linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/timekeeping.c
   3 *
   4 *  Kernel timekeeping code and accessor functions
   5 *
   6 *  This code was moved from linux/kernel/timer.c.
   7 *  Please see that file for copyright and history logs.
   8 *
   9 */
  10
  11#include <linux/timekeeper_internal.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/syscore_ops.h>
  19#include <linux/clocksource.h>
  20#include <linux/jiffies.h>
  21#include <linux/time.h>
  22#include <linux/tick.h>
  23#include <linux/stop_machine.h>
  24#include <linux/pvclock_gtod.h>
  25#include <linux/compiler.h>
  26
  27#include "tick-internal.h"
  28#include "ntp_internal.h"
  29#include "timekeeping_internal.h"
  30
  31#define TK_CLEAR_NTP            (1 << 0)
  32#define TK_MIRROR               (1 << 1)
  33#define TK_CLOCK_WAS_SET        (1 << 2)
  34
  35/*
  36 * The most important data for readout fits into a single 64 byte
  37 * cache line.
  38 */
  39static struct {
  40        seqcount_t              seq;
  41        struct timekeeper       timekeeper;
  42} tk_core ____cacheline_aligned;
  43
  44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  45static struct timekeeper shadow_timekeeper;
  46
  47/**
  48 * struct tk_fast - NMI safe timekeeper
  49 * @seq:        Sequence counter for protecting updates. The lowest bit
  50 *              is the index for the tk_read_base array
  51 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  52 *              @seq.
  53 *
  54 * See @update_fast_timekeeper() below.
  55 */
  56struct tk_fast {
  57        seqcount_t              seq;
  58        struct tk_read_base     base[2];
  59};
  60
  61static struct tk_fast tk_fast_mono ____cacheline_aligned;
  62static struct tk_fast tk_fast_raw  ____cacheline_aligned;
  63
  64/* flag for if timekeeping is suspended */
  65int __read_mostly timekeeping_suspended;
  66
  67static inline void tk_normalize_xtime(struct timekeeper *tk)
  68{
  69        while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  70                tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  71                tk->xtime_sec++;
  72        }
  73}
  74
  75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  76{
  77        struct timespec64 ts;
  78
  79        ts.tv_sec = tk->xtime_sec;
  80        ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  81        return ts;
  82}
  83
  84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  85{
  86        tk->xtime_sec = ts->tv_sec;
  87        tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
  88}
  89
  90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  91{
  92        tk->xtime_sec += ts->tv_sec;
  93        tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
  94        tk_normalize_xtime(tk);
  95}
  96
  97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
  98{
  99        struct timespec64 tmp;
 100
 101        /*
 102         * Verify consistency of: offset_real = -wall_to_monotonic
 103         * before modifying anything
 104         */
 105        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 106                                        -tk->wall_to_monotonic.tv_nsec);
 107        WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
 108        tk->wall_to_monotonic = wtm;
 109        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 110        tk->offs_real = timespec64_to_ktime(tmp);
 111        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 112}
 113
 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 115{
 116        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 117}
 118
 119#ifdef CONFIG_DEBUG_TIMEKEEPING
 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 121
 122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 123{
 124
 125        cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
 126        const char *name = tk->tkr_mono.clock->name;
 127
 128        if (offset > max_cycles) {
 129                printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 130                                offset, name, max_cycles);
 131                printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 132        } else {
 133                if (offset > (max_cycles >> 1)) {
 134                        printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
 135                                        offset, name, max_cycles >> 1);
 136                        printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 137                }
 138        }
 139
 140        if (tk->underflow_seen) {
 141                if (jiffies - tk->last_warning > WARNING_FREQ) {
 142                        printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 143                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 144                        printk_deferred("         Your kernel is probably still fine.\n");
 145                        tk->last_warning = jiffies;
 146                }
 147                tk->underflow_seen = 0;
 148        }
 149
 150        if (tk->overflow_seen) {
 151                if (jiffies - tk->last_warning > WARNING_FREQ) {
 152                        printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 153                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 154                        printk_deferred("         Your kernel is probably still fine.\n");
 155                        tk->last_warning = jiffies;
 156                }
 157                tk->overflow_seen = 0;
 158        }
 159}
 160
 161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 162{
 163        struct timekeeper *tk = &tk_core.timekeeper;
 164        cycle_t now, last, mask, max, delta;
 165        unsigned int seq;
 166
 167        /*
 168         * Since we're called holding a seqlock, the data may shift
 169         * under us while we're doing the calculation. This can cause
 170         * false positives, since we'd note a problem but throw the
 171         * results away. So nest another seqlock here to atomically
 172         * grab the points we are checking with.
 173         */
 174        do {
 175                seq = read_seqcount_begin(&tk_core.seq);
 176                now = tkr->read(tkr->clock);
 177                last = tkr->cycle_last;
 178                mask = tkr->mask;
 179                max = tkr->clock->max_cycles;
 180        } while (read_seqcount_retry(&tk_core.seq, seq));
 181
 182        delta = clocksource_delta(now, last, mask);
 183
 184        /*
 185         * Try to catch underflows by checking if we are seeing small
 186         * mask-relative negative values.
 187         */
 188        if (unlikely((~delta & mask) < (mask >> 3))) {
 189                tk->underflow_seen = 1;
 190                delta = 0;
 191        }
 192
 193        /* Cap delta value to the max_cycles values to avoid mult overflows */
 194        if (unlikely(delta > max)) {
 195                tk->overflow_seen = 1;
 196                delta = tkr->clock->max_cycles;
 197        }
 198
 199        return delta;
 200}
 201#else
 202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
 203{
 204}
 205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
 206{
 207        cycle_t cycle_now, delta;
 208
 209        /* read clocksource */
 210        cycle_now = tkr->read(tkr->clock);
 211
 212        /* calculate the delta since the last update_wall_time */
 213        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 214
 215        return delta;
 216}
 217#endif
 218
 219/**
 220 * tk_setup_internals - Set up internals to use clocksource clock.
 221 *
 222 * @tk:         The target timekeeper to setup.
 223 * @clock:              Pointer to clocksource.
 224 *
 225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 226 * pair and interval request.
 227 *
 228 * Unless you're the timekeeping code, you should not be using this!
 229 */
 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 231{
 232        cycle_t interval;
 233        u64 tmp, ntpinterval;
 234        struct clocksource *old_clock;
 235
 236        old_clock = tk->tkr_mono.clock;
 237        tk->tkr_mono.clock = clock;
 238        tk->tkr_mono.read = clock->read;
 239        tk->tkr_mono.mask = clock->mask;
 240        tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
 241
 242        tk->tkr_raw.clock = clock;
 243        tk->tkr_raw.read = clock->read;
 244        tk->tkr_raw.mask = clock->mask;
 245        tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 246
 247        /* Do the ns -> cycle conversion first, using original mult */
 248        tmp = NTP_INTERVAL_LENGTH;
 249        tmp <<= clock->shift;
 250        ntpinterval = tmp;
 251        tmp += clock->mult/2;
 252        do_div(tmp, clock->mult);
 253        if (tmp == 0)
 254                tmp = 1;
 255
 256        interval = (cycle_t) tmp;
 257        tk->cycle_interval = interval;
 258
 259        /* Go back from cycles -> shifted ns */
 260        tk->xtime_interval = (u64) interval * clock->mult;
 261        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 262        tk->raw_interval =
 263                ((u64) interval * clock->mult) >> clock->shift;
 264
 265         /* if changing clocks, convert xtime_nsec shift units */
 266        if (old_clock) {
 267                int shift_change = clock->shift - old_clock->shift;
 268                if (shift_change < 0)
 269                        tk->tkr_mono.xtime_nsec >>= -shift_change;
 270                else
 271                        tk->tkr_mono.xtime_nsec <<= shift_change;
 272        }
 273        tk->tkr_raw.xtime_nsec = 0;
 274
 275        tk->tkr_mono.shift = clock->shift;
 276        tk->tkr_raw.shift = clock->shift;
 277
 278        tk->ntp_error = 0;
 279        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 280        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 281
 282        /*
 283         * The timekeeper keeps its own mult values for the currently
 284         * active clocksource. These value will be adjusted via NTP
 285         * to counteract clock drifting.
