linux/kernel/rcu/tree.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *          Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *      Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/module.h>
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <linux/prefetch.h>
  54#include <linux/delay.h>
  55#include <linux/stop_machine.h>
  56#include <linux/random.h>
  57#include <linux/trace_events.h>
  58#include <linux/suspend.h>
  59
  60#include "tree.h"
  61#include "rcu.h"
  62
  63MODULE_ALIAS("rcutree");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "rcutree."
  68
  69/* Data structures. */
  70
  71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  73
  74/*
  75 * In order to export the rcu_state name to the tracing tools, it
  76 * needs to be added in the __tracepoint_string section.
  77 * This requires defining a separate variable tp_<sname>_varname
  78 * that points to the string being used, and this will allow
  79 * the tracing userspace tools to be able to decipher the string
  80 * address to the matching string.
  81 */
  82#ifdef CONFIG_TRACING
  83# define DEFINE_RCU_TPS(sname) \
  84static char sname##_varname[] = #sname; \
  85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  86# define RCU_STATE_NAME(sname) sname##_varname
  87#else
  88# define DEFINE_RCU_TPS(sname)
  89# define RCU_STATE_NAME(sname) __stringify(sname)
  90#endif
  91
  92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  93DEFINE_RCU_TPS(sname) \
  94static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  95struct rcu_state sname##_state = { \
  96        .level = { &sname##_state.node[0] }, \
  97        .rda = &sname##_data, \
  98        .call = cr, \
  99        .fqs_state = RCU_GP_IDLE, \
 100        .gpnum = 0UL - 300UL, \
 101        .completed = 0UL - 300UL, \
 102        .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
 103        .orphan_nxttail = &sname##_state.orphan_nxtlist, \
 104        .orphan_donetail = &sname##_state.orphan_donelist, \
 105        .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 106        .name = RCU_STATE_NAME(sname), \
 107        .abbr = sabbr, \
 108}
 109
 110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 112
 113static struct rcu_state *const rcu_state_p;
 114static struct rcu_data __percpu *const rcu_data_p;
 115LIST_HEAD(rcu_struct_flavors);
 116
 117/* Dump rcu_node combining tree at boot to verify correct setup. */
 118static bool dump_tree;
 119module_param(dump_tree, bool, 0444);
 120/* Control rcu_node-tree auto-balancing at boot time. */
 121static bool rcu_fanout_exact;
 122module_param(rcu_fanout_exact, bool, 0444);
 123/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 124static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 125module_param(rcu_fanout_leaf, int, 0444);
 126int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 127static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
 128        NUM_RCU_LVL_0,
 129        NUM_RCU_LVL_1,
 130        NUM_RCU_LVL_2,
 131        NUM_RCU_LVL_3,
 132        NUM_RCU_LVL_4,
 133};
 134int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 135
 136/*
 137 * The rcu_scheduler_active variable transitions from zero to one just
 138 * before the first task is spawned.  So when this variable is zero, RCU
 139 * can assume that there is but one task, allowing RCU to (for example)
 140 * optimize synchronize_sched() to a simple barrier().  When this variable
 141 * is one, RCU must actually do all the hard work required to detect real
 142 * grace periods.  This variable is also used to suppress boot-time false
 143 * positives from lockdep-RCU error checking.
 144 */
 145int rcu_scheduler_active __read_mostly;
 146EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 147
 148/*
 149 * The rcu_scheduler_fully_active variable transitions from zero to one
 150 * during the early_initcall() processing, which is after the scheduler
 151 * is capable of creating new tasks.  So RCU processing (for example,
 152 * creating tasks for RCU priority boosting) must be delayed until after
 153 * rcu_scheduler_fully_active transitions from zero to one.  We also
 154 * currently delay invocation of any RCU callbacks until after this point.
 155 *
 156 * It might later prove better for people registering RCU callbacks during
 157 * early boot to take responsibility for these callbacks, but one step at
 158 * a time.
 159 */
 160static int rcu_scheduler_fully_active __read_mostly;
 161
 162static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 163static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 164static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 165static void invoke_rcu_core(void);
 166static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 167
 168/* rcuc/rcub kthread realtime priority */
 169#ifdef CONFIG_RCU_KTHREAD_PRIO
 170static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
 171#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
 172static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 173#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
 174module_param(kthread_prio, int, 0644);
 175
 176/* Delay in jiffies for grace-period initialization delays, debug only. */
 177
 178#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
 179static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
 180module_param(gp_preinit_delay, int, 0644);
 181#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 182static const int gp_preinit_delay;
 183#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 184
 185#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
 186static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
 187module_param(gp_init_delay, int, 0644);
 188#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 189static const int gp_init_delay;
 190#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 191
 192#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
 193static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
 194module_param(gp_cleanup_delay, int, 0644);
 195#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 196static const int gp_cleanup_delay;
 197#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 198
 199/*
 200 * Number of grace periods between delays, normalized by the duration of
 201 * the delay.  The longer the the delay, the more the grace periods between
 202 * each delay.  The reason for this normalization is that it means that,
 203 * for non-zero delays, the overall slowdown of grace periods is constant
 204 * regardless of the duration of the delay.  This arrangement balances
 205 * the need for long delays to increase some race probabilities with the
 206 * need for fast grace periods to increase other race probabilities.
 207 */
 208#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
 209
 210/*
 211 * Track the rcutorture test sequence number and the update version
 212 * number within a given test.  The rcutorture_testseq is incremented
 213 * on every rcutorture module load and unload, so has an odd value
 214 * when a test is running.  The rcutorture_vernum is set to zero
 215 * when rcutorture starts and is incremented on each rcutorture update.
 216 * These variables enable correlating rcutorture output with the
 217 * RCU tracing information.
 218 */
 219unsigned long rcutorture_testseq;
 220unsigned long rcutorture_vernum;
 221
 222/*
 223 * Compute the mask of online CPUs for the specified rcu_node structure.
 224 * This will not be stable unless the rcu_node structure's ->lock is
 225 * held, but the bit corresponding to the current CPU will be stable
 226 * in most contexts.
 227 */
 228unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 229{
 230        return READ_ONCE(rnp->qsmaskinitnext);
 231}
 232
 233/*
 234 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 235 * permit this function to be invoked without holding the root rcu_node
 236 * structure's ->lock, but of course results can be subject to change.
 237 */
 238static int rcu_gp_in_progress(struct rcu_state *rsp)
 239{
 240        return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 241}
 242
 243/*
 244 * Note a quiescent state.  Because we do not need to know
 245 * how many quiescent states passed, just if there was at least
 246 * one since the start of the grace period, this just sets a flag.
 247 * The caller must have disabled preemption.
 248 */
 249void rcu_sched_qs(void)
 250{
 251        if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
 252                trace_rcu_grace_period(TPS("rcu_sched"),
 253                                       __this_cpu_read(rcu_sched_data.gpnum),
 254                                       TPS("cpuqs"));
 255                __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
 256        }
 257}
 258
 259void rcu_bh_qs(void)
 260{
 261        if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
 262                trace_rcu_grace_period(TPS("rcu_bh"),
 263                                       __this_cpu_read(rcu_bh_data.gpnum),
 264                                       TPS("cpuqs"));
 265                __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
 266        }
 267}
 268
 269static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
 270
 271static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 272        .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 273        .dynticks = ATOMIC_INIT(1),
 274#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 275        .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 276        .dynticks_idle = ATOMIC_INIT(1),
 277#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 278};
 279
 280DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
 281EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
 282
 283/*
 284 * Let the RCU core know that this CPU has gone through the scheduler,
 285 * which is a quiescent state.  This is called when the need for a
 286 * quiescent state is urgent, so we burn an atomic operation and full
 287 * memory barriers to let the RCU core know about it, regardless of what
 288 * this CPU might (or might not) do in the near future.
 289 *
 290 * We inform the RCU core by emulating a zero-duration dyntick-idle
 291 * period, which we in turn do by incrementing the ->dynticks counter
 292 * by two.
 293 */
 294static void rcu_momentary_dyntick_idle(void)
 295{
 296        unsigned long flags;
 297        struct rcu_data *rdp;
 298        struct rcu_dynticks *rdtp;
 299        int resched_mask;
 300        struct rcu_state *rsp;
 301
 302        local_irq_save(flags);
 303
 304        /*
 305         * Yes, we can lose flag-setting operations.  This is OK, because
 306         * the flag will be set again after some delay.
 307         */
 308        resched_mask = raw_cpu_read(rcu_sched_qs_mask);
 309        raw_cpu_write(rcu_sched_qs_mask, 0);
 310
 311        /* Find the flavor that needs a quiescent state. */
 312        for_each_rcu_flavor(rsp) {
 313                rdp = raw_cpu_ptr(rsp->rda);
 314                if (!(resched_mask & rsp->flavor_mask))
 315                        continue;
 316                smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
 317                if (READ_ONCE(rdp->mynode->completed) !=
 318                    READ_ONCE(rdp->cond_resched_completed))
 319                        continue;
 320
 321                /*
 322                 * Pretend to be momentarily idle for the quiescent state.
 323                 * This allows the grace-period kthread to record the
 324                 * quiescent state, with no need for this CPU to do anything
 325                 * further.
 326                 */
 327                rdtp = this_cpu_ptr(&rcu_dynticks);
 328                smp_mb__before_atomic(); /* Earlier stuff before QS. */
 329                atomic_add(2, &rdtp->dynticks);  /* QS. */
 330                smp_mb__after_atomic(); /* Later stuff after QS. */
 331                break;
 332        }
 333        local_irq_restore(flags);
 334}
 335
 336/*
 337 * Note a context switch.  This is a quiescent state for RCU-sched,
 338 * and requires special handling for preemptible RCU.
 339 * The caller must have disabled preemption.
 340 */
 341void rcu_note_context_switch(void)
 342{
 343        trace_rcu_utilization(TPS("Start context switch"));
 344        rcu_sched_qs();
 345        rcu_preempt_note_context_switch();
 346        if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
 347                rcu_momentary_dyntick_idle();
 348        trace_rcu_utilization(TPS("End context switch"));
 349}
 350EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 351
 352/*
 353 * Register a quiescent state for all RCU flavors.  If there is an
 354 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 355 * dyntick-idle quiescent state visible to other CPUs (but only for those
 356 * RCU flavors in desperate need of a quiescent state, which will normally
 357 * be none of them).  Either way, do a lightweight quiescent state for
 358 * all RCU flavors.
 359 */
 360void rcu_all_qs(void)
 361{
 362        if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
 363                rcu_momentary_dyntick_idle();
 364        this_cpu_inc(rcu_qs_ctr);
 365}
 366EXPORT_SYMBOL_GPL(rcu_all_qs);
 367
 368static long blimit = 10;        /* Maximum callbacks per rcu_do_batch. */
 369static long qhimark = 10000;    /* If this many pending, ignore blimit. */
 370static long qlowmark = 100;     /* Once only this many pending, use blimit. */
 371
 372module_param(blimit, long, 0444);
 373module_param(qhimark, long, 0444);
 374module_param(qlowmark, long, 0444);
 375
 376static ulong jiffies_till_first_fqs = ULONG_MAX;
 377static ulong jiffies_till_next_fqs = ULONG_MAX;
 378
 379module_param(jiffies_till_first_fqs, ulong, 0644);
 380module_param(jiffies_till_next_fqs, ulong, 0644);
 381
 382/*
 383 * How long the grace period must be before we start recruiting
 384 * quiescent-state help from rcu_note_context_switch().
 385 */
 386static ulong jiffies_till_sched_qs = HZ / 20;
 387module_param(jiffies_till_sched_qs, ulong, 0644);
 388
 389static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 390                                  struct rcu_data *rdp);
 391static void force_qs_rnp(struct rcu_state *rsp,
 392                         int (*f)(struct rcu_data *rsp, bool *isidle,
 393                                  unsigned long *maxj),
 394                         bool *isidle, unsigned long *maxj);
 395static void force_quiescent_state(struct rcu_state *rsp);
 396static int rcu_pending(void);
 397
 398/*
 399 * Return the number of RCU batches started thus far for debug & stats.
 400 */
 401unsigned long rcu_batches_started(void)
 402{
 403        return rcu_state_p->gpnum;
 404}
 405EXPORT_SYMBOL_GPL(rcu_batches_started);
 406
 407/*
 408 * Return the number of RCU-sched batches started thus far for debug & stats.
 409 */
 410unsigned long rcu_batches_started_sched(void)
 411{
 412        return rcu_sched_state.gpnum;
 413}
 414EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 415
 416/*
 417 * Return the number of RCU BH batches started thus far for debug & stats.
 418 */
 419unsigned long rcu_batches_started_bh(void)
 420{
 421        return rcu_bh_state.gpnum;
 422}
 423EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 424
 425/*
 426 * Return the number of RCU batches completed thus far for debug & stats.
 427 */
 428unsigned long rcu_batches_completed(void)
 429{
 430        return rcu_state_p->completed;
 431}
 432EXPORT_SYMBOL_GPL(rcu_batches_completed);
 433
 434/*
 435 * Return the number of RCU-sched batches completed thus far for debug & stats.
 436 */
 437unsigned long rcu_batches_completed_sched(void)
 438{
 439        return rcu_sched_state.completed;
 440}
 441EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 442
 443/*
 444 * Return the number of RCU BH batches completed thus far for debug & stats.
 445 */
 446unsigned long rcu_batches_completed_bh(void)
 447{
 448        return rcu_bh_state.completed;
 449}
 450EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 451
 452/*
 453 * Force a quiescent state.
 454 */
 455void rcu_force_quiescent_state(void)
 456{
 457        force_quiescent_state(rcu_state_p);
 458}
 459EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 460
 461/*
 462 * Force a quiescent state for RCU BH.
 463 */
 464void rcu_bh_force_quiescent_state(void)
 465{
 466        force_quiescent_state(&rcu_bh_state);
 467}
 468EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 469
 470/*
 471 * Force a quiescent state for RCU-sched.
 472 */
 473void rcu_sched_force_quiescent_state(void)
 474{
 475        force_quiescent_state(&rcu_sched_state);
 476}
 477EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 478
 479/*
 480 * Show the state of the grace-period kthreads.
 481 */
 482void show_rcu_gp_kthreads(void)
 483{
 484        struct rcu_state *rsp;
 485
 486        for_each_rcu_flavor(rsp) {
 487                pr_info("%s: wait state: %d ->state: %#lx\n",
 488                        rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 489                /* sched_show_task(rsp->gp_kthread); */
 490        }
 491}
 492EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 493
 494/*
 495 * Record the number of times rcutorture tests have been initiated and
 496 * terminated.  This information allows the debugfs tracing stats to be
 497 * correlated to the rcutorture messages, even when the rcutorture module
 498 * is being repeatedly loaded and unloaded.  In other words, we cannot
 499 * store this state in rcutorture itself.
 500 */
 501void rcutorture_record_test_transition(void)
 502{
 503        rcutorture_testseq++;
 504        rcutorture_vernum = 0;
 505}
 506EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 507
 508/*
 509 * Send along grace-period-related data for rcutorture diagnostics.
 510 */
 511void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 512                            unsigned long *gpnum, unsigned long *completed)
 513{
 514        struct rcu_state *rsp = NULL;
 515
 516        switch (test_type) {
 517        case RCU_FLAVOR:
 518                rsp = rcu_state_p;
 519                break;
 520        case RCU_BH_FLAVOR:
 521                rsp = &rcu_bh_state;
 522                break;
 523        case RCU_SCHED_FLAVOR:
 524                rsp = &rcu_sched_state;
 525                break;
 526        default:
 527                break;
 528        }
 529        if (rsp != NULL) {
 530                *flags = READ_ONCE(rsp->gp_flags);
 531                *gpnum = READ_ONCE(rsp->gpnum);
 532                *completed = READ_ONCE(rsp->completed);
 533                return;
 534        }
 535        *flags = 0;
 536        *gpnum = 0;
 537        *completed = 0;
 538}
 539EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 540
 541/*
 542 * Record the number of writer passes through the current rcutorture test.
 543 * This is also used to correlate debugfs tracing stats with the rcutorture
 544 * messages.
 545 */
 546void rcutorture_record_progress(unsigned long vernum)
 547{
 548        rcutorture_vernum++;
 549}
 550EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 551
 552/*
 553 * Does the CPU have callbacks ready to be invoked?
 554 */
 555static int
 556cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 557{
 558        return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
 559               rdp->nxttail[RCU_DONE_TAIL] != NULL;
 560}
 561
 562/*
 563 * Return the root node of the specified rcu_state structure.
 564 */
 565static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 566{
 567        return &rsp->node[0];
 568}
 569
 570/*
 571 * Is there any need for future grace periods?
 572 * Interrupts must be disabled.  If the caller does not hold the root
 573 * rnp_node structure's ->lock, the results are advisory only.
 574 */
 575static int rcu_future_needs_gp(struct rcu_state *rsp)
 576{
 577        struct rcu_node *rnp = rcu_get_root(rsp);
 578        int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 579        int *fp = &rnp->need_future_gp[idx];
 580
 581        return READ_ONCE(*fp);
 582}
 583
 584/*
 585 * Does the current CPU require a not-yet-started grace period?
 586 * The caller must have disabled interrupts to prevent races with
 587 * normal callback registry.
