linux/kernel/sched/fair.c
<<
>>
Prefs
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
  25#include <linux/cpumask.h>
  26#include <linux/cpuidle.h>
  27#include <linux/slab.h>
  28#include <linux/profile.h>
  29#include <linux/interrupt.h>
  30#include <linux/mempolicy.h>
  31#include <linux/migrate.h>
  32#include <linux/task_work.h>
  33
  34#include <trace/events/sched.h>
  35
  36#include "sched.h"
  37
  38/*
  39 * Targeted preemption latency for CPU-bound tasks:
  40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  41 *
  42 * NOTE: this latency value is not the same as the concept of
  43 * 'timeslice length' - timeslices in CFS are of variable length
  44 * and have no persistent notion like in traditional, time-slice
  45 * based scheduling concepts.
  46 *
  47 * (to see the precise effective timeslice length of your workload,
  48 *  run vmstat and monitor the context-switches (cs) field)
  49 */
  50unsigned int sysctl_sched_latency = 6000000ULL;
  51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  52
  53/*
  54 * The initial- and re-scaling of tunables is configurable
  55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  56 *
  57 * Options are:
  58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  61 */
  62enum sched_tunable_scaling sysctl_sched_tunable_scaling
  63        = SCHED_TUNABLESCALING_LOG;
  64
  65/*
  66 * Minimal preemption granularity for CPU-bound tasks:
  67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68 */
  69unsigned int sysctl_sched_min_granularity = 750000ULL;
  70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  71
  72/*
  73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  74 */
  75static unsigned int sched_nr_latency = 8;
  76
  77/*
  78 * After fork, child runs first. If set to 0 (default) then
  79 * parent will (try to) run first.
  80 */
  81unsigned int sysctl_sched_child_runs_first __read_mostly;
  82
  83/*
  84 * SCHED_OTHER wake-up granularity.
  85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  86 *
  87 * This option delays the preemption effects of decoupled workloads
  88 * and reduces their over-scheduling. Synchronous workloads will still
  89 * have immediate wakeup/sleep latencies.
  90 */
  91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  93
  94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  95
  96/*
  97 * The exponential sliding  window over which load is averaged for shares
  98 * distribution.
  99 * (default: 10msec)
 100 */
 101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 102
 103#ifdef CONFIG_CFS_BANDWIDTH
 104/*
 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 106 * each time a cfs_rq requests quota.
 107 *
 108 * Note: in the case that the slice exceeds the runtime remaining (either due
 109 * to consumption or the quota being specified to be smaller than the slice)
 110 * we will always only issue the remaining available time.
 111 *
 112 * default: 5 msec, units: microseconds
 113  */
 114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 115#endif
 116
 117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 118{
 119        lw->weight += inc;
 120        lw->inv_weight = 0;
 121}
 122
 123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 124{
 125        lw->weight -= dec;
 126        lw->inv_weight = 0;
 127}
 128
 129static inline void update_load_set(struct load_weight *lw, unsigned long w)
 130{
 131        lw->weight = w;
 132        lw->inv_weight = 0;
 133}
 134
 135/*
 136 * Increase the granularity value when there are more CPUs,
 137 * because with more CPUs the 'effective latency' as visible
 138 * to users decreases. But the relationship is not linear,
 139 * so pick a second-best guess by going with the log2 of the
 140 * number of CPUs.
 141 *
 142 * This idea comes from the SD scheduler of Con Kolivas:
 143 */
 144static unsigned int get_update_sysctl_factor(void)
 145{
 146        unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 147        unsigned int factor;
 148
 149        switch (sysctl_sched_tunable_scaling) {
 150        case SCHED_TUNABLESCALING_NONE:
 151                factor = 1;
 152                break;
 153        case SCHED_TUNABLESCALING_LINEAR:
 154                factor = cpus;
 155                break;
 156        case SCHED_TUNABLESCALING_LOG:
 157        default:
 158                factor = 1 + ilog2(cpus);
 159                break;
 160        }
 161
 162        return factor;
 163}
 164
 165static void update_sysctl(void)
 166{
 167        unsigned int factor = get_update_sysctl_factor();
 168
 169#define SET_SYSCTL(name) \
 170        (sysctl_##name = (factor) * normalized_sysctl_##name)
 171        SET_SYSCTL(sched_min_granularity);
 172        SET_SYSCTL(sched_latency);
 173        SET_SYSCTL(sched_wakeup_granularity);
 174#undef SET_SYSCTL
 175}
 176
 177void sched_init_granularity(void)
 178{
 179        update_sysctl();
 180}
 181
 182#define WMULT_CONST     (~0U)
 183#define WMULT_SHIFT     32
 184
 185static void __update_inv_weight(struct load_weight *lw)
 186{
 187        unsigned long w;
 188
 189        if (likely(lw->inv_weight))
 190                return;
 191
 192        w = scale_load_down(lw->weight);
 193
 194        if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 195                lw->inv_weight = 1;
 196        else if (unlikely(!w))
 197                lw->inv_weight = WMULT_CONST;
 198        else
 199                lw->inv_weight = WMULT_CONST / w;
 200}
 201
 202/*
 203 * delta_exec * weight / lw.weight
 204 *   OR
 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 206 *
 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 210 *
 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 213 */
 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 215{
 216        u64 fact = scale_load_down(weight);
 217        int shift = WMULT_SHIFT;
 218
 219        __update_inv_weight(lw);
 220
 221        if (unlikely(fact >> 32)) {
 222                while (fact >> 32) {
 223                        fact >>= 1;
 224                        shift--;
 225                }
 226        }
 227
 228        /* hint to use a 32x32->64 mul */
 229        fact = (u64)(u32)fact * lw->inv_weight;
 230
 231        while (fact >> 32) {
 232                fact >>= 1;
 233                shift--;
 234        }
 235
 236        return mul_u64_u32_shr(delta_exec, fact, shift);
 237}
 238
 239
 240const struct sched_class fair_sched_class;
 241
 242/**************************************************************
 243 * CFS operations on generic schedulable entities:
 244 */
 245
 246#ifdef CONFIG_FAIR_GROUP_SCHED
 247
 248/* cpu runqueue to which this cfs_rq is attached */
 249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 250{
 251        return cfs_rq->rq;
 252}
 253
 254/* An entity is a task if it doesn't "own" a runqueue */
 255#define entity_is_task(se)      (!se->my_q)
 256
 257static inline struct task_struct *task_of(struct sched_entity *se)
 258{
 259#ifdef CONFIG_SCHED_DEBUG
 260        WARN_ON_ONCE(!entity_is_task(se));
 261#endif
 262        return container_of(se, struct task_struct, se);
 263}
 264
 265/* Walk up scheduling entities hierarchy */
 266#define for_each_sched_entity(se) \
 267                for (; se; se = se->parent)
 268
 269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 270{
 271        return p->se.cfs_rq;
 272}
 273
 274/* runqueue on which this entity is (to be) queued */
 275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 276{
 277        return se->cfs_rq;
 278}
 279
 280/* runqueue "owned" by this group */
 281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 282{
 283        return grp->my_q;
 284}
 285
 286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
 287                                       int force_update);
 288
 289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 290{
 291        if (!cfs_rq->on_list) {
 292                /*
 293                 * Ensure we either appear before our parent (if already
 294                 * enqueued) or force our parent to appear after us when it is
 295                 * enqueued.  The fact that we always enqueue bottom-up
 296                 * reduces this to two cases.
 297                 */
 298                if (cfs_rq->tg->parent &&
 299                    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 300                        list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 301                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 302                } else {
 303                        list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 304                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 305                }
 306
 307                cfs_rq->on_list = 1;
 308                /* We should have no load, but we need to update last_decay. */
 309                update_cfs_rq_blocked_load(cfs_rq, 0);
 310        }
 311}
 312
 313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 314{
 315        if (cfs_rq->on_list) {
 316                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 317                cfs_rq->on_list = 0;
 318        }
 319}
 320
 321/* Iterate thr' all leaf cfs_rq's on a runqueue */
 322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 323        list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 324
 325/* Do the two (enqueued) entities belong to the same group ? */
 326static inline struct cfs_rq *
 327is_same_group(struct sched_entity *se, struct sched_entity *pse)
 328{
 329        if (se->cfs_rq == pse->cfs_rq)
 330                return se->cfs_rq;
 331
 332        return NULL;
 333}
 334
 335static inline struct sched_entity *parent_entity(struct sched_entity *se)
 336{
 337        return se->parent;
 338}
 339
 340static void
 341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 342{
 343        int se_depth, pse_depth;
 344
 345        /*
 346         * preemption test can be made between sibling entities who are in the
 347         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 348         * both tasks until we find their ancestors who are siblings of common
 349         * parent.
 350         */
 351
 352        /* First walk up until both entities are at same depth */
 353        se_depth = (*se)->depth;
 354        pse_depth = (*pse)->depth;
 355
 356        while (se_depth > pse_depth) {
 357                se_depth--;
 358                *se = parent_entity(*se);
 359        }
 360
 361        while (pse_depth > se_depth) {
 362                pse_depth--;
 363                *pse = parent_entity(*pse);
 364        }
 365
 366        while (!is_same_group(*se, *pse)) {
 367                *se = parent_entity(*se);
 368                *pse = parent_entity(*pse);
 369        }
 370}
 371
 372#else   /* !CONFIG_FAIR_GROUP_SCHED */
 373
 374static inline struct task_struct *task_of(struct sched_entity *se)
 375{
 376        return container_of(se, struct task_struct, se);
 377}
 378
 379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 380{
 381        return container_of(cfs_rq, struct rq, cfs);
 382}
 383
 384#define entity_is_task(se)      1
 385
 386#define for_each_sched_entity(se) \
 387                for (; se; se = NULL)
 388
 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 390{
 391        return &task_rq(p)->cfs;
 392}
 393
 394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 395{
 396        struct task_struct *p = task_of(se);
 397        struct rq *rq = task_rq(p);
 398
 399        return &rq->cfs;
 400}
 401
 402/* runqueue "owned" by this group */
 403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 404{
 405        return NULL;
 406}
 407
 408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 409{
 410}
 411
 412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 413{
 414}
 415
 416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 417                for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 418
 419static inline struct sched_entity *parent_entity(struct sched_entity *se)
 420{
 421        return NULL;
 422}
 423
 424static inline void
 425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 426{
 427}
 428
 429#endif  /* CONFIG_FAIR_GROUP_SCHED */
 430
 431static __always_inline
 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 433
 434/**************************************************************
 435 * Scheduling class tree data structure manipulation methods:
 436 */
 437
 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 439{
 440        s64 delta = (s64)(vruntime - max_vruntime);
 441        if (delta > 0)
 442                max_vruntime = vruntime;
 443
 444        return max_vruntime;
 445}
 446
 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 448{
 449        s64 delta = (s64)(vruntime - min_vruntime);
 450        if (delta < 0)
 451                min_vruntime = vruntime;
 452
 453        return min_vruntime;
 454}
 455
 456static inline int entity_before(struct sched_entity *a,
 457                                struct sched_entity *b)
 458{
 459        return (s64)(a->vruntime - b->vruntime) < 0;
 460}
 461
 462static void update_min_vruntime(struct cfs_rq *cfs_rq)
 463{
 464        u64 vruntime = cfs_rq->min_vruntime;
 465
 466        if (cfs_rq->curr)
 467                vruntime = cfs_rq->curr->vruntime;
 468
 469        if (cfs_rq->rb_leftmost) {
 470                struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 471                                                   struct sched_entity,
 472                                                   run_node);
 473
 474                if (!cfs_rq->curr)
 475                        vruntime = se->vruntime;
 476                else
 477                        vruntime = min_vruntime(vruntime, se->vruntime);
 478        }
 479
 480        /* ensure we never gain time by being placed backwards. */
 481        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 482#ifndef CONFIG_64BIT
 483        smp_wmb();
 484        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 485#endif
 486}
 487
 488/*
 489 * Enqueue an entity into the rb-tree:
 490 */
 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 492{
 493        struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 494        struct rb_node *parent = NULL;
 495        struct sched_entity *entry;
 496        int leftmost = 1;
 497
 498        /*
 499         * Find the right place in the rbtree:
 500         */
 501        while (*link) {
 502                parent = *link;
 503                entry = rb_entry(parent, struct sched_entity, run_node);
 504                /*
 505                 * We dont care about collisions. Nodes with
 506                 * the same key stay together.
 507                 */
 508                if (entity_before(se, entry)) {
 509                        link = &parent->rb_left;
 510                } else {
 511                        link = &parent->rb_right;
 512                        leftmost = 0;
 513                }
 514        }
 515
 516        /*
 517         * Maintain a cache of leftmost tree entries (it is frequently
 518         * used):
 519         */
 520        if (leftmost)
 521                cfs_rq->rb_leftmost = &se->run_node;
 522
 523        rb_link_node(&se->run_node, parent, link);
 524        rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 525}
 526
 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 528{
 529        if (cfs_rq->rb_leftmost == &se->run_node) {
 530                struct rb_node *next_node;
 531
 532                next_node = rb_next(&se->run_node);
 533                cfs_rq->rb_leftmost = next_node;
 534        }
 535
 536        rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 537}
 538
 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 540{
 541        struct rb_node *left = cfs_rq->rb_leftmost;
 542
 543        if (!left)
 544                return NULL;
 545
 546        return rb_entry(left, struct sched_entity, run_node);
 547}
 548
 549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 550{
 551        struct rb_node *next = rb_next(&se->run_node);
 552
 553        if (!next)
 554                return NULL;
 555
 556        return rb_entry(next, struct sched_entity, run_node);
 557}
 558
 559#ifdef CONFIG_SCHED_DEBUG
 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 561{
 562        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 563
 564        if (!last)
 565                return NULL;
 566
 567        return rb_entry(last, struct sched_entity, run_node);
 568}
 569
 570/**************************************************************
 571 * Scheduling class statistics methods:
 572 */
 573
 574int sched_proc_update_handler(struct ctl_table *table, int write,
 575                void __user *buffer, size_t *lenp,
 576                loff_t *ppos)
 577{
 578        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 579        unsigned int factor = get_update_sysctl_factor();
 580
 581        if (ret || !write)
 582                return ret;
 583
 584        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 585                                        sysctl_sched_min_granularity);
 586
 587#define WRT_SYSCTL(name) \
 588        (normalized_sysctl_##name = sysctl_##name / (factor))
 589        WRT_SYSCTL(sched_min_granularity);
 590        WRT_SYSCTL(sched_latency);
 591        WRT_SYSCTL(sched_wakeup_granularity);
 592#undef WRT_SYSCTL
 593
 594        return 0;
 595}
 596#endif
 597
 598/*
 599 * delta /= w
 600 */
 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 602{
 603        if (unlikely(se->load.weight != NICE_0_LOAD))
 604                delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 605
 606        return delta;
 607}
 608
 609/*
 610 * The idea is to set a period in which each task runs once.
 611 *
 612 * When there are too many tasks (sched_nr_latency) we have to stretch
 613 * this period because otherwise the slices get too small.
 614 *
 615 * p = (nr <= nl) ? l : l*nr/nl
 616 */
 617static u64 __sched_period(unsigned long nr_running)
 618{
 619        u64 period = sysctl_sched_latency;
 620        unsigned long nr_latency = sched_nr_latency;
 621
 622        if (unlikely(nr_running > nr_latency)) {
 623                period = sysctl_sched_min_granularity;
 624                period *= nr_running;
 625        }
 626
 627        return period;
 628}
 629
 630/*
 631 * We calculate the wall-time slice from the period by taking a part
 632 * proportional to the weight.
 633 *
 634 * s = p*P[w/rw]
 635 */
 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 637{
 638        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 639
 640        for_each_sched_entity(se) {
 641                struct load_weight *load;
 642                struct load_weight lw;
 643
 644                cfs_rq = cfs_rq_of(se);
 645                load = &cfs_rq->load;
 646
 647                if (unlikely(!se->on_rq)) {
 648                        lw = cfs_rq->load;
 649
 650                        update_load_add(&lw, se->load.weight);
 651                        load = &lw;
 652                }
 653                slice = __calc_delta(slice, se->load.weight, load);
 654        }
 655        return slice;
 656}
 657
 658/*
 659 * We calculate the vruntime slice of a to-be-inserted task.
 660 *
 661 * vs = s/w
 662 */
 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 664{
 665        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 666}
 667
 668#ifdef CONFIG_SMP
 669static int select_idle_sibling(struct task_struct *p, int cpu);
 670static unsigned long task_h_load(struct task_struct *p);
 671
 672static inline void __update_task_entity_contrib(struct sched_entity *se);
 673static inline void __update_task_entity_utilization(struct sched_entity *se);
 674
 675/* Give new task start runnable values to heavy its load in infant time */
 676void init_task_runnable_average(struct task_struct *p)
 677{
 678        u32 slice;
 679
 680        slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
 681        p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
 682        p->se.avg.avg_period = slice;
 683        __update_task_entity_contrib(&p->se);
 684        __update_task_entity_utilization(&p->se);
 685}
 686#else
 687void init_task_runnable_average(struct task_struct *p)
 688{
 689}
 690#endif
 691
 692/*
 693 * Update the current task's runtime statistics.
 694 */
 695static void update_curr(struct cfs_rq *cfs_rq)
 696{
 697        struct sched_entity *curr = cfs_rq->curr;
 698        u64 now = rq_clock_task(rq_of(cfs_rq));
 699        u64 delta_exec;
 700
 701        if (unlikely(!curr))
 702                return;
 703
 704        delta_exec = now - curr->exec_start;
 705        if (unlikely((s64)delta_exec <= 0))
 706                return;
 707
 708        curr->exec_start = now;
 709
 710        schedstat_set(curr->statistics.exec_max,
 711                      max(delta_exec, curr->statistics.exec_max));
 712
 713        curr->sum_exec_runtime += delta_exec;
 714        schedstat_add(cfs_rq, exec_clock, delta_exec);
 715
 716        curr->vruntime += calc_delta_fair(delta_exec, curr);
 717        update_min_vruntime(cfs_rq);
 718
 719        if (entity_is_task(curr)) {
 720                struct task_struct *curtask = task_of(curr);
 721
 722                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 723                cpuacct_charge(curtask, delta_exec);
 724                account_group_exec_runtime(curtask, delta_exec);
 725        }
 726
 727        account_cfs_rq_runtime(cfs_rq, delta_exec);
 728}
 729
 730static void update_curr_fair(struct rq *rq)
 731{
 732        update_curr(cfs_rq_of(&rq->curr->se));
 733}
 734
 735static inline void
 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 737{
 738        schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
 739}
 740
 741/*
 742 * Task is being enqueued - update stats:
 743 */
 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 745{
 746        /*
 747         * Are we enqueueing a waiting task? (for current tasks
 748         * a dequeue/enqueue event is a NOP)
 749         */
 750        if (se != cfs_rq->curr)
 751                update_stats_wait_start(cfs_rq, se);
 752}
 753
 754static void
 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 756{
 757        schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 758                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
 759        schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 760        schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 761                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 762#ifdef CONFIG_SCHEDSTATS
 763        if (entity_is_task(se)) {
 764                trace_sched_stat_wait(task_of(se),
 765                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 766        }
 767#endif
 768        schedstat_set(se->statistics.wait_start, 0);
 769}
 770
 771static inline void
 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 773{
 774        /*
 775         * Mark the end of the wait period if dequeueing a
 776         * waiting task:
 777         */
 778        if (se != cfs_rq->curr)
 779                update_stats_wait_end(cfs_rq, se);
 780}
 781
 782/*
 783 * We are picking a new current task - update its stats:
 784 */
 785static inline void
 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 787{
 788        /*
 789         * We are starting a new run period:
 790         */
 791        se->exec_start = rq_clock_task(rq_of(cfs_rq));
 792}
 793
 794/**************************************************
 795 * Scheduling class queueing methods:
 796 */
 797
 798#ifdef CONFIG_NUMA_BALANCING
 799/*
 800 * Approximate time to scan a full NUMA task in ms. The task scan period is
 801 * calculated based on the tasks virtual memory size and
 802 * numa_balancing_scan_size.
 803 */
 804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 806
 807/* Portion of address space to scan in MB */
 808unsigned int sysctl_numa_balancing_scan_size = 256;
 809
 810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 811unsigned int sysctl_numa_balancing_scan_delay = 1000;
 812
 813static unsigned int task_nr_scan_windows(struct task_struct *p)
 814{
 815        unsigned long rss = 0;
 816        unsigned long nr_scan_pages;
 817
 818        /*
 819         * Calculations based on RSS as non-present and empty pages are skipped
 820         * by the PTE scanner and NUMA hinting faults should be trapped based
 821         * on resident pages
 822         */
 823        nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 824        rss = get_mm_rss(p->mm);
 825        if (!rss)
 826                rss = nr_scan_pages;
 827
 828        rss = round_up(rss, nr_scan_pages);
 829        return rss / nr_scan_pages;
 830}
 831
 832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 833#define MAX_SCAN_WINDOW 2560
 834
 835static unsigned int task_scan_min(struct task_struct *p)
 836{
 837        unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
 838        unsigned int scan, floor;
 839        unsigned int windows = 1;
 840
 841        if (scan_size < MAX_SCAN_WINDOW)
 842                windows = MAX_SCAN_WINDOW / scan_size;
 843        floor = 1000 / windows;
 844
 845        scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 846        return max_t(unsigned int, floor, scan);
 847}
 848
 849static unsigned int task_scan_max(struct task_struct *p)
 850{
 851        unsigned int smin = task_scan_min(p);
 852        unsigned int smax;
 853
 854        /* Watch for min being lower than max due to floor calculations */
 855        smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 856        return max(smin, smax);
 857}
 858
 859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 860{
 861        rq->nr_numa_running += (p->numa_preferred_nid != -1);
 862        rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 863}
 864
 865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 866{
 867        rq->nr_numa_running -= (p->numa_preferred_nid != -1);
 868        rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 869}
 870
 871struct numa_group {
 872        atomic_t refcount;
 873
 874        spinlock_t lock; /* nr_tasks, tasks */
 875        int nr_tasks;
 876        pid_t gid;
 877
 878        struct rcu_head rcu;
 879        nodemask_t active_nodes;
 880        unsigned long total_faults;
 881        /*
 882         * Faults_cpu is used to decide whether memory should move
 883         * towards the CPU. As a consequence, these stats are weighted
 884         * more by CPU use than by memory faults.
 885         */
 886        unsigned long *faults_cpu;
 887        unsigned long faults[0];
 888};
 889
 890/* Shared or private faults. */
 891#define NR_NUMA_HINT_FAULT_TYPES 2
 892
 893/* Memory and CPU locality */
 894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 895
 896/* Averaged statistics, and temporary buffers. */
 897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 898
 899pid_t task_numa_group_id(struct task_struct *p)
 900{
 901        return p->numa_group ? p->numa_group->gid : 0;
 902}
 903
 904/*
 905 * The averaged statistics, shared & private, memory & cpu,
 906 * occupy the first half of the array. The second half of the
 907 * array is for current counters, which are averaged into the
 908 * first set by task_numa_placement.
 909 */
 910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
 911{
 912        return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
 913}
 914
 915static inline unsigned long task_faults(struct task_struct *p, int nid)
 916{
 917        if (!p->numa_faults)
 918                return 0;
 919
 920        return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 921                p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
 922}
 923
 924static inline unsigned long group_faults(struct task_struct *p, int nid)
 925{
 926        if (!p->numa_group)
 927                return 0;
 928
 929        return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 930                p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
 931}
 932
 933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 934{
 935        return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
 936                group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
 937}
 938
 939/* Handle placement on systems where not all nodes are directly connected. */
 940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
 941                                        int maxdist, bool task)
 942{
 943        unsigned long score = 0;
 944        int node;
 945
 946        /*
 947         * All nodes are directly connected, and the same distance
 948         * from each other. No need for fancy placement algorithms.
 949         */
 950        if (sched_numa_topology_type == NUMA_DIRECT)
 951                return 0;
 952
 953        /*
 954         * This code is called for each node, introducing N^2 complexity,
 955         * which should be ok given the number of nodes rarely exceeds 8.
 956         */
 957        for_each_online_node(node) {
 958                unsigned long faults;
 959                int dist = node_distance(nid, node);
 960
 961                /*
 962                 * The furthest away nodes in the system are not interesting
 963                 * for placement; nid was already counted.
 964                 */
 965                if (dist == sched_max_numa_distance || node == nid)
 966                        continue;
 967
 968                /*
 969                 * On systems with a backplane NUMA topology, compare groups
 970                 * of nodes, and move tasks towards the group with the most
 971                 * memory accesses. When comparing two nodes at distance
 972                 * "hoplimit", only nodes closer by than "hoplimit" are part
 973                 * of each group. Skip other nodes.
 974                 */
 975                if (sched_numa_topology_type == NUMA_BACKPLANE &&
 976                                        dist > maxdist)
 977                        continue;
 978
 979                /* Add up the faults from nearby nodes. */
 980                if (task)
 981                        faults = task_faults(p, node);
 982                else
 983                        faults = group_faults(p, node);
 984
 985                /*
 986                 * On systems with a glueless mesh NUMA topology, there are
 987                 * no fixed "groups of nodes". Instead, nodes that are not
 988                 * directly connected bounce traffic through intermediate
 989                 * nodes; a numa_group can occupy any set of nodes.
 990                 * The further away a node is, the less the faults count.
 991                 * This seems to result in good task placement.
 992                 */
 993                if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 994                        faults *= (sched_max_numa_distance - dist);
 995                        faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
 996                }
 997
 998                score += faults;
 999        }
1000
1001        return score;
1002}
1003
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node.  The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011                                        int dist)
1012{
1013        unsigned long faults, total_faults;
1014
1015        if (!p->numa_faults)
1016                return 0;
1017
1018        total_faults = p->total_numa_faults;
1019
1020        if (!total_faults)
1021                return 0;
1022
1023        faults = task_faults(p, nid);
1024        faults += score_nearby_nodes(p, nid, dist, true);
1025
1026        return 1000 * faults / total_faults;
1027}
1028
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030                                         int dist)
1031{
1032        unsigned long faults, total_faults;
1033
1034        if (!p->numa_group)
1035                return 0;
1036
1037        total_faults = p->numa_group->total_faults;
1038
1039        if (!total_faults)
1040                return 0;
1041
1042        faults = group_faults(p, nid);
1043        faults += score_nearby_nodes(p, nid, dist, false);
1044
1045        return 1000 * faults / total_faults;
1046}
1047
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049                                int src_nid, int dst_cpu)
1050{
1051        struct numa_group *ng = p->numa_group;
1052        int dst_nid = cpu_to_node(dst_cpu);
1053        int last_cpupid, this_cpupid;
1054
1055        this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057        /*
1058         * Multi-stage node selection is used in conjunction with a periodic
1059         * migration fault to build a temporal task<->page relation. By using
1060         * a two-stage filter we remove short/unlikely relations.
1061         *
1062         * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063         * a task's usage of a particular page (n_p) per total usage of this
1064         * page (n_t) (in a given time-span) to a probability.
1065         *
1066         * Our periodic faults will sample this probability and getting the
1067         * same result twice in a row, given these samples are fully
1068         * independent, is then given by P(n)^2, provided our sample period
1069         * is sufficiently short compared to the usage pattern.
1070         *
1071         * This quadric squishes small probabilities, making it less likely we
1072         * act on an unlikely task<->page relation.
1073         */
1074        last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075        if (!cpupid_pid_unset(last_cpupid) &&
1076                                cpupid_to_nid(last_cpupid) != dst_nid)
1077                return false;
1078
1079        /* Always allow migrate on private faults */
1080        if (cpupid_match_pid(p, last_cpupid))
1081                return true;
1082
1083        /* A shared fault, but p->numa_group has not been set up yet. */
1084        if (!ng)
1085                return true;
1086
1087        /*
1088         * Do not migrate if the destination is not a node that
1089         * is actively used by this numa group.
1090         */
1091        if (!node_isset(dst_nid, ng->active_nodes))
1092                return false;
1093
1094        /*
1095         * Source is a node that is not actively used by this
1096         * numa group, while the destination is. Migrate.
1097         */
1098        if (!node_isset(src_nid, ng->active_nodes))
1099                return true;
1100
1101        /*
1102         * Both source and destination are nodes in active
1103         * use by this numa group. Maximize memory bandwidth
1104         * by migrating from more heavily used groups, to less
1105         * heavily used ones, spreading the load around.
1106         * Use a 1/4 hysteresis to avoid spurious page movement.
1107         */
1108        return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
1111static unsigned long weighted_cpuload(const int cpu);
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
1114static unsigned long capacity_of(int cpu);
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
1117/* Cached statistics for all CPUs within a node */
1118struct numa_stats {
1119        unsigned long nr_running;
1120        unsigned long load;
1121
1122        /* Total compute capacity of CPUs on a node */
1123        unsigned long compute_capacity;
1124
1125        /* Approximate capacity in terms of runnable tasks on a node */
1126        unsigned long task_capacity;
1127        int has_free_capacity;
1128};
1129
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
1135        int smt, cpu, cpus = 0;
1136        unsigned long capacity;
1137
1138        memset(ns, 0, sizeof(*ns));
1139        for_each_cpu(cpu, cpumask_of_node(nid)) {
1140                struct rq *rq = cpu_rq(cpu);
1141
1142                ns->nr_running += rq->nr_running;
1143                ns->load += weighted_cpuload(cpu);
1144                ns->compute_capacity += capacity_of(cpu);
1145
1146                cpus++;
1147        }
1148
1149        /*
1150         * If we raced with hotplug and there are no CPUs left in our mask
1151         * the @ns structure is NULL'ed and task_numa_compare() will
1152         * not find this node attractive.
1153         *
1154         * We'll either bail at !has_free_capacity, or we'll detect a huge
1155         * imbalance and bail there.
1156         */
1157        if (!cpus)
1158                return;
1159
1160        /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161        smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162        capacity = cpus / smt; /* cores */
1163
1164        ns->task_capacity = min_t(unsigned, capacity,
1165                DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1166        ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1167}
1168
1169struct task_numa_env {
1170        struct task_struct *p;
1171
1172        int src_cpu, src_nid;
1173        int dst_cpu, dst_nid;
1174
1175        struct numa_stats src_stats, dst_stats;
1176
1177        int imbalance_pct;
1178        int dist;
1179
1180        struct task_struct *best_task;
1181        long best_imp;
1182        int best_cpu;
1183};
1184
1185static void task_numa_assign(struct task_numa_env *env,
1186                             struct task_struct *p, long imp)
1187{
1188        if (env->best_task)
1189                put_task_struct(env->best_task);
1190        if (p)
1191                get_task_struct(p);
1192
1193        env->best_task = p;
1194        env->best_imp = imp;
1195        env->best_cpu = env->dst_cpu;
1196}
1197
1198static bool load_too_imbalanced(long src_load, long dst_load,
1199                                struct task_numa_env *env)
1200{
1201        long imb, old_imb;
1202        long orig_src_load, orig_dst_load;
1203        long src_capacity, dst_capacity;
1204
1205        /*
1206         * The load is corrected for the CPU capacity available on each node.
1207         *
1208         * src_load        dst_load
1209         * ------------ vs ---------
1210         * src_capacity    dst_capacity
1211         */
1212        src_capacity = env->src_stats.compute_capacity;
1213        dst_capacity = env->dst_stats.compute_capacity;
1214
1215        /* We care about the slope of the imbalance, not the direction. */
1216        if (dst_load < src_load)
1217                swap(dst_load, src_load);
1218
1219        /* Is the difference below the threshold? */
1220        imb = dst_load * src_capacity * 100 -
1221              src_load * dst_capacity * env->imbalance_pct;
1222        if (imb <= 0)
1223                return false;
1224
1225        /*
1226         * The imbalance is above the allowed threshold.
1227         * Compare it with the old imbalance.
