 516}
 517#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 518
 519#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 520
 521# define rcu_lock_acquire(a)            do { } while (0)
 522# define rcu_lock_release(a)            do { } while (0)
 523
 524static inline int rcu_read_lock_held(void)
 525{
 526        return 1;
 527}
 528
 529static inline int rcu_read_lock_bh_held(void)
 530{
 531        return 1;
 532}
 533
 534#ifdef CONFIG_PREEMPT_COUNT
 535static inline int rcu_read_lock_sched_held(void)
 536{
 537        return preempt_count() != 0 || irqs_disabled();
 538}
 539#else /* #ifdef CONFIG_PREEMPT_COUNT */
 540static inline int rcu_read_lock_sched_held(void)
 541{
 542        return 1;
 543}
 544#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 545
 546#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 547
 548#ifdef CONFIG_PROVE_RCU
 549
 550/**
 551 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 552 * @c: condition to check
 553 * @s: informative message
 554 */
 555#define rcu_lockdep_assert(c, s)                                        \
 556        do {                                                            \
 557                static bool __section(.data.unlikely) __warned;         \
 558                if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
 559                        __warned = true;                                \
 560                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 561                }                                                       \
 562        } while (0)
 563
 564#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 565static inline void rcu_preempt_sleep_check(void)
 566{
 567        rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 568                           "Illegal context switch in RCU read-side critical section");
 569}
 570#else /* #ifdef CONFIG_PROVE_RCU */
 571static inline void rcu_preempt_sleep_check(void)
 572{
 573}
 574#endif /* #else #ifdef CONFIG_PROVE_RCU */
 575
 576#define rcu_sleep_check()                                               \
 577        do {                                                            \
 578                rcu_preempt_sleep_check();                              \
 579                rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),     \
 580                                   "Illegal context switch in RCU-bh read-side critical section"); \
 581                rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),  \
 582                                   "Illegal context switch in RCU-sched read-side critical section"); \
 583        } while (0)
 584
 585#else /* #ifdef CONFIG_PROVE_RCU */
 586
 587#define rcu_lockdep_assert(c, s) do { } while (0)
 588#define rcu_sleep_check() do { } while (0)
 589
 590#endif /* #else #ifdef CONFIG_PROVE_RCU */
 591
 592/*
 593 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 594 * and rcu_assign_pointer().  Some of these could be folded into their
 595 * callers, but they are left separate in order to ease introduction of
 596 * multiple flavors of pointers to match the multiple flavors of RCU
 597 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 598 * the future.
 599 */
 600
 601#ifdef __CHECKER__
 602#define rcu_dereference_sparse(p, space) \
 603        ((void)(((typeof(*p) space *)p) == p))
 604#else /* #ifdef __CHECKER__ */
 605#define rcu_dereference_sparse(p, space)
 606#endif /* #else #ifdef __CHECKER__ */
 607
 608#define __rcu_access_pointer(p, space) \
 609({ \
 610        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 611        rcu_dereference_sparse(p, space); \
 612        ((typeof(*p) __force __kernel *)(_________p1)); \
 613})
 614#define __rcu_dereference_check(p, c, space) \
 615({ \
 616        /* Dependency order vs. p above. */ \
 617        typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
 618        rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
 619        rcu_dereference_sparse(p, space); \
 620        ((typeof(*p) __force __kernel *)(________p1)); \
 621})
 622#define __rcu_dereference_protected(p, c, space) \
 623({ \
 624        rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
 625        rcu_dereference_sparse(p, space); \
 626        ((typeof(*p) __force __kernel *)(p)); \
 627})
 628
 629/**
 630 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 631 * @v: The value to statically initialize with.
 632 */
 633#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 634
 635/**
 636 * rcu_assign_pointer() - assign to RCU-protected pointer
 637 * @p: pointer to assign to
 638 * @v: value to assign (publish)
 639 *
 640 * Assigns the specified value to the specified RCU-protected
 641 * pointer, ensuring that any concurrent RCU readers will see
 642 * any prior initialization.
 643 *
 644 * Inserts memory barriers on architectures that require them
 645 * (which is most of them), and also prevents the compiler from
 646 * reordering the code that initializes the structure after the pointer
 647 * assignment.  More importantly, this call documents which pointers
 648 * will be dereferenced by RCU read-side code.
 649 *
 650 * In some special cases, you may use RCU_INIT_POINTER() instead
 651 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 652 * to the fact that it does not constrain either the CPU or the compiler.
