linux/include/uapi/linux/perf_event.h
<<
>>
Prefs
   1/*
   2 * Performance events:
   3 *
   4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Data type definitions, declarations, prototypes.
   9 *
  10 *    Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 * For licencing details see kernel-base/COPYING
  13 */
  14#ifndef _UAPI_LINUX_PERF_EVENT_H
  15#define _UAPI_LINUX_PERF_EVENT_H
  16
  17#include <linux/types.h>
  18#include <linux/ioctl.h>
  19#include <asm/byteorder.h>
  20
  21/*
  22 * User-space ABI bits:
  23 */
  24
  25/*
  26 * attr.type
  27 */
  28enum perf_type_id {
  29        PERF_TYPE_HARDWARE                      = 0,
  30        PERF_TYPE_SOFTWARE                      = 1,
  31        PERF_TYPE_TRACEPOINT                    = 2,
  32        PERF_TYPE_HW_CACHE                      = 3,
  33        PERF_TYPE_RAW                           = 4,
  34        PERF_TYPE_BREAKPOINT                    = 5,
  35
  36        PERF_TYPE_MAX,                          /* non-ABI */
  37};
  38
  39/*
  40 * Generalized performance event event_id types, used by the
  41 * attr.event_id parameter of the sys_perf_event_open()
  42 * syscall:
  43 */
  44enum perf_hw_id {
  45        /*
  46         * Common hardware events, generalized by the kernel:
  47         */
  48        PERF_COUNT_HW_CPU_CYCLES                = 0,
  49        PERF_COUNT_HW_INSTRUCTIONS              = 1,
  50        PERF_COUNT_HW_CACHE_REFERENCES          = 2,
  51        PERF_COUNT_HW_CACHE_MISSES              = 3,
  52        PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
  53        PERF_COUNT_HW_BRANCH_MISSES             = 5,
  54        PERF_COUNT_HW_BUS_CYCLES                = 6,
  55        PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
  56        PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
  57        PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
  58
  59        PERF_COUNT_HW_MAX,                      /* non-ABI */
  60};
  61
  62/*
  63 * Generalized hardware cache events:
  64 *
  65 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
  66 *       { read, write, prefetch } x
  67 *       { accesses, misses }
  68 */
  69enum perf_hw_cache_id {
  70        PERF_COUNT_HW_CACHE_L1D                 = 0,
  71        PERF_COUNT_HW_CACHE_L1I                 = 1,
  72        PERF_COUNT_HW_CACHE_LL                  = 2,
  73        PERF_COUNT_HW_CACHE_DTLB                = 3,
  74        PERF_COUNT_HW_CACHE_ITLB                = 4,
  75        PERF_COUNT_HW_CACHE_BPU                 = 5,
  76        PERF_COUNT_HW_CACHE_NODE                = 6,
  77
  78        PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
  79};
  80
  81enum perf_hw_cache_op_id {
  82        PERF_COUNT_HW_CACHE_OP_READ             = 0,
  83        PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
  84        PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
  85
  86        PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
  87};
  88
  89enum perf_hw_cache_op_result_id {
  90        PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
  91        PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
  92
  93        PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
  94};
  95
  96/*
  97 * Special "software" events provided by the kernel, even if the hardware
  98 * does not support performance events. These events measure various
  99 * physical and sw events of the kernel (and allow the profiling of them as
 100 * well):
 101 */
 102enum perf_sw_ids {
 103        PERF_COUNT_SW_CPU_CLOCK                 = 0,
 104        PERF_COUNT_SW_TASK_CLOCK                = 1,
 105        PERF_COUNT_SW_PAGE_FAULTS               = 2,
 106        PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
 107        PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
 108        PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
 109        PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
 110        PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
 111        PERF_COUNT_SW_EMULATION_FAULTS          = 8,
 112        PERF_COUNT_SW_DUMMY                     = 9,
 113
 114        PERF_COUNT_SW_MAX,                      /* non-ABI */
 115};
 116
 117/*
 118 * Bits that can be set in attr.sample_type to request information
 119 * in the overflow packets.
