linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/fs.h>
  15#include <linux/uaccess.h>
  16#include <linux/capability.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/gfp.h>
  19#include <linux/mm.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/file.h>
  24#include <linux/uio.h>
  25#include <linux/hash.h>
  26#include <linux/writeback.h>
  27#include <linux/backing-dev.h>
  28#include <linux/pagevec.h>
  29#include <linux/blkdev.h>
  30#include <linux/security.h>
  31#include <linux/cpuset.h>
  32#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  33#include <linux/hugetlb.h>
  34#include <linux/memcontrol.h>
  35#include <linux/cleancache.h>
  36#include <linux/rmap.h>
  37#include "internal.h"
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/filemap.h>
  41
  42/*
  43 * FIXME: remove all knowledge of the buffer layer from the core VM
  44 */
  45#include <linux/buffer_head.h> /* for try_to_free_buffers */
  46
  47#include <asm/mman.h>
  48
  49/*
  50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  51 * though.
  52 *
  53 * Shared mappings now work. 15.8.1995  Bruno.
  54 *
  55 * finished 'unifying' the page and buffer cache and SMP-threaded the
  56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  57 *
  58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  59 */
  60
  61/*
  62 * Lock ordering:
  63 *
  64 *  ->i_mmap_rwsem              (truncate_pagecache)
  65 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  66 *      ->swap_lock             (exclusive_swap_page, others)
  67 *        ->mapping->tree_lock
  68 *
  69 *  ->i_mutex
  70 *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
  71 *
  72 *  ->mmap_sem
  73 *    ->i_mmap_rwsem
  74 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  75 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  76 *
  77 *  ->mmap_sem
  78 *    ->lock_page               (access_process_vm)
  79 *
  80 *  ->i_mutex                   (generic_perform_write)
  81 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  82 *
  83 *  bdi->wb.list_lock
  84 *    sb_lock                   (fs/fs-writeback.c)
  85 *    ->mapping->tree_lock      (__sync_single_inode)
  86 *
  87 *  ->i_mmap_rwsem
  88 *    ->anon_vma.lock           (vma_adjust)
  89 *
  90 *  ->anon_vma.lock
  91 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  92 *
  93 *  ->page_table_lock or pte_lock
  94 *    ->swap_lock               (try_to_unmap_one)
  95 *    ->private_lock            (try_to_unmap_one)
  96 *    ->tree_lock               (try_to_unmap_one)
  97 *    ->zone.lru_lock           (follow_page->mark_page_accessed)
  98 *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
  99 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 100 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 101 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 102 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 103 *    ->memcg->move_lock        (page_remove_rmap->mem_cgroup_begin_page_stat)
 104 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 105 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 106 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 107 *
 108 * ->i_mmap_rwsem
 109 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 110 */
 111
 112static void page_cache_tree_delete(struct address_space *mapping,
 113                                   struct page *page, void *shadow)
 114{
 115        struct radix_tree_node *node;
 116        unsigned long index;
 117        unsigned int offset;
 118        unsigned int tag;
 119        void **slot;
 120
 121        VM_BUG_ON(!PageLocked(page));
 122
 123        __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
 124
 125        if (shadow) {
 126                mapping->nrshadows++;
 127                /*
 128                 * Make sure the nrshadows update is committed before
 129                 * the nrpages update so that final truncate racing
 130                 * with reclaim does not see both counters 0 at the
 131                 * same time and miss a shadow entry.
 132                 */
 133                smp_wmb();
 134        }
 135        mapping->nrpages--;
 136
 137        if (!node) {
 138                /* Clear direct pointer tags in root node */
 139                mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
 140                radix_tree_replace_slot(slot, shadow);
 141                return;
 142        }
 143
 144        /* Clear tree tags for the removed page */
 145        index = page->index;
 146        offset = index & RADIX_TREE_MAP_MASK;
 147        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 148                if (test_bit(offset, node->tags[tag]))
 149                        radix_tree_tag_clear(&mapping->page_tree, index, tag);
 150        }
 151
 152        /* Delete page, swap shadow entry */
 153        radix_tree_replace_slot(slot, shadow);
 154        workingset_node_pages_dec(node);
 155        if (shadow)
 156                workingset_node_shadows_inc(node);
 157        else
 158                if (__radix_tree_delete_node(&mapping->page_tree, node))
 159                        return;
 160
 161        /*
 162         * Track node that only contains shadow entries.
 163         *
 164         * Avoid acquiring the list_lru lock if already tracked.  The
 165         * list_empty() test is safe as node->private_list is
 166         * protected by mapping->tree_lock.
 167         */
 168        if (!workingset_node_pages(node) &&
 169            list_empty(&node->private_list)) {
 170                node->private_data = mapping;
 171                list_lru_add(&workingset_shadow_nodes, &node->private_list);
 172        }
 173}
 174
 175/*
 176 * Delete a page from the page cache and free it. Caller has to make
 177 * sure the page is locked and that nobody else uses it - or that usage
 178 * is safe.  The caller must hold the mapping's tree_lock and
 179 * mem_cgroup_begin_page_stat().
 180 */
 181void __delete_from_page_cache(struct page *page, void *shadow,
 182                              struct mem_cgroup *memcg)
 183{
 184        struct address_space *mapping = page->mapping;
 185
 186        trace_mm_filemap_delete_from_page_cache(page);
 187        /*
 188         * if we're uptodate, flush out into the cleancache, otherwise
 189         * invalidate any existing cleancache entries.  We can't leave
 190         * stale data around in the cleancache once our page is gone
 191         */
 192        if (PageUptodate(page) && PageMappedToDisk(page))
 193                cleancache_put_page(page);
 194        else
 195                cleancache_invalidate_page(mapping, page);
 196
 197        page_cache_tree_delete(mapping, page, shadow);
 198
 199        page->mapping = NULL;
 200        /* Leave page->index set: truncation lookup relies upon it */
 201
 202        /* hugetlb pages do not participate in page cache accounting. */
 203        if (!PageHuge(page))
 204                __dec_zone_page_state(page, NR_FILE_PAGES);
 205        if (PageSwapBacked(page))
 206                __dec_zone_page_state(page, NR_SHMEM);
 207        BUG_ON(page_mapped(page));
 208
 209        /*
 210         * At this point page must be either written or cleaned by truncate.
 211         * Dirty page here signals a bug and loss of unwritten data.
 212         *
 213         * This fixes dirty accounting after removing the page entirely but
 214         * leaves PageDirty set: it has no effect for truncated page and
 215         * anyway will be cleared before returning page into buddy allocator.
 216         */
 217        if (WARN_ON_ONCE(PageDirty(page)))
 218                account_page_cleaned(page, mapping, memcg,
 219                                     inode_to_wb(mapping->host));
 220}
 221
 222/**
 223 * delete_from_page_cache - delete page from page cache
 224 * @page: the page which the kernel is trying to remove from page cache
 225 *
 226 * This must be called only on pages that have been verified to be in the page
 227 * cache and locked.  It will never put the page into the free list, the caller
 228 * has a reference on the page.
 229 */
 230void delete_from_page_cache(struct page *page)
 231{
 232        struct address_space *mapping = page->mapping;
 233        struct mem_cgroup *memcg;
 234        unsigned long flags;
 235
 236        void (*freepage)(struct page *);
 237
 238        BUG_ON(!PageLocked(page));
 239
 240        freepage = mapping->a_ops->freepage;
 241
 242        memcg = mem_cgroup_begin_page_stat(page);
 243        spin_lock_irqsave(&mapping->tree_lock, flags);
 244        __delete_from_page_cache(page, NULL, memcg);
 245        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 246        mem_cgroup_end_page_stat(memcg);
 247
 248        if (freepage)
 249                freepage(page);
 250        page_cache_release(page);
 251}
 252EXPORT_SYMBOL(delete_from_page_cache);
 253
 254static int filemap_check_errors(struct address_space *mapping)
 255{
 256        int ret = 0;
 257        /* Check for outstanding write errors */
 258        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 259            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 260                ret = -ENOSPC;
 261        if (test_bit(AS_EIO, &mapping->flags) &&
 262            test_and_clear_bit(AS_EIO, &mapping->flags))
 263                ret = -EIO;
 264        return ret;
 265}
 266
 267/**
 268 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 269 * @mapping:    address space structure to write
 270 * @start:      offset in bytes where the range starts
 271 * @end:        offset in bytes where the range ends (inclusive)
 272 * @sync_mode:  enable synchronous operation
 273 *
 274 * Start writeback against all of a mapping's dirty pages that lie
 275 * within the byte offsets <start, end> inclusive.
 276 *
 277 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 278 * opposed to a regular memory cleansing writeback.  The difference between
 279 * these two operations is that if a dirty page/buffer is encountered, it must
 280 * be waited upon, and not just skipped over.
 281 */
 282int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 283                                loff_t end, int sync_mode)
 284{
 285        int ret;
 286        struct writeback_control wbc = {
 287                .sync_mode = sync_mode,
 288                .nr_to_write = LONG_MAX,
 289                .range_start = start,
 290                .range_end = end,
 291        };
 292
 293        if (!mapping_cap_writeback_dirty(mapping))
 294                return 0;
 295
 296        wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 297        ret = do_writepages(mapping, &wbc);
 298        wbc_detach_inode(&wbc);
 299        return ret;
 300}
 301
 302static inline int __filemap_fdatawrite(struct address_space *mapping,
 303        int sync_mode)
 304{
 305        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 306}
 307
 308int filemap_fdatawrite(struct address_space *mapping)
 309{
 310        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 311}
 312EXPORT_SYMBOL(filemap_fdatawrite);
 313
 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 315                                loff_t end)
 316{
 317        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 318}
 319EXPORT_SYMBOL(filemap_fdatawrite_range);
 320
 321/**
 322 * filemap_flush - mostly a non-blocking flush
 323 * @mapping:    target address_space
 324 *
 325 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 326 * purposes - I/O may not be started against all dirty pages.
 327 */
 328int filemap_flush(struct address_space *mapping)
 329{
 330        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 331}
 332EXPORT_SYMBOL(filemap_flush);
 333
 334/**
 335 * filemap_fdatawait_range - wait for writeback to complete
 336 * @mapping:            address space structure to wait for
 337 * @start_byte:         offset in bytes where the range starts
 338 * @end_byte:           offset in bytes where the range ends (inclusive)
 339 *
 340 * Walk the list of under-writeback pages of the given address space
 341 * in the given range and wait for all of them.