 653 * That said, using RCU_INIT_POINTER() when you should have used
 654 * rcu_assign_pointer() is a very bad thing that results in
 655 * impossible-to-diagnose memory corruption.  So please be careful.
 656 * See the RCU_INIT_POINTER() comment header for details.
 657 *
 658 * Note that rcu_assign_pointer() evaluates each of its arguments only
 659 * once, appearances notwithstanding.  One of the "extra" evaluations
 660 * is in typeof() and the other visible only to sparse (__CHECKER__),
 661 * neither of which actually execute the argument.  As with most cpp
 662 * macros, this execute-arguments-only-once property is important, so
 663 * please be careful when making changes to rcu_assign_pointer() and the
 664 * other macros that it invokes.
 665 */
 666#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
 667
 668/**
 669 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 670 * @p: The pointer to read
 671 *
 672 * Return the value of the specified RCU-protected pointer, but omit the
 673 * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
 674 * when the value of this pointer is accessed, but the pointer is not
 675 * dereferenced, for example, when testing an RCU-protected pointer against
 676 * NULL.  Although rcu_access_pointer() may also be used in cases where
 677 * update-side locks prevent the value of the pointer from changing, you
 678 * should instead use rcu_dereference_protected() for this use case.
 679 *
 680 * It is also permissible to use rcu_access_pointer() when read-side
 681 * access to the pointer was removed at least one grace period ago, as
 682 * is the case in the context of the RCU callback that is freeing up
 683 * the data, or after a synchronize_rcu() returns.  This can be useful
 684 * when tearing down multi-linked structures after a grace period
 685 * has elapsed.
 686 */
 687#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 688
 689/**
 690 * rcu_dereference_check() - rcu_dereference with debug checking
 691 * @p: The pointer to read, prior to dereferencing
 692 * @c: The conditions under which the dereference will take place
 693 *
 694 * Do an rcu_dereference(), but check that the conditions under which the
 695 * dereference will take place are correct.  Typically the conditions
 696 * indicate the various locking conditions that should be held at that
 697 * point.  The check should return true if the conditions are satisfied.
 698 * An implicit check for being in an RCU read-side critical section
 699 * (rcu_read_lock()) is included.
 700 *
 701 * For example:
 702 *
 703 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 704 *
 705 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 706 * if either rcu_read_lock() is held, or that the lock required to replace
 707 * the bar struct at foo->bar is held.
 708 *
 709 * Note that the list of conditions may also include indications of when a lock
 710 * need not be held, for example during initialisation or destruction of the
 711 * target struct:
 712 *
 713 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 714 *                                            atomic_read(&foo->usage) == 0);
 715 *
 716 * Inserts memory barriers on architectures that require them
 717 * (currently only the Alpha), prevents the compiler from refetching
 718 * (and from merging fetches), and, more importantly, documents exactly
 719 * which pointers are protected by RCU and checks that the pointer is
 720 * annotated as __rcu.
 721 */
 722#define rcu_dereference_check(p, c) \
 723        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 724
 725/**
 726 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 727 * @p: The pointer to read, prior to dereferencing
 728 * @c: The conditions under which the dereference will take place
 729 *
 730 * This is the RCU-bh counterpart to rcu_dereference_check().
 731 */
 732#define rcu_dereference_bh_check(p, c) \
 733        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 734
 735/**
 736 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 737 * @p: The pointer to read, prior to dereferencing
 738 * @c: The conditions under which the dereference will take place
 739 *
 740 * This is the RCU-sched counterpart to rcu_dereference_check().
 741 */
 742#define rcu_dereference_sched_check(p, c) \
 743        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 744                                __rcu)
 745
 746#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
 747
 748/*
 749 * The tracing infrastructure traces RCU (we want that), but unfortunately
 750 * some of the RCU checks causes tracing to lock up the system.
 751 *
 752 * The tracing version of rcu_dereference_raw() must not call
 753 * rcu_read_lock_held().
 754 */
 755#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 756
 757/**
 758 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 759 * @p: The pointer to read, prior to dereferencing
 760 * @c: The conditions under which the dereference will take place
 761 *
 762 * Return the value of the specified RCU-protected pointer, but omit
 763 * both the smp_read_barrier_depends() and the READ_ONCE().  This
 764 * is useful in cases where update-side locks prevent the value of the
 765 * pointer from changing.  Please note that this primitive does -not-
 766 * prevent the compiler from repeating this reference or combining it
 767 * with other references, so it should not be used without protection
 768 * of appropriate locks.