 120 */
 121enum perf_event_sample_format {
 122        PERF_SAMPLE_IP                          = 1U << 0,
 123        PERF_SAMPLE_TID                         = 1U << 1,
 124        PERF_SAMPLE_TIME                        = 1U << 2,
 125        PERF_SAMPLE_ADDR                        = 1U << 3,
 126        PERF_SAMPLE_READ                        = 1U << 4,
 127        PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
 128        PERF_SAMPLE_ID                          = 1U << 6,
 129        PERF_SAMPLE_CPU                         = 1U << 7,
 130        PERF_SAMPLE_PERIOD                      = 1U << 8,
 131        PERF_SAMPLE_STREAM_ID                   = 1U << 9,
 132        PERF_SAMPLE_RAW                         = 1U << 10,
 133        PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
 134        PERF_SAMPLE_REGS_USER                   = 1U << 12,
 135        PERF_SAMPLE_STACK_USER                  = 1U << 13,
 136        PERF_SAMPLE_WEIGHT                      = 1U << 14,
 137        PERF_SAMPLE_DATA_SRC                    = 1U << 15,
 138        PERF_SAMPLE_IDENTIFIER                  = 1U << 16,
 139        PERF_SAMPLE_TRANSACTION                 = 1U << 17,
 140        PERF_SAMPLE_REGS_INTR                   = 1U << 18,
 141
 142        PERF_SAMPLE_MAX = 1U << 19,             /* non-ABI */
 143};
 144
 145/*
 146 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
 147 *
 148 * If the user does not pass priv level information via branch_sample_type,
 149 * the kernel uses the event's priv level. Branch and event priv levels do
 150 * not have to match. Branch priv level is checked for permissions.
 151 *
 152 * The branch types can be combined, however BRANCH_ANY covers all types
 153 * of branches and therefore it supersedes all the other types.
 154 */
 155enum perf_branch_sample_type_shift {
 156        PERF_SAMPLE_BRANCH_USER_SHIFT           = 0, /* user branches */
 157        PERF_SAMPLE_BRANCH_KERNEL_SHIFT         = 1, /* kernel branches */
 158        PERF_SAMPLE_BRANCH_HV_SHIFT             = 2, /* hypervisor branches */
 159
 160        PERF_SAMPLE_BRANCH_ANY_SHIFT            = 3, /* any branch types */
 161        PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT       = 4, /* any call branch */
 162        PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT     = 5, /* any return branch */
 163        PERF_SAMPLE_BRANCH_IND_CALL_SHIFT       = 6, /* indirect calls */
 164        PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT       = 7, /* transaction aborts */
 165        PERF_SAMPLE_BRANCH_IN_TX_SHIFT          = 8, /* in transaction */
 166        PERF_SAMPLE_BRANCH_NO_TX_SHIFT          = 9, /* not in transaction */
 167        PERF_SAMPLE_BRANCH_COND_SHIFT           = 10, /* conditional branches */
 168
 169        PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT     = 11, /* call/ret stack */
 170        PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT       = 12, /* indirect jumps */
 171
 172        PERF_SAMPLE_BRANCH_MAX_SHIFT            /* non-ABI */
 173};
 174
 175enum perf_branch_sample_type {
 176        PERF_SAMPLE_BRANCH_USER         = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
 177        PERF_SAMPLE_BRANCH_KERNEL       = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
 178        PERF_SAMPLE_BRANCH_HV           = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
 179
 180        PERF_SAMPLE_BRANCH_ANY          = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
 181        PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
 182        PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
 183        PERF_SAMPLE_BRANCH_IND_CALL     = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
 184        PERF_SAMPLE_BRANCH_ABORT_TX     = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
 185        PERF_SAMPLE_BRANCH_IN_TX        = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
 186        PERF_SAMPLE_BRANCH_NO_TX        = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
 187        PERF_SAMPLE_BRANCH_COND         = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
 188
 189        PERF_SAMPLE_BRANCH_CALL_STACK   = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
 190        PERF_SAMPLE_BRANCH_IND_JUMP     = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
 191
 192        PERF_SAMPLE_BRANCH_MAX          = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
 193};
 194
 195#define PERF_SAMPLE_BRANCH_PLM_ALL \
 196        (PERF_SAMPLE_BRANCH_USER|\
 197         PERF_SAMPLE_BRANCH_KERNEL|\
 198         PERF_SAMPLE_BRANCH_HV)
 199
 200/*
 201 * Values to determine ABI of the registers dump.
 202 */
 203enum perf_sample_regs_abi {
 204        PERF_SAMPLE_REGS_ABI_NONE       = 0,
 205        PERF_SAMPLE_REGS_ABI_32         = 1,
 206        PERF_SAMPLE_REGS_ABI_64         = 2,
 207};
 208
 209/*
 210 * Values for the memory transaction event qualifier, mostly for
 211 * abort events. Multiple bits can be set.