 286         */
 287        tk->tkr_mono.mult = clock->mult;
 288        tk->tkr_raw.mult = clock->mult;
 289        tk->ntp_err_mult = 0;
 290}
 291
 292/* Timekeeper helper functions. */
 293
 294#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 295static u32 default_arch_gettimeoffset(void) { return 0; }
 296u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 297#else
 298static inline u32 arch_gettimeoffset(void) { return 0; }
 299#endif
 300
 301static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
 302{
 303        cycle_t delta;
 304        s64 nsec;
 305
 306        delta = timekeeping_get_delta(tkr);
 307
 308        nsec = delta * tkr->mult + tkr->xtime_nsec;
 309        nsec >>= tkr->shift;
 310
 311        /* If arch requires, add in get_arch_timeoffset() */
 312        return nsec + arch_gettimeoffset();
 313}
 314
 315/**
 316 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 317 * @tkr: Timekeeping readout base from which we take the update
 318 *
 319 * We want to use this from any context including NMI and tracing /
 320 * instrumenting the timekeeping code itself.
 321 *
 322 * Employ the latch technique; see @raw_write_seqcount_latch.
 323 *
 324 * So if a NMI hits the update of base[0] then it will use base[1]
 325 * which is still consistent. In the worst case this can result is a
 326 * slightly wrong timestamp (a few nanoseconds). See
 327 * @ktime_get_mono_fast_ns.
 328 */
 329static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
 330{
 331        struct tk_read_base *base = tkf->base;
 332
 333        /* Force readers off to base[1] */
 334        raw_write_seqcount_latch(&tkf->seq);
 335
 336        /* Update base[0] */
 337        memcpy(base, tkr, sizeof(*base));
 338
 339        /* Force readers back to base[0] */
 340        raw_write_seqcount_latch(&tkf->seq);
 341
 342        /* Update base[1] */
 343        memcpy(base + 1, base, sizeof(*base));
 344}
 345
 346/**
 347 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 348 *
 349 * This timestamp is not guaranteed to be monotonic across an update.
 350 * The timestamp is calculated by:
 351 *
 352 *      now = base_mono + clock_delta * slope
 353 *
 354 * So if the update lowers the slope, readers who are forced to the
 355 * not yet updated second array are still using the old steeper slope.
 356 *
 357 * tmono
 358 * ^
 359 * |    o  n
 360 * |   o n
 361 * |  u
 362 * | o
 363 * |o
 364 * |12345678---> reader order
 365 *
 366 * o = old slope
 367 * u = update
 368 * n = new slope
 369 *
 370 * So reader 6 will observe time going backwards versus reader 5.
 371 *
 372 * While other CPUs are likely to be able observe that, the only way
 373 * for a CPU local observation is when an NMI hits in the middle of
 374 * the update. Timestamps taken from that NMI context might be ahead
 375 * of the following timestamps. Callers need to be aware of that and
 376 * deal with it.
 377 */
 378static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 379{
 380        struct tk_read_base *tkr;
 381        unsigned int seq;
 382        u64 now;
 383
 384        do {
 385                seq = raw_read_seqcount_latch(&tkf->seq);
 386                tkr = tkf->base + (seq & 0x01);
 387                now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
 388        } while (read_seqcount_retry(&tkf->seq, seq));
 389
 390        return now;
 391}
 392
 393u64 ktime_get_mono_fast_ns(void)
 394{
 395        return __ktime_get_fast_ns(&tk_fast_mono);
 396}
 397EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 398
 399u64 ktime_get_raw_fast_ns(void)
 400{
 401        return __ktime_get_fast_ns(&tk_fast_raw);
 402}
 403EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 404
 405/* Suspend-time cycles value for halted fast timekeeper. */
 406static cycle_t cycles_at_suspend;
 407
 408static cycle_t dummy_clock_read(struct clocksource *cs)
 409{
 410        return cycles_at_suspend;
 411}
 412
 413/**
 414 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 415 * @tk: Timekeeper to snapshot.
 416 *
 417 * It generally is unsafe to access the clocksource after timekeeping has been
 418 * suspended, so take a snapshot of the readout base of @tk and use it as the
 419 * fast timekeeper's readout base while suspended.  It will return the same
 420 * number of cycles every time until timekeeping is resumed at which time the
 421 * proper readout base for the fast timekeeper will be restored automatically.
 422 */
 423static void halt_fast_timekeeper(struct timekeeper *tk)
 424{
 425        static struct tk_read_base tkr_dummy;
 426        struct tk_read_base *tkr = &tk->tkr_mono;
 427
 428        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 429        cycles_at_suspend = tkr->read(tkr->clock);
 430        tkr_dummy.read = dummy_clock_read;
 431        update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 432
 433        tkr = &tk->tkr_raw;
 434        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 435        tkr_dummy.read = dummy_clock_read;
 436        update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 437}
 438
 439#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
 440
 441static inline void update_vsyscall(struct timekeeper *tk)
 442{
 443        struct timespec xt, wm;
 444
 445        xt = timespec64_to_timespec(tk_xtime(tk));
 446        wm = timespec64_to_timespec(tk->wall_to_monotonic);
 447        update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
 448                            tk->tkr_mono.cycle_last);
 449}
 450
 451static inline void old_vsyscall_fixup(struct timekeeper *tk)
 452{
 453        s64 remainder;
 454
 455        /*
 456        * Store only full nanoseconds into xtime_nsec after rounding
 457        * it up and add the remainder to the error difference.
 458        * XXX - This is necessary to avoid small 1ns inconsistnecies caused
 459        * by truncating the remainder in vsyscalls. However, it causes
 460        * additional work to be done in timekeeping_adjust(). Once
 461        * the vsyscall implementations are converted to use xtime_nsec
 462        * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
 463        * users are removed, this can be killed.
 464        */
 465        remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
 466        tk->tkr_mono.xtime_nsec -= remainder;
 467        tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
 468        tk->ntp_error += remainder << tk->ntp_error_shift;
 469        tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
 470}
 471#else
 472#define old_vsyscall_fixup(tk)
 473#endif
 474
 475static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 476
 477static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 478{
 479        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 480}
 481
 482/**
 483 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 484 */
 485int pvclock_gtod_register_notifier(struct notifier_block *nb)
 486{
 487        struct timekeeper *tk = &tk_core.timekeeper;
 488        unsigned long flags;
 489        int ret;
 490
 491        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 492        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 493        update_pvclock_gtod(tk, true);
 494        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 495
 496        return ret;
 497}
 498EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 499
 500/**
 501 * pvclock_gtod_unregister_notifier - unregister a pvclock
 502 * timedata update listener
 503 */
 504int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 505{
 506        unsigned long flags;
 507        int ret;
 508
 509        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 510        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 511        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 512
 513        return ret;
 514}
 515EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 516
 517/*
 518 * tk_update_leap_state - helper to update the next_leap_ktime
 519 */
 520static inline void tk_update_leap_state(struct timekeeper *tk)
 521{
 522        tk->next_leap_ktime = ntp_get_next_leap();
 523        if (tk->next_leap_ktime.tv64 != KTIME_MAX)
 524                /* Convert to monotonic time */
 525                tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 526}
 527
 528/*
 529 * Update the ktime_t based scalar nsec members of the timekeeper
 530 */
 531static inline void tk_update_ktime_data(struct timekeeper *tk)
 532{
 533        u64 seconds;
 534        u32 nsec;
 535
 536        /*
 537         * The xtime based monotonic readout is:
 538         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 539         * The ktime based monotonic readout is:
 540         *      nsec = base_mono + now();
 541         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 542         */
 543        seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 544        nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 545        tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 546
 547        /* Update the monotonic raw base */
 548        tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
 549
 550        /*
 551         * The sum of the nanoseconds portions of xtime and
 552         * wall_to_monotonic can be greater/equal one second. Take
 553         * this into account before updating tk->ktime_sec.
