linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/profile.h>
  21#include <linux/sched.h>
  22#include <linux/module.h>
  23#include <linux/irq_work.h>
  24#include <linux/posix-timers.h>
  25#include <linux/perf_event.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/irq_regs.h>
  29
  30#include "tick-internal.h"
  31
  32#include <trace/events/timer.h>
  33
  34/*
  35 * Per cpu nohz control structure
  36 */
  37static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  38
  39/*
  40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  41 */
  42static ktime_t last_jiffies_update;
  43
  44struct tick_sched *tick_get_tick_sched(int cpu)
  45{
  46        return &per_cpu(tick_cpu_sched, cpu);
  47}
  48
  49/*
  50 * Must be called with interrupts disabled !
  51 */
  52static void tick_do_update_jiffies64(ktime_t now)
  53{
  54        unsigned long ticks = 0;
  55        ktime_t delta;
  56
  57        /*
  58         * Do a quick check without holding jiffies_lock:
  59         */
  60        delta = ktime_sub(now, last_jiffies_update);
  61        if (delta.tv64 < tick_period.tv64)
  62                return;
  63
  64        /* Reevalute with jiffies_lock held */
  65        write_seqlock(&jiffies_lock);
  66
  67        delta = ktime_sub(now, last_jiffies_update);
  68        if (delta.tv64 >= tick_period.tv64) {
  69
  70                delta = ktime_sub(delta, tick_period);
  71                last_jiffies_update = ktime_add(last_jiffies_update,
  72                                                tick_period);
  73
  74                /* Slow path for long timeouts */
  75                if (unlikely(delta.tv64 >= tick_period.tv64)) {
  76                        s64 incr = ktime_to_ns(tick_period);
  77
  78                        ticks = ktime_divns(delta, incr);
  79
  80                        last_jiffies_update = ktime_add_ns(last_jiffies_update,
  81                                                           incr * ticks);
  82                }
  83                do_timer(++ticks);
  84
  85                /* Keep the tick_next_period variable up to date */
  86                tick_next_period = ktime_add(last_jiffies_update, tick_period);
  87        } else {
  88                write_sequnlock(&jiffies_lock);
  89                return;
  90        }
  91        write_sequnlock(&jiffies_lock);
  92        update_wall_time();
  93}
  94
  95/*
  96 * Initialize and return retrieve the jiffies update.
  97 */
  98static ktime_t tick_init_jiffy_update(void)
  99{
 100        ktime_t period;
 101
 102        write_seqlock(&jiffies_lock);
 103        /* Did we start the jiffies update yet ? */
 104        if (last_jiffies_update.tv64 == 0)
 105                last_jiffies_update = tick_next_period;
 106        period = last_jiffies_update;
 107        write_sequnlock(&jiffies_lock);
 108        return period;
 109}
 110
 111
 112static void tick_sched_do_timer(ktime_t now)
 113{
 114        int cpu = smp_processor_id();
 115
 116#ifdef CONFIG_NO_HZ_COMMON
 117        /*
 118         * Check if the do_timer duty was dropped. We don't care about
 119         * concurrency: This happens only when the cpu in charge went
 120         * into a long sleep. If two cpus happen to assign themself to
 121         * this duty, then the jiffies update is still serialized by
 122         * jiffies_lock.
 123         */
 124        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 125            && !tick_nohz_full_cpu(cpu))
 126                tick_do_timer_cpu = cpu;
 127#endif
 128
 129        /* Check, if the jiffies need an update */
 130        if (tick_do_timer_cpu == cpu)
 131                tick_do_update_jiffies64(now);
 132}
 133
 134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 135{
 136#ifdef CONFIG_NO_HZ_COMMON
 137        /*
 138         * When we are idle and the tick is stopped, we have to touch
 139         * the watchdog as we might not schedule for a really long
 140         * time. This happens on complete idle SMP systems while
 141         * waiting on the login prompt. We also increment the "start of
 142         * idle" jiffy stamp so the idle accounting adjustment we do
 143         * when we go busy again does not account too much ticks.