 588 */
 589static int
 590cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 591{
 592        int i;
 593
 594        if (rcu_gp_in_progress(rsp))
 595                return 0;  /* No, a grace period is already in progress. */
 596        if (rcu_future_needs_gp(rsp))
 597                return 1;  /* Yes, a no-CBs CPU needs one. */
 598        if (!rdp->nxttail[RCU_NEXT_TAIL])
 599                return 0;  /* No, this is a no-CBs (or offline) CPU. */
 600        if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
 601                return 1;  /* Yes, this CPU has newly registered callbacks. */
 602        for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
 603                if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
 604                    ULONG_CMP_LT(READ_ONCE(rsp->completed),
 605                                 rdp->nxtcompleted[i]))
 606                        return 1;  /* Yes, CBs for future grace period. */
 607        return 0; /* No grace period needed. */
 608}
 609
 610/*
 611 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 612 *
 613 * If the new value of the ->dynticks_nesting counter now is zero,
 614 * we really have entered idle, and must do the appropriate accounting.
 615 * The caller must have disabled interrupts.
 616 */
 617static void rcu_eqs_enter_common(long long oldval, bool user)
 618{
 619        struct rcu_state *rsp;
 620        struct rcu_data *rdp;
 621        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 622
 623        trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 624        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 625            !user && !is_idle_task(current)) {
 626                struct task_struct *idle __maybe_unused =
 627                        idle_task(smp_processor_id());
 628
 629                trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 630                ftrace_dump(DUMP_ORIG);
 631                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 632                          current->pid, current->comm,
 633                          idle->pid, idle->comm); /* must be idle task! */
 634        }
 635        for_each_rcu_flavor(rsp) {
 636                rdp = this_cpu_ptr(rsp->rda);
 637                do_nocb_deferred_wakeup(rdp);
 638        }
 639        rcu_prepare_for_idle();
 640        /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 641        smp_mb__before_atomic();  /* See above. */
 642        atomic_inc(&rdtp->dynticks);
 643        smp_mb__after_atomic();  /* Force ordering with next sojourn. */
 644        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 645                     atomic_read(&rdtp->dynticks) & 0x1);
 646        rcu_dynticks_task_enter();
 647
 648        /*
 649         * It is illegal to enter an extended quiescent state while
 650         * in an RCU read-side critical section.
 651         */
 652        rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 653                           "Illegal idle entry in RCU read-side critical section.");
 654        rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
 655                           "Illegal idle entry in RCU-bh read-side critical section.");
 656        rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
 657                           "Illegal idle entry in RCU-sched read-side critical section.");
 658}
 659
 660/*
 661 * Enter an RCU extended quiescent state, which can be either the
 662 * idle loop or adaptive-tickless usermode execution.
 663 */
 664static void rcu_eqs_enter(bool user)
 665{
 666        long long oldval;
 667        struct rcu_dynticks *rdtp;
 668
 669        rdtp = this_cpu_ptr(&rcu_dynticks);
 670        oldval = rdtp->dynticks_nesting;
 671        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 672                     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
 673        if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 674                rdtp->dynticks_nesting = 0;
 675                rcu_eqs_enter_common(oldval, user);
 676        } else {
 677                rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 678        }
 679}
 680
 681/**
 682 * rcu_idle_enter - inform RCU that current CPU is entering idle
 683 *
 684 * Enter idle mode, in other words, -leave- the mode in which RCU
 685 * read-side critical sections can occur.  (Though RCU read-side
 686 * critical sections can occur in irq handlers in idle, a possibility
 687 * handled by irq_enter() and irq_exit().)
 688 *
 689 * We crowbar the ->dynticks_nesting field to zero to allow for
 690 * the possibility of usermode upcalls having messed up our count
 691 * of interrupt nesting level during the prior busy period.
 692 */
 693void rcu_idle_enter(void)
 694{
 695        unsigned long flags;
 696
 697        local_irq_save(flags);
 698        rcu_eqs_enter(false);
 699        rcu_sysidle_enter(0);
 700        local_irq_restore(flags);
 701}
 702EXPORT_SYMBOL_GPL(rcu_idle_enter);
 703
 704#ifdef CONFIG_RCU_USER_QS
 705/**
 706 * rcu_user_enter - inform RCU that we are resuming userspace.
 707 *
 708 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 709 * is permitted between this call and rcu_user_exit(). This way the
 710 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 711 * when the CPU runs in userspace.
 712 */
 713void rcu_user_enter(void)
 714{
 715        rcu_eqs_enter(1);
 716}
 717#endif /* CONFIG_RCU_USER_QS */
 718
 719/**
 720 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 721 *
 722 * Exit from an interrupt handler, which might possibly result in entering
 723 * idle mode, in other words, leaving the mode in which read-side critical
 724 * sections can occur.
 725 *
 726 * This code assumes that the idle loop never does anything that might
 727 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 728 * architecture violates this assumption, RCU will give you what you
 729 * deserve, good and hard.  But very infrequently and irreproducibly.
 730 *
 731 * Use things like work queues to work around this limitation.
 732 *
 733 * You have been warned.
 734 */
 735void rcu_irq_exit(void)
 736{
 737        unsigned long flags;
 738        long long oldval;
 739        struct rcu_dynticks *rdtp;
 740
 741        local_irq_save(flags);
 742        rdtp = this_cpu_ptr(&rcu_dynticks);
 743        oldval = rdtp->dynticks_nesting;
 744        rdtp->dynticks_nesting--;
 745        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 746                     rdtp->dynticks_nesting < 0);
 747        if (rdtp->dynticks_nesting)
 748                trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 749        else
 750                rcu_eqs_enter_common(oldval, true);
 751        rcu_sysidle_enter(1);
 752        local_irq_restore(flags);
 753}
 754
 755/*
 756 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 757 *
 758 * If the new value of the ->dynticks_nesting counter was previously zero,
 759 * we really have exited idle, and must do the appropriate accounting.
 760 * The caller must have disabled interrupts.
 761 */
 762static void rcu_eqs_exit_common(long long oldval, int user)
 763{
 764        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 765
 766        rcu_dynticks_task_exit();
 767        smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
 768        atomic_inc(&rdtp->dynticks);
 769        /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 770        smp_mb__after_atomic();  /* See above. */
 771        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 772                     !(atomic_read(&rdtp->dynticks) & 0x1));
 773        rcu_cleanup_after_idle();
 774        trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 775        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 776            !user && !is_idle_task(current)) {
 777                struct task_struct *idle __maybe_unused =
 778                        idle_task(smp_processor_id());
 779
 780                trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 781                                  oldval, rdtp->dynticks_nesting);
 782                ftrace_dump(DUMP_ORIG);
 783                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 784                          current->pid, current->comm,
 785                          idle->pid, idle->comm); /* must be idle task! */
 786        }
 787}
 788
 789/*
 790 * Exit an RCU extended quiescent state, which can be either the
 791 * idle loop or adaptive-tickless usermode execution.
 792 */
 793static void rcu_eqs_exit(bool user)
 794{
 795        struct rcu_dynticks *rdtp;
 796        long long oldval;
 797
 798        rdtp = this_cpu_ptr(&rcu_dynticks);
 799        oldval = rdtp->dynticks_nesting;
 800        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 801        if (oldval & DYNTICK_TASK_NEST_MASK) {
 802                rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 803        } else {
 804                rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 805                rcu_eqs_exit_common(oldval, user);
 806        }
 807}
 808
 809/**
 810 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 811 *
 812 * Exit idle mode, in other words, -enter- the mode in which RCU
 813 * read-side critical sections can occur.
 814 *
 815 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 816 * allow for the possibility of usermode upcalls messing up our count
 817 * of interrupt nesting level during the busy period that is just
 818 * now starting.
 819 */
 820void rcu_idle_exit(void)
 821{
 822        unsigned long flags;
 823
 824        local_irq_save(flags);
 825        rcu_eqs_exit(false);
 826        rcu_sysidle_exit(0);
 827        local_irq_restore(flags);
 828}
 829EXPORT_SYMBOL_GPL(rcu_idle_exit);
 830
 831#ifdef CONFIG_RCU_USER_QS
 832/**
 833 * rcu_user_exit - inform RCU that we are exiting userspace.
 834 *
 835 * Exit RCU idle mode while entering the kernel because it can
 836 * run a RCU read side critical section anytime.
 837 */
 838void rcu_user_exit(void)
 839{
 840        rcu_eqs_exit(1);
 841}
 842#endif /* CONFIG_RCU_USER_QS */
 843
 844/**
 845 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 846 *
 847 * Enter an interrupt handler, which might possibly result in exiting
 848 * idle mode, in other words, entering the mode in which read-side critical
 849 * sections can occur.
 850 *
 851 * Note that the Linux kernel is fully capable of entering an interrupt
 852 * handler that it never exits, for example when doing upcalls to
 853 * user mode!  This code assumes that the idle loop never does upcalls to
 854 * user mode.  If your architecture does do upcalls from the idle loop (or
 855 * does anything else that results in unbalanced calls to the irq_enter()
 856 * and irq_exit() functions), RCU will give you what you deserve, good
 857 * and hard.  But very infrequently and irreproducibly.
 858 *
 859 * Use things like work queues to work around this limitation.
 860 *
 861 * You have been warned.
 862 */
 863void rcu_irq_enter(void)
 864{
 865        unsigned long flags;
 866        struct rcu_dynticks *rdtp;
 867        long long oldval;
 868
 869        local_irq_save(flags);
 870        rdtp = this_cpu_ptr(&rcu_dynticks);
 871        oldval = rdtp->dynticks_nesting;
 872        rdtp->dynticks_nesting++;
 873        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 874                     rdtp->dynticks_nesting == 0);
 875        if (oldval)
 876                trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 877        else
 878                rcu_eqs_exit_common(oldval, true);
 879        rcu_sysidle_exit(1);
 880        local_irq_restore(flags);
 881}
 882
 883/**
 884 * rcu_nmi_enter - inform RCU of entry to NMI context
 885 *
 886 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 887 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 888 * that the CPU is active.  This implementation permits nested NMIs, as
 889 * long as the nesting level does not overflow an int.  (You will probably
 890 * run out of stack space first.)
 891 */
 892void rcu_nmi_enter(void)
 893{
 894        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 895        int incby = 2;
 896
 897        /* Complain about underflow. */
 898        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 899
 900        /*
 901         * If idle from RCU viewpoint, atomically increment ->dynticks
 902         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 903         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 904         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 905         * to be in the outermost NMI handler that interrupted an RCU-idle
 906         * period (observation due to Andy Lutomirski).
 907         */
 908        if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
 909                smp_mb__before_atomic();  /* Force delay from prior write. */
 910                atomic_inc(&rdtp->dynticks);
 911                /* atomic_inc() before later RCU read-side crit sects */
 912                smp_mb__after_atomic();  /* See above. */
 913                WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 914                incby = 1;
 915        }
 916        rdtp->dynticks_nmi_nesting += incby;
 917        barrier();
 918}
 919
 920/**
 921 * rcu_nmi_exit - inform RCU of exit from NMI context
 922 *
 923 * If we are returning from the outermost NMI handler that interrupted an
 924 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 925 * to let the RCU grace-period handling know that the CPU is back to
 926 * being RCU-idle.
 927 */
 928void rcu_nmi_exit(void)
 929{
 930        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 931
 932        /*
 933         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 934         * (We are exiting an NMI handler, so RCU better be paying attention
 935         * to us!)
 936         */
 937        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
 938        WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 939
 940        /*
 941         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 942         * leave it in non-RCU-idle state.
 943         */
 944        if (rdtp->dynticks_nmi_nesting != 1) {
 945                rdtp->dynticks_nmi_nesting -= 2;
 946                return;
 947        }
 948
 949        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 950        rdtp->dynticks_nmi_nesting = 0;
 951        /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 952        smp_mb__before_atomic();  /* See above. */
 953        atomic_inc(&rdtp->dynticks);
 954        smp_mb__after_atomic();  /* Force delay to next write. */
 955        WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 956}
 957
 958/**
 959 * __rcu_is_watching - are RCU read-side critical sections safe?
 960 *
 961 * Return true if RCU is watching the running CPU, which means that
 962 * this CPU can safely enter RCU read-side critical sections.  Unlike
 963 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 964 * least disabled preemption.
 965 */
 966bool notrace __rcu_is_watching(void)
 967{
 968        return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
 969}
 970
 971/**
 972 * rcu_is_watching - see if RCU thinks that the current CPU is idle
 973 *
 974 * If the current CPU is in its idle loop and is neither in an interrupt
 975 * or NMI handler, return true.
 976 */
 977bool notrace rcu_is_watching(void)
 978{
 979        bool ret;
 980
 981        preempt_disable();
 982        ret = __rcu_is_watching();
 983        preempt_enable();
 984        return ret;
 985}
 986EXPORT_SYMBOL_GPL(rcu_is_watching);
 987
 988#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 989
 990/*
 991 * Is the current CPU online?  Disable preemption to avoid false positives
 992 * that could otherwise happen due to the current CPU number being sampled,
 993 * this task being preempted, its old CPU being taken offline, resuming
 994 * on some other CPU, then determining that its old CPU is now offline.
 995 * It is OK to use RCU on an offline processor during initial boot, hence
 996 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 997 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 998 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 999 * offline to continue to use RCU for one jiffy after marking itself
1000 * offline in the cpu_online_mask.  This leniency is necessary given the
1001 * non-atomic nature of the online and offline processing, for example,
1002 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1003 * notifiers.
1004 *
1005 * This is also why RCU internally marks CPUs online during the
1006 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1007 *
1008 * Disable checking if in an NMI handler because we cannot safely report
1009 * errors from NMI handlers anyway.
1010 */
1011bool rcu_lockdep_current_cpu_online(void)
1012{
1013        struct rcu_data *rdp;
1014        struct rcu_node *rnp;
1015        bool ret;
1016
1017        if (in_nmi())
1018                return true;
1019        preempt_disable();
1020        rdp = this_cpu_ptr(&rcu_sched_data);
1021        rnp = rdp->mynode;
1022        ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1023              !rcu_scheduler_fully_active;
1024        preempt_enable();
1025        return ret;
1026}
1027EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1028
1029#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1030
1031/**
1032 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1033 *
1034 * If the current CPU is idle or running at a first-level (not nested)
1035 * interrupt from idle, return true.  The caller must have at least
1036 * disabled preemption.
1037 */
1038static int rcu_is_cpu_rrupt_from_idle(void)
1039{
1040        return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1041}
1042
1043/*
1044 * Snapshot the specified CPU's dynticks counter so that we can later
1045 * credit them with an implicit quiescent state.  Return 1 if this CPU
1046 * is in dynticks idle mode, which is an extended quiescent state.
1047 */
1048static int dyntick_save_progress_counter(struct rcu_data *rdp,
1049                                         bool *isidle, unsigned long *maxj)
1050{
1051        rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1052        rcu_sysidle_check_cpu(rdp, isidle, maxj);
1053        if ((rdp->dynticks_snap & 0x1) == 0) {
1054                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1055                return 1;
1056        } else {
1057                if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1058                                 rdp->mynode->gpnum))
1059                        WRITE_ONCE(rdp->gpwrap, true);
1060                return 0;
1061        }
1062}
1063
1064/*
1065 * Return true if the specified CPU has passed through a quiescent
1066 * state by virtue of being in or having passed through an dynticks
1067 * idle state since the last call to dyntick_save_progress_counter()
1068 * for this same CPU, or by virtue of having been offline.
1069 */
1070static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1071                                    bool *isidle, unsigned long *maxj)
1072{
1073        unsigned int curr;
1074        int *rcrmp;
1075        unsigned int snap;
1076
1077        curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1078        snap = (unsigned int)rdp->dynticks_snap;
1079
1080        /*
1081         * If the CPU passed through or entered a dynticks idle phase with
1082         * no active irq/NMI handlers, then we can safely pretend that the CPU
1083         * already acknowledged the request to pass through a quiescent
1084         * state.  Either way, that CPU cannot possibly be in an RCU
1085         * read-side critical section that started before the beginning
1086         * of the current RCU grace period.
1087         */
1088        if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1089                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1090                rdp->dynticks_fqs++;
1091                return 1;
1092        }
1093
1094        /*
1095         * Check for the CPU being offline, but only if the grace period
1096         * is old enough.  We don't need to worry about the CPU changing
1097         * state: If we see it offline even once, it has been through a
1098         * quiescent state.
1099         *
1100         * The reason for insisting that the grace period be at least
1101         * one jiffy old is that CPUs that are not quite online and that
1102         * have just gone offline can still execute RCU read-side critical
1103         * sections.
1104         */
1105        if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1106                return 0;  /* Grace period is not old enough. */
1107        barrier();
1108        if (cpu_is_offline(rdp->cpu)) {
1109                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1110                rdp->offline_fqs++;
1111                return 1;
1112        }
1113
1114        /*
1115         * A CPU running for an extended time within the kernel can
1116         * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1117         * even context-switching back and forth between a pair of
1118         * in-kernel CPU-bound tasks cannot advance grace periods.
1119         * So if the grace period is old enough, make the CPU pay attention.
1120         * Note that the unsynchronized assignments to the per-CPU
1121         * rcu_sched_qs_mask variable are safe.  Yes, setting of
1122         * bits can be lost, but they will be set again on the next
1123         * force-quiescent-state pass.  So lost bit sets do not result
1124         * in incorrect behavior, merely in a grace period lasting
1125         * a few jiffies longer than it might otherwise.  Because
1126         * there are at most four threads involved, and because the
1127         * updates are only once every few jiffies, the probability of
1128         * lossage (and thus of slight grace-period extension) is
1129         * quite low.