 769 *
 770 * This function is only for update-side use.  Using this function
 771 * when protected only by rcu_read_lock() will result in infrequent
 772 * but very ugly failures.
 773 */
 774#define rcu_dereference_protected(p, c) \
 775        __rcu_dereference_protected((p), (c), __rcu)
 776
 777
 778/**
 779 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 780 * @p: The pointer to read, prior to dereferencing
 781 *
 782 * This is a simple wrapper around rcu_dereference_check().
 783 */
 784#define rcu_dereference(p) rcu_dereference_check(p, 0)
 785
 786/**
 787 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 788 * @p: The pointer to read, prior to dereferencing
 789 *
 790 * Makes rcu_dereference_check() do the dirty work.
 791 */
 792#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 793
 794/**
 795 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 796 * @p: The pointer to read, prior to dereferencing
 797 *
 798 * Makes rcu_dereference_check() do the dirty work.
 799 */
 800#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 801
 802/**
 803 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 804 *
 805 * When synchronize_rcu() is invoked on one CPU while other CPUs
 806 * are within RCU read-side critical sections, then the
 807 * synchronize_rcu() is guaranteed to block until after all the other
 808 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 809 * on one CPU while other CPUs are within RCU read-side critical
 810 * sections, invocation of the corresponding RCU callback is deferred
 811 * until after the all the other CPUs exit their critical sections.
 812 *
 813 * Note, however, that RCU callbacks are permitted to run concurrently
 814 * with new RCU read-side critical sections.  One way that this can happen
 815 * is via the following sequence of events: (1) CPU 0 enters an RCU
 816 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 817 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 818 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 819 * callback is invoked.  This is legal, because the RCU read-side critical
 820 * section that was running concurrently with the call_rcu() (and which
 821 * therefore might be referencing something that the corresponding RCU
 822 * callback would free up) has completed before the corresponding
 823 * RCU callback is invoked.
 824 *
 825 * RCU read-side critical sections may be nested.  Any deferred actions
 826 * will be deferred until the outermost RCU read-side critical section
 827 * completes.
 828 *
 829 * You can avoid reading and understanding the next paragraph by
 830 * following this rule: don't put anything in an rcu_read_lock() RCU
 831 * read-side critical section that would block in a !PREEMPT kernel.
 832 * But if you want the full story, read on!
 833 *
 834 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 835 * it is illegal to block while in an RCU read-side critical section.
 836 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
 837 * kernel builds, RCU read-side critical sections may be preempted,
 838 * but explicit blocking is illegal.  Finally, in preemptible RCU
 839 * implementations in real-time (with -rt patchset) kernel builds, RCU
 840 * read-side critical sections may be preempted and they may also block, but
 841 * only when acquiring spinlocks that are subject to priority inheritance.
 842 */
 843static inline void rcu_read_lock(void)
 844{
 845        __rcu_read_lock();
 846        __acquire(RCU);
 847        rcu_lock_acquire(&rcu_lock_map);
 848        rcu_lockdep_assert(rcu_is_watching(),
 849                           "rcu_read_lock() used illegally while idle");
 850}
 851
 852/*
 853 * So where is rcu_write_lock()?  It does not exist, as there is no
 854 * way for writers to lock out RCU readers.  This is a feature, not
 855 * a bug -- this property is what provides RCU's performance benefits.
 856 * Of course, writers must coordinate with each other.  The normal
 857 * spinlock primitives work well for this, but any other technique may be
 858 * used as well.  RCU does not care how the writers keep out of each
 859 * others' way, as long as they do so.
 860 */
 861
 862/**
 863 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 864 *
 865 * In most situations, rcu_read_unlock() is immune from deadlock.
 866 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 867 * is responsible for deboosting, which it does via rt_mutex_unlock().
 868 * Unfortunately, this function acquires the scheduler's runqueue and
 869 * priority-inheritance spinlocks.  This means that deadlock could result
 870 * if the caller of rcu_read_unlock() already holds one of these locks or
 871 * any lock that is ever acquired while holding them; or any lock which
 872 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
 873 * does not disable irqs while taking ->wait_lock.