 144         */
 145        if (ts->tick_stopped) {
 146                touch_softlockup_watchdog();
 147                if (is_idle_task(current))
 148                        ts->idle_jiffies++;
 149        }
 150#endif
 151        update_process_times(user_mode(regs));
 152        profile_tick(CPU_PROFILING);
 153}
 154
 155#ifdef CONFIG_NO_HZ_FULL
 156cpumask_var_t tick_nohz_full_mask;
 157cpumask_var_t housekeeping_mask;
 158bool tick_nohz_full_running;
 159
 160static bool can_stop_full_tick(void)
 161{
 162        WARN_ON_ONCE(!irqs_disabled());
 163
 164        if (!sched_can_stop_tick()) {
 165                trace_tick_stop(0, "more than 1 task in runqueue\n");
 166                return false;
 167        }
 168
 169        if (!posix_cpu_timers_can_stop_tick(current)) {
 170                trace_tick_stop(0, "posix timers running\n");
 171                return false;
 172        }
 173
 174        if (!perf_event_can_stop_tick()) {
 175                trace_tick_stop(0, "perf events running\n");
 176                return false;
 177        }
 178
 179        /* sched_clock_tick() needs us? */
 180#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 181        /*
 182         * TODO: kick full dynticks CPUs when
 183         * sched_clock_stable is set.
 184         */
 185        if (!sched_clock_stable()) {
 186                trace_tick_stop(0, "unstable sched clock\n");
 187                /*
 188                 * Don't allow the user to think they can get
 189                 * full NO_HZ with this machine.
 190                 */
 191                WARN_ONCE(tick_nohz_full_running,
 192                          "NO_HZ FULL will not work with unstable sched clock");
 193                return false;
 194        }
 195#endif
 196
 197        return true;
 198}
 199
 200static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
 201
 202/*
 203 * Re-evaluate the need for the tick on the current CPU
 204 * and restart it if necessary.
 205 */
 206void __tick_nohz_full_check(void)
 207{
 208        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 209
 210        if (tick_nohz_full_cpu(smp_processor_id())) {
 211                if (ts->tick_stopped && !is_idle_task(current)) {
 212                        if (!can_stop_full_tick())
 213                                tick_nohz_restart_sched_tick(ts, ktime_get());
 214                }
 215        }
 216}
 217
 218static void nohz_full_kick_work_func(struct irq_work *work)
 219{
 220        __tick_nohz_full_check();
 221}
 222
 223static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 224        .func = nohz_full_kick_work_func,
 225};
 226
 227/*
 228 * Kick this CPU if it's full dynticks in order to force it to
 229 * re-evaluate its dependency on the tick and restart it if necessary.
 230 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 231 * is NMI safe.
 232 */
 233void tick_nohz_full_kick(void)
 234{
 235        if (!tick_nohz_full_cpu(smp_processor_id()))
 236                return;
 237
 238        irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 239}
 240
 241/*
 242 * Kick the CPU if it's full dynticks in order to force it to
 243 * re-evaluate its dependency on the tick and restart it if necessary.
 244 */
 245void tick_nohz_full_kick_cpu(int cpu)
 246{
 247        if (!tick_nohz_full_cpu(cpu))
 248                return;
 249
 250        irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 251}
 252
 253static void nohz_full_kick_ipi(void *info)
 254{
 255        __tick_nohz_full_check();
 256}
 257
 258/*
 259 * Kick all full dynticks CPUs in order to force these to re-evaluate
 260 * their dependency on the tick and restart it if necessary.
 261 */
 262void tick_nohz_full_kick_all(void)
 263{
 264        if (!tick_nohz_full_running)
 265                return;
 266
 267        preempt_disable();
 268        smp_call_function_many(tick_nohz_full_mask,
 269                               nohz_full_kick_ipi, NULL, false);
 270        tick_nohz_full_kick();
 271        preempt_enable();
 272}
 273
 274/*
 275 * Re-evaluate the need for the tick as we switch the current task.
 276 * It might need the tick due to per task/process properties:
 277 * perf events, posix cpu timers, ...