1130         *
1131         * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1132         * is set too high, we override with half of the RCU CPU stall
1133         * warning delay.
1134         */
1135        rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1136        if (ULONG_CMP_GE(jiffies,
1137                         rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1138            ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1139                if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1140                        WRITE_ONCE(rdp->cond_resched_completed,
1141                                   READ_ONCE(rdp->mynode->completed));
1142                        smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1143                        WRITE_ONCE(*rcrmp,
1144                                   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1145                        resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1146                        rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1147                } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1148                        /* Time to beat on that CPU again! */
1149                        resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1150                        rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1151                }
1152        }
1153
1154        return 0;
1155}
1156
1157static void record_gp_stall_check_time(struct rcu_state *rsp)
1158{
1159        unsigned long j = jiffies;
1160        unsigned long j1;
1161
1162        rsp->gp_start = j;
1163        smp_wmb(); /* Record start time before stall time. */
1164        j1 = rcu_jiffies_till_stall_check();
1165        WRITE_ONCE(rsp->jiffies_stall, j + j1);
1166        rsp->jiffies_resched = j + j1 / 2;
1167        rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1168}
1169
1170/*
1171 * Complain about starvation of grace-period kthread.
1172 */
1173static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1174{
1175        unsigned long gpa;
1176        unsigned long j;
1177
1178        j = jiffies;
1179        gpa = READ_ONCE(rsp->gp_activity);
1180        if (j - gpa > 2 * HZ)
1181                pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x\n",
1182                       rsp->name, j - gpa,
1183                       rsp->gpnum, rsp->completed, rsp->gp_flags);
1184}
1185
1186/*
1187 * Dump stacks of all tasks running on stalled CPUs.
1188 */
1189static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1190{
1191        int cpu;
1192        unsigned long flags;
1193        struct rcu_node *rnp;
1194
1195        rcu_for_each_leaf_node(rsp, rnp) {
1196                raw_spin_lock_irqsave(&rnp->lock, flags);
1197                if (rnp->qsmask != 0) {
1198                        for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1199                                if (rnp->qsmask & (1UL << cpu))
1200                                        dump_cpu_task(rnp->grplo + cpu);
1201                }
1202                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1203        }
1204}
1205
1206static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1207{
1208        int cpu;
1209        long delta;
1210        unsigned long flags;
1211        unsigned long gpa;
1212        unsigned long j;
1213        int ndetected = 0;
1214        struct rcu_node *rnp = rcu_get_root(rsp);
1215        long totqlen = 0;
1216
1217        /* Only let one CPU complain about others per time interval. */
1218
1219        raw_spin_lock_irqsave(&rnp->lock, flags);
1220        delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1221        if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1222                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1223                return;
1224        }
1225        WRITE_ONCE(rsp->jiffies_stall,
1226                   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1227        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1228
1229        /*
1230         * OK, time to rat on our buddy...
1231         * See Documentation/RCU/stallwarn.txt for info on how to debug
1232         * RCU CPU stall warnings.
1233         */
1234        pr_err("INFO: %s detected stalls on CPUs/tasks:",
1235               rsp->name);
1236        print_cpu_stall_info_begin();
1237        rcu_for_each_leaf_node(rsp, rnp) {
1238                raw_spin_lock_irqsave(&rnp->lock, flags);
1239                ndetected += rcu_print_task_stall(rnp);
1240                if (rnp->qsmask != 0) {
1241                        for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1242                                if (rnp->qsmask & (1UL << cpu)) {
1243                                        print_cpu_stall_info(rsp,
1244                                                             rnp->grplo + cpu);
1245                                        ndetected++;
1246                                }
1247                }
1248                raw_spin_unlock_irqrestore(&rnp->lock, flags);
1249        }
1250
1251        print_cpu_stall_info_end();
1252        for_each_possible_cpu(cpu)
1253                totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1254        pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1255               smp_processor_id(), (long)(jiffies - rsp->gp_start),
1256               (long)rsp->gpnum, (long)rsp->completed, totqlen);
1257        if (ndetected) {
1258                rcu_dump_cpu_stacks(rsp);
1259        } else {
1260                if (READ_ONCE(rsp->gpnum) != gpnum ||
1261                    READ_ONCE(rsp->completed) == gpnum) {
1262                        pr_err("INFO: Stall ended before state dump start\n");
1263                } else {
1264                        j = jiffies;
1265                        gpa = READ_ONCE(rsp->gp_activity);
1266                        pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1267                               rsp->name, j - gpa, j, gpa,
1268                               jiffies_till_next_fqs,
1269                               rcu_get_root(rsp)->qsmask);
1270                        /* In this case, the current CPU might be at fault. */
1271                        sched_show_task(current);
1272                }
1273        }
1274
1275        /* Complain about tasks blocking the grace period. */
1276        rcu_print_detail_task_stall(rsp);
1277
1278        rcu_check_gp_kthread_starvation(rsp);
1279
1280        force_quiescent_state(rsp);  /* Kick them all. */
1281}
1282
1283static void print_cpu_stall(struct rcu_state *rsp)
1284{
1285        int cpu;
1286        unsigned long flags;
1287        struct rcu_node *rnp = rcu_get_root(rsp);
1288        long totqlen = 0;
1289
1290        /*
1291         * OK, time to rat on ourselves...
1292         * See Documentation/RCU/stallwarn.txt for info on how to debug
1293         * RCU CPU stall warnings.
1294         */
1295        pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1296        print_cpu_stall_info_begin();
1297        print_cpu_stall_info(rsp, smp_processor_id());
1298        print_cpu_stall_info_end();
1299        for_each_possible_cpu(cpu)
1300                totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1301        pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1302                jiffies - rsp->gp_start,
1303                (long)rsp->gpnum, (long)rsp->completed, totqlen);
1304
1305        rcu_check_gp_kthread_starvation(rsp);
1306
1307        rcu_dump_cpu_stacks(rsp);
1308
1309        raw_spin_lock_irqsave(&rnp->lock, flags);
1310        if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1311                WRITE_ONCE(rsp->jiffies_stall,
1312                           jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1313        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314
1315        /*
1316         * Attempt to revive the RCU machinery by forcing a context switch.
1317         *
1318         * A context switch would normally allow the RCU state machine to make
1319         * progress and it could be we're stuck in kernel space without context
1320         * switches for an entirely unreasonable amount of time.
1321         */
1322        resched_cpu(smp_processor_id());
1323}
1324
1325static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1326{
1327        unsigned long completed;
1328        unsigned long gpnum;
1329        unsigned long gps;
1330        unsigned long j;
1331        unsigned long js;
1332        struct rcu_node *rnp;
1333
1334        if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1335                return;
1336        j = jiffies;
1337
1338        /*
1339         * Lots of memory barriers to reject false positives.
1340         *
1341         * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1342         * then rsp->gp_start, and finally rsp->completed.  These values
1343         * are updated in the opposite order with memory barriers (or
1344         * equivalent) during grace-period initialization and cleanup.
1345         * Now, a false positive can occur if we get an new value of
1346         * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1347         * the memory barriers, the only way that this can happen is if one
1348         * grace period ends and another starts between these two fetches.
1349         * Detect this by comparing rsp->completed with the previous fetch
1350         * from rsp->gpnum.
1351         *
1352         * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1353         * and rsp->gp_start suffice to forestall false positives.
1354         */
1355        gpnum = READ_ONCE(rsp->gpnum);
1356        smp_rmb(); /* Pick up ->gpnum first... */
1357        js = READ_ONCE(rsp->jiffies_stall);
1358        smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1359        gps = READ_ONCE(rsp->gp_start);
1360        smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1361        completed = READ_ONCE(rsp->completed);
1362        if (ULONG_CMP_GE(completed, gpnum) ||
1363            ULONG_CMP_LT(j, js) ||
1364            ULONG_CMP_GE(gps, js))
1365                return; /* No stall or GP completed since entering function. */
1366        rnp = rdp->mynode;
1367        if (rcu_gp_in_progress(rsp) &&
1368            (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1369
1370                /* We haven't checked in, so go dump stack. */
1371                print_cpu_stall(rsp);
1372
1373        } else if (rcu_gp_in_progress(rsp) &&
1374                   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1375
1376                /* They had a few time units to dump stack, so complain. */
1377                print_other_cpu_stall(rsp, gpnum);
1378        }
1379}
1380
1381/**
1382 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1383 *
1384 * Set the stall-warning timeout way off into the future, thus preventing
1385 * any RCU CPU stall-warning messages from appearing in the current set of
1386 * RCU grace periods.
1387 *
1388 * The caller must disable hard irqs.
1389 */
1390void rcu_cpu_stall_reset(void)
1391{
1392        struct rcu_state *rsp;
1393
1394        for_each_rcu_flavor(rsp)
1395                WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1396}
1397
1398/*
1399 * Initialize the specified rcu_data structure's default callback list
1400 * to empty.  The default callback list is the one that is not used by
1401 * no-callbacks CPUs.
1402 */
1403static void init_default_callback_list(struct rcu_data *rdp)
1404{
1405        int i;
1406
1407        rdp->nxtlist = NULL;
1408        for (i = 0; i < RCU_NEXT_SIZE; i++)
1409                rdp->nxttail[i] = &rdp->nxtlist;
1410}
1411
1412/*
1413 * Initialize the specified rcu_data structure's callback list to empty.
1414 */
1415static void init_callback_list(struct rcu_data *rdp)
1416{
1417        if (init_nocb_callback_list(rdp))
1418                return;
1419        init_default_callback_list(rdp);
1420}
1421
1422/*
1423 * Determine the value that ->completed will have at the end of the
1424 * next subsequent grace period.  This is used to tag callbacks so that
1425 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1426 * been dyntick-idle for an extended period with callbacks under the
1427 * influence of RCU_FAST_NO_HZ.
1428 *
1429 * The caller must hold rnp->lock with interrupts disabled.
1430 */
1431static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1432                                       struct rcu_node *rnp)
1433{
1434        /*
1435         * If RCU is idle, we just wait for the next grace period.
1436         * But we can only be sure that RCU is idle if we are looking
1437         * at the root rcu_node structure -- otherwise, a new grace
1438         * period might have started, but just not yet gotten around
1439         * to initializing the current non-root rcu_node structure.
1440         */
1441        if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1442                return rnp->completed + 1;
1443
1444        /*
1445         * Otherwise, wait for a possible partial grace period and
1446         * then the subsequent full grace period.
1447         */
1448        return rnp->completed + 2;
1449}
1450
1451/*
1452 * Trace-event helper function for rcu_start_future_gp() and
1453 * rcu_nocb_wait_gp().
1454 */
1455static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1456                                unsigned long c, const char *s)
1457{
1458        trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1459                                      rnp->completed, c, rnp->level,
1460                                      rnp->grplo, rnp->grphi, s);
1461}
1462
1463/*
1464 * Start some future grace period, as needed to handle newly arrived
1465 * callbacks.  The required future grace periods are recorded in each
1466 * rcu_node structure's ->need_future_gp field.  Returns true if there
1467 * is reason to awaken the grace-period kthread.
1468 *
1469 * The caller must hold the specified rcu_node structure's ->lock.
1470 */
1471static bool __maybe_unused
1472rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1473                    unsigned long *c_out)
1474{
1475        unsigned long c;
1476        int i;
1477        bool ret = false;
1478        struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1479
1480        /*
1481         * Pick up grace-period number for new callbacks.  If this
1482         * grace period is already marked as needed, return to the caller.
1483         */
1484        c = rcu_cbs_completed(rdp->rsp, rnp);
1485        trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1486        if (rnp->need_future_gp[c & 0x1]) {
1487                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1488                goto out;
1489        }
1490
1491        /*
1492         * If either this rcu_node structure or the root rcu_node structure
1493         * believe that a grace period is in progress, then we must wait
1494         * for the one following, which is in "c".  Because our request
1495         * will be noticed at the end of the current grace period, we don't
1496         * need to explicitly start one.  We only do the lockless check
1497         * of rnp_root's fields if the current rcu_node structure thinks
1498         * there is no grace period in flight, and because we hold rnp->lock,
1499         * the only possible change is when rnp_root's two fields are
1500         * equal, in which case rnp_root->gpnum might be concurrently
1501         * incremented.  But that is OK, as it will just result in our
1502         * doing some extra useless work.
1503         */
1504        if (rnp->gpnum != rnp->completed ||
1505            READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1506                rnp->need_future_gp[c & 0x1]++;
1507                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1508                goto out;
1509        }
1510
1511        /*
1512         * There might be no grace period in progress.  If we don't already
1513         * hold it, acquire the root rcu_node structure's lock in order to
1514         * start one (if needed).
1515         */
1516        if (rnp != rnp_root) {
1517                raw_spin_lock(&rnp_root->lock);
1518                smp_mb__after_unlock_lock();
1519        }
1520
1521        /*
1522         * Get a new grace-period number.  If there really is no grace
1523         * period in progress, it will be smaller than the one we obtained
1524         * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1525         * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1526         */
1527        c = rcu_cbs_completed(rdp->rsp, rnp_root);
1528        for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1529                if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1530                        rdp->nxtcompleted[i] = c;
1531
1532        /*
1533         * If the needed for the required grace period is already
1534         * recorded, trace and leave.
1535         */
1536        if (rnp_root->need_future_gp[c & 0x1]) {
1537                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1538                goto unlock_out;
1539        }
1540
1541        /* Record the need for the future grace period. */
1542        rnp_root->need_future_gp[c & 0x1]++;
1543
1544        /* If a grace period is not already in progress, start one. */
1545        if (rnp_root->gpnum != rnp_root->completed) {
1546                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1547        } else {
1548                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1549                ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1550        }
1551unlock_out:
1552        if (rnp != rnp_root)
1553                raw_spin_unlock(&rnp_root->lock);
1554out:
1555        if (c_out != NULL)
1556                *c_out = c;
1557        return ret;
1558}
1559
1560/*
1561 * Clean up any old requests for the just-ended grace period.  Also return
1562 * whether any additional grace periods have been requested.  Also invoke
1563 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1564 * waiting for this grace period to complete.
1565 */
1566static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1567{
1568        int c = rnp->completed;
1569        int needmore;
1570        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1571
1572        rcu_nocb_gp_cleanup(rsp, rnp);
1573        rnp->need_future_gp[c & 0x1] = 0;
1574        needmore = rnp->need_future_gp[(c + 1) & 0x1];
1575        trace_rcu_future_gp(rnp, rdp, c,
1576                            needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1577        return needmore;
1578}
1579
1580/*
1581 * Awaken the grace-period kthread for the specified flavor of RCU.
1582 * Don't do a self-awaken, and don't bother awakening when there is
1583 * nothing for the grace-period kthread to do (as in several CPUs
1584 * raced to awaken, and we lost), and finally don't try to awaken
1585 * a kthread that has not yet been created.
1586 */
1587static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1588{
1589        if (current == rsp->gp_kthread ||
1590            !READ_ONCE(rsp->gp_flags) ||
1591            !rsp->gp_kthread)
1592                return;
1593        wake_up(&rsp->gp_wq);
1594}
1595
1596/*
1597 * If there is room, assign a ->completed number to any callbacks on
1598 * this CPU that have not already been assigned.  Also accelerate any
1599 * callbacks that were previously assigned a ->completed number that has
1600 * since proven to be too conservative, which can happen if callbacks get
1601 * assigned a ->completed number while RCU is idle, but with reference to
1602 * a non-root rcu_node structure.  This function is idempotent, so it does
1603 * not hurt to call it repeatedly.  Returns an flag saying that we should
1604 * awaken the RCU grace-period kthread.
1605 *
1606 * The caller must hold rnp->lock with interrupts disabled.
1607 */
1608static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1609                               struct rcu_data *rdp)
1610{
1611        unsigned long c;
1612        int i;
1613        bool ret;
1614
1615        /* If the CPU has no callbacks, nothing to do. */
1616        if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1617                return false;
1618
1619        /*
1620         * Starting from the sublist containing the callbacks most
1621         * recently assigned a ->completed number and working down, find the
1622         * first sublist that is not assignable to an upcoming grace period.
1623         * Such a sublist has something in it (first two tests) and has
1624         * a ->completed number assigned that will complete sooner than
1625         * the ->completed number for newly arrived callbacks (last test).
1626         *
1627         * The key point is that any later sublist can be assigned the
1628         * same ->completed number as the newly arrived callbacks, which
1629         * means that the callbacks in any of these later sublist can be
1630         * grouped into a single sublist, whether or not they have already
1631         * been assigned a ->completed number.
1632         */
1633        c = rcu_cbs_completed(rsp, rnp);
1634        for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1635                if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1636                    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1637                        break;
1638
1639        /*
1640         * If there are no sublist for unassigned callbacks, leave.
1641         * At the same time, advance "i" one sublist, so that "i" will
1642         * index into the sublist where all the remaining callbacks should
1643         * be grouped into.
1644         */
1645        if (++i >= RCU_NEXT_TAIL)
1646                return false;
1647
1648        /*
1649         * Assign all subsequent callbacks' ->completed number to the next
1650         * full grace period and group them all in the sublist initially
1651         * indexed by "i".