 342 */
 343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 344                            loff_t end_byte)
 345{
 346        pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 347        pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 348        struct pagevec pvec;
 349        int nr_pages;
 350        int ret2, ret = 0;
 351
 352        if (end_byte < start_byte)
 353                goto out;
 354
 355        pagevec_init(&pvec, 0);
 356        while ((index <= end) &&
 357                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 358                        PAGECACHE_TAG_WRITEBACK,
 359                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 360                unsigned i;
 361
 362                for (i = 0; i < nr_pages; i++) {
 363                        struct page *page = pvec.pages[i];
 364
 365                        /* until radix tree lookup accepts end_index */
 366                        if (page->index > end)
 367                                continue;
 368
 369                        wait_on_page_writeback(page);
 370                        if (TestClearPageError(page))
 371                                ret = -EIO;
 372                }
 373                pagevec_release(&pvec);
 374                cond_resched();
 375        }
 376out:
 377        ret2 = filemap_check_errors(mapping);
 378        if (!ret)
 379                ret = ret2;
 380
 381        return ret;
 382}
 383EXPORT_SYMBOL(filemap_fdatawait_range);
 384
 385/**
 386 * filemap_fdatawait - wait for all under-writeback pages to complete
 387 * @mapping: address space structure to wait for
 388 *
 389 * Walk the list of under-writeback pages of the given address space
 390 * and wait for all of them.
 391 */
 392int filemap_fdatawait(struct address_space *mapping)
 393{
 394        loff_t i_size = i_size_read(mapping->host);
 395
 396        if (i_size == 0)
 397                return 0;
 398
 399        return filemap_fdatawait_range(mapping, 0, i_size - 1);
 400}
 401EXPORT_SYMBOL(filemap_fdatawait);
 402
 403int filemap_write_and_wait(struct address_space *mapping)
 404{
 405        int err = 0;
 406
 407        if (mapping->nrpages) {
 408                err = filemap_fdatawrite(mapping);
 409                /*
 410                 * Even if the above returned error, the pages may be
 411                 * written partially (e.g. -ENOSPC), so we wait for it.
 412                 * But the -EIO is special case, it may indicate the worst
 413                 * thing (e.g. bug) happened, so we avoid waiting for it.
 414                 */
 415                if (err != -EIO) {
 416                        int err2 = filemap_fdatawait(mapping);
 417                        if (!err)
 418                                err = err2;
 419                }
 420        } else {
 421                err = filemap_check_errors(mapping);
 422        }
 423        return err;
 424}
 425EXPORT_SYMBOL(filemap_write_and_wait);
 426
 427/**
 428 * filemap_write_and_wait_range - write out & wait on a file range
 429 * @mapping:    the address_space for the pages
 430 * @lstart:     offset in bytes where the range starts
 431 * @lend:       offset in bytes where the range ends (inclusive)
 432 *
 433 * Write out and wait upon file offsets lstart->lend, inclusive.
 434 *
 435 * Note that `lend' is inclusive (describes the last byte to be written) so
 436 * that this function can be used to write to the very end-of-file (end = -1).
 437 */
 438int filemap_write_and_wait_range(struct address_space *mapping,
 439                                 loff_t lstart, loff_t lend)
 440{
 441        int err = 0;
 442
 443        if (mapping->nrpages) {
 444                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 445                                                 WB_SYNC_ALL);
 446                /* See comment of filemap_write_and_wait() */
 447                if (err != -EIO) {
 448                        int err2 = filemap_fdatawait_range(mapping,
 449                                                lstart, lend);
 450                        if (!err)
 451                                err = err2;
 452                }
 453        } else {
 454                err = filemap_check_errors(mapping);
 455        }
 456        return err;
 457}
 458EXPORT_SYMBOL(filemap_write_and_wait_range);
 459
 460/**
 461 * replace_page_cache_page - replace a pagecache page with a new one
 462 * @old:        page to be replaced
 463 * @new:        page to replace with
 464 * @gfp_mask:   allocation mode
 465 *
 466 * This function replaces a page in the pagecache with a new one.  On
 467 * success it acquires the pagecache reference for the new page and
 468 * drops it for the old page.  Both the old and new pages must be
 469 * locked.  This function does not add the new page to the LRU, the
 470 * caller must do that.
 471 *
 472 * The remove + add is atomic.  The only way this function can fail is
 473 * memory allocation failure.
 474 */
 475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 476{
 477        int error;
 478
 479        VM_BUG_ON_PAGE(!PageLocked(old), old);
 480        VM_BUG_ON_PAGE(!PageLocked(new), new);
 481        VM_BUG_ON_PAGE(new->mapping, new);
 482
 483        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 484        if (!error) {
 485                struct address_space *mapping = old->mapping;
 486                void (*freepage)(struct page *);
 487                struct mem_cgroup *memcg;
 488                unsigned long flags;
 489
 490                pgoff_t offset = old->index;
 491                freepage = mapping->a_ops->freepage;
 492
 493                page_cache_get(new);
 494                new->mapping = mapping;
 495                new->index = offset;
 496
 497                memcg = mem_cgroup_begin_page_stat(old);
 498                spin_lock_irqsave(&mapping->tree_lock, flags);
 499                __delete_from_page_cache(old, NULL, memcg);
 500                error = radix_tree_insert(&mapping->page_tree, offset, new);
 501                BUG_ON(error);
 502                mapping->nrpages++;
 503
 504                /*
 505                 * hugetlb pages do not participate in page cache accounting.
 506                 */
 507                if (!PageHuge(new))
 508                        __inc_zone_page_state(new, NR_FILE_PAGES);
 509                if (PageSwapBacked(new))
 510                        __inc_zone_page_state(new, NR_SHMEM);
 511                spin_unlock_irqrestore(&mapping->tree_lock, flags);
 512                mem_cgroup_end_page_stat(memcg);
 513                mem_cgroup_migrate(old, new, true);
 514                radix_tree_preload_end();
 515                if (freepage)
 516                        freepage(old);
 517                page_cache_release(old);
 518        }
 519
 520        return error;
 521}
 522EXPORT_SYMBOL_GPL(replace_page_cache_page);
 523
 524static int page_cache_tree_insert(struct address_space *mapping,
 525                                  struct page *page, void **shadowp)
 526{
 527        struct radix_tree_node *node;
 528        void **slot;
 529        int error;
 530
 531        error = __radix_tree_create(&mapping->page_tree, page->index,
 532                                    &node, &slot);
 533        if (error)
 534                return error;
 535        if (*slot) {
 536                void *p;
 537
 538                p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 539                if (!radix_tree_exceptional_entry(p))
 540                        return -EEXIST;
 541                if (shadowp)
 542                        *shadowp = p;
 543                mapping->nrshadows--;
 544                if (node)
 545                        workingset_node_shadows_dec(node);
 546        }
 547        radix_tree_replace_slot(slot, page);
 548        mapping->nrpages++;
 549        if (node) {
 550                workingset_node_pages_inc(node);
 551                /*
 552                 * Don't track node that contains actual pages.
 553                 *
 554                 * Avoid acquiring the list_lru lock if already
 555                 * untracked.  The list_empty() test is safe as
 556                 * node->private_list is protected by
 557                 * mapping->tree_lock.
 558                 */
 559                if (!list_empty(&node->private_list))
 560                        list_lru_del(&workingset_shadow_nodes,
 561                                     &node->private_list);
 562        }
 563        return 0;
 564}
 565
 566static int __add_to_page_cache_locked(struct page *page,
 567                                      struct address_space *mapping,
 568                                      pgoff_t offset, gfp_t gfp_mask,
 569                                      void **shadowp)
 570{
 571        int huge = PageHuge(page);
 572        struct mem_cgroup *memcg;
 573        int error;
 574
 575        VM_BUG_ON_PAGE(!PageLocked(page), page);
 576        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 577
 578        if (!huge) {
 579                error = mem_cgroup_try_charge(page, current->mm,
 580                                              gfp_mask, &memcg);
 581                if (error)
 582                        return error;
 583        }
 584
 585        error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 586        if (error) {
 587                if (!huge)
 588                        mem_cgroup_cancel_charge(page, memcg);
 589                return error;
 590        }
 591
 592        page_cache_get(page);
 593        page->mapping = mapping;
 594        page->index = offset;
 595
 596        spin_lock_irq(&mapping->tree_lock);
 597        error = page_cache_tree_insert(mapping, page, shadowp);
 598        radix_tree_preload_end();
 599        if (unlikely(error))
 600                goto err_insert;
 601
 602        /* hugetlb pages do not participate in page cache accounting. */
 603        if (!huge)
 604                __inc_zone_page_state(page, NR_FILE_PAGES);
 605        spin_unlock_irq(&mapping->tree_lock);
 606        if (!huge)
 607                mem_cgroup_commit_charge(page, memcg, false);
 608        trace_mm_filemap_add_to_page_cache(page);
 609        return 0;
 610err_insert:
 611        page->mapping = NULL;
 612        /* Leave page->index set: truncation relies upon it */
 613        spin_unlock_irq(&mapping->tree_lock);
 614        if (!huge)
 615                mem_cgroup_cancel_charge(page, memcg);
 616        page_cache_release(page);
 617        return error;
 618}
 619
 620/**
 621 * add_to_page_cache_locked - add a locked page to the pagecache
 622 * @page:       page to add
 623 * @mapping:    the page's address_space
 624 * @offset:     page index
 625 * @gfp_mask:   page allocation mode
 626 *
 627 * This function is used to add a page to the pagecache. It must be locked.
 628 * This function does not add the page to the LRU.  The caller must do that.
 629 */
 630int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 631                pgoff_t offset, gfp_t gfp_mask)
 632{
 633        return __add_to_page_cache_locked(page, mapping, offset,
 634                                          gfp_mask, NULL);
 635}
 636EXPORT_SYMBOL(add_to_page_cache_locked);
 637
 638int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 639                                pgoff_t offset, gfp_t gfp_mask)
 640{
 641        void *shadow = NULL;
 642        int ret;
 643
 644        __set_page_locked(page);
 645        ret = __add_to_page_cache_locked(page, mapping, offset,
 646                                         gfp_mask, &shadow);
 647        if (unlikely(ret))
 648                __clear_page_locked(page);
 649        else {
 650                /*
 651                 * The page might have been evicted from cache only
 652                 * recently, in which case it should be activated like
 653                 * any other repeatedly accessed page.