1228         */
1229        orig_src_load = env->src_stats.load;
1230        orig_dst_load = env->dst_stats.load;
1231
1232        if (orig_dst_load < orig_src_load)
1233                swap(orig_dst_load, orig_src_load);
1234
1235        old_imb = orig_dst_load * src_capacity * 100 -
1236                  orig_src_load * dst_capacity * env->imbalance_pct;
1237
1238        /* Would this change make things worse? */
1239        return (imb > old_imb);
1240}
1241
1242/*
1243 * This checks if the overall compute and NUMA accesses of the system would
1244 * be improved if the source tasks was migrated to the target dst_cpu taking
1245 * into account that it might be best if task running on the dst_cpu should
1246 * be exchanged with the source task
1247 */
1248static void task_numa_compare(struct task_numa_env *env,
1249                              long taskimp, long groupimp)
1250{
1251        struct rq *src_rq = cpu_rq(env->src_cpu);
1252        struct rq *dst_rq = cpu_rq(env->dst_cpu);
1253        struct task_struct *cur;
1254        long src_load, dst_load;
1255        long load;
1256        long imp = env->p->numa_group ? groupimp : taskimp;
1257        long moveimp = imp;
1258        int dist = env->dist;
1259
1260        rcu_read_lock();
1261
1262        raw_spin_lock_irq(&dst_rq->lock);
1263        cur = dst_rq->curr;
1264        /*
1265         * No need to move the exiting task, and this ensures that ->curr
1266         * wasn't reaped and thus get_task_struct() in task_numa_assign()
1267         * is safe under RCU read lock.
1268         * Note that rcu_read_lock() itself can't protect from the final
1269         * put_task_struct() after the last schedule().
1270         */
1271        if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1272                cur = NULL;
1273        raw_spin_unlock_irq(&dst_rq->lock);
1274
1275        /*
1276         * Because we have preemption enabled we can get migrated around and
1277         * end try selecting ourselves (current == env->p) as a swap candidate.
1278         */
1279        if (cur == env->p)
1280                goto unlock;
1281
1282        /*
1283         * "imp" is the fault differential for the source task between the
1284         * source and destination node. Calculate the total differential for
1285         * the source task and potential destination task. The more negative
1286         * the value is, the more rmeote accesses that would be expected to
1287         * be incurred if the tasks were swapped.
1288         */
1289        if (cur) {
1290                /* Skip this swap candidate if cannot move to the source cpu */
1291                if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1292                        goto unlock;
1293
1294                /*
1295                 * If dst and source tasks are in the same NUMA group, or not
1296                 * in any group then look only at task weights.
1297                 */
1298                if (cur->numa_group == env->p->numa_group) {
1299                        imp = taskimp + task_weight(cur, env->src_nid, dist) -
1300                              task_weight(cur, env->dst_nid, dist);
1301                        /*
1302                         * Add some hysteresis to prevent swapping the
1303                         * tasks within a group over tiny differences.
1304                         */
1305                        if (cur->numa_group)
1306                                imp -= imp/16;
1307                } else {
1308                        /*
1309                         * Compare the group weights. If a task is all by
1310                         * itself (not part of a group), use the task weight
1311                         * instead.
1312                         */
1313                        if (cur->numa_group)
1314                                imp += group_weight(cur, env->src_nid, dist) -
1315                                       group_weight(cur, env->dst_nid, dist);
1316                        else
1317                                imp += task_weight(cur, env->src_nid, dist) -
1318                                       task_weight(cur, env->dst_nid, dist);
1319                }
1320        }
1321
1322        if (imp <= env->best_imp && moveimp <= env->best_imp)
1323                goto unlock;
1324
1325        if (!cur) {
1326                /* Is there capacity at our destination? */
1327                if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1328                    !env->dst_stats.has_free_capacity)
1329                        goto unlock;
1330
1331                goto balance;
1332        }
1333
1334        /* Balance doesn't matter much if we're running a task per cpu */
1335        if (imp > env->best_imp && src_rq->nr_running == 1 &&
1336                        dst_rq->nr_running == 1)
1337                goto assign;
1338
1339        /*
1340         * In the overloaded case, try and keep the load balanced.
1341         */
1342balance:
1343        load = task_h_load(env->p);
1344        dst_load = env->dst_stats.load + load;
1345        src_load = env->src_stats.load - load;
1346
1347        if (moveimp > imp && moveimp > env->best_imp) {
1348                /*
1349                 * If the improvement from just moving env->p direction is
1350                 * better than swapping tasks around, check if a move is
1351                 * possible. Store a slightly smaller score than moveimp,
1352                 * so an actually idle CPU will win.
1353                 */
1354                if (!load_too_imbalanced(src_load, dst_load, env)) {
1355                        imp = moveimp - 1;
1356                        cur = NULL;
1357                        goto assign;
1358                }
1359        }
1360
1361        if (imp <= env->best_imp)
1362                goto unlock;
1363
1364        if (cur) {
1365                load = task_h_load(cur);
1366                dst_load -= load;
1367                src_load += load;
1368        }
1369
1370        if (load_too_imbalanced(src_load, dst_load, env))
1371                goto unlock;
1372
1373        /*
1374         * One idle CPU per node is evaluated for a task numa move.
1375         * Call select_idle_sibling to maybe find a better one.
1376         */
1377        if (!cur)
1378                env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1379
1380assign:
1381        task_numa_assign(env, cur, imp);
1382unlock:
1383        rcu_read_unlock();
1384}
1385
1386static void task_numa_find_cpu(struct task_numa_env *env,
1387                                long taskimp, long groupimp)
1388{
1389        int cpu;
1390
1391        for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1392                /* Skip this CPU if the source task cannot migrate */
1393                if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1394                        continue;
1395
1396                env->dst_cpu = cpu;
1397                task_numa_compare(env, taskimp, groupimp);
1398        }
1399}
1400
1401/* Only move tasks to a NUMA node less busy than the current node. */
1402static bool numa_has_capacity(struct task_numa_env *env)
1403{
1404        struct numa_stats *src = &env->src_stats;
1405        struct numa_stats *dst = &env->dst_stats;
1406
1407        if (src->has_free_capacity && !dst->has_free_capacity)
1408                return false;
1409
1410        /*
1411         * Only consider a task move if the source has a higher load
1412         * than the destination, corrected for CPU capacity on each node.
1413         *
1414         *      src->load                dst->load
1415         * --------------------- vs ---------------------
1416         * src->compute_capacity    dst->compute_capacity
1417         */
1418        if (src->load * dst->compute_capacity >
1419            dst->load * src->compute_capacity)
1420                return true;
1421
1422        return false;
1423}
1424
1425static int task_numa_migrate(struct task_struct *p)
1426{
1427        struct task_numa_env env = {
1428                .p = p,
1429
1430                .src_cpu = task_cpu(p),
1431                .src_nid = task_node(p),
1432
1433                .imbalance_pct = 112,
1434
1435                .best_task = NULL,
1436                .best_imp = 0,
1437                .best_cpu = -1
1438        };
1439        struct sched_domain *sd;
1440        unsigned long taskweight, groupweight;
1441        int nid, ret, dist;
1442        long taskimp, groupimp;
1443
1444        /*
1445         * Pick the lowest SD_NUMA domain, as that would have the smallest
1446         * imbalance and would be the first to start moving tasks about.
1447         *
1448         * And we want to avoid any moving of tasks about, as that would create
1449         * random movement of tasks -- counter the numa conditions we're trying
1450         * to satisfy here.
1451         */
1452        rcu_read_lock();
1453        sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1454        if (sd)
1455                env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1456        rcu_read_unlock();
1457
1458        /*
1459         * Cpusets can break the scheduler domain tree into smaller
1460         * balance domains, some of which do not cross NUMA boundaries.
1461         * Tasks that are "trapped" in such domains cannot be migrated
1462         * elsewhere, so there is no point in (re)trying.
1463         */
1464        if (unlikely(!sd)) {
1465                p->numa_preferred_nid = task_node(p);
1466                return -EINVAL;
1467        }
1468
1469        env.dst_nid = p->numa_preferred_nid;
1470        dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1471        taskweight = task_weight(p, env.src_nid, dist);
1472        groupweight = group_weight(p, env.src_nid, dist);
1473        update_numa_stats(&env.src_stats, env.src_nid);
1474        taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1475        groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1476        update_numa_stats(&env.dst_stats, env.dst_nid);
1477
1478        /* Try to find a spot on the preferred nid. */
1479        if (numa_has_capacity(&env))
1480                task_numa_find_cpu(&env, taskimp, groupimp);
1481
1482        /*
1483         * Look at other nodes in these cases:
1484         * - there is no space available on the preferred_nid
1485         * - the task is part of a numa_group that is interleaved across
1486         *   multiple NUMA nodes; in order to better consolidate the group,
1487         *   we need to check other locations.
1488         */
1489        if (env.best_cpu == -1 || (p->numa_group &&
1490                        nodes_weight(p->numa_group->active_nodes) > 1)) {
1491                for_each_online_node(nid) {
1492                        if (nid == env.src_nid || nid == p->numa_preferred_nid)
1493                                continue;
1494
1495                        dist = node_distance(env.src_nid, env.dst_nid);
1496                        if (sched_numa_topology_type == NUMA_BACKPLANE &&
1497                                                dist != env.dist) {
1498                                taskweight = task_weight(p, env.src_nid, dist);
1499                                groupweight = group_weight(p, env.src_nid, dist);
1500                        }
1501
1502                        /* Only consider nodes where both task and groups benefit */
1503                        taskimp = task_weight(p, nid, dist) - taskweight;
1504                        groupimp = group_weight(p, nid, dist) - groupweight;
1505                        if (taskimp < 0 && groupimp < 0)
1506                                continue;
1507
1508                        env.dist = dist;
1509                        env.dst_nid = nid;
1510                        update_numa_stats(&env.dst_stats, env.dst_nid);
1511                        if (numa_has_capacity(&env))
1512                                task_numa_find_cpu(&env, taskimp, groupimp);
1513                }
1514        }
1515
1516        /*
1517         * If the task is part of a workload that spans multiple NUMA nodes,
1518         * and is migrating into one of the workload's active nodes, remember
1519         * this node as the task's preferred numa node, so the workload can
1520         * settle down.
1521         * A task that migrated to a second choice node will be better off
1522         * trying for a better one later. Do not set the preferred node here.
1523         */
1524        if (p->numa_group) {
1525                if (env.best_cpu == -1)
1526                        nid = env.src_nid;
1527                else
1528                        nid = env.dst_nid;
1529
1530                if (node_isset(nid, p->numa_group->active_nodes))
1531                        sched_setnuma(p, env.dst_nid);
1532        }
1533
1534        /* No better CPU than the current one was found. */
1535        if (env.best_cpu == -1)
1536                return -EAGAIN;
1537
1538        /*
1539         * Reset the scan period if the task is being rescheduled on an
1540         * alternative node to recheck if the tasks is now properly placed.
1541         */
1542        p->numa_scan_period = task_scan_min(p);
1543
1544        if (env.best_task == NULL) {
1545                ret = migrate_task_to(p, env.best_cpu);
1546                if (ret != 0)
1547                        trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1548                return ret;
1549        }
1550
1551        ret = migrate_swap(p, env.best_task);
1552        if (ret != 0)
1553                trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1554        put_task_struct(env.best_task);
1555        return ret;
1556}
1557
1558/* Attempt to migrate a task to a CPU on the preferred node. */
1559static void numa_migrate_preferred(struct task_struct *p)
1560{
1561        unsigned long interval = HZ;
1562
1563        /* This task has no NUMA fault statistics yet */
1564        if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1565                return;
1566
1567        /* Periodically retry migrating the task to the preferred node */
1568        interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1569        p->numa_migrate_retry = jiffies + interval;
1570
1571        /* Success if task is already running on preferred CPU */
1572        if (task_node(p) == p->numa_preferred_nid)
1573                return;
1574
1575        /* Otherwise, try migrate to a CPU on the preferred node */
1576        task_numa_migrate(p);
1577}
1578
1579/*
1580 * Find the nodes on which the workload is actively running. We do this by
1581 * tracking the nodes from which NUMA hinting faults are triggered. This can
1582 * be different from the set of nodes where the workload's memory is currently
1583 * located.
1584 *
1585 * The bitmask is used to make smarter decisions on when to do NUMA page
1586 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1587 * are added when they cause over 6/16 of the maximum number of faults, but
1588 * only removed when they drop below 3/16.
1589 */
1590static void update_numa_active_node_mask(struct numa_group *numa_group)
1591{
1592        unsigned long faults, max_faults = 0;
1593        int nid;
1594
1595        for_each_online_node(nid) {
1596                faults = group_faults_cpu(numa_group, nid);
1597                if (faults > max_faults)
1598                        max_faults = faults;
1599        }
1600
1601        for_each_online_node(nid) {
1602                faults = group_faults_cpu(numa_group, nid);
1603                if (!node_isset(nid, numa_group->active_nodes)) {
1604                        if (faults > max_faults * 6 / 16)
1605                                node_set(nid, numa_group->active_nodes);
1606                } else if (faults < max_faults * 3 / 16)
1607                        node_clear(nid, numa_group->active_nodes);
1608        }
1609}
1610
1611/*
1612 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1613 * increments. The more local the fault statistics are, the higher the scan
1614 * period will be for the next scan window. If local/(local+remote) ratio is
1615 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1616 * the scan period will decrease. Aim for 70% local accesses.
1617 */
1618#define NUMA_PERIOD_SLOTS 10
1619#define NUMA_PERIOD_THRESHOLD 7
1620
1621/*
1622 * Increase the scan period (slow down scanning) if the majority of
1623 * our memory is already on our local node, or if the majority of
1624 * the page accesses are shared with other processes.
1625 * Otherwise, decrease the scan period.
1626 */
1627static void update_task_scan_period(struct task_struct *p,
1628                        unsigned long shared, unsigned long private)
1629{
1630        unsigned int period_slot;
1631        int ratio;
1632        int diff;
1633
1634        unsigned long remote = p->numa_faults_locality[0];
1635        unsigned long local = p->numa_faults_locality[1];
1636
1637        /*
1638         * If there were no record hinting faults then either the task is
1639         * completely idle or all activity is areas that are not of interest
1640         * to automatic numa balancing. Related to that, if there were failed
1641         * migration then it implies we are migrating too quickly or the local
1642         * node is overloaded. In either case, scan slower
1643         */
1644        if (local + shared == 0 || p->numa_faults_locality[2]) {
1645                p->numa_scan_period = min(p->numa_scan_period_max,
1646                        p->numa_scan_period << 1);
1647
1648                p->mm->numa_next_scan = jiffies +
1649                        msecs_to_jiffies(p->numa_scan_period);
1650
1651                return;
1652        }
1653
1654        /*
1655         * Prepare to scale scan period relative to the current period.
1656         *       == NUMA_PERIOD_THRESHOLD scan period stays the same
1657         *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1658         *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1659         */
1660        period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1661        ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1662        if (ratio >= NUMA_PERIOD_THRESHOLD) {
1663                int slot = ratio - NUMA_PERIOD_THRESHOLD;
1664                if (!slot)
1665                        slot = 1;
1666                diff = slot * period_slot;
1667        } else {
1668                diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1669
1670                /*
1671                 * Scale scan rate increases based on sharing. There is an
1672                 * inverse relationship between the degree of sharing and
1673                 * the adjustment made to the scanning period. Broadly
1674                 * speaking the intent is that there is little point
1675                 * scanning faster if shared accesses dominate as it may
1676                 * simply bounce migrations uselessly
1677                 */
1678                ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1679                diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1680        }
1681
1682        p->numa_scan_period = clamp(p->numa_scan_period + diff,
1683                        task_scan_min(p), task_scan_max(p));
1684        memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1685}
1686
1687/*
1688 * Get the fraction of time the task has been running since the last
1689 * NUMA placement cycle. The scheduler keeps similar statistics, but
1690 * decays those on a 32ms period, which is orders of magnitude off
1691 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1692 * stats only if the task is so new there are no NUMA statistics yet.
1693 */
1694static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1695{
1696        u64 runtime, delta, now;
1697        /* Use the start of this time slice to avoid calculations. */
1698        now = p->se.exec_start;
1699        runtime = p->se.sum_exec_runtime;
1700
1701        if (p->last_task_numa_placement) {
1702                delta = runtime - p->last_sum_exec_runtime;
1703                *period = now - p->last_task_numa_placement;
1704        } else {
1705                delta = p->se.avg.runnable_avg_sum;
1706                *period = p->se.avg.avg_period;
1707        }
1708
1709        p->last_sum_exec_runtime = runtime;
1710        p->last_task_numa_placement = now;
1711
1712        return delta;
1713}
1714
1715/*
1716 * Determine the preferred nid for a task in a numa_group. This needs to
1717 * be done in a way that produces consistent results with group_weight,
1718 * otherwise workloads might not converge.
1719 */
1720static int preferred_group_nid(struct task_struct *p, int nid)
1721{
1722        nodemask_t nodes;
1723        int dist;
1724
1725        /* Direct connections between all NUMA nodes. */
1726        if (sched_numa_topology_type == NUMA_DIRECT)
1727                return nid;
1728
1729        /*
1730         * On a system with glueless mesh NUMA topology, group_weight
1731         * scores nodes according to the number of NUMA hinting faults on
1732         * both the node itself, and on nearby nodes.
1733         */
1734        if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1735                unsigned long score, max_score = 0;
1736                int node, max_node = nid;
1737
1738                dist = sched_max_numa_distance;
1739
1740                for_each_online_node(node) {
1741                        score = group_weight(p, node, dist);
1742                        if (score > max_score) {
1743                                max_score = score;
1744                                max_node = node;
1745                        }
1746                }
1747                return max_node;
1748        }
1749
1750        /*
1751         * Finding the preferred nid in a system with NUMA backplane
1752         * interconnect topology is more involved. The goal is to locate
1753         * tasks from numa_groups near each other in the system, and
1754         * untangle workloads from different sides of the system. This requires
1755         * searching down the hierarchy of node groups, recursively searching
1756         * inside the highest scoring group of nodes. The nodemask tricks
1757         * keep the complexity of the search down.
1758         */
1759        nodes = node_online_map;
1760        for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1761                unsigned long max_faults = 0;
1762                nodemask_t max_group = NODE_MASK_NONE;
1763                int a, b;
1764
1765                /* Are there nodes at this distance from each other? */
1766                if (!find_numa_distance(dist))
1767                        continue;
1768
1769                for_each_node_mask(a, nodes) {
1770                        unsigned long faults = 0;
1771                        nodemask_t this_group;
1772                        nodes_clear(this_group);
1773
1774                        /* Sum group's NUMA faults; includes a==b case. */
1775                        for_each_node_mask(b, nodes) {
1776                                if (node_distance(a, b) < dist) {
1777                                        faults += group_faults(p, b);
1778                                        node_set(b, this_group);
1779                                        node_clear(b, nodes);
1780                                }
1781                        }
1782
1783                        /* Remember the top group. */
1784                        if (faults > max_faults) {
1785                                max_faults = faults;
1786                                max_group = this_group;
1787                                /*
1788                                 * subtle: at the smallest distance there is
1789                                 * just one node left in each "group", the
1790                                 * winner is the preferred nid.
1791                                 */
1792                                nid = a;
1793                        }
1794                }
1795                /* Next round, evaluate the nodes within max_group. */
1796                if (!max_faults)
1797                        break;
1798                nodes = max_group;
1799        }
1800        return nid;
1801}
1802
1803static void task_numa_placement(struct task_struct *p)
1804{
1805        int seq, nid, max_nid = -1, max_group_nid = -1;
1806        unsigned long max_faults = 0, max_group_faults = 0;
1807        unsigned long fault_types[2] = { 0, 0 };
1808        unsigned long total_faults;
1809        u64 runtime, period;
1810        spinlock_t *group_lock = NULL;
1811
1812        /*
1813         * The p->mm->numa_scan_seq field gets updated without
1814         * exclusive access. Use READ_ONCE() here to ensure
1815         * that the field is read in a single access:
1816         */
1817        seq = READ_ONCE(p->mm->numa_scan_seq);
1818        if (p->numa_scan_seq == seq)
1819                return;
1820        p->numa_scan_seq = seq;
1821        p->numa_scan_period_max = task_scan_max(p);
1822
1823        total_faults = p->numa_faults_locality[0] +
1824                       p->numa_faults_locality[1];
1825        runtime = numa_get_avg_runtime(p, &period);
1826
1827        /* If the task is part of a group prevent parallel updates to group stats */
1828        if (p->numa_group) {
1829                group_lock = &p->numa_group->lock;
1830                spin_lock_irq(group_lock);
1831        }
1832
1833        /* Find the node with the highest number of faults */
1834        for_each_online_node(nid) {
1835                /* Keep track of the offsets in numa_faults array */
1836                int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1837                unsigned long faults = 0, group_faults = 0;
1838                int priv;
1839
1840                for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1841                        long diff, f_diff, f_weight;
1842
1843                        mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1844                        membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1845                        cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1846                        cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1847
1848                        /* Decay existing window, copy faults since last scan */
1849                        diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1850                        fault_types[priv] += p->numa_faults[membuf_idx];
1851                        p->numa_faults[membuf_idx] = 0;
1852
1853                        /*
1854                         * Normalize the faults_from, so all tasks in a group
1855                         * count according to CPU use, instead of by the raw
1856                         * number of faults. Tasks with little runtime have
1857                         * little over-all impact on throughput, and thus their
1858                         * faults are less important.
1859                         */
1860                        f_weight = div64_u64(runtime << 16, period + 1);
1861                        f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1862                                   (total_faults + 1);
1863                        f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1864                        p->numa_faults[cpubuf_idx] = 0;
1865
1866                        p->numa_faults[mem_idx] += diff;
1867                        p->numa_faults[cpu_idx] += f_diff;
1868                        faults += p->numa_faults[mem_idx];
1869                        p->total_numa_faults += diff;
1870                        if (p->numa_group) {
1871                                /*
1872                                 * safe because we can only change our own group
1873                                 *
1874                                 * mem_idx represents the offset for a given
1875                                 * nid and priv in a specific region because it
1876                                 * is at the beginning of the numa_faults array.
1877                                 */
1878                                p->numa_group->faults[mem_idx] += diff;
1879                                p->numa_group->faults_cpu[mem_idx] += f_diff;
1880                                p->numa_group->total_faults += diff;
1881                                group_faults += p->numa_group->faults[mem_idx];
1882                        }
1883                }
1884
1885                if (faults > max_faults) {
1886                        max_faults = faults;
1887                        max_nid = nid;
1888                }
1889
1890                if (group_faults > max_group_faults) {
1891                        max_group_faults = group_faults;
1892                        max_group_nid = nid;
1893                }
1894        }
1895
1896        update_task_scan_period(p, fault_types[0], fault_types[1]);
1897
1898        if (p->numa_group) {
1899                update_numa_active_node_mask(p->numa_group);
1900                spin_unlock_irq(group_lock);
1901                max_nid = preferred_group_nid(p, max_group_nid);
1902        }
1903
1904        if (max_faults) {
1905                /* Set the new preferred node */
1906                if (max_nid != p->numa_preferred_nid)
1907                        sched_setnuma(p, max_nid);
1908
1909                if (task_node(p) != p->numa_preferred_nid)
1910                        numa_migrate_preferred(p);
1911        }
1912}
1913
1914static inline int get_numa_group(struct numa_group *grp)
1915{
1916        return atomic_inc_not_zero(&grp->refcount);
1917}
1918
1919static inline void put_numa_group(struct numa_group *grp)
1920{
1921        if (atomic_dec_and_test(&grp->refcount))
1922                kfree_rcu(grp, rcu);
1923}
1924
1925static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1926                        int *priv)
1927{
1928        struct numa_group *grp, *my_grp;
1929        struct task_struct *tsk;
1930        bool join = false;
1931        int cpu = cpupid_to_cpu(cpupid);
1932        int i;
1933
1934        if (unlikely(!p->numa_group)) {
1935                unsigned int size = sizeof(struct numa_group) +
1936                                    4*nr_node_ids*sizeof(unsigned long);
1937
1938                grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1939                if (!grp)
1940                        return;
1941
1942                atomic_set(&grp->refcount, 1);
1943                spin_lock_init(&grp->lock);
1944                grp->gid = p->pid;
1945                /* Second half of the array tracks nids where faults happen */
1946                grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1947                                                nr_node_ids;
1948
1949                node_set(task_node(current), grp->active_nodes);
1950
1951                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1952                        grp->faults[i] = p->numa_faults[i];
1953
1954                grp->total_faults = p->total_numa_faults;
1955
1956                grp->nr_tasks++;
1957                rcu_assign_pointer(p->numa_group, grp);
1958        }
1959
1960        rcu_read_lock();
1961        tsk = READ_ONCE(cpu_rq(cpu)->curr);
1962
1963        if (!cpupid_match_pid(tsk, cpupid))
1964                goto no_join;
1965
1966        grp = rcu_dereference(tsk->numa_group);
1967        if (!grp)
1968                goto no_join;
1969
1970        my_grp = p->numa_group;
1971        if (grp == my_grp)
1972                goto no_join;
1973
1974        /*
1975         * Only join the other group if its bigger; if we're the bigger group,
1976         * the other task will join us.
1977         */
1978        if (my_grp->nr_tasks > grp->nr_tasks)
1979                goto no_join;
1980
1981        /*
1982         * Tie-break on the grp address.
1983         */
1984        if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1985                goto no_join;
1986
1987        /* Always join threads in the same process. */
1988        if (tsk->mm == current->mm)
1989                join = true;
1990
1991        /* Simple filter to avoid false positives due to PID collisions */
1992        if (flags & TNF_SHARED)
1993                join = true;
1994
1995        /* Update priv based on whether false sharing was detected */
1996        *priv = !join;
1997
1998        if (join && !get_numa_group(grp))
1999                goto no_join;
2000
2001        rcu_read_unlock();
2002
2003        if (!join)
2004                return;
2005
2006        BUG_ON(irqs_disabled());
2007        double_lock_irq(&my_grp->lock, &grp->lock);
2008
2009        for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2010                my_grp->faults[i] -= p->numa_faults[i];
2011                grp->faults[i] += p->numa_faults[i];
2012        }
2013        my_grp->total_faults -= p->total_numa_faults;
2014        grp->total_faults += p->total_numa_faults;
2015
2016        my_grp->nr_tasks--;
2017        grp->nr_tasks++;
2018
2019        spin_unlock(&my_grp->lock);
2020        spin_unlock_irq(&grp->lock);
2021
2022        rcu_assign_pointer(p->numa_group, grp);
2023
2024        put_numa_group(my_grp);
2025        return;
2026
2027no_join:
2028        rcu_read_unlock();
2029        return;
2030}
2031
2032void task_numa_free(struct task_struct *p)
2033{
2034        struct numa_group *grp = p->numa_group;
2035        void *numa_faults = p->numa_faults;
2036        unsigned long flags;
2037        int i;
2038
2039        if (grp) {
2040                spin_lock_irqsave(&grp->lock, flags);
2041                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2042                        grp->faults[i] -= p->numa_faults[i];
2043                grp->total_faults -= p->total_numa_faults;
2044
2045                grp->nr_tasks--;
2046                spin_unlock_irqrestore(&grp->lock, flags);
2047                RCU_INIT_POINTER(p->numa_group, NULL);
2048                put_numa_group(grp);
2049        }
2050
2051        p->numa_faults = NULL;
2052        kfree(numa_faults);
2053}
2054
2055/*
2056 * Got a PROT_NONE fault for a page on @node.
2057 */
2058void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2059{
2060        struct task_struct *p = current;
2061        bool migrated = flags & TNF_MIGRATED;
2062        int cpu_node = task_node(current);
2063        int local = !!(flags & TNF_FAULT_LOCAL);
2064        int priv;
2065
2066        if (!numabalancing_enabled)
2067                return;
2068
2069        /* for example, ksmd faulting in a user's mm */
2070        if (!p->mm)
2071                return;
2072
2073        /* Allocate buffer to track faults on a per-node basis */
2074        if (unlikely(!p->numa_faults)) {
2075                int size = sizeof(*p->numa_faults) *
2076                           NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2077
2078                p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2079                if (!p->numa_faults)
2080                        return;
2081
2082                p->total_numa_faults = 0;
2083                memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2084        }
2085
2086        /*
2087         * First accesses are treated as private, otherwise consider accesses
2088         * to be private if the accessing pid has not changed
2089         */
2090        if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2091                priv = 1;
2092        } else {
2093                priv = cpupid_match_pid(p, last_cpupid);
2094                if (!priv && !(flags & TNF_NO_GROUP))
2095                        task_numa_group(p, last_cpupid, flags, &priv);
2096        }
2097
2098        /*
2099         * If a workload spans multiple NUMA nodes, a shared fault that
2100         * occurs wholly within the set of nodes that the workload is
2101         * actively using should be counted as local. This allows the
2102         * scan rate to slow down when a workload has settled down.
2103         */
2104        if (!priv && !local && p->numa_group &&
2105                        node_isset(cpu_node, p->numa_group->active_nodes) &&
2106                        node_isset(mem_node, p->numa_group->active_nodes))
2107                local = 1;
2108
2109        task_numa_placement(p);
2110
2111        /*
2112         * Retry task to preferred node migration periodically, in case it
2113         * case it previously failed, or the scheduler moved us.
2114         */
2115        if (time_after(jiffies, p->numa_migrate_retry))
2116                numa_migrate_preferred(p);
2117
2118        if (migrated)
2119                p->numa_pages_migrated += pages;
2120        if (flags & TNF_MIGRATE_FAIL)
2121                p->numa_faults_locality[2] += pages;
2122
2123        p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2124        p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2125        p->numa_faults_locality[local] += pages;
2126}
2127
2128static void reset_ptenuma_scan(struct task_struct *p)
2129{
2130        /*
2131         * We only did a read acquisition of the mmap sem, so
2132         * p->mm->numa_scan_seq is written to without exclusive access
2133         * and the update is not guaranteed to be atomic. That's not
2134         * much of an issue though, since this is just used for
2135         * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2136         * expensive, to avoid any form of compiler optimizations:
2137         */
2138        WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2139        p->mm->numa_scan_offset = 0;
2140}
2141
2142/*
2143 * The expensive part of numa migration is done from task_work context.
2144 * Triggered from task_tick_numa().
2145 */
2146void task_numa_work(struct callback_head *work)
2147{
2148        unsigned long migrate, next_scan, now = jiffies;
2149        struct task_struct *p = current;
2150        struct mm_struct *mm = p->mm;
2151        struct vm_area_struct *vma;
2152        unsigned long start, end;
2153        unsigned long nr_pte_updates = 0;
2154        long pages;
2155
2156        WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2157
2158        work->next = work; /* protect against double add */
2159        /*
2160         * Who cares about NUMA placement when they're dying.
2161         *
2162         * NOTE: make sure not to dereference p->mm before this check,
2163         * exit_task_work() happens _after_ exit_mm() so we could be called
2164         * without p->mm even though we still had it when we enqueued this
2165         * work.
2166         */
2167        if (p->flags & PF_EXITING)
2168                return;
2169
2170        if (!mm->numa_next_scan) {
2171                mm->numa_next_scan = now +
2172                        msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2173        }
2174
2175        /*
2176         * Enforce maximal scan/migration frequency..
2177         */
2178        migrate = mm->numa_next_scan;
2179        if (time_before(now, migrate))
2180                return;
2181
2182        if (p->numa_scan_period == 0) {
2183                p->numa_scan_period_max = task_scan_max(p);
2184                p->numa_scan_period = task_scan_min(p);
2185        }
2186
2187        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2188        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2189                return;
2190
2191        /*
2192         * Delay this task enough that another task of this mm will likely win
2193         * the next time around.