1652         */
1653        for (; i <= RCU_NEXT_TAIL; i++) {
1654                rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1655                rdp->nxtcompleted[i] = c;
1656        }
1657        /* Record any needed additional grace periods. */
1658        ret = rcu_start_future_gp(rnp, rdp, NULL);
1659
1660        /* Trace depending on how much we were able to accelerate. */
1661        if (!*rdp->nxttail[RCU_WAIT_TAIL])
1662                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1663        else
1664                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1665        return ret;
1666}
1667
1668/*
1669 * Move any callbacks whose grace period has completed to the
1670 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1671 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1672 * sublist.  This function is idempotent, so it does not hurt to
1673 * invoke it repeatedly.  As long as it is not invoked -too- often...
1674 * Returns true if the RCU grace-period kthread needs to be awakened.
1675 *
1676 * The caller must hold rnp->lock with interrupts disabled.
1677 */
1678static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1679                            struct rcu_data *rdp)
1680{
1681        int i, j;
1682
1683        /* If the CPU has no callbacks, nothing to do. */
1684        if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1685                return false;
1686
1687        /*
1688         * Find all callbacks whose ->completed numbers indicate that they
1689         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1690         */
1691        for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1692                if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1693                        break;
1694                rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1695        }
1696        /* Clean up any sublist tail pointers that were misordered above. */
1697        for (j = RCU_WAIT_TAIL; j < i; j++)
1698                rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1699
1700        /* Copy down callbacks to fill in empty sublists. */
1701        for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1702                if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1703                        break;
1704                rdp->nxttail[j] = rdp->nxttail[i];
1705                rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1706        }
1707
1708        /* Classify any remaining callbacks. */
1709        return rcu_accelerate_cbs(rsp, rnp, rdp);
1710}
1711
1712/*
1713 * Update CPU-local rcu_data state to record the beginnings and ends of
1714 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1715 * structure corresponding to the current CPU, and must have irqs disabled.
1716 * Returns true if the grace-period kthread needs to be awakened.
1717 */
1718static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1719                              struct rcu_data *rdp)
1720{
1721        bool ret;
1722
1723        /* Handle the ends of any preceding grace periods first. */
1724        if (rdp->completed == rnp->completed &&
1725            !unlikely(READ_ONCE(rdp->gpwrap))) {
1726
1727                /* No grace period end, so just accelerate recent callbacks. */
1728                ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1729
1730        } else {
1731
1732                /* Advance callbacks. */
1733                ret = rcu_advance_cbs(rsp, rnp, rdp);
1734
1735                /* Remember that we saw this grace-period completion. */
1736                rdp->completed = rnp->completed;
1737                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1738        }
1739
1740        if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1741                /*
1742                 * If the current grace period is waiting for this CPU,
1743                 * set up to detect a quiescent state, otherwise don't
1744                 * go looking for one.
1745                 */
1746                rdp->gpnum = rnp->gpnum;
1747                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1748                rdp->passed_quiesce = 0;
1749                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1750                rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1751                zero_cpu_stall_ticks(rdp);
1752                WRITE_ONCE(rdp->gpwrap, false);
1753        }
1754        return ret;
1755}
1756
1757static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1758{
1759        unsigned long flags;
1760        bool needwake;
1761        struct rcu_node *rnp;
1762
1763        local_irq_save(flags);
1764        rnp = rdp->mynode;
1765        if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1766             rdp->completed == READ_ONCE(rnp->completed) &&
1767             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1768            !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1769                local_irq_restore(flags);
1770                return;
1771        }
1772        smp_mb__after_unlock_lock();
1773        needwake = __note_gp_changes(rsp, rnp, rdp);
1774        raw_spin_unlock_irqrestore(&rnp->lock, flags);
1775        if (needwake)
1776                rcu_gp_kthread_wake(rsp);
1777}
1778
1779static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1780{
1781        if (delay > 0 &&
1782            !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1783                schedule_timeout_uninterruptible(delay);
1784}
1785
1786/*
1787 * Initialize a new grace period.  Return 0 if no grace period required.
1788 */
1789static int rcu_gp_init(struct rcu_state *rsp)
1790{
1791        unsigned long oldmask;
1792        struct rcu_data *rdp;
1793        struct rcu_node *rnp = rcu_get_root(rsp);
1794
1795        WRITE_ONCE(rsp->gp_activity, jiffies);
1796        raw_spin_lock_irq(&rnp->lock);
1797        smp_mb__after_unlock_lock();
1798        if (!READ_ONCE(rsp->gp_flags)) {
1799                /* Spurious wakeup, tell caller to go back to sleep.  */
1800                raw_spin_unlock_irq(&rnp->lock);
1801                return 0;
1802        }
1803        WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1804
1805        if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1806                /*
1807                 * Grace period already in progress, don't start another.
1808                 * Not supposed to be able to happen.
1809                 */
1810                raw_spin_unlock_irq(&rnp->lock);
1811                return 0;
1812        }
1813
1814        /* Advance to a new grace period and initialize state. */
1815        record_gp_stall_check_time(rsp);
1816        /* Record GP times before starting GP, hence smp_store_release(). */
1817        smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1818        trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1819        raw_spin_unlock_irq(&rnp->lock);
1820
1821        /*
1822         * Apply per-leaf buffered online and offline operations to the
1823         * rcu_node tree.  Note that this new grace period need not wait
1824         * for subsequent online CPUs, and that quiescent-state forcing
1825         * will handle subsequent offline CPUs.
1826         */
1827        rcu_for_each_leaf_node(rsp, rnp) {
1828                rcu_gp_slow(rsp, gp_preinit_delay);
1829                raw_spin_lock_irq(&rnp->lock);
1830                smp_mb__after_unlock_lock();
1831                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1832                    !rnp->wait_blkd_tasks) {
1833                        /* Nothing to do on this leaf rcu_node structure. */
1834                        raw_spin_unlock_irq(&rnp->lock);
1835                        continue;
1836                }
1837
1838                /* Record old state, apply changes to ->qsmaskinit field. */
1839                oldmask = rnp->qsmaskinit;
1840                rnp->qsmaskinit = rnp->qsmaskinitnext;
1841
1842                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1843                if (!oldmask != !rnp->qsmaskinit) {
1844                        if (!oldmask) /* First online CPU for this rcu_node. */
1845                                rcu_init_new_rnp(rnp);
1846                        else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1847                                rnp->wait_blkd_tasks = true;
1848                        else /* Last offline CPU and can propagate. */
1849                                rcu_cleanup_dead_rnp(rnp);
1850                }
1851
1852                /*
1853                 * If all waited-on tasks from prior grace period are
1854                 * done, and if all this rcu_node structure's CPUs are
1855                 * still offline, propagate up the rcu_node tree and
1856                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1857                 * rcu_node structure's CPUs has since come back online,
1858                 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1859                 * checks for this, so just call it unconditionally).
1860                 */
1861                if (rnp->wait_blkd_tasks &&
1862                    (!rcu_preempt_has_tasks(rnp) ||
1863                     rnp->qsmaskinit)) {
1864                        rnp->wait_blkd_tasks = false;
1865                        rcu_cleanup_dead_rnp(rnp);
1866                }
1867
1868                raw_spin_unlock_irq(&rnp->lock);
1869        }
1870
1871        /*
1872         * Set the quiescent-state-needed bits in all the rcu_node
1873         * structures for all currently online CPUs in breadth-first order,
1874         * starting from the root rcu_node structure, relying on the layout
1875         * of the tree within the rsp->node[] array.  Note that other CPUs
1876         * will access only the leaves of the hierarchy, thus seeing that no
1877         * grace period is in progress, at least until the corresponding
1878         * leaf node has been initialized.  In addition, we have excluded
1879         * CPU-hotplug operations.
1880         *
1881         * The grace period cannot complete until the initialization
1882         * process finishes, because this kthread handles both.
1883         */
1884        rcu_for_each_node_breadth_first(rsp, rnp) {
1885                rcu_gp_slow(rsp, gp_init_delay);
1886                raw_spin_lock_irq(&rnp->lock);
1887                smp_mb__after_unlock_lock();
1888                rdp = this_cpu_ptr(rsp->rda);
1889                rcu_preempt_check_blocked_tasks(rnp);
1890                rnp->qsmask = rnp->qsmaskinit;
1891                WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1892                if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1893                        WRITE_ONCE(rnp->completed, rsp->completed);
1894                if (rnp == rdp->mynode)
1895                        (void)__note_gp_changes(rsp, rnp, rdp);
1896                rcu_preempt_boost_start_gp(rnp);
1897                trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1898                                            rnp->level, rnp->grplo,
1899                                            rnp->grphi, rnp->qsmask);
1900                raw_spin_unlock_irq(&rnp->lock);
1901                cond_resched_rcu_qs();
1902                WRITE_ONCE(rsp->gp_activity, jiffies);
1903        }
1904
1905        return 1;
1906}
1907
1908/*
1909 * Do one round of quiescent-state forcing.
1910 */
1911static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1912{
1913        int fqs_state = fqs_state_in;
1914        bool isidle = false;
1915        unsigned long maxj;
1916        struct rcu_node *rnp = rcu_get_root(rsp);
1917
1918        WRITE_ONCE(rsp->gp_activity, jiffies);
1919        rsp->n_force_qs++;
1920        if (fqs_state == RCU_SAVE_DYNTICK) {
1921                /* Collect dyntick-idle snapshots. */
1922                if (is_sysidle_rcu_state(rsp)) {
1923                        isidle = true;
1924                        maxj = jiffies - ULONG_MAX / 4;
1925                }
1926                force_qs_rnp(rsp, dyntick_save_progress_counter,
1927                             &isidle, &maxj);
1928                rcu_sysidle_report_gp(rsp, isidle, maxj);
1929                fqs_state = RCU_FORCE_QS;
1930        } else {
1931                /* Handle dyntick-idle and offline CPUs. */
1932                isidle = true;
1933                force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1934        }
1935        /* Clear flag to prevent immediate re-entry. */
1936        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1937                raw_spin_lock_irq(&rnp->lock);
1938                smp_mb__after_unlock_lock();
1939                WRITE_ONCE(rsp->gp_flags,
1940                           READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1941                raw_spin_unlock_irq(&rnp->lock);
1942        }
1943        return fqs_state;
1944}
1945
1946/*
1947 * Clean up after the old grace period.
1948 */
1949static void rcu_gp_cleanup(struct rcu_state *rsp)
1950{
1951        unsigned long gp_duration;
1952        bool needgp = false;
1953        int nocb = 0;
1954        struct rcu_data *rdp;
1955        struct rcu_node *rnp = rcu_get_root(rsp);
1956
1957        WRITE_ONCE(rsp->gp_activity, jiffies);
1958        raw_spin_lock_irq(&rnp->lock);
1959        smp_mb__after_unlock_lock();
1960        gp_duration = jiffies - rsp->gp_start;
1961        if (gp_duration > rsp->gp_max)
1962                rsp->gp_max = gp_duration;
1963
1964        /*
1965         * We know the grace period is complete, but to everyone else
1966         * it appears to still be ongoing.  But it is also the case
1967         * that to everyone else it looks like there is nothing that
1968         * they can do to advance the grace period.  It is therefore
1969         * safe for us to drop the lock in order to mark the grace
1970         * period as completed in all of the rcu_node structures.
1971         */
1972        raw_spin_unlock_irq(&rnp->lock);
1973
1974        /*
1975         * Propagate new ->completed value to rcu_node structures so
1976         * that other CPUs don't have to wait until the start of the next
1977         * grace period to process their callbacks.  This also avoids
1978         * some nasty RCU grace-period initialization races by forcing
1979         * the end of the current grace period to be completely recorded in
1980         * all of the rcu_node structures before the beginning of the next
1981         * grace period is recorded in any of the rcu_node structures.
1982         */
1983        rcu_for_each_node_breadth_first(rsp, rnp) {
1984                raw_spin_lock_irq(&rnp->lock);
1985                smp_mb__after_unlock_lock();
1986                WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1987                WARN_ON_ONCE(rnp->qsmask);
1988                WRITE_ONCE(rnp->completed, rsp->gpnum);
1989                rdp = this_cpu_ptr(rsp->rda);
1990                if (rnp == rdp->mynode)
1991                        needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1992                /* smp_mb() provided by prior unlock-lock pair. */
1993                nocb += rcu_future_gp_cleanup(rsp, rnp);
1994                raw_spin_unlock_irq(&rnp->lock);
1995                cond_resched_rcu_qs();
1996                WRITE_ONCE(rsp->gp_activity, jiffies);
1997                rcu_gp_slow(rsp, gp_cleanup_delay);
1998        }
1999        rnp = rcu_get_root(rsp);
2000        raw_spin_lock_irq(&rnp->lock);
2001        smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2002        rcu_nocb_gp_set(rnp, nocb);
2003
2004        /* Declare grace period done. */
2005        WRITE_ONCE(rsp->completed, rsp->gpnum);
2006        trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2007        rsp->fqs_state = RCU_GP_IDLE;
2008        rdp = this_cpu_ptr(rsp->rda);
2009        /* Advance CBs to reduce false positives below. */
2010        needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2011        if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2012                WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2013                trace_rcu_grace_period(rsp->name,
2014                                       READ_ONCE(rsp->gpnum),
2015                                       TPS("newreq"));
2016        }
2017        raw_spin_unlock_irq(&rnp->lock);
2018}
2019
2020/*
2021 * Body of kthread that handles grace periods.
2022 */
2023static int __noreturn rcu_gp_kthread(void *arg)
2024{
2025        int fqs_state;
2026        int gf;
2027        unsigned long j;
2028        int ret;
2029        struct rcu_state *rsp = arg;
2030        struct rcu_node *rnp = rcu_get_root(rsp);
2031
2032        rcu_bind_gp_kthread();
2033        for (;;) {
2034
2035                /* Handle grace-period start. */
2036                for (;;) {
2037                        trace_rcu_grace_period(rsp->name,
2038                                               READ_ONCE(rsp->gpnum),
2039                                               TPS("reqwait"));
2040                        rsp->gp_state = RCU_GP_WAIT_GPS;
2041                        wait_event_interruptible(rsp->gp_wq,
2042                                                 READ_ONCE(rsp->gp_flags) &
2043                                                 RCU_GP_FLAG_INIT);
2044                        /* Locking provides needed memory barrier. */
2045                        if (rcu_gp_init(rsp))
2046                                break;
2047                        cond_resched_rcu_qs();
2048                        WRITE_ONCE(rsp->gp_activity, jiffies);
2049                        WARN_ON(signal_pending(current));
2050                        trace_rcu_grace_period(rsp->name,
2051                                               READ_ONCE(rsp->gpnum),
2052                                               TPS("reqwaitsig"));
2053                }
2054
2055                /* Handle quiescent-state forcing. */
2056                fqs_state = RCU_SAVE_DYNTICK;
2057                j = jiffies_till_first_fqs;
2058                if (j > HZ) {
2059                        j = HZ;
2060                        jiffies_till_first_fqs = HZ;
2061                }
2062                ret = 0;
2063                for (;;) {
2064                        if (!ret)
2065                                rsp->jiffies_force_qs = jiffies + j;
2066                        trace_rcu_grace_period(rsp->name,
2067                                               READ_ONCE(rsp->gpnum),
2068                                               TPS("fqswait"));
2069                        rsp->gp_state = RCU_GP_WAIT_FQS;
2070                        ret = wait_event_interruptible_timeout(rsp->gp_wq,
2071                                        ((gf = READ_ONCE(rsp->gp_flags)) &
2072                                         RCU_GP_FLAG_FQS) ||
2073                                        (!READ_ONCE(rnp->qsmask) &&
2074                                         !rcu_preempt_blocked_readers_cgp(rnp)),
2075                                        j);
2076                        /* Locking provides needed memory barriers. */
2077                        /* If grace period done, leave loop. */
2078                        if (!READ_ONCE(rnp->qsmask) &&
2079                            !rcu_preempt_blocked_readers_cgp(rnp))
2080                                break;
2081                        /* If time for quiescent-state forcing, do it. */
2082                        if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2083                            (gf & RCU_GP_FLAG_FQS)) {
2084                                trace_rcu_grace_period(rsp->name,
2085                                                       READ_ONCE(rsp->gpnum),
2086                                                       TPS("fqsstart"));
2087                                fqs_state = rcu_gp_fqs(rsp, fqs_state);
2088                                trace_rcu_grace_period(rsp->name,
2089                                                       READ_ONCE(rsp->gpnum),
2090                                                       TPS("fqsend"));
2091                                cond_resched_rcu_qs();
2092                                WRITE_ONCE(rsp->gp_activity, jiffies);
2093                        } else {
2094                                /* Deal with stray signal. */
2095                                cond_resched_rcu_qs();
2096                                WRITE_ONCE(rsp->gp_activity, jiffies);
2097                                WARN_ON(signal_pending(current));
2098                                trace_rcu_grace_period(rsp->name,
2099                                                       READ_ONCE(rsp->gpnum),
2100                                                       TPS("fqswaitsig"));
2101                        }
2102                        j = jiffies_till_next_fqs;
2103                        if (j > HZ) {
2104                                j = HZ;
2105                                jiffies_till_next_fqs = HZ;
2106                        } else if (j < 1) {
2107                                j = 1;
2108                                jiffies_till_next_fqs = 1;
2109                        }
2110                }
2111
2112                /* Handle grace-period end. */
2113                rcu_gp_cleanup(rsp);
2114        }
2115}
2116
2117/*
2118 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2119 * in preparation for detecting the next grace period.  The caller must hold
2120 * the root node's ->lock and hard irqs must be disabled.