 654                 */
 655                if (shadow && workingset_refault(shadow)) {
 656                        SetPageActive(page);
 657                        workingset_activation(page);
 658                } else
 659                        ClearPageActive(page);
 660                lru_cache_add(page);
 661        }
 662        return ret;
 663}
 664EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 665
 666#ifdef CONFIG_NUMA
 667struct page *__page_cache_alloc(gfp_t gfp)
 668{
 669        int n;
 670        struct page *page;
 671
 672        if (cpuset_do_page_mem_spread()) {
 673                unsigned int cpuset_mems_cookie;
 674                do {
 675                        cpuset_mems_cookie = read_mems_allowed_begin();
 676                        n = cpuset_mem_spread_node();
 677                        page = alloc_pages_exact_node(n, gfp, 0);
 678                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 679
 680                return page;
 681        }
 682        return alloc_pages(gfp, 0);
 683}
 684EXPORT_SYMBOL(__page_cache_alloc);
 685#endif
 686
 687/*
 688 * In order to wait for pages to become available there must be
 689 * waitqueues associated with pages. By using a hash table of
 690 * waitqueues where the bucket discipline is to maintain all
 691 * waiters on the same queue and wake all when any of the pages
 692 * become available, and for the woken contexts to check to be
 693 * sure the appropriate page became available, this saves space
 694 * at a cost of "thundering herd" phenomena during rare hash
 695 * collisions.
 696 */
 697wait_queue_head_t *page_waitqueue(struct page *page)
 698{
 699        const struct zone *zone = page_zone(page);
 700
 701        return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 702}
 703EXPORT_SYMBOL(page_waitqueue);
 704
 705void wait_on_page_bit(struct page *page, int bit_nr)
 706{
 707        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 708
 709        if (test_bit(bit_nr, &page->flags))
 710                __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
 711                                                        TASK_UNINTERRUPTIBLE);
 712}
 713EXPORT_SYMBOL(wait_on_page_bit);
 714
 715int wait_on_page_bit_killable(struct page *page, int bit_nr)
 716{
 717        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 718
 719        if (!test_bit(bit_nr, &page->flags))
 720                return 0;
 721
 722        return __wait_on_bit(page_waitqueue(page), &wait,
 723                             bit_wait_io, TASK_KILLABLE);
 724}
 725
 726int wait_on_page_bit_killable_timeout(struct page *page,
 727                                       int bit_nr, unsigned long timeout)
 728{
 729        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 730
 731        wait.key.timeout = jiffies + timeout;
 732        if (!test_bit(bit_nr, &page->flags))
 733                return 0;
 734        return __wait_on_bit(page_waitqueue(page), &wait,
 735                             bit_wait_io_timeout, TASK_KILLABLE);
 736}
 737EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
 738
 739/**
 740 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 741 * @page: Page defining the wait queue of interest
 742 * @waiter: Waiter to add to the queue
 743 *
 744 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 745 */
 746void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 747{
 748        wait_queue_head_t *q = page_waitqueue(page);
 749        unsigned long flags;
 750
 751        spin_lock_irqsave(&q->lock, flags);
 752        __add_wait_queue(q, waiter);
 753        spin_unlock_irqrestore(&q->lock, flags);
 754}
 755EXPORT_SYMBOL_GPL(add_page_wait_queue);
 756
 757/**
 758 * unlock_page - unlock a locked page
 759 * @page: the page
 760 *
 761 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 762 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 763 * mechanism between PageLocked pages and PageWriteback pages is shared.
 764 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 765 *
 766 * The mb is necessary to enforce ordering between the clear_bit and the read
 767 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 768 */
 769void unlock_page(struct page *page)
 770{
 771        VM_BUG_ON_PAGE(!PageLocked(page), page);
 772        clear_bit_unlock(PG_locked, &page->flags);
 773        smp_mb__after_atomic();
 774        wake_up_page(page, PG_locked);
 775}
 776EXPORT_SYMBOL(unlock_page);
 777
 778/**
 779 * end_page_writeback - end writeback against a page
 780 * @page: the page
 781 */
 782void end_page_writeback(struct page *page)
 783{
 784        /*
 785         * TestClearPageReclaim could be used here but it is an atomic
 786         * operation and overkill in this particular case. Failing to
 787         * shuffle a page marked for immediate reclaim is too mild to
 788         * justify taking an atomic operation penalty at the end of
 789         * ever page writeback.
 790         */
 791        if (PageReclaim(page)) {
 792                ClearPageReclaim(page);
 793                rotate_reclaimable_page(page);
 794        }
 795
 796        if (!test_clear_page_writeback(page))
 797                BUG();
 798
 799        smp_mb__after_atomic();
 800        wake_up_page(page, PG_writeback);
 801}
 802EXPORT_SYMBOL(end_page_writeback);
 803
 804/*
 805 * After completing I/O on a page, call this routine to update the page
 806 * flags appropriately
 807 */
 808void page_endio(struct page *page, int rw, int err)
 809{
 810        if (rw == READ) {
 811                if (!err) {
 812                        SetPageUptodate(page);
 813                } else {
 814                        ClearPageUptodate(page);
 815                        SetPageError(page);
 816                }
 817                unlock_page(page);
 818        } else { /* rw == WRITE */
 819                if (err) {
 820                        SetPageError(page);
 821                        if (page->mapping)
 822                                mapping_set_error(page->mapping, err);
 823                }
 824                end_page_writeback(page);
 825        }
 826}
 827EXPORT_SYMBOL_GPL(page_endio);
 828
 829/**
 830 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 831 * @page: the page to lock
 832 */
 833void __lock_page(struct page *page)
 834{
 835        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 836
 837        __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
 838                                                        TASK_UNINTERRUPTIBLE);
 839}
 840EXPORT_SYMBOL(__lock_page);
 841
 842int __lock_page_killable(struct page *page)
 843{
 844        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 845
 846        return __wait_on_bit_lock(page_waitqueue(page), &wait,
 847                                        bit_wait_io, TASK_KILLABLE);
 848}
 849EXPORT_SYMBOL_GPL(__lock_page_killable);
 850
 851/*
 852 * Return values:
 853 * 1 - page is locked; mmap_sem is still held.
 854 * 0 - page is not locked.
 855 *     mmap_sem has been released (up_read()), unless flags had both
 856 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 857 *     which case mmap_sem is still held.
 858 *
 859 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 860 * with the page locked and the mmap_sem unperturbed.
 861 */
 862int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 863                         unsigned int flags)
 864{
 865        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 866                /*
 867                 * CAUTION! In this case, mmap_sem is not released
 868                 * even though return 0.
 869                 */
 870                if (flags & FAULT_FLAG_RETRY_NOWAIT)
 871                        return 0;
 872
 873                up_read(&mm->mmap_sem);
 874                if (flags & FAULT_FLAG_KILLABLE)
 875                        wait_on_page_locked_killable(page);
 876                else
 877                        wait_on_page_locked(page);
 878                return 0;
 879        } else {
 880                if (flags & FAULT_FLAG_KILLABLE) {
 881                        int ret;
 882
 883                        ret = __lock_page_killable(page);
 884                        if (ret) {
 885                                up_read(&mm->mmap_sem);
 886                                return 0;
 887                        }
 888                } else
 889                        __lock_page(page);
 890                return 1;
 891        }
 892}
 893
 894/**
 895 * page_cache_next_hole - find the next hole (not-present entry)
 896 * @mapping: mapping
 897 * @index: index
 898 * @max_scan: maximum range to search
 899 *
 900 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 901 * lowest indexed hole.
 902 *
 903 * Returns: the index of the hole if found, otherwise returns an index
 904 * outside of the set specified (in which case 'return - index >=
 905 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 906 * be returned.
 907 *
 908 * page_cache_next_hole may be called under rcu_read_lock. However,
 909 * like radix_tree_gang_lookup, this will not atomically search a
 910 * snapshot of the tree at a single point in time. For example, if a
 911 * hole is created at index 5, then subsequently a hole is created at
 912 * index 10, page_cache_next_hole covering both indexes may return 10
 913 * if called under rcu_read_lock.
 914 */
 915pgoff_t page_cache_next_hole(struct address_space *mapping,
 916                             pgoff_t index, unsigned long max_scan)
 917{
 918        unsigned long i;
 919
 920        for (i = 0; i < max_scan; i++) {
 921                struct page *page;
 922
 923                page = radix_tree_lookup(&mapping->page_tree, index);
 924                if (!page || radix_tree_exceptional_entry(page))
 925                        break;
 926                index++;
 927                if (index == 0)
 928                        break;
 929        }
 930
 931        return index;
 932}
 933EXPORT_SYMBOL(page_cache_next_hole);
 934
 935/**
 936 * page_cache_prev_hole - find the prev hole (not-present entry)
 937 * @mapping: mapping
 938 * @index: index
 939 * @max_scan: maximum range to search
 940 *
 941 * Search backwards in the range [max(index-max_scan+1, 0), index] for
 942 * the first hole.
 943 *
 944 * Returns: the index of the hole if found, otherwise returns an index
 945 * outside of the set specified (in which case 'index - return >=
 946 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
 947 * will be returned.
 948 *
 949 * page_cache_prev_hole may be called under rcu_read_lock. However,
 950 * like radix_tree_gang_lookup, this will not atomically search a
 951 * snapshot of the tree at a single point in time. For example, if a
 952 * hole is created at index 10, then subsequently a hole is created at
 953 * index 5, page_cache_prev_hole covering both indexes may return 5 if
 954 * called under rcu_read_lock.
 955 */
 956pgoff_t page_cache_prev_hole(struct address_space *mapping,
 957                             pgoff_t index, unsigned long max_scan)
 958{
 959        unsigned long i;
 960
 961        for (i = 0; i < max_scan; i++) {
 962                struct page *page;
 963
 964                page = radix_tree_lookup(&mapping->page_tree, index);
 965                if (!page || radix_tree_exceptional_entry(page))
 966                        break;
 967                index--;
 968                if (index == ULONG_MAX)
 969                        break;
 970        }
 971
 972        return index;
 973}
 974EXPORT_SYMBOL(page_cache_prev_hole);
 975
 976/**
 977 * find_get_entry - find and get a page cache entry
 978 * @mapping: the address_space to search
 979 * @offset: the page cache index
 980 *
 981 * Looks up the page cache slot at @mapping & @offset.  If there is a
 982 * page cache page, it is returned with an increased refcount.
 983 *
 984 * If the slot holds a shadow entry of a previously evicted page, or a
 985 * swap entry from shmem/tmpfs, it is returned.
 986 *
 987 * Otherwise, %NULL is returned.
 988 */
 989struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
 990{
 991        void **pagep;
 992        struct page *page;
 993
 994        rcu_read_lock();
 995repeat:
 996        page = NULL;
 997        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 998        if (pagep) {
 999                page = radix_tree_deref_slot(pagep);
1000                if (unlikely(!page))
1001                        goto out;
1002                if (radix_tree_exception(page)) {
1003                        if (radix_tree_deref_retry(page))
1004                                goto repeat;
1005                        /*
1006                         * A shadow entry of a recently evicted page,
1007                         * or a swap entry from shmem/tmpfs.  Return
1008                         * it without attempting to raise page count.
1009                         */
1010                        goto out;
1011                }
1012                if (!page_cache_get_speculative(page))
1013                        goto repeat;
1014
1015                /*
1016                 * Has the page moved?