2194         */
2195        p->node_stamp += 2 * TICK_NSEC;
2196
2197        start = mm->numa_scan_offset;
2198        pages = sysctl_numa_balancing_scan_size;
2199        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2200        if (!pages)
2201                return;
2202
2203        down_read(&mm->mmap_sem);
2204        vma = find_vma(mm, start);
2205        if (!vma) {
2206                reset_ptenuma_scan(p);
2207                start = 0;
2208                vma = mm->mmap;
2209        }
2210        for (; vma; vma = vma->vm_next) {
2211                if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2212                        is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2213                        continue;
2214                }
2215
2216                /*
2217                 * Shared library pages mapped by multiple processes are not
2218                 * migrated as it is expected they are cache replicated. Avoid
2219                 * hinting faults in read-only file-backed mappings or the vdso
2220                 * as migrating the pages will be of marginal benefit.
2221                 */
2222                if (!vma->vm_mm ||
2223                    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2224                        continue;
2225
2226                /*
2227                 * Skip inaccessible VMAs to avoid any confusion between
2228                 * PROT_NONE and NUMA hinting ptes
2229                 */
2230                if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2231                        continue;
2232
2233                do {
2234                        start = max(start, vma->vm_start);
2235                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2236                        end = min(end, vma->vm_end);
2237                        nr_pte_updates += change_prot_numa(vma, start, end);
2238
2239                        /*
2240                         * Scan sysctl_numa_balancing_scan_size but ensure that
2241                         * at least one PTE is updated so that unused virtual
2242                         * address space is quickly skipped.
2243                         */
2244                        if (nr_pte_updates)
2245                                pages -= (end - start) >> PAGE_SHIFT;
2246
2247                        start = end;
2248                        if (pages <= 0)
2249                                goto out;
2250
2251                        cond_resched();
2252                } while (end != vma->vm_end);
2253        }
2254
2255out:
2256        /*
2257         * It is possible to reach the end of the VMA list but the last few
2258         * VMAs are not guaranteed to the vma_migratable. If they are not, we
2259         * would find the !migratable VMA on the next scan but not reset the
2260         * scanner to the start so check it now.
2261         */
2262        if (vma)
2263                mm->numa_scan_offset = start;
2264        else
2265                reset_ptenuma_scan(p);
2266        up_read(&mm->mmap_sem);
2267}
2268
2269/*
2270 * Drive the periodic memory faults..
2271 */
2272void task_tick_numa(struct rq *rq, struct task_struct *curr)
2273{
2274        struct callback_head *work = &curr->numa_work;
2275        u64 period, now;
2276
2277        /*
2278         * We don't care about NUMA placement if we don't have memory.
2279         */
2280        if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2281                return;
2282
2283        /*
2284         * Using runtime rather than walltime has the dual advantage that
2285         * we (mostly) drive the selection from busy threads and that the
2286         * task needs to have done some actual work before we bother with
2287         * NUMA placement.
2288         */
2289        now = curr->se.sum_exec_runtime;
2290        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2291
2292        if (now - curr->node_stamp > period) {
2293                if (!curr->node_stamp)
2294                        curr->numa_scan_period = task_scan_min(curr);
2295                curr->node_stamp += period;
2296
2297                if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2298                        init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2299                        task_work_add(curr, work, true);
2300                }
2301        }
2302}
2303#else
2304static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2305{
2306}
2307
2308static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2309{
2310}
2311
2312static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2313{
2314}
2315#endif /* CONFIG_NUMA_BALANCING */
2316
2317static void
2318account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2319{
2320        update_load_add(&cfs_rq->load, se->load.weight);
2321        if (!parent_entity(se))
2322                update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2323#ifdef CONFIG_SMP
2324        if (entity_is_task(se)) {
2325                struct rq *rq = rq_of(cfs_rq);
2326
2327                account_numa_enqueue(rq, task_of(se));
2328                list_add(&se->group_node, &rq->cfs_tasks);
2329        }
2330#endif
2331        cfs_rq->nr_running++;
2332}
2333
2334static void
2335account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2336{
2337        update_load_sub(&cfs_rq->load, se->load.weight);
2338        if (!parent_entity(se))
2339                update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2340        if (entity_is_task(se)) {
2341                account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2342                list_del_init(&se->group_node);
2343        }
2344        cfs_rq->nr_running--;
2345}
2346
2347#ifdef CONFIG_FAIR_GROUP_SCHED
2348# ifdef CONFIG_SMP
2349static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2350{
2351        long tg_weight;
2352
2353        /*
2354         * Use this CPU's actual weight instead of the last load_contribution
2355         * to gain a more accurate current total weight. See
2356         * update_cfs_rq_load_contribution().
2357         */
2358        tg_weight = atomic_long_read(&tg->load_avg);
2359        tg_weight -= cfs_rq->tg_load_contrib;
2360        tg_weight += cfs_rq->load.weight;
2361
2362        return tg_weight;
2363}
2364
2365static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2366{
2367        long tg_weight, load, shares;
2368
2369        tg_weight = calc_tg_weight(tg, cfs_rq);
2370        load = cfs_rq->load.weight;
2371
2372        shares = (tg->shares * load);
2373        if (tg_weight)
2374                shares /= tg_weight;
2375
2376        if (shares < MIN_SHARES)
2377                shares = MIN_SHARES;
2378        if (shares > tg->shares)
2379                shares = tg->shares;
2380
2381        return shares;
2382}
2383# else /* CONFIG_SMP */
2384static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2385{
2386        return tg->shares;
2387}
2388# endif /* CONFIG_SMP */
2389static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2390                            unsigned long weight)
2391{
2392        if (se->on_rq) {
2393                /* commit outstanding execution time */
2394                if (cfs_rq->curr == se)
2395                        update_curr(cfs_rq);
2396                account_entity_dequeue(cfs_rq, se);
2397        }
2398
2399        update_load_set(&se->load, weight);
2400
2401        if (se->on_rq)
2402                account_entity_enqueue(cfs_rq, se);
2403}
2404
2405static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2406
2407static void update_cfs_shares(struct cfs_rq *cfs_rq)
2408{
2409        struct task_group *tg;
2410        struct sched_entity *se;
2411        long shares;
2412
2413        tg = cfs_rq->tg;
2414        se = tg->se[cpu_of(rq_of(cfs_rq))];
2415        if (!se || throttled_hierarchy(cfs_rq))
2416                return;
2417#ifndef CONFIG_SMP
2418        if (likely(se->load.weight == tg->shares))
2419                return;
2420#endif
2421        shares = calc_cfs_shares(cfs_rq, tg);
2422
2423        reweight_entity(cfs_rq_of(se), se, shares);
2424}
2425#else /* CONFIG_FAIR_GROUP_SCHED */
2426static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2427{
2428}
2429#endif /* CONFIG_FAIR_GROUP_SCHED */
2430
2431#ifdef CONFIG_SMP
2432/*
2433 * We choose a half-life close to 1 scheduling period.
2434 * Note: The tables below are dependent on this value.
2435 */
2436#define LOAD_AVG_PERIOD 32
2437#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2438#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2439
2440/* Precomputed fixed inverse multiplies for multiplication by y^n */
2441static const u32 runnable_avg_yN_inv[] = {
2442        0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2443        0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2444        0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2445        0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2446        0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2447        0x85aac367, 0x82cd8698,
2448};
2449
2450/*
2451 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2452 * over-estimates when re-combining.
2453 */
2454static const u32 runnable_avg_yN_sum[] = {
2455            0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2456         9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2457        17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2458};
2459
2460/*
2461 * Approximate:
2462 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2463 */
2464static __always_inline u64 decay_load(u64 val, u64 n)
2465{
2466        unsigned int local_n;
2467
2468        if (!n)
2469                return val;
2470        else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2471                return 0;
2472
2473        /* after bounds checking we can collapse to 32-bit */
2474        local_n = n;
2475
2476        /*
2477         * As y^PERIOD = 1/2, we can combine
2478         *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2479         * With a look-up table which covers y^n (n<PERIOD)
2480         *
2481         * To achieve constant time decay_load.
2482         */
2483        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2484                val >>= local_n / LOAD_AVG_PERIOD;
2485                local_n %= LOAD_AVG_PERIOD;
2486        }
2487
2488        val *= runnable_avg_yN_inv[local_n];
2489        /* We don't use SRR here since we always want to round down. */
2490        return val >> 32;
2491}
2492
2493/*
2494 * For updates fully spanning n periods, the contribution to runnable
2495 * average will be: \Sum 1024*y^n
2496 *
2497 * We can compute this reasonably efficiently by combining:
2498 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2499 */
2500static u32 __compute_runnable_contrib(u64 n)
2501{
2502        u32 contrib = 0;
2503
2504        if (likely(n <= LOAD_AVG_PERIOD))
2505                return runnable_avg_yN_sum[n];
2506        else if (unlikely(n >= LOAD_AVG_MAX_N))
2507                return LOAD_AVG_MAX;
2508
2509        /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2510        do {
2511                contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2512                contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2513
2514                n -= LOAD_AVG_PERIOD;
2515        } while (n > LOAD_AVG_PERIOD);
2516
2517        contrib = decay_load(contrib, n);
2518        return contrib + runnable_avg_yN_sum[n];
2519}
2520
2521/*
2522 * We can represent the historical contribution to runnable average as the
2523 * coefficients of a geometric series.  To do this we sub-divide our runnable
2524 * history into segments of approximately 1ms (1024us); label the segment that
2525 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2526 *
2527 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2528 *      p0            p1           p2
2529 *     (now)       (~1ms ago)  (~2ms ago)
2530 *
2531 * Let u_i denote the fraction of p_i that the entity was runnable.
2532 *
2533 * We then designate the fractions u_i as our co-efficients, yielding the
2534 * following representation of historical load:
2535 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2536 *
2537 * We choose y based on the with of a reasonably scheduling period, fixing:
2538 *   y^32 = 0.5
2539 *
2540 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2541 * approximately half as much as the contribution to load within the last ms
2542 * (u_0).
2543 *
2544 * When a period "rolls over" and we have new u_0`, multiplying the previous
2545 * sum again by y is sufficient to update:
2546 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2547 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2548 */
2549static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
2550                                                        struct sched_avg *sa,
2551                                                        int runnable,
2552                                                        int running)
2553{
2554        u64 delta, periods;
2555        u32 runnable_contrib;
2556        int delta_w, decayed = 0;
2557        unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2558
2559        delta = now - sa->last_runnable_update;
2560        /*
2561         * This should only happen when time goes backwards, which it
2562         * unfortunately does during sched clock init when we swap over to TSC.
2563         */
2564        if ((s64)delta < 0) {
2565                sa->last_runnable_update = now;
2566                return 0;
2567        }
2568
2569        /*
2570         * Use 1024ns as the unit of measurement since it's a reasonable
2571         * approximation of 1us and fast to compute.
2572         */
2573        delta >>= 10;
2574        if (!delta)
2575                return 0;
2576        sa->last_runnable_update = now;
2577
2578        /* delta_w is the amount already accumulated against our next period */
2579        delta_w = sa->avg_period % 1024;
2580        if (delta + delta_w >= 1024) {
2581                /* period roll-over */
2582                decayed = 1;
2583
2584                /*
2585                 * Now that we know we're crossing a period boundary, figure
2586                 * out how much from delta we need to complete the current
2587                 * period and accrue it.
2588                 */
2589                delta_w = 1024 - delta_w;
2590                if (runnable)
2591                        sa->runnable_avg_sum += delta_w;
2592                if (running)
2593                        sa->running_avg_sum += delta_w * scale_freq
2594                                >> SCHED_CAPACITY_SHIFT;
2595                sa->avg_period += delta_w;
2596
2597                delta -= delta_w;
2598
2599                /* Figure out how many additional periods this update spans */
2600                periods = delta / 1024;
2601                delta %= 1024;
2602
2603                sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2604                                                  periods + 1);
2605                sa->running_avg_sum = decay_load(sa->running_avg_sum,
2606                                                  periods + 1);
2607                sa->avg_period = decay_load(sa->avg_period,
2608                                                     periods + 1);
2609
2610                /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2611                runnable_contrib = __compute_runnable_contrib(periods);
2612                if (runnable)
2613                        sa->runnable_avg_sum += runnable_contrib;
2614                if (running)
2615                        sa->running_avg_sum += runnable_contrib * scale_freq
2616                                >> SCHED_CAPACITY_SHIFT;
2617                sa->avg_period += runnable_contrib;
2618        }
2619
2620        /* Remainder of delta accrued against u_0` */
2621        if (runnable)
2622                sa->runnable_avg_sum += delta;
2623        if (running)
2624                sa->running_avg_sum += delta * scale_freq
2625                        >> SCHED_CAPACITY_SHIFT;
2626        sa->avg_period += delta;
2627
2628        return decayed;
2629}
2630
2631/* Synchronize an entity's decay with its parenting cfs_rq.*/
2632static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2633{
2634        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2635        u64 decays = atomic64_read(&cfs_rq->decay_counter);
2636
2637        decays -= se->avg.decay_count;
2638        se->avg.decay_count = 0;
2639        if (!decays)
2640                return 0;
2641
2642        se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2643        se->avg.utilization_avg_contrib =
2644                decay_load(se->avg.utilization_avg_contrib, decays);
2645
2646        return decays;
2647}
2648
2649#ifdef CONFIG_FAIR_GROUP_SCHED
2650static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2651                                                 int force_update)
2652{
2653        struct task_group *tg = cfs_rq->tg;
2654        long tg_contrib;
2655
2656        tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2657        tg_contrib -= cfs_rq->tg_load_contrib;
2658
2659        if (!tg_contrib)
2660                return;
2661
2662        if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2663                atomic_long_add(tg_contrib, &tg->load_avg);
2664                cfs_rq->tg_load_contrib += tg_contrib;
2665        }
2666}
2667
2668/*
2669 * Aggregate cfs_rq runnable averages into an equivalent task_group
2670 * representation for computing load contributions.
2671 */
2672static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2673                                                  struct cfs_rq *cfs_rq)
2674{
2675        struct task_group *tg = cfs_rq->tg;
2676        long contrib;
2677
2678        /* The fraction of a cpu used by this cfs_rq */
2679        contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2680                          sa->avg_period + 1);
2681        contrib -= cfs_rq->tg_runnable_contrib;
2682
2683        if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2684                atomic_add(contrib, &tg->runnable_avg);
2685                cfs_rq->tg_runnable_contrib += contrib;
2686        }
2687}
2688
2689static inline void __update_group_entity_contrib(struct sched_entity *se)
2690{
2691        struct cfs_rq *cfs_rq = group_cfs_rq(se);
2692        struct task_group *tg = cfs_rq->tg;
2693        int runnable_avg;
2694
2695        u64 contrib;
2696
2697        contrib = cfs_rq->tg_load_contrib * tg->shares;
2698        se->avg.load_avg_contrib = div_u64(contrib,
2699                                     atomic_long_read(&tg->load_avg) + 1);
2700
2701        /*
2702         * For group entities we need to compute a correction term in the case
2703         * that they are consuming <1 cpu so that we would contribute the same
2704         * load as a task of equal weight.
2705         *
2706         * Explicitly co-ordinating this measurement would be expensive, but
2707         * fortunately the sum of each cpus contribution forms a usable
2708         * lower-bound on the true value.
2709         *
2710         * Consider the aggregate of 2 contributions.  Either they are disjoint
2711         * (and the sum represents true value) or they are disjoint and we are
2712         * understating by the aggregate of their overlap.
2713         *
2714         * Extending this to N cpus, for a given overlap, the maximum amount we
2715         * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2716         * cpus that overlap for this interval and w_i is the interval width.
2717         *
2718         * On a small machine; the first term is well-bounded which bounds the
2719         * total error since w_i is a subset of the period.  Whereas on a
2720         * larger machine, while this first term can be larger, if w_i is the
2721         * of consequential size guaranteed to see n_i*w_i quickly converge to
2722         * our upper bound of 1-cpu.
2723         */
2724        runnable_avg = atomic_read(&tg->runnable_avg);
2725        if (runnable_avg < NICE_0_LOAD) {
2726                se->avg.load_avg_contrib *= runnable_avg;
2727                se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2728        }
2729}
2730
2731static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2732{
2733        __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2734                        runnable, runnable);
2735        __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2736}
2737#else /* CONFIG_FAIR_GROUP_SCHED */
2738static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2739                                                 int force_update) {}
2740static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2741                                                  struct cfs_rq *cfs_rq) {}
2742static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2743static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2744#endif /* CONFIG_FAIR_GROUP_SCHED */
2745
2746static inline void __update_task_entity_contrib(struct sched_entity *se)
2747{
2748        u32 contrib;
2749
2750        /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2751        contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2752        contrib /= (se->avg.avg_period + 1);
2753        se->avg.load_avg_contrib = scale_load(contrib);
2754}
2755
2756/* Compute the current contribution to load_avg by se, return any delta */
2757static long __update_entity_load_avg_contrib(struct sched_entity *se)
2758{
2759        long old_contrib = se->avg.load_avg_contrib;
2760
2761        if (entity_is_task(se)) {
2762                __update_task_entity_contrib(se);
2763        } else {
2764                __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2765                __update_group_entity_contrib(se);
2766        }
2767
2768        return se->avg.load_avg_contrib - old_contrib;
2769}
2770
2771
2772static inline void __update_task_entity_utilization(struct sched_entity *se)
2773{
2774        u32 contrib;
2775
2776        /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2777        contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2778        contrib /= (se->avg.avg_period + 1);
2779        se->avg.utilization_avg_contrib = scale_load(contrib);
2780}
2781
2782static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2783{
2784        long old_contrib = se->avg.utilization_avg_contrib;
2785
2786        if (entity_is_task(se))
2787                __update_task_entity_utilization(se);
2788        else
2789                se->avg.utilization_avg_contrib =
2790                                        group_cfs_rq(se)->utilization_load_avg;
2791
2792        return se->avg.utilization_avg_contrib - old_contrib;
2793}
2794
2795static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2796                                                 long load_contrib)
2797{
2798        if (likely(load_contrib < cfs_rq->blocked_load_avg))
2799                cfs_rq->blocked_load_avg -= load_contrib;
2800        else
2801                cfs_rq->blocked_load_avg = 0;
2802}
2803
2804static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2805
2806/* Update a sched_entity's runnable average */
2807static inline void update_entity_load_avg(struct sched_entity *se,
2808                                          int update_cfs_rq)
2809{
2810        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2811        long contrib_delta, utilization_delta;
2812        int cpu = cpu_of(rq_of(cfs_rq));
2813        u64 now;
2814
2815        /*
2816         * For a group entity we need to use their owned cfs_rq_clock_task() in
2817         * case they are the parent of a throttled hierarchy.
2818         */
2819        if (entity_is_task(se))
2820                now = cfs_rq_clock_task(cfs_rq);
2821        else
2822                now = cfs_rq_clock_task(group_cfs_rq(se));
2823
2824        if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
2825                                        cfs_rq->curr == se))
2826                return;
2827
2828        contrib_delta = __update_entity_load_avg_contrib(se);
2829        utilization_delta = __update_entity_utilization_avg_contrib(se);
2830
2831        if (!update_cfs_rq)
2832                return;
2833
2834        if (se->on_rq) {
2835                cfs_rq->runnable_load_avg += contrib_delta;
2836                cfs_rq->utilization_load_avg += utilization_delta;
2837        } else {
2838                subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2839        }
2840}
2841
2842/*
2843 * Decay the load contributed by all blocked children and account this so that
2844 * their contribution may appropriately discounted when they wake up.
2845 */
2846static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2847{
2848        u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2849        u64 decays;
2850
2851        decays = now - cfs_rq->last_decay;
2852        if (!decays && !force_update)
2853                return;
2854
2855        if (atomic_long_read(&cfs_rq->removed_load)) {
2856                unsigned long removed_load;
2857                removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2858                subtract_blocked_load_contrib(cfs_rq, removed_load);
2859        }
2860
2861        if (decays) {
2862                cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2863                                                      decays);
2864                atomic64_add(decays, &cfs_rq->decay_counter);
2865                cfs_rq->last_decay = now;
2866        }
2867
2868        __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2869}
2870
2871/* Add the load generated by se into cfs_rq's child load-average */
2872static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2873                                                  struct sched_entity *se,
2874                                                  int wakeup)
2875{
2876        /*
2877         * We track migrations using entity decay_count <= 0, on a wake-up
2878         * migration we use a negative decay count to track the remote decays
2879         * accumulated while sleeping.
2880         *
2881         * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2882         * are seen by enqueue_entity_load_avg() as a migration with an already
2883         * constructed load_avg_contrib.
2884         */
2885        if (unlikely(se->avg.decay_count <= 0)) {
2886                se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2887                if (se->avg.decay_count) {
2888                        /*
2889                         * In a wake-up migration we have to approximate the
2890                         * time sleeping.  This is because we can't synchronize
2891                         * clock_task between the two cpus, and it is not
2892                         * guaranteed to be read-safe.  Instead, we can
2893                         * approximate this using our carried decays, which are
2894                         * explicitly atomically readable.
2895                         */
2896                        se->avg.last_runnable_update -= (-se->avg.decay_count)
2897                                                        << 20;
2898                        update_entity_load_avg(se, 0);
2899                        /* Indicate that we're now synchronized and on-rq */
2900                        se->avg.decay_count = 0;
2901                }
2902                wakeup = 0;
2903        } else {
2904                __synchronize_entity_decay(se);
2905        }
2906
2907        /* migrated tasks did not contribute to our blocked load */
2908        if (wakeup) {
2909                subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2910                update_entity_load_avg(se, 0);
2911        }
2912
2913        cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2914        cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
2915        /* we force update consideration on load-balancer moves */
2916        update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2917}
2918
2919/*
2920 * Remove se's load from this cfs_rq child load-average, if the entity is
2921 * transitioning to a blocked state we track its projected decay using
2922 * blocked_load_avg.
2923 */
2924static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2925                                                  struct sched_entity *se,
2926                                                  int sleep)
2927{
2928        update_entity_load_avg(se, 1);
2929        /* we force update consideration on load-balancer moves */
2930        update_cfs_rq_blocked_load(cfs_rq, !sleep);
2931
2932        cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2933        cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
2934        if (sleep) {
2935                cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2936                se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2937        } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2938}
2939
2940/*
2941 * Update the rq's load with the elapsed running time before entering
2942 * idle. if the last scheduled task is not a CFS task, idle_enter will
2943 * be the only way to update the runnable statistic.
2944 */
2945void idle_enter_fair(struct rq *this_rq)
2946{
2947        update_rq_runnable_avg(this_rq, 1);
2948}
2949
2950/*
2951 * Update the rq's load with the elapsed idle time before a task is
2952 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2953 * be the only way to update the runnable statistic.
2954 */
2955void idle_exit_fair(struct rq *this_rq)
2956{
2957        update_rq_runnable_avg(this_rq, 0);
2958}
2959
2960static int idle_balance(struct rq *this_rq);
2961
2962#else /* CONFIG_SMP */
2963
2964static inline void update_entity_load_avg(struct sched_entity *se,
2965                                          int update_cfs_rq) {}
2966static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2967static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2968                                           struct sched_entity *se,
2969                                           int wakeup) {}
2970static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2971                                           struct sched_entity *se,
2972                                           int sleep) {}
2973static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2974                                              int force_update) {}
2975
2976static inline int idle_balance(struct rq *rq)
2977{
2978        return 0;
2979}
2980
2981#endif /* CONFIG_SMP */
2982
2983static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2984{
2985#ifdef CONFIG_SCHEDSTATS
2986        struct task_struct *tsk = NULL;
2987
2988        if (entity_is_task(se))
2989                tsk = task_of(se);
2990
2991        if (se->statistics.sleep_start) {
2992                u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2993
2994                if ((s64)delta < 0)
2995                        delta = 0;
2996
2997                if (unlikely(delta > se->statistics.sleep_max))
2998                        se->statistics.sleep_max = delta;
2999
3000                se->statistics.sleep_start = 0;
3001                se->statistics.sum_sleep_runtime += delta;
3002
3003                if (tsk) {
3004                        account_scheduler_latency(tsk, delta >> 10, 1);
3005                        trace_sched_stat_sleep(tsk, delta);
3006                }
3007        }
3008        if (se->statistics.block_start) {
3009                u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3010
3011                if ((s64)delta < 0)
3012                        delta = 0;
3013
3014                if (unlikely(delta > se->statistics.block_max))
3015                        se->statistics.block_max = delta;
3016
3017                se->statistics.block_start = 0;
3018                se->statistics.sum_sleep_runtime += delta;
3019
3020                if (tsk) {
3021                        if (tsk->in_iowait) {
3022                                se->statistics.iowait_sum += delta;
3023                                se->statistics.iowait_count++;
3024                                trace_sched_stat_iowait(tsk, delta);
3025                        }
3026
3027                        trace_sched_stat_blocked(tsk, delta);
3028
3029                        /*
3030                         * Blocking time is in units of nanosecs, so shift by
3031                         * 20 to get a milliseconds-range estimation of the
3032                         * amount of time that the task spent sleeping:
3033                         */
3034                        if (unlikely(prof_on == SLEEP_PROFILING)) {
3035                                profile_hits(SLEEP_PROFILING,
3036                                                (void *)get_wchan(tsk),
3037                                                delta >> 20);
3038                        }
3039                        account_scheduler_latency(tsk, delta >> 10, 0);
3040                }
3041        }
3042#endif
3043}
3044
3045static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3046{
3047#ifdef CONFIG_SCHED_DEBUG
3048        s64 d = se->vruntime - cfs_rq->min_vruntime;
3049
3050        if (d < 0)
3051                d = -d;
3052
3053        if (d > 3*sysctl_sched_latency)
3054                schedstat_inc(cfs_rq, nr_spread_over);
3055#endif
3056}
3057
3058static void
3059place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3060{
3061        u64 vruntime = cfs_rq->min_vruntime;
3062
3063        /*
3064         * The 'current' period is already promised to the current tasks,
3065         * however the extra weight of the new task will slow them down a
3066         * little, place the new task so that it fits in the slot that
3067         * stays open at the end.
3068         */
3069        if (initial && sched_feat(START_DEBIT))
3070                vruntime += sched_vslice(cfs_rq, se);
3071
3072        /* sleeps up to a single latency don't count. */
3073        if (!initial) {
3074                unsigned long thresh = sysctl_sched_latency;
3075
3076                /*
3077                 * Halve their sleep time's effect, to allow
3078                 * for a gentler effect of sleepers:
3079                 */
3080                if (sched_feat(GENTLE_FAIR_SLEEPERS))
3081                        thresh >>= 1;
3082
3083                vruntime -= thresh;
3084        }
3085
3086        /* ensure we never gain time by being placed backwards. */
3087        se->vruntime = max_vruntime(se->vruntime, vruntime);
3088}
3089
3090static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3091
3092static void
3093enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3094{
3095        /*
3096         * Update the normalized vruntime before updating min_vruntime
3097         * through calling update_curr().
3098         */
3099        if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3100                se->vruntime += cfs_rq->min_vruntime;
3101
3102        /*
3103         * Update run-time statistics of the 'current'.
3104         */
3105        update_curr(cfs_rq);
3106        enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3107        account_entity_enqueue(cfs_rq, se);
3108        update_cfs_shares(cfs_rq);
3109
3110        if (flags & ENQUEUE_WAKEUP) {
3111                place_entity(cfs_rq, se, 0);
3112                enqueue_sleeper(cfs_rq, se);
3113        }
3114
3115        update_stats_enqueue(cfs_rq, se);
3116        check_spread(cfs_rq, se);
3117        if (se != cfs_rq->curr)
3118                __enqueue_entity(cfs_rq, se);
3119        se->on_rq = 1;
3120
3121        if (cfs_rq->nr_running == 1) {
3122                list_add_leaf_cfs_rq(cfs_rq);
3123                check_enqueue_throttle(cfs_rq);
3124        }
3125}
3126
3127static void __clear_buddies_last(struct sched_entity *se)
3128{
3129        for_each_sched_entity(se) {
3130                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3131                if (cfs_rq->last != se)
3132                        break;
3133
3134                cfs_rq->last = NULL;
3135        }
3136}
3137
3138static void __clear_buddies_next(struct sched_entity *se)
3139{
3140        for_each_sched_entity(se) {
3141                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3142                if (cfs_rq->next != se)
3143                        break;
3144
3145                cfs_rq->next = NULL;
3146        }
3147}
3148
3149static void __clear_buddies_skip(struct sched_entity *se)
3150{
3151        for_each_sched_entity(se) {
3152                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3153                if (cfs_rq->skip != se)
3154                        break;
3155
3156                cfs_rq->skip = NULL;
3157        }
3158}
3159
3160static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3161{
3162        if (cfs_rq->last == se)
3163                __clear_buddies_last(se);
3164
3165        if (cfs_rq->next == se)
3166                __clear_buddies_next(se);
3167
3168        if (cfs_rq->skip == se)
3169                __clear_buddies_skip(se);
3170}
3171
3172static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3173
3174static void
3175dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3176{
3177        /*
3178         * Update run-time statistics of the 'current'.
3179         */
3180        update_curr(cfs_rq);
3181        dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3182
3183        update_stats_dequeue(cfs_rq, se);
3184        if (flags & DEQUEUE_SLEEP) {
3185#ifdef CONFIG_SCHEDSTATS
3186                if (entity_is_task(se)) {
3187                        struct task_struct *tsk = task_of(se);
3188
3189                        if (tsk->state & TASK_INTERRUPTIBLE)
3190                                se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3191                        if (tsk->state & TASK_UNINTERRUPTIBLE)
3192                                se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3193                }
3194#endif
3195        }
3196
3197        clear_buddies(cfs_rq, se);
3198
3199        if (se != cfs_rq->curr)
3200                __dequeue_entity(cfs_rq, se);
3201        se->on_rq = 0;
3202        account_entity_dequeue(cfs_rq, se);
3203
3204        /*
3205         * Normalize the entity after updating the min_vruntime because the
3206         * update can refer to the ->curr item and we need to reflect this
3207         * movement in our normalized position.
3208         */
3209        if (!(flags & DEQUEUE_SLEEP))
3210                se->vruntime -= cfs_rq->min_vruntime;
3211
3212        /* return excess runtime on last dequeue */
3213        return_cfs_rq_runtime(cfs_rq);
3214
3215        update_min_vruntime(cfs_rq);
3216        update_cfs_shares(cfs_rq);
3217}
3218
3219/*
3220 * Preempt the current task with a newly woken task if needed:
3221 */
3222static void
3223check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3224{
3225        unsigned long ideal_runtime, delta_exec;
3226        struct sched_entity *se;
3227        s64 delta;
3228
3229        ideal_runtime = sched_slice(cfs_rq, curr);
3230        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3231        if (delta_exec > ideal_runtime) {
3232                resched_curr(rq_of(cfs_rq));
3233                /*
3234                 * The current task ran long enough, ensure it doesn't get
3235                 * re-elected due to buddy favours.
3236                 */
3237                clear_buddies(cfs_rq, curr);
3238                return;
3239        }
3240
3241        /*
3242         * Ensure that a task that missed wakeup preemption by a
3243         * narrow margin doesn't have to wait for a full slice.
3244         * This also mitigates buddy induced latencies under load.
3245         */
3246        if (delta_exec < sysctl_sched_min_granularity)
3247                return;
3248
3249        se = __pick_first_entity(cfs_rq);
3250        delta = curr->vruntime - se->vruntime;
3251
3252        if (delta < 0)
3253                return;
3254
3255        if (delta > ideal_runtime)
3256                resched_curr(rq_of(cfs_rq));
3257}
3258
3259static void
3260set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3261{
3262        /* 'current' is not kept within the tree. */
3263        if (se->on_rq) {
3264                /*
3265                 * Any task has to be enqueued before it get to execute on
3266                 * a CPU. So account for the time it spent waiting on the
3267                 * runqueue.