 212 */
 213enum {
 214        PERF_TXN_ELISION        = (1 << 0), /* From elision */
 215        PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
 216        PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
 217        PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
 218        PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
 219        PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
 220        PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
 221        PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
 222
 223        PERF_TXN_MAX            = (1 << 8), /* non-ABI */
 224
 225        /* bits 32..63 are reserved for the abort code */
 226
 227        PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
 228        PERF_TXN_ABORT_SHIFT = 32,
 229};
 230
 231/*
 232 * The format of the data returned by read() on a perf event fd,
 233 * as specified by attr.read_format:
 234 *
 235 * struct read_format {
 236 *      { u64           value;
 237 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 238 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 239 *        { u64         id;           } && PERF_FORMAT_ID
 240 *      } && !PERF_FORMAT_GROUP
 241 *
 242 *      { u64           nr;
 243 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 244 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 245 *        { u64         value;
 246 *          { u64       id;           } && PERF_FORMAT_ID
 247 *        }             cntr[nr];
 248 *      } && PERF_FORMAT_GROUP
 249 * };
 250 */
 251enum perf_event_read_format {
 252        PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
 253        PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
 254        PERF_FORMAT_ID                          = 1U << 2,
 255        PERF_FORMAT_GROUP                       = 1U << 3,
 256
 257        PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
 258};
 259
 260#define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
 261#define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
 262#define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
 263#define PERF_ATTR_SIZE_VER3     96      /* add: sample_regs_user */
 264                                        /* add: sample_stack_user */
 265#define PERF_ATTR_SIZE_VER4     104     /* add: sample_regs_intr */
 266#define PERF_ATTR_SIZE_VER5     112     /* add: aux_watermark */
 267
 268/*
 269 * Hardware event_id to monitor via a performance monitoring event:
 270 */
 271struct perf_event_attr {
 272
 273        /*
 274         * Major type: hardware/software/tracepoint/etc.
 275         */
 276        __u32                   type;
 277
 278        /*
 279         * Size of the attr structure, for fwd/bwd compat.
 280         */
 281        __u32                   size;
 282
 283        /*
 284         * Type specific configuration information.
 285         */
 286        __u64                   config;
 287
 288        union {
 289                __u64           sample_period;
 290                __u64           sample_freq;
 291        };
 292
 293        __u64                   sample_type;
 294        __u64                   read_format;
 295
 296        __u64                   disabled       :  1, /* off by default        */
 297                                inherit        :  1, /* children inherit it   */
 298                                pinned         :  1, /* must always be on PMU */
 299                                exclusive      :  1, /* only group on PMU     */
 300                                exclude_user   :  1, /* don't count user      */
 301                                exclude_kernel :  1, /* ditto kernel          */
 302                                exclude_hv     :  1, /* ditto hypervisor      */
 303                                exclude_idle   :  1, /* don't count when idle */
 304                                mmap           :  1, /* include mmap data     */
 305                                comm           :  1, /* include comm data     */
 306                                freq           :  1, /* use freq, not period  */
 307                                inherit_stat   :  1, /* per task counts       */
 308                                enable_on_exec :  1, /* next exec enables     */
 309                                task           :  1, /* trace fork/exit       */
 310                                watermark      :  1, /* wakeup_watermark      */
 311                                /*
 312                                 * precise_ip:
 313                                 *
 314                                 *  0 - SAMPLE_IP can have arbitrary skid
 315                                 *  1 - SAMPLE_IP must have constant skid
 316                                 *  2 - SAMPLE_IP requested to have 0 skid
 317                                 *  3 - SAMPLE_IP must have 0 skid
 318                                 *
 319                                 *  See also PERF_RECORD_MISC_EXACT_IP
 320                                 */
 321                                precise_ip     :  2, /* skid constraint       */
 322                                mmap_data      :  1, /* non-exec mmap data    */
 323                                sample_id_all  :  1, /* sample_type all events */
 324
 325                                exclude_host   :  1, /* don't count in host   */
 326                                exclude_guest  :  1, /* don't count in guest  */
 327
 328                                exclude_callchain_kernel : 1, /* exclude kernel callchains */
 329                                exclude_callchain_user   : 1, /* exclude user callchains */
 330                                mmap2          :  1, /* include mmap with inode data     */
 331                                comm_exec      :  1, /* flag comm events that are due to an exec */
 332                                use_clockid    :  1, /* use @clockid for time fields */
 333                                __reserved_1   : 38;
 334
 335        union {
 336                __u32           wakeup_events;    /* wakeup every n events */
 337                __u32           wakeup_watermark; /* bytes before wakeup   */
 338        };
 339
 340        __u32                   bp_type;
 341        union {
 342                __u64           bp_addr;
 343                __u64           config1; /* extension of config */
 344        };
 345        union {
 346                __u64           bp_len;
 347                __u64           config2; /* extension of config1 */
 348        };
 349        __u64   branch_sample_type; /* enum perf_branch_sample_type */
 350
 351        /*
 352         * Defines set of user regs to dump on samples.