 278 */
 279void __tick_nohz_task_switch(struct task_struct *tsk)
 280{
 281        unsigned long flags;
 282
 283        local_irq_save(flags);
 284
 285        if (!tick_nohz_full_cpu(smp_processor_id()))
 286                goto out;
 287
 288        if (tick_nohz_tick_stopped() && !can_stop_full_tick())
 289                tick_nohz_full_kick();
 290
 291out:
 292        local_irq_restore(flags);
 293}
 294
 295/* Parse the boot-time nohz CPU list from the kernel parameters. */
 296static int __init tick_nohz_full_setup(char *str)
 297{
 298        alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 299        if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
 300                pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
 301                free_bootmem_cpumask_var(tick_nohz_full_mask);
 302                return 1;
 303        }
 304        tick_nohz_full_running = true;
 305
 306        return 1;
 307}
 308__setup("nohz_full=", tick_nohz_full_setup);
 309
 310static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
 311                                                 unsigned long action,
 312                                                 void *hcpu)
 313{
 314        unsigned int cpu = (unsigned long)hcpu;
 315
 316        switch (action & ~CPU_TASKS_FROZEN) {
 317        case CPU_DOWN_PREPARE:
 318                /*
 319                 * If we handle the timekeeping duty for full dynticks CPUs,
 320                 * we can't safely shutdown that CPU.
 321                 */
 322                if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 323                        return NOTIFY_BAD;
 324                break;
 325        }
 326        return NOTIFY_OK;
 327}
 328
 329static int tick_nohz_init_all(void)
 330{
 331        int err = -1;
 332
 333#ifdef CONFIG_NO_HZ_FULL_ALL
 334        if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
 335                WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
 336                return err;
 337        }
 338        err = 0;
 339        cpumask_setall(tick_nohz_full_mask);
 340        tick_nohz_full_running = true;
 341#endif
 342        return err;
 343}
 344
 345void __init tick_nohz_init(void)
 346{
 347        int cpu;
 348
 349        if (!tick_nohz_full_running) {
 350                if (tick_nohz_init_all() < 0)
 351                        return;
 352        }
 353
 354        if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
 355                WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
 356                cpumask_clear(tick_nohz_full_mask);
 357                tick_nohz_full_running = false;
 358                return;
 359        }
 360
 361        /*
 362         * Full dynticks uses irq work to drive the tick rescheduling on safe
 363         * locking contexts. But then we need irq work to raise its own
 364         * interrupts to avoid circular dependency on the tick
 365         */
 366        if (!arch_irq_work_has_interrupt()) {
 367                pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
 368                           "support irq work self-IPIs\n");
 369                cpumask_clear(tick_nohz_full_mask);
 370                cpumask_copy(housekeeping_mask, cpu_possible_mask);
 371                tick_nohz_full_running = false;
 372                return;
 373        }
 374
 375        cpu = smp_processor_id();
 376
 377        if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 378                pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
 379                cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 380        }
 381
 382        cpumask_andnot(housekeeping_mask,
 383                       cpu_possible_mask, tick_nohz_full_mask);
 384
 385        for_each_cpu(cpu, tick_nohz_full_mask)
 386                context_tracking_cpu_set(cpu);
 387
 388        cpu_notifier(tick_nohz_cpu_down_callback, 0);
 389        pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 390                cpumask_pr_args(tick_nohz_full_mask));
 391}
 392#endif
 393
 394/*
 395 * NOHZ - aka dynamic tick functionality
 396 */
 397#ifdef CONFIG_NO_HZ_COMMON
 398/*
 399 * NO HZ enabled ?
 400 */
 401static int tick_nohz_enabled __read_mostly  = 1;
 402unsigned long tick_nohz_active  __read_mostly;
 403/*
 404 * Enable / Disable tickless mode
 405 */
 406static int __init setup_tick_nohz(char *str)
 407{
 408        if (!strcmp(str, "off"))
 409                tick_nohz_enabled = 0;
 410        else if (!strcmp(str, "on"))
 411                tick_nohz_enabled = 1;
 412        else
 413                return 0;
 414        return 1;
 415}
 416
 417__setup("nohz=", setup_tick_nohz);
 418
 419int tick_nohz_tick_stopped(void)
 420{
 421        return __this_cpu_read(tick_cpu_sched.tick_stopped);
 422}
 423
 424/**
 425 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 426 *
 427 * Called from interrupt entry when the CPU was idle
 428 *
 429 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 430 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 431 * value. We do this unconditionally on any cpu, as we don't know whether the
 432 * cpu, which has the update task assigned is in a long sleep.