 554         */
 555        nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 556        if (nsec >= NSEC_PER_SEC)
 557                seconds++;
 558        tk->ktime_sec = seconds;
 559}
 560
 561/* must hold timekeeper_lock */
 562static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 563{
 564        if (action & TK_CLEAR_NTP) {
 565                tk->ntp_error = 0;
 566                ntp_clear();
 567        }
 568
 569        tk_update_leap_state(tk);
 570        tk_update_ktime_data(tk);
 571
 572        update_vsyscall(tk);
 573        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 574
 575        update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 576        update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 577
 578        if (action & TK_CLOCK_WAS_SET)
 579                tk->clock_was_set_seq++;
 580        /*
 581         * The mirroring of the data to the shadow-timekeeper needs
 582         * to happen last here to ensure we don't over-write the
 583         * timekeeper structure on the next update with stale data
 584         */
 585        if (action & TK_MIRROR)
 586                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 587                       sizeof(tk_core.timekeeper));
 588}
 589
 590/**
 591 * timekeeping_forward_now - update clock to the current time
 592 *
 593 * Forward the current clock to update its state since the last call to
 594 * update_wall_time(). This is useful before significant clock changes,
 595 * as it avoids having to deal with this time offset explicitly.
 596 */
 597static void timekeeping_forward_now(struct timekeeper *tk)
 598{
 599        struct clocksource *clock = tk->tkr_mono.clock;
 600        cycle_t cycle_now, delta;
 601        s64 nsec;
 602
 603        cycle_now = tk->tkr_mono.read(clock);
 604        delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 605        tk->tkr_mono.cycle_last = cycle_now;
 606        tk->tkr_raw.cycle_last  = cycle_now;
 607
 608        tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 609
 610        /* If arch requires, add in get_arch_timeoffset() */
 611        tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 612
 613        tk_normalize_xtime(tk);
 614
 615        nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
 616        timespec64_add_ns(&tk->raw_time, nsec);
 617}
 618
 619/**
 620 * __getnstimeofday64 - Returns the time of day in a timespec64.
 621 * @ts:         pointer to the timespec to be set
 622 *
 623 * Updates the time of day in the timespec.
 624 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
 625 */
 626int __getnstimeofday64(struct timespec64 *ts)
 627{
 628        struct timekeeper *tk = &tk_core.timekeeper;
 629        unsigned long seq;
 630        s64 nsecs = 0;
 631
 632        do {
 633                seq = read_seqcount_begin(&tk_core.seq);
 634
 635                ts->tv_sec = tk->xtime_sec;
 636                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 637
 638        } while (read_seqcount_retry(&tk_core.seq, seq));
 639
 640        ts->tv_nsec = 0;
 641        timespec64_add_ns(ts, nsecs);
 642
 643        /*
 644         * Do not bail out early, in case there were callers still using
 645         * the value, even in the face of the WARN_ON.
 646         */
 647        if (unlikely(timekeeping_suspended))
 648                return -EAGAIN;
 649        return 0;
 650}
 651EXPORT_SYMBOL(__getnstimeofday64);
 652
 653/**
 654 * getnstimeofday64 - Returns the time of day in a timespec64.
 655 * @ts:         pointer to the timespec64 to be set
 656 *
 657 * Returns the time of day in a timespec64 (WARN if suspended).
 658 */
 659void getnstimeofday64(struct timespec64 *ts)
 660{
 661        WARN_ON(__getnstimeofday64(ts));
 662}
 663EXPORT_SYMBOL(getnstimeofday64);
 664
 665ktime_t ktime_get(void)
 666{
 667        struct timekeeper *tk = &tk_core.timekeeper;
 668        unsigned int seq;
 669        ktime_t base;
 670        s64 nsecs;
 671
 672        WARN_ON(timekeeping_suspended);
 673
 674        do {
 675                seq = read_seqcount_begin(&tk_core.seq);
 676                base = tk->tkr_mono.base;
 677                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 678
 679        } while (read_seqcount_retry(&tk_core.seq, seq));
 680
 681        return ktime_add_ns(base, nsecs);
 682}
 683EXPORT_SYMBOL_GPL(ktime_get);
 684
 685u32 ktime_get_resolution_ns(void)
 686{
 687        struct timekeeper *tk = &tk_core.timekeeper;
 688        unsigned int seq;
 689        u32 nsecs;
 690
 691        WARN_ON(timekeeping_suspended);
 692
 693        do {
 694                seq = read_seqcount_begin(&tk_core.seq);
 695                nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 696        } while (read_seqcount_retry(&tk_core.seq, seq));
 697
 698        return nsecs;
 699}
 700EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 701
 702static ktime_t *offsets[TK_OFFS_MAX] = {
 703        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 704        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 705        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 706};
 707
 708ktime_t ktime_get_with_offset(enum tk_offsets offs)
 709{
 710        struct timekeeper *tk = &tk_core.timekeeper;
 711        unsigned int seq;
 712        ktime_t base, *offset = offsets[offs];
 713        s64 nsecs;
 714
 715        WARN_ON(timekeeping_suspended);
 716
 717        do {
 718                seq = read_seqcount_begin(&tk_core.seq);
 719                base = ktime_add(tk->tkr_mono.base, *offset);
 720                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 721
 722        } while (read_seqcount_retry(&tk_core.seq, seq));
 723
 724        return ktime_add_ns(base, nsecs);
 725
 726}
 727EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 728
 729/**
 730 * ktime_mono_to_any() - convert mononotic time to any other time
 731 * @tmono:      time to convert.
 732 * @offs:       which offset to use
 733 */
 734ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 735{
 736        ktime_t *offset = offsets[offs];
 737        unsigned long seq;
 738        ktime_t tconv;
 739
 740        do {
 741                seq = read_seqcount_begin(&tk_core.seq);
 742                tconv = ktime_add(tmono, *offset);
 743        } while (read_seqcount_retry(&tk_core.seq, seq));
 744
 745        return tconv;
 746}
 747EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 748
 749/**
 750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 751 */
 752ktime_t ktime_get_raw(void)
 753{
 754        struct timekeeper *tk = &tk_core.timekeeper;
 755        unsigned int seq;
 756        ktime_t base;
 757        s64 nsecs;
 758
 759        do {
 760                seq = read_seqcount_begin(&tk_core.seq);
 761                base = tk->tkr_raw.base;
 762                nsecs = timekeeping_get_ns(&tk->tkr_raw);
 763
 764        } while (read_seqcount_retry(&tk_core.seq, seq));
 765
 766        return ktime_add_ns(base, nsecs);
 767}
 768EXPORT_SYMBOL_GPL(ktime_get_raw);
 769
 770/**
 771 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 772 * @ts:         pointer to timespec variable
 773 *
 774 * The function calculates the monotonic clock from the realtime
 775 * clock and the wall_to_monotonic offset and stores the result
 776 * in normalized timespec64 format in the variable pointed to by @ts.
 777 */
 778void ktime_get_ts64(struct timespec64 *ts)
 779{
 780        struct timekeeper *tk = &tk_core.timekeeper;
 781        struct timespec64 tomono;
 782        s64 nsec;
 783        unsigned int seq;
 784
 785        WARN_ON(timekeeping_suspended);
 786
 787        do {
 788                seq = read_seqcount_begin(&tk_core.seq);
 789                ts->tv_sec = tk->xtime_sec;
 790                nsec = timekeeping_get_ns(&tk->tkr_mono);
 791                tomono = tk->wall_to_monotonic;
 792
 793        } while (read_seqcount_retry(&tk_core.seq, seq));
 794
 795        ts->tv_sec += tomono.tv_sec;
 796        ts->tv_nsec = 0;
 797        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 798}
 799EXPORT_SYMBOL_GPL(ktime_get_ts64);
 800
 801/**
 802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 803 *
 804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 806 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 807 * covers ~136 years of uptime which should be enough to prevent
 808 * premature wrap arounds.