 353         * See asm/perf_regs.h for details.
 354         */
 355        __u64   sample_regs_user;
 356
 357        /*
 358         * Defines size of the user stack to dump on samples.
 359         */
 360        __u32   sample_stack_user;
 361
 362        __s32   clockid;
 363        /*
 364         * Defines set of regs to dump for each sample
 365         * state captured on:
 366         *  - precise = 0: PMU interrupt
 367         *  - precise > 0: sampled instruction
 368         *
 369         * See asm/perf_regs.h for details.
 370         */
 371        __u64   sample_regs_intr;
 372
 373        /*
 374         * Wakeup watermark for AUX area
 375         */
 376        __u32   aux_watermark;
 377        __u32   __reserved_2;   /* align to __u64 */
 378};
 379
 380#define perf_flags(attr)        (*(&(attr)->read_format + 1))
 381
 382/*
 383 * Ioctls that can be done on a perf event fd:
 384 */
 385#define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
 386#define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
 387#define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
 388#define PERF_EVENT_IOC_RESET            _IO ('$', 3)
 389#define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
 390#define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
 391#define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
 392#define PERF_EVENT_IOC_ID               _IOR('$', 7, __u64 *)
 393#define PERF_EVENT_IOC_SET_BPF          _IOW('$', 8, __u32)
 394
 395enum perf_event_ioc_flags {
 396        PERF_IOC_FLAG_GROUP             = 1U << 0,
 397};
 398
 399/*
 400 * Structure of the page that can be mapped via mmap
 401 */
 402struct perf_event_mmap_page {
 403        __u32   version;                /* version number of this structure */
 404        __u32   compat_version;         /* lowest version this is compat with */
 405
 406        /*
 407         * Bits needed to read the hw events in user-space.
 408         *
 409         *   u32 seq, time_mult, time_shift, index, width;
 410         *   u64 count, enabled, running;
 411         *   u64 cyc, time_offset;
 412         *   s64 pmc = 0;
 413         *
 414         *   do {
 415         *     seq = pc->lock;
 416         *     barrier()
 417         *
 418         *     enabled = pc->time_enabled;
 419         *     running = pc->time_running;
 420         *
 421         *     if (pc->cap_usr_time && enabled != running) {
 422         *       cyc = rdtsc();
 423         *       time_offset = pc->time_offset;
 424         *       time_mult   = pc->time_mult;
 425         *       time_shift  = pc->time_shift;
 426         *     }
 427         *
 428         *     index = pc->index;
 429         *     count = pc->offset;
 430         *     if (pc->cap_user_rdpmc && index) {
 431         *       width = pc->pmc_width;
 432         *       pmc = rdpmc(index - 1);
 433         *     }
 434         *
 435         *     barrier();
 436         *   } while (pc->lock != seq);
 437         *
 438         * NOTE: for obvious reason this only works on self-monitoring
 439         *       processes.
 440         */
 441        __u32   lock;                   /* seqlock for synchronization */
 442        __u32   index;                  /* hardware event identifier */
 443        __s64   offset;                 /* add to hardware event value */
 444        __u64   time_enabled;           /* time event active */
 445        __u64   time_running;           /* time event on cpu */
 446        union {
 447                __u64   capabilities;
 448                struct {
 449                        __u64   cap_bit0                : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
 450                                cap_bit0_is_deprecated  : 1, /* Always 1, signals that bit 0 is zero */
 451
 452                                cap_user_rdpmc          : 1, /* The RDPMC instruction can be used to read counts */
 453                                cap_user_time           : 1, /* The time_* fields are used */
 454                                cap_user_time_zero      : 1, /* The time_zero field is used */
 455                                cap_____res             : 59;
 456                };
 457        };
 458
 459        /*
 460         * If cap_user_rdpmc this field provides the bit-width of the value
 461         * read using the rdpmc() or equivalent instruction. This can be used
 462         * to sign extend the result like:
 463         *
 464         *   pmc <<= 64 - width;
 465         *   pmc >>= 64 - width; // signed shift right
 466         *   count += pmc;
 467         */
 468        __u16   pmc_width;
 469
 470        /*
 471         * If cap_usr_time the below fields can be used to compute the time
 472         * delta since time_enabled (in ns) using rdtsc or similar.