 433 */
 434static void tick_nohz_update_jiffies(ktime_t now)
 435{
 436        unsigned long flags;
 437
 438        __this_cpu_write(tick_cpu_sched.idle_waketime, now);
 439
 440        local_irq_save(flags);
 441        tick_do_update_jiffies64(now);
 442        local_irq_restore(flags);
 443
 444        touch_softlockup_watchdog();
 445}
 446
 447/*
 448 * Updates the per cpu time idle statistics counters
 449 */
 450static void
 451update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 452{
 453        ktime_t delta;
 454
 455        if (ts->idle_active) {
 456                delta = ktime_sub(now, ts->idle_entrytime);
 457                if (nr_iowait_cpu(cpu) > 0)
 458                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 459                else
 460                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 461                ts->idle_entrytime = now;
 462        }
 463
 464        if (last_update_time)
 465                *last_update_time = ktime_to_us(now);
 466
 467}
 468
 469static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 470{
 471        update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 472        ts->idle_active = 0;
 473
 474        sched_clock_idle_wakeup_event(0);
 475}
 476
 477static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
 478{
 479        ktime_t now = ktime_get();
 480
 481        ts->idle_entrytime = now;
 482        ts->idle_active = 1;
 483        sched_clock_idle_sleep_event();
 484        return now;
 485}
 486
 487/**
 488 * get_cpu_idle_time_us - get the total idle time of a cpu
 489 * @cpu: CPU number to query
 490 * @last_update_time: variable to store update time in. Do not update
 491 * counters if NULL.
 492 *
 493 * Return the cummulative idle time (since boot) for a given
 494 * CPU, in microseconds.
 495 *
 496 * This time is measured via accounting rather than sampling,
 497 * and is as accurate as ktime_get() is.
 498 *
 499 * This function returns -1 if NOHZ is not enabled.
 500 */
 501u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 502{
 503        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 504        ktime_t now, idle;
 505
 506        if (!tick_nohz_active)
 507                return -1;
 508
 509        now = ktime_get();
 510        if (last_update_time) {
 511                update_ts_time_stats(cpu, ts, now, last_update_time);
 512                idle = ts->idle_sleeptime;
 513        } else {
 514                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 515                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 516
 517                        idle = ktime_add(ts->idle_sleeptime, delta);
 518                } else {
 519                        idle = ts->idle_sleeptime;
 520                }
 521        }
 522
 523        return ktime_to_us(idle);
 524
 525}
 526EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 527
 528/**
 529 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 530 * @cpu: CPU number to query
 531 * @last_update_time: variable to store update time in. Do not update
 532 * counters if NULL.
 533 *
 534 * Return the cummulative iowait time (since boot) for a given
 535 * CPU, in microseconds.
 536 *
 537 * This time is measured via accounting rather than sampling,
 538 * and is as accurate as ktime_get() is.
 539 *
 540 * This function returns -1 if NOHZ is not enabled.
 541 */
 542u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 543{
 544        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 545        ktime_t now, iowait;
 546
 547        if (!tick_nohz_active)
 548                return -1;
 549
 550        now = ktime_get();
 551        if (last_update_time) {
 552                update_ts_time_stats(cpu, ts, now, last_update_time);
 553                iowait = ts->iowait_sleeptime;
 554        } else {
 555                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 556                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 557
 558                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 559                } else {
 560                        iowait = ts->iowait_sleeptime;
 561                }
 562        }
 563
 564        return ktime_to_us(iowait);
 565}
 566EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 567
 568static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 569{
 570        hrtimer_cancel(&ts->sched_timer);
 571        hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 572
 573        /* Forward the time to expire in the future */
 574        hrtimer_forward(&ts->sched_timer, now, tick_period);
 575
 576        if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 577                hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 578        else
 579                tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 580}
 581
 582static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 583                                         ktime_t now, int cpu)
 584{
 585        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 586        u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 587        unsigned long seq, basejiff;
 588        ktime_t tick;
 589
 590        /* Read jiffies and the time when jiffies were updated last */
 591        do {
 592                seq = read_seqbegin(&jiffies_lock);
 593                basemono = last_jiffies_update.tv64;
 594                basejiff = jiffies;
 595        } while (read_seqretry(&jiffies_lock, seq));
 596        ts->last_jiffies = basejiff;
 597
 598        if (rcu_needs_cpu(basemono, &next_rcu) ||
 599            arch_needs_cpu() || irq_work_needs_cpu()) {
 600                next_tick = basemono + TICK_NSEC;
 601        } else {
 602                /*
 603                 * Get the next pending timer. If high resolution
 604                 * timers are enabled this only takes the timer wheel
 605                 * timers into account. If high resolution timers are
 606                 * disabled this also looks at the next expiring
 607                 * hrtimer.