 809 */
 810time64_t ktime_get_seconds(void)
 811{
 812        struct timekeeper *tk = &tk_core.timekeeper;
 813
 814        WARN_ON(timekeeping_suspended);
 815        return tk->ktime_sec;
 816}
 817EXPORT_SYMBOL_GPL(ktime_get_seconds);
 818
 819/**
 820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 821 *
 822 * Returns the wall clock seconds since 1970. This replaces the
 823 * get_seconds() interface which is not y2038 safe on 32bit systems.
 824 *
 825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 826 * 32bit systems the access must be protected with the sequence
 827 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 828 * value.
 829 */
 830time64_t ktime_get_real_seconds(void)
 831{
 832        struct timekeeper *tk = &tk_core.timekeeper;
 833        time64_t seconds;
 834        unsigned int seq;
 835
 836        if (IS_ENABLED(CONFIG_64BIT))
 837                return tk->xtime_sec;
 838
 839        do {
 840                seq = read_seqcount_begin(&tk_core.seq);
 841                seconds = tk->xtime_sec;
 842
 843        } while (read_seqcount_retry(&tk_core.seq, seq));
 844
 845        return seconds;
 846}
 847EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 848
 849#ifdef CONFIG_NTP_PPS
 850
 851/**
 852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 853 * @ts_raw:     pointer to the timespec to be set to raw monotonic time
 854 * @ts_real:    pointer to the timespec to be set to the time of day
 855 *
 856 * This function reads both the time of day and raw monotonic time at the
 857 * same time atomically and stores the resulting timestamps in timespec
 858 * format.
 859 */
 860void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
 861{
 862        struct timekeeper *tk = &tk_core.timekeeper;
 863        unsigned long seq;
 864        s64 nsecs_raw, nsecs_real;
 865
 866        WARN_ON_ONCE(timekeeping_suspended);
 867
 868        do {
 869                seq = read_seqcount_begin(&tk_core.seq);
 870
 871                *ts_raw = timespec64_to_timespec(tk->raw_time);
 872                ts_real->tv_sec = tk->xtime_sec;
 873                ts_real->tv_nsec = 0;
 874
 875                nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
 876                nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
 877
 878        } while (read_seqcount_retry(&tk_core.seq, seq));
 879
 880        timespec_add_ns(ts_raw, nsecs_raw);
 881        timespec_add_ns(ts_real, nsecs_real);
 882}
 883EXPORT_SYMBOL(getnstime_raw_and_real);
 884
 885#endif /* CONFIG_NTP_PPS */
 886
 887/**
 888 * do_gettimeofday - Returns the time of day in a timeval
 889 * @tv:         pointer to the timeval to be set
 890 *
 891 * NOTE: Users should be converted to using getnstimeofday()
 892 */
 893void do_gettimeofday(struct timeval *tv)
 894{
 895        struct timespec64 now;
 896
 897        getnstimeofday64(&now);
 898        tv->tv_sec = now.tv_sec;
 899        tv->tv_usec = now.tv_nsec/1000;
 900}
 901EXPORT_SYMBOL(do_gettimeofday);
 902
 903/**
 904 * do_settimeofday64 - Sets the time of day.
 905 * @ts:     pointer to the timespec64 variable containing the new time
 906 *
 907 * Sets the time of day to the new time and update NTP and notify hrtimers
 908 */
 909int do_settimeofday64(const struct timespec64 *ts)
 910{
 911        struct timekeeper *tk = &tk_core.timekeeper;
 912        struct timespec64 ts_delta, xt;
 913        unsigned long flags;
 914
 915        if (!timespec64_valid_strict(ts))
 916                return -EINVAL;
 917
 918        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 919        write_seqcount_begin(&tk_core.seq);
 920
 921        timekeeping_forward_now(tk);
 922
 923        xt = tk_xtime(tk);
 924        ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
 925        ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
 926
 927        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
 928
 929        tk_set_xtime(tk, ts);
 930
 931        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 932
 933        write_seqcount_end(&tk_core.seq);
 934        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 935
 936        /* signal hrtimers about time change */
 937        clock_was_set();
 938
 939        return 0;
 940}
 941EXPORT_SYMBOL(do_settimeofday64);
 942
 943/**
 944 * timekeeping_inject_offset - Adds or subtracts from the current time.
 945 * @tv:         pointer to the timespec variable containing the offset
 946 *
 947 * Adds or subtracts an offset value from the current time.
 948 */
 949int timekeeping_inject_offset(struct timespec *ts)
 950{
 951        struct timekeeper *tk = &tk_core.timekeeper;
 952        unsigned long flags;
 953        struct timespec64 ts64, tmp;
 954        int ret = 0;
 955
 956        if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
 957                return -EINVAL;
 958
 959        ts64 = timespec_to_timespec64(*ts);
 960
 961        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 962        write_seqcount_begin(&tk_core.seq);
 963
 964        timekeeping_forward_now(tk);
 965
 966        /* Make sure the proposed value is valid */
 967        tmp = timespec64_add(tk_xtime(tk),  ts64);
 968        if (!timespec64_valid_strict(&tmp)) {
 969                ret = -EINVAL;
 970                goto error;
 971        }
 972
 973        tk_xtime_add(tk, &ts64);
 974        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
 975
 976error: /* even if we error out, we forwarded the time, so call update */
 977        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 978
 979        write_seqcount_end(&tk_core.seq);
 980        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 981
 982        /* signal hrtimers about time change */
 983        clock_was_set();
 984
 985        return ret;
 986}
 987EXPORT_SYMBOL(timekeeping_inject_offset);
 988
 989
 990/**
 991 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 992 *
 993 */
 994s32 timekeeping_get_tai_offset(void)
 995{
 996        struct timekeeper *tk = &tk_core.timekeeper;
 997        unsigned int seq;
 998        s32 ret;
 999
1000        do {
1001                seq = read_seqcount_begin(&tk_core.seq);
1002                ret = tk->tai_offset;
1003        } while (read_seqcount_retry(&tk_core.seq, seq));
1004
1005        return ret;
1006}
1007
1008/**
1009 * __timekeeping_set_tai_offset - Lock free worker function
1010 *
1011 */
1012static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1013{
1014        tk->tai_offset = tai_offset;
1015        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1016}
1017
1018/**
1019 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1020 *
1021 */
1022void timekeeping_set_tai_offset(s32 tai_offset)
1023{
1024        struct timekeeper *tk = &tk_core.timekeeper;
1025        unsigned long flags;
1026
1027        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1028        write_seqcount_begin(&tk_core.seq);
1029        __timekeeping_set_tai_offset(tk, tai_offset);
1030        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1031        write_seqcount_end(&tk_core.seq);
1032        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1033        clock_was_set();
1034}
1035
1036/**
1037 * change_clocksource - Swaps clocksources if a new one is available
1038 *
1039 * Accumulates current time interval and initializes new clocksource
1040 */
1041static int change_clocksource(void *data)
1042{
1043        struct timekeeper *tk = &tk_core.timekeeper;
1044        struct clocksource *new, *old;
1045        unsigned long flags;
1046
1047        new = (struct clocksource *) data;
1048
1049        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1050        write_seqcount_begin(&tk_core.seq);
1051
1052        timekeeping_forward_now(tk);
1053        /*
1054         * If the cs is in module, get a module reference. Succeeds
1055         * for built-in code (owner == NULL) as well.
1056         */
1057        if (try_module_get(new->owner)) {
1058                if (!new->enable || new->enable(new) == 0) {
1059                        old = tk->tkr_mono.clock;
1060                        tk_setup_internals(tk, new);
1061                        if (old->disable)
1062                                old->disable(old);
1063                        module_put(old->owner);
1064                } else {
1065                        module_put(new->owner);
1066                }
1067        }
1068        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1069
1070        write_seqcount_end(&tk_core.seq);
1071        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1072
1073        return 0;
1074}
1075
1076/**
1077 * timekeeping_notify - Install a new clock source
1078 * @clock:              pointer to the clock source
1079 *
1080 * This function is called from clocksource.c after a new, better clock
1081 * source has been registered. The caller holds the clocksource_mutex.