2121 *
2122 * Note that it is legal for a dying CPU (which is marked as offline) to
2123 * invoke this function.  This can happen when the dying CPU reports its
2124 * quiescent state.
2125 *
2126 * Returns true if the grace-period kthread must be awakened.
2127 */
2128static bool
2129rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2130                      struct rcu_data *rdp)
2131{
2132        if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2133                /*
2134                 * Either we have not yet spawned the grace-period
2135                 * task, this CPU does not need another grace period,
2136                 * or a grace period is already in progress.
2137                 * Either way, don't start a new grace period.
2138                 */
2139                return false;
2140        }
2141        WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2142        trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2143                               TPS("newreq"));
2144
2145        /*
2146         * We can't do wakeups while holding the rnp->lock, as that
2147         * could cause possible deadlocks with the rq->lock. Defer
2148         * the wakeup to our caller.
2149         */
2150        return true;
2151}
2152
2153/*
2154 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2155 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2156 * is invoked indirectly from rcu_advance_cbs(), which would result in
2157 * endless recursion -- or would do so if it wasn't for the self-deadlock
2158 * that is encountered beforehand.
2159 *
2160 * Returns true if the grace-period kthread needs to be awakened.
2161 */
2162static bool rcu_start_gp(struct rcu_state *rsp)
2163{
2164        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2165        struct rcu_node *rnp = rcu_get_root(rsp);
2166        bool ret = false;
2167
2168        /*
2169         * If there is no grace period in progress right now, any
2170         * callbacks we have up to this point will be satisfied by the
2171         * next grace period.  Also, advancing the callbacks reduces the
2172         * probability of false positives from cpu_needs_another_gp()
2173         * resulting in pointless grace periods.  So, advance callbacks
2174         * then start the grace period!
2175         */
2176        ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2177        ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2178        return ret;
2179}
2180
2181/*
2182 * Report a full set of quiescent states to the specified rcu_state
2183 * data structure.  This involves cleaning up after the prior grace
2184 * period and letting rcu_start_gp() start up the next grace period
2185 * if one is needed.  Note that the caller must hold rnp->lock, which
2186 * is released before return.
2187 */
2188static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2189        __releases(rcu_get_root(rsp)->lock)
2190{
2191        WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2192        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2193        raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2194        rcu_gp_kthread_wake(rsp);
2195}
2196
2197/*
2198 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2199 * Allows quiescent states for a group of CPUs to be reported at one go
2200 * to the specified rcu_node structure, though all the CPUs in the group
2201 * must be represented by the same rcu_node structure (which need not be a
2202 * leaf rcu_node structure, though it often will be).  The gps parameter
2203 * is the grace-period snapshot, which means that the quiescent states
2204 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2205 * must be held upon entry, and it is released before return.
2206 */
2207static void
2208rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2209                  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2210        __releases(rnp->lock)
2211{
2212        unsigned long oldmask = 0;
2213        struct rcu_node *rnp_c;
2214
2215        /* Walk up the rcu_node hierarchy. */
2216        for (;;) {
2217                if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2218
2219                        /*
2220                         * Our bit has already been cleared, or the
2221                         * relevant grace period is already over, so done.
2222                         */
2223                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
2224                        return;
2225                }
2226                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2227                rnp->qsmask &= ~mask;
2228                trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2229                                                 mask, rnp->qsmask, rnp->level,
2230                                                 rnp->grplo, rnp->grphi,
2231                                                 !!rnp->gp_tasks);
2232                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2233
2234                        /* Other bits still set at this level, so done. */
2235                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
2236                        return;
2237                }
2238                mask = rnp->grpmask;
2239                if (rnp->parent == NULL) {
2240
2241                        /* No more levels.  Exit loop holding root lock. */
2242
2243                        break;
2244                }
2245                raw_spin_unlock_irqrestore(&rnp->lock, flags);
2246                rnp_c = rnp;
2247                rnp = rnp->parent;
2248                raw_spin_lock_irqsave(&rnp->lock, flags);
2249                smp_mb__after_unlock_lock();
2250                oldmask = rnp_c->qsmask;
2251        }
2252
2253        /*
2254         * Get here if we are the last CPU to pass through a quiescent
2255         * state for this grace period.  Invoke rcu_report_qs_rsp()
2256         * to clean up and start the next grace period if one is needed.
2257         */
2258        rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2259}
2260
2261/*
2262 * Record a quiescent state for all tasks that were previously queued
2263 * on the specified rcu_node structure and that were blocking the current
2264 * RCU grace period.  The caller must hold the specified rnp->lock with
2265 * irqs disabled, and this lock is released upon return, but irqs remain
2266 * disabled.
2267 */
2268static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2269                                      struct rcu_node *rnp, unsigned long flags)
2270        __releases(rnp->lock)
2271{
2272        unsigned long gps;
2273        unsigned long mask;
2274        struct rcu_node *rnp_p;
2275
2276        if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2277            rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2278                raw_spin_unlock_irqrestore(&rnp->lock, flags);
2279                return;  /* Still need more quiescent states! */
2280        }
2281
2282        rnp_p = rnp->parent;
2283        if (rnp_p == NULL) {
2284                /*
2285                 * Only one rcu_node structure in the tree, so don't
2286                 * try to report up to its nonexistent parent!
2287                 */
2288                rcu_report_qs_rsp(rsp, flags);
2289                return;
2290        }
2291
2292        /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2293        gps = rnp->gpnum;
2294        mask = rnp->grpmask;
2295        raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
2296        raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
2297        smp_mb__after_unlock_lock();
2298        rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2299}
2300
2301/*
2302 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2303 * structure.  This must be either called from the specified CPU, or
2304 * called when the specified CPU is known to be offline (and when it is
2305 * also known that no other CPU is concurrently trying to help the offline
2306 * CPU).  The lastcomp argument is used to make sure we are still in the
2307 * grace period of interest.  We don't want to end the current grace period
2308 * based on quiescent states detected in an earlier grace period!
2309 */
2310static void
2311rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2312{
2313        unsigned long flags;
2314        unsigned long mask;
2315        bool needwake;
2316        struct rcu_node *rnp;
2317
2318        rnp = rdp->mynode;
2319        raw_spin_lock_irqsave(&rnp->lock, flags);
2320        smp_mb__after_unlock_lock();
2321        if ((rdp->passed_quiesce == 0 &&
2322             rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2323            rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2324            rdp->gpwrap) {
2325
2326                /*
2327                 * The grace period in which this quiescent state was
2328                 * recorded has ended, so don't report it upwards.
2329                 * We will instead need a new quiescent state that lies
2330                 * within the current grace period.
2331                 */
2332                rdp->passed_quiesce = 0;        /* need qs for new gp. */
2333                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2334                raw_spin_unlock_irqrestore(&rnp->lock, flags);
2335                return;
2336        }
2337        mask = rdp->grpmask;
2338        if ((rnp->qsmask & mask) == 0) {
2339                raw_spin_unlock_irqrestore(&rnp->lock, flags);
2340        } else {
2341                rdp->qs_pending = 0;
2342
2343                /*
2344                 * This GP can't end until cpu checks in, so all of our
2345                 * callbacks can be processed during the next GP.
2346                 */
2347                needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2348
2349                rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2350                /* ^^^ Released rnp->lock */
2351                if (needwake)
2352                        rcu_gp_kthread_wake(rsp);
2353        }
2354}
2355
2356/*
2357 * Check to see if there is a new grace period of which this CPU
2358 * is not yet aware, and if so, set up local rcu_data state for it.
2359 * Otherwise, see if this CPU has just passed through its first
2360 * quiescent state for this grace period, and record that fact if so.
2361 */
2362static void
2363rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2364{
2365        /* Check for grace-period ends and beginnings. */
2366        note_gp_changes(rsp, rdp);
2367
2368        /*
2369         * Does this CPU still need to do its part for current grace period?
2370         * If no, return and let the other CPUs do their part as well.
2371         */
2372        if (!rdp->qs_pending)
2373                return;
2374
2375        /*
2376         * Was there a quiescent state since the beginning of the grace
2377         * period? If no, then exit and wait for the next call.
2378         */
2379        if (!rdp->passed_quiesce &&
2380            rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2381                return;
2382
2383        /*
2384         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2385         * judge of that).
2386         */
2387        rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2388}
2389
2390/*
2391 * Send the specified CPU's RCU callbacks to the orphanage.  The
2392 * specified CPU must be offline, and the caller must hold the
2393 * ->orphan_lock.
2394 */
2395static void
2396rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2397                          struct rcu_node *rnp, struct rcu_data *rdp)
2398{
2399        /* No-CBs CPUs do not have orphanable callbacks. */
2400        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2401                return;
2402
2403        /*
2404         * Orphan the callbacks.  First adjust the counts.  This is safe
2405         * because _rcu_barrier() excludes CPU-hotplug operations, so it
2406         * cannot be running now.  Thus no memory barrier is required.
2407         */
2408        if (rdp->nxtlist != NULL) {
2409                rsp->qlen_lazy += rdp->qlen_lazy;
2410                rsp->qlen += rdp->qlen;
2411                rdp->n_cbs_orphaned += rdp->qlen;
2412                rdp->qlen_lazy = 0;
2413                WRITE_ONCE(rdp->qlen, 0);
2414        }
2415
2416        /*
2417         * Next, move those callbacks still needing a grace period to
2418         * the orphanage, where some other CPU will pick them up.
2419         * Some of the callbacks might have gone partway through a grace
2420         * period, but that is too bad.  They get to start over because we
2421         * cannot assume that grace periods are synchronized across CPUs.
2422         * We don't bother updating the ->nxttail[] array yet, instead
2423         * we just reset the whole thing later on.
2424         */
2425        if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2426                *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2427                rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2428                *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2429        }
2430
2431        /*
2432         * Then move the ready-to-invoke callbacks to the orphanage,
2433         * where some other CPU will pick them up.  These will not be
2434         * required to pass though another grace period: They are done.
2435         */
2436        if (rdp->nxtlist != NULL) {
2437                *rsp->orphan_donetail = rdp->nxtlist;
2438                rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2439        }
2440
2441        /*
2442         * Finally, initialize the rcu_data structure's list to empty and
2443         * disallow further callbacks on this CPU.
2444         */
2445        init_callback_list(rdp);
2446        rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2447}
2448
2449/*
2450 * Adopt the RCU callbacks from the specified rcu_state structure's
2451 * orphanage.  The caller must hold the ->orphan_lock.
2452 */
2453static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2454{
2455        int i;
2456        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2457
2458        /* No-CBs CPUs are handled specially. */
2459        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2460            rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2461                return;
2462
2463        /* Do the accounting first. */
2464        rdp->qlen_lazy += rsp->qlen_lazy;
2465        rdp->qlen += rsp->qlen;
2466        rdp->n_cbs_adopted += rsp->qlen;
2467        if (rsp->qlen_lazy != rsp->qlen)
2468                rcu_idle_count_callbacks_posted();
2469        rsp->qlen_lazy = 0;
2470        rsp->qlen = 0;
2471
2472        /*
2473         * We do not need a memory barrier here because the only way we
2474         * can get here if there is an rcu_barrier() in flight is if
2475         * we are the task doing the rcu_barrier().
2476         */
2477
2478        /* First adopt the ready-to-invoke callbacks. */
2479        if (rsp->orphan_donelist != NULL) {
2480                *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2481                *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2482                for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2483                        if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2484                                rdp->nxttail[i] = rsp->orphan_donetail;
2485                rsp->orphan_donelist = NULL;
2486                rsp->orphan_donetail = &rsp->orphan_donelist;
2487        }
2488
2489        /* And then adopt the callbacks that still need a grace period. */
2490        if (rsp->orphan_nxtlist != NULL) {
2491                *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2492                rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2493                rsp->orphan_nxtlist = NULL;
2494                rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2495        }
2496}
2497
2498/*
2499 * Trace the fact that this CPU is going offline.
2500 */
2501static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2502{
2503        RCU_TRACE(unsigned long mask);
2504        RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2505        RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2506
2507        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2508                return;
2509
2510        RCU_TRACE(mask = rdp->grpmask);
2511        trace_rcu_grace_period(rsp->name,
2512                               rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2513                               TPS("cpuofl"));
2514}
2515
2516/*
2517 * All CPUs for the specified rcu_node structure have gone offline,
2518 * and all tasks that were preempted within an RCU read-side critical
2519 * section while running on one of those CPUs have since exited their RCU
2520 * read-side critical section.  Some other CPU is reporting this fact with
2521 * the specified rcu_node structure's ->lock held and interrupts disabled.
2522 * This function therefore goes up the tree of rcu_node structures,
2523 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2524 * the leaf rcu_node structure's ->qsmaskinit field has already been
2525 * updated
2526 *
2527 * This function does check that the specified rcu_node structure has
2528 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2529 * prematurely.  That said, invoking it after the fact will cost you
2530 * a needless lock acquisition.  So once it has done its work, don't
2531 * invoke it again.
2532 */
2533static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2534{
2535        long mask;
2536        struct rcu_node *rnp = rnp_leaf;
2537
2538        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2539            rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2540                return;
2541        for (;;) {
2542                mask = rnp->grpmask;
2543                rnp = rnp->parent;
2544                if (!rnp)
2545                        break;
2546                raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2547                smp_mb__after_unlock_lock(); /* GP memory ordering. */
2548                rnp->qsmaskinit &= ~mask;
2549                rnp->qsmask &= ~mask;
2550                if (rnp->qsmaskinit) {
2551                        raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2552                        return;
2553                }
2554                raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2555        }
2556}
2557
2558/*
2559 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2560 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
2561 * bit masks.
2562 */
2563static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2564{
2565        unsigned long flags;
2566        unsigned long mask;
2567        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2568        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2569
2570        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2571                return;
2572
2573        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2574        mask = rdp->grpmask;
2575        raw_spin_lock_irqsave(&rnp->lock, flags);
2576        smp_mb__after_unlock_lock();    /* Enforce GP memory-order guarantee. */
2577        rnp->qsmaskinitnext &= ~mask;
2578        raw_spin_unlock_irqrestore(&rnp->lock, flags);
2579}
2580
2581/*
2582 * The CPU has been completely removed, and some other CPU is reporting
2583 * this fact from process context.  Do the remainder of the cleanup,
2584 * including orphaning the outgoing CPU's RCU callbacks, and also
2585 * adopting them.  There can only be one CPU hotplug operation at a time,
2586 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2587 */
2588static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2589{
2590        unsigned long flags;
2591        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2592        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2593
2594        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2595                return;
2596
2597        /* Adjust any no-longer-needed kthreads. */
2598        rcu_boost_kthread_setaffinity(rnp, -1);
2599
2600        /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2601        raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2602        rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2603        rcu_adopt_orphan_cbs(rsp, flags);
2604        raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2605
2606        WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2607                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2608                  cpu, rdp->qlen, rdp->nxtlist);
2609}
2610
2611/*
2612 * Invoke any RCU callbacks that have made it to the end of their grace
2613 * period.  Thottle as specified by rdp->blimit.
2614 */
2615static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2616{
2617        unsigned long flags;
2618        struct rcu_head *next, *list, **tail;
2619        long bl, count, count_lazy;
2620        int i;
2621
2622        /* If no callbacks are ready, just return. */
2623        if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2624                trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2625                trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2626                                    need_resched(), is_idle_task(current),
2627                                    rcu_is_callbacks_kthread());
2628                return;
2629        }
2630
2631        /*
2632         * Extract the list of ready callbacks, disabling to prevent
2633         * races with call_rcu() from interrupt handlers.
2634         */
2635        local_irq_save(flags);
2636        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2637        bl = rdp->blimit;
2638        trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2639        list = rdp->nxtlist;
2640        rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2641        *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2642        tail = rdp->nxttail[RCU_DONE_TAIL];
2643        for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2644                if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2645                        rdp->nxttail[i] = &rdp->nxtlist;
2646        local_irq_restore(flags);
2647
2648        /* Invoke callbacks. */
2649        count = count_lazy = 0;
2650        while (list) {
2651                next = list->next;
2652                prefetch(next);
2653                debug_rcu_head_unqueue(list);
2654                if (__rcu_reclaim(rsp->name, list))
2655                        count_lazy++;
2656                list = next;
2657                /* Stop only if limit reached and CPU has something to do. */
2658                if (++count >= bl &&
2659                    (need_resched() ||
2660                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2661                        break;
2662        }
2663
2664        local_irq_save(flags);
2665        trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2666                            is_idle_task(current),
2667                            rcu_is_callbacks_kthread());
2668
2669        /* Update count, and requeue any remaining callbacks. */
2670        if (list != NULL) {
2671                *tail = rdp->nxtlist;
2672                rdp->nxtlist = list;
2673                for (i = 0; i < RCU_NEXT_SIZE; i++)
2674                        if (&rdp->nxtlist == rdp->nxttail[i])
2675                                rdp->nxttail[i] = tail;
2676                        else
2677                                break;
2678        }
2679        smp_mb(); /* List handling before counting for rcu_barrier(). */
2680        rdp->qlen_lazy -= count_lazy;
2681        WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2682        rdp->n_cbs_invoked += count;
2683
2684        /* Reinstate batch limit if we have worked down the excess. */
2685        if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2686                rdp->blimit = blimit;
2687
2688        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2689        if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2690                rdp->qlen_last_fqs_check = 0;
2691                rdp->n_force_qs_snap = rsp->n_force_qs;
2692        } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2693                rdp->qlen_last_fqs_check = rdp->qlen;
2694        WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2695
2696        local_irq_restore(flags);
2697
2698        /* Re-invoke RCU core processing if there are callbacks remaining. */
2699        if (cpu_has_callbacks_ready_to_invoke(rdp))
2700                invoke_rcu_core();
2701}
2702
2703/*
2704 * Check to see if this CPU is in a non-context-switch quiescent state
2705 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2706 * Also schedule RCU core processing.