1017                 * This is part of the lockless pagecache protocol. See
1018                 * include/linux/pagemap.h for details.
1019                 */
1020                if (unlikely(page != *pagep)) {
1021                        page_cache_release(page);
1022                        goto repeat;
1023                }
1024        }
1025out:
1026        rcu_read_unlock();
1027
1028        return page;
1029}
1030EXPORT_SYMBOL(find_get_entry);
1031
1032/**
1033 * find_lock_entry - locate, pin and lock a page cache entry
1034 * @mapping: the address_space to search
1035 * @offset: the page cache index
1036 *
1037 * Looks up the page cache slot at @mapping & @offset.  If there is a
1038 * page cache page, it is returned locked and with an increased
1039 * refcount.
1040 *
1041 * If the slot holds a shadow entry of a previously evicted page, or a
1042 * swap entry from shmem/tmpfs, it is returned.
1043 *
1044 * Otherwise, %NULL is returned.
1045 *
1046 * find_lock_entry() may sleep.
1047 */
1048struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1049{
1050        struct page *page;
1051
1052repeat:
1053        page = find_get_entry(mapping, offset);
1054        if (page && !radix_tree_exception(page)) {
1055                lock_page(page);
1056                /* Has the page been truncated? */
1057                if (unlikely(page->mapping != mapping)) {
1058                        unlock_page(page);
1059                        page_cache_release(page);
1060                        goto repeat;
1061                }
1062                VM_BUG_ON_PAGE(page->index != offset, page);
1063        }
1064        return page;
1065}
1066EXPORT_SYMBOL(find_lock_entry);
1067
1068/**
1069 * pagecache_get_page - find and get a page reference
1070 * @mapping: the address_space to search
1071 * @offset: the page index
1072 * @fgp_flags: PCG flags
1073 * @gfp_mask: gfp mask to use for the page cache data page allocation
1074 *
1075 * Looks up the page cache slot at @mapping & @offset.
1076 *
1077 * PCG flags modify how the page is returned.
1078 *
1079 * FGP_ACCESSED: the page will be marked accessed
1080 * FGP_LOCK: Page is return locked
1081 * FGP_CREAT: If page is not present then a new page is allocated using
1082 *              @gfp_mask and added to the page cache and the VM's LRU
1083 *              list. The page is returned locked and with an increased
1084 *              refcount. Otherwise, %NULL is returned.
1085 *
1086 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1087 * if the GFP flags specified for FGP_CREAT are atomic.
1088 *
1089 * If there is a page cache page, it is returned with an increased refcount.
1090 */
1091struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1092        int fgp_flags, gfp_t gfp_mask)
1093{
1094        struct page *page;
1095
1096repeat:
1097        page = find_get_entry(mapping, offset);
1098        if (radix_tree_exceptional_entry(page))
1099                page = NULL;
1100        if (!page)
1101                goto no_page;
1102
1103        if (fgp_flags & FGP_LOCK) {
1104                if (fgp_flags & FGP_NOWAIT) {
1105                        if (!trylock_page(page)) {
1106                                page_cache_release(page);
1107                                return NULL;
1108                        }
1109                } else {
1110                        lock_page(page);
1111                }
1112
1113                /* Has the page been truncated? */
1114                if (unlikely(page->mapping != mapping)) {
1115                        unlock_page(page);
1116                        page_cache_release(page);
1117                        goto repeat;
1118                }
1119                VM_BUG_ON_PAGE(page->index != offset, page);
1120        }
1121
1122        if (page && (fgp_flags & FGP_ACCESSED))
1123                mark_page_accessed(page);
1124
1125no_page:
1126        if (!page && (fgp_flags & FGP_CREAT)) {
1127                int err;
1128                if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1129                        gfp_mask |= __GFP_WRITE;
1130                if (fgp_flags & FGP_NOFS)
1131                        gfp_mask &= ~__GFP_FS;
1132
1133                page = __page_cache_alloc(gfp_mask);
1134                if (!page)
1135                        return NULL;
1136
1137                if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1138                        fgp_flags |= FGP_LOCK;
1139
1140                /* Init accessed so avoid atomic mark_page_accessed later */
1141                if (fgp_flags & FGP_ACCESSED)
1142                        __SetPageReferenced(page);
1143
1144                err = add_to_page_cache_lru(page, mapping, offset,
1145                                gfp_mask & GFP_RECLAIM_MASK);
1146                if (unlikely(err)) {
1147                        page_cache_release(page);
1148                        page = NULL;
1149                        if (err == -EEXIST)
1150                                goto repeat;
1151                }
1152        }
1153
1154        return page;
1155}
1156EXPORT_SYMBOL(pagecache_get_page);
1157
1158/**
1159 * find_get_entries - gang pagecache lookup
1160 * @mapping:    The address_space to search
1161 * @start:      The starting page cache index
1162 * @nr_entries: The maximum number of entries
1163 * @entries:    Where the resulting entries are placed
1164 * @indices:    The cache indices corresponding to the entries in @entries
1165 *
1166 * find_get_entries() will search for and return a group of up to
1167 * @nr_entries entries in the mapping.  The entries are placed at
1168 * @entries.  find_get_entries() takes a reference against any actual
1169 * pages it returns.
1170 *
1171 * The search returns a group of mapping-contiguous page cache entries
1172 * with ascending indexes.  There may be holes in the indices due to
1173 * not-present pages.
1174 *
1175 * Any shadow entries of evicted pages, or swap entries from
1176 * shmem/tmpfs, are included in the returned array.
1177 *
1178 * find_get_entries() returns the number of pages and shadow entries
1179 * which were found.
1180 */
1181unsigned find_get_entries(struct address_space *mapping,
1182                          pgoff_t start, unsigned int nr_entries,
1183                          struct page **entries, pgoff_t *indices)
1184{
1185        void **slot;
1186        unsigned int ret = 0;
1187        struct radix_tree_iter iter;
1188
1189        if (!nr_entries)
1190                return 0;
1191
1192        rcu_read_lock();
1193restart:
1194        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1195                struct page *page;
1196repeat:
1197                page = radix_tree_deref_slot(slot);
1198                if (unlikely(!page))
1199                        continue;
1200                if (radix_tree_exception(page)) {
1201                        if (radix_tree_deref_retry(page))
1202                                goto restart;
1203                        /*
1204                         * A shadow entry of a recently evicted page,
1205                         * or a swap entry from shmem/tmpfs.  Return
1206                         * it without attempting to raise page count.
1207                         */
1208                        goto export;
1209                }
1210                if (!page_cache_get_speculative(page))
1211                        goto repeat;
1212
1213                /* Has the page moved? */
1214                if (unlikely(page != *slot)) {
1215                        page_cache_release(page);
1216                        goto repeat;
1217                }
1218export:
1219                indices[ret] = iter.index;
1220                entries[ret] = page;
1221                if (++ret == nr_entries)
1222                        break;
1223        }
1224        rcu_read_unlock();
1225        return ret;
1226}
1227
1228/**
1229 * find_get_pages - gang pagecache lookup
1230 * @mapping:    The address_space to search
1231 * @start:      The starting page index
1232 * @nr_pages:   The maximum number of pages
1233 * @pages:      Where the resulting pages are placed
1234 *
1235 * find_get_pages() will search for and return a group of up to
1236 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1237 * find_get_pages() takes a reference against the returned pages.
1238 *
1239 * The search returns a group of mapping-contiguous pages with ascending
1240 * indexes.  There may be holes in the indices due to not-present pages.
1241 *
1242 * find_get_pages() returns the number of pages which were found.
1243 */
1244unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1245                            unsigned int nr_pages, struct page **pages)
1246{
1247        struct radix_tree_iter iter;
1248        void **slot;
1249        unsigned ret = 0;
1250
1251        if (unlikely(!nr_pages))
1252                return 0;
1253
1254        rcu_read_lock();
1255restart:
1256        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1257                struct page *page;
1258repeat:
1259                page = radix_tree_deref_slot(slot);
1260                if (unlikely(!page))
1261                        continue;
1262
1263                if (radix_tree_exception(page)) {
1264                        if (radix_tree_deref_retry(page)) {
1265                                /*
1266                                 * Transient condition which can only trigger
1267                                 * when entry at index 0 moves out of or back
1268                                 * to root: none yet gotten, safe to restart.
1269                                 */
1270                                WARN_ON(iter.index);
1271                                goto restart;
1272                        }
1273                        /*
1274                         * A shadow entry of a recently evicted page,
1275                         * or a swap entry from shmem/tmpfs.  Skip
1276                         * over it.
1277                         */
1278                        continue;
1279                }
1280
1281                if (!page_cache_get_speculative(page))
1282                        goto repeat;
1283
1284                /* Has the page moved? */
1285                if (unlikely(page != *slot)) {
1286                        page_cache_release(page);
1287                        goto repeat;
1288                }
1289
1290                pages[ret] = page;
1291                if (++ret == nr_pages)
1292                        break;
1293        }
1294
1295        rcu_read_unlock();
1296        return ret;
1297}
1298
1299/**
1300 * find_get_pages_contig - gang contiguous pagecache lookup
1301 * @mapping:    The address_space to search
1302 * @index:      The starting page index
1303 * @nr_pages:   The maximum number of pages
1304 * @pages:      Where the resulting pages are placed
1305 *
1306 * find_get_pages_contig() works exactly like find_get_pages(), except
1307 * that the returned number of pages are guaranteed to be contiguous.
1308 *
1309 * find_get_pages_contig() returns the number of pages which were found.
1310 */
1311unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1312                               unsigned int nr_pages, struct page **pages)
1313{
1314        struct radix_tree_iter iter;
1315        void **slot;
1316        unsigned int ret = 0;
1317
1318        if (unlikely(!nr_pages))
1319                return 0;
1320
1321        rcu_read_lock();
1322restart:
1323        radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1324                struct page *page;
1325repeat:
1326                page = radix_tree_deref_slot(slot);
1327                /* The hole, there no reason to continue */
1328                if (unlikely(!page))
1329                        break;
1330
1331                if (radix_tree_exception(page)) {
1332                        if (radix_tree_deref_retry(page)) {
1333                                /*
1334                                 * Transient condition which can only trigger
1335                                 * when entry at index 0 moves out of or back
1336                                 * to root: none yet gotten, safe to restart.
1337                                 */
1338                                goto restart;
1339                        }
1340                        /*
1341                         * A shadow entry of a recently evicted page,
1342                         * or a swap entry from shmem/tmpfs.  Stop
1343                         * looking for contiguous pages.