1082 */
1083int timekeeping_notify(struct clocksource *clock)
1084{
1085        struct timekeeper *tk = &tk_core.timekeeper;
1086
1087        if (tk->tkr_mono.clock == clock)
1088                return 0;
1089        stop_machine(change_clocksource, clock, NULL);
1090        tick_clock_notify();
1091        return tk->tkr_mono.clock == clock ? 0 : -1;
1092}
1093
1094/**
1095 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1096 * @ts:         pointer to the timespec64 to be set
1097 *
1098 * Returns the raw monotonic time (completely un-modified by ntp)
1099 */
1100void getrawmonotonic64(struct timespec64 *ts)
1101{
1102        struct timekeeper *tk = &tk_core.timekeeper;
1103        struct timespec64 ts64;
1104        unsigned long seq;
1105        s64 nsecs;
1106
1107        do {
1108                seq = read_seqcount_begin(&tk_core.seq);
1109                nsecs = timekeeping_get_ns(&tk->tkr_raw);
1110                ts64 = tk->raw_time;
1111
1112        } while (read_seqcount_retry(&tk_core.seq, seq));
1113
1114        timespec64_add_ns(&ts64, nsecs);
1115        *ts = ts64;
1116}
1117EXPORT_SYMBOL(getrawmonotonic64);
1118
1119
1120/**
1121 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1122 */
1123int timekeeping_valid_for_hres(void)
1124{
1125        struct timekeeper *tk = &tk_core.timekeeper;
1126        unsigned long seq;
1127        int ret;
1128
1129        do {
1130                seq = read_seqcount_begin(&tk_core.seq);
1131
1132                ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1133
1134        } while (read_seqcount_retry(&tk_core.seq, seq));
1135
1136        return ret;
1137}
1138
1139/**
1140 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1141 */
1142u64 timekeeping_max_deferment(void)
1143{
1144        struct timekeeper *tk = &tk_core.timekeeper;
1145        unsigned long seq;
1146        u64 ret;
1147
1148        do {
1149                seq = read_seqcount_begin(&tk_core.seq);
1150
1151                ret = tk->tkr_mono.clock->max_idle_ns;
1152
1153        } while (read_seqcount_retry(&tk_core.seq, seq));
1154
1155        return ret;
1156}
1157
1158/**
1159 * read_persistent_clock -  Return time from the persistent clock.
1160 *
1161 * Weak dummy function for arches that do not yet support it.
1162 * Reads the time from the battery backed persistent clock.
1163 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1164 *
1165 *  XXX - Do be sure to remove it once all arches implement it.
1166 */
1167void __weak read_persistent_clock(struct timespec *ts)
1168{
1169        ts->tv_sec = 0;
1170        ts->tv_nsec = 0;
1171}
1172
1173void __weak read_persistent_clock64(struct timespec64 *ts64)
1174{
1175        struct timespec ts;
1176
1177        read_persistent_clock(&ts);
1178        *ts64 = timespec_to_timespec64(ts);
1179}
1180
1181/**
1182 * read_boot_clock64 -  Return time of the system start.
1183 *
1184 * Weak dummy function for arches that do not yet support it.
1185 * Function to read the exact time the system has been started.
1186 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1187 *
1188 *  XXX - Do be sure to remove it once all arches implement it.
1189 */
1190void __weak read_boot_clock64(struct timespec64 *ts)
1191{
1192        ts->tv_sec = 0;
1193        ts->tv_nsec = 0;
1194}
1195
1196/* Flag for if timekeeping_resume() has injected sleeptime */
1197static bool sleeptime_injected;
1198
1199/* Flag for if there is a persistent clock on this platform */
1200static bool persistent_clock_exists;
1201
1202/*
1203 * timekeeping_init - Initializes the clocksource and common timekeeping values
1204 */
1205void __init timekeeping_init(void)
1206{
1207        struct timekeeper *tk = &tk_core.timekeeper;
1208        struct clocksource *clock;
1209        unsigned long flags;
1210        struct timespec64 now, boot, tmp;
1211
1212        read_persistent_clock64(&now);
1213        if (!timespec64_valid_strict(&now)) {
1214                pr_warn("WARNING: Persistent clock returned invalid value!\n"
1215                        "         Check your CMOS/BIOS settings.\n");
1216                now.tv_sec = 0;
1217                now.tv_nsec = 0;
1218        } else if (now.tv_sec || now.tv_nsec)
1219                persistent_clock_exists = true;
1220
1221        read_boot_clock64(&boot);
1222        if (!timespec64_valid_strict(&boot)) {
1223                pr_warn("WARNING: Boot clock returned invalid value!\n"
1224                        "         Check your CMOS/BIOS settings.\n");
1225                boot.tv_sec = 0;
1226                boot.tv_nsec = 0;
1227        }
1228
1229        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1230        write_seqcount_begin(&tk_core.seq);
1231        ntp_init();
1232
1233        clock = clocksource_default_clock();
1234        if (clock->enable)
1235                clock->enable(clock);
1236        tk_setup_internals(tk, clock);
1237
1238        tk_set_xtime(tk, &now);
1239        tk->raw_time.tv_sec = 0;
1240        tk->raw_time.tv_nsec = 0;
1241        if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1242                boot = tk_xtime(tk);
1243
1244        set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1245        tk_set_wall_to_mono(tk, tmp);
1246
1247        timekeeping_update(tk, TK_MIRROR);
1248
1249        write_seqcount_end(&tk_core.seq);
1250        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1251}
1252
1253/* time in seconds when suspend began for persistent clock */
1254static struct timespec64 timekeeping_suspend_time;
1255
1256/**
1257 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1258 * @delta: pointer to a timespec delta value
1259 *
1260 * Takes a timespec offset measuring a suspend interval and properly
1261 * adds the sleep offset to the timekeeping variables.
1262 */
1263static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1264                                           struct timespec64 *delta)
1265{
1266        if (!timespec64_valid_strict(delta)) {
1267                printk_deferred(KERN_WARNING
1268                                "__timekeeping_inject_sleeptime: Invalid "
1269                                "sleep delta value!\n");
1270                return;
1271        }
1272        tk_xtime_add(tk, delta);
1273        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1274        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1275        tk_debug_account_sleep_time(delta);
1276}
1277
1278#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1279/**
1280 * We have three kinds of time sources to use for sleep time
1281 * injection, the preference order is:
1282 * 1) non-stop clocksource
1283 * 2) persistent clock (ie: RTC accessible when irqs are off)
1284 * 3) RTC
1285 *
1286 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1287 * If system has neither 1) nor 2), 3) will be used finally.
1288 *
1289 *
1290 * If timekeeping has injected sleeptime via either 1) or 2),
1291 * 3) becomes needless, so in this case we don't need to call
1292 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1293 * means.
1294 */
1295bool timekeeping_rtc_skipresume(void)
1296{
1297        return sleeptime_injected;
1298}
1299
1300/**
1301 * 1) can be determined whether to use or not only when doing
1302 * timekeeping_resume() which is invoked after rtc_suspend(),
1303 * so we can't skip rtc_suspend() surely if system has 1).
1304 *
1305 * But if system has 2), 2) will definitely be used, so in this
1306 * case we don't need to call rtc_suspend(), and this is what
1307 * timekeeping_rtc_skipsuspend() means.
1308 */
1309bool timekeeping_rtc_skipsuspend(void)
1310{
1311        return persistent_clock_exists;
1312}
1313
1314/**
1315 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1316 * @delta: pointer to a timespec64 delta value
1317 *
1318 * This hook is for architectures that cannot support read_persistent_clock64
1319 * because their RTC/persistent clock is only accessible when irqs are enabled.
1320 * and also don't have an effective nonstop clocksource.
1321 *
1322 * This function should only be called by rtc_resume(), and allows
1323 * a suspend offset to be injected into the timekeeping values.