 608                 */
 609                next_tmr = get_next_timer_interrupt(basejiff, basemono);
 610                ts->next_timer = next_tmr;
 611                /* Take the next rcu event into account */
 612                next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 613        }
 614
 615        /*
 616         * If the tick is due in the next period, keep it ticking or
 617         * restart it proper.
 618         */
 619        delta = next_tick - basemono;
 620        if (delta <= (u64)TICK_NSEC) {
 621                tick.tv64 = 0;
 622                if (!ts->tick_stopped)
 623                        goto out;
 624                if (delta == 0) {
 625                        /* Tick is stopped, but required now. Enforce it */
 626                        tick_nohz_restart(ts, now);
 627                        goto out;
 628                }
 629        }
 630
 631        /*
 632         * If this cpu is the one which updates jiffies, then give up
 633         * the assignment and let it be taken by the cpu which runs
 634         * the tick timer next, which might be this cpu as well. If we
 635         * don't drop this here the jiffies might be stale and
 636         * do_timer() never invoked. Keep track of the fact that it
 637         * was the one which had the do_timer() duty last. If this cpu
 638         * is the one which had the do_timer() duty last, we limit the
 639         * sleep time to the timekeeping max_deferement value.
 640         * Otherwise we can sleep as long as we want.
 641         */
 642        delta = timekeeping_max_deferment();
 643        if (cpu == tick_do_timer_cpu) {
 644                tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 645                ts->do_timer_last = 1;
 646        } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 647                delta = KTIME_MAX;
 648                ts->do_timer_last = 0;
 649        } else if (!ts->do_timer_last) {
 650                delta = KTIME_MAX;
 651        }
 652
 653#ifdef CONFIG_NO_HZ_FULL
 654        /* Limit the tick delta to the maximum scheduler deferment */
 655        if (!ts->inidle)
 656                delta = min(delta, scheduler_tick_max_deferment());
 657#endif
 658
 659        /* Calculate the next expiry time */
 660        if (delta < (KTIME_MAX - basemono))
 661                expires = basemono + delta;
 662        else
 663                expires = KTIME_MAX;
 664
 665        expires = min_t(u64, expires, next_tick);
 666        tick.tv64 = expires;
 667
 668        /* Skip reprogram of event if its not changed */
 669        if (ts->tick_stopped && (expires == dev->next_event.tv64))
 670                goto out;
 671
 672        /*
 673         * nohz_stop_sched_tick can be called several times before
 674         * the nohz_restart_sched_tick is called. This happens when
 675         * interrupts arrive which do not cause a reschedule. In the
 676         * first call we save the current tick time, so we can restart
 677         * the scheduler tick in nohz_restart_sched_tick.
 678         */
 679        if (!ts->tick_stopped) {
 680                nohz_balance_enter_idle(cpu);
 681                calc_load_enter_idle();
 682
 683                ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 684                ts->tick_stopped = 1;
 685                trace_tick_stop(1, " ");
 686        }
 687
 688        /*
 689         * If the expiration time == KTIME_MAX, then we simply stop
 690         * the tick timer.
 691         */
 692        if (unlikely(expires == KTIME_MAX)) {
 693                if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 694                        hrtimer_cancel(&ts->sched_timer);
 695                goto out;
 696        }
 697
 698        if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 699                hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
 700        else
 701                tick_program_event(tick, 1);
 702out:
 703        /* Update the estimated sleep length */
 704        ts->sleep_length = ktime_sub(dev->next_event, now);
 705        return tick;
 706}
 707
 708static void tick_nohz_full_stop_tick(struct tick_sched *ts)
 709{
 710#ifdef CONFIG_NO_HZ_FULL
 711        int cpu = smp_processor_id();
 712
 713        if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
 714                return;
 715
 716        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 717                return;
 718
 719        if (!can_stop_full_tick())
 720                return;
 721
 722        tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
 723#endif
 724}
 725
 726static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 727{
 728        /*
 729         * If this cpu is offline and it is the one which updates
 730         * jiffies, then give up the assignment and let it be taken by
 731         * the cpu which runs the tick timer next. If we don't drop
 732         * this here the jiffies might be stale and do_timer() never
 733         * invoked.