 874 *
 875 * That said, RCU readers are never priority boosted unless they were
 876 * preempted.  Therefore, one way to avoid deadlock is to make sure
 877 * that preemption never happens within any RCU read-side critical
 878 * section whose outermost rcu_read_unlock() is called with one of
 879 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 880 * a number of ways, for example, by invoking preempt_disable() before
 881 * critical section's outermost rcu_read_lock().
 882 *
 883 * Given that the set of locks acquired by rt_mutex_unlock() might change
 884 * at any time, a somewhat more future-proofed approach is to make sure
 885 * that that preemption never happens within any RCU read-side critical
 886 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 887 * This approach relies on the fact that rt_mutex_unlock() currently only
 888 * acquires irq-disabled locks.
 889 *
 890 * The second of these two approaches is best in most situations,
 891 * however, the first approach can also be useful, at least to those
 892 * developers willing to keep abreast of the set of locks acquired by
 893 * rt_mutex_unlock().
 894 *
 895 * See rcu_read_lock() for more information.
 896 */
 897static inline void rcu_read_unlock(void)
 898{
 899        rcu_lockdep_assert(rcu_is_watching(),
 900                           "rcu_read_unlock() used illegally while idle");
 901        __release(RCU);
 902        __rcu_read_unlock();
 903        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 904}
 905
 906/**
 907 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 908 *
 909 * This is equivalent of rcu_read_lock(), but to be used when updates
 910 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 911 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 912 * softirq handler to be a quiescent state, a process in RCU read-side
 913 * critical section must be protected by disabling softirqs. Read-side
 914 * critical sections in interrupt context can use just rcu_read_lock(),
 915 * though this should at least be commented to avoid confusing people
 916 * reading the code.
 917 *
 918 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 919 * must occur in the same context, for example, it is illegal to invoke
 920 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 921 * was invoked from some other task.
 922 */
 923static inline void rcu_read_lock_bh(void)
 924{
 925        local_bh_disable();
 926        __acquire(RCU_BH);
 927        rcu_lock_acquire(&rcu_bh_lock_map);
 928        rcu_lockdep_assert(rcu_is_watching(),
 929                           "rcu_read_lock_bh() used illegally while idle");
 930}
 931
 932/*
 933 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 934 *
 935 * See rcu_read_lock_bh() for more information.
 936 */
 937static inline void rcu_read_unlock_bh(void)
 938{
 939        rcu_lockdep_assert(rcu_is_watching(),
 940                           "rcu_read_unlock_bh() used illegally while idle");
 941        rcu_lock_release(&rcu_bh_lock_map);
 942        __release(RCU_BH);
 943        local_bh_enable();
 944}
 945
 946/**
 947 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 948 *
 949 * This is equivalent of rcu_read_lock(), but to be used when updates
 950 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 951 * Read-side critical sections can also be introduced by anything that
 952 * disables preemption, including local_irq_disable() and friends.
 953 *
 954 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 955 * must occur in the same context, for example, it is illegal to invoke
 956 * rcu_read_unlock_sched() from process context if the matching
 957 * rcu_read_lock_sched() was invoked from an NMI handler.
 958 */
 959static inline void rcu_read_lock_sched(void)
 960{
 961        preempt_disable();
 962        __acquire(RCU_SCHED);
 963        rcu_lock_acquire(&rcu_sched_lock_map);
 964        rcu_lockdep_assert(rcu_is_watching(),
 965                           "rcu_read_lock_sched() used illegally while idle");
 966}
 967
 968/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 969static inline notrace void rcu_read_lock_sched_notrace(void)
 970{
 971        preempt_disable_notrace();
 972        __acquire(RCU_SCHED);
 973}
 974
 975/*
 976 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 977 *
 978 * See rcu_read_lock_sched for more information.
 979 */
 980static inline void rcu_read_unlock_sched(void)
 981{
 982        rcu_lockdep_assert(rcu_is_watching(),
 983                           "rcu_read_unlock_sched() used illegally while idle");
 984        rcu_lock_release(&rcu_sched_lock_map);
 985        __release(RCU_SCHED);
 986        preempt_enable();
 987}
 988
 989/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 990static inline notrace void rcu_read_unlock_sched_notrace(void)
 991{
 992        __release(RCU_SCHED);
 993        preempt_enable_notrace();
 994}
 995
 996/**
 997 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 998 *
 999 * Initialize an RCU-protected pointer in special cases where readers
1000 * do not need ordering constraints on the CPU or the compiler.  These
1001 * special cases are:
1002 *
1003 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1004 * 2.   The caller has taken whatever steps are required to prevent
1005 *      RCU readers from concurrently accessing this pointer -or-
1006 * 3.   The referenced data structure has already been exposed to
1007 *      readers either at compile time or via rcu_assign_pointer() -and-
1008 *      a.      You have not made -any- reader-visible changes to
1009 *              this structure since then -or-
1010 *      b.      It is OK for readers accessing this structure from its
1011 *              new location to see the old state of the structure.  (For
1012 *              example, the changes were to statistical counters or to
1013 *              other state where exact synchronization is not required.)