2707 *
2708 * This function must be called from hardirq context.  It is normally
2709 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2710 * false, there is no point in invoking rcu_check_callbacks().
2711 */
2712void rcu_check_callbacks(int user)
2713{
2714        trace_rcu_utilization(TPS("Start scheduler-tick"));
2715        increment_cpu_stall_ticks();
2716        if (user || rcu_is_cpu_rrupt_from_idle()) {
2717
2718                /*
2719                 * Get here if this CPU took its interrupt from user
2720                 * mode or from the idle loop, and if this is not a
2721                 * nested interrupt.  In this case, the CPU is in
2722                 * a quiescent state, so note it.
2723                 *
2724                 * No memory barrier is required here because both
2725                 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2726                 * variables that other CPUs neither access nor modify,
2727                 * at least not while the corresponding CPU is online.
2728                 */
2729
2730                rcu_sched_qs();
2731                rcu_bh_qs();
2732
2733        } else if (!in_softirq()) {
2734
2735                /*
2736                 * Get here if this CPU did not take its interrupt from
2737                 * softirq, in other words, if it is not interrupting
2738                 * a rcu_bh read-side critical section.  This is an _bh
2739                 * critical section, so note it.
2740                 */
2741
2742                rcu_bh_qs();
2743        }
2744        rcu_preempt_check_callbacks();
2745        if (rcu_pending())
2746                invoke_rcu_core();
2747        if (user)
2748                rcu_note_voluntary_context_switch(current);
2749        trace_rcu_utilization(TPS("End scheduler-tick"));
2750}
2751
2752/*
2753 * Scan the leaf rcu_node structures, processing dyntick state for any that
2754 * have not yet encountered a quiescent state, using the function specified.
2755 * Also initiate boosting for any threads blocked on the root rcu_node.
2756 *
2757 * The caller must have suppressed start of new grace periods.
2758 */
2759static void force_qs_rnp(struct rcu_state *rsp,
2760                         int (*f)(struct rcu_data *rsp, bool *isidle,
2761                                  unsigned long *maxj),
2762                         bool *isidle, unsigned long *maxj)
2763{
2764        unsigned long bit;
2765        int cpu;
2766        unsigned long flags;
2767        unsigned long mask;
2768        struct rcu_node *rnp;
2769
2770        rcu_for_each_leaf_node(rsp, rnp) {
2771                cond_resched_rcu_qs();
2772                mask = 0;
2773                raw_spin_lock_irqsave(&rnp->lock, flags);
2774                smp_mb__after_unlock_lock();
2775                if (rnp->qsmask == 0) {
2776                        if (rcu_state_p == &rcu_sched_state ||
2777                            rsp != rcu_state_p ||
2778                            rcu_preempt_blocked_readers_cgp(rnp)) {
2779                                /*
2780                                 * No point in scanning bits because they
2781                                 * are all zero.  But we might need to
2782                                 * priority-boost blocked readers.
2783                                 */
2784                                rcu_initiate_boost(rnp, flags);
2785                                /* rcu_initiate_boost() releases rnp->lock */
2786                                continue;
2787                        }
2788                        if (rnp->parent &&
2789                            (rnp->parent->qsmask & rnp->grpmask)) {
2790                                /*
2791                                 * Race between grace-period
2792                                 * initialization and task exiting RCU
2793                                 * read-side critical section: Report.
2794                                 */
2795                                rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2796                                /* rcu_report_unblock_qs_rnp() rlses ->lock */
2797                                continue;
2798                        }
2799                }
2800                cpu = rnp->grplo;
2801                bit = 1;
2802                for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2803                        if ((rnp->qsmask & bit) != 0) {
2804                                if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2805                                        mask |= bit;
2806                        }
2807                }
2808                if (mask != 0) {
2809                        /* Idle/offline CPUs, report (releases rnp->lock. */
2810                        rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2811                } else {
2812                        /* Nothing to do here, so just drop the lock. */
2813                        raw_spin_unlock_irqrestore(&rnp->lock, flags);
2814                }
2815        }
2816}
2817
2818/*
2819 * Force quiescent states on reluctant CPUs, and also detect which
2820 * CPUs are in dyntick-idle mode.
2821 */
2822static void force_quiescent_state(struct rcu_state *rsp)
2823{
2824        unsigned long flags;
2825        bool ret;
2826        struct rcu_node *rnp;
2827        struct rcu_node *rnp_old = NULL;
2828
2829        /* Funnel through hierarchy to reduce memory contention. */
2830        rnp = __this_cpu_read(rsp->rda->mynode);
2831        for (; rnp != NULL; rnp = rnp->parent) {
2832                ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2833                      !raw_spin_trylock(&rnp->fqslock);
2834                if (rnp_old != NULL)
2835                        raw_spin_unlock(&rnp_old->fqslock);
2836                if (ret) {
2837                        rsp->n_force_qs_lh++;
2838                        return;
2839                }
2840                rnp_old = rnp;
2841        }
2842        /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2843
2844        /* Reached the root of the rcu_node tree, acquire lock. */
2845        raw_spin_lock_irqsave(&rnp_old->lock, flags);
2846        smp_mb__after_unlock_lock();
2847        raw_spin_unlock(&rnp_old->fqslock);
2848        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2849                rsp->n_force_qs_lh++;
2850                raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2851                return;  /* Someone beat us to it. */
2852        }
2853        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2854        raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2855        rcu_gp_kthread_wake(rsp);
2856}
2857
2858/*
2859 * This does the RCU core processing work for the specified rcu_state
2860 * and rcu_data structures.  This may be called only from the CPU to
2861 * whom the rdp belongs.
2862 */
2863static void
2864__rcu_process_callbacks(struct rcu_state *rsp)
2865{
2866        unsigned long flags;
2867        bool needwake;
2868        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2869
2870        WARN_ON_ONCE(rdp->beenonline == 0);
2871
2872        /* Update RCU state based on any recent quiescent states. */
2873        rcu_check_quiescent_state(rsp, rdp);
2874
2875        /* Does this CPU require a not-yet-started grace period? */
2876        local_irq_save(flags);
2877        if (cpu_needs_another_gp(rsp, rdp)) {
2878                raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2879                needwake = rcu_start_gp(rsp);
2880                raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2881                if (needwake)
2882                        rcu_gp_kthread_wake(rsp);
2883        } else {
2884                local_irq_restore(flags);
2885        }
2886
2887        /* If there are callbacks ready, invoke them. */
2888        if (cpu_has_callbacks_ready_to_invoke(rdp))
2889                invoke_rcu_callbacks(rsp, rdp);
2890
2891        /* Do any needed deferred wakeups of rcuo kthreads. */
2892        do_nocb_deferred_wakeup(rdp);
2893}
2894
2895/*
2896 * Do RCU core processing for the current CPU.
2897 */
2898static void rcu_process_callbacks(struct softirq_action *unused)
2899{
2900        struct rcu_state *rsp;
2901
2902        if (cpu_is_offline(smp_processor_id()))
2903                return;
2904        trace_rcu_utilization(TPS("Start RCU core"));
2905        for_each_rcu_flavor(rsp)
2906                __rcu_process_callbacks(rsp);
2907        trace_rcu_utilization(TPS("End RCU core"));
2908}
2909
2910/*
2911 * Schedule RCU callback invocation.  If the specified type of RCU
2912 * does not support RCU priority boosting, just do a direct call,
2913 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2914 * are running on the current CPU with softirqs disabled, the
2915 * rcu_cpu_kthread_task cannot disappear out from under us.
2916 */
2917static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2918{
2919        if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2920                return;
2921        if (likely(!rsp->boost)) {
2922                rcu_do_batch(rsp, rdp);
2923                return;
2924        }
2925        invoke_rcu_callbacks_kthread();
2926}
2927
2928static void invoke_rcu_core(void)
2929{
2930        if (cpu_online(smp_processor_id()))
2931                raise_softirq(RCU_SOFTIRQ);
2932}
2933
2934/*
2935 * Handle any core-RCU processing required by a call_rcu() invocation.
2936 */
2937static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2938                            struct rcu_head *head, unsigned long flags)
2939{
2940        bool needwake;
2941
2942        /*
2943         * If called from an extended quiescent state, invoke the RCU
2944         * core in order to force a re-evaluation of RCU's idleness.
2945         */
2946        if (!rcu_is_watching())
2947                invoke_rcu_core();
2948
2949        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2950        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2951                return;
2952
2953        /*
2954         * Force the grace period if too many callbacks or too long waiting.
2955         * Enforce hysteresis, and don't invoke force_quiescent_state()
2956         * if some other CPU has recently done so.  Also, don't bother
2957         * invoking force_quiescent_state() if the newly enqueued callback
2958         * is the only one waiting for a grace period to complete.
2959         */
2960        if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2961
2962                /* Are we ignoring a completed grace period? */
2963                note_gp_changes(rsp, rdp);
2964
2965                /* Start a new grace period if one not already started. */
2966                if (!rcu_gp_in_progress(rsp)) {
2967                        struct rcu_node *rnp_root = rcu_get_root(rsp);
2968
2969                        raw_spin_lock(&rnp_root->lock);
2970                        smp_mb__after_unlock_lock();
2971                        needwake = rcu_start_gp(rsp);
2972                        raw_spin_unlock(&rnp_root->lock);
2973                        if (needwake)
2974                                rcu_gp_kthread_wake(rsp);
2975                } else {
2976                        /* Give the grace period a kick. */
2977                        rdp->blimit = LONG_MAX;
2978                        if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2979                            *rdp->nxttail[RCU_DONE_TAIL] != head)
2980                                force_quiescent_state(rsp);
2981                        rdp->n_force_qs_snap = rsp->n_force_qs;
2982                        rdp->qlen_last_fqs_check = rdp->qlen;
2983                }
2984        }
2985}
2986
2987/*
2988 * RCU callback function to leak a callback.
2989 */
2990static void rcu_leak_callback(struct rcu_head *rhp)
2991{
2992}
2993
2994/*
2995 * Helper function for call_rcu() and friends.  The cpu argument will
2996 * normally be -1, indicating "currently running CPU".  It may specify
2997 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2998 * is expected to specify a CPU.
2999 */
3000static void
3001__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3002           struct rcu_state *rsp, int cpu, bool lazy)
3003{
3004        unsigned long flags;
3005        struct rcu_data *rdp;
3006
3007        WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3008        if (debug_rcu_head_queue(head)) {
3009                /* Probable double call_rcu(), so leak the callback. */
3010                WRITE_ONCE(head->func, rcu_leak_callback);
3011                WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3012                return;
3013        }
3014        head->func = func;
3015        head->next = NULL;
3016
3017        /*
3018         * Opportunistically note grace-period endings and beginnings.
3019         * Note that we might see a beginning right after we see an
3020         * end, but never vice versa, since this CPU has to pass through
3021         * a quiescent state betweentimes.
3022         */
3023        local_irq_save(flags);
3024        rdp = this_cpu_ptr(rsp->rda);
3025
3026        /* Add the callback to our list. */
3027        if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3028                int offline;
3029
3030                if (cpu != -1)
3031                        rdp = per_cpu_ptr(rsp->rda, cpu);
3032                if (likely(rdp->mynode)) {
3033                        /* Post-boot, so this should be for a no-CBs CPU. */
3034                        offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3035                        WARN_ON_ONCE(offline);
3036                        /* Offline CPU, _call_rcu() illegal, leak callback.  */
3037                        local_irq_restore(flags);
3038                        return;
3039                }
3040                /*
3041                 * Very early boot, before rcu_init().  Initialize if needed
3042                 * and then drop through to queue the callback.
3043                 */
3044                BUG_ON(cpu != -1);
3045                WARN_ON_ONCE(!rcu_is_watching());
3046                if (!likely(rdp->nxtlist))
3047                        init_default_callback_list(rdp);
3048        }
3049        WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3050        if (lazy)
3051                rdp->qlen_lazy++;
3052        else
3053                rcu_idle_count_callbacks_posted();
3054        smp_mb();  /* Count before adding callback for rcu_barrier(). */
3055        *rdp->nxttail[RCU_NEXT_TAIL] = head;
3056        rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3057
3058        if (__is_kfree_rcu_offset((unsigned long)func))
3059                trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3060                                         rdp->qlen_lazy, rdp->qlen);
3061        else
3062                trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3063
3064        /* Go handle any RCU core processing required. */
3065        __call_rcu_core(rsp, rdp, head, flags);
3066        local_irq_restore(flags);
3067}
3068
3069/*
3070 * Queue an RCU-sched callback for invocation after a grace period.
3071 */
3072void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3073{
3074        __call_rcu(head, func, &rcu_sched_state, -1, 0);
3075}
3076EXPORT_SYMBOL_GPL(call_rcu_sched);
3077
3078/*
3079 * Queue an RCU callback for invocation after a quicker grace period.
3080 */
3081void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3082{
3083        __call_rcu(head, func, &rcu_bh_state, -1, 0);
3084}
3085EXPORT_SYMBOL_GPL(call_rcu_bh);
3086
3087/*
3088 * Queue an RCU callback for lazy invocation after a grace period.
3089 * This will likely be later named something like "call_rcu_lazy()",
3090 * but this change will require some way of tagging the lazy RCU
3091 * callbacks in the list of pending callbacks. Until then, this
3092 * function may only be called from __kfree_rcu().
3093 */
3094void kfree_call_rcu(struct rcu_head *head,
3095                    void (*func)(struct rcu_head *rcu))
3096{
3097        __call_rcu(head, func, rcu_state_p, -1, 1);
3098}
3099EXPORT_SYMBOL_GPL(kfree_call_rcu);
3100
3101/*
3102 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3103 * any blocking grace-period wait automatically implies a grace period
3104 * if there is only one CPU online at any point time during execution
3105 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3106 * occasionally incorrectly indicate that there are multiple CPUs online
3107 * when there was in fact only one the whole time, as this just adds
3108 * some overhead: RCU still operates correctly.
3109 */
3110static inline int rcu_blocking_is_gp(void)
3111{
3112        int ret;
3113
3114        might_sleep();  /* Check for RCU read-side critical section. */
3115        preempt_disable();
3116        ret = num_online_cpus() <= 1;
3117        preempt_enable();
3118        return ret;
3119}
3120
3121/**
3122 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3123 *
3124 * Control will return to the caller some time after a full rcu-sched
3125 * grace period has elapsed, in other words after all currently executing
3126 * rcu-sched read-side critical sections have completed.   These read-side
3127 * critical sections are delimited by rcu_read_lock_sched() and
3128 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3129 * local_irq_disable(), and so on may be used in place of
3130 * rcu_read_lock_sched().
3131 *
3132 * This means that all preempt_disable code sequences, including NMI and
3133 * non-threaded hardware-interrupt handlers, in progress on entry will
3134 * have completed before this primitive returns.  However, this does not
3135 * guarantee that softirq handlers will have completed, since in some
3136 * kernels, these handlers can run in process context, and can block.
3137 *
3138 * Note that this guarantee implies further memory-ordering guarantees.
3139 * On systems with more than one CPU, when synchronize_sched() returns,
3140 * each CPU is guaranteed to have executed a full memory barrier since the
3141 * end of its last RCU-sched read-side critical section whose beginning
3142 * preceded the call to synchronize_sched().  In addition, each CPU having
3143 * an RCU read-side critical section that extends beyond the return from
3144 * synchronize_sched() is guaranteed to have executed a full memory barrier
3145 * after the beginning of synchronize_sched() and before the beginning of
3146 * that RCU read-side critical section.  Note that these guarantees include
3147 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3148 * that are executing in the kernel.
3149 *
3150 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3151 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3152 * to have executed a full memory barrier during the execution of
3153 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3154 * again only if the system has more than one CPU).
3155 *
3156 * This primitive provides the guarantees made by the (now removed)
3157 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3158 * guarantees that rcu_read_lock() sections will have completed.
3159 * In "classic RCU", these two guarantees happen to be one and
3160 * the same, but can differ in realtime RCU implementations.
3161 */
3162void synchronize_sched(void)
3163{
3164        rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3165                           !lock_is_held(&rcu_lock_map) &&
3166                           !lock_is_held(&rcu_sched_lock_map),
3167                           "Illegal synchronize_sched() in RCU-sched read-side critical section");
3168        if (rcu_blocking_is_gp())
3169                return;
3170        if (rcu_gp_is_expedited())
3171                synchronize_sched_expedited();
3172        else
3173                wait_rcu_gp(call_rcu_sched);
3174}
3175EXPORT_SYMBOL_GPL(synchronize_sched);
3176
3177/**
3178 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3179 *
3180 * Control will return to the caller some time after a full rcu_bh grace
3181 * period has elapsed, in other words after all currently executing rcu_bh
3182 * read-side critical sections have completed.  RCU read-side critical
3183 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3184 * and may be nested.