1324 */
1325void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1326{
1327        struct timekeeper *tk = &tk_core.timekeeper;
1328        unsigned long flags;
1329
1330        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1331        write_seqcount_begin(&tk_core.seq);
1332
1333        timekeeping_forward_now(tk);
1334
1335        __timekeeping_inject_sleeptime(tk, delta);
1336
1337        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1338
1339        write_seqcount_end(&tk_core.seq);
1340        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1341
1342        /* signal hrtimers about time change */
1343        clock_was_set();
1344}
1345#endif
1346
1347/**
1348 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1349 */
1350void timekeeping_resume(void)
1351{
1352        struct timekeeper *tk = &tk_core.timekeeper;
1353        struct clocksource *clock = tk->tkr_mono.clock;
1354        unsigned long flags;
1355        struct timespec64 ts_new, ts_delta;
1356        cycle_t cycle_now, cycle_delta;
1357
1358        sleeptime_injected = false;
1359        read_persistent_clock64(&ts_new);
1360
1361        clockevents_resume();
1362        clocksource_resume();
1363
1364        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1365        write_seqcount_begin(&tk_core.seq);
1366
1367        /*
1368         * After system resumes, we need to calculate the suspended time and
1369         * compensate it for the OS time. There are 3 sources that could be
1370         * used: Nonstop clocksource during suspend, persistent clock and rtc
1371         * device.
1372         *
1373         * One specific platform may have 1 or 2 or all of them, and the
1374         * preference will be:
1375         *      suspend-nonstop clocksource -> persistent clock -> rtc
1376         * The less preferred source will only be tried if there is no better
1377         * usable source. The rtc part is handled separately in rtc core code.
1378         */
1379        cycle_now = tk->tkr_mono.read(clock);
1380        if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1381                cycle_now > tk->tkr_mono.cycle_last) {
1382                u64 num, max = ULLONG_MAX;
1383                u32 mult = clock->mult;
1384                u32 shift = clock->shift;
1385                s64 nsec = 0;
1386
1387                cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1388                                                tk->tkr_mono.mask);
1389
1390                /*
1391                 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1392                 * suspended time is too long. In that case we need do the
1393                 * 64 bits math carefully
1394                 */
1395                do_div(max, mult);
1396                if (cycle_delta > max) {
1397                        num = div64_u64(cycle_delta, max);
1398                        nsec = (((u64) max * mult) >> shift) * num;
1399                        cycle_delta -= num * max;
1400                }
1401                nsec += ((u64) cycle_delta * mult) >> shift;
1402
1403                ts_delta = ns_to_timespec64(nsec);
1404                sleeptime_injected = true;
1405        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1406                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1407                sleeptime_injected = true;
1408        }
1409
1410        if (sleeptime_injected)
1411                __timekeeping_inject_sleeptime(tk, &ts_delta);
1412
1413        /* Re-base the last cycle value */
1414        tk->tkr_mono.cycle_last = cycle_now;
1415        tk->tkr_raw.cycle_last  = cycle_now;
1416
1417        tk->ntp_error = 0;
1418        timekeeping_suspended = 0;
1419        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1420        write_seqcount_end(&tk_core.seq);
1421        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1422
1423        touch_softlockup_watchdog();
1424
1425        tick_resume();
1426        hrtimers_resume();
1427}
1428
1429int timekeeping_suspend(void)
1430{
1431        struct timekeeper *tk = &tk_core.timekeeper;
1432        unsigned long flags;
1433        struct timespec64               delta, delta_delta;
1434        static struct timespec64        old_delta;
1435
1436        read_persistent_clock64(&timekeeping_suspend_time);
1437
1438        /*
1439         * On some systems the persistent_clock can not be detected at
1440         * timekeeping_init by its return value, so if we see a valid
1441         * value returned, update the persistent_clock_exists flag.
1442         */
1443        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1444                persistent_clock_exists = true;
1445
1446        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1447        write_seqcount_begin(&tk_core.seq);
1448        timekeeping_forward_now(tk);
1449        timekeeping_suspended = 1;
1450
1451        if (persistent_clock_exists) {
1452                /*
1453                 * To avoid drift caused by repeated suspend/resumes,
1454                 * which each can add ~1 second drift error,
1455                 * try to compensate so the difference in system time
1456                 * and persistent_clock time stays close to constant.
1457                 */
1458                delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1459                delta_delta = timespec64_sub(delta, old_delta);
1460                if (abs(delta_delta.tv_sec) >= 2) {
1461                        /*
1462                         * if delta_delta is too large, assume time correction
1463                         * has occurred and set old_delta to the current delta.
1464                         */
1465                        old_delta = delta;
1466                } else {
1467                        /* Otherwise try to adjust old_system to compensate */
1468                        timekeeping_suspend_time =
1469                                timespec64_add(timekeeping_suspend_time, delta_delta);
1470                }
1471        }
1472
1473        timekeeping_update(tk, TK_MIRROR);
1474        halt_fast_timekeeper(tk);
1475        write_seqcount_end(&tk_core.seq);
1476        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1477
1478        tick_suspend();
1479        clocksource_suspend();
1480        clockevents_suspend();
1481
1482        return 0;
1483}
1484
1485/* sysfs resume/suspend bits for timekeeping */
1486static struct syscore_ops timekeeping_syscore_ops = {
1487        .resume         = timekeeping_resume,
1488        .suspend        = timekeeping_suspend,
1489};
1490
1491static int __init timekeeping_init_ops(void)
1492{
1493        register_syscore_ops(&timekeeping_syscore_ops);
1494        return 0;
1495}
1496device_initcall(timekeeping_init_ops);
1497
1498/*
1499 * Apply a multiplier adjustment to the timekeeper
1500 */
1501static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1502                                                         s64 offset,
1503                                                         bool negative,
1504                                                         int adj_scale)
1505{
1506        s64 interval = tk->cycle_interval;
1507        s32 mult_adj = 1;
1508
1509        if (negative) {
1510                mult_adj = -mult_adj;
1511                interval = -interval;
1512                offset  = -offset;
1513        }
1514        mult_adj <<= adj_scale;
1515        interval <<= adj_scale;
1516        offset <<= adj_scale;
1517
1518        /*
1519         * So the following can be confusing.
1520         *
1521         * To keep things simple, lets assume mult_adj == 1 for now.
1522         *
1523         * When mult_adj != 1, remember that the interval and offset values
1524         * have been appropriately scaled so the math is the same.
1525         *
1526         * The basic idea here is that we're increasing the multiplier
1527         * by one, this causes the xtime_interval to be incremented by
1528         * one cycle_interval. This is because:
1529         *      xtime_interval = cycle_interval * mult
1530         * So if mult is being incremented by one:
1531         *      xtime_interval = cycle_interval * (mult + 1)
1532         * Its the same as:
1533         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1534         * Which can be shortened to:
1535         *      xtime_interval += cycle_interval
1536         *
1537         * So offset stores the non-accumulated cycles. Thus the current
1538         * time (in shifted nanoseconds) is:
1539         *      now = (offset * adj) + xtime_nsec
1540         * Now, even though we're adjusting the clock frequency, we have
1541         * to keep time consistent. In other words, we can't jump back
1542         * in time, and we also want to avoid jumping forward in time.
1543         *
1544         * So given the same offset value, we need the time to be the same
1545         * both before and after the freq adjustment.
1546         *      now = (offset * adj_1) + xtime_nsec_1
1547         *      now = (offset * adj_2) + xtime_nsec_2
1548         * So:
1549         *      (offset * adj_1) + xtime_nsec_1 =
1550         *              (offset * adj_2) + xtime_nsec_2
1551         * And we know:
1552         *      adj_2 = adj_1 + 1
1553         * So:
1554         *      (offset * adj_1) + xtime_nsec_1 =
1555         *              (offset * (adj_1+1)) + xtime_nsec_2
1556         *      (offset * adj_1) + xtime_nsec_1 =
1557         *              (offset * adj_1) + offset + xtime_nsec_2
1558         * Canceling the sides:
1559         *      xtime_nsec_1 = offset + xtime_nsec_2
1560         * Which gives us:
1561         *      xtime_nsec_2 = xtime_nsec_1 - offset
1562         * Which simplfies to:
1563         *      xtime_nsec -= offset
1564         *
1565         * XXX - TODO: Doc ntp_error calculation.