3268                 */
3269                update_stats_wait_end(cfs_rq, se);
3270                __dequeue_entity(cfs_rq, se);
3271                update_entity_load_avg(se, 1);
3272        }
3273
3274        update_stats_curr_start(cfs_rq, se);
3275        cfs_rq->curr = se;
3276#ifdef CONFIG_SCHEDSTATS
3277        /*
3278         * Track our maximum slice length, if the CPU's load is at
3279         * least twice that of our own weight (i.e. dont track it
3280         * when there are only lesser-weight tasks around):
3281         */
3282        if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3283                se->statistics.slice_max = max(se->statistics.slice_max,
3284                        se->sum_exec_runtime - se->prev_sum_exec_runtime);
3285        }
3286#endif
3287        se->prev_sum_exec_runtime = se->sum_exec_runtime;
3288}
3289
3290static int
3291wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3292
3293/*
3294 * Pick the next process, keeping these things in mind, in this order:
3295 * 1) keep things fair between processes/task groups
3296 * 2) pick the "next" process, since someone really wants that to run
3297 * 3) pick the "last" process, for cache locality
3298 * 4) do not run the "skip" process, if something else is available
3299 */
3300static struct sched_entity *
3301pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3302{
3303        struct sched_entity *left = __pick_first_entity(cfs_rq);
3304        struct sched_entity *se;
3305
3306        /*
3307         * If curr is set we have to see if its left of the leftmost entity
3308         * still in the tree, provided there was anything in the tree at all.
3309         */
3310        if (!left || (curr && entity_before(curr, left)))
3311                left = curr;
3312
3313        se = left; /* ideally we run the leftmost entity */
3314
3315        /*
3316         * Avoid running the skip buddy, if running something else can
3317         * be done without getting too unfair.
3318         */
3319        if (cfs_rq->skip == se) {
3320                struct sched_entity *second;
3321
3322                if (se == curr) {
3323                        second = __pick_first_entity(cfs_rq);
3324                } else {
3325                        second = __pick_next_entity(se);
3326                        if (!second || (curr && entity_before(curr, second)))
3327                                second = curr;
3328                }
3329
3330                if (second && wakeup_preempt_entity(second, left) < 1)
3331                        se = second;
3332        }
3333
3334        /*
3335         * Prefer last buddy, try to return the CPU to a preempted task.
3336         */
3337        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3338                se = cfs_rq->last;
3339
3340        /*
3341         * Someone really wants this to run. If it's not unfair, run it.
3342         */
3343        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3344                se = cfs_rq->next;
3345
3346        clear_buddies(cfs_rq, se);
3347
3348        return se;
3349}
3350
3351static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3352
3353static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3354{
3355        /*
3356         * If still on the runqueue then deactivate_task()
3357         * was not called and update_curr() has to be done:
3358         */
3359        if (prev->on_rq)
3360                update_curr(cfs_rq);
3361
3362        /* throttle cfs_rqs exceeding runtime */
3363        check_cfs_rq_runtime(cfs_rq);
3364
3365        check_spread(cfs_rq, prev);
3366        if (prev->on_rq) {
3367                update_stats_wait_start(cfs_rq, prev);
3368                /* Put 'current' back into the tree. */
3369                __enqueue_entity(cfs_rq, prev);
3370                /* in !on_rq case, update occurred at dequeue */
3371                update_entity_load_avg(prev, 1);
3372        }
3373        cfs_rq->curr = NULL;
3374}
3375
3376static void
3377entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3378{
3379        /*
3380         * Update run-time statistics of the 'current'.
3381         */
3382        update_curr(cfs_rq);
3383
3384        /*
3385         * Ensure that runnable average is periodically updated.
3386         */
3387        update_entity_load_avg(curr, 1);
3388        update_cfs_rq_blocked_load(cfs_rq, 1);
3389        update_cfs_shares(cfs_rq);
3390
3391#ifdef CONFIG_SCHED_HRTICK
3392        /*
3393         * queued ticks are scheduled to match the slice, so don't bother
3394         * validating it and just reschedule.
3395         */
3396        if (queued) {
3397                resched_curr(rq_of(cfs_rq));
3398                return;
3399        }
3400        /*
3401         * don't let the period tick interfere with the hrtick preemption
3402         */
3403        if (!sched_feat(DOUBLE_TICK) &&
3404                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3405                return;
3406#endif
3407
3408        if (cfs_rq->nr_running > 1)
3409                check_preempt_tick(cfs_rq, curr);
3410}
3411
3412
3413/**************************************************
3414 * CFS bandwidth control machinery
3415 */
3416
3417#ifdef CONFIG_CFS_BANDWIDTH
3418
3419#ifdef HAVE_JUMP_LABEL
3420static struct static_key __cfs_bandwidth_used;
3421
3422static inline bool cfs_bandwidth_used(void)
3423{
3424        return static_key_false(&__cfs_bandwidth_used);
3425}
3426
3427void cfs_bandwidth_usage_inc(void)
3428{
3429        static_key_slow_inc(&__cfs_bandwidth_used);
3430}
3431
3432void cfs_bandwidth_usage_dec(void)
3433{
3434        static_key_slow_dec(&__cfs_bandwidth_used);
3435}
3436#else /* HAVE_JUMP_LABEL */
3437static bool cfs_bandwidth_used(void)
3438{
3439        return true;
3440}
3441
3442void cfs_bandwidth_usage_inc(void) {}
3443void cfs_bandwidth_usage_dec(void) {}
3444#endif /* HAVE_JUMP_LABEL */
3445
3446/*
3447 * default period for cfs group bandwidth.
3448 * default: 0.1s, units: nanoseconds
3449 */
3450static inline u64 default_cfs_period(void)
3451{
3452        return 100000000ULL;
3453}
3454
3455static inline u64 sched_cfs_bandwidth_slice(void)
3456{
3457        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3458}
3459
3460/*
3461 * Replenish runtime according to assigned quota and update expiration time.
3462 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3463 * additional synchronization around rq->lock.
3464 *
3465 * requires cfs_b->lock
3466 */
3467void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3468{
3469        u64 now;
3470
3471        if (cfs_b->quota == RUNTIME_INF)
3472                return;
3473
3474        now = sched_clock_cpu(smp_processor_id());
3475        cfs_b->runtime = cfs_b->quota;
3476        cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3477}
3478
3479static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3480{
3481        return &tg->cfs_bandwidth;
3482}
3483
3484/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3485static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3486{
3487        if (unlikely(cfs_rq->throttle_count))
3488                return cfs_rq->throttled_clock_task;
3489
3490        return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3491}
3492
3493/* returns 0 on failure to allocate runtime */
3494static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3495{
3496        struct task_group *tg = cfs_rq->tg;
3497        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3498        u64 amount = 0, min_amount, expires;
3499
3500        /* note: this is a positive sum as runtime_remaining <= 0 */
3501        min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3502
3503        raw_spin_lock(&cfs_b->lock);
3504        if (cfs_b->quota == RUNTIME_INF)
3505                amount = min_amount;
3506        else {
3507                start_cfs_bandwidth(cfs_b);
3508
3509                if (cfs_b->runtime > 0) {
3510                        amount = min(cfs_b->runtime, min_amount);
3511                        cfs_b->runtime -= amount;
3512                        cfs_b->idle = 0;
3513                }
3514        }
3515        expires = cfs_b->runtime_expires;
3516        raw_spin_unlock(&cfs_b->lock);
3517
3518        cfs_rq->runtime_remaining += amount;
3519        /*
3520         * we may have advanced our local expiration to account for allowed
3521         * spread between our sched_clock and the one on which runtime was
3522         * issued.
3523         */
3524        if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3525                cfs_rq->runtime_expires = expires;
3526
3527        return cfs_rq->runtime_remaining > 0;
3528}
3529
3530/*
3531 * Note: This depends on the synchronization provided by sched_clock and the
3532 * fact that rq->clock snapshots this value.
3533 */
3534static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3535{
3536        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3537
3538        /* if the deadline is ahead of our clock, nothing to do */
3539        if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3540                return;
3541
3542        if (cfs_rq->runtime_remaining < 0)
3543                return;
3544
3545        /*
3546         * If the local deadline has passed we have to consider the
3547         * possibility that our sched_clock is 'fast' and the global deadline
3548         * has not truly expired.
3549         *
3550         * Fortunately we can check determine whether this the case by checking
3551         * whether the global deadline has advanced. It is valid to compare
3552         * cfs_b->runtime_expires without any locks since we only care about
3553         * exact equality, so a partial write will still work.
3554         */
3555
3556        if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3557                /* extend local deadline, drift is bounded above by 2 ticks */
3558                cfs_rq->runtime_expires += TICK_NSEC;
3559        } else {
3560                /* global deadline is ahead, expiration has passed */
3561                cfs_rq->runtime_remaining = 0;
3562        }
3563}
3564
3565static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3566{
3567        /* dock delta_exec before expiring quota (as it could span periods) */
3568        cfs_rq->runtime_remaining -= delta_exec;
3569        expire_cfs_rq_runtime(cfs_rq);
3570
3571        if (likely(cfs_rq->runtime_remaining > 0))
3572                return;
3573
3574        /*
3575         * if we're unable to extend our runtime we resched so that the active
3576         * hierarchy can be throttled
3577         */
3578        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3579                resched_curr(rq_of(cfs_rq));
3580}
3581
3582static __always_inline
3583void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3584{
3585        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3586                return;
3587
3588        __account_cfs_rq_runtime(cfs_rq, delta_exec);
3589}
3590
3591static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3592{
3593        return cfs_bandwidth_used() && cfs_rq->throttled;
3594}
3595
3596/* check whether cfs_rq, or any parent, is throttled */
3597static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3598{
3599        return cfs_bandwidth_used() && cfs_rq->throttle_count;
3600}
3601
3602/*
3603 * Ensure that neither of the group entities corresponding to src_cpu or
3604 * dest_cpu are members of a throttled hierarchy when performing group
3605 * load-balance operations.
3606 */
3607static inline int throttled_lb_pair(struct task_group *tg,
3608                                    int src_cpu, int dest_cpu)
3609{
3610        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3611
3612        src_cfs_rq = tg->cfs_rq[src_cpu];
3613        dest_cfs_rq = tg->cfs_rq[dest_cpu];
3614
3615        return throttled_hierarchy(src_cfs_rq) ||
3616               throttled_hierarchy(dest_cfs_rq);
3617}
3618
3619/* updated child weight may affect parent so we have to do this bottom up */
3620static int tg_unthrottle_up(struct task_group *tg, void *data)
3621{
3622        struct rq *rq = data;
3623        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3624
3625        cfs_rq->throttle_count--;
3626#ifdef CONFIG_SMP
3627        if (!cfs_rq->throttle_count) {
3628                /* adjust cfs_rq_clock_task() */
3629                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3630                                             cfs_rq->throttled_clock_task;
3631        }
3632#endif
3633
3634        return 0;
3635}
3636
3637static int tg_throttle_down(struct task_group *tg, void *data)
3638{
3639        struct rq *rq = data;
3640        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3641
3642        /* group is entering throttled state, stop time */
3643        if (!cfs_rq->throttle_count)
3644                cfs_rq->throttled_clock_task = rq_clock_task(rq);
3645        cfs_rq->throttle_count++;
3646
3647        return 0;
3648}
3649
3650static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3651{
3652        struct rq *rq = rq_of(cfs_rq);
3653        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3654        struct sched_entity *se;
3655        long task_delta, dequeue = 1;
3656        bool empty;
3657
3658        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3659
3660        /* freeze hierarchy runnable averages while throttled */
3661        rcu_read_lock();
3662        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3663        rcu_read_unlock();
3664
3665        task_delta = cfs_rq->h_nr_running;
3666        for_each_sched_entity(se) {
3667                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3668                /* throttled entity or throttle-on-deactivate */
3669                if (!se->on_rq)
3670                        break;
3671
3672                if (dequeue)
3673                        dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3674                qcfs_rq->h_nr_running -= task_delta;
3675
3676                if (qcfs_rq->load.weight)
3677                        dequeue = 0;
3678        }
3679
3680        if (!se)
3681                sub_nr_running(rq, task_delta);
3682
3683        cfs_rq->throttled = 1;
3684        cfs_rq->throttled_clock = rq_clock(rq);
3685        raw_spin_lock(&cfs_b->lock);
3686        empty = list_empty(&cfs_b->throttled_cfs_rq);
3687
3688        /*
3689         * Add to the _head_ of the list, so that an already-started
3690         * distribute_cfs_runtime will not see us
3691         */
3692        list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3693
3694        /*
3695         * If we're the first throttled task, make sure the bandwidth
3696         * timer is running.
3697         */
3698        if (empty)
3699                start_cfs_bandwidth(cfs_b);
3700
3701        raw_spin_unlock(&cfs_b->lock);
3702}
3703
3704void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3705{
3706        struct rq *rq = rq_of(cfs_rq);
3707        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3708        struct sched_entity *se;
3709        int enqueue = 1;
3710        long task_delta;
3711
3712        se = cfs_rq->tg->se[cpu_of(rq)];
3713
3714        cfs_rq->throttled = 0;
3715
3716        update_rq_clock(rq);
3717
3718        raw_spin_lock(&cfs_b->lock);
3719        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3720        list_del_rcu(&cfs_rq->throttled_list);
3721        raw_spin_unlock(&cfs_b->lock);
3722
3723        /* update hierarchical throttle state */
3724        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3725
3726        if (!cfs_rq->load.weight)
3727                return;
3728
3729        task_delta = cfs_rq->h_nr_running;
3730        for_each_sched_entity(se) {
3731                if (se->on_rq)
3732                        enqueue = 0;
3733
3734                cfs_rq = cfs_rq_of(se);
3735                if (enqueue)
3736                        enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3737                cfs_rq->h_nr_running += task_delta;
3738
3739                if (cfs_rq_throttled(cfs_rq))
3740                        break;
3741        }
3742
3743        if (!se)
3744                add_nr_running(rq, task_delta);
3745
3746        /* determine whether we need to wake up potentially idle cpu */
3747        if (rq->curr == rq->idle && rq->cfs.nr_running)
3748                resched_curr(rq);
3749}
3750
3751static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3752                u64 remaining, u64 expires)
3753{
3754        struct cfs_rq *cfs_rq;
3755        u64 runtime;
3756        u64 starting_runtime = remaining;
3757
3758        rcu_read_lock();
3759        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3760                                throttled_list) {
3761                struct rq *rq = rq_of(cfs_rq);
3762
3763                raw_spin_lock(&rq->lock);
3764                if (!cfs_rq_throttled(cfs_rq))
3765                        goto next;
3766
3767                runtime = -cfs_rq->runtime_remaining + 1;
3768                if (runtime > remaining)
3769                        runtime = remaining;
3770                remaining -= runtime;
3771
3772                cfs_rq->runtime_remaining += runtime;
3773                cfs_rq->runtime_expires = expires;
3774
3775                /* we check whether we're throttled above */
3776                if (cfs_rq->runtime_remaining > 0)
3777                        unthrottle_cfs_rq(cfs_rq);
3778
3779next:
3780                raw_spin_unlock(&rq->lock);
3781
3782                if (!remaining)
3783                        break;
3784        }
3785        rcu_read_unlock();
3786
3787        return starting_runtime - remaining;
3788}
3789
3790/*
3791 * Responsible for refilling a task_group's bandwidth and unthrottling its
3792 * cfs_rqs as appropriate. If there has been no activity within the last
3793 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3794 * used to track this state.
3795 */
3796static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3797{
3798        u64 runtime, runtime_expires;
3799        int throttled;
3800
3801        /* no need to continue the timer with no bandwidth constraint */
3802        if (cfs_b->quota == RUNTIME_INF)
3803                goto out_deactivate;
3804
3805        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3806        cfs_b->nr_periods += overrun;
3807
3808        /*
3809         * idle depends on !throttled (for the case of a large deficit), and if
3810         * we're going inactive then everything else can be deferred
3811         */
3812        if (cfs_b->idle && !throttled)
3813                goto out_deactivate;
3814
3815        __refill_cfs_bandwidth_runtime(cfs_b);
3816
3817        if (!throttled) {
3818                /* mark as potentially idle for the upcoming period */
3819                cfs_b->idle = 1;
3820                return 0;
3821        }
3822
3823        /* account preceding periods in which throttling occurred */
3824        cfs_b->nr_throttled += overrun;
3825
3826        runtime_expires = cfs_b->runtime_expires;
3827
3828        /*
3829         * This check is repeated as we are holding onto the new bandwidth while
3830         * we unthrottle. This can potentially race with an unthrottled group
3831         * trying to acquire new bandwidth from the global pool. This can result
3832         * in us over-using our runtime if it is all used during this loop, but
3833         * only by limited amounts in that extreme case.
3834         */
3835        while (throttled && cfs_b->runtime > 0) {
3836                runtime = cfs_b->runtime;
3837                raw_spin_unlock(&cfs_b->lock);
3838                /* we can't nest cfs_b->lock while distributing bandwidth */
3839                runtime = distribute_cfs_runtime(cfs_b, runtime,
3840                                                 runtime_expires);
3841                raw_spin_lock(&cfs_b->lock);
3842
3843                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3844
3845                cfs_b->runtime -= min(runtime, cfs_b->runtime);
3846        }
3847
3848        /*
3849         * While we are ensured activity in the period following an
3850         * unthrottle, this also covers the case in which the new bandwidth is
3851         * insufficient to cover the existing bandwidth deficit.  (Forcing the
3852         * timer to remain active while there are any throttled entities.)
3853         */
3854        cfs_b->idle = 0;
3855
3856        return 0;
3857
3858out_deactivate:
3859        return 1;
3860}
3861
3862/* a cfs_rq won't donate quota below this amount */
3863static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3864/* minimum remaining period time to redistribute slack quota */
3865static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3866/* how long we wait to gather additional slack before distributing */
3867static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3868
3869/*
3870 * Are we near the end of the current quota period?
3871 *
3872 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3873 * hrtimer base being cleared by hrtimer_start. In the case of
3874 * migrate_hrtimers, base is never cleared, so we are fine.
3875 */
3876static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3877{
3878        struct hrtimer *refresh_timer = &cfs_b->period_timer;
3879        u64 remaining;
3880
3881        /* if the call-back is running a quota refresh is already occurring */
3882        if (hrtimer_callback_running(refresh_timer))
3883                return 1;
3884
3885        /* is a quota refresh about to occur? */
3886        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3887        if (remaining < min_expire)
3888                return 1;
3889
3890        return 0;
3891}
3892
3893static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3894{
3895        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3896
3897        /* if there's a quota refresh soon don't bother with slack */
3898        if (runtime_refresh_within(cfs_b, min_left))
3899                return;
3900
3901        hrtimer_start(&cfs_b->slack_timer,
3902                        ns_to_ktime(cfs_bandwidth_slack_period),
3903                        HRTIMER_MODE_REL);
3904}
3905
3906/* we know any runtime found here is valid as update_curr() precedes return */
3907static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3908{
3909        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3910        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3911
3912        if (slack_runtime <= 0)
3913                return;
3914
3915        raw_spin_lock(&cfs_b->lock);
3916        if (cfs_b->quota != RUNTIME_INF &&
3917            cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3918                cfs_b->runtime += slack_runtime;
3919
3920                /* we are under rq->lock, defer unthrottling using a timer */
3921                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3922                    !list_empty(&cfs_b->throttled_cfs_rq))
3923                        start_cfs_slack_bandwidth(cfs_b);
3924        }
3925        raw_spin_unlock(&cfs_b->lock);
3926
3927        /* even if it's not valid for return we don't want to try again */
3928        cfs_rq->runtime_remaining -= slack_runtime;
3929}
3930
3931static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3932{
3933        if (!cfs_bandwidth_used())
3934                return;
3935
3936        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3937                return;
3938
3939        __return_cfs_rq_runtime(cfs_rq);
3940}
3941
3942/*
3943 * This is done with a timer (instead of inline with bandwidth return) since
3944 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3945 */
3946static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3947{
3948        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3949        u64 expires;
3950
3951        /* confirm we're still not at a refresh boundary */
3952        raw_spin_lock(&cfs_b->lock);
3953        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3954                raw_spin_unlock(&cfs_b->lock);
3955                return;
3956        }
3957
3958        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3959                runtime = cfs_b->runtime;
3960
3961        expires = cfs_b->runtime_expires;
3962        raw_spin_unlock(&cfs_b->lock);
3963
3964        if (!runtime)
3965                return;
3966
3967        runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3968
3969        raw_spin_lock(&cfs_b->lock);
3970        if (expires == cfs_b->runtime_expires)
3971                cfs_b->runtime -= min(runtime, cfs_b->runtime);
3972        raw_spin_unlock(&cfs_b->lock);
3973}
3974
3975/*
3976 * When a group wakes up we want to make sure that its quota is not already
3977 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3978 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3979 */
3980static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3981{
3982        if (!cfs_bandwidth_used())
3983                return;
3984
3985        /* an active group must be handled by the update_curr()->put() path */
3986        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3987                return;
3988
3989        /* ensure the group is not already throttled */
3990        if (cfs_rq_throttled(cfs_rq))
3991                return;
3992
3993        /* update runtime allocation */
3994        account_cfs_rq_runtime(cfs_rq, 0);
3995        if (cfs_rq->runtime_remaining <= 0)
3996                throttle_cfs_rq(cfs_rq);
3997}
3998
3999/* conditionally throttle active cfs_rq's from put_prev_entity() */
4000static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4001{
4002        if (!cfs_bandwidth_used())
4003                return false;
4004
4005        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4006                return false;
4007
4008        /*
4009         * it's possible for a throttled entity to be forced into a running
4010         * state (e.g. set_curr_task), in this case we're finished.
4011         */
4012        if (cfs_rq_throttled(cfs_rq))
4013                return true;
4014
4015        throttle_cfs_rq(cfs_rq);
4016        return true;
4017}
4018
4019static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4020{
4021        struct cfs_bandwidth *cfs_b =
4022                container_of(timer, struct cfs_bandwidth, slack_timer);
4023
4024        do_sched_cfs_slack_timer(cfs_b);
4025
4026        return HRTIMER_NORESTART;
4027}
4028
4029static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4030{
4031        struct cfs_bandwidth *cfs_b =
4032                container_of(timer, struct cfs_bandwidth, period_timer);
4033        int overrun;
4034        int idle = 0;
4035
4036        raw_spin_lock(&cfs_b->lock);
4037        for (;;) {
4038                overrun = hrtimer_forward_now(timer, cfs_b->period);
4039                if (!overrun)
4040                        break;
4041
4042                idle = do_sched_cfs_period_timer(cfs_b, overrun);
4043        }
4044        if (idle)
4045                cfs_b->period_active = 0;
4046        raw_spin_unlock(&cfs_b->lock);
4047
4048        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4049}
4050
4051void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4052{
4053        raw_spin_lock_init(&cfs_b->lock);
4054        cfs_b->runtime = 0;
4055        cfs_b->quota = RUNTIME_INF;
4056        cfs_b->period = ns_to_ktime(default_cfs_period());
4057
4058        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4059        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4060        cfs_b->period_timer.function = sched_cfs_period_timer;
4061        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4062        cfs_b->slack_timer.function = sched_cfs_slack_timer;
4063}
4064
4065static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4066{
4067        cfs_rq->runtime_enabled = 0;
4068        INIT_LIST_HEAD(&cfs_rq->throttled_list);
4069}
4070
4071void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4072{
4073        lockdep_assert_held(&cfs_b->lock);
4074
4075        if (!cfs_b->period_active) {
4076                cfs_b->period_active = 1;
4077                hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4078                hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4079        }
4080}
4081
4082static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4083{
4084        /* init_cfs_bandwidth() was not called */
4085        if (!cfs_b->throttled_cfs_rq.next)
4086                return;
4087
4088        hrtimer_cancel(&cfs_b->period_timer);
4089        hrtimer_cancel(&cfs_b->slack_timer);
4090}
4091
4092static void __maybe_unused update_runtime_enabled(struct rq *rq)
4093{
4094        struct cfs_rq *cfs_rq;
4095
4096        for_each_leaf_cfs_rq(rq, cfs_rq) {
4097                struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4098
4099                raw_spin_lock(&cfs_b->lock);
4100                cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4101                raw_spin_unlock(&cfs_b->lock);
4102        }
4103}
4104
4105static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4106{
4107        struct cfs_rq *cfs_rq;
4108
4109        for_each_leaf_cfs_rq(rq, cfs_rq) {
4110                if (!cfs_rq->runtime_enabled)
4111                        continue;
4112
4113                /*
4114                 * clock_task is not advancing so we just need to make sure
4115                 * there's some valid quota amount
4116                 */
4117                cfs_rq->runtime_remaining = 1;
4118                /*
4119                 * Offline rq is schedulable till cpu is completely disabled
4120                 * in take_cpu_down(), so we prevent new cfs throttling here.
4121                 */
4122                cfs_rq->runtime_enabled = 0;
4123
4124                if (cfs_rq_throttled(cfs_rq))
4125                        unthrottle_cfs_rq(cfs_rq);
4126        }
4127}
4128
4129#else /* CONFIG_CFS_BANDWIDTH */
4130static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4131{
4132        return rq_clock_task(rq_of(cfs_rq));
4133}
4134
4135static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4136static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4137static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4138static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4139
4140static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4141{
4142        return 0;
4143}
4144
4145static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4146{
4147        return 0;
4148}
4149
4150static inline int throttled_lb_pair(struct task_group *tg,
4151                                    int src_cpu, int dest_cpu)
4152{
4153        return 0;
4154}
4155
4156void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4157
4158#ifdef CONFIG_FAIR_GROUP_SCHED
4159static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4160#endif
4161
4162static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4163{
4164        return NULL;
4165}
4166static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4167static inline void update_runtime_enabled(struct rq *rq) {}
4168static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4169
4170#endif /* CONFIG_CFS_BANDWIDTH */
4171
4172/**************************************************
4173 * CFS operations on tasks:
4174 */
4175
4176#ifdef CONFIG_SCHED_HRTICK
4177static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4178{
4179        struct sched_entity *se = &p->se;
4180        struct cfs_rq *cfs_rq = cfs_rq_of(se);
4181
4182        WARN_ON(task_rq(p) != rq);
4183
4184        if (cfs_rq->nr_running > 1) {
4185                u64 slice = sched_slice(cfs_rq, se);
4186                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4187                s64 delta = slice - ran;
4188
4189                if (delta < 0) {
4190                        if (rq->curr == p)
4191                                resched_curr(rq);
4192                        return;
4193                }
4194                hrtick_start(rq, delta);
4195        }
4196}
4197
4198/*
4199 * called from enqueue/dequeue and updates the hrtick when the
4200 * current task is from our class and nr_running is low enough
4201 * to matter.
4202 */
4203static void hrtick_update(struct rq *rq)
4204{
4205        struct task_struct *curr = rq->curr;
4206
4207        if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4208                return;
4209
4210        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4211                hrtick_start_fair(rq, curr);
4212}
4213#else /* !CONFIG_SCHED_HRTICK */
4214static inline void
4215hrtick_start_fair(struct rq *rq, struct task_struct *p)
4216{
4217}
4218
4219static inline void hrtick_update(struct rq *rq)
4220{
4221}
4222#endif
4223
4224/*
4225 * The enqueue_task method is called before nr_running is
4226 * increased. Here we update the fair scheduling stats and
4227 * then put the task into the rbtree:
4228 */
4229static void
4230enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4231{
4232        struct cfs_rq *cfs_rq;
4233        struct sched_entity *se = &p->se;
4234
4235        for_each_sched_entity(se) {
4236                if (se->on_rq)
4237                        break;
4238                cfs_rq = cfs_rq_of(se);
4239                enqueue_entity(cfs_rq, se, flags);
4240
4241                /*
4242                 * end evaluation on encountering a throttled cfs_rq
4243                 *
4244                 * note: in the case of encountering a throttled cfs_rq we will
4245                 * post the final h_nr_running increment below.
4246                */
4247                if (cfs_rq_throttled(cfs_rq))
4248                        break;
4249                cfs_rq->h_nr_running++;
4250
4251                flags = ENQUEUE_WAKEUP;
4252        }
4253
4254        for_each_sched_entity(se) {
4255                cfs_rq = cfs_rq_of(se);
4256                cfs_rq->h_nr_running++;
4257
4258                if (cfs_rq_throttled(cfs_rq))
4259                        break;
4260
4261                update_cfs_shares(cfs_rq);
4262                update_entity_load_avg(se, 1);
4263        }
4264
4265        if (!se) {
4266                update_rq_runnable_avg(rq, rq->nr_running);
4267                add_nr_running(rq, 1);
4268        }
4269        hrtick_update(rq);
4270}
4271
4272static void set_next_buddy(struct sched_entity *se);
4273
4274/*
4275 * The dequeue_task method is called before nr_running is
4276 * decreased. We remove the task from the rbtree and
4277 * update the fair scheduling stats:
4278 */
4279static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4280{
4281        struct cfs_rq *cfs_rq;
4282        struct sched_entity *se = &p->se;
4283        int task_sleep = flags & DEQUEUE_SLEEP;
4284
4285        for_each_sched_entity(se) {
4286                cfs_rq = cfs_rq_of(se);
4287                dequeue_entity(cfs_rq, se, flags);
4288
4289                /*
4290                 * end evaluation on encountering a throttled cfs_rq
4291                 *
4292                 * note: in the case of encountering a throttled cfs_rq we will
4293                 * post the final h_nr_running decrement below.
4294                */
4295                if (cfs_rq_throttled(cfs_rq))
4296                        break;
4297                cfs_rq->h_nr_running--;
4298
4299                /* Don't dequeue parent if it has other entities besides us */
4300                if (cfs_rq->load.weight) {
4301                        /*
4302                         * Bias pick_next to pick a task from this cfs_rq, as
4303                         * p is sleeping when it is within its sched_slice.
4304                         */
4305                        if (task_sleep && parent_entity(se))
4306                                set_next_buddy(parent_entity(se));
4307
4308                        /* avoid re-evaluating load for this entity */
4309                        se = parent_entity(se);
4310                        break;
4311                }
4312                flags |= DEQUEUE_SLEEP;
4313        }
4314
4315        for_each_sched_entity(se) {
4316                cfs_rq = cfs_rq_of(se);
4317                cfs_rq->h_nr_running--;
4318
4319                if (cfs_rq_throttled(cfs_rq))
4320                        break;
4321
4322                update_cfs_shares(cfs_rq);
4323                update_entity_load_avg(se, 1);
4324        }
4325
4326        if (!se) {
4327                sub_nr_running(rq, 1);
4328                update_rq_runnable_avg(rq, 1);
4329        }
4330        hrtick_update(rq);
4331}
4332
4333#ifdef CONFIG_SMP
4334
4335/*
4336 * per rq 'load' arrray crap; XXX kill this.
4337 */
4338
4339/*
4340 * The exact cpuload at various idx values, calculated at every tick would be
4341 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4342 *
4343 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4344 * on nth tick when cpu may be busy, then we have:
4345 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4346 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4347 *
4348 * decay_load_missed() below does efficient calculation of
4349 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4350 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4351 *
4352 * The calculation is approximated on a 128 point scale.
4353 * degrade_zero_ticks is the number of ticks after which load at any
4354 * particular idx is approximated to be zero.
4355 * degrade_factor is a precomputed table, a row for each load idx.
4356 * Each column corresponds to degradation factor for a power of two ticks,
4357 * based on 128 point scale.
4358 * Example:
4359 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4360 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4361 *
4362 * With this power of 2 load factors, we can degrade the load n times
4363 * by looking at 1 bits in n and doing as many mult/shift instead of
4364 * n mult/shifts needed by the exact degradation.
4365 */
4366#define DEGRADE_SHIFT           7
4367static const unsigned char
4368                degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4369static const unsigned char
4370                degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4371                                        {0, 0, 0, 0, 0, 0, 0, 0},
4372                                        {64, 32, 8, 0, 0, 0, 0, 0},
4373                                        {96, 72, 40, 12, 1, 0, 0},
4374                                        {112, 98, 75, 43, 15, 1, 0},
4375                                        {120, 112, 98, 76, 45, 16, 2} };
4376
4377/*
4378 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4379 * would be when CPU is idle and so we just decay the old load without
4380 * adding any new load.