3185 *
3186 * See the description of synchronize_sched() for more detailed information
3187 * on memory ordering guarantees.
3188 */
3189void synchronize_rcu_bh(void)
3190{
3191        rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3192                           !lock_is_held(&rcu_lock_map) &&
3193                           !lock_is_held(&rcu_sched_lock_map),
3194                           "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3195        if (rcu_blocking_is_gp())
3196                return;
3197        if (rcu_gp_is_expedited())
3198                synchronize_rcu_bh_expedited();
3199        else
3200                wait_rcu_gp(call_rcu_bh);
3201}
3202EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3203
3204/**
3205 * get_state_synchronize_rcu - Snapshot current RCU state
3206 *
3207 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3208 * to determine whether or not a full grace period has elapsed in the
3209 * meantime.
3210 */
3211unsigned long get_state_synchronize_rcu(void)
3212{
3213        /*
3214         * Any prior manipulation of RCU-protected data must happen
3215         * before the load from ->gpnum.
3216         */
3217        smp_mb();  /* ^^^ */
3218
3219        /*
3220         * Make sure this load happens before the purportedly
3221         * time-consuming work between get_state_synchronize_rcu()
3222         * and cond_synchronize_rcu().
3223         */
3224        return smp_load_acquire(&rcu_state_p->gpnum);
3225}
3226EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3227
3228/**
3229 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3230 *
3231 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3232 *
3233 * If a full RCU grace period has elapsed since the earlier call to
3234 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3235 * synchronize_rcu() to wait for a full grace period.
3236 *
3237 * Yes, this function does not take counter wrap into account.  But
3238 * counter wrap is harmless.  If the counter wraps, we have waited for
3239 * more than 2 billion grace periods (and way more on a 64-bit system!),
3240 * so waiting for one additional grace period should be just fine.
3241 */
3242void cond_synchronize_rcu(unsigned long oldstate)
3243{
3244        unsigned long newstate;
3245
3246        /*
3247         * Ensure that this load happens before any RCU-destructive
3248         * actions the caller might carry out after we return.
3249         */
3250        newstate = smp_load_acquire(&rcu_state_p->completed);
3251        if (ULONG_CMP_GE(oldstate, newstate))
3252                synchronize_rcu();
3253}
3254EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3255
3256static int synchronize_sched_expedited_cpu_stop(void *data)
3257{
3258        /*
3259         * There must be a full memory barrier on each affected CPU
3260         * between the time that try_stop_cpus() is called and the
3261         * time that it returns.
3262         *
3263         * In the current initial implementation of cpu_stop, the
3264         * above condition is already met when the control reaches
3265         * this point and the following smp_mb() is not strictly
3266         * necessary.  Do smp_mb() anyway for documentation and
3267         * robustness against future implementation changes.
3268         */
3269        smp_mb(); /* See above comment block. */
3270        return 0;
3271}
3272
3273/**
3274 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3275 *
3276 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3277 * approach to force the grace period to end quickly.  This consumes
3278 * significant time on all CPUs and is unfriendly to real-time workloads,
3279 * so is thus not recommended for any sort of common-case code.  In fact,
3280 * if you are using synchronize_sched_expedited() in a loop, please
3281 * restructure your code to batch your updates, and then use a single
3282 * synchronize_sched() instead.
3283 *
3284 * This implementation can be thought of as an application of ticket
3285 * locking to RCU, with sync_sched_expedited_started and
3286 * sync_sched_expedited_done taking on the roles of the halves
3287 * of the ticket-lock word.  Each task atomically increments
3288 * sync_sched_expedited_started upon entry, snapshotting the old value,
3289 * then attempts to stop all the CPUs.  If this succeeds, then each
3290 * CPU will have executed a context switch, resulting in an RCU-sched
3291 * grace period.  We are then done, so we use atomic_cmpxchg() to
3292 * update sync_sched_expedited_done to match our snapshot -- but
3293 * only if someone else has not already advanced past our snapshot.
3294 *
3295 * On the other hand, if try_stop_cpus() fails, we check the value
3296 * of sync_sched_expedited_done.  If it has advanced past our
3297 * initial snapshot, then someone else must have forced a grace period
3298 * some time after we took our snapshot.  In this case, our work is
3299 * done for us, and we can simply return.  Otherwise, we try again,
3300 * but keep our initial snapshot for purposes of checking for someone
3301 * doing our work for us.
3302 *
3303 * If we fail too many times in a row, we fall back to synchronize_sched().
3304 */
3305void synchronize_sched_expedited(void)
3306{
3307        cpumask_var_t cm;
3308        bool cma = false;
3309        int cpu;
3310        long firstsnap, s, snap;
3311        int trycount = 0;
3312        struct rcu_state *rsp = &rcu_sched_state;
3313
3314        /*
3315         * If we are in danger of counter wrap, just do synchronize_sched().
3316         * By allowing sync_sched_expedited_started to advance no more than
3317         * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3318         * that more than 3.5 billion CPUs would be required to force a
3319         * counter wrap on a 32-bit system.  Quite a few more CPUs would of
3320         * course be required on a 64-bit system.
3321         */
3322        if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3323                         (ulong)atomic_long_read(&rsp->expedited_done) +
3324                         ULONG_MAX / 8)) {
3325                wait_rcu_gp(call_rcu_sched);
3326                atomic_long_inc(&rsp->expedited_wrap);
3327                return;
3328        }
3329
3330        /*
3331         * Take a ticket.  Note that atomic_inc_return() implies a
3332         * full memory barrier.
3333         */
3334        snap = atomic_long_inc_return(&rsp->expedited_start);
3335        firstsnap = snap;
3336        if (!try_get_online_cpus()) {
3337                /* CPU hotplug operation in flight, fall back to normal GP. */
3338                wait_rcu_gp(call_rcu_sched);
3339                atomic_long_inc(&rsp->expedited_normal);
3340                return;
3341        }
3342        WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3343
3344        /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3345        cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3346        if (cma) {
3347                cpumask_copy(cm, cpu_online_mask);
3348                cpumask_clear_cpu(raw_smp_processor_id(), cm);
3349                for_each_cpu(cpu, cm) {
3350                        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3351
3352                        if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3353                                cpumask_clear_cpu(cpu, cm);
3354                }
3355                if (cpumask_weight(cm) == 0)
3356                        goto all_cpus_idle;
3357        }
3358
3359        /*
3360         * Each pass through the following loop attempts to force a
3361         * context switch on each CPU.
3362         */
3363        while (try_stop_cpus(cma ? cm : cpu_online_mask,
3364                             synchronize_sched_expedited_cpu_stop,
3365                             NULL) == -EAGAIN) {
3366                put_online_cpus();
3367                atomic_long_inc(&rsp->expedited_tryfail);
3368
3369                /* Check to see if someone else did our work for us. */
3370                s = atomic_long_read(&rsp->expedited_done);
3371                if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3372                        /* ensure test happens before caller kfree */
3373                        smp_mb__before_atomic(); /* ^^^ */
3374                        atomic_long_inc(&rsp->expedited_workdone1);
3375                        free_cpumask_var(cm);
3376                        return;
3377                }
3378
3379                /* No joy, try again later.  Or just synchronize_sched(). */
3380                if (trycount++ < 10) {
3381                        udelay(trycount * num_online_cpus());
3382                } else {
3383                        wait_rcu_gp(call_rcu_sched);
3384                        atomic_long_inc(&rsp->expedited_normal);
3385                        free_cpumask_var(cm);
3386                        return;
3387                }
3388
3389                /* Recheck to see if someone else did our work for us. */
3390                s = atomic_long_read(&rsp->expedited_done);
3391                if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3392                        /* ensure test happens before caller kfree */
3393                        smp_mb__before_atomic(); /* ^^^ */
3394                        atomic_long_inc(&rsp->expedited_workdone2);
3395                        free_cpumask_var(cm);
3396                        return;
3397                }
3398
3399                /*
3400                 * Refetching sync_sched_expedited_started allows later
3401                 * callers to piggyback on our grace period.  We retry
3402                 * after they started, so our grace period works for them,
3403                 * and they started after our first try, so their grace
3404                 * period works for us.
3405                 */
3406                if (!try_get_online_cpus()) {
3407                        /* CPU hotplug operation in flight, use normal GP. */
3408                        wait_rcu_gp(call_rcu_sched);
3409                        atomic_long_inc(&rsp->expedited_normal);
3410                        free_cpumask_var(cm);
3411                        return;
3412                }
3413                snap = atomic_long_read(&rsp->expedited_start);
3414                smp_mb(); /* ensure read is before try_stop_cpus(). */
3415        }
3416        atomic_long_inc(&rsp->expedited_stoppedcpus);
3417
3418all_cpus_idle:
3419        free_cpumask_var(cm);
3420
3421        /*
3422         * Everyone up to our most recent fetch is covered by our grace
3423         * period.  Update the counter, but only if our work is still
3424         * relevant -- which it won't be if someone who started later
3425         * than we did already did their update.
3426         */
3427        do {
3428                atomic_long_inc(&rsp->expedited_done_tries);
3429                s = atomic_long_read(&rsp->expedited_done);
3430                if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3431                        /* ensure test happens before caller kfree */
3432                        smp_mb__before_atomic(); /* ^^^ */
3433                        atomic_long_inc(&rsp->expedited_done_lost);
3434                        break;
3435                }
3436        } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3437        atomic_long_inc(&rsp->expedited_done_exit);
3438
3439        put_online_cpus();
3440}
3441EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3442
3443/*
3444 * Check to see if there is any immediate RCU-related work to be done
3445 * by the current CPU, for the specified type of RCU, returning 1 if so.
3446 * The checks are in order of increasing expense: checks that can be
3447 * carried out against CPU-local state are performed first.  However,
3448 * we must check for CPU stalls first, else we might not get a chance.
3449 */
3450static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3451{
3452        struct rcu_node *rnp = rdp->mynode;
3453
3454        rdp->n_rcu_pending++;
3455
3456        /* Check for CPU stalls, if enabled. */
3457        check_cpu_stall(rsp, rdp);
3458
3459        /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3460        if (rcu_nohz_full_cpu(rsp))
3461                return 0;
3462
3463        /* Is the RCU core waiting for a quiescent state from this CPU? */
3464        if (rcu_scheduler_fully_active &&
3465            rdp->qs_pending && !rdp->passed_quiesce &&
3466            rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3467                rdp->n_rp_qs_pending++;
3468        } else if (rdp->qs_pending &&
3469                   (rdp->passed_quiesce ||
3470                    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3471                rdp->n_rp_report_qs++;
3472                return 1;
3473        }
3474
3475        /* Does this CPU have callbacks ready to invoke? */
3476        if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3477                rdp->n_rp_cb_ready++;
3478                return 1;
3479        }
3480
3481        /* Has RCU gone idle with this CPU needing another grace period? */
3482        if (cpu_needs_another_gp(rsp, rdp)) {
3483                rdp->n_rp_cpu_needs_gp++;
3484                return 1;
3485        }
3486
3487        /* Has another RCU grace period completed?  */
3488        if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3489                rdp->n_rp_gp_completed++;
3490                return 1;
3491        }
3492
3493        /* Has a new RCU grace period started? */
3494        if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3495            unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3496                rdp->n_rp_gp_started++;
3497                return 1;
3498        }
3499
3500        /* Does this CPU need a deferred NOCB wakeup? */
3501        if (rcu_nocb_need_deferred_wakeup(rdp)) {
3502                rdp->n_rp_nocb_defer_wakeup++;
3503                return 1;
3504        }
3505
3506        /* nothing to do */
3507        rdp->n_rp_need_nothing++;
3508        return 0;
3509}
3510
3511/*
3512 * Check to see if there is any immediate RCU-related work to be done
3513 * by the current CPU, returning 1 if so.  This function is part of the
3514 * RCU implementation; it is -not- an exported member of the RCU API.
3515 */
3516static int rcu_pending(void)
3517{
3518        struct rcu_state *rsp;
3519
3520        for_each_rcu_flavor(rsp)
3521                if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3522                        return 1;
3523        return 0;
3524}
3525
3526/*
3527 * Return true if the specified CPU has any callback.  If all_lazy is
3528 * non-NULL, store an indication of whether all callbacks are lazy.
3529 * (If there are no callbacks, all of them are deemed to be lazy.)
3530 */
3531static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3532{
3533        bool al = true;
3534        bool hc = false;
3535        struct rcu_data *rdp;
3536        struct rcu_state *rsp;
3537
3538        for_each_rcu_flavor(rsp) {
3539                rdp = this_cpu_ptr(rsp->rda);
3540                if (!rdp->nxtlist)
3541                        continue;
3542                hc = true;
3543                if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3544                        al = false;
3545                        break;
3546                }
3547        }
3548        if (all_lazy)
3549                *all_lazy = al;
3550        return hc;
3551}
3552
3553/*
3554 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3555 * the compiler is expected to optimize this away.
3556 */
3557static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3558                               int cpu, unsigned long done)
3559{
3560        trace_rcu_barrier(rsp->name, s, cpu,
3561                          atomic_read(&rsp->barrier_cpu_count), done);
3562}
3563
3564/*
3565 * RCU callback function for _rcu_barrier().  If we are last, wake
3566 * up the task executing _rcu_barrier().
3567 */
3568static void rcu_barrier_callback(struct rcu_head *rhp)
3569{
3570        struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3571        struct rcu_state *rsp = rdp->rsp;
3572
3573        if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3574                _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3575                complete(&rsp->barrier_completion);
3576        } else {
3577                _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3578        }
3579}
3580
3581/*
3582 * Called with preemption disabled, and from cross-cpu IRQ context.
3583 */
3584static void rcu_barrier_func(void *type)
3585{
3586        struct rcu_state *rsp = type;
3587        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3588
3589        _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3590        atomic_inc(&rsp->barrier_cpu_count);
3591        rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3592}
3593
3594/*
3595 * Orchestrate the specified type of RCU barrier, waiting for all
3596 * RCU callbacks of the specified type to complete.
3597 */
3598static void _rcu_barrier(struct rcu_state *rsp)
3599{
3600        int cpu;
3601        struct rcu_data *rdp;
3602        unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3603        unsigned long snap_done;
3604
3605        _rcu_barrier_trace(rsp, "Begin", -1, snap);
3606
3607        /* Take mutex to serialize concurrent rcu_barrier() requests. */
3608        mutex_lock(&rsp->barrier_mutex);
3609
3610        /*
3611         * Ensure that all prior references, including to ->n_barrier_done,
3612         * are ordered before the _rcu_barrier() machinery.
3613         */
3614        smp_mb();  /* See above block comment. */
3615
3616        /*
3617         * Recheck ->n_barrier_done to see if others did our work for us.
3618         * This means checking ->n_barrier_done for an even-to-odd-to-even
3619         * transition.  The "if" expression below therefore rounds the old
3620         * value up to the next even number and adds two before comparing.
3621         */
3622        snap_done = rsp->n_barrier_done;
3623        _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3624
3625        /*
3626         * If the value in snap is odd, we needed to wait for the current
3627         * rcu_barrier() to complete, then wait for the next one, in other
3628         * words, we need the value of snap_done to be three larger than
3629         * the value of snap.  On the other hand, if the value in snap is
3630         * even, we only had to wait for the next rcu_barrier() to complete,
3631         * in other words, we need the value of snap_done to be only two
3632         * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
3633         * this for us (thank you, Linus!).
3634         */
3635        if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3636                _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3637                smp_mb(); /* caller's subsequent code after above check. */
3638                mutex_unlock(&rsp->barrier_mutex);
3639                return;
3640        }
3641
3642        /*
3643         * Increment ->n_barrier_done to avoid duplicate work.  Use
3644         * WRITE_ONCE() to prevent the compiler from speculating
3645         * the increment to precede the early-exit check.
3646         */
3647        WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3648        WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3649        _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3650        smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3651
3652        /*
3653         * Initialize the count to one rather than to zero in order to
3654         * avoid a too-soon return to zero in case of a short grace period
3655         * (or preemption of this task).  Exclude CPU-hotplug operations
3656         * to ensure that no offline CPU has callbacks queued.
3657         */
3658        init_completion(&rsp->barrier_completion);
3659        atomic_set(&rsp->barrier_cpu_count, 1);
3660        get_online_cpus();
3661
3662        /*
3663         * Force each CPU with callbacks to register a new callback.
3664         * When that callback is invoked, we will know that all of the
3665         * corresponding CPU's preceding callbacks have been invoked.
3666         */
3667        for_each_possible_cpu(cpu) {
3668                if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3669                        continue;
3670                rdp = per_cpu_ptr(rsp->rda, cpu);
3671                if (rcu_is_nocb_cpu(cpu)) {
3672                        if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3673                                _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3674                                                   rsp->n_barrier_done);
3675                        } else {
3676                                _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3677                                                   rsp->n_barrier_done);
3678                                smp_mb__before_atomic();
3679                                atomic_inc(&rsp->barrier_cpu_count);
3680                                __call_rcu(&rdp->barrier_head,
3681                                           rcu_barrier_callback, rsp, cpu, 0);
3682                        }
3683                } else if (READ_ONCE(rdp->qlen)) {
3684                        _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3685                                           rsp->n_barrier_done);
3686                        smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3687                } else {
3688                        _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3689                                           rsp->n_barrier_done);
3690                }
3691        }
3692        put_online_cpus();
3693
3694        /*
3695         * Now that we have an rcu_barrier_callback() callback on each
3696         * CPU, and thus each counted, remove the initial count.