1566         */
1567        if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1568                /* NTP adjustment caused clocksource mult overflow */
1569                WARN_ON_ONCE(1);
1570                return;
1571        }
1572
1573        tk->tkr_mono.mult += mult_adj;
1574        tk->xtime_interval += interval;
1575        tk->tkr_mono.xtime_nsec -= offset;
1576        tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1577}
1578
1579/*
1580 * Calculate the multiplier adjustment needed to match the frequency
1581 * specified by NTP
1582 */
1583static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1584                                                        s64 offset)
1585{
1586        s64 interval = tk->cycle_interval;
1587        s64 xinterval = tk->xtime_interval;
1588        s64 tick_error;
1589        bool negative;
1590        u32 adj;
1591
1592        /* Remove any current error adj from freq calculation */
1593        if (tk->ntp_err_mult)
1594                xinterval -= tk->cycle_interval;
1595
1596        tk->ntp_tick = ntp_tick_length();
1597
1598        /* Calculate current error per tick */
1599        tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1600        tick_error -= (xinterval + tk->xtime_remainder);
1601
1602        /* Don't worry about correcting it if its small */
1603        if (likely((tick_error >= 0) && (tick_error <= interval)))
1604                return;
1605
1606        /* preserve the direction of correction */
1607        negative = (tick_error < 0);
1608
1609        /* Sort out the magnitude of the correction */
1610        tick_error = abs(tick_error);
1611        for (adj = 0; tick_error > interval; adj++)
1612                tick_error >>= 1;
1613
1614        /* scale the corrections */
1615        timekeeping_apply_adjustment(tk, offset, negative, adj);
1616}
1617
1618/*
1619 * Adjust the timekeeper's multiplier to the correct frequency
1620 * and also to reduce the accumulated error value.
1621 */
1622static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1623{
1624        /* Correct for the current frequency error */
1625        timekeeping_freqadjust(tk, offset);
1626
1627        /* Next make a small adjustment to fix any cumulative error */
1628        if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1629                tk->ntp_err_mult = 1;
1630                timekeeping_apply_adjustment(tk, offset, 0, 0);
1631        } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1632                /* Undo any existing error adjustment */
1633                timekeeping_apply_adjustment(tk, offset, 1, 0);
1634                tk->ntp_err_mult = 0;
1635        }
1636
1637        if (unlikely(tk->tkr_mono.clock->maxadj &&
1638                (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1639                        > tk->tkr_mono.clock->maxadj))) {
1640                printk_once(KERN_WARNING
1641                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1642                        tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1643                        (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1644        }
1645
1646        /*
1647         * It may be possible that when we entered this function, xtime_nsec
1648         * was very small.  Further, if we're slightly speeding the clocksource
1649         * in the code above, its possible the required corrective factor to
1650         * xtime_nsec could cause it to underflow.
1651         *
1652         * Now, since we already accumulated the second, cannot simply roll
1653         * the accumulated second back, since the NTP subsystem has been
1654         * notified via second_overflow. So instead we push xtime_nsec forward
1655         * by the amount we underflowed, and add that amount into the error.
1656         *
1657         * We'll correct this error next time through this function, when
1658         * xtime_nsec is not as small.
1659         */
1660        if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1661                s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1662                tk->tkr_mono.xtime_nsec = 0;
1663                tk->ntp_error += neg << tk->ntp_error_shift;
1664        }
1665}
1666
1667/**
1668 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1669 *
1670 * Helper function that accumulates a the nsecs greater then a second
1671 * from the xtime_nsec field to the xtime_secs field.
1672 * It also calls into the NTP code to handle leapsecond processing.
1673 *
1674 */
1675static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1676{
1677        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1678        unsigned int clock_set = 0;
1679
1680        while (tk->tkr_mono.xtime_nsec >= nsecps) {
1681                int leap;
1682
1683                tk->tkr_mono.xtime_nsec -= nsecps;
1684                tk->xtime_sec++;
1685
1686                /* Figure out if its a leap sec and apply if needed */
1687                leap = second_overflow(tk->xtime_sec);
1688                if (unlikely(leap)) {
1689                        struct timespec64 ts;
1690
1691                        tk->xtime_sec += leap;
1692
1693                        ts.tv_sec = leap;
1694                        ts.tv_nsec = 0;
1695                        tk_set_wall_to_mono(tk,
1696                                timespec64_sub(tk->wall_to_monotonic, ts));
1697
1698                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1699
1700                        clock_set = TK_CLOCK_WAS_SET;
1701                }
1702        }
1703        return clock_set;
1704}
1705
1706/**
1707 * logarithmic_accumulation - shifted accumulation of cycles
1708 *
1709 * This functions accumulates a shifted interval of cycles into
1710 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1711 * loop.
1712 *
1713 * Returns the unconsumed cycles.
1714 */
1715static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1716                                                u32 shift,
1717                                                unsigned int *clock_set)
1718{
1719        cycle_t interval = tk->cycle_interval << shift;
1720        u64 raw_nsecs;
1721
1722        /* If the offset is smaller then a shifted interval, do nothing */
1723        if (offset < interval)
1724                return offset;
1725
1726        /* Accumulate one shifted interval */
1727        offset -= interval;
1728        tk->tkr_mono.cycle_last += interval;
1729        tk->tkr_raw.cycle_last  += interval;
1730
1731        tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1732        *clock_set |= accumulate_nsecs_to_secs(tk);
1733
1734        /* Accumulate raw time */
1735        raw_nsecs = (u64)tk->raw_interval << shift;
1736        raw_nsecs += tk->raw_time.tv_nsec;
1737        if (raw_nsecs >= NSEC_PER_SEC) {
1738                u64 raw_secs = raw_nsecs;
1739                raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1740                tk->raw_time.tv_sec += raw_secs;
1741        }
1742        tk->raw_time.tv_nsec = raw_nsecs;
1743
1744        /* Accumulate error between NTP and clock interval */
1745        tk->ntp_error += tk->ntp_tick << shift;
1746        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1747                                                (tk->ntp_error_shift + shift);
1748
1749        return offset;
1750}
1751
1752/**
1753 * update_wall_time - Uses the current clocksource to increment the wall time
1754 *
1755 */
1756void update_wall_time(void)
1757{
1758        struct timekeeper *real_tk = &tk_core.timekeeper;
1759        struct timekeeper *tk = &shadow_timekeeper;
1760        cycle_t offset;
1761        int shift = 0, maxshift;
1762        unsigned int clock_set = 0;
1763        unsigned long flags;
1764
1765        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1766
1767        /* Make sure we're fully resumed: */
1768        if (unlikely(timekeeping_suspended))
1769                goto out;
1770
1771#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1772        offset = real_tk->cycle_interval;
1773#else
1774        offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1775                                   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1776#endif
1777
1778        /* Check if there's really nothing to do */
1779        if (offset < real_tk->cycle_interval)
1780                goto out;
1781
1782        /* Do some additional sanity checking */
1783        timekeeping_check_update(real_tk, offset);
1784
1785        /*
1786         * With NO_HZ we may have to accumulate many cycle_intervals
1787         * (think "ticks") worth of time at once. To do this efficiently,
1788         * we calculate the largest doubling multiple of cycle_intervals
1789         * that is smaller than the offset.  We then accumulate that
1790         * chunk in one go, and then try to consume the next smaller
1791         * doubled multiple.