1344                         */
1345                        break;
1346                }
1347
1348                if (!page_cache_get_speculative(page))
1349                        goto repeat;
1350
1351                /* Has the page moved? */
1352                if (unlikely(page != *slot)) {
1353                        page_cache_release(page);
1354                        goto repeat;
1355                }
1356
1357                /*
1358                 * must check mapping and index after taking the ref.
1359                 * otherwise we can get both false positives and false
1360                 * negatives, which is just confusing to the caller.
1361                 */
1362                if (page->mapping == NULL || page->index != iter.index) {
1363                        page_cache_release(page);
1364                        break;
1365                }
1366
1367                pages[ret] = page;
1368                if (++ret == nr_pages)
1369                        break;
1370        }
1371        rcu_read_unlock();
1372        return ret;
1373}
1374EXPORT_SYMBOL(find_get_pages_contig);
1375
1376/**
1377 * find_get_pages_tag - find and return pages that match @tag
1378 * @mapping:    the address_space to search
1379 * @index:      the starting page index
1380 * @tag:        the tag index
1381 * @nr_pages:   the maximum number of pages
1382 * @pages:      where the resulting pages are placed
1383 *
1384 * Like find_get_pages, except we only return pages which are tagged with
1385 * @tag.   We update @index to index the next page for the traversal.
1386 */
1387unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1388                        int tag, unsigned int nr_pages, struct page **pages)
1389{
1390        struct radix_tree_iter iter;
1391        void **slot;
1392        unsigned ret = 0;
1393
1394        if (unlikely(!nr_pages))
1395                return 0;
1396
1397        rcu_read_lock();
1398restart:
1399        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1400                                   &iter, *index, tag) {
1401                struct page *page;
1402repeat:
1403                page = radix_tree_deref_slot(slot);
1404                if (unlikely(!page))
1405                        continue;
1406
1407                if (radix_tree_exception(page)) {
1408                        if (radix_tree_deref_retry(page)) {
1409                                /*
1410                                 * Transient condition which can only trigger
1411                                 * when entry at index 0 moves out of or back
1412                                 * to root: none yet gotten, safe to restart.
1413                                 */
1414                                goto restart;
1415                        }
1416                        /*
1417                         * A shadow entry of a recently evicted page.
1418                         *
1419                         * Those entries should never be tagged, but
1420                         * this tree walk is lockless and the tags are
1421                         * looked up in bulk, one radix tree node at a
1422                         * time, so there is a sizable window for page
1423                         * reclaim to evict a page we saw tagged.
1424                         *
1425                         * Skip over it.
1426                         */
1427                        continue;
1428                }
1429
1430                if (!page_cache_get_speculative(page))
1431                        goto repeat;
1432
1433                /* Has the page moved? */
1434                if (unlikely(page != *slot)) {
1435                        page_cache_release(page);
1436                        goto repeat;
1437                }
1438
1439                pages[ret] = page;
1440                if (++ret == nr_pages)
1441                        break;
1442        }
1443
1444        rcu_read_unlock();
1445
1446        if (ret)
1447                *index = pages[ret - 1]->index + 1;
1448
1449        return ret;
1450}
1451EXPORT_SYMBOL(find_get_pages_tag);
1452
1453/*
1454 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1455 * a _large_ part of the i/o request. Imagine the worst scenario:
1456 *
1457 *      ---R__________________________________________B__________
1458 *         ^ reading here                             ^ bad block(assume 4k)
1459 *
1460 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1461 * => failing the whole request => read(R) => read(R+1) =>
1462 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1463 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1464 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1465 *
1466 * It is going insane. Fix it by quickly scaling down the readahead size.
1467 */
1468static void shrink_readahead_size_eio(struct file *filp,
1469                                        struct file_ra_state *ra)
1470{
1471        ra->ra_pages /= 4;
1472}
1473
1474/**
1475 * do_generic_file_read - generic file read routine
1476 * @filp:       the file to read
1477 * @ppos:       current file position
1478 * @iter:       data destination
1479 * @written:    already copied
1480 *
1481 * This is a generic file read routine, and uses the
1482 * mapping->a_ops->readpage() function for the actual low-level stuff.
1483 *
1484 * This is really ugly. But the goto's actually try to clarify some
1485 * of the logic when it comes to error handling etc.
1486 */
1487static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1488                struct iov_iter *iter, ssize_t written)
1489{
1490        struct address_space *mapping = filp->f_mapping;
1491        struct inode *inode = mapping->host;
1492        struct file_ra_state *ra = &filp->f_ra;
1493        pgoff_t index;
1494        pgoff_t last_index;
1495        pgoff_t prev_index;
1496        unsigned long offset;      /* offset into pagecache page */
1497        unsigned int prev_offset;
1498        int error = 0;
1499
1500        index = *ppos >> PAGE_CACHE_SHIFT;
1501        prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1502        prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1503        last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1504        offset = *ppos & ~PAGE_CACHE_MASK;
1505
1506        for (;;) {
1507                struct page *page;
1508                pgoff_t end_index;
1509                loff_t isize;
1510                unsigned long nr, ret;
1511
1512                cond_resched();
1513find_page:
1514                page = find_get_page(mapping, index);
1515                if (!page) {
1516                        page_cache_sync_readahead(mapping,
1517                                        ra, filp,
1518                                        index, last_index - index);
1519                        page = find_get_page(mapping, index);
1520                        if (unlikely(page == NULL))
1521                                goto no_cached_page;
1522                }
1523                if (PageReadahead(page)) {
1524                        page_cache_async_readahead(mapping,
1525                                        ra, filp, page,
1526                                        index, last_index - index);
1527                }
1528                if (!PageUptodate(page)) {
1529                        if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1530                                        !mapping->a_ops->is_partially_uptodate)
1531                                goto page_not_up_to_date;
1532                        if (!trylock_page(page))
1533                                goto page_not_up_to_date;
1534                        /* Did it get truncated before we got the lock? */
1535                        if (!page->mapping)
1536                                goto page_not_up_to_date_locked;
1537                        if (!mapping->a_ops->is_partially_uptodate(page,
1538                                                        offset, iter->count))
1539                                goto page_not_up_to_date_locked;
1540                        unlock_page(page);
1541                }
1542page_ok:
1543                /*
1544                 * i_size must be checked after we know the page is Uptodate.
1545                 *
1546                 * Checking i_size after the check allows us to calculate
1547                 * the correct value for "nr", which means the zero-filled
1548                 * part of the page is not copied back to userspace (unless
1549                 * another truncate extends the file - this is desired though).
1550                 */
1551
1552                isize = i_size_read(inode);
1553                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1554                if (unlikely(!isize || index > end_index)) {
1555                        page_cache_release(page);
1556                        goto out;
1557                }
1558
1559                /* nr is the maximum number of bytes to copy from this page */
1560                nr = PAGE_CACHE_SIZE;
1561                if (index == end_index) {
1562                        nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1563                        if (nr <= offset) {
1564                                page_cache_release(page);
1565                                goto out;
1566                        }
1567                }
1568                nr = nr - offset;
1569
1570                /* If users can be writing to this page using arbitrary
1571                 * virtual addresses, take care about potential aliasing
1572                 * before reading the page on the kernel side.
1573                 */
1574                if (mapping_writably_mapped(mapping))
1575                        flush_dcache_page(page);
1576
1577                /*
1578                 * When a sequential read accesses a page several times,
1579                 * only mark it as accessed the first time.
1580                 */
1581                if (prev_index != index || offset != prev_offset)
1582                        mark_page_accessed(page);
1583                prev_index = index;
1584
1585                /*
1586                 * Ok, we have the page, and it's up-to-date, so
1587                 * now we can copy it to user space...
1588                 */
1589
1590                ret = copy_page_to_iter(page, offset, nr, iter);
1591                offset += ret;
1592                index += offset >> PAGE_CACHE_SHIFT;
1593                offset &= ~PAGE_CACHE_MASK;
1594                prev_offset = offset;
1595
1596                page_cache_release(page);
1597                written += ret;
1598                if (!iov_iter_count(iter))
1599                        goto out;
1600                if (ret < nr) {
1601                        error = -EFAULT;
1602                        goto out;
1603                }
1604                continue;
1605
1606page_not_up_to_date:
1607                /* Get exclusive access to the page ... */
1608                error = lock_page_killable(page);
1609                if (unlikely(error))
1610                        goto readpage_error;
1611
1612page_not_up_to_date_locked:
1613                /* Did it get truncated before we got the lock? */
1614                if (!page->mapping) {
1615                        unlock_page(page);
1616                        page_cache_release(page);
1617                        continue;
1618                }
1619
1620                /* Did somebody else fill it already? */
1621                if (PageUptodate(page)) {
1622                        unlock_page(page);
1623                        goto page_ok;
1624                }
1625
1626readpage:
1627                /*
1628                 * A previous I/O error may have been due to temporary
1629                 * failures, eg. multipath errors.
1630                 * PG_error will be set again if readpage fails.
1631                 */
1632                ClearPageError(page);
1633                /* Start the actual read. The read will unlock the page. */
1634                error = mapping->a_ops->readpage(filp, page);
1635
1636                if (unlikely(error)) {
1637                        if (error == AOP_TRUNCATED_PAGE) {
1638                                page_cache_release(page);
1639                                error = 0;
1640                                goto find_page;
1641                        }
1642                        goto readpage_error;
1643                }
1644
1645                if (!PageUptodate(page)) {
1646                        error = lock_page_killable(page);
1647                        if (unlikely(error))
1648                                goto readpage_error;
1649                        if (!PageUptodate(page)) {
1650                                if (page->mapping == NULL) {
1651                                        /*
1652                                         * invalidate_mapping_pages got it
1653                                         */
1654                                        unlock_page(page);
1655                                        page_cache_release(page);
1656                                        goto find_page;
1657                                }
1658                                unlock_page(page);
1659                                shrink_readahead_size_eio(filp, ra);
1660                                error = -EIO;
1661                                goto readpage_error;
1662                        }
1663                        unlock_page(page);
1664                }
1665
1666                goto page_ok;
1667
1668readpage_error:
1669                /* UHHUH! A synchronous read error occurred. Report it */
1670                page_cache_release(page);
1671                goto out;
1672
1673no_cached_page:
1674                /*
1675                 * Ok, it wasn't cached, so we need to create a new
1676                 * page..