 473         *
 474         *   u64 quot, rem;
 475         *   u64 delta;
 476         *
 477         *   quot = (cyc >> time_shift);
 478         *   rem = cyc & ((1 << time_shift) - 1);
 479         *   delta = time_offset + quot * time_mult +
 480         *              ((rem * time_mult) >> time_shift);
 481         *
 482         * Where time_offset,time_mult,time_shift and cyc are read in the
 483         * seqcount loop described above. This delta can then be added to
 484         * enabled and possible running (if index), improving the scaling:
 485         *
 486         *   enabled += delta;
 487         *   if (index)
 488         *     running += delta;
 489         *
 490         *   quot = count / running;
 491         *   rem  = count % running;
 492         *   count = quot * enabled + (rem * enabled) / running;
 493         */
 494        __u16   time_shift;
 495        __u32   time_mult;
 496        __u64   time_offset;
 497        /*
 498         * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
 499         * from sample timestamps.
 500         *
 501         *   time = timestamp - time_zero;
 502         *   quot = time / time_mult;
 503         *   rem  = time % time_mult;
 504         *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
 505         *
 506         * And vice versa:
 507         *
 508         *   quot = cyc >> time_shift;
 509         *   rem  = cyc & ((1 << time_shift) - 1);
 510         *   timestamp = time_zero + quot * time_mult +
 511         *               ((rem * time_mult) >> time_shift);
 512         */
 513        __u64   time_zero;
 514        __u32   size;                   /* Header size up to __reserved[] fields. */
 515
 516                /*
 517                 * Hole for extension of the self monitor capabilities
 518                 */
 519
 520        __u8    __reserved[118*8+4];    /* align to 1k. */
 521
 522        /*
 523         * Control data for the mmap() data buffer.
 524         *
 525         * User-space reading the @data_head value should issue an smp_rmb(),
 526         * after reading this value.
 527         *
 528         * When the mapping is PROT_WRITE the @data_tail value should be
 529         * written by userspace to reflect the last read data, after issueing
 530         * an smp_mb() to separate the data read from the ->data_tail store.
 531         * In this case the kernel will not over-write unread data.
 532         *
 533         * See perf_output_put_handle() for the data ordering.
 534         *
 535         * data_{offset,size} indicate the location and size of the perf record
 536         * buffer within the mmapped area.
 537         */
 538        __u64   data_head;              /* head in the data section */
 539        __u64   data_tail;              /* user-space written tail */
 540        __u64   data_offset;            /* where the buffer starts */
 541        __u64   data_size;              /* data buffer size */
 542
 543        /*
 544         * AUX area is defined by aux_{offset,size} fields that should be set
 545         * by the userspace, so that
 546         *
 547         *   aux_offset >= data_offset + data_size
 548         *
 549         * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
 550         *
 551         * Ring buffer pointers aux_{head,tail} have the same semantics as
 552         * data_{head,tail} and same ordering rules apply.
 553         */
 554        __u64   aux_head;
 555        __u64   aux_tail;
 556        __u64   aux_offset;
 557        __u64   aux_size;
 558};
 559
 560#define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
 561#define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
 562#define PERF_RECORD_MISC_KERNEL                 (1 << 0)
 563#define PERF_RECORD_MISC_USER                   (2 << 0)
 564#define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
 565#define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
 566#define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
 567
 568/*
 569 * Indicates that /proc/PID/maps parsing are truncated by time out.
 570 */
 571#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
 572/*
 573 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
 574 * different events so can reuse the same bit position.
 575 */
 576#define PERF_RECORD_MISC_MMAP_DATA              (1 << 13)
 577#define PERF_RECORD_MISC_COMM_EXEC              (1 << 13)
 578/*
 579 * Indicates that the content of PERF_SAMPLE_IP points to
 580 * the actual instruction that triggered the event. See also
 581 * perf_event_attr::precise_ip.