1792         */
1793        shift = ilog2(offset) - ilog2(tk->cycle_interval);
1794        shift = max(0, shift);
1795        /* Bound shift to one less than what overflows tick_length */
1796        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1797        shift = min(shift, maxshift);
1798        while (offset >= tk->cycle_interval) {
1799                offset = logarithmic_accumulation(tk, offset, shift,
1800                                                        &clock_set);
1801                if (offset < tk->cycle_interval<<shift)
1802                        shift--;
1803        }
1804
1805        /* correct the clock when NTP error is too big */
1806        timekeeping_adjust(tk, offset);
1807
1808        /*
1809         * XXX This can be killed once everyone converts
1810         * to the new update_vsyscall.
1811         */
1812        old_vsyscall_fixup(tk);
1813
1814        /*
1815         * Finally, make sure that after the rounding
1816         * xtime_nsec isn't larger than NSEC_PER_SEC
1817         */
1818        clock_set |= accumulate_nsecs_to_secs(tk);
1819
1820        write_seqcount_begin(&tk_core.seq);
1821        /*
1822         * Update the real timekeeper.
1823         *
1824         * We could avoid this memcpy by switching pointers, but that
1825         * requires changes to all other timekeeper usage sites as
1826         * well, i.e. move the timekeeper pointer getter into the
1827         * spinlocked/seqcount protected sections. And we trade this
1828         * memcpy under the tk_core.seq against one before we start
1829         * updating.
1830         */
1831        timekeeping_update(tk, clock_set);
1832        memcpy(real_tk, tk, sizeof(*tk));
1833        /* The memcpy must come last. Do not put anything here! */
1834        write_seqcount_end(&tk_core.seq);
1835out:
1836        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1837        if (clock_set)
1838                /* Have to call _delayed version, since in irq context*/
1839                clock_was_set_delayed();
1840}
1841
1842/**
1843 * getboottime64 - Return the real time of system boot.
1844 * @ts:         pointer to the timespec64 to be set
1845 *
1846 * Returns the wall-time of boot in a timespec64.
1847 *
1848 * This is based on the wall_to_monotonic offset and the total suspend
1849 * time. Calls to settimeofday will affect the value returned (which
1850 * basically means that however wrong your real time clock is at boot time,
1851 * you get the right time here).
1852 */
1853void getboottime64(struct timespec64 *ts)
1854{
1855        struct timekeeper *tk = &tk_core.timekeeper;
1856        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1857
1858        *ts = ktime_to_timespec64(t);
1859}
1860EXPORT_SYMBOL_GPL(getboottime64);
1861
1862unsigned long get_seconds(void)
1863{
1864        struct timekeeper *tk = &tk_core.timekeeper;
1865
1866        return tk->xtime_sec;
1867}
1868EXPORT_SYMBOL(get_seconds);
1869
1870struct timespec __current_kernel_time(void)
1871{
1872        struct timekeeper *tk = &tk_core.timekeeper;
1873
1874        return timespec64_to_timespec(tk_xtime(tk));
1875}
1876
1877struct timespec current_kernel_time(void)
1878{
1879        struct timekeeper *tk = &tk_core.timekeeper;
1880        struct timespec64 now;
1881        unsigned long seq;
1882
1883        do {
1884                seq = read_seqcount_begin(&tk_core.seq);
1885
1886                now = tk_xtime(tk);
1887        } while (read_seqcount_retry(&tk_core.seq, seq));
1888
1889        return timespec64_to_timespec(now);
1890}
1891EXPORT_SYMBOL(current_kernel_time);
1892
1893struct timespec64 get_monotonic_coarse64(void)
1894{
1895        struct timekeeper *tk = &tk_core.timekeeper;
1896        struct timespec64 now, mono;
1897        unsigned long seq;
1898
1899        do {
1900                seq = read_seqcount_begin(&tk_core.seq);
1901
1902                now = tk_xtime(tk);
1903                mono = tk->wall_to_monotonic;
1904        } while (read_seqcount_retry(&tk_core.seq, seq));
1905
1906        set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1907                                now.tv_nsec + mono.tv_nsec);
1908
1909        return now;
1910}
1911
1912/*
1913 * Must hold jiffies_lock
1914 */
1915void do_timer(unsigned long ticks)
1916{
1917        jiffies_64 += ticks;
1918        calc_global_load(ticks);
1919}
1920
1921/**
1922 * ktime_get_update_offsets_now - hrtimer helper
1923 * @cwsseq:     pointer to check and store the clock was set sequence number
1924 * @offs_real:  pointer to storage for monotonic -> realtime offset
1925 * @offs_boot:  pointer to storage for monotonic -> boottime offset
1926 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1927 *
1928 * Returns current monotonic time and updates the offsets if the
1929 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1930 * different.
1931 *
1932 * Called from hrtimer_interrupt() or retrigger_next_event()
1933 */
1934ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1935                                     ktime_t *offs_boot, ktime_t *offs_tai)
1936{
1937        struct timekeeper *tk = &tk_core.timekeeper;
1938        unsigned int seq;
1939        ktime_t base;
1940        u64 nsecs;
1941
1942        do {
1943                seq = read_seqcount_begin(&tk_core.seq);
1944
1945                base = tk->tkr_mono.base;
1946                nsecs = timekeeping_get_ns(&tk->tkr_mono);
1947                base = ktime_add_ns(base, nsecs);
1948
1949                if (*cwsseq != tk->clock_was_set_seq) {
1950                        *cwsseq = tk->clock_was_set_seq;
1951                        *offs_real = tk->offs_real;
1952                        *offs_boot = tk->offs_boot;
1953                        *offs_tai = tk->offs_tai;
1954                }
1955
1956                /* Handle leapsecond insertion adjustments */
1957                if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1958                        *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1959
1960        } while (read_seqcount_retry(&tk_core.seq, seq));
1961
1962        return base;
1963}
1964
1965/**
1966 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1967 */
1968int do_adjtimex(struct timex *txc)
1969{
1970        struct timekeeper *tk = &tk_core.timekeeper;
1971        unsigned long flags;
1972        struct timespec64 ts;
1973        s32 orig_tai, tai;
1974        int ret;
1975
1976        /* Validate the data before disabling interrupts */
1977        ret = ntp_validate_timex(txc);
1978        if (ret)
1979                return ret;
1980
1981        if (txc->modes & ADJ_SETOFFSET) {
1982                struct timespec delta;
1983                delta.tv_sec  = txc->time.tv_sec;
1984                delta.tv_nsec = txc->time.tv_usec;
1985                if (!(txc->modes & ADJ_NANO))
1986                        delta.tv_nsec *= 1000;
1987                ret = timekeeping_inject_offset(&delta);
1988                if (ret)
1989                        return ret;
1990        }
1991
1992        getnstimeofday64(&ts);
1993
1994        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1995        write_seqcount_begin(&tk_core.seq);
1996
1997        orig_tai = tai = tk->tai_offset;
1998        ret = __do_adjtimex(txc, &ts, &tai);
1999
2000        if (tai != orig_tai) {
2001                __timekeeping_set_tai_offset(tk, tai);
2002                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2003        }
2004        tk_update_leap_state(tk);
2005
2006        write_seqcount_end(&tk_core.seq);
2007        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2008
2009        if (tai != orig_tai)
2010                clock_was_set();
2011
2012        ntp_notify_cmos_timer();
2013
2014        return ret;
2015}
2016
2017#ifdef CONFIG_NTP_PPS
2018/**
2019 * hardpps() - Accessor function to NTP __hardpps function
2020 */
2021void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2022{
2023        unsigned long flags;
2024
2025        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2026        write_seqcount_begin(&tk_core.seq);
2027
2028        __hardpps(phase_ts, raw_ts);
2029
2030        write_seqcount_end(&tk_core.seq);
2031        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2032}
2033EXPORT_SYMBOL(hardpps);
2034#endif
2035
2036/**
2037 * xtime_update() - advances the timekeeping infrastructure
2038 * @ticks:      number of ticks, that have elapsed since the last call.
2039 *
2040 * Must be called with interrupts disabled.
2041 */
2042void xtime_update(unsigned long ticks)
2043{
2044        write_seqlock(&jiffies_lock);
2045        do_timer(ticks);
2046        write_sequnlock(&jiffies_lock);
2047        update_wall_time();
2048}
2049