1677                 */
1678                page = page_cache_alloc_cold(mapping);
1679                if (!page) {
1680                        error = -ENOMEM;
1681                        goto out;
1682                }
1683                error = add_to_page_cache_lru(page, mapping, index,
1684                                        GFP_KERNEL & mapping_gfp_mask(mapping));
1685                if (error) {
1686                        page_cache_release(page);
1687                        if (error == -EEXIST) {
1688                                error = 0;
1689                                goto find_page;
1690                        }
1691                        goto out;
1692                }
1693                goto readpage;
1694        }
1695
1696out:
1697        ra->prev_pos = prev_index;
1698        ra->prev_pos <<= PAGE_CACHE_SHIFT;
1699        ra->prev_pos |= prev_offset;
1700
1701        *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1702        file_accessed(filp);
1703        return written ? written : error;
1704}
1705
1706/**
1707 * generic_file_read_iter - generic filesystem read routine
1708 * @iocb:       kernel I/O control block
1709 * @iter:       destination for the data read
1710 *
1711 * This is the "read_iter()" routine for all filesystems
1712 * that can use the page cache directly.
1713 */
1714ssize_t
1715generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1716{
1717        struct file *file = iocb->ki_filp;
1718        ssize_t retval = 0;
1719        loff_t *ppos = &iocb->ki_pos;
1720        loff_t pos = *ppos;
1721
1722        if (iocb->ki_flags & IOCB_DIRECT) {
1723                struct address_space *mapping = file->f_mapping;
1724                struct inode *inode = mapping->host;
1725                size_t count = iov_iter_count(iter);
1726                loff_t size;
1727
1728                if (!count)
1729                        goto out; /* skip atime */
1730                size = i_size_read(inode);
1731                retval = filemap_write_and_wait_range(mapping, pos,
1732                                        pos + count - 1);
1733                if (!retval) {
1734                        struct iov_iter data = *iter;
1735                        retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1736                }
1737
1738                if (retval > 0) {
1739                        *ppos = pos + retval;
1740                        iov_iter_advance(iter, retval);
1741                }
1742
1743                /*
1744                 * Btrfs can have a short DIO read if we encounter
1745                 * compressed extents, so if there was an error, or if
1746                 * we've already read everything we wanted to, or if
1747                 * there was a short read because we hit EOF, go ahead
1748                 * and return.  Otherwise fallthrough to buffered io for
1749                 * the rest of the read.  Buffered reads will not work for
1750                 * DAX files, so don't bother trying.
1751                 */
1752                if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1753                    IS_DAX(inode)) {
1754                        file_accessed(file);
1755                        goto out;
1756                }
1757        }
1758
1759        retval = do_generic_file_read(file, ppos, iter, retval);
1760out:
1761        return retval;
1762}
1763EXPORT_SYMBOL(generic_file_read_iter);
1764
1765#ifdef CONFIG_MMU
1766/**
1767 * page_cache_read - adds requested page to the page cache if not already there
1768 * @file:       file to read
1769 * @offset:     page index
1770 *
1771 * This adds the requested page to the page cache if it isn't already there,
1772 * and schedules an I/O to read in its contents from disk.
1773 */
1774static int page_cache_read(struct file *file, pgoff_t offset)
1775{
1776        struct address_space *mapping = file->f_mapping;
1777        struct page *page;
1778        int ret;
1779
1780        do {
1781                page = page_cache_alloc_cold(mapping);
1782                if (!page)
1783                        return -ENOMEM;
1784
1785                ret = add_to_page_cache_lru(page, mapping, offset,
1786                                GFP_KERNEL & mapping_gfp_mask(mapping));
1787                if (ret == 0)
1788                        ret = mapping->a_ops->readpage(file, page);
1789                else if (ret == -EEXIST)
1790                        ret = 0; /* losing race to add is OK */
1791
1792                page_cache_release(page);
1793
1794        } while (ret == AOP_TRUNCATED_PAGE);
1795
1796        return ret;
1797}
1798
1799#define MMAP_LOTSAMISS  (100)
1800
1801/*
1802 * Synchronous readahead happens when we don't even find
1803 * a page in the page cache at all.
1804 */
1805static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1806                                   struct file_ra_state *ra,
1807                                   struct file *file,
1808                                   pgoff_t offset)
1809{
1810        unsigned long ra_pages;
1811        struct address_space *mapping = file->f_mapping;
1812
1813        /* If we don't want any read-ahead, don't bother */
1814        if (vma->vm_flags & VM_RAND_READ)
1815                return;
1816        if (!ra->ra_pages)
1817                return;
1818
1819        if (vma->vm_flags & VM_SEQ_READ) {
1820                page_cache_sync_readahead(mapping, ra, file, offset,
1821                                          ra->ra_pages);
1822                return;
1823        }
1824
1825        /* Avoid banging the cache line if not needed */
1826        if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1827                ra->mmap_miss++;
1828
1829        /*
1830         * Do we miss much more than hit in this file? If so,
1831         * stop bothering with read-ahead. It will only hurt.
1832         */
1833        if (ra->mmap_miss > MMAP_LOTSAMISS)
1834                return;
1835
1836        /*
1837         * mmap read-around
1838         */
1839        ra_pages = max_sane_readahead(ra->ra_pages);
1840        ra->start = max_t(long, 0, offset - ra_pages / 2);
1841        ra->size = ra_pages;
1842        ra->async_size = ra_pages / 4;
1843        ra_submit(ra, mapping, file);
1844}
1845
1846/*
1847 * Asynchronous readahead happens when we find the page and PG_readahead,
1848 * so we want to possibly extend the readahead further..
1849 */
1850static void do_async_mmap_readahead(struct vm_area_struct *vma,
1851                                    struct file_ra_state *ra,
1852                                    struct file *file,
1853                                    struct page *page,
1854                                    pgoff_t offset)
1855{
1856        struct address_space *mapping = file->f_mapping;
1857
1858        /* If we don't want any read-ahead, don't bother */
1859        if (vma->vm_flags & VM_RAND_READ)
1860                return;
1861        if (ra->mmap_miss > 0)
1862                ra->mmap_miss--;
1863        if (PageReadahead(page))
1864                page_cache_async_readahead(mapping, ra, file,
1865                                           page, offset, ra->ra_pages);
1866}
1867
1868/**
1869 * filemap_fault - read in file data for page fault handling
1870 * @vma:        vma in which the fault was taken
1871 * @vmf:        struct vm_fault containing details of the fault
1872 *
1873 * filemap_fault() is invoked via the vma operations vector for a
1874 * mapped memory region to read in file data during a page fault.
1875 *
1876 * The goto's are kind of ugly, but this streamlines the normal case of having
1877 * it in the page cache, and handles the special cases reasonably without
1878 * having a lot of duplicated code.
1879 *
1880 * vma->vm_mm->mmap_sem must be held on entry.
1881 *
1882 * If our return value has VM_FAULT_RETRY set, it's because
1883 * lock_page_or_retry() returned 0.
1884 * The mmap_sem has usually been released in this case.
1885 * See __lock_page_or_retry() for the exception.
1886 *
1887 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1888 * has not been released.
1889 *
1890 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1891 */
1892int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1893{
1894        int error;
1895        struct file *file = vma->vm_file;
1896        struct address_space *mapping = file->f_mapping;
1897        struct file_ra_state *ra = &file->f_ra;
1898        struct inode *inode = mapping->host;
1899        pgoff_t offset = vmf->pgoff;
1900        struct page *page;
1901        loff_t size;
1902        int ret = 0;
1903
1904        size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1905        if (offset >= size >> PAGE_CACHE_SHIFT)
1906                return VM_FAULT_SIGBUS;
1907
1908        /*
1909         * Do we have something in the page cache already?
1910         */
1911        page = find_get_page(mapping, offset);
1912        if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1913                /*
1914                 * We found the page, so try async readahead before
1915                 * waiting for the lock.
1916                 */
1917                do_async_mmap_readahead(vma, ra, file, page, offset);
1918        } else if (!page) {
1919                /* No page in the page cache at all */
1920                do_sync_mmap_readahead(vma, ra, file, offset);
1921                count_vm_event(PGMAJFAULT);
1922                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1923                ret = VM_FAULT_MAJOR;
1924retry_find:
1925                page = find_get_page(mapping, offset);
1926                if (!page)
1927                        goto no_cached_page;
1928        }
1929
1930        if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1931                page_cache_release(page);
1932                return ret | VM_FAULT_RETRY;
1933        }
1934
1935        /* Did it get truncated? */
1936        if (unlikely(page->mapping != mapping)) {
1937                unlock_page(page);
1938                put_page(page);
1939                goto retry_find;
1940        }
1941        VM_BUG_ON_PAGE(page->index != offset, page);
1942
1943        /*
1944         * We have a locked page in the page cache, now we need to check
1945         * that it's up-to-date. If not, it is going to be due to an error.
1946         */
1947        if (unlikely(!PageUptodate(page)))
1948                goto page_not_uptodate;
1949
1950        /*
1951         * Found the page and have a reference on it.
1952         * We must recheck i_size under page lock.
1953         */
1954        size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1955        if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1956                unlock_page(page);
1957                page_cache_release(page);
1958                return VM_FAULT_SIGBUS;
1959        }
1960
1961        vmf->page = page;
1962        return ret | VM_FAULT_LOCKED;
1963
1964no_cached_page:
1965        /*
1966         * We're only likely to ever get here if MADV_RANDOM is in
1967         * effect.
1968         */
1969        error = page_cache_read(file, offset);
1970
1971        /*
1972         * The page we want has now been added to the page cache.
1973         * In the unlikely event that someone removed it in the
1974         * meantime, we'll just come back here and read it again.
1975         */
1976        if (error >= 0)
1977                goto retry_find;
1978
1979        /*
1980         * An error return from page_cache_read can result if the
1981         * system is low on memory, or a problem occurs while trying
1982         * to schedule I/O.
1983         */
1984        if (error == -ENOMEM)
1985                return VM_FAULT_OOM;
1986        return VM_FAULT_SIGBUS;
1987
1988page_not_uptodate:
1989        /*
1990         * Umm, take care of errors if the page isn't up-to-date.
1991         * Try to re-read it _once_. We do this synchronously,
1992         * because there really aren't any performance issues here
1993         * and we need to check for errors.