4381 */
4382static unsigned long
4383decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4384{
4385        int j = 0;
4386
4387        if (!missed_updates)
4388                return load;
4389
4390        if (missed_updates >= degrade_zero_ticks[idx])
4391                return 0;
4392
4393        if (idx == 1)
4394                return load >> missed_updates;
4395
4396        while (missed_updates) {
4397                if (missed_updates % 2)
4398                        load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4399
4400                missed_updates >>= 1;
4401                j++;
4402        }
4403        return load;
4404}
4405
4406/*
4407 * Update rq->cpu_load[] statistics. This function is usually called every
4408 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4409 * every tick. We fix it up based on jiffies.
4410 */
4411static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4412                              unsigned long pending_updates)
4413{
4414        int i, scale;
4415
4416        this_rq->nr_load_updates++;
4417
4418        /* Update our load: */
4419        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4420        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4421                unsigned long old_load, new_load;
4422
4423                /* scale is effectively 1 << i now, and >> i divides by scale */
4424
4425                old_load = this_rq->cpu_load[i];
4426                old_load = decay_load_missed(old_load, pending_updates - 1, i);
4427                new_load = this_load;
4428                /*
4429                 * Round up the averaging division if load is increasing. This
4430                 * prevents us from getting stuck on 9 if the load is 10, for
4431                 * example.
4432                 */
4433                if (new_load > old_load)
4434                        new_load += scale - 1;
4435
4436                this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4437        }
4438
4439        sched_avg_update(this_rq);
4440}
4441
4442#ifdef CONFIG_NO_HZ_COMMON
4443/*
4444 * There is no sane way to deal with nohz on smp when using jiffies because the
4445 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4446 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4447 *
4448 * Therefore we cannot use the delta approach from the regular tick since that
4449 * would seriously skew the load calculation. However we'll make do for those
4450 * updates happening while idle (nohz_idle_balance) or coming out of idle
4451 * (tick_nohz_idle_exit).
4452 *
4453 * This means we might still be one tick off for nohz periods.
4454 */
4455
4456/*
4457 * Called from nohz_idle_balance() to update the load ratings before doing the
4458 * idle balance.
4459 */
4460static void update_idle_cpu_load(struct rq *this_rq)
4461{
4462        unsigned long curr_jiffies = READ_ONCE(jiffies);
4463        unsigned long load = this_rq->cfs.runnable_load_avg;
4464        unsigned long pending_updates;
4465
4466        /*
4467         * bail if there's load or we're actually up-to-date.
4468         */
4469        if (load || curr_jiffies == this_rq->last_load_update_tick)
4470                return;
4471
4472        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4473        this_rq->last_load_update_tick = curr_jiffies;
4474
4475        __update_cpu_load(this_rq, load, pending_updates);
4476}
4477
4478/*
4479 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4480 */
4481void update_cpu_load_nohz(void)
4482{
4483        struct rq *this_rq = this_rq();
4484        unsigned long curr_jiffies = READ_ONCE(jiffies);
4485        unsigned long pending_updates;
4486
4487        if (curr_jiffies == this_rq->last_load_update_tick)
4488                return;
4489
4490        raw_spin_lock(&this_rq->lock);
4491        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4492        if (pending_updates) {
4493                this_rq->last_load_update_tick = curr_jiffies;
4494                /*
4495                 * We were idle, this means load 0, the current load might be
4496                 * !0 due to remote wakeups and the sort.
4497                 */
4498                __update_cpu_load(this_rq, 0, pending_updates);
4499        }
4500        raw_spin_unlock(&this_rq->lock);
4501}
4502#endif /* CONFIG_NO_HZ */
4503
4504/*
4505 * Called from scheduler_tick()
4506 */
4507void update_cpu_load_active(struct rq *this_rq)
4508{
4509        unsigned long load = this_rq->cfs.runnable_load_avg;
4510        /*
4511         * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4512         */
4513        this_rq->last_load_update_tick = jiffies;
4514        __update_cpu_load(this_rq, load, 1);
4515}
4516
4517/* Used instead of source_load when we know the type == 0 */
4518static unsigned long weighted_cpuload(const int cpu)
4519{
4520        return cpu_rq(cpu)->cfs.runnable_load_avg;
4521}
4522
4523/*
4524 * Return a low guess at the load of a migration-source cpu weighted
4525 * according to the scheduling class and "nice" value.
4526 *
4527 * We want to under-estimate the load of migration sources, to
4528 * balance conservatively.
4529 */
4530static unsigned long source_load(int cpu, int type)
4531{
4532        struct rq *rq = cpu_rq(cpu);
4533        unsigned long total = weighted_cpuload(cpu);
4534
4535        if (type == 0 || !sched_feat(LB_BIAS))
4536                return total;
4537
4538        return min(rq->cpu_load[type-1], total);
4539}
4540
4541/*
4542 * Return a high guess at the load of a migration-target cpu weighted
4543 * according to the scheduling class and "nice" value.
4544 */
4545static unsigned long target_load(int cpu, int type)
4546{
4547        struct rq *rq = cpu_rq(cpu);
4548        unsigned long total = weighted_cpuload(cpu);
4549
4550        if (type == 0 || !sched_feat(LB_BIAS))
4551                return total;
4552
4553        return max(rq->cpu_load[type-1], total);
4554}
4555
4556static unsigned long capacity_of(int cpu)
4557{
4558        return cpu_rq(cpu)->cpu_capacity;
4559}
4560
4561static unsigned long capacity_orig_of(int cpu)
4562{
4563        return cpu_rq(cpu)->cpu_capacity_orig;
4564}
4565
4566static unsigned long cpu_avg_load_per_task(int cpu)
4567{
4568        struct rq *rq = cpu_rq(cpu);
4569        unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4570        unsigned long load_avg = rq->cfs.runnable_load_avg;
4571
4572        if (nr_running)
4573                return load_avg / nr_running;
4574
4575        return 0;
4576}
4577
4578static void record_wakee(struct task_struct *p)
4579{
4580        /*
4581         * Rough decay (wiping) for cost saving, don't worry
4582         * about the boundary, really active task won't care
4583         * about the loss.
4584         */
4585        if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4586                current->wakee_flips >>= 1;
4587                current->wakee_flip_decay_ts = jiffies;
4588        }
4589
4590        if (current->last_wakee != p) {
4591                current->last_wakee = p;
4592                current->wakee_flips++;
4593        }
4594}
4595
4596static void task_waking_fair(struct task_struct *p)
4597{
4598        struct sched_entity *se = &p->se;
4599        struct cfs_rq *cfs_rq = cfs_rq_of(se);
4600        u64 min_vruntime;
4601
4602#ifndef CONFIG_64BIT
4603        u64 min_vruntime_copy;
4604
4605        do {
4606                min_vruntime_copy = cfs_rq->min_vruntime_copy;
4607                smp_rmb();
4608                min_vruntime = cfs_rq->min_vruntime;
4609        } while (min_vruntime != min_vruntime_copy);
4610#else
4611        min_vruntime = cfs_rq->min_vruntime;
4612#endif
4613
4614        se->vruntime -= min_vruntime;
4615        record_wakee(p);
4616}
4617
4618#ifdef CONFIG_FAIR_GROUP_SCHED
4619/*
4620 * effective_load() calculates the load change as seen from the root_task_group
4621 *
4622 * Adding load to a group doesn't make a group heavier, but can cause movement
4623 * of group shares between cpus. Assuming the shares were perfectly aligned one
4624 * can calculate the shift in shares.
4625 *
4626 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4627 * on this @cpu and results in a total addition (subtraction) of @wg to the
4628 * total group weight.
4629 *
4630 * Given a runqueue weight distribution (rw_i) we can compute a shares
4631 * distribution (s_i) using:
4632 *
4633 *   s_i = rw_i / \Sum rw_j                                             (1)
4634 *
4635 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4636 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4637 * shares distribution (s_i):
4638 *
4639 *   rw_i = {   2,   4,   1,   0 }
4640 *   s_i  = { 2/7, 4/7, 1/7,   0 }
4641 *
4642 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4643 * task used to run on and the CPU the waker is running on), we need to
4644 * compute the effect of waking a task on either CPU and, in case of a sync
4645 * wakeup, compute the effect of the current task going to sleep.
4646 *
4647 * So for a change of @wl to the local @cpu with an overall group weight change
4648 * of @wl we can compute the new shares distribution (s'_i) using:
4649 *
4650 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)                            (2)
4651 *
4652 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4653 * differences in waking a task to CPU 0. The additional task changes the
4654 * weight and shares distributions like:
4655 *
4656 *   rw'_i = {   3,   4,   1,   0 }
4657 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4658 *
4659 * We can then compute the difference in effective weight by using:
4660 *
4661 *   dw_i = S * (s'_i - s_i)                                            (3)
4662 *
4663 * Where 'S' is the group weight as seen by its parent.
4664 *
4665 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4666 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4667 * 4/7) times the weight of the group.
4668 */
4669static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4670{
4671        struct sched_entity *se = tg->se[cpu];
4672
4673        if (!tg->parent)        /* the trivial, non-cgroup case */
4674                return wl;
4675
4676        for_each_sched_entity(se) {
4677                long w, W;
4678
4679                tg = se->my_q->tg;
4680
4681                /*
4682                 * W = @wg + \Sum rw_j
4683                 */
4684                W = wg + calc_tg_weight(tg, se->my_q);
4685
4686                /*
4687                 * w = rw_i + @wl
4688                 */
4689                w = se->my_q->load.weight + wl;
4690
4691                /*
4692                 * wl = S * s'_i; see (2)
4693                 */
4694                if (W > 0 && w < W)
4695                        wl = (w * (long)tg->shares) / W;
4696                else
4697                        wl = tg->shares;
4698
4699                /*
4700                 * Per the above, wl is the new se->load.weight value; since
4701                 * those are clipped to [MIN_SHARES, ...) do so now. See
4702                 * calc_cfs_shares().
4703                 */
4704                if (wl < MIN_SHARES)
4705                        wl = MIN_SHARES;
4706
4707                /*
4708                 * wl = dw_i = S * (s'_i - s_i); see (3)
4709                 */
4710                wl -= se->load.weight;
4711
4712                /*
4713                 * Recursively apply this logic to all parent groups to compute
4714                 * the final effective load change on the root group. Since
4715                 * only the @tg group gets extra weight, all parent groups can
4716                 * only redistribute existing shares. @wl is the shift in shares
4717                 * resulting from this level per the above.
4718                 */
4719                wg = 0;
4720        }
4721
4722        return wl;
4723}
4724#else
4725
4726static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4727{
4728        return wl;
4729}
4730
4731#endif
4732
4733static int wake_wide(struct task_struct *p)
4734{
4735        int factor = this_cpu_read(sd_llc_size);
4736
4737        /*
4738         * Yeah, it's the switching-frequency, could means many wakee or
4739         * rapidly switch, use factor here will just help to automatically
4740         * adjust the loose-degree, so bigger node will lead to more pull.
4741         */
4742        if (p->wakee_flips > factor) {
4743                /*
4744                 * wakee is somewhat hot, it needs certain amount of cpu
4745                 * resource, so if waker is far more hot, prefer to leave
4746                 * it alone.
4747                 */
4748                if (current->wakee_flips > (factor * p->wakee_flips))
4749                        return 1;
4750        }
4751
4752        return 0;
4753}
4754
4755static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4756{
4757        s64 this_load, load;
4758        s64 this_eff_load, prev_eff_load;
4759        int idx, this_cpu, prev_cpu;
4760        struct task_group *tg;
4761        unsigned long weight;
4762        int balanced;
4763
4764        /*
4765         * If we wake multiple tasks be careful to not bounce
4766         * ourselves around too much.
4767         */
4768        if (wake_wide(p))
4769                return 0;
4770
4771        idx       = sd->wake_idx;
4772        this_cpu  = smp_processor_id();
4773        prev_cpu  = task_cpu(p);
4774        load      = source_load(prev_cpu, idx);
4775        this_load = target_load(this_cpu, idx);
4776
4777        /*
4778         * If sync wakeup then subtract the (maximum possible)
4779         * effect of the currently running task from the load
4780         * of the current CPU:
4781         */
4782        if (sync) {
4783                tg = task_group(current);
4784                weight = current->se.load.weight;
4785
4786                this_load += effective_load(tg, this_cpu, -weight, -weight);
4787                load += effective_load(tg, prev_cpu, 0, -weight);
4788        }
4789
4790        tg = task_group(p);
4791        weight = p->se.load.weight;
4792
4793        /*
4794         * In low-load situations, where prev_cpu is idle and this_cpu is idle
4795         * due to the sync cause above having dropped this_load to 0, we'll
4796         * always have an imbalance, but there's really nothing you can do
4797         * about that, so that's good too.
4798         *
4799         * Otherwise check if either cpus are near enough in load to allow this
4800         * task to be woken on this_cpu.
4801         */
4802        this_eff_load = 100;
4803        this_eff_load *= capacity_of(prev_cpu);
4804
4805        prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4806        prev_eff_load *= capacity_of(this_cpu);
4807
4808        if (this_load > 0) {
4809                this_eff_load *= this_load +
4810                        effective_load(tg, this_cpu, weight, weight);
4811
4812                prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4813        }
4814
4815        balanced = this_eff_load <= prev_eff_load;
4816
4817        schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4818
4819        if (!balanced)
4820                return 0;
4821
4822        schedstat_inc(sd, ttwu_move_affine);
4823        schedstat_inc(p, se.statistics.nr_wakeups_affine);
4824
4825        return 1;
4826}
4827
4828/*
4829 * find_idlest_group finds and returns the least busy CPU group within the
4830 * domain.
4831 */
4832static struct sched_group *
4833find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4834                  int this_cpu, int sd_flag)
4835{
4836        struct sched_group *idlest = NULL, *group = sd->groups;
4837        unsigned long min_load = ULONG_MAX, this_load = 0;
4838        int load_idx = sd->forkexec_idx;
4839        int imbalance = 100 + (sd->imbalance_pct-100)/2;
4840
4841        if (sd_flag & SD_BALANCE_WAKE)
4842                load_idx = sd->wake_idx;
4843
4844        do {
4845                unsigned long load, avg_load;
4846                int local_group;
4847                int i;
4848
4849                /* Skip over this group if it has no CPUs allowed */
4850                if (!cpumask_intersects(sched_group_cpus(group),
4851                                        tsk_cpus_allowed(p)))
4852                        continue;
4853
4854                local_group = cpumask_test_cpu(this_cpu,
4855                                               sched_group_cpus(group));
4856
4857                /* Tally up the load of all CPUs in the group */
4858                avg_load = 0;
4859
4860                for_each_cpu(i, sched_group_cpus(group)) {
4861                        /* Bias balancing toward cpus of our domain */
4862                        if (local_group)
4863                                load = source_load(i, load_idx);
4864                        else
4865                                load = target_load(i, load_idx);
4866
4867                        avg_load += load;
4868                }
4869
4870                /* Adjust by relative CPU capacity of the group */
4871                avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4872
4873                if (local_group) {
4874                        this_load = avg_load;
4875                } else if (avg_load < min_load) {
4876                        min_load = avg_load;
4877                        idlest = group;
4878                }
4879        } while (group = group->next, group != sd->groups);
4880
4881        if (!idlest || 100*this_load < imbalance*min_load)
4882                return NULL;
4883        return idlest;
4884}
4885
4886/*
4887 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4888 */
4889static int
4890find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4891{
4892        unsigned long load, min_load = ULONG_MAX;
4893        unsigned int min_exit_latency = UINT_MAX;
4894        u64 latest_idle_timestamp = 0;
4895        int least_loaded_cpu = this_cpu;
4896        int shallowest_idle_cpu = -1;
4897        int i;
4898
4899        /* Traverse only the allowed CPUs */
4900        for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4901                if (idle_cpu(i)) {
4902                        struct rq *rq = cpu_rq(i);
4903                        struct cpuidle_state *idle = idle_get_state(rq);
4904                        if (idle && idle->exit_latency < min_exit_latency) {
4905                                /*
4906                                 * We give priority to a CPU whose idle state
4907                                 * has the smallest exit latency irrespective
4908                                 * of any idle timestamp.
4909                                 */
4910                                min_exit_latency = idle->exit_latency;
4911                                latest_idle_timestamp = rq->idle_stamp;
4912                                shallowest_idle_cpu = i;
4913                        } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4914                                   rq->idle_stamp > latest_idle_timestamp) {
4915                                /*
4916                                 * If equal or no active idle state, then
4917                                 * the most recently idled CPU might have
4918                                 * a warmer cache.
4919                                 */
4920                                latest_idle_timestamp = rq->idle_stamp;
4921                                shallowest_idle_cpu = i;
4922                        }
4923                } else if (shallowest_idle_cpu == -1) {
4924                        load = weighted_cpuload(i);
4925                        if (load < min_load || (load == min_load && i == this_cpu)) {
4926                                min_load = load;
4927                                least_loaded_cpu = i;
4928                        }
4929                }
4930        }
4931
4932        return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4933}
4934
4935/*
4936 * Try and locate an idle CPU in the sched_domain.
4937 */
4938static int select_idle_sibling(struct task_struct *p, int target)
4939{
4940        struct sched_domain *sd;
4941        struct sched_group *sg;
4942        int i = task_cpu(p);
4943
4944        if (idle_cpu(target))
4945                return target;
4946
4947        /*
4948         * If the prevous cpu is cache affine and idle, don't be stupid.
4949         */
4950        if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4951                return i;
4952
4953        /*
4954         * Otherwise, iterate the domains and find an elegible idle cpu.
4955         */
4956        sd = rcu_dereference(per_cpu(sd_llc, target));
4957        for_each_lower_domain(sd) {
4958                sg = sd->groups;
4959                do {
4960                        if (!cpumask_intersects(sched_group_cpus(sg),
4961                                                tsk_cpus_allowed(p)))
4962                                goto next;
4963
4964                        for_each_cpu(i, sched_group_cpus(sg)) {
4965                                if (i == target || !idle_cpu(i))
4966                                        goto next;
4967                        }
4968
4969                        target = cpumask_first_and(sched_group_cpus(sg),
4970                                        tsk_cpus_allowed(p));
4971                        goto done;
4972next:
4973                        sg = sg->next;
4974                } while (sg != sd->groups);
4975        }
4976done:
4977        return target;
4978}
4979/*
4980 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4981 * tasks. The unit of the return value must be the one of capacity so we can
4982 * compare the usage with the capacity of the CPU that is available for CFS
4983 * task (ie cpu_capacity).
4984 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4985 * CPU. It represents the amount of utilization of a CPU in the range
4986 * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
4987 * capacity of the CPU because it's about the running time on this CPU.
4988 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4989 * because of unfortunate rounding in avg_period and running_load_avg or just
4990 * after migrating tasks until the average stabilizes with the new running
4991 * time. So we need to check that the usage stays into the range
4992 * [0..cpu_capacity_orig] and cap if necessary.
4993 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4994 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4995 */
4996static int get_cpu_usage(int cpu)
4997{
4998        unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4999        unsigned long capacity = capacity_orig_of(cpu);
5000
5001        if (usage >= SCHED_LOAD_SCALE)
5002                return capacity;
5003
5004        return (usage * capacity) >> SCHED_LOAD_SHIFT;
5005}
5006
5007/*
5008 * select_task_rq_fair: Select target runqueue for the waking task in domains
5009 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5010 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5011 *
5012 * Balances load by selecting the idlest cpu in the idlest group, or under
5013 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5014 *
5015 * Returns the target cpu number.
5016 *
5017 * preempt must be disabled.
5018 */
5019static int
5020select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5021{
5022        struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5023        int cpu = smp_processor_id();
5024        int new_cpu = cpu;
5025        int want_affine = 0;
5026        int sync = wake_flags & WF_SYNC;
5027
5028        if (sd_flag & SD_BALANCE_WAKE)
5029                want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5030
5031        rcu_read_lock();
5032        for_each_domain(cpu, tmp) {
5033                if (!(tmp->flags & SD_LOAD_BALANCE))
5034                        continue;
5035
5036                /*
5037                 * If both cpu and prev_cpu are part of this domain,
5038                 * cpu is a valid SD_WAKE_AFFINE target.
5039                 */
5040                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5041                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5042                        affine_sd = tmp;
5043                        break;
5044                }
5045
5046                if (tmp->flags & sd_flag)
5047                        sd = tmp;
5048        }
5049
5050        if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5051                prev_cpu = cpu;
5052
5053        if (sd_flag & SD_BALANCE_WAKE) {
5054                new_cpu = select_idle_sibling(p, prev_cpu);
5055                goto unlock;
5056        }
5057
5058        while (sd) {
5059                struct sched_group *group;
5060                int weight;
5061
5062                if (!(sd->flags & sd_flag)) {
5063                        sd = sd->child;
5064                        continue;
5065                }
5066
5067                group = find_idlest_group(sd, p, cpu, sd_flag);
5068                if (!group) {
5069                        sd = sd->child;
5070                        continue;
5071                }
5072
5073                new_cpu = find_idlest_cpu(group, p, cpu);
5074                if (new_cpu == -1 || new_cpu == cpu) {
5075                        /* Now try balancing at a lower domain level of cpu */
5076                        sd = sd->child;
5077                        continue;
5078                }
5079
5080                /* Now try balancing at a lower domain level of new_cpu */
5081                cpu = new_cpu;
5082                weight = sd->span_weight;
5083                sd = NULL;
5084                for_each_domain(cpu, tmp) {
5085                        if (weight <= tmp->span_weight)
5086                                break;
5087                        if (tmp->flags & sd_flag)
5088                                sd = tmp;
5089                }
5090                /* while loop will break here if sd == NULL */
5091        }
5092unlock:
5093        rcu_read_unlock();
5094
5095        return new_cpu;
5096}
5097
5098/*
5099 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5100 * cfs_rq_of(p) references at time of call are still valid and identify the
5101 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
5102 * other assumptions, including the state of rq->lock, should be made.
5103 */
5104static void
5105migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5106{
5107        struct sched_entity *se = &p->se;
5108        struct cfs_rq *cfs_rq = cfs_rq_of(se);
5109
5110        /*
5111         * Load tracking: accumulate removed load so that it can be processed
5112         * when we next update owning cfs_rq under rq->lock.  Tasks contribute
5113         * to blocked load iff they have a positive decay-count.  It can never
5114         * be negative here since on-rq tasks have decay-count == 0.
5115         */
5116        if (se->avg.decay_count) {
5117                se->avg.decay_count = -__synchronize_entity_decay(se);
5118                atomic_long_add(se->avg.load_avg_contrib,
5119                                                &cfs_rq->removed_load);
5120        }
5121
5122        /* We have migrated, no longer consider this task hot */
5123        se->exec_start = 0;
5124}
5125#endif /* CONFIG_SMP */
5126
5127static unsigned long
5128wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5129{
5130        unsigned long gran = sysctl_sched_wakeup_granularity;
5131
5132        /*
5133         * Since its curr running now, convert the gran from real-time
5134         * to virtual-time in his units.
5135         *
5136         * By using 'se' instead of 'curr' we penalize light tasks, so
5137         * they get preempted easier. That is, if 'se' < 'curr' then
5138         * the resulting gran will be larger, therefore penalizing the
5139         * lighter, if otoh 'se' > 'curr' then the resulting gran will
5140         * be smaller, again penalizing the lighter task.
5141         *
5142         * This is especially important for buddies when the leftmost
5143         * task is higher priority than the buddy.
5144         */
5145        return calc_delta_fair(gran, se);
5146}
5147
5148/*
5149 * Should 'se' preempt 'curr'.
5150 *
5151 *             |s1
5152 *        |s2
5153 *   |s3
5154 *         g
5155 *      |<--->|c
5156 *
5157 *  w(c, s1) = -1
5158 *  w(c, s2) =  0
5159 *  w(c, s3) =  1
5160 *
5161 */
5162static int
5163wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5164{
5165        s64 gran, vdiff = curr->vruntime - se->vruntime;
5166
5167        if (vdiff <= 0)
5168                return -1;
5169
5170        gran = wakeup_gran(curr, se);
5171        if (vdiff > gran)
5172                return 1;
5173
5174        return 0;
5175}
5176
5177static void set_last_buddy(struct sched_entity *se)
5178{
5179        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5180                return;
5181
5182        for_each_sched_entity(se)
5183                cfs_rq_of(se)->last = se;
5184}
5185
5186static void set_next_buddy(struct sched_entity *se)
5187{
5188        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5189                return;
5190
5191        for_each_sched_entity(se)
5192                cfs_rq_of(se)->next = se;
5193}
5194
5195static void set_skip_buddy(struct sched_entity *se)
5196{
5197        for_each_sched_entity(se)
5198                cfs_rq_of(se)->skip = se;
5199}
5200
5201/*
5202 * Preempt the current task with a newly woken task if needed:
5203 */
5204static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5205{
5206        struct task_struct *curr = rq->curr;
5207        struct sched_entity *se = &curr->se, *pse = &p->se;
5208        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5209        int scale = cfs_rq->nr_running >= sched_nr_latency;
5210        int next_buddy_marked = 0;
5211
5212        if (unlikely(se == pse))
5213                return;
5214
5215        /*
5216         * This is possible from callers such as attach_tasks(), in which we
5217         * unconditionally check_prempt_curr() after an enqueue (which may have
5218         * lead to a throttle).  This both saves work and prevents false
5219         * next-buddy nomination below.
5220         */
5221        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5222                return;
5223
5224        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5225                set_next_buddy(pse);
5226                next_buddy_marked = 1;
5227        }
5228
5229        /*
5230         * We can come here with TIF_NEED_RESCHED already set from new task
5231         * wake up path.
5232         *
5233         * Note: this also catches the edge-case of curr being in a throttled
5234         * group (e.g. via set_curr_task), since update_curr() (in the
5235         * enqueue of curr) will have resulted in resched being set.  This
5236         * prevents us from potentially nominating it as a false LAST_BUDDY
5237         * below.
5238         */
5239        if (test_tsk_need_resched(curr))
5240                return;
5241
5242        /* Idle tasks are by definition preempted by non-idle tasks. */
5243        if (unlikely(curr->policy == SCHED_IDLE) &&
5244            likely(p->policy != SCHED_IDLE))
5245                goto preempt;
5246
5247        /*
5248         * Batch and idle tasks do not preempt non-idle tasks (their preemption
5249         * is driven by the tick):
5250         */
5251        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5252                return;
5253
5254        find_matching_se(&se, &pse);
5255        update_curr(cfs_rq_of(se));
5256        BUG_ON(!pse);
5257        if (wakeup_preempt_entity(se, pse) == 1) {
5258                /*
5259                 * Bias pick_next to pick the sched entity that is
5260                 * triggering this preemption.
5261                 */
5262                if (!next_buddy_marked)
5263                        set_next_buddy(pse);
5264                goto preempt;
5265        }
5266
5267        return;
5268
5269preempt:
5270        resched_curr(rq);
5271        /*
5272         * Only set the backward buddy when the current task is still
5273         * on the rq. This can happen when a wakeup gets interleaved
5274         * with schedule on the ->pre_schedule() or idle_balance()
5275         * point, either of which can * drop the rq lock.
5276         *
5277         * Also, during early boot the idle thread is in the fair class,
5278         * for obvious reasons its a bad idea to schedule back to it.
5279         */
5280        if (unlikely(!se->on_rq || curr == rq->idle))
5281                return;
5282
5283        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5284                set_last_buddy(se);
5285}
5286
5287static struct task_struct *
5288pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5289{
5290        struct cfs_rq *cfs_rq = &rq->cfs;
5291        struct sched_entity *se;
5292        struct task_struct *p;
5293        int new_tasks;
5294
5295again:
5296#ifdef CONFIG_FAIR_GROUP_SCHED
5297        if (!cfs_rq->nr_running)
5298                goto idle;
5299
5300        if (prev->sched_class != &fair_sched_class)
5301                goto simple;
5302
5303        /*
5304         * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5305         * likely that a next task is from the same cgroup as the current.
5306         *
5307         * Therefore attempt to avoid putting and setting the entire cgroup
5308         * hierarchy, only change the part that actually changes.
5309         */
5310
5311        do {
5312                struct sched_entity *curr = cfs_rq->curr;
5313
5314                /*
5315                 * Since we got here without doing put_prev_entity() we also
5316                 * have to consider cfs_rq->curr. If it is still a runnable
5317                 * entity, update_curr() will update its vruntime, otherwise
5318                 * forget we've ever seen it.
5319                 */
5320                if (curr) {
5321                        if (curr->on_rq)
5322                                update_curr(cfs_rq);
5323                        else
5324                                curr = NULL;
5325
5326                        /*
5327                         * This call to check_cfs_rq_runtime() will do the
5328                         * throttle and dequeue its entity in the parent(s).
5329                         * Therefore the 'simple' nr_running test will indeed
5330                         * be correct.
5331                         */
5332                        if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5333                                goto simple;
5334                }
5335
5336                se = pick_next_entity(cfs_rq, curr);
5337                cfs_rq = group_cfs_rq(se);
5338        } while (cfs_rq);
5339
5340        p = task_of(se);
5341
5342        /*
5343         * Since we haven't yet done put_prev_entity and if the selected task
5344         * is a different task than we started out with, try and touch the
5345         * least amount of cfs_rqs.
5346         */
5347        if (prev != p) {
5348                struct sched_entity *pse = &prev->se;
5349
5350                while (!(cfs_rq = is_same_group(se, pse))) {
5351                        int se_depth = se->depth;
5352                        int pse_depth = pse->depth;
5353
5354                        if (se_depth <= pse_depth) {
5355                                put_prev_entity(cfs_rq_of(pse), pse);
5356                                pse = parent_entity(pse);
5357                        }
5358                        if (se_depth >= pse_depth) {
5359                                set_next_entity(cfs_rq_of(se), se);
5360                                se = parent_entity(se);
5361                        }
5362                }
5363
5364                put_prev_entity(cfs_rq, pse);
5365                set_next_entity(cfs_rq, se);
5366        }
5367
5368        if (hrtick_enabled(rq))
5369                hrtick_start_fair(rq, p);
5370
5371        return p;
5372simple:
5373        cfs_rq = &rq->cfs;
5374#endif
5375
5376        if (!cfs_rq->nr_running)
5377                goto idle;
5378
5379        put_prev_task(rq, prev);
5380
5381        do {
5382                se = pick_next_entity(cfs_rq, NULL);
5383                set_next_entity(cfs_rq, se);
5384                cfs_rq = group_cfs_rq(se);
5385        } while (cfs_rq);
5386
5387        p = task_of(se);
5388
5389        if (hrtick_enabled(rq))
5390                hrtick_start_fair(rq, p);
5391
5392        return p;
5393
5394idle:
5395        /*
5396         * This is OK, because current is on_cpu, which avoids it being picked
5397         * for load-balance and preemption/IRQs are still disabled avoiding
5398         * further scheduler activity on it and we're being very careful to
5399         * re-start the picking loop.
5400         */
5401        lockdep_unpin_lock(&rq->lock);
5402        new_tasks = idle_balance(rq);
5403        lockdep_pin_lock(&rq->lock);
5404        /*
5405         * Because idle_balance() releases (and re-acquires) rq->lock, it is
5406         * possible for any higher priority task to appear. In that case we
5407         * must re-start the pick_next_entity() loop.