1014 *
1015 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1016 * result in impossible-to-diagnose memory corruption.  As in the structures
1017 * will look OK in crash dumps, but any concurrent RCU readers might
1018 * see pre-initialized values of the referenced data structure.  So
1019 * please be very careful how you use RCU_INIT_POINTER()!!!
1020 *
1021 * If you are creating an RCU-protected linked structure that is accessed
1022 * by a single external-to-structure RCU-protected pointer, then you may
1023 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1024 * pointers, but you must use rcu_assign_pointer() to initialize the
1025 * external-to-structure pointer -after- you have completely initialized
1026 * the reader-accessible portions of the linked structure.
1027 *
1028 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1029 * ordering guarantees for either the CPU or the compiler.
1030 */
1031#define RCU_INIT_POINTER(p, v) \
1032        do { \
1033                rcu_dereference_sparse(p, __rcu); \
1034                p = RCU_INITIALIZER(v); \
1035        } while (0)
1036
1037/**
1038 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1039 *
1040 * GCC-style initialization for an RCU-protected pointer in a structure field.
1041 */
1042#define RCU_POINTER_INITIALIZER(p, v) \
1043                .p = RCU_INITIALIZER(v)
1044
1045/*
1046 * Does the specified offset indicate that the corresponding rcu_head
1047 * structure can be handled by kfree_rcu()?
1048 */
1049#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1050
1051/*
1052 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1053 */
1054#define __kfree_rcu(head, offset) \
1055        do { \
1056                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1057                kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1058        } while (0)
1059
1060/**
1061 * kfree_rcu() - kfree an object after a grace period.
1062 * @ptr:        pointer to kfree
1063 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
1064 *
1065 * Many rcu callbacks functions just call kfree() on the base structure.
1066 * These functions are trivial, but their size adds up, and furthermore
1067 * when they are used in a kernel module, that module must invoke the
1068 * high-latency rcu_barrier() function at module-unload time.
1069 *
1070 * The kfree_rcu() function handles this issue.  Rather than encoding a
1071 * function address in the embedded rcu_head structure, kfree_rcu() instead
1072 * encodes the offset of the rcu_head structure within the base structure.
1073 * Because the functions are not allowed in the low-order 4096 bytes of
1074 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1075 * If the offset is larger than 4095 bytes, a compile-time error will
1076 * be generated in __kfree_rcu().  If this error is triggered, you can
1077 * either fall back to use of call_rcu() or rearrange the structure to
1078 * position the rcu_head structure into the first 4096 bytes.
1079 *
1080 * Note that the allowable offset might decrease in the future, for example,
1081 * to allow something like kmem_cache_free_rcu().
1082 *
1083 * The BUILD_BUG_ON check must not involve any function calls, hence the
1084 * checks are done in macros here.
1085 */
1086#define kfree_rcu(ptr, rcu_head)                                        \
1087        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1088
1089#ifdef CONFIG_TINY_RCU
1090static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1091{
1092        *nextevt = KTIME_MAX;
1093        return 0;
1094}
1095#endif /* #ifdef CONFIG_TINY_RCU */
1096
1097#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1098static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1099#elif defined(CONFIG_RCU_NOCB_CPU)
1100bool rcu_is_nocb_cpu(int cpu);
1101#else
1102static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1103#endif
1104
1105
1106/* Only for use by adaptive-ticks code. */
1107#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1108bool rcu_sys_is_idle(void);
1109void rcu_sysidle_force_exit(void);
1110#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1111
1112static inline bool rcu_sys_is_idle(void)
1113{
1114        return false;
1115}
1116
1117static inline void rcu_sysidle_force_exit(void)
1118{
1119}
1120
1121#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1122
1123
1124#endif /* __LINUX_RCUPDATE_H */
1125