linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
  60#include <linux/migrate.h>
  61#include <linux/string.h>
  62#include <linux/dma-debug.h>
  63#include <linux/debugfs.h>
  64
  65#include <asm/io.h>
  66#include <asm/pgalloc.h>
  67#include <asm/uaccess.h>
  68#include <asm/tlb.h>
  69#include <asm/tlbflush.h>
  70#include <asm/pgtable.h>
  71
  72#include "internal.h"
  73
  74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  76#endif
  77
  78#ifndef CONFIG_NEED_MULTIPLE_NODES
  79/* use the per-pgdat data instead for discontigmem - mbligh */
  80unsigned long max_mapnr;
  81struct page *mem_map;
  82
  83EXPORT_SYMBOL(max_mapnr);
  84EXPORT_SYMBOL(mem_map);
  85#endif
  86
  87/*
  88 * A number of key systems in x86 including ioremap() rely on the assumption
  89 * that high_memory defines the upper bound on direct map memory, then end
  90 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  92 * and ZONE_HIGHMEM.
  93 */
  94void * high_memory;
  95
  96EXPORT_SYMBOL(high_memory);
  97
  98/*
  99 * Randomize the address space (stacks, mmaps, brk, etc.).
 100 *
 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 102 *   as ancient (libc5 based) binaries can segfault. )
 103 */
 104int randomize_va_space __read_mostly =
 105#ifdef CONFIG_COMPAT_BRK
 106                                        1;
 107#else
 108                                        2;
 109#endif
 110
 111static int __init disable_randmaps(char *s)
 112{
 113        randomize_va_space = 0;
 114        return 1;
 115}
 116__setup("norandmaps", disable_randmaps);
 117
 118unsigned long zero_pfn __read_mostly;
 119unsigned long highest_memmap_pfn __read_mostly;
 120
 121EXPORT_SYMBOL(zero_pfn);
 122
 123/*
 124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 125 */
 126static int __init init_zero_pfn(void)
 127{
 128        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 129        return 0;
 130}
 131core_initcall(init_zero_pfn);
 132
 133
 134#if defined(SPLIT_RSS_COUNTING)
 135
 136void sync_mm_rss(struct mm_struct *mm)
 137{
 138        int i;
 139
 140        for (i = 0; i < NR_MM_COUNTERS; i++) {
 141                if (current->rss_stat.count[i]) {
 142                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 143                        current->rss_stat.count[i] = 0;
 144                }
 145        }
 146        current->rss_stat.events = 0;
 147}
 148
 149static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 150{
 151        struct task_struct *task = current;
 152
 153        if (likely(task->mm == mm))
 154                task->rss_stat.count[member] += val;
 155        else
 156                add_mm_counter(mm, member, val);
 157}
 158#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 159#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 160
 161/* sync counter once per 64 page faults */
 162#define TASK_RSS_EVENTS_THRESH  (64)
 163static void check_sync_rss_stat(struct task_struct *task)
 164{
 165        if (unlikely(task != current))
 166                return;
 167        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 168                sync_mm_rss(task->mm);
 169}
 170#else /* SPLIT_RSS_COUNTING */
 171
 172#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 173#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 174
 175static void check_sync_rss_stat(struct task_struct *task)
 176{
 177}
 178
 179#endif /* SPLIT_RSS_COUNTING */
 180
 181#ifdef HAVE_GENERIC_MMU_GATHER
 182
 183static int tlb_next_batch(struct mmu_gather *tlb)
 184{
 185        struct mmu_gather_batch *batch;
 186
 187        batch = tlb->active;
 188        if (batch->next) {
 189                tlb->active = batch->next;
 190                return 1;
 191        }
 192
 193        if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 194                return 0;
 195
 196        batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 197        if (!batch)
 198                return 0;
 199
 200        tlb->batch_count++;
 201        batch->next = NULL;
 202        batch->nr   = 0;
 203        batch->max  = MAX_GATHER_BATCH;
 204
 205        tlb->active->next = batch;
 206        tlb->active = batch;
 207
 208        return 1;
 209}
 210
 211/* tlb_gather_mmu
 212 *      Called to initialize an (on-stack) mmu_gather structure for page-table
 213 *      tear-down from @mm. The @fullmm argument is used when @mm is without
 214 *      users and we're going to destroy the full address space (exit/execve).