5408         */
5409        if (new_tasks < 0)
5410                return RETRY_TASK;
5411
5412        if (new_tasks > 0)
5413                goto again;
5414
5415        return NULL;
5416}
5417
5418/*
5419 * Account for a descheduled task:
5420 */
5421static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5422{
5423        struct sched_entity *se = &prev->se;
5424        struct cfs_rq *cfs_rq;
5425
5426        for_each_sched_entity(se) {
5427                cfs_rq = cfs_rq_of(se);
5428                put_prev_entity(cfs_rq, se);
5429        }
5430}
5431
5432/*
5433 * sched_yield() is very simple
5434 *
5435 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5436 */
5437static void yield_task_fair(struct rq *rq)
5438{
5439        struct task_struct *curr = rq->curr;
5440        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5441        struct sched_entity *se = &curr->se;
5442
5443        /*
5444         * Are we the only task in the tree?
5445         */
5446        if (unlikely(rq->nr_running == 1))
5447                return;
5448
5449        clear_buddies(cfs_rq, se);
5450
5451        if (curr->policy != SCHED_BATCH) {
5452                update_rq_clock(rq);
5453                /*
5454                 * Update run-time statistics of the 'current'.
5455                 */
5456                update_curr(cfs_rq);
5457                /*
5458                 * Tell update_rq_clock() that we've just updated,
5459                 * so we don't do microscopic update in schedule()
5460                 * and double the fastpath cost.
5461                 */
5462                rq_clock_skip_update(rq, true);
5463        }
5464
5465        set_skip_buddy(se);
5466}
5467
5468static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5469{
5470        struct sched_entity *se = &p->se;
5471
5472        /* throttled hierarchies are not runnable */
5473        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5474                return false;
5475
5476        /* Tell the scheduler that we'd really like pse to run next. */
5477        set_next_buddy(se);
5478
5479        yield_task_fair(rq);
5480
5481        return true;
5482}
5483
5484#ifdef CONFIG_SMP
5485/**************************************************
5486 * Fair scheduling class load-balancing methods.
5487 *
5488 * BASICS
5489 *
5490 * The purpose of load-balancing is to achieve the same basic fairness the
5491 * per-cpu scheduler provides, namely provide a proportional amount of compute
5492 * time to each task. This is expressed in the following equation:
5493 *
5494 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5495 *
5496 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5497 * W_i,0 is defined as:
5498 *
5499 *   W_i,0 = \Sum_j w_i,j                                             (2)
5500 *
5501 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5502 * is derived from the nice value as per prio_to_weight[].
5503 *
5504 * The weight average is an exponential decay average of the instantaneous
5505 * weight:
5506 *
5507 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5508 *
5509 * C_i is the compute capacity of cpu i, typically it is the
5510 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5511 * can also include other factors [XXX].
5512 *
5513 * To achieve this balance we define a measure of imbalance which follows
5514 * directly from (1):
5515 *
5516 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5517 *
5518 * We them move tasks around to minimize the imbalance. In the continuous
5519 * function space it is obvious this converges, in the discrete case we get
5520 * a few fun cases generally called infeasible weight scenarios.
5521 *
5522 * [XXX expand on:
5523 *     - infeasible weights;
5524 *     - local vs global optima in the discrete case. ]
5525 *
5526 *
5527 * SCHED DOMAINS
5528 *
5529 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5530 * for all i,j solution, we create a tree of cpus that follows the hardware
5531 * topology where each level pairs two lower groups (or better). This results
5532 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5533 * tree to only the first of the previous level and we decrease the frequency
5534 * of load-balance at each level inv. proportional to the number of cpus in
5535 * the groups.
5536 *
5537 * This yields:
5538 *
5539 *     log_2 n     1     n
5540 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5541 *     i = 0      2^i   2^i
5542 *                               `- size of each group
5543 *         |         |     `- number of cpus doing load-balance
5544 *         |         `- freq
5545 *         `- sum over all levels
5546 *
5547 * Coupled with a limit on how many tasks we can migrate every balance pass,
5548 * this makes (5) the runtime complexity of the balancer.
5549 *
5550 * An important property here is that each CPU is still (indirectly) connected
5551 * to every other cpu in at most O(log n) steps:
5552 *
5553 * The adjacency matrix of the resulting graph is given by:
5554 *
5555 *             log_2 n     
5556 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5557 *             k = 0
5558 *
5559 * And you'll find that:
5560 *
5561 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5562 *
5563 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5564 * The task movement gives a factor of O(m), giving a convergence complexity
5565 * of:
5566 *
5567 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5568 *
5569 *
5570 * WORK CONSERVING
5571 *
5572 * In order to avoid CPUs going idle while there's still work to do, new idle
5573 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5574 * tree itself instead of relying on other CPUs to bring it work.
5575 *
5576 * This adds some complexity to both (5) and (8) but it reduces the total idle
5577 * time.
5578 *
5579 * [XXX more?]
5580 *
5581 *
5582 * CGROUPS
5583 *
5584 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5585 *
5586 *                                s_k,i
5587 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5588 *                                 S_k
5589 *
5590 * Where
5591 *
5592 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5593 *
5594 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5595 *
5596 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5597 * property.
5598 *
5599 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5600 *      rewrite all of this once again.]
5601 */ 
5602
5603static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5604
5605enum fbq_type { regular, remote, all };
5606
5607#define LBF_ALL_PINNED  0x01
5608#define LBF_NEED_BREAK  0x02
5609#define LBF_DST_PINNED  0x04
5610#define LBF_SOME_PINNED 0x08
5611
5612struct lb_env {
5613        struct sched_domain     *sd;
5614
5615        struct rq               *src_rq;
5616        int                     src_cpu;
5617
5618        int                     dst_cpu;
5619        struct rq               *dst_rq;
5620
5621        struct cpumask          *dst_grpmask;
5622        int                     new_dst_cpu;
5623        enum cpu_idle_type      idle;
5624        long                    imbalance;
5625        /* The set of CPUs under consideration for load-balancing */
5626        struct cpumask          *cpus;
5627
5628        unsigned int            flags;
5629
5630        unsigned int            loop;
5631        unsigned int            loop_break;
5632        unsigned int            loop_max;
5633
5634        enum fbq_type           fbq_type;
5635        struct list_head        tasks;
5636};
5637
5638/*
5639 * Is this task likely cache-hot:
5640 */
5641static int task_hot(struct task_struct *p, struct lb_env *env)
5642{
5643        s64 delta;
5644
5645        lockdep_assert_held(&env->src_rq->lock);
5646
5647        if (p->sched_class != &fair_sched_class)
5648                return 0;
5649
5650        if (unlikely(p->policy == SCHED_IDLE))
5651                return 0;
5652
5653        /*
5654         * Buddy candidates are cache hot:
5655         */
5656        if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5657                        (&p->se == cfs_rq_of(&p->se)->next ||
5658                         &p->se == cfs_rq_of(&p->se)->last))
5659                return 1;
5660
5661        if (sysctl_sched_migration_cost == -1)
5662                return 1;
5663        if (sysctl_sched_migration_cost == 0)
5664                return 0;
5665
5666        delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5667
5668        return delta < (s64)sysctl_sched_migration_cost;
5669}
5670
5671#ifdef CONFIG_NUMA_BALANCING
5672/*
5673 * Returns true if the destination node is the preferred node.
5674 * Needs to match fbq_classify_rq(): if there is a runnable task
5675 * that is not on its preferred node, we should identify it.
5676 */
5677static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5678{
5679        struct numa_group *numa_group = rcu_dereference(p->numa_group);
5680        unsigned long src_faults, dst_faults;
5681        int src_nid, dst_nid;
5682
5683        if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5684            !(env->sd->flags & SD_NUMA)) {
5685                return false;
5686        }
5687
5688        src_nid = cpu_to_node(env->src_cpu);
5689        dst_nid = cpu_to_node(env->dst_cpu);
5690
5691        if (src_nid == dst_nid)
5692                return false;
5693
5694        /* Encourage migration to the preferred node. */
5695        if (dst_nid == p->numa_preferred_nid)
5696                return true;
5697
5698        /* Migrating away from the preferred node is bad. */
5699        if (src_nid == p->numa_preferred_nid)
5700                return false;
5701
5702        if (numa_group) {
5703                src_faults = group_faults(p, src_nid);
5704                dst_faults = group_faults(p, dst_nid);
5705        } else {
5706                src_faults = task_faults(p, src_nid);
5707                dst_faults = task_faults(p, dst_nid);
5708        }
5709
5710        return dst_faults > src_faults;
5711}
5712
5713
5714static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5715{
5716        struct numa_group *numa_group = rcu_dereference(p->numa_group);
5717        unsigned long src_faults, dst_faults;
5718        int src_nid, dst_nid;
5719
5720        if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5721                return false;
5722
5723        if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5724                return false;
5725
5726        src_nid = cpu_to_node(env->src_cpu);
5727        dst_nid = cpu_to_node(env->dst_cpu);
5728
5729        if (src_nid == dst_nid)
5730                return false;
5731
5732        /* Migrating away from the preferred node is bad. */
5733        if (src_nid == p->numa_preferred_nid)
5734                return true;
5735
5736        /* Encourage migration to the preferred node. */
5737        if (dst_nid == p->numa_preferred_nid)
5738                return false;
5739
5740        if (numa_group) {
5741                src_faults = group_faults(p, src_nid);
5742                dst_faults = group_faults(p, dst_nid);
5743        } else {
5744                src_faults = task_faults(p, src_nid);
5745                dst_faults = task_faults(p, dst_nid);
5746        }
5747
5748        return dst_faults < src_faults;
5749}
5750
5751#else
5752static inline bool migrate_improves_locality(struct task_struct *p,
5753                                             struct lb_env *env)
5754{
5755        return false;
5756}
5757
5758static inline bool migrate_degrades_locality(struct task_struct *p,
5759                                             struct lb_env *env)
5760{
5761        return false;
5762}
5763#endif
5764
5765/*
5766 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5767 */
5768static
5769int can_migrate_task(struct task_struct *p, struct lb_env *env)
5770{
5771        int tsk_cache_hot = 0;
5772
5773        lockdep_assert_held(&env->src_rq->lock);
5774
5775        /*
5776         * We do not migrate tasks that are:
5777         * 1) throttled_lb_pair, or
5778         * 2) cannot be migrated to this CPU due to cpus_allowed, or
5779         * 3) running (obviously), or
5780         * 4) are cache-hot on their current CPU.
5781         */
5782        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5783                return 0;
5784
5785        if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5786                int cpu;
5787
5788                schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5789
5790                env->flags |= LBF_SOME_PINNED;
5791
5792                /*
5793                 * Remember if this task can be migrated to any other cpu in
5794                 * our sched_group. We may want to revisit it if we couldn't
5795                 * meet load balance goals by pulling other tasks on src_cpu.
5796                 *
5797                 * Also avoid computing new_dst_cpu if we have already computed
5798                 * one in current iteration.
5799                 */
5800                if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5801                        return 0;
5802
5803                /* Prevent to re-select dst_cpu via env's cpus */
5804                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5805                        if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5806                                env->flags |= LBF_DST_PINNED;
5807                                env->new_dst_cpu = cpu;
5808                                break;
5809                        }
5810                }
5811
5812                return 0;
5813        }
5814
5815        /* Record that we found atleast one task that could run on dst_cpu */
5816        env->flags &= ~LBF_ALL_PINNED;
5817
5818        if (task_running(env->src_rq, p)) {
5819                schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5820                return 0;
5821        }
5822
5823        /*
5824         * Aggressive migration if:
5825         * 1) destination numa is preferred
5826         * 2) task is cache cold, or
5827         * 3) too many balance attempts have failed.
5828         */
5829        tsk_cache_hot = task_hot(p, env);
5830        if (!tsk_cache_hot)
5831                tsk_cache_hot = migrate_degrades_locality(p, env);
5832
5833        if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5834            env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5835                if (tsk_cache_hot) {
5836                        schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5837                        schedstat_inc(p, se.statistics.nr_forced_migrations);
5838                }
5839                return 1;
5840        }
5841
5842        schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5843        return 0;
5844}
5845
5846/*
5847 * detach_task() -- detach the task for the migration specified in env
5848 */
5849static void detach_task(struct task_struct *p, struct lb_env *env)
5850{
5851        lockdep_assert_held(&env->src_rq->lock);
5852
5853        deactivate_task(env->src_rq, p, 0);
5854        p->on_rq = TASK_ON_RQ_MIGRATING;
5855        set_task_cpu(p, env->dst_cpu);
5856}
5857
5858/*
5859 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5860 * part of active balancing operations within "domain".
5861 *
5862 * Returns a task if successful and NULL otherwise.
5863 */
5864static struct task_struct *detach_one_task(struct lb_env *env)
5865{
5866        struct task_struct *p, *n;
5867
5868        lockdep_assert_held(&env->src_rq->lock);
5869
5870        list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5871                if (!can_migrate_task(p, env))
5872                        continue;
5873
5874                detach_task(p, env);
5875
5876                /*
5877                 * Right now, this is only the second place where
5878                 * lb_gained[env->idle] is updated (other is detach_tasks)
5879                 * so we can safely collect stats here rather than
5880                 * inside detach_tasks().
5881                 */
5882                schedstat_inc(env->sd, lb_gained[env->idle]);
5883                return p;
5884        }
5885        return NULL;
5886}
5887
5888static const unsigned int sched_nr_migrate_break = 32;
5889
5890/*
5891 * detach_tasks() -- tries to detach up to imbalance weighted load from
5892 * busiest_rq, as part of a balancing operation within domain "sd".
5893 *
5894 * Returns number of detached tasks if successful and 0 otherwise.
5895 */
5896static int detach_tasks(struct lb_env *env)
5897{
5898        struct list_head *tasks = &env->src_rq->cfs_tasks;
5899        struct task_struct *p;
5900        unsigned long load;
5901        int detached = 0;
5902
5903        lockdep_assert_held(&env->src_rq->lock);
5904
5905        if (env->imbalance <= 0)
5906                return 0;
5907
5908        while (!list_empty(tasks)) {
5909                p = list_first_entry(tasks, struct task_struct, se.group_node);
5910
5911                env->loop++;
5912                /* We've more or less seen every task there is, call it quits */
5913                if (env->loop > env->loop_max)
5914                        break;
5915
5916                /* take a breather every nr_migrate tasks */
5917                if (env->loop > env->loop_break) {
5918                        env->loop_break += sched_nr_migrate_break;
5919                        env->flags |= LBF_NEED_BREAK;
5920                        break;
5921                }
5922
5923                if (!can_migrate_task(p, env))
5924                        goto next;
5925
5926                load = task_h_load(p);
5927
5928                if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5929                        goto next;
5930
5931                if ((load / 2) > env->imbalance)
5932                        goto next;
5933
5934                detach_task(p, env);
5935                list_add(&p->se.group_node, &env->tasks);
5936
5937                detached++;
5938                env->imbalance -= load;
5939
5940#ifdef CONFIG_PREEMPT
5941                /*
5942                 * NEWIDLE balancing is a source of latency, so preemptible
5943                 * kernels will stop after the first task is detached to minimize
5944                 * the critical section.
5945                 */
5946                if (env->idle == CPU_NEWLY_IDLE)
5947                        break;
5948#endif
5949
5950                /*
5951                 * We only want to steal up to the prescribed amount of
5952                 * weighted load.
5953                 */
5954                if (env->imbalance <= 0)
5955                        break;
5956
5957                continue;
5958next:
5959                list_move_tail(&p->se.group_node, tasks);
5960        }
5961
5962        /*
5963         * Right now, this is one of only two places we collect this stat
5964         * so we can safely collect detach_one_task() stats here rather
5965         * than inside detach_one_task().
5966         */
5967        schedstat_add(env->sd, lb_gained[env->idle], detached);
5968
5969        return detached;
5970}
5971
5972/*
5973 * attach_task() -- attach the task detached by detach_task() to its new rq.
5974 */
5975static void attach_task(struct rq *rq, struct task_struct *p)
5976{
5977        lockdep_assert_held(&rq->lock);
5978
5979        BUG_ON(task_rq(p) != rq);
5980        p->on_rq = TASK_ON_RQ_QUEUED;
5981        activate_task(rq, p, 0);
5982        check_preempt_curr(rq, p, 0);
5983}
5984
5985/*
5986 * attach_one_task() -- attaches the task returned from detach_one_task() to
5987 * its new rq.
5988 */
5989static void attach_one_task(struct rq *rq, struct task_struct *p)
5990{
5991        raw_spin_lock(&rq->lock);
5992        attach_task(rq, p);
5993        raw_spin_unlock(&rq->lock);
5994}
5995
5996/*
5997 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5998 * new rq.
5999 */
6000static void attach_tasks(struct lb_env *env)
6001{
6002        struct list_head *tasks = &env->tasks;
6003        struct task_struct *p;
6004
6005        raw_spin_lock(&env->dst_rq->lock);
6006
6007        while (!list_empty(tasks)) {
6008                p = list_first_entry(tasks, struct task_struct, se.group_node);
6009                list_del_init(&p->se.group_node);
6010
6011                attach_task(env->dst_rq, p);
6012        }
6013
6014        raw_spin_unlock(&env->dst_rq->lock);
6015}
6016
6017#ifdef CONFIG_FAIR_GROUP_SCHED
6018/*
6019 * update tg->load_weight by folding this cpu's load_avg
6020 */
6021static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
6022{
6023        struct sched_entity *se = tg->se[cpu];
6024        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
6025
6026        /* throttled entities do not contribute to load */
6027        if (throttled_hierarchy(cfs_rq))
6028                return;
6029
6030        update_cfs_rq_blocked_load(cfs_rq, 1);
6031
6032        if (se) {
6033                update_entity_load_avg(se, 1);
6034                /*
6035                 * We pivot on our runnable average having decayed to zero for
6036                 * list removal.  This generally implies that all our children
6037                 * have also been removed (modulo rounding error or bandwidth
6038                 * control); however, such cases are rare and we can fix these
6039                 * at enqueue.
6040                 *
6041                 * TODO: fix up out-of-order children on enqueue.
6042                 */
6043                if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6044                        list_del_leaf_cfs_rq(cfs_rq);
6045        } else {
6046                struct rq *rq = rq_of(cfs_rq);
6047                update_rq_runnable_avg(rq, rq->nr_running);
6048        }
6049}
6050
6051static void update_blocked_averages(int cpu)
6052{
6053        struct rq *rq = cpu_rq(cpu);
6054        struct cfs_rq *cfs_rq;
6055        unsigned long flags;
6056
6057        raw_spin_lock_irqsave(&rq->lock, flags);
6058        update_rq_clock(rq);
6059        /*
6060         * Iterates the task_group tree in a bottom up fashion, see
6061         * list_add_leaf_cfs_rq() for details.
6062         */
6063        for_each_leaf_cfs_rq(rq, cfs_rq) {
6064                /*
6065                 * Note: We may want to consider periodically releasing
6066                 * rq->lock about these updates so that creating many task
6067                 * groups does not result in continually extending hold time.
6068                 */
6069                __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
6070        }
6071
6072        raw_spin_unlock_irqrestore(&rq->lock, flags);
6073}
6074
6075/*
6076 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6077 * This needs to be done in a top-down fashion because the load of a child
6078 * group is a fraction of its parents load.
6079 */
6080static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6081{
6082        struct rq *rq = rq_of(cfs_rq);
6083        struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6084        unsigned long now = jiffies;
6085        unsigned long load;
6086
6087        if (cfs_rq->last_h_load_update == now)
6088                return;
6089
6090        cfs_rq->h_load_next = NULL;
6091        for_each_sched_entity(se) {
6092                cfs_rq = cfs_rq_of(se);
6093                cfs_rq->h_load_next = se;
6094                if (cfs_rq->last_h_load_update == now)
6095                        break;
6096        }
6097
6098        if (!se) {
6099                cfs_rq->h_load = cfs_rq->runnable_load_avg;
6100                cfs_rq->last_h_load_update = now;
6101        }
6102
6103        while ((se = cfs_rq->h_load_next) != NULL) {
6104                load = cfs_rq->h_load;
6105                load = div64_ul(load * se->avg.load_avg_contrib,
6106                                cfs_rq->runnable_load_avg + 1);
6107                cfs_rq = group_cfs_rq(se);
6108                cfs_rq->h_load = load;
6109                cfs_rq->last_h_load_update = now;
6110        }
6111}
6112
6113static unsigned long task_h_load(struct task_struct *p)
6114{
6115        struct cfs_rq *cfs_rq = task_cfs_rq(p);
6116
6117        update_cfs_rq_h_load(cfs_rq);
6118        return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6119                        cfs_rq->runnable_load_avg + 1);
6120}
6121#else
6122static inline void update_blocked_averages(int cpu)
6123{
6124}
6125
6126static unsigned long task_h_load(struct task_struct *p)
6127{
6128        return p->se.avg.load_avg_contrib;
6129}
6130#endif
6131
6132/********** Helpers for find_busiest_group ************************/
6133
6134enum group_type {
6135        group_other = 0,
6136        group_imbalanced,
6137        group_overloaded,
6138};
6139
6140/*
6141 * sg_lb_stats - stats of a sched_group required for load_balancing
6142 */
6143struct sg_lb_stats {
6144        unsigned long avg_load; /*Avg load across the CPUs of the group */
6145        unsigned long group_load; /* Total load over the CPUs of the group */
6146        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6147        unsigned long load_per_task;
6148        unsigned long group_capacity;
6149        unsigned long group_usage; /* Total usage of the group */
6150        unsigned int sum_nr_running; /* Nr tasks running in the group */
6151        unsigned int idle_cpus;
6152        unsigned int group_weight;
6153        enum group_type group_type;
6154        int group_no_capacity;
6155#ifdef CONFIG_NUMA_BALANCING
6156        unsigned int nr_numa_running;
6157        unsigned int nr_preferred_running;
6158#endif
6159};
6160
6161/*
6162 * sd_lb_stats - Structure to store the statistics of a sched_domain
6163 *               during load balancing.
6164 */
6165struct sd_lb_stats {
6166        struct sched_group *busiest;    /* Busiest group in this sd */
6167        struct sched_group *local;      /* Local group in this sd */
6168        unsigned long total_load;       /* Total load of all groups in sd */
6169        unsigned long total_capacity;   /* Total capacity of all groups in sd */
6170        unsigned long avg_load; /* Average load across all groups in sd */
6171
6172        struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6173        struct sg_lb_stats local_stat;  /* Statistics of the local group */
6174};
6175
6176static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6177{
6178        /*
6179         * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6180         * local_stat because update_sg_lb_stats() does a full clear/assignment.
6181         * We must however clear busiest_stat::avg_load because
6182         * update_sd_pick_busiest() reads this before assignment.
6183         */
6184        *sds = (struct sd_lb_stats){
6185                .busiest = NULL,
6186                .local = NULL,
6187                .total_load = 0UL,
6188                .total_capacity = 0UL,
6189                .busiest_stat = {
6190                        .avg_load = 0UL,
6191                        .sum_nr_running = 0,
6192                        .group_type = group_other,
6193                },
6194        };
6195}
6196
6197/**
6198 * get_sd_load_idx - Obtain the load index for a given sched domain.
6199 * @sd: The sched_domain whose load_idx is to be obtained.
6200 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6201 *
6202 * Return: The load index.
6203 */
6204static inline int get_sd_load_idx(struct sched_domain *sd,
6205                                        enum cpu_idle_type idle)
6206{
6207        int load_idx;
6208
6209        switch (idle) {
6210        case CPU_NOT_IDLE:
6211                load_idx = sd->busy_idx;
6212                break;
6213
6214        case CPU_NEWLY_IDLE:
6215                load_idx = sd->newidle_idx;
6216                break;
6217        default:
6218                load_idx = sd->idle_idx;
6219                break;
6220        }
6221
6222        return load_idx;
6223}
6224
6225static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6226{
6227        if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6228                return sd->smt_gain / sd->span_weight;
6229
6230        return SCHED_CAPACITY_SCALE;
6231}
6232
6233unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6234{
6235        return default_scale_cpu_capacity(sd, cpu);
6236}
6237
6238static unsigned long scale_rt_capacity(int cpu)
6239{
6240        struct rq *rq = cpu_rq(cpu);
6241        u64 total, used, age_stamp, avg;
6242        s64 delta;
6243
6244        /*
6245         * Since we're reading these variables without serialization make sure
6246         * we read them once before doing sanity checks on them.
6247         */
6248        age_stamp = READ_ONCE(rq->age_stamp);
6249        avg = READ_ONCE(rq->rt_avg);
6250        delta = __rq_clock_broken(rq) - age_stamp;
6251
6252        if (unlikely(delta < 0))
6253                delta = 0;
6254
6255        total = sched_avg_period() + delta;
6256
6257        used = div_u64(avg, total);
6258
6259        if (likely(used < SCHED_CAPACITY_SCALE))
6260                return SCHED_CAPACITY_SCALE - used;
6261
6262        return 1;
6263}
6264
6265static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6266{
6267        unsigned long capacity = SCHED_CAPACITY_SCALE;
6268        struct sched_group *sdg = sd->groups;
6269
6270        if (sched_feat(ARCH_CAPACITY))
6271                capacity *= arch_scale_cpu_capacity(sd, cpu);
6272        else
6273                capacity *= default_scale_cpu_capacity(sd, cpu);
6274
6275        capacity >>= SCHED_CAPACITY_SHIFT;
6276
6277        cpu_rq(cpu)->cpu_capacity_orig = capacity;
6278
6279        capacity *= scale_rt_capacity(cpu);
6280        capacity >>= SCHED_CAPACITY_SHIFT;
6281
6282        if (!capacity)
6283                capacity = 1;
6284
6285        cpu_rq(cpu)->cpu_capacity = capacity;
6286        sdg->sgc->capacity = capacity;
6287}
6288
6289void update_group_capacity(struct sched_domain *sd, int cpu)
6290{
6291        struct sched_domain *child = sd->child;
6292        struct sched_group *group, *sdg = sd->groups;
6293        unsigned long capacity;
6294        unsigned long interval;
6295
6296        interval = msecs_to_jiffies(sd->balance_interval);
6297        interval = clamp(interval, 1UL, max_load_balance_interval);
6298        sdg->sgc->next_update = jiffies + interval;
6299
6300        if (!child) {
6301                update_cpu_capacity(sd, cpu);
6302                return;
6303        }
6304
6305        capacity = 0;
6306
6307        if (child->flags & SD_OVERLAP) {
6308                /*
6309                 * SD_OVERLAP domains cannot assume that child groups
6310                 * span the current group.
6311                 */
6312
6313                for_each_cpu(cpu, sched_group_cpus(sdg)) {
6314                        struct sched_group_capacity *sgc;
6315                        struct rq *rq = cpu_rq(cpu);
6316
6317                        /*
6318                         * build_sched_domains() -> init_sched_groups_capacity()
6319                         * gets here before we've attached the domains to the
6320                         * runqueues.
6321                         *
6322                         * Use capacity_of(), which is set irrespective of domains
6323                         * in update_cpu_capacity().
6324                         *
6325                         * This avoids capacity from being 0 and
6326                         * causing divide-by-zero issues on boot.
6327                         */
6328                        if (unlikely(!rq->sd)) {
6329                                capacity += capacity_of(cpu);
6330                                continue;
6331                        }
6332
6333                        sgc = rq->sd->groups->sgc;
6334                        capacity += sgc->capacity;
6335                }
6336        } else  {
6337                /*
6338                 * !SD_OVERLAP domains can assume that child groups
6339                 * span the current group.
6340                 */ 
6341
6342                group = child->groups;
6343                do {
6344                        capacity += group->sgc->capacity;
6345                        group = group->next;
6346                } while (group != child->groups);
6347        }
6348
6349        sdg->sgc->capacity = capacity;
6350}
6351
6352/*
6353 * Check whether the capacity of the rq has been noticeably reduced by side
6354 * activity. The imbalance_pct is used for the threshold.
6355 * Return true is the capacity is reduced
6356 */
6357static inline int
6358check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6359{
6360        return ((rq->cpu_capacity * sd->imbalance_pct) <
6361                                (rq->cpu_capacity_orig * 100));
6362}
6363
6364/*
6365 * Group imbalance indicates (and tries to solve) the problem where balancing
6366 * groups is inadequate due to tsk_cpus_allowed() constraints.
6367 *
6368 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6369 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6370 * Something like:
6371 *
6372 *      { 0 1 2 3 } { 4 5 6 7 }
6373 *              *     * * *
6374 *
6375 * If we were to balance group-wise we'd place two tasks in the first group and
6376 * two tasks in the second group. Clearly this is undesired as it will overload
6377 * cpu 3 and leave one of the cpus in the second group unused.
6378 *
6379 * The current solution to this issue is detecting the skew in the first group
6380 * by noticing the lower domain failed to reach balance and had difficulty
6381 * moving tasks due to affinity constraints.
6382 *
6383 * When this is so detected; this group becomes a candidate for busiest; see
6384 * update_sd_pick_busiest(). And calculate_imbalance() and
6385 * find_busiest_group() avoid some of the usual balance conditions to allow it
6386 * to create an effective group imbalance.
6387 *
6388 * This is a somewhat tricky proposition since the next run might not find the
6389 * group imbalance and decide the groups need to be balanced again. A most
6390 * subtle and fragile situation.
6391 */
6392
6393static inline int sg_imbalanced(struct sched_group *group)
6394{
6395        return group->sgc->imbalance;
6396}
6397
6398/*
6399 * group_has_capacity returns true if the group has spare capacity that could
6400 * be used by some tasks.
6401 * We consider that a group has spare capacity if the  * number of task is
6402 * smaller than the number of CPUs or if the usage is lower than the available
6403 * capacity for CFS tasks.
6404 * For the latter, we use a threshold to stabilize the state, to take into
6405 * account the variance of the tasks' load and to return true if the available
6406 * capacity in meaningful for the load balancer.
6407 * As an example, an available capacity of 1% can appear but it doesn't make
6408 * any benefit for the load balance.
6409 */
6410static inline bool
6411group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6412{
6413        if (sgs->sum_nr_running < sgs->group_weight)
6414                return true;
6415
6416        if ((sgs->group_capacity * 100) >
6417                        (sgs->group_usage * env->sd->imbalance_pct))
6418                return true;
6419
6420        return false;
6421}
6422
6423/*
6424 *  group_is_overloaded returns true if the group has more tasks than it can
6425 *  handle.
6426 *  group_is_overloaded is not equals to !group_has_capacity because a group
6427 *  with the exact right number of tasks, has no more spare capacity but is not
6428 *  overloaded so both group_has_capacity and group_is_overloaded return
6429 *  false.
6430 */
6431static inline bool
6432group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6433{
6434        if (sgs->sum_nr_running <= sgs->group_weight)
6435                return false;
6436
6437        if ((sgs->group_capacity * 100) <
6438                        (sgs->group_usage * env->sd->imbalance_pct))
6439                return true;
6440
6441        return false;
6442}
6443
6444static enum group_type group_classify(struct lb_env *env,
6445                struct sched_group *group,
6446                struct sg_lb_stats *sgs)
6447{
6448        if (sgs->group_no_capacity)
6449                return group_overloaded;
6450
6451        if (sg_imbalanced(group))
6452                return group_imbalanced;
6453
6454        return group_other;
6455}
6456
6457/**
6458 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6459 * @env: The load balancing environment.
6460 * @group: sched_group whose statistics are to be updated.
6461 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6462 * @local_group: Does group contain this_cpu.
6463 * @sgs: variable to hold the statistics for this group.
6464 * @overload: Indicate more than one runnable task for any CPU.