 582 */
 583#define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
 584/*
 585 * Reserve the last bit to indicate some extended misc field
 586 */
 587#define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
 588
 589struct perf_event_header {
 590        __u32   type;
 591        __u16   misc;
 592        __u16   size;
 593};
 594
 595enum perf_event_type {
 596
 597        /*
 598         * If perf_event_attr.sample_id_all is set then all event types will
 599         * have the sample_type selected fields related to where/when
 600         * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
 601         * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
 602         * just after the perf_event_header and the fields already present for
 603         * the existing fields, i.e. at the end of the payload. That way a newer
 604         * perf.data file will be supported by older perf tools, with these new
 605         * optional fields being ignored.
 606         *
 607         * struct sample_id {
 608         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 609         *      { u64                   time;     } && PERF_SAMPLE_TIME
 610         *      { u64                   id;       } && PERF_SAMPLE_ID
 611         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 612         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 613         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 614         * } && perf_event_attr::sample_id_all
 615         *
 616         * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
 617         * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
 618         * relative to header.size.
 619         */
 620
 621        /*
 622         * The MMAP events record the PROT_EXEC mappings so that we can
 623         * correlate userspace IPs to code. They have the following structure:
 624         *
 625         * struct {
 626         *      struct perf_event_header        header;
 627         *
 628         *      u32                             pid, tid;
 629         *      u64                             addr;
 630         *      u64                             len;
 631         *      u64                             pgoff;
 632         *      char                            filename[];
 633         *      struct sample_id                sample_id;
 634         * };
 635         */
 636        PERF_RECORD_MMAP                        = 1,
 637
 638        /*
 639         * struct {
 640         *      struct perf_event_header        header;
 641         *      u64                             id;
 642         *      u64                             lost;
 643         *      struct sample_id                sample_id;
 644         * };
 645         */
 646        PERF_RECORD_LOST                        = 2,
 647
 648        /*
 649         * struct {
 650         *      struct perf_event_header        header;
 651         *
 652         *      u32                             pid, tid;
 653         *      char                            comm[];
 654         *      struct sample_id                sample_id;
 655         * };
 656         */
 657        PERF_RECORD_COMM                        = 3,
 658
 659        /*
 660         * struct {
 661         *      struct perf_event_header        header;
 662         *      u32                             pid, ppid;
 663         *      u32                             tid, ptid;
 664         *      u64                             time;
 665         *      struct sample_id                sample_id;
 666         * };
 667         */
 668        PERF_RECORD_EXIT                        = 4,
 669
 670        /*
 671         * struct {
 672         *      struct perf_event_header        header;
 673         *      u64                             time;
 674         *      u64                             id;
 675         *      u64                             stream_id;
 676         *      struct sample_id                sample_id;
 677         * };
 678         */
 679        PERF_RECORD_THROTTLE                    = 5,
 680        PERF_RECORD_UNTHROTTLE                  = 6,
 681
 682        /*
 683         * struct {
 684         *      struct perf_event_header        header;
 685         *      u32                             pid, ppid;
 686         *      u32                             tid, ptid;
 687         *      u64                             time;
 688         *      struct sample_id                sample_id;
 689         * };
 690         */
 691        PERF_RECORD_FORK                        = 7,
 692
 693        /*
 694         * struct {
 695         *      struct perf_event_header        header;
 696         *      u32                             pid, tid;
 697         *
 698         *      struct read_format              values;
 699         *      struct sample_id                sample_id;
 700         * };
 701         */
 702        PERF_RECORD_READ                        = 8,
 703
 704        /*
 705         * struct {
 706         *      struct perf_event_header        header;
 707         *
 708         *      #
 709         *      # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
 710         *      # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
 711         *      # is fixed relative to header.
 712         *      #
 713         *
 714         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 715         *      { u64                   ip;       } && PERF_SAMPLE_IP
 716         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 717         *      { u64                   time;     } && PERF_SAMPLE_TIME
 718         *      { u64                   addr;     } && PERF_SAMPLE_ADDR
 719         *      { u64                   id;       } && PERF_SAMPLE_ID
 720         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 721         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 722         *      { u64                   period;   } && PERF_SAMPLE_PERIOD
 723         *
 724         *      { struct read_format    values;   } && PERF_SAMPLE_READ
 725         *
 726         *      { u64                   nr,
 727         *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
 728         *
 729         *      #
 730         *      # The RAW record below is opaque data wrt the ABI
 731         *      #
 732         *      # That is, the ABI doesn't make any promises wrt to
 733         *      # the stability of its content, it may vary depending
 734         *      # on event, hardware, kernel version and phase of
 735         *      # the moon.