1994         */
1995        ClearPageError(page);
1996        error = mapping->a_ops->readpage(file, page);
1997        if (!error) {
1998                wait_on_page_locked(page);
1999                if (!PageUptodate(page))
2000                        error = -EIO;
2001        }
2002        page_cache_release(page);
2003
2004        if (!error || error == AOP_TRUNCATED_PAGE)
2005                goto retry_find;
2006
2007        /* Things didn't work out. Return zero to tell the mm layer so. */
2008        shrink_readahead_size_eio(file, ra);
2009        return VM_FAULT_SIGBUS;
2010}
2011EXPORT_SYMBOL(filemap_fault);
2012
2013void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2014{
2015        struct radix_tree_iter iter;
2016        void **slot;
2017        struct file *file = vma->vm_file;
2018        struct address_space *mapping = file->f_mapping;
2019        loff_t size;
2020        struct page *page;
2021        unsigned long address = (unsigned long) vmf->virtual_address;
2022        unsigned long addr;
2023        pte_t *pte;
2024
2025        rcu_read_lock();
2026        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2027                if (iter.index > vmf->max_pgoff)
2028                        break;
2029repeat:
2030                page = radix_tree_deref_slot(slot);
2031                if (unlikely(!page))
2032                        goto next;
2033                if (radix_tree_exception(page)) {
2034                        if (radix_tree_deref_retry(page))
2035                                break;
2036                        else
2037                                goto next;
2038                }
2039
2040                if (!page_cache_get_speculative(page))
2041                        goto repeat;
2042
2043                /* Has the page moved? */
2044                if (unlikely(page != *slot)) {
2045                        page_cache_release(page);
2046                        goto repeat;
2047                }
2048
2049                if (!PageUptodate(page) ||
2050                                PageReadahead(page) ||
2051                                PageHWPoison(page))
2052                        goto skip;
2053                if (!trylock_page(page))
2054                        goto skip;
2055
2056                if (page->mapping != mapping || !PageUptodate(page))
2057                        goto unlock;
2058
2059                size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2060                if (page->index >= size >> PAGE_CACHE_SHIFT)
2061                        goto unlock;
2062
2063                pte = vmf->pte + page->index - vmf->pgoff;
2064                if (!pte_none(*pte))
2065                        goto unlock;
2066
2067                if (file->f_ra.mmap_miss > 0)
2068                        file->f_ra.mmap_miss--;
2069                addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2070                do_set_pte(vma, addr, page, pte, false, false);
2071                unlock_page(page);
2072                goto next;
2073unlock:
2074                unlock_page(page);
2075skip:
2076                page_cache_release(page);
2077next:
2078                if (iter.index == vmf->max_pgoff)
2079                        break;
2080        }
2081        rcu_read_unlock();
2082}
2083EXPORT_SYMBOL(filemap_map_pages);
2084
2085int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2086{
2087        struct page *page = vmf->page;
2088        struct inode *inode = file_inode(vma->vm_file);
2089        int ret = VM_FAULT_LOCKED;
2090
2091        sb_start_pagefault(inode->i_sb);
2092        file_update_time(vma->vm_file);
2093        lock_page(page);
2094        if (page->mapping != inode->i_mapping) {
2095                unlock_page(page);
2096                ret = VM_FAULT_NOPAGE;
2097                goto out;
2098        }
2099        /*
2100         * We mark the page dirty already here so that when freeze is in
2101         * progress, we are guaranteed that writeback during freezing will
2102         * see the dirty page and writeprotect it again.
2103         */
2104        set_page_dirty(page);
2105        wait_for_stable_page(page);
2106out:
2107        sb_end_pagefault(inode->i_sb);
2108        return ret;
2109}
2110EXPORT_SYMBOL(filemap_page_mkwrite);
2111
2112const struct vm_operations_struct generic_file_vm_ops = {
2113        .fault          = filemap_fault,
2114        .map_pages      = filemap_map_pages,
2115        .page_mkwrite   = filemap_page_mkwrite,
2116};
2117
2118/* This is used for a general mmap of a disk file */
2119
2120int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2121{
2122        struct address_space *mapping = file->f_mapping;
2123
2124        if (!mapping->a_ops->readpage)
2125                return -ENOEXEC;
2126        file_accessed(file);
2127        vma->vm_ops = &generic_file_vm_ops;
2128        return 0;
2129}
2130
2131/*
2132 * This is for filesystems which do not implement ->writepage.
2133 */
2134int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2135{
2136        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2137                return -EINVAL;
2138        return generic_file_mmap(file, vma);
2139}
2140#else
2141int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2142{
2143        return -ENOSYS;
2144}
2145int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2146{
2147        return -ENOSYS;
2148}
2149#endif /* CONFIG_MMU */
2150
2151EXPORT_SYMBOL(generic_file_mmap);
2152EXPORT_SYMBOL(generic_file_readonly_mmap);
2153
2154static struct page *wait_on_page_read(struct page *page)
2155{
2156        if (!IS_ERR(page)) {
2157                wait_on_page_locked(page);
2158                if (!PageUptodate(page)) {
2159                        page_cache_release(page);
2160                        page = ERR_PTR(-EIO);
2161                }
2162        }
2163        return page;
2164}
2165
2166static struct page *__read_cache_page(struct address_space *mapping,
2167                                pgoff_t index,
2168                                int (*filler)(void *, struct page *),
2169                                void *data,
2170                                gfp_t gfp)
2171{
2172        struct page *page;
2173        int err;
2174repeat:
2175        page = find_get_page(mapping, index);
2176        if (!page) {
2177                page = __page_cache_alloc(gfp | __GFP_COLD);
2178                if (!page)
2179                        return ERR_PTR(-ENOMEM);
2180                err = add_to_page_cache_lru(page, mapping, index, gfp);
2181                if (unlikely(err)) {
2182                        page_cache_release(page);
2183                        if (err == -EEXIST)
2184                                goto repeat;
2185                        /* Presumably ENOMEM for radix tree node */
2186                        return ERR_PTR(err);
2187                }
2188                err = filler(data, page);
2189                if (err < 0) {
2190                        page_cache_release(page);
2191                        page = ERR_PTR(err);
2192                } else {
2193                        page = wait_on_page_read(page);
2194                }
2195        }
2196        return page;
2197}
2198
2199static struct page *do_read_cache_page(struct address_space *mapping,
2200                                pgoff_t index,
2201                                int (*filler)(void *, struct page *),
2202                                void *data,
2203                                gfp_t gfp)
2204
2205{
2206        struct page *page;
2207        int err;
2208
2209retry:
2210        page = __read_cache_page(mapping, index, filler, data, gfp);
2211        if (IS_ERR(page))
2212                return page;
2213        if (PageUptodate(page))
2214                goto out;
2215
2216        lock_page(page);
2217        if (!page->mapping) {
2218                unlock_page(page);
2219                page_cache_release(page);
2220                goto retry;
2221        }
2222        if (PageUptodate(page)) {
2223                unlock_page(page);
2224                goto out;
2225        }
2226        err = filler(data, page);
2227        if (err < 0) {
2228                page_cache_release(page);
2229                return ERR_PTR(err);
2230        } else {
2231                page = wait_on_page_read(page);
2232                if (IS_ERR(page))
2233                        return page;
2234        }
2235out:
2236        mark_page_accessed(page);
2237        return page;
2238}
2239
2240/**
2241 * read_cache_page - read into page cache, fill it if needed
2242 * @mapping:    the page's address_space
2243 * @index:      the page index
2244 * @filler:     function to perform the read
2245 * @data:       first arg to filler(data, page) function, often left as NULL
2246 *
2247 * Read into the page cache. If a page already exists, and PageUptodate() is
2248 * not set, try to fill the page and wait for it to become unlocked.
2249 *
2250 * If the page does not get brought uptodate, return -EIO.
2251 */
2252struct page *read_cache_page(struct address_space *mapping,
2253                                pgoff_t index,
2254                                int (*filler)(void *, struct page *),
2255                                void *data)
2256{
2257        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2258}
2259EXPORT_SYMBOL(read_cache_page);
2260
2261/**
2262 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2263 * @mapping:    the page's address_space
2264 * @index:      the page index
2265 * @gfp:        the page allocator flags to use if allocating
2266 *
2267 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2268 * any new page allocations done using the specified allocation flags.
2269 *
2270 * If the page does not get brought uptodate, return -EIO.
2271 */
2272struct page *read_cache_page_gfp(struct address_space *mapping,
2273                                pgoff_t index,
2274                                gfp_t gfp)
2275{
2276        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2277
2278        return do_read_cache_page(mapping, index, filler, NULL, gfp);
2279}
2280EXPORT_SYMBOL(read_cache_page_gfp);
2281
2282/*
2283 * Performs necessary checks before doing a write
2284 *
2285 * Can adjust writing position or amount of bytes to write.
2286 * Returns appropriate error code that caller should return or
2287 * zero in case that write should be allowed.
2288 */
2289inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2290{
2291        struct file *file = iocb->ki_filp;
2292        struct inode *inode = file->f_mapping->host;
2293        unsigned long limit = rlimit(RLIMIT_FSIZE);
2294        loff_t pos;
2295
2296        if (!iov_iter_count(from))
2297                return 0;
2298
2299        /* FIXME: this is for backwards compatibility with 2.4 */
2300        if (iocb->ki_flags & IOCB_APPEND)
2301                iocb->ki_pos = i_size_read(inode);
2302
2303        pos = iocb->ki_pos;
2304
2305        if (limit != RLIM_INFINITY) {
2306                if (iocb->ki_pos >= limit) {
2307                        send_sig(SIGXFSZ, current, 0);
2308                        return -EFBIG;
2309                }
2310                iov_iter_truncate(from, limit - (unsigned long)pos);
2311        }
2312
2313        /*
2314         * LFS rule
2315         */
2316        if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2317                                !(file->f_flags & O_LARGEFILE))) {
2318                if (pos >= MAX_NON_LFS)
2319                        return -EFBIG;
2320                iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2321        }
2322
2323        /*
2324         * Are we about to exceed the fs block limit ?
2325         *
2326         * If we have written data it becomes a short write.  If we have
2327         * exceeded without writing data we send a signal and return EFBIG.
2328         * Linus frestrict idea will clean these up nicely..
2329         */
2330        if (unlikely(pos >= inode->i_sb->s_maxbytes))
2331                return -EFBIG;
2332
2333        iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2334        return iov_iter_count(from);
2335}
2336EXPORT_SYMBOL(generic_write_checks);
2337
2338int pagecache_write_begin(struct file *file, struct address_space *mapping,
2339                                loff_t pos, unsigned len, unsigned flags,
2340                                struct page **pagep, void **fsdata)
2341{
2342        const struct address_space_operations *aops = mapping->a_ops;
2343
2344        return aops->write_begin(file, mapping, pos, len, flags,
2345                                                        pagep, fsdata);
2346}
2347EXPORT_SYMBOL(pagecache_write_begin);
2348
2349int pagecache_write_end(struct file *file, struct address_space *mapping,
2350                                loff_t pos, unsigned len, unsigned copied,
2351                                struct page *page, void *fsdata)
2352{
2353        const struct address_space_operations *aops = mapping->a_ops;
2354
2355        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2356}
2357EXPORT_SYMBOL(pagecache_write_end);
2358
2359ssize_t
2360generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2361{
2362        struct file     *file = iocb->ki_filp;
2363        struct address_space *mapping = file->f_mapping;
2364        struct inode    *inode = mapping->host;
2365        ssize_t         written;
2366        size_t          write_len;
2367        pgoff_t         end;
2368        struct iov_iter data;
2369
2370        write_len = iov_iter_count(from);
2371        end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2372
2373        written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2374        if (written)
2375                goto out;
2376
2377        /*
2378         * After a write we want buffered reads to be sure to go to disk to get
2379         * the new data.  We invalidate clean cached page from the region we're
2380         * about to write.  We do this *before* the write so that we can return
2381         * without clobbering -EIOCBQUEUED from ->direct_IO().