6465 */
6466static inline void update_sg_lb_stats(struct lb_env *env,
6467                        struct sched_group *group, int load_idx,
6468                        int local_group, struct sg_lb_stats *sgs,
6469                        bool *overload)
6470{
6471        unsigned long load;
6472        int i;
6473
6474        memset(sgs, 0, sizeof(*sgs));
6475
6476        for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6477                struct rq *rq = cpu_rq(i);
6478
6479                /* Bias balancing toward cpus of our domain */
6480                if (local_group)
6481                        load = target_load(i, load_idx);
6482                else
6483                        load = source_load(i, load_idx);
6484
6485                sgs->group_load += load;
6486                sgs->group_usage += get_cpu_usage(i);
6487                sgs->sum_nr_running += rq->cfs.h_nr_running;
6488
6489                if (rq->nr_running > 1)
6490                        *overload = true;
6491
6492#ifdef CONFIG_NUMA_BALANCING
6493                sgs->nr_numa_running += rq->nr_numa_running;
6494                sgs->nr_preferred_running += rq->nr_preferred_running;
6495#endif
6496                sgs->sum_weighted_load += weighted_cpuload(i);
6497                if (idle_cpu(i))
6498                        sgs->idle_cpus++;
6499        }
6500
6501        /* Adjust by relative CPU capacity of the group */
6502        sgs->group_capacity = group->sgc->capacity;
6503        sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6504
6505        if (sgs->sum_nr_running)
6506                sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6507
6508        sgs->group_weight = group->group_weight;
6509
6510        sgs->group_no_capacity = group_is_overloaded(env, sgs);
6511        sgs->group_type = group_classify(env, group, sgs);
6512}
6513
6514/**
6515 * update_sd_pick_busiest - return 1 on busiest group
6516 * @env: The load balancing environment.
6517 * @sds: sched_domain statistics
6518 * @sg: sched_group candidate to be checked for being the busiest
6519 * @sgs: sched_group statistics
6520 *
6521 * Determine if @sg is a busier group than the previously selected
6522 * busiest group.
6523 *
6524 * Return: %true if @sg is a busier group than the previously selected
6525 * busiest group. %false otherwise.
6526 */
6527static bool update_sd_pick_busiest(struct lb_env *env,
6528                                   struct sd_lb_stats *sds,
6529                                   struct sched_group *sg,
6530                                   struct sg_lb_stats *sgs)
6531{
6532        struct sg_lb_stats *busiest = &sds->busiest_stat;
6533
6534        if (sgs->group_type > busiest->group_type)
6535                return true;
6536
6537        if (sgs->group_type < busiest->group_type)
6538                return false;
6539
6540        if (sgs->avg_load <= busiest->avg_load)
6541                return false;
6542
6543        /* This is the busiest node in its class. */
6544        if (!(env->sd->flags & SD_ASYM_PACKING))
6545                return true;
6546
6547        /*
6548         * ASYM_PACKING needs to move all the work to the lowest
6549         * numbered CPUs in the group, therefore mark all groups
6550         * higher than ourself as busy.
6551         */
6552        if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6553                if (!sds->busiest)
6554                        return true;
6555
6556                if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6557                        return true;
6558        }
6559
6560        return false;
6561}
6562
6563#ifdef CONFIG_NUMA_BALANCING
6564static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6565{
6566        if (sgs->sum_nr_running > sgs->nr_numa_running)
6567                return regular;
6568        if (sgs->sum_nr_running > sgs->nr_preferred_running)
6569                return remote;
6570        return all;
6571}
6572
6573static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6574{
6575        if (rq->nr_running > rq->nr_numa_running)
6576                return regular;
6577        if (rq->nr_running > rq->nr_preferred_running)
6578                return remote;
6579        return all;
6580}
6581#else
6582static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6583{
6584        return all;
6585}
6586
6587static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6588{
6589        return regular;
6590}
6591#endif /* CONFIG_NUMA_BALANCING */
6592
6593/**
6594 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6595 * @env: The load balancing environment.
6596 * @sds: variable to hold the statistics for this sched_domain.
6597 */
6598static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6599{
6600        struct sched_domain *child = env->sd->child;
6601        struct sched_group *sg = env->sd->groups;
6602        struct sg_lb_stats tmp_sgs;
6603        int load_idx, prefer_sibling = 0;
6604        bool overload = false;
6605
6606        if (child && child->flags & SD_PREFER_SIBLING)
6607                prefer_sibling = 1;
6608
6609        load_idx = get_sd_load_idx(env->sd, env->idle);
6610
6611        do {
6612                struct sg_lb_stats *sgs = &tmp_sgs;
6613                int local_group;
6614
6615                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6616                if (local_group) {
6617                        sds->local = sg;
6618                        sgs = &sds->local_stat;
6619
6620                        if (env->idle != CPU_NEWLY_IDLE ||
6621                            time_after_eq(jiffies, sg->sgc->next_update))
6622                                update_group_capacity(env->sd, env->dst_cpu);
6623                }
6624
6625                update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6626                                                &overload);
6627
6628                if (local_group)
6629                        goto next_group;
6630
6631                /*
6632                 * In case the child domain prefers tasks go to siblings
6633                 * first, lower the sg capacity so that we'll try
6634                 * and move all the excess tasks away. We lower the capacity
6635                 * of a group only if the local group has the capacity to fit
6636                 * these excess tasks. The extra check prevents the case where
6637                 * you always pull from the heaviest group when it is already
6638                 * under-utilized (possible with a large weight task outweighs
6639                 * the tasks on the system).
6640                 */
6641                if (prefer_sibling && sds->local &&
6642                    group_has_capacity(env, &sds->local_stat) &&
6643                    (sgs->sum_nr_running > 1)) {
6644                        sgs->group_no_capacity = 1;
6645                        sgs->group_type = group_overloaded;
6646                }
6647
6648                if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6649                        sds->busiest = sg;
6650                        sds->busiest_stat = *sgs;
6651                }
6652
6653next_group:
6654                /* Now, start updating sd_lb_stats */
6655                sds->total_load += sgs->group_load;
6656                sds->total_capacity += sgs->group_capacity;
6657
6658                sg = sg->next;
6659        } while (sg != env->sd->groups);
6660
6661        if (env->sd->flags & SD_NUMA)
6662                env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6663
6664        if (!env->sd->parent) {
6665                /* update overload indicator if we are at root domain */
6666                if (env->dst_rq->rd->overload != overload)
6667                        env->dst_rq->rd->overload = overload;
6668        }
6669
6670}
6671
6672/**
6673 * check_asym_packing - Check to see if the group is packed into the
6674 *                      sched doman.
6675 *
6676 * This is primarily intended to used at the sibling level.  Some
6677 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6678 * case of POWER7, it can move to lower SMT modes only when higher
6679 * threads are idle.  When in lower SMT modes, the threads will
6680 * perform better since they share less core resources.  Hence when we
6681 * have idle threads, we want them to be the higher ones.
6682 *
6683 * This packing function is run on idle threads.  It checks to see if
6684 * the busiest CPU in this domain (core in the P7 case) has a higher
6685 * CPU number than the packing function is being run on.  Here we are
6686 * assuming lower CPU number will be equivalent to lower a SMT thread
6687 * number.
6688 *
6689 * Return: 1 when packing is required and a task should be moved to
6690 * this CPU.  The amount of the imbalance is returned in *imbalance.
6691 *
6692 * @env: The load balancing environment.
6693 * @sds: Statistics of the sched_domain which is to be packed
6694 */
6695static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6696{
6697        int busiest_cpu;
6698
6699        if (!(env->sd->flags & SD_ASYM_PACKING))
6700                return 0;
6701
6702        if (!sds->busiest)
6703                return 0;
6704
6705        busiest_cpu = group_first_cpu(sds->busiest);
6706        if (env->dst_cpu > busiest_cpu)
6707                return 0;
6708
6709        env->imbalance = DIV_ROUND_CLOSEST(
6710                sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6711                SCHED_CAPACITY_SCALE);
6712
6713        return 1;
6714}
6715
6716/**
6717 * fix_small_imbalance - Calculate the minor imbalance that exists
6718 *                      amongst the groups of a sched_domain, during
6719 *                      load balancing.
6720 * @env: The load balancing environment.
6721 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6722 */
6723static inline
6724void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6725{
6726        unsigned long tmp, capa_now = 0, capa_move = 0;
6727        unsigned int imbn = 2;
6728        unsigned long scaled_busy_load_per_task;
6729        struct sg_lb_stats *local, *busiest;
6730
6731        local = &sds->local_stat;
6732        busiest = &sds->busiest_stat;
6733
6734        if (!local->sum_nr_running)
6735                local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6736        else if (busiest->load_per_task > local->load_per_task)
6737                imbn = 1;
6738
6739        scaled_busy_load_per_task =
6740                (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6741                busiest->group_capacity;
6742
6743        if (busiest->avg_load + scaled_busy_load_per_task >=
6744            local->avg_load + (scaled_busy_load_per_task * imbn)) {
6745                env->imbalance = busiest->load_per_task;
6746                return;
6747        }
6748
6749        /*
6750         * OK, we don't have enough imbalance to justify moving tasks,
6751         * however we may be able to increase total CPU capacity used by
6752         * moving them.
6753         */
6754
6755        capa_now += busiest->group_capacity *
6756                        min(busiest->load_per_task, busiest->avg_load);
6757        capa_now += local->group_capacity *
6758                        min(local->load_per_task, local->avg_load);
6759        capa_now /= SCHED_CAPACITY_SCALE;
6760
6761        /* Amount of load we'd subtract */
6762        if (busiest->avg_load > scaled_busy_load_per_task) {
6763                capa_move += busiest->group_capacity *
6764                            min(busiest->load_per_task,
6765                                busiest->avg_load - scaled_busy_load_per_task);
6766        }
6767
6768        /* Amount of load we'd add */
6769        if (busiest->avg_load * busiest->group_capacity <
6770            busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6771                tmp = (busiest->avg_load * busiest->group_capacity) /
6772                      local->group_capacity;
6773        } else {
6774                tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6775                      local->group_capacity;
6776        }
6777        capa_move += local->group_capacity *
6778                    min(local->load_per_task, local->avg_load + tmp);
6779        capa_move /= SCHED_CAPACITY_SCALE;
6780
6781        /* Move if we gain throughput */
6782        if (capa_move > capa_now)
6783                env->imbalance = busiest->load_per_task;
6784}
6785
6786/**
6787 * calculate_imbalance - Calculate the amount of imbalance present within the
6788 *                       groups of a given sched_domain during load balance.
6789 * @env: load balance environment
6790 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6791 */
6792static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6793{
6794        unsigned long max_pull, load_above_capacity = ~0UL;
6795        struct sg_lb_stats *local, *busiest;
6796
6797        local = &sds->local_stat;
6798        busiest = &sds->busiest_stat;
6799
6800        if (busiest->group_type == group_imbalanced) {
6801                /*
6802                 * In the group_imb case we cannot rely on group-wide averages
6803                 * to ensure cpu-load equilibrium, look at wider averages. XXX
6804                 */
6805                busiest->load_per_task =
6806                        min(busiest->load_per_task, sds->avg_load);
6807        }
6808
6809        /*
6810         * In the presence of smp nice balancing, certain scenarios can have
6811         * max load less than avg load(as we skip the groups at or below
6812         * its cpu_capacity, while calculating max_load..)
6813         */
6814        if (busiest->avg_load <= sds->avg_load ||
6815            local->avg_load >= sds->avg_load) {
6816                env->imbalance = 0;
6817                return fix_small_imbalance(env, sds);
6818        }
6819
6820        /*
6821         * If there aren't any idle cpus, avoid creating some.
6822         */
6823        if (busiest->group_type == group_overloaded &&
6824            local->group_type   == group_overloaded) {
6825                load_above_capacity = busiest->sum_nr_running *
6826                                        SCHED_LOAD_SCALE;
6827                if (load_above_capacity > busiest->group_capacity)
6828                        load_above_capacity -= busiest->group_capacity;
6829                else
6830                        load_above_capacity = ~0UL;
6831        }
6832
6833        /*
6834         * We're trying to get all the cpus to the average_load, so we don't
6835         * want to push ourselves above the average load, nor do we wish to
6836         * reduce the max loaded cpu below the average load. At the same time,
6837         * we also don't want to reduce the group load below the group capacity
6838         * (so that we can implement power-savings policies etc). Thus we look
6839         * for the minimum possible imbalance.
6840         */
6841        max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6842
6843        /* How much load to actually move to equalise the imbalance */
6844        env->imbalance = min(
6845                max_pull * busiest->group_capacity,
6846                (sds->avg_load - local->avg_load) * local->group_capacity
6847        ) / SCHED_CAPACITY_SCALE;
6848
6849        /*
6850         * if *imbalance is less than the average load per runnable task
6851         * there is no guarantee that any tasks will be moved so we'll have
6852         * a think about bumping its value to force at least one task to be
6853         * moved
6854         */
6855        if (env->imbalance < busiest->load_per_task)
6856                return fix_small_imbalance(env, sds);
6857}
6858
6859/******* find_busiest_group() helpers end here *********************/
6860
6861/**
6862 * find_busiest_group - Returns the busiest group within the sched_domain
6863 * if there is an imbalance. If there isn't an imbalance, and
6864 * the user has opted for power-savings, it returns a group whose
6865 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6866 * such a group exists.
6867 *
6868 * Also calculates the amount of weighted load which should be moved
6869 * to restore balance.
6870 *
6871 * @env: The load balancing environment.
6872 *
6873 * Return:      - The busiest group if imbalance exists.
6874 *              - If no imbalance and user has opted for power-savings balance,
6875 *                 return the least loaded group whose CPUs can be
6876 *                 put to idle by rebalancing its tasks onto our group.
6877 */
6878static struct sched_group *find_busiest_group(struct lb_env *env)
6879{
6880        struct sg_lb_stats *local, *busiest;
6881        struct sd_lb_stats sds;
6882
6883        init_sd_lb_stats(&sds);
6884
6885        /*
6886         * Compute the various statistics relavent for load balancing at
6887         * this level.
6888         */
6889        update_sd_lb_stats(env, &sds);
6890        local = &sds.local_stat;
6891        busiest = &sds.busiest_stat;
6892
6893        /* ASYM feature bypasses nice load balance check */
6894        if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6895            check_asym_packing(env, &sds))
6896                return sds.busiest;
6897
6898        /* There is no busy sibling group to pull tasks from */
6899        if (!sds.busiest || busiest->sum_nr_running == 0)
6900                goto out_balanced;
6901
6902        sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6903                                                / sds.total_capacity;
6904
6905        /*
6906         * If the busiest group is imbalanced the below checks don't
6907         * work because they assume all things are equal, which typically
6908         * isn't true due to cpus_allowed constraints and the like.
6909         */
6910        if (busiest->group_type == group_imbalanced)
6911                goto force_balance;
6912
6913        /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6914        if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6915            busiest->group_no_capacity)
6916                goto force_balance;
6917
6918        /*
6919         * If the local group is busier than the selected busiest group
6920         * don't try and pull any tasks.
6921         */
6922        if (local->avg_load >= busiest->avg_load)
6923                goto out_balanced;
6924
6925        /*
6926         * Don't pull any tasks if this group is already above the domain
6927         * average load.
6928         */
6929        if (local->avg_load >= sds.avg_load)
6930                goto out_balanced;
6931
6932        if (env->idle == CPU_IDLE) {
6933                /*
6934                 * This cpu is idle. If the busiest group is not overloaded
6935                 * and there is no imbalance between this and busiest group
6936                 * wrt idle cpus, it is balanced. The imbalance becomes
6937                 * significant if the diff is greater than 1 otherwise we
6938                 * might end up to just move the imbalance on another group
6939                 */
6940                if ((busiest->group_type != group_overloaded) &&
6941                                (local->idle_cpus <= (busiest->idle_cpus + 1)))
6942                        goto out_balanced;
6943        } else {
6944                /*
6945                 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6946                 * imbalance_pct to be conservative.
6947                 */
6948                if (100 * busiest->avg_load <=
6949                                env->sd->imbalance_pct * local->avg_load)
6950                        goto out_balanced;
6951        }
6952
6953force_balance:
6954        /* Looks like there is an imbalance. Compute it */
6955        calculate_imbalance(env, &sds);
6956        return sds.busiest;
6957
6958out_balanced:
6959        env->imbalance = 0;
6960        return NULL;
6961}
6962
6963/*
6964 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6965 */
6966static struct rq *find_busiest_queue(struct lb_env *env,
6967                                     struct sched_group *group)
6968{
6969        struct rq *busiest = NULL, *rq;
6970        unsigned long busiest_load = 0, busiest_capacity = 1;
6971        int i;
6972
6973        for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6974                unsigned long capacity, wl;
6975                enum fbq_type rt;
6976
6977                rq = cpu_rq(i);
6978                rt = fbq_classify_rq(rq);
6979
6980                /*
6981                 * We classify groups/runqueues into three groups:
6982                 *  - regular: there are !numa tasks
6983                 *  - remote:  there are numa tasks that run on the 'wrong' node
6984                 *  - all:     there is no distinction
6985                 *
6986                 * In order to avoid migrating ideally placed numa tasks,
6987                 * ignore those when there's better options.
6988                 *
6989                 * If we ignore the actual busiest queue to migrate another
6990                 * task, the next balance pass can still reduce the busiest
6991                 * queue by moving tasks around inside the node.
6992                 *
6993                 * If we cannot move enough load due to this classification
6994                 * the next pass will adjust the group classification and
6995                 * allow migration of more tasks.
6996                 *
6997                 * Both cases only affect the total convergence complexity.
6998                 */
6999                if (rt > env->fbq_type)
7000                        continue;
7001
7002                capacity = capacity_of(i);
7003
7004                wl = weighted_cpuload(i);
7005
7006                /*
7007                 * When comparing with imbalance, use weighted_cpuload()
7008                 * which is not scaled with the cpu capacity.
7009                 */
7010
7011                if (rq->nr_running == 1 && wl > env->imbalance &&
7012                    !check_cpu_capacity(rq, env->sd))
7013                        continue;
7014
7015                /*
7016                 * For the load comparisons with the other cpu's, consider
7017                 * the weighted_cpuload() scaled with the cpu capacity, so
7018                 * that the load can be moved away from the cpu that is
7019                 * potentially running at a lower capacity.
7020                 *
7021                 * Thus we're looking for max(wl_i / capacity_i), crosswise
7022                 * multiplication to rid ourselves of the division works out
7023                 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7024                 * our previous maximum.
7025                 */
7026                if (wl * busiest_capacity > busiest_load * capacity) {
7027                        busiest_load = wl;
7028                        busiest_capacity = capacity;
7029                        busiest = rq;
7030                }
7031        }
7032
7033        return busiest;
7034}
7035
7036/*
7037 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7038 * so long as it is large enough.
7039 */
7040#define MAX_PINNED_INTERVAL     512
7041
7042/* Working cpumask for load_balance and load_balance_newidle. */
7043DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7044
7045static int need_active_balance(struct lb_env *env)
7046{
7047        struct sched_domain *sd = env->sd;
7048
7049        if (env->idle == CPU_NEWLY_IDLE) {
7050
7051                /*
7052                 * ASYM_PACKING needs to force migrate tasks from busy but
7053                 * higher numbered CPUs in order to pack all tasks in the
7054                 * lowest numbered CPUs.
7055                 */
7056                if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7057                        return 1;
7058        }
7059
7060        /*
7061         * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7062         * It's worth migrating the task if the src_cpu's capacity is reduced
7063         * because of other sched_class or IRQs if more capacity stays
7064         * available on dst_cpu.
7065         */
7066        if ((env->idle != CPU_NOT_IDLE) &&
7067            (env->src_rq->cfs.h_nr_running == 1)) {
7068                if ((check_cpu_capacity(env->src_rq, sd)) &&
7069                    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7070                        return 1;
7071        }
7072
7073        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7074}
7075
7076static int active_load_balance_cpu_stop(void *data);
7077
7078static int should_we_balance(struct lb_env *env)
7079{
7080        struct sched_group *sg = env->sd->groups;
7081        struct cpumask *sg_cpus, *sg_mask;
7082        int cpu, balance_cpu = -1;
7083
7084        /*
7085         * In the newly idle case, we will allow all the cpu's
7086         * to do the newly idle load balance.
7087         */
7088        if (env->idle == CPU_NEWLY_IDLE)
7089                return 1;
7090
7091        sg_cpus = sched_group_cpus(sg);
7092        sg_mask = sched_group_mask(sg);
7093        /* Try to find first idle cpu */
7094        for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7095                if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7096                        continue;
7097
7098                balance_cpu = cpu;
7099                break;
7100        }
7101
7102        if (balance_cpu == -1)
7103                balance_cpu = group_balance_cpu(sg);
7104
7105        /*
7106         * First idle cpu or the first cpu(busiest) in this sched group
7107         * is eligible for doing load balancing at this and above domains.
7108         */
7109        return balance_cpu == env->dst_cpu;
7110}
7111
7112/*
7113 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7114 * tasks if there is an imbalance.
7115 */
7116static int load_balance(int this_cpu, struct rq *this_rq,
7117                        struct sched_domain *sd, enum cpu_idle_type idle,
7118                        int *continue_balancing)
7119{
7120        int ld_moved, cur_ld_moved, active_balance = 0;
7121        struct sched_domain *sd_parent = sd->parent;
7122        struct sched_group *group;
7123        struct rq *busiest;
7124        unsigned long flags;
7125        struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7126
7127        struct lb_env env = {
7128                .sd             = sd,
7129                .dst_cpu        = this_cpu,
7130                .dst_rq         = this_rq,
7131                .dst_grpmask    = sched_group_cpus(sd->groups),
7132                .idle           = idle,
7133                .loop_break     = sched_nr_migrate_break,
7134                .cpus           = cpus,
7135                .fbq_type       = all,
7136                .tasks          = LIST_HEAD_INIT(env.tasks),
7137        };
7138
7139        /*
7140         * For NEWLY_IDLE load_balancing, we don't need to consider
7141         * other cpus in our group
7142         */
7143        if (idle == CPU_NEWLY_IDLE)
7144                env.dst_grpmask = NULL;
7145
7146        cpumask_copy(cpus, cpu_active_mask);
7147
7148        schedstat_inc(sd, lb_count[idle]);
7149
7150redo:
7151        if (!should_we_balance(&env)) {
7152                *continue_balancing = 0;
7153                goto out_balanced;
7154        }
7155
7156        group = find_busiest_group(&env);
7157        if (!group) {
7158                schedstat_inc(sd, lb_nobusyg[idle]);
7159                goto out_balanced;
7160        }
7161
7162        busiest = find_busiest_queue(&env, group);
7163        if (!busiest) {
7164                schedstat_inc(sd, lb_nobusyq[idle]);
7165                goto out_balanced;
7166        }
7167
7168        BUG_ON(busiest == env.dst_rq);
7169
7170        schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7171
7172        env.src_cpu = busiest->cpu;
7173        env.src_rq = busiest;
7174
7175        ld_moved = 0;
7176        if (busiest->nr_running > 1) {
7177                /*
7178                 * Attempt to move tasks. If find_busiest_group has found
7179                 * an imbalance but busiest->nr_running <= 1, the group is
7180                 * still unbalanced. ld_moved simply stays zero, so it is
7181                 * correctly treated as an imbalance.
7182                 */
7183                env.flags |= LBF_ALL_PINNED;
7184                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7185
7186more_balance:
7187                raw_spin_lock_irqsave(&busiest->lock, flags);
7188
7189                /*
7190                 * cur_ld_moved - load moved in current iteration
7191                 * ld_moved     - cumulative load moved across iterations
7192                 */
7193                cur_ld_moved = detach_tasks(&env);
7194
7195                /*
7196                 * We've detached some tasks from busiest_rq. Every
7197                 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7198                 * unlock busiest->lock, and we are able to be sure
7199                 * that nobody can manipulate the tasks in parallel.
7200                 * See task_rq_lock() family for the details.
7201                 */
7202
7203                raw_spin_unlock(&busiest->lock);
7204
7205                if (cur_ld_moved) {
7206                        attach_tasks(&env);
7207                        ld_moved += cur_ld_moved;
7208                }
7209
7210                local_irq_restore(flags);
7211
7212                if (env.flags & LBF_NEED_BREAK) {
7213                        env.flags &= ~LBF_NEED_BREAK;
7214                        goto more_balance;
7215                }
7216
7217                /*
7218                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7219                 * us and move them to an alternate dst_cpu in our sched_group
7220                 * where they can run. The upper limit on how many times we
7221                 * iterate on same src_cpu is dependent on number of cpus in our
7222                 * sched_group.
7223                 *
7224                 * This changes load balance semantics a bit on who can move
7225                 * load to a given_cpu. In addition to the given_cpu itself
7226                 * (or a ilb_cpu acting on its behalf where given_cpu is
7227                 * nohz-idle), we now have balance_cpu in a position to move
7228                 * load to given_cpu. In rare situations, this may cause
7229                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7230                 * _independently_ and at _same_ time to move some load to
7231                 * given_cpu) causing exceess load to be moved to given_cpu.
7232                 * This however should not happen so much in practice and
7233                 * moreover subsequent load balance cycles should correct the
7234                 * excess load moved.
7235                 */
7236                if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7237
7238                        /* Prevent to re-select dst_cpu via env's cpus */
7239                        cpumask_clear_cpu(env.dst_cpu, env.cpus);
7240
7241                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
7242                        env.dst_cpu      = env.new_dst_cpu;
7243                        env.flags       &= ~LBF_DST_PINNED;
7244                        env.loop         = 0;
7245                        env.loop_break   = sched_nr_migrate_break;
7246
7247                        /*
7248                         * Go back to "more_balance" rather than "redo" since we
7249                         * need to continue with same src_cpu.
7250                         */
7251                        goto more_balance;
7252                }
7253
7254                /*
7255                 * We failed to reach balance because of affinity.
7256                 */
7257                if (sd_parent) {
7258                        int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7259
7260                        if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7261                                *group_imbalance = 1;
7262                }
7263
7264                /* All tasks on this runqueue were pinned by CPU affinity */
7265                if (unlikely(env.flags & LBF_ALL_PINNED)) {
7266                        cpumask_clear_cpu(cpu_of(busiest), cpus);
7267                        if (!cpumask_empty(cpus)) {
7268                                env.loop = 0;
7269                                env.loop_break = sched_nr_migrate_break;
7270                                goto redo;
7271                        }
7272                        goto out_all_pinned;
7273                }
7274        }
7275
7276        if (!ld_moved) {
7277                schedstat_inc(sd, lb_failed[idle]);
7278                /*
7279                 * Increment the failure counter only on periodic balance.
7280                 * We do not want newidle balance, which can be very
7281                 * frequent, pollute the failure counter causing
7282                 * excessive cache_hot migrations and active balances.
7283                 */
7284                if (idle != CPU_NEWLY_IDLE)
7285                        sd->nr_balance_failed++;
7286
7287                if (need_active_balance(&env)) {
7288                        raw_spin_lock_irqsave(&busiest->lock, flags);
7289
7290                        /* don't kick the active_load_balance_cpu_stop,
7291                         * if the curr task on busiest cpu can't be
7292                         * moved to this_cpu
7293                         */
7294                        if (!cpumask_test_cpu(this_cpu,
7295                                        tsk_cpus_allowed(busiest->curr))) {
7296                                raw_spin_unlock_irqrestore(&busiest->lock,
7297                                                            flags);
7298                                env.flags |= LBF_ALL_PINNED;
7299                                goto out_one_pinned;
7300                        }
7301
7302                        /*
7303                         * ->active_balance synchronizes accesses to
7304                         * ->active_balance_work.  Once set, it's cleared
7305                         * only after active load balance is finished.
7306                         */
7307                        if (!busiest->active_balance) {
7308                                busiest->active_balance = 1;
7309                                busiest->push_cpu = this_cpu;
7310                                active_balance = 1;
7311                        }
7312                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
7313
7314                        if (active_balance) {
7315                                stop_one_cpu_nowait(cpu_of(busiest),
7316                                        active_load_balance_cpu_stop, busiest,
7317                                        &busiest->active_balance_work);
7318                        }
7319
7320                        /*
7321                         * We've kicked active balancing, reset the failure
7322                         * counter.
7323                         */
7324                        sd->nr_balance_failed = sd->cache_nice_tries+1;
7325                }
7326        } else
7327                sd->nr_balance_failed = 0;
7328
7329        if (likely(!active_balance)) {
7330                /* We were unbalanced, so reset the balancing interval */
7331                sd->balance_interval = sd->min_interval;
7332        } else {
7333                /*
7334                 * If we've begun active balancing, start to back off. This
7335                 * case may not be covered by the all_pinned logic if there
7336                 * is only 1 task on the busy runqueue (because we don't call
7337                 * detach_tasks).
7338                 */
7339                if (sd->balance_interval < sd->max_interval)
7340                        sd->balance_interval *= 2;
7341        }
7342
7343        goto out;
7344
7345out_balanced:
7346        /*
7347         * We reach balance although we may have faced some affinity
7348         * constraints. Clear the imbalance flag if it was set.
7349         */
7350        if (sd_parent) {
7351                int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7352
7353                if (*group_imbalance)
7354                        *group_imbalance = 0;
7355        }
7356
7357out_all_pinned:
7358        /*
7359         * We reach balance because all tasks are pinned at this level so
7360         * we can't migrate them. Let the imbalance flag set so parent level
7361         * can try to migrate them.
7362         */
7363        schedstat_inc(sd, lb_balanced[idle]);
7364
7365        sd->nr_balance_failed = 0;
7366
7367out_one_pinned:
7368        /* tune up the balancing interval */
7369        if (((env.flags & LBF_ALL_PINNED) &&
7370                        sd->balance_interval < MAX_PINNED_INTERVAL) ||
7371                        (sd->balance_interval < sd->max_interval))
7372                sd->balance_interval *= 2;
7373
7374        ld_moved = 0;
7375out:
7376        return ld_moved;
7377}
7378
7379static inline unsigned long
7380get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7381{
7382        unsigned long interval = sd->balance_interval;
7383
7384        if (cpu_busy)
7385                interval *= sd->busy_factor;
7386
7387        /* scale ms to jiffies */
7388        interval = msecs_to_jiffies(interval);
7389        interval = clamp(interval, 1UL, max_load_balance_interval);
7390
7391        return interval;
7392}
7393
7394static inline void
7395update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7396{
7397        unsigned long interval, next;
7398
7399        interval = get_sd_balance_interval(sd, cpu_busy);
7400        next = sd->last_balance + interval;
7401
7402        if (time_after(*next_balance, next))
7403                *next_balance = next;
7404}
7405
7406/*
7407 * idle_balance is called by schedule() if this_cpu is about to become
7408 * idle. Attempts to pull tasks from other CPUs.
7409 */
7410static int idle_balance(struct rq *this_rq)
7411{
7412        unsigned long next_balance = jiffies + HZ;
7413        int this_cpu = this_rq->cpu;
7414        struct sched_domain *sd;
7415        int pulled_task = 0;
7416        u64 curr_cost = 0;
7417
7418        idle_enter_fair(this_rq);
7419
7420        /*
7421         * We must set idle_stamp _before_ calling idle_balance(), such that we
7422         * measure the duration of idle_balance() as idle time.
7423         */
7424        this_rq->idle_stamp = rq_clock(this_rq);
7425
7426        if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7427            !this_rq->rd->overload) {
7428                rcu_read_lock();
7429                sd = rcu_dereference_check_sched_domain(this_rq->sd);
7430                if (sd)
7431                        update_next_balance(sd, 0, &next_balance);
7432                rcu_read_unlock();
7433
7434                goto out;
7435        }
7436
7437        raw_spin_unlock(&this_rq->lock);
7438
7439        update_blocked_averages(this_cpu);
7440        rcu_read_lock();
7441        for_each_domain(this_cpu, sd) {
7442                int continue_balancing = 1;
7443                u64 t0, domain_cost;
7444
7445                if (!(sd->flags & SD_LOAD_BALANCE))
7446                        continue;
7447
7448                if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7449                        update_next_balance(sd, 0, &next_balance);
7450                        break;
7451                }
7452
7453                if (sd->flags & SD_BALANCE_NEWIDLE) {
7454                        t0 = sched_clock_cpu(this_cpu);
7455
7456                        pulled_task = load_balance(this_cpu, this_rq,
7457                                                   sd, CPU_NEWLY_IDLE,
7458                                                   &continue_balancing);
7459
7460                        domain_cost = sched_clock_cpu(this_cpu) - t0;
7461                        if (domain_cost > sd->max_newidle_lb_cost)
7462                                sd->max_newidle_lb_cost = domain_cost;
7463
7464                        curr_cost += domain_cost;
7465                }
7466
7467                update_next_balance(sd, 0, &next_balance);
7468
7469                /*
7470                 * Stop searching for tasks to pull if there are
7471                 * now runnable tasks on this rq.