 736         *      #
 737         *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
 738         *      #
 739         *
 740         *      { u32                   size;
 741         *        char                  data[size];}&& PERF_SAMPLE_RAW
 742         *
 743         *      { u64                   nr;
 744         *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
 745         *
 746         *      { u64                   abi; # enum perf_sample_regs_abi
 747         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
 748         *
 749         *      { u64                   size;
 750         *        char                  data[size];
 751         *        u64                   dyn_size; } && PERF_SAMPLE_STACK_USER
 752         *
 753         *      { u64                   weight;   } && PERF_SAMPLE_WEIGHT
 754         *      { u64                   data_src; } && PERF_SAMPLE_DATA_SRC
 755         *      { u64                   transaction; } && PERF_SAMPLE_TRANSACTION
 756         *      { u64                   abi; # enum perf_sample_regs_abi
 757         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
 758         * };
 759         */
 760        PERF_RECORD_SAMPLE                      = 9,
 761
 762        /*
 763         * The MMAP2 records are an augmented version of MMAP, they add
 764         * maj, min, ino numbers to be used to uniquely identify each mapping
 765         *
 766         * struct {
 767         *      struct perf_event_header        header;
 768         *
 769         *      u32                             pid, tid;
 770         *      u64                             addr;
 771         *      u64                             len;
 772         *      u64                             pgoff;
 773         *      u32                             maj;
 774         *      u32                             min;
 775         *      u64                             ino;
 776         *      u64                             ino_generation;
 777         *      u32                             prot, flags;
 778         *      char                            filename[];
 779         *      struct sample_id                sample_id;
 780         * };
 781         */
 782        PERF_RECORD_MMAP2                       = 10,
 783
 784        /*
 785         * Records that new data landed in the AUX buffer part.
 786         *
 787         * struct {
 788         *      struct perf_event_header        header;
 789         *
 790         *      u64                             aux_offset;
 791         *      u64                             aux_size;
 792         *      u64                             flags;
 793         *      struct sample_id                sample_id;
 794         * };
 795         */
 796        PERF_RECORD_AUX                         = 11,
 797
 798        /*
 799         * Indicates that instruction trace has started
 800         *
 801         * struct {
 802         *      struct perf_event_header        header;
 803         *      u32                             pid;
 804         *      u32                             tid;
 805         * };
 806         */
 807        PERF_RECORD_ITRACE_START                = 12,
 808
 809        /*
 810         * Records the dropped/lost sample number.
 811         *
 812         * struct {
 813         *      struct perf_event_header        header;
 814         *
 815         *      u64                             lost;
 816         *      struct sample_id                sample_id;
 817         * };
 818         */
 819        PERF_RECORD_LOST_SAMPLES                = 13,
 820
 821        PERF_RECORD_MAX,                        /* non-ABI */
 822};
 823
 824#define PERF_MAX_STACK_DEPTH            127
 825
 826enum perf_callchain_context {
 827        PERF_CONTEXT_HV                 = (__u64)-32,
 828        PERF_CONTEXT_KERNEL             = (__u64)-128,
 829        PERF_CONTEXT_USER               = (__u64)-512,
 830
 831        PERF_CONTEXT_GUEST              = (__u64)-2048,
 832        PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
 833        PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
 834
 835        PERF_CONTEXT_MAX                = (__u64)-4095,
 836};
 837
 838/**
 839 * PERF_RECORD_AUX::flags bits
 840 */