 734         */
 735        if (unlikely(!cpu_online(cpu))) {
 736                if (cpu == tick_do_timer_cpu)
 737                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 738                return false;
 739        }
 740
 741        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
 742                ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
 743                return false;
 744        }
 745
 746        if (need_resched())
 747                return false;
 748
 749        if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 750                static int ratelimit;
 751
 752                if (ratelimit < 10 &&
 753                    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 754                        pr_warn("NOHZ: local_softirq_pending %02x\n",
 755                                (unsigned int) local_softirq_pending());
 756                        ratelimit++;
 757                }
 758                return false;
 759        }
 760
 761        if (tick_nohz_full_enabled()) {
 762                /*
 763                 * Keep the tick alive to guarantee timekeeping progression
 764                 * if there are full dynticks CPUs around
 765                 */
 766                if (tick_do_timer_cpu == cpu)
 767                        return false;
 768                /*
 769                 * Boot safety: make sure the timekeeping duty has been
 770                 * assigned before entering dyntick-idle mode,
 771                 */
 772                if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 773                        return false;
 774        }
 775
 776        return true;
 777}
 778
 779static void __tick_nohz_idle_enter(struct tick_sched *ts)
 780{
 781        ktime_t now, expires;
 782        int cpu = smp_processor_id();
 783
 784        now = tick_nohz_start_idle(ts);
 785
 786        if (can_stop_idle_tick(cpu, ts)) {
 787                int was_stopped = ts->tick_stopped;
 788
 789                ts->idle_calls++;
 790
 791                expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 792                if (expires.tv64 > 0LL) {
 793                        ts->idle_sleeps++;
 794                        ts->idle_expires = expires;
 795                }
 796
 797                if (!was_stopped && ts->tick_stopped)
 798                        ts->idle_jiffies = ts->last_jiffies;
 799        }
 800}
 801
 802/**
 803 * tick_nohz_idle_enter - stop the idle tick from the idle task
 804 *
 805 * When the next event is more than a tick into the future, stop the idle tick
 806 * Called when we start the idle loop.
 807 *
 808 * The arch is responsible of calling:
 809 *
 810 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 811 *  to sleep.
 812 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 813 */
 814void tick_nohz_idle_enter(void)
 815{
 816        struct tick_sched *ts;
 817
 818        WARN_ON_ONCE(irqs_disabled());
 819
 820        /*
 821         * Update the idle state in the scheduler domain hierarchy
 822         * when tick_nohz_stop_sched_tick() is called from the idle loop.
 823         * State will be updated to busy during the first busy tick after
 824         * exiting idle.
 825         */
 826        set_cpu_sd_state_idle();
 827
 828        local_irq_disable();
 829
 830        ts = this_cpu_ptr(&tick_cpu_sched);
 831        ts->inidle = 1;
 832        __tick_nohz_idle_enter(ts);
 833
 834        local_irq_enable();
 835}
 836
 837/**
 838 * tick_nohz_irq_exit - update next tick event from interrupt exit
 839 *
 840 * When an interrupt fires while we are idle and it doesn't cause
 841 * a reschedule, it may still add, modify or delete a timer, enqueue
 842 * an RCU callback, etc...
 843 * So we need to re-calculate and reprogram the next tick event.
 844 */
 845void tick_nohz_irq_exit(void)
 846{
 847        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 848
 849        if (ts->inidle)
 850                __tick_nohz_idle_enter(ts);
 851        else
 852                tick_nohz_full_stop_tick(ts);
 853}
 854
 855/**
 856 * tick_nohz_get_sleep_length - return the length of the current sleep
 857 *
 858 * Called from power state control code with interrupts disabled
 859 */
 860ktime_t tick_nohz_get_sleep_length(void)
 861{
 862        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 863
 864        return ts->sleep_length;
 865}
 866
 867static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 868{
 869        /* Update jiffies first */
 870        tick_do_update_jiffies64(now);
 871        update_cpu_load_nohz();
 872
 873        calc_load_exit_idle();
 874        touch_softlockup_watchdog();
 875        /*
 876         * Cancel the scheduled timer and restore the tick
 877         */
 878        ts->tick_stopped  = 0;
 879        ts->idle_exittime = now;
 880
 881        tick_nohz_restart(ts, now);
 882}
 883
 884static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 885{
 886#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 887        unsigned long ticks;
 888
 889        if (vtime_accounting_enabled())
 890                return;
 891        /*
 892         * We stopped the tick in idle. Update process times would miss the
 893         * time we slept as update_process_times does only a 1 tick
 894         * accounting. Enforce that this is accounted to idle !