7472                 */
7473                if (pulled_task || this_rq->nr_running > 0)
7474                        break;
7475        }
7476        rcu_read_unlock();
7477
7478        raw_spin_lock(&this_rq->lock);
7479
7480        if (curr_cost > this_rq->max_idle_balance_cost)
7481                this_rq->max_idle_balance_cost = curr_cost;
7482
7483        /*
7484         * While browsing the domains, we released the rq lock, a task could
7485         * have been enqueued in the meantime. Since we're not going idle,
7486         * pretend we pulled a task.
7487         */
7488        if (this_rq->cfs.h_nr_running && !pulled_task)
7489                pulled_task = 1;
7490
7491out:
7492        /* Move the next balance forward */
7493        if (time_after(this_rq->next_balance, next_balance))
7494                this_rq->next_balance = next_balance;
7495
7496        /* Is there a task of a high priority class? */
7497        if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7498                pulled_task = -1;
7499
7500        if (pulled_task) {
7501                idle_exit_fair(this_rq);
7502                this_rq->idle_stamp = 0;
7503        }
7504
7505        return pulled_task;
7506}
7507
7508/*
7509 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7510 * running tasks off the busiest CPU onto idle CPUs. It requires at
7511 * least 1 task to be running on each physical CPU where possible, and
7512 * avoids physical / logical imbalances.
7513 */
7514static int active_load_balance_cpu_stop(void *data)
7515{
7516        struct rq *busiest_rq = data;
7517        int busiest_cpu = cpu_of(busiest_rq);
7518        int target_cpu = busiest_rq->push_cpu;
7519        struct rq *target_rq = cpu_rq(target_cpu);
7520        struct sched_domain *sd;
7521        struct task_struct *p = NULL;
7522
7523        raw_spin_lock_irq(&busiest_rq->lock);
7524
7525        /* make sure the requested cpu hasn't gone down in the meantime */
7526        if (unlikely(busiest_cpu != smp_processor_id() ||
7527                     !busiest_rq->active_balance))
7528                goto out_unlock;
7529
7530        /* Is there any task to move? */
7531        if (busiest_rq->nr_running <= 1)
7532                goto out_unlock;
7533
7534        /*
7535         * This condition is "impossible", if it occurs
7536         * we need to fix it. Originally reported by
7537         * Bjorn Helgaas on a 128-cpu setup.
7538         */
7539        BUG_ON(busiest_rq == target_rq);
7540
7541        /* Search for an sd spanning us and the target CPU. */
7542        rcu_read_lock();
7543        for_each_domain(target_cpu, sd) {
7544                if ((sd->flags & SD_LOAD_BALANCE) &&
7545                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7546                                break;
7547        }
7548
7549        if (likely(sd)) {
7550                struct lb_env env = {
7551                        .sd             = sd,
7552                        .dst_cpu        = target_cpu,
7553                        .dst_rq         = target_rq,
7554                        .src_cpu        = busiest_rq->cpu,
7555                        .src_rq         = busiest_rq,
7556                        .idle           = CPU_IDLE,
7557                };
7558
7559                schedstat_inc(sd, alb_count);
7560
7561                p = detach_one_task(&env);
7562                if (p)
7563                        schedstat_inc(sd, alb_pushed);
7564                else
7565                        schedstat_inc(sd, alb_failed);
7566        }
7567        rcu_read_unlock();
7568out_unlock:
7569        busiest_rq->active_balance = 0;
7570        raw_spin_unlock(&busiest_rq->lock);
7571
7572        if (p)
7573                attach_one_task(target_rq, p);
7574
7575        local_irq_enable();
7576
7577        return 0;
7578}
7579
7580static inline int on_null_domain(struct rq *rq)
7581{
7582        return unlikely(!rcu_dereference_sched(rq->sd));
7583}
7584
7585#ifdef CONFIG_NO_HZ_COMMON
7586/*
7587 * idle load balancing details
7588 * - When one of the busy CPUs notice that there may be an idle rebalancing
7589 *   needed, they will kick the idle load balancer, which then does idle
7590 *   load balancing for all the idle CPUs.
7591 */
7592static struct {
7593        cpumask_var_t idle_cpus_mask;
7594        atomic_t nr_cpus;
7595        unsigned long next_balance;     /* in jiffy units */
7596} nohz ____cacheline_aligned;
7597
7598static inline int find_new_ilb(void)
7599{
7600        int ilb = cpumask_first(nohz.idle_cpus_mask);
7601
7602        if (ilb < nr_cpu_ids && idle_cpu(ilb))
7603                return ilb;
7604
7605        return nr_cpu_ids;
7606}
7607
7608/*
7609 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7610 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7611 * CPU (if there is one).
7612 */
7613static void nohz_balancer_kick(void)
7614{
7615        int ilb_cpu;
7616
7617        nohz.next_balance++;
7618
7619        ilb_cpu = find_new_ilb();
7620
7621        if (ilb_cpu >= nr_cpu_ids)
7622                return;
7623
7624        if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7625                return;
7626        /*
7627         * Use smp_send_reschedule() instead of resched_cpu().
7628         * This way we generate a sched IPI on the target cpu which
7629         * is idle. And the softirq performing nohz idle load balance
7630         * will be run before returning from the IPI.
7631         */
7632        smp_send_reschedule(ilb_cpu);
7633        return;
7634}
7635
7636static inline void nohz_balance_exit_idle(int cpu)
7637{
7638        if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7639                /*
7640                 * Completely isolated CPUs don't ever set, so we must test.
7641                 */
7642                if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7643                        cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7644                        atomic_dec(&nohz.nr_cpus);
7645                }
7646                clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7647        }
7648}
7649
7650static inline void set_cpu_sd_state_busy(void)
7651{
7652        struct sched_domain *sd;
7653        int cpu = smp_processor_id();
7654
7655        rcu_read_lock();
7656        sd = rcu_dereference(per_cpu(sd_busy, cpu));
7657
7658        if (!sd || !sd->nohz_idle)
7659                goto unlock;
7660        sd->nohz_idle = 0;
7661
7662        atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7663unlock:
7664        rcu_read_unlock();
7665}
7666
7667void set_cpu_sd_state_idle(void)
7668{
7669        struct sched_domain *sd;
7670        int cpu = smp_processor_id();
7671
7672        rcu_read_lock();
7673        sd = rcu_dereference(per_cpu(sd_busy, cpu));
7674
7675        if (!sd || sd->nohz_idle)
7676                goto unlock;
7677        sd->nohz_idle = 1;
7678
7679        atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7680unlock:
7681        rcu_read_unlock();
7682}
7683
7684/*
7685 * This routine will record that the cpu is going idle with tick stopped.
7686 * This info will be used in performing idle load balancing in the future.
7687 */
7688void nohz_balance_enter_idle(int cpu)
7689{
7690        /*
7691         * If this cpu is going down, then nothing needs to be done.
7692         */
7693        if (!cpu_active(cpu))
7694                return;
7695
7696        if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7697                return;
7698
7699        /*
7700         * If we're a completely isolated CPU, we don't play.
7701         */
7702        if (on_null_domain(cpu_rq(cpu)))
7703                return;
7704
7705        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7706        atomic_inc(&nohz.nr_cpus);
7707        set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7708}
7709
7710static int sched_ilb_notifier(struct notifier_block *nfb,
7711                                        unsigned long action, void *hcpu)
7712{
7713        switch (action & ~CPU_TASKS_FROZEN) {
7714        case CPU_DYING:
7715                nohz_balance_exit_idle(smp_processor_id());
7716                return NOTIFY_OK;
7717        default:
7718                return NOTIFY_DONE;
7719        }
7720}
7721#endif
7722
7723static DEFINE_SPINLOCK(balancing);
7724
7725/*
7726 * Scale the max load_balance interval with the number of CPUs in the system.
7727 * This trades load-balance latency on larger machines for less cross talk.
7728 */
7729void update_max_interval(void)
7730{
7731        max_load_balance_interval = HZ*num_online_cpus()/10;
7732}
7733
7734/*
7735 * It checks each scheduling domain to see if it is due to be balanced,
7736 * and initiates a balancing operation if so.
7737 *
7738 * Balancing parameters are set up in init_sched_domains.
7739 */
7740static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7741{
7742        int continue_balancing = 1;
7743        int cpu = rq->cpu;
7744        unsigned long interval;
7745        struct sched_domain *sd;
7746        /* Earliest time when we have to do rebalance again */
7747        unsigned long next_balance = jiffies + 60*HZ;
7748        int update_next_balance = 0;
7749        int need_serialize, need_decay = 0;
7750        u64 max_cost = 0;
7751
7752        update_blocked_averages(cpu);
7753
7754        rcu_read_lock();
7755        for_each_domain(cpu, sd) {
7756                /*
7757                 * Decay the newidle max times here because this is a regular
7758                 * visit to all the domains. Decay ~1% per second.
7759                 */
7760                if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7761                        sd->max_newidle_lb_cost =
7762                                (sd->max_newidle_lb_cost * 253) / 256;
7763                        sd->next_decay_max_lb_cost = jiffies + HZ;
7764                        need_decay = 1;
7765                }
7766                max_cost += sd->max_newidle_lb_cost;
7767
7768                if (!(sd->flags & SD_LOAD_BALANCE))
7769                        continue;
7770
7771                /*
7772                 * Stop the load balance at this level. There is another
7773                 * CPU in our sched group which is doing load balancing more
7774                 * actively.
7775                 */
7776                if (!continue_balancing) {
7777                        if (need_decay)
7778                                continue;
7779                        break;
7780                }
7781
7782                interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7783
7784                need_serialize = sd->flags & SD_SERIALIZE;
7785                if (need_serialize) {
7786                        if (!spin_trylock(&balancing))
7787                                goto out;
7788                }
7789
7790                if (time_after_eq(jiffies, sd->last_balance + interval)) {
7791                        if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7792                                /*
7793                                 * The LBF_DST_PINNED logic could have changed
7794                                 * env->dst_cpu, so we can't know our idle
7795                                 * state even if we migrated tasks. Update it.
7796                                 */
7797                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7798                        }
7799                        sd->last_balance = jiffies;
7800                        interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7801                }
7802                if (need_serialize)
7803                        spin_unlock(&balancing);
7804out:
7805                if (time_after(next_balance, sd->last_balance + interval)) {
7806                        next_balance = sd->last_balance + interval;
7807                        update_next_balance = 1;
7808                }
7809        }
7810        if (need_decay) {
7811                /*
7812                 * Ensure the rq-wide value also decays but keep it at a
7813                 * reasonable floor to avoid funnies with rq->avg_idle.
7814                 */
7815                rq->max_idle_balance_cost =
7816                        max((u64)sysctl_sched_migration_cost, max_cost);
7817        }
7818        rcu_read_unlock();
7819
7820        /*
7821         * next_balance will be updated only when there is a need.
7822         * When the cpu is attached to null domain for ex, it will not be
7823         * updated.
7824         */
7825        if (likely(update_next_balance))
7826                rq->next_balance = next_balance;
7827}
7828
7829#ifdef CONFIG_NO_HZ_COMMON
7830/*
7831 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7832 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7833 */
7834static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7835{
7836        int this_cpu = this_rq->cpu;
7837        struct rq *rq;
7838        int balance_cpu;
7839
7840        if (idle != CPU_IDLE ||
7841            !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7842                goto end;
7843
7844        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7845                if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7846                        continue;
7847
7848                /*
7849                 * If this cpu gets work to do, stop the load balancing
7850                 * work being done for other cpus. Next load
7851                 * balancing owner will pick it up.
7852                 */
7853                if (need_resched())
7854                        break;
7855
7856                rq = cpu_rq(balance_cpu);
7857
7858                /*
7859                 * If time for next balance is due,
7860                 * do the balance.
7861                 */
7862                if (time_after_eq(jiffies, rq->next_balance)) {
7863                        raw_spin_lock_irq(&rq->lock);
7864                        update_rq_clock(rq);
7865                        update_idle_cpu_load(rq);
7866                        raw_spin_unlock_irq(&rq->lock);
7867                        rebalance_domains(rq, CPU_IDLE);
7868                }
7869
7870                if (time_after(this_rq->next_balance, rq->next_balance))
7871                        this_rq->next_balance = rq->next_balance;
7872        }
7873        nohz.next_balance = this_rq->next_balance;
7874end:
7875        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7876}
7877
7878/*
7879 * Current heuristic for kicking the idle load balancer in the presence
7880 * of an idle cpu in the system.
7881 *   - This rq has more than one task.
7882 *   - This rq has at least one CFS task and the capacity of the CPU is
7883 *     significantly reduced because of RT tasks or IRQs.
7884 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7885 *     multiple busy cpu.
7886 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7887 *     domain span are idle.
7888 */
7889static inline bool nohz_kick_needed(struct rq *rq)
7890{
7891        unsigned long now = jiffies;
7892        struct sched_domain *sd;
7893        struct sched_group_capacity *sgc;
7894        int nr_busy, cpu = rq->cpu;
7895        bool kick = false;
7896
7897        if (unlikely(rq->idle_balance))
7898                return false;
7899
7900       /*
7901        * We may be recently in ticked or tickless idle mode. At the first
7902        * busy tick after returning from idle, we will update the busy stats.
7903        */
7904        set_cpu_sd_state_busy();
7905        nohz_balance_exit_idle(cpu);
7906
7907        /*
7908         * None are in tickless mode and hence no need for NOHZ idle load
7909         * balancing.
7910         */
7911        if (likely(!atomic_read(&nohz.nr_cpus)))
7912                return false;
7913
7914        if (time_before(now, nohz.next_balance))
7915                return false;
7916
7917        if (rq->nr_running >= 2)
7918                return true;
7919
7920        rcu_read_lock();
7921        sd = rcu_dereference(per_cpu(sd_busy, cpu));
7922        if (sd) {
7923                sgc = sd->groups->sgc;
7924                nr_busy = atomic_read(&sgc->nr_busy_cpus);
7925
7926                if (nr_busy > 1) {
7927                        kick = true;
7928                        goto unlock;
7929                }
7930
7931        }
7932
7933        sd = rcu_dereference(rq->sd);
7934        if (sd) {
7935                if ((rq->cfs.h_nr_running >= 1) &&
7936                                check_cpu_capacity(rq, sd)) {
7937                        kick = true;
7938                        goto unlock;
7939                }
7940        }
7941
7942        sd = rcu_dereference(per_cpu(sd_asym, cpu));
7943        if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7944                                  sched_domain_span(sd)) < cpu)) {
7945                kick = true;
7946                goto unlock;
7947        }
7948
7949unlock:
7950        rcu_read_unlock();
7951        return kick;
7952}
7953#else
7954static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7955#endif
7956
7957/*
7958 * run_rebalance_domains is triggered when needed from the scheduler tick.
7959 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7960 */
7961static void run_rebalance_domains(struct softirq_action *h)
7962{
7963        struct rq *this_rq = this_rq();
7964        enum cpu_idle_type idle = this_rq->idle_balance ?
7965                                                CPU_IDLE : CPU_NOT_IDLE;
7966
7967        /*
7968         * If this cpu has a pending nohz_balance_kick, then do the
7969         * balancing on behalf of the other idle cpus whose ticks are
7970         * stopped. Do nohz_idle_balance *before* rebalance_domains to
7971         * give the idle cpus a chance to load balance. Else we may
7972         * load balance only within the local sched_domain hierarchy
7973         * and abort nohz_idle_balance altogether if we pull some load.
7974         */
7975        nohz_idle_balance(this_rq, idle);
7976        rebalance_domains(this_rq, idle);
7977}
7978
7979/*
7980 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7981 */
7982void trigger_load_balance(struct rq *rq)
7983{
7984        /* Don't need to rebalance while attached to NULL domain */
7985        if (unlikely(on_null_domain(rq)))
7986                return;
7987
7988        if (time_after_eq(jiffies, rq->next_balance))
7989                raise_softirq(SCHED_SOFTIRQ);
7990#ifdef CONFIG_NO_HZ_COMMON
7991        if (nohz_kick_needed(rq))
7992                nohz_balancer_kick();
7993#endif
7994}
7995
7996static void rq_online_fair(struct rq *rq)
7997{
7998        update_sysctl();
7999
8000        update_runtime_enabled(rq);
8001}
8002
8003static void rq_offline_fair(struct rq *rq)
8004{
8005        update_sysctl();
8006
8007        /* Ensure any throttled groups are reachable by pick_next_task */
8008        unthrottle_offline_cfs_rqs(rq);
8009}
8010
8011#endif /* CONFIG_SMP */
8012
8013/*
8014 * scheduler tick hitting a task of our scheduling class:
8015 */
8016static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8017{
8018        struct cfs_rq *cfs_rq;
8019        struct sched_entity *se = &curr->se;
8020
8021        for_each_sched_entity(se) {
8022                cfs_rq = cfs_rq_of(se);
8023                entity_tick(cfs_rq, se, queued);
8024        }
8025
8026        if (numabalancing_enabled)
8027                task_tick_numa(rq, curr);
8028
8029        update_rq_runnable_avg(rq, 1);
8030}
8031
8032/*
8033 * called on fork with the child task as argument from the parent's context
8034 *  - child not yet on the tasklist
8035 *  - preemption disabled
8036 */
8037static void task_fork_fair(struct task_struct *p)
8038{
8039        struct cfs_rq *cfs_rq;
8040        struct sched_entity *se = &p->se, *curr;
8041        int this_cpu = smp_processor_id();
8042        struct rq *rq = this_rq();
8043        unsigned long flags;
8044
8045        raw_spin_lock_irqsave(&rq->lock, flags);
8046
8047        update_rq_clock(rq);
8048
8049        cfs_rq = task_cfs_rq(current);
8050        curr = cfs_rq->curr;
8051
8052        /*
8053         * Not only the cpu but also the task_group of the parent might have
8054         * been changed after parent->se.parent,cfs_rq were copied to
8055         * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8056         * of child point to valid ones.
8057         */
8058        rcu_read_lock();
8059        __set_task_cpu(p, this_cpu);
8060        rcu_read_unlock();
8061
8062        update_curr(cfs_rq);
8063
8064        if (curr)
8065                se->vruntime = curr->vruntime;
8066        place_entity(cfs_rq, se, 1);
8067
8068        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8069                /*
8070                 * Upon rescheduling, sched_class::put_prev_task() will place
8071                 * 'current' within the tree based on its new key value.
8072                 */
8073                swap(curr->vruntime, se->vruntime);
8074                resched_curr(rq);
8075        }
8076
8077        se->vruntime -= cfs_rq->min_vruntime;
8078
8079        raw_spin_unlock_irqrestore(&rq->lock, flags);
8080}
8081
8082/*
8083 * Priority of the task has changed. Check to see if we preempt
8084 * the current task.
8085 */
8086static void
8087prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8088{
8089        if (!task_on_rq_queued(p))
8090                return;
8091
8092        /*
8093         * Reschedule if we are currently running on this runqueue and
8094         * our priority decreased, or if we are not currently running on
8095         * this runqueue and our priority is higher than the current's
8096         */
8097        if (rq->curr == p) {
8098                if (p->prio > oldprio)
8099                        resched_curr(rq);
8100        } else
8101                check_preempt_curr(rq, p, 0);
8102}
8103
8104static void switched_from_fair(struct rq *rq, struct task_struct *p)
8105{
8106        struct sched_entity *se = &p->se;
8107        struct cfs_rq *cfs_rq = cfs_rq_of(se);
8108
8109        /*
8110         * Ensure the task's vruntime is normalized, so that when it's
8111         * switched back to the fair class the enqueue_entity(.flags=0) will
8112         * do the right thing.
8113         *
8114         * If it's queued, then the dequeue_entity(.flags=0) will already
8115         * have normalized the vruntime, if it's !queued, then only when
8116         * the task is sleeping will it still have non-normalized vruntime.
8117         */
8118        if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
8119                /*
8120                 * Fix up our vruntime so that the current sleep doesn't
8121                 * cause 'unlimited' sleep bonus.
8122                 */
8123                place_entity(cfs_rq, se, 0);
8124                se->vruntime -= cfs_rq->min_vruntime;
8125        }
8126
8127#ifdef CONFIG_SMP
8128        /*
8129        * Remove our load from contribution when we leave sched_fair
8130        * and ensure we don't carry in an old decay_count if we
8131        * switch back.
8132        */
8133        if (se->avg.decay_count) {
8134                __synchronize_entity_decay(se);
8135                subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
8136        }
8137#endif
8138}
8139
8140/*
8141 * We switched to the sched_fair class.
8142 */
8143static void switched_to_fair(struct rq *rq, struct task_struct *p)
8144{
8145#ifdef CONFIG_FAIR_GROUP_SCHED
8146        struct sched_entity *se = &p->se;
8147        /*
8148         * Since the real-depth could have been changed (only FAIR
8149         * class maintain depth value), reset depth properly.
8150         */
8151        se->depth = se->parent ? se->parent->depth + 1 : 0;
8152#endif
8153        if (!task_on_rq_queued(p))
8154                return;
8155
8156        /*
8157         * We were most likely switched from sched_rt, so
8158         * kick off the schedule if running, otherwise just see
8159         * if we can still preempt the current task.
8160         */
8161        if (rq->curr == p)
8162                resched_curr(rq);
8163        else
8164                check_preempt_curr(rq, p, 0);
8165}
8166
8167/* Account for a task changing its policy or group.
8168 *
8169 * This routine is mostly called to set cfs_rq->curr field when a task
8170 * migrates between groups/classes.
8171 */
8172static void set_curr_task_fair(struct rq *rq)
8173{
8174        struct sched_entity *se = &rq->curr->se;
8175
8176        for_each_sched_entity(se) {
8177                struct cfs_rq *cfs_rq = cfs_rq_of(se);
8178
8179                set_next_entity(cfs_rq, se);
8180                /* ensure bandwidth has been allocated on our new cfs_rq */
8181                account_cfs_rq_runtime(cfs_rq, 0);
8182        }
8183}
8184
8185void init_cfs_rq(struct cfs_rq *cfs_rq)
8186{
8187        cfs_rq->tasks_timeline = RB_ROOT;
8188        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8189#ifndef CONFIG_64BIT
8190        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8191#endif
8192#ifdef CONFIG_SMP
8193        atomic64_set(&cfs_rq->decay_counter, 1);
8194        atomic_long_set(&cfs_rq->removed_load, 0);
8195#endif
8196}
8197
8198#ifdef CONFIG_FAIR_GROUP_SCHED
8199static void task_move_group_fair(struct task_struct *p, int queued)
8200{
8201        struct sched_entity *se = &p->se;
8202        struct cfs_rq *cfs_rq;
8203
8204        /*
8205         * If the task was not on the rq at the time of this cgroup movement
8206         * it must have been asleep, sleeping tasks keep their ->vruntime
8207         * absolute on their old rq until wakeup (needed for the fair sleeper
8208         * bonus in place_entity()).
8209         *
8210         * If it was on the rq, we've just 'preempted' it, which does convert
8211         * ->vruntime to a relative base.
8212         *
8213         * Make sure both cases convert their relative position when migrating
8214         * to another cgroup's rq. This does somewhat interfere with the
8215         * fair sleeper stuff for the first placement, but who cares.
8216         */
8217        /*
8218         * When !queued, vruntime of the task has usually NOT been normalized.
8219         * But there are some cases where it has already been normalized:
8220         *
8221         * - Moving a forked child which is waiting for being woken up by
8222         *   wake_up_new_task().
8223         * - Moving a task which has been woken up by try_to_wake_up() and
8224         *   waiting for actually being woken up by sched_ttwu_pending().
8225         *
8226         * To prevent boost or penalty in the new cfs_rq caused by delta
8227         * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8228         */
8229        if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8230                queued = 1;
8231
8232        if (!queued)
8233                se->vruntime -= cfs_rq_of(se)->min_vruntime;
8234        set_task_rq(p, task_cpu(p));
8235        se->depth = se->parent ? se->parent->depth + 1 : 0;
8236        if (!queued) {
8237                cfs_rq = cfs_rq_of(se);
8238                se->vruntime += cfs_rq->min_vruntime;
8239#ifdef CONFIG_SMP
8240                /*
8241                 * migrate_task_rq_fair() will have removed our previous
8242                 * contribution, but we must synchronize for ongoing future
8243                 * decay.
8244                 */
8245                se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8246                cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
8247#endif
8248        }
8249}
8250
8251void free_fair_sched_group(struct task_group *tg)
8252{
8253        int i;
8254
8255        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8256
8257        for_each_possible_cpu(i) {
8258                if (tg->cfs_rq)
8259                        kfree(tg->cfs_rq[i]);
8260                if (tg->se)
8261                        kfree(tg->se[i]);
8262        }
8263
8264        kfree(tg->cfs_rq);
8265        kfree(tg->se);
8266}
8267
8268int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8269{
8270        struct cfs_rq *cfs_rq;
8271        struct sched_entity *se;
8272        int i;
8273
8274        tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8275        if (!tg->cfs_rq)
8276                goto err;
8277        tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8278        if (!tg->se)
8279                goto err;
8280
8281        tg->shares = NICE_0_LOAD;
8282
8283        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8284
8285        for_each_possible_cpu(i) {
8286                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8287                                      GFP_KERNEL, cpu_to_node(i));
8288                if (!cfs_rq)
8289                        goto err;
8290
8291                se = kzalloc_node(sizeof(struct sched_entity),
8292                                  GFP_KERNEL, cpu_to_node(i));
8293                if (!se)
8294                        goto err_free_rq;
8295
8296                init_cfs_rq(cfs_rq);
8297                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8298        }
8299
8300        return 1;
8301
8302err_free_rq:
8303        kfree(cfs_rq);
8304err:
8305        return 0;
8306}
8307
8308void unregister_fair_sched_group(struct task_group *tg, int cpu)
8309{
8310        struct rq *rq = cpu_rq(cpu);
8311        unsigned long flags;
8312
8313        /*
8314        * Only empty task groups can be destroyed; so we can speculatively
8315        * check on_list without danger of it being re-added.
8316        */
8317        if (!tg->cfs_rq[cpu]->on_list)
8318                return;
8319
8320        raw_spin_lock_irqsave(&rq->lock, flags);
8321        list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8322        raw_spin_unlock_irqrestore(&rq->lock, flags);
8323}
8324
8325void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8326                        struct sched_entity *se, int cpu,
8327                        struct sched_entity *parent)
8328{
8329        struct rq *rq = cpu_rq(cpu);
8330
8331        cfs_rq->tg = tg;
8332        cfs_rq->rq = rq;
8333        init_cfs_rq_runtime(cfs_rq);
8334
8335        tg->cfs_rq[cpu] = cfs_rq;
8336        tg->se[cpu] = se;
8337
8338        /* se could be NULL for root_task_group */
8339        if (!se)
8340                return;
8341
8342        if (!parent) {
8343                se->cfs_rq = &rq->cfs;
8344                se->depth = 0;
8345        } else {
8346                se->cfs_rq = parent->my_q;
8347                se->depth = parent->depth + 1;
8348        }
8349
8350        se->my_q = cfs_rq;
8351        /* guarantee group entities always have weight */
8352        update_load_set(&se->load, NICE_0_LOAD);
8353        se->parent = parent;
8354}
8355
8356static DEFINE_MUTEX(shares_mutex);
8357
8358int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8359{
8360        int i;
8361        unsigned long flags;
8362
8363        /*
8364         * We can't change the weight of the root cgroup.
8365         */
8366        if (!tg->se[0])
8367                return -EINVAL;
8368
8369        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8370
8371        mutex_lock(&shares_mutex);
8372        if (tg->shares == shares)
8373                goto done;
8374
8375        tg->shares = shares;
8376        for_each_possible_cpu(i) {
8377                struct rq *rq = cpu_rq(i);
8378                struct sched_entity *se;
8379
8380                se = tg->se[i];
8381                /* Propagate contribution to hierarchy */
8382                raw_spin_lock_irqsave(&rq->lock, flags);
8383
8384                /* Possible calls to update_curr() need rq clock */
8385                update_rq_clock(rq);
8386                for_each_sched_entity(se)
8387                        update_cfs_shares(group_cfs_rq(se));
8388                raw_spin_unlock_irqrestore(&rq->lock, flags);
8389        }
8390
8391done:
8392        mutex_unlock(&shares_mutex);
8393        return 0;
8394}
8395#else /* CONFIG_FAIR_GROUP_SCHED */
8396
8397void free_fair_sched_group(struct task_group *tg) { }
8398
8399int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8400{
8401        return 1;
8402}
8403
8404void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8405
8406#endif /* CONFIG_FAIR_GROUP_SCHED */
8407
8408
8409static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8410{
8411        struct sched_entity *se = &task->se;
8412        unsigned int rr_interval = 0;
8413
8414        /*
8415         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8416         * idle runqueue:
8417         */
8418        if (rq->cfs.load.weight)
8419                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8420
8421        return rr_interval;
8422}
8423
8424/*
8425 * All the scheduling class methods:
8426 */
8427const struct sched_class fair_sched_class = {
8428        .next                   = &idle_sched_class,
8429        .enqueue_task           = enqueue_task_fair,
8430        .dequeue_task           = dequeue_task_fair,
8431        .yield_task             = yield_task_fair,
8432        .yield_to_task          = yield_to_task_fair,
8433
8434        .check_preempt_curr     = check_preempt_wakeup,
8435
8436        .pick_next_task         = pick_next_task_fair,
8437        .put_prev_task          = put_prev_task_fair,
8438
8439#ifdef CONFIG_SMP
8440        .select_task_rq         = select_task_rq_fair,
8441        .migrate_task_rq        = migrate_task_rq_fair,
8442
8443        .rq_online              = rq_online_fair,
8444        .rq_offline             = rq_offline_fair,
8445
8446        .task_waking            = task_waking_fair,
8447#endif
8448
8449        .set_curr_task          = set_curr_task_fair,
8450        .task_tick              = task_tick_fair,
8451        .task_fork              = task_fork_fair,
8452
8453        .prio_changed           = prio_changed_fair,
8454        .switched_from          = switched_from_fair,
8455        .switched_to            = switched_to_fair,
8456
8457        .get_rr_interval        = get_rr_interval_fair,
8458
8459        .update_curr            = update_curr_fair,
8460
8461#ifdef CONFIG_FAIR_GROUP_SCHED
8462        .task_move_group        = task_move_group_fair,
8463#endif
8464};
8465
8466#ifdef CONFIG_SCHED_DEBUG
8467void print_cfs_stats(struct seq_file *m, int cpu)
8468{
8469        struct cfs_rq *cfs_rq;
8470
8471        rcu_read_lock();
8472        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8473                print_cfs_rq(m, cpu, cfs_rq);
8474        rcu_read_unlock();
8475}
8476
8477#ifdef CONFIG_NUMA_BALANCING
8478void show_numa_stats(struct task_struct *p, struct seq_file *m)
8479{
8480        int node;
8481        unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8482
8483        for_each_online_node(node) {
8484                if (p->numa_faults) {
8485                        tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8486                        tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8487                }
8488                if (p->numa_group) {
8489                        gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8490                        gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8491                }
8492                print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8493        }
8494}
8495#endif /* CONFIG_NUMA_BALANCING */
8496#endif /* CONFIG_SCHED_DEBUG */
8497
8498__init void init_sched_fair_class(void)
8499{
8500#ifdef CONFIG_SMP
8501        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8502
8503#ifdef CONFIG_NO_HZ_COMMON
8504        nohz.next_balance = jiffies;
8505        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8506        cpu_notifier(sched_ilb_notifier, 0);
8507#endif
8508#endif /* SMP */
8509
8510}
8511