 841#define PERF_AUX_FLAG_TRUNCATED         0x01    /* record was truncated to fit */
 842#define PERF_AUX_FLAG_OVERWRITE         0x02    /* snapshot from overwrite mode */
 843
 844#define PERF_FLAG_FD_NO_GROUP           (1UL << 0)
 845#define PERF_FLAG_FD_OUTPUT             (1UL << 1)
 846#define PERF_FLAG_PID_CGROUP            (1UL << 2) /* pid=cgroup id, per-cpu mode only */
 847#define PERF_FLAG_FD_CLOEXEC            (1UL << 3) /* O_CLOEXEC */
 848
 849union perf_mem_data_src {
 850        __u64 val;
 851        struct {
 852                __u64   mem_op:5,       /* type of opcode */
 853                        mem_lvl:14,     /* memory hierarchy level */
 854                        mem_snoop:5,    /* snoop mode */
 855                        mem_lock:2,     /* lock instr */
 856                        mem_dtlb:7,     /* tlb access */
 857                        mem_rsvd:31;
 858        };
 859};
 860
 861/* type of opcode (load/store/prefetch,code) */
 862#define PERF_MEM_OP_NA          0x01 /* not available */
 863#define PERF_MEM_OP_LOAD        0x02 /* load instruction */
 864#define PERF_MEM_OP_STORE       0x04 /* store instruction */
 865#define PERF_MEM_OP_PFETCH      0x08 /* prefetch */
 866#define PERF_MEM_OP_EXEC        0x10 /* code (execution) */
 867#define PERF_MEM_OP_SHIFT       0
 868
 869/* memory hierarchy (memory level, hit or miss) */
 870#define PERF_MEM_LVL_NA         0x01  /* not available */
 871#define PERF_MEM_LVL_HIT        0x02  /* hit level */
 872#define PERF_MEM_LVL_MISS       0x04  /* miss level  */
 873#define PERF_MEM_LVL_L1         0x08  /* L1 */
 874#define PERF_MEM_LVL_LFB        0x10  /* Line Fill Buffer */
 875#define PERF_MEM_LVL_L2         0x20  /* L2 */
 876#define PERF_MEM_LVL_L3         0x40  /* L3 */
 877#define PERF_MEM_LVL_LOC_RAM    0x80  /* Local DRAM */
 878#define PERF_MEM_LVL_REM_RAM1   0x100 /* Remote DRAM (1 hop) */
 879#define PERF_MEM_LVL_REM_RAM2   0x200 /* Remote DRAM (2 hops) */
 880#define PERF_MEM_LVL_REM_CCE1   0x400 /* Remote Cache (1 hop) */
 881#define PERF_MEM_LVL_REM_CCE2   0x800 /* Remote Cache (2 hops) */
 882#define PERF_MEM_LVL_IO         0x1000 /* I/O memory */
 883#define PERF_MEM_LVL_UNC        0x2000 /* Uncached memory */
 884#define PERF_MEM_LVL_SHIFT      5
 885
 886/* snoop mode */
 887#define PERF_MEM_SNOOP_NA       0x01 /* not available */
 888#define PERF_MEM_SNOOP_NONE     0x02 /* no snoop */
 889#define PERF_MEM_SNOOP_HIT      0x04 /* snoop hit */
 890#define PERF_MEM_SNOOP_MISS     0x08 /* snoop miss */
 891#define PERF_MEM_SNOOP_HITM     0x10 /* snoop hit modified */
 892#define PERF_MEM_SNOOP_SHIFT    19
 893
 894/* locked instruction */
 895#define PERF_MEM_LOCK_NA        0x01 /* not available */
 896#define PERF_MEM_LOCK_LOCKED    0x02 /* locked transaction */
 897#define PERF_MEM_LOCK_SHIFT     24
 898
 899/* TLB access */
 900#define PERF_MEM_TLB_NA         0x01 /* not available */
 901#define PERF_MEM_TLB_HIT        0x02 /* hit level */
 902#define PERF_MEM_TLB_MISS       0x04 /* miss level */
 903#define PERF_MEM_TLB_L1         0x08 /* L1 */
 904#define PERF_MEM_TLB_L2         0x10 /* L2 */
 905#define PERF_MEM_TLB_WK         0x20 /* Hardware Walker*/
 906#define PERF_MEM_TLB_OS         0x40 /* OS fault handler */
 907#define PERF_MEM_TLB_SHIFT      26
 908
 909#define PERF_MEM_S(a, s) \
 910        (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
 911
 912/*
 913 * single taken branch record layout:
 914 *
 915 *      from: source instruction (may not always be a branch insn)
 916 *        to: branch target
 917 *   mispred: branch target was mispredicted
 918 * predicted: branch target was predicted
 919 *
 920 * support for mispred, predicted is optional. In case it
 921 * is not supported mispred = predicted = 0.
 922 *
 923 *     in_tx: running in a hardware transaction
 924 *     abort: aborting a hardware transaction
 925 */
 926struct perf_branch_entry {
 927        __u64   from;
 928        __u64   to;
 929        __u64   mispred:1,  /* target mispredicted */
 930                predicted:1,/* target predicted */
 931                in_tx:1,    /* in transaction */
 932                abort:1,    /* transaction abort */
 933                reserved:60;
 934};
 935
 936#endif /* _UAPI_LINUX_PERF_EVENT_H */
 937