2382         */
2383        if (mapping->nrpages) {
2384                written = invalidate_inode_pages2_range(mapping,
2385                                        pos >> PAGE_CACHE_SHIFT, end);
2386                /*
2387                 * If a page can not be invalidated, return 0 to fall back
2388                 * to buffered write.
2389                 */
2390                if (written) {
2391                        if (written == -EBUSY)
2392                                return 0;
2393                        goto out;
2394                }
2395        }
2396
2397        data = *from;
2398        written = mapping->a_ops->direct_IO(iocb, &data, pos);
2399
2400        /*
2401         * Finally, try again to invalidate clean pages which might have been
2402         * cached by non-direct readahead, or faulted in by get_user_pages()
2403         * if the source of the write was an mmap'ed region of the file
2404         * we're writing.  Either one is a pretty crazy thing to do,
2405         * so we don't support it 100%.  If this invalidation
2406         * fails, tough, the write still worked...
2407         */
2408        if (mapping->nrpages) {
2409                invalidate_inode_pages2_range(mapping,
2410                                              pos >> PAGE_CACHE_SHIFT, end);
2411        }
2412
2413        if (written > 0) {
2414                pos += written;
2415                iov_iter_advance(from, written);
2416                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2417                        i_size_write(inode, pos);
2418                        mark_inode_dirty(inode);
2419                }
2420                iocb->ki_pos = pos;
2421        }
2422out:
2423        return written;
2424}
2425EXPORT_SYMBOL(generic_file_direct_write);
2426
2427/*
2428 * Find or create a page at the given pagecache position. Return the locked
2429 * page. This function is specifically for buffered writes.
2430 */
2431struct page *grab_cache_page_write_begin(struct address_space *mapping,
2432                                        pgoff_t index, unsigned flags)
2433{
2434        struct page *page;
2435        int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2436
2437        if (flags & AOP_FLAG_NOFS)
2438                fgp_flags |= FGP_NOFS;
2439
2440        page = pagecache_get_page(mapping, index, fgp_flags,
2441                        mapping_gfp_mask(mapping));
2442        if (page)
2443                wait_for_stable_page(page);
2444
2445        return page;
2446}
2447EXPORT_SYMBOL(grab_cache_page_write_begin);
2448
2449ssize_t generic_perform_write(struct file *file,
2450                                struct iov_iter *i, loff_t pos)
2451{
2452        struct address_space *mapping = file->f_mapping;
2453        const struct address_space_operations *a_ops = mapping->a_ops;
2454        long status = 0;
2455        ssize_t written = 0;
2456        unsigned int flags = 0;
2457
2458        /*
2459         * Copies from kernel address space cannot fail (NFSD is a big user).
2460         */
2461        if (!iter_is_iovec(i))
2462                flags |= AOP_FLAG_UNINTERRUPTIBLE;
2463
2464        do {
2465                struct page *page;
2466                unsigned long offset;   /* Offset into pagecache page */
2467                unsigned long bytes;    /* Bytes to write to page */
2468                size_t copied;          /* Bytes copied from user */
2469                void *fsdata;
2470
2471                offset = (pos & (PAGE_CACHE_SIZE - 1));
2472                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2473                                                iov_iter_count(i));
2474
2475again:
2476                /*
2477                 * Bring in the user page that we will copy from _first_.
2478                 * Otherwise there's a nasty deadlock on copying from the
2479                 * same page as we're writing to, without it being marked
2480                 * up-to-date.
2481                 *
2482                 * Not only is this an optimisation, but it is also required
2483                 * to check that the address is actually valid, when atomic
2484                 * usercopies are used, below.
2485                 */
2486                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2487                        status = -EFAULT;
2488                        break;
2489                }
2490
2491                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2492                                                &page, &fsdata);
2493                if (unlikely(status < 0))
2494                        break;
2495
2496                if (mapping_writably_mapped(mapping))
2497                        flush_dcache_page(page);
2498
2499                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2500                flush_dcache_page(page);
2501
2502                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2503                                                page, fsdata);
2504                if (unlikely(status < 0))
2505                        break;
2506                copied = status;
2507
2508                cond_resched();
2509
2510                iov_iter_advance(i, copied);
2511                if (unlikely(copied == 0)) {
2512                        /*
2513                         * If we were unable to copy any data at all, we must
2514                         * fall back to a single segment length write.
2515                         *
2516                         * If we didn't fallback here, we could livelock
2517                         * because not all segments in the iov can be copied at
2518                         * once without a pagefault.
2519                         */
2520                        bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2521                                                iov_iter_single_seg_count(i));
2522                        goto again;
2523                }
2524                pos += copied;
2525                written += copied;
2526
2527                balance_dirty_pages_ratelimited(mapping);
2528                if (fatal_signal_pending(current)) {
2529                        status = -EINTR;
2530                        break;
2531                }
2532        } while (iov_iter_count(i));
2533
2534        return written ? written : status;
2535}
2536EXPORT_SYMBOL(generic_perform_write);
2537
2538/**
2539 * __generic_file_write_iter - write data to a file
2540 * @iocb:       IO state structure (file, offset, etc.)
2541 * @from:       iov_iter with data to write
2542 *
2543 * This function does all the work needed for actually writing data to a
2544 * file. It does all basic checks, removes SUID from the file, updates
2545 * modification times and calls proper subroutines depending on whether we
2546 * do direct IO or a standard buffered write.
2547 *
2548 * It expects i_mutex to be grabbed unless we work on a block device or similar
2549 * object which does not need locking at all.
2550 *
2551 * This function does *not* take care of syncing data in case of O_SYNC write.
2552 * A caller has to handle it. This is mainly due to the fact that we want to
2553 * avoid syncing under i_mutex.
2554 */
2555ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2556{
2557        struct file *file = iocb->ki_filp;
2558        struct address_space * mapping = file->f_mapping;
2559        struct inode    *inode = mapping->host;
2560        ssize_t         written = 0;
2561        ssize_t         err;
2562        ssize_t         status;
2563
2564        /* We can write back this queue in page reclaim */
2565        current->backing_dev_info = inode_to_bdi(inode);
2566        err = file_remove_privs(file);
2567        if (err)
2568                goto out;
2569
2570        err = file_update_time(file);
2571        if (err)
2572                goto out;
2573
2574        if (iocb->ki_flags & IOCB_DIRECT) {
2575                loff_t pos, endbyte;
2576
2577                written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2578                /*
2579                 * If the write stopped short of completing, fall back to
2580                 * buffered writes.  Some filesystems do this for writes to
2581                 * holes, for example.  For DAX files, a buffered write will
2582                 * not succeed (even if it did, DAX does not handle dirty
2583                 * page-cache pages correctly).
2584                 */
2585                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2586                        goto out;
2587
2588                status = generic_perform_write(file, from, pos = iocb->ki_pos);
2589                /*
2590                 * If generic_perform_write() returned a synchronous error
2591                 * then we want to return the number of bytes which were
2592                 * direct-written, or the error code if that was zero.  Note
2593                 * that this differs from normal direct-io semantics, which
2594                 * will return -EFOO even if some bytes were written.
2595                 */
2596                if (unlikely(status < 0)) {
2597                        err = status;
2598                        goto out;
2599                }
2600                /*
2601                 * We need to ensure that the page cache pages are written to
2602                 * disk and invalidated to preserve the expected O_DIRECT
2603                 * semantics.
2604                 */
2605                endbyte = pos + status - 1;
2606                err = filemap_write_and_wait_range(mapping, pos, endbyte);
2607                if (err == 0) {
2608                        iocb->ki_pos = endbyte + 1;
2609                        written += status;
2610                        invalidate_mapping_pages(mapping,
2611                                                 pos >> PAGE_CACHE_SHIFT,
2612                                                 endbyte >> PAGE_CACHE_SHIFT);
2613                } else {
2614                        /*
2615                         * We don't know how much we wrote, so just return
2616                         * the number of bytes which were direct-written
2617                         */
2618                }
2619        } else {
2620                written = generic_perform_write(file, from, iocb->ki_pos);
2621                if (likely(written > 0))
2622                        iocb->ki_pos += written;
2623        }
2624out:
2625        current->backing_dev_info = NULL;
2626        return written ? written : err;
2627}
2628EXPORT_SYMBOL(__generic_file_write_iter);
2629
2630/**
2631 * generic_file_write_iter - write data to a file
2632 * @iocb:       IO state structure
2633 * @from:       iov_iter with data to write
2634 *
2635 * This is a wrapper around __generic_file_write_iter() to be used by most
2636 * filesystems. It takes care of syncing the file in case of O_SYNC file
2637 * and acquires i_mutex as needed.
2638 */
2639ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2640{
2641        struct file *file = iocb->ki_filp;
2642        struct inode *inode = file->f_mapping->host;
2643        ssize_t ret;
2644
2645        mutex_lock(&inode->i_mutex);
2646        ret = generic_write_checks(iocb, from);
2647        if (ret > 0)
2648                ret = __generic_file_write_iter(iocb, from);
2649        mutex_unlock(&inode->i_mutex);
2650
2651        if (ret > 0) {
2652                ssize_t err;
2653
2654                err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2655                if (err < 0)
2656                        ret = err;
2657        }
2658        return ret;
2659}
2660EXPORT_SYMBOL(generic_file_write_iter);
2661
2662/**
2663 * try_to_release_page() - release old fs-specific metadata on a page
2664 *
2665 * @page: the page which the kernel is trying to free
2666 * @gfp_mask: memory allocation flags (and I/O mode)
2667 *
2668 * The address_space is to try to release any data against the page
2669 * (presumably at page->private).  If the release was successful, return `1'.
2670 * Otherwise return zero.
2671 *
2672 * This may also be called if PG_fscache is set on a page, indicating that the
2673 * page is known to the local caching routines.
2674 *
2675 * The @gfp_mask argument specifies whether I/O may be performed to release
2676 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2677 *
2678 */
2679int try_to_release_page(struct page *page, gfp_t gfp_mask)
2680{
2681        struct address_space * const mapping = page->mapping;
2682
2683        BUG_ON(!PageLocked(page));
2684        if (PageWriteback(page))
2685                return 0;
2686
2687        if (mapping && mapping->a_ops->releasepage)
2688                return mapping->a_ops->releasepage(page, gfp_mask);
2689        return try_to_free_buffers(page);
2690}
2691
2692EXPORT_SYMBOL(try_to_release_page);
2693