 895         */
 896        ticks = jiffies - ts->idle_jiffies;
 897        /*
 898         * We might be one off. Do not randomly account a huge number of ticks!
 899         */
 900        if (ticks && ticks < LONG_MAX)
 901                account_idle_ticks(ticks);
 902#endif
 903}
 904
 905/**
 906 * tick_nohz_idle_exit - restart the idle tick from the idle task
 907 *
 908 * Restart the idle tick when the CPU is woken up from idle
 909 * This also exit the RCU extended quiescent state. The CPU
 910 * can use RCU again after this function is called.
 911 */
 912void tick_nohz_idle_exit(void)
 913{
 914        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 915        ktime_t now;
 916
 917        local_irq_disable();
 918
 919        WARN_ON_ONCE(!ts->inidle);
 920
 921        ts->inidle = 0;
 922
 923        if (ts->idle_active || ts->tick_stopped)
 924                now = ktime_get();
 925
 926        if (ts->idle_active)
 927                tick_nohz_stop_idle(ts, now);
 928
 929        if (ts->tick_stopped) {
 930                tick_nohz_restart_sched_tick(ts, now);
 931                tick_nohz_account_idle_ticks(ts);
 932        }
 933
 934        local_irq_enable();
 935}
 936
 937/*
 938 * The nohz low res interrupt handler
 939 */
 940static void tick_nohz_handler(struct clock_event_device *dev)
 941{
 942        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 943        struct pt_regs *regs = get_irq_regs();
 944        ktime_t now = ktime_get();
 945
 946        dev->next_event.tv64 = KTIME_MAX;
 947
 948        tick_sched_do_timer(now);
 949        tick_sched_handle(ts, regs);
 950
 951        /* No need to reprogram if we are running tickless  */
 952        if (unlikely(ts->tick_stopped))
 953                return;
 954
 955        hrtimer_forward(&ts->sched_timer, now, tick_period);
 956        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 957}
 958
 959static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
 960{
 961        if (!tick_nohz_enabled)
 962                return;
 963        ts->nohz_mode = mode;
 964        /* One update is enough */
 965        if (!test_and_set_bit(0, &tick_nohz_active))
 966                timers_update_migration(true);
 967}
 968
 969/**
 970 * tick_nohz_switch_to_nohz - switch to nohz mode
 971 */
 972static void tick_nohz_switch_to_nohz(void)
 973{
 974        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 975        ktime_t next;
 976
 977        if (!tick_nohz_enabled)
 978                return;
 979
 980        if (tick_switch_to_oneshot(tick_nohz_handler))
 981                return;
 982
 983        /*
 984         * Recycle the hrtimer in ts, so we can share the
 985         * hrtimer_forward with the highres code.
 986         */
 987        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 988        /* Get the next period */
 989        next = tick_init_jiffy_update();
 990
 991        hrtimer_forward_now(&ts->sched_timer, tick_period);
 992        hrtimer_set_expires(&ts->sched_timer, next);
 993        tick_program_event(next, 1);
 994        tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
 995}
 996
 997/*
 998 * When NOHZ is enabled and the tick is stopped, we need to kick the
 999 * tick timer from irq_enter() so that the jiffies update is kept
1000 * alive during long running softirqs. That's ugly as hell, but
1001 * correctness is key even if we need to fix the offending softirq in
1002 * the first place.
1003 *
1004 * Note, this is different to tick_nohz_restart. We just kick the
1005 * timer and do not touch the other magic bits which need to be done
1006 * when idle is left.
1007 */
1008static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1009{
1010#if 0
1011        /* Switch back to 2.6.27 behaviour */
1012        ktime_t delta;
1013
1014        /*
1015         * Do not touch the tick device, when the next expiry is either
1016         * already reached or less/equal than the tick period.