3697         */
3698        if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3699                complete(&rsp->barrier_completion);
3700
3701        /* Increment ->n_barrier_done to prevent duplicate work. */
3702        smp_mb(); /* Keep increment after above mechanism. */
3703        WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3704        WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3705        _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3706        smp_mb(); /* Keep increment before caller's subsequent code. */
3707
3708        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3709        wait_for_completion(&rsp->barrier_completion);
3710
3711        /* Other rcu_barrier() invocations can now safely proceed. */
3712        mutex_unlock(&rsp->barrier_mutex);
3713}
3714
3715/**
3716 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3717 */
3718void rcu_barrier_bh(void)
3719{
3720        _rcu_barrier(&rcu_bh_state);
3721}
3722EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3723
3724/**
3725 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3726 */
3727void rcu_barrier_sched(void)
3728{
3729        _rcu_barrier(&rcu_sched_state);
3730}
3731EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3732
3733/*
3734 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3735 * first CPU in a given leaf rcu_node structure coming online.  The caller
3736 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3737 * disabled.
3738 */
3739static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3740{
3741        long mask;
3742        struct rcu_node *rnp = rnp_leaf;
3743
3744        for (;;) {
3745                mask = rnp->grpmask;
3746                rnp = rnp->parent;
3747                if (rnp == NULL)
3748                        return;
3749                raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3750                rnp->qsmaskinit |= mask;
3751                raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3752        }
3753}
3754
3755/*
3756 * Do boot-time initialization of a CPU's per-CPU RCU data.
3757 */
3758static void __init
3759rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3760{
3761        unsigned long flags;
3762        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3763        struct rcu_node *rnp = rcu_get_root(rsp);
3764
3765        /* Set up local state, ensuring consistent view of global state. */
3766        raw_spin_lock_irqsave(&rnp->lock, flags);
3767        rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3768        rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3769        WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3770        WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3771        rdp->cpu = cpu;
3772        rdp->rsp = rsp;
3773        rcu_boot_init_nocb_percpu_data(rdp);
3774        raw_spin_unlock_irqrestore(&rnp->lock, flags);
3775}
3776
3777/*
3778 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3779 * offline event can be happening at a given time.  Note also that we
3780 * can accept some slop in the rsp->completed access due to the fact
3781 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3782 */
3783static void
3784rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3785{
3786        unsigned long flags;
3787        unsigned long mask;
3788        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3789        struct rcu_node *rnp = rcu_get_root(rsp);
3790
3791        /* Set up local state, ensuring consistent view of global state. */
3792        raw_spin_lock_irqsave(&rnp->lock, flags);
3793        rdp->beenonline = 1;     /* We have now been online. */
3794        rdp->qlen_last_fqs_check = 0;
3795        rdp->n_force_qs_snap = rsp->n_force_qs;
3796        rdp->blimit = blimit;
3797        if (!rdp->nxtlist)
3798                init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3799        rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3800        rcu_sysidle_init_percpu_data(rdp->dynticks);
3801        atomic_set(&rdp->dynticks->dynticks,
3802                   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3803        raw_spin_unlock(&rnp->lock);            /* irqs remain disabled. */
3804
3805        /*
3806         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3807         * propagation up the rcu_node tree will happen at the beginning
3808         * of the next grace period.
3809         */
3810        rnp = rdp->mynode;
3811        mask = rdp->grpmask;
3812        raw_spin_lock(&rnp->lock);              /* irqs already disabled. */
3813        smp_mb__after_unlock_lock();
3814        rnp->qsmaskinitnext |= mask;
3815        rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3816        rdp->completed = rnp->completed;
3817        rdp->passed_quiesce = false;
3818        rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3819        rdp->qs_pending = false;
3820        trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3821        raw_spin_unlock_irqrestore(&rnp->lock, flags);
3822}
3823
3824static void rcu_prepare_cpu(int cpu)
3825{
3826        struct rcu_state *rsp;
3827
3828        for_each_rcu_flavor(rsp)
3829                rcu_init_percpu_data(cpu, rsp);
3830}
3831
3832/*
3833 * Handle CPU online/offline notification events.
3834 */
3835int rcu_cpu_notify(struct notifier_block *self,
3836                   unsigned long action, void *hcpu)
3837{
3838        long cpu = (long)hcpu;
3839        struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3840        struct rcu_node *rnp = rdp->mynode;
3841        struct rcu_state *rsp;
3842
3843        switch (action) {
3844        case CPU_UP_PREPARE:
3845        case CPU_UP_PREPARE_FROZEN:
3846                rcu_prepare_cpu(cpu);
3847                rcu_prepare_kthreads(cpu);
3848                rcu_spawn_all_nocb_kthreads(cpu);
3849                break;
3850        case CPU_ONLINE:
3851        case CPU_DOWN_FAILED:
3852                rcu_boost_kthread_setaffinity(rnp, -1);
3853                break;
3854        case CPU_DOWN_PREPARE:
3855                rcu_boost_kthread_setaffinity(rnp, cpu);
3856                break;
3857        case CPU_DYING:
3858        case CPU_DYING_FROZEN:
3859                for_each_rcu_flavor(rsp)
3860                        rcu_cleanup_dying_cpu(rsp);
3861                break;
3862        case CPU_DYING_IDLE:
3863                for_each_rcu_flavor(rsp) {
3864                        rcu_cleanup_dying_idle_cpu(cpu, rsp);
3865                }
3866                break;
3867        case CPU_DEAD:
3868        case CPU_DEAD_FROZEN:
3869        case CPU_UP_CANCELED:
3870        case CPU_UP_CANCELED_FROZEN:
3871                for_each_rcu_flavor(rsp) {
3872                        rcu_cleanup_dead_cpu(cpu, rsp);
3873                        do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3874                }
3875                break;
3876        default:
3877                break;
3878        }
3879        return NOTIFY_OK;
3880}
3881
3882static int rcu_pm_notify(struct notifier_block *self,
3883                         unsigned long action, void *hcpu)
3884{
3885        switch (action) {
3886        case PM_HIBERNATION_PREPARE:
3887        case PM_SUSPEND_PREPARE:
3888                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3889                        rcu_expedite_gp();
3890                break;
3891        case PM_POST_HIBERNATION:
3892        case PM_POST_SUSPEND:
3893                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3894                        rcu_unexpedite_gp();
3895                break;
3896        default:
3897                break;
3898        }
3899        return NOTIFY_OK;
3900}
3901
3902/*
3903 * Spawn the kthreads that handle each RCU flavor's grace periods.
3904 */
3905static int __init rcu_spawn_gp_kthread(void)
3906{
3907        unsigned long flags;
3908        int kthread_prio_in = kthread_prio;
3909        struct rcu_node *rnp;
3910        struct rcu_state *rsp;
3911        struct sched_param sp;
3912        struct task_struct *t;
3913
3914        /* Force priority into range. */
3915        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3916                kthread_prio = 1;
3917        else if (kthread_prio < 0)
3918                kthread_prio = 0;
3919        else if (kthread_prio > 99)
3920                kthread_prio = 99;
3921        if (kthread_prio != kthread_prio_in)
3922                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3923                         kthread_prio, kthread_prio_in);
3924
3925        rcu_scheduler_fully_active = 1;
3926        for_each_rcu_flavor(rsp) {
3927                t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3928                BUG_ON(IS_ERR(t));
3929                rnp = rcu_get_root(rsp);
3930                raw_spin_lock_irqsave(&rnp->lock, flags);
3931                rsp->gp_kthread = t;
3932                if (kthread_prio) {
3933                        sp.sched_priority = kthread_prio;
3934                        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3935                }
3936                wake_up_process(t);
3937                raw_spin_unlock_irqrestore(&rnp->lock, flags);
3938        }
3939        rcu_spawn_nocb_kthreads();
3940        rcu_spawn_boost_kthreads();
3941        return 0;
3942}
3943early_initcall(rcu_spawn_gp_kthread);
3944
3945/*
3946 * This function is invoked towards the end of the scheduler's initialization
3947 * process.  Before this is called, the idle task might contain
3948 * RCU read-side critical sections (during which time, this idle
3949 * task is booting the system).  After this function is called, the
3950 * idle tasks are prohibited from containing RCU read-side critical
3951 * sections.  This function also enables RCU lockdep checking.
3952 */
3953void rcu_scheduler_starting(void)
3954{
3955        WARN_ON(num_online_cpus() != 1);
3956        WARN_ON(nr_context_switches() > 0);
3957        rcu_scheduler_active = 1;
3958}
3959
3960/*
3961 * Compute the per-level fanout, either using the exact fanout specified
3962 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
3963 */
3964static void __init rcu_init_levelspread(struct rcu_state *rsp)
3965{
3966        int i;
3967
3968        if (rcu_fanout_exact) {
3969                rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3970                for (i = rcu_num_lvls - 2; i >= 0; i--)
3971                        rsp->levelspread[i] = RCU_FANOUT;
3972        } else {
3973                int ccur;
3974                int cprv;
3975
3976                cprv = nr_cpu_ids;
3977                for (i = rcu_num_lvls - 1; i >= 0; i--) {
3978                        ccur = rsp->levelcnt[i];
3979                        rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3980                        cprv = ccur;
3981                }
3982        }
3983}
3984
3985/*
3986 * Helper function for rcu_init() that initializes one rcu_state structure.
3987 */
3988static void __init rcu_init_one(struct rcu_state *rsp,
3989                struct rcu_data __percpu *rda)
3990{
3991        static const char * const buf[] = {
3992                "rcu_node_0",
3993                "rcu_node_1",
3994                "rcu_node_2",
3995                "rcu_node_3" };  /* Match MAX_RCU_LVLS */
3996        static const char * const fqs[] = {
3997                "rcu_node_fqs_0",
3998                "rcu_node_fqs_1",
3999                "rcu_node_fqs_2",
4000                "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
4001        static u8 fl_mask = 0x1;
4002        int cpustride = 1;
4003        int i;
4004        int j;
4005        struct rcu_node *rnp;
4006
4007        BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4008
4009        /* Silence gcc 4.8 false positive about array index out of range. */
4010        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4011                panic("rcu_init_one: rcu_num_lvls out of range");
4012
4013        /* Initialize the level-tracking arrays. */
4014
4015        for (i = 0; i < rcu_num_lvls; i++)
4016                rsp->levelcnt[i] = num_rcu_lvl[i];
4017        for (i = 1; i < rcu_num_lvls; i++)
4018                rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
4019        rcu_init_levelspread(rsp);
4020        rsp->flavor_mask = fl_mask;
4021        fl_mask <<= 1;
4022
4023        /* Initialize the elements themselves, starting from the leaves. */
4024
4025        for (i = rcu_num_lvls - 1; i >= 0; i--) {
4026                cpustride *= rsp->levelspread[i];
4027                rnp = rsp->level[i];
4028                for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
4029                        raw_spin_lock_init(&rnp->lock);
4030                        lockdep_set_class_and_name(&rnp->lock,
4031                                                   &rcu_node_class[i], buf[i]);
4032                        raw_spin_lock_init(&rnp->fqslock);
4033                        lockdep_set_class_and_name(&rnp->fqslock,
4034                                                   &rcu_fqs_class[i], fqs[i]);
4035                        rnp->gpnum = rsp->gpnum;
4036                        rnp->completed = rsp->completed;
4037                        rnp->qsmask = 0;
4038                        rnp->qsmaskinit = 0;
4039                        rnp->grplo = j * cpustride;
4040                        rnp->grphi = (j + 1) * cpustride - 1;
4041                        if (rnp->grphi >= nr_cpu_ids)
4042                                rnp->grphi = nr_cpu_ids - 1;
4043                        if (i == 0) {
4044                                rnp->grpnum = 0;
4045                                rnp->grpmask = 0;
4046                                rnp->parent = NULL;
4047                        } else {
4048                                rnp->grpnum = j % rsp->levelspread[i - 1];
4049                                rnp->grpmask = 1UL << rnp->grpnum;
4050                                rnp->parent = rsp->level[i - 1] +
4051                                              j / rsp->levelspread[i - 1];
4052                        }
4053                        rnp->level = i;
4054                        INIT_LIST_HEAD(&rnp->blkd_tasks);
4055                        rcu_init_one_nocb(rnp);
4056                }
4057        }
4058
4059        init_waitqueue_head(&rsp->gp_wq);
4060        rnp = rsp->level[rcu_num_lvls - 1];
4061        for_each_possible_cpu(i) {
4062                while (i > rnp->grphi)
4063                        rnp++;
4064                per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4065                rcu_boot_init_percpu_data(i, rsp);
4066        }
4067        list_add(&rsp->flavors, &rcu_struct_flavors);
4068}
4069
4070/*
4071 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4072 * replace the definitions in tree.h because those are needed to size
4073 * the ->node array in the rcu_state structure.
4074 */
4075static void __init rcu_init_geometry(void)
4076{
4077        ulong d;
4078        int i;
4079        int j;
4080        int n = nr_cpu_ids;
4081        int rcu_capacity[MAX_RCU_LVLS + 1];
4082
4083        /*
4084         * Initialize any unspecified boot parameters.
4085         * The default values of jiffies_till_first_fqs and
4086         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4087         * value, which is a function of HZ, then adding one for each
4088         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4089         */
4090        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4091        if (jiffies_till_first_fqs == ULONG_MAX)
4092                jiffies_till_first_fqs = d;
4093        if (jiffies_till_next_fqs == ULONG_MAX)
4094                jiffies_till_next_fqs = d;
4095
4096        /* If the compile-time values are accurate, just leave. */
4097        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4098            nr_cpu_ids == NR_CPUS)
4099                return;
4100        pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4101                rcu_fanout_leaf, nr_cpu_ids);
4102
4103        /*
4104         * Compute number of nodes that can be handled an rcu_node tree
4105         * with the given number of levels.  Setting rcu_capacity[0] makes
4106         * some of the arithmetic easier.
4107         */
4108        rcu_capacity[0] = 1;
4109        rcu_capacity[1] = rcu_fanout_leaf;
4110        for (i = 2; i <= MAX_RCU_LVLS; i++)
4111                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4112
4113        /*
4114         * The boot-time rcu_fanout_leaf parameter is only permitted
4115         * to increase the leaf-level fanout, not decrease it.  Of course,
4116         * the leaf-level fanout cannot exceed the number of bits in
4117         * the rcu_node masks.  Finally, the tree must be able to accommodate
4118         * the configured number of CPUs.  Complain and fall back to the
4119         * compile-time values if these limits are exceeded.
4120         */
4121        if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
4122            rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4123            n > rcu_capacity[MAX_RCU_LVLS]) {
4124                WARN_ON(1);
4125                return;
4126        }
4127
4128        /* Calculate the number of rcu_nodes at each level of the tree. */
4129        for (i = 1; i <= MAX_RCU_LVLS; i++)
4130                if (n <= rcu_capacity[i]) {
4131                        for (j = 0; j <= i; j++)
4132                                num_rcu_lvl[j] =
4133                                        DIV_ROUND_UP(n, rcu_capacity[i - j]);
4134                        rcu_num_lvls = i;
4135                        for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4136                                num_rcu_lvl[j] = 0;
4137                        break;
4138                }
4139
4140        /* Calculate the total number of rcu_node structures. */
4141        rcu_num_nodes = 0;
4142        for (i = 0; i <= MAX_RCU_LVLS; i++)
4143                rcu_num_nodes += num_rcu_lvl[i];
4144        rcu_num_nodes -= n;
4145}
4146
4147/*
4148 * Dump out the structure of the rcu_node combining tree associated
4149 * with the rcu_state structure referenced by rsp.
4150 */
4151static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4152{
4153        int level = 0;
4154        struct rcu_node *rnp;
4155
4156        pr_info("rcu_node tree layout dump\n");
4157        pr_info(" ");
4158        rcu_for_each_node_breadth_first(rsp, rnp) {
4159                if (rnp->level != level) {
4160                        pr_cont("\n");
4161                        pr_info(" ");
4162                        level = rnp->level;
4163                }
4164                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4165        }
4166        pr_cont("\n");
4167}
4168
4169void __init rcu_init(void)
4170{
4171        int cpu;
4172
4173        rcu_early_boot_tests();
4174
4175        rcu_bootup_announce();
4176        rcu_init_geometry();
4177        rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4178        rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4179        if (dump_tree)
4180                rcu_dump_rcu_node_tree(&rcu_sched_state);
4181        __rcu_init_preempt();
4182        open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4183
4184        /*
4185         * We don't need protection against CPU-hotplug here because
4186         * this is called early in boot, before either interrupts
4187         * or the scheduler are operational.
4188         */
4189        cpu_notifier(rcu_cpu_notify, 0);
4190        pm_notifier(rcu_pm_notify, 0);
4191        for_each_online_cpu(cpu)
4192                rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4193}
4194
4195#include "tree_plugin.h"
4196