1017         */
1018        delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1019        if (delta.tv64 <= tick_period.tv64)
1020                return;
1021
1022        tick_nohz_restart(ts, now);
1023#endif
1024}
1025
1026static inline void tick_nohz_irq_enter(void)
1027{
1028        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1029        ktime_t now;
1030
1031        if (!ts->idle_active && !ts->tick_stopped)
1032                return;
1033        now = ktime_get();
1034        if (ts->idle_active)
1035                tick_nohz_stop_idle(ts, now);
1036        if (ts->tick_stopped) {
1037                tick_nohz_update_jiffies(now);
1038                tick_nohz_kick_tick(ts, now);
1039        }
1040}
1041
1042#else
1043
1044static inline void tick_nohz_switch_to_nohz(void) { }
1045static inline void tick_nohz_irq_enter(void) { }
1046static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1047
1048#endif /* CONFIG_NO_HZ_COMMON */
1049
1050/*
1051 * Called from irq_enter to notify about the possible interruption of idle()
1052 */
1053void tick_irq_enter(void)
1054{
1055        tick_check_oneshot_broadcast_this_cpu();
1056        tick_nohz_irq_enter();
1057}
1058
1059/*
1060 * High resolution timer specific code
1061 */
1062#ifdef CONFIG_HIGH_RES_TIMERS
1063/*
1064 * We rearm the timer until we get disabled by the idle code.
1065 * Called with interrupts disabled.
1066 */
1067static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1068{
1069        struct tick_sched *ts =
1070                container_of(timer, struct tick_sched, sched_timer);
1071        struct pt_regs *regs = get_irq_regs();
1072        ktime_t now = ktime_get();
1073
1074        tick_sched_do_timer(now);
1075
1076        /*
1077         * Do not call, when we are not in irq context and have
1078         * no valid regs pointer
1079         */
1080        if (regs)
1081                tick_sched_handle(ts, regs);
1082
1083        /* No need to reprogram if we are in idle or full dynticks mode */
1084        if (unlikely(ts->tick_stopped))
1085                return HRTIMER_NORESTART;
1086
1087        hrtimer_forward(timer, now, tick_period);
1088
1089        return HRTIMER_RESTART;
1090}
1091
1092static int sched_skew_tick;
1093
1094static int __init skew_tick(char *str)
1095{
1096        get_option(&str, &sched_skew_tick);
1097
1098        return 0;
1099}
1100early_param("skew_tick", skew_tick);
1101
1102/**
1103 * tick_setup_sched_timer - setup the tick emulation timer
1104 */
1105void tick_setup_sched_timer(void)
1106{
1107        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1108        ktime_t now = ktime_get();
1109
1110        /*
1111         * Emulate tick processing via per-CPU hrtimers:
1112         */
1113        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1114        ts->sched_timer.function = tick_sched_timer;
1115
1116        /* Get the next period (per cpu) */
1117        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1118
1119        /* Offset the tick to avert jiffies_lock contention. */
1120        if (sched_skew_tick) {
1121                u64 offset = ktime_to_ns(tick_period) >> 1;
1122                do_div(offset, num_possible_cpus());
1123                offset *= smp_processor_id();
1124                hrtimer_add_expires_ns(&ts->sched_timer, offset);
1125        }
1126
1127        hrtimer_forward(&ts->sched_timer, now, tick_period);
1128        hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1129        tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1130}
1131#endif /* HIGH_RES_TIMERS */
1132
1133#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1134void tick_cancel_sched_timer(int cpu)
1135{
1136        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1137
1138# ifdef CONFIG_HIGH_RES_TIMERS
1139        if (ts->sched_timer.base)
1140                hrtimer_cancel(&ts->sched_timer);
1141# endif
1142
1143        memset(ts, 0, sizeof(*ts));
1144}
1145#endif
1146
1147/**
1148 * Async notification about clocksource changes
1149 */
1150void tick_clock_notify(void)
1151{
1152        int cpu;
1153
1154        for_each_possible_cpu(cpu)
1155                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1156}
1157
1158/*
1159 * Async notification about clock event changes
1160 */
1161void tick_oneshot_notify(void)
1162{
1163        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1164
1165        set_bit(0, &ts->check_clocks);
1166}
1167
1168/**
1169 * Check, if a change happened, which makes oneshot possible.
1170 *
1171 * Called cyclic from the hrtimer softirq (driven by the timer
1172 * softirq) allow_nohz signals, that we can switch into low-res nohz
1173 * mode, because high resolution timers are disabled (either compile
1174 * or runtime). Called with interrupts disabled.
1175 */
1176int tick_check_oneshot_change(int allow_nohz)
1177{
1178        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1179
1180        if (!test_and_clear_bit(0, &ts->check_clocks))
1181                return 0;
1182
1183        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1184                return 0;
1185
1186        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1187                return 0;
1188
1189        if (!allow_nohz)
1190                return 1;
1191
1192        tick_nohz_switch_to_nohz();
1193        return 0;
1194}
1195