 215 */
 216void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 217{
 218        tlb->mm = mm;
 219
 220        /* Is it from 0 to ~0? */
 221        tlb->fullmm     = !(start | (end+1));
 222        tlb->need_flush_all = 0;
 223        tlb->local.next = NULL;
 224        tlb->local.nr   = 0;
 225        tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 226        tlb->active     = &tlb->local;
 227        tlb->batch_count = 0;
 228
 229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 230        tlb->batch = NULL;
 231#endif
 232
 233        __tlb_reset_range(tlb);
 234}
 235
 236static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 237{
 238        if (!tlb->end)
 239                return;
 240
 241        tlb_flush(tlb);
 242        mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 243#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 244        tlb_table_flush(tlb);
 245#endif
 246        __tlb_reset_range(tlb);
 247}
 248
 249static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 250{
 251        struct mmu_gather_batch *batch;
 252
 253        for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 254                free_pages_and_swap_cache(batch->pages, batch->nr);
 255                batch->nr = 0;
 256        }
 257        tlb->active = &tlb->local;
 258}
 259
 260void tlb_flush_mmu(struct mmu_gather *tlb)
 261{
 262        tlb_flush_mmu_tlbonly(tlb);
 263        tlb_flush_mmu_free(tlb);
 264}
 265
 266/* tlb_finish_mmu
 267 *      Called at the end of the shootdown operation to free up any resources
 268 *      that were required.
 269 */
 270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 271{
 272        struct mmu_gather_batch *batch, *next;
 273
 274        tlb_flush_mmu(tlb);
 275
 276        /* keep the page table cache within bounds */
 277        check_pgt_cache();
 278
 279        for (batch = tlb->local.next; batch; batch = next) {
 280                next = batch->next;
 281                free_pages((unsigned long)batch, 0);
 282        }
 283        tlb->local.next = NULL;
 284}
 285
 286/* __tlb_remove_page
 287 *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 288 *      handling the additional races in SMP caused by other CPUs caching valid
 289 *      mappings in their TLBs. Returns the number of free page slots left.
 290 *      When out of page slots we must call tlb_flush_mmu().
 291 */
 292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 293{
 294        struct mmu_gather_batch *batch;
 295
 296        VM_BUG_ON(!tlb->end);
 297
 298        batch = tlb->active;
 299        batch->pages[batch->nr++] = page;
 300        if (batch->nr == batch->max) {
 301                if (!tlb_next_batch(tlb))
 302                        return 0;
 303                batch = tlb->active;
 304        }
 305        VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 306
 307        return batch->max - batch->nr;
 308}
 309
 310#endif /* HAVE_GENERIC_MMU_GATHER */
 311
 312#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 313
 314/*
 315 * See the comment near struct mmu_table_batch.
 316 */
 317
 318static void tlb_remove_table_smp_sync(void *arg)
 319{
 320        /* Simply deliver the interrupt */
 321}
 322
 323static void tlb_remove_table_one(void *table)
 324{
 325        /*
 326         * This isn't an RCU grace period and hence the page-tables cannot be
 327         * assumed to be actually RCU-freed.
 328         *
 329         * It is however sufficient for software page-table walkers that rely on
 330         * IRQ disabling. See the comment near struct mmu_table_batch.
 331         */
 332        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 333        __tlb_remove_table(table);
 334}
 335
 336static void tlb_remove_table_rcu(struct rcu_head *head)
 337{
 338        struct mmu_table_batch *batch;
 339        int i;
 340
 341        batch = container_of(head, struct mmu_table_batch, rcu);
 342
 343        for (i = 0; i < batch->nr; i++)
 344                __tlb_remove_table(batch->tables[i]);
 345
 346        free_page((unsigned long)batch);
 347}
 348
 349void tlb_table_flush(struct mmu_gather *tlb)
 350{
 351        struct mmu_table_batch **batch = &tlb->batch;
 352
 353        if (*batch) {
 354                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 355                *batch = NULL;
 356        }
 357}
 358
 359void tlb_remove_table(struct mmu_gather *tlb, void *table)
 360{
 361        struct mmu_table_batch **batch = &tlb->batch;
 362
 363        /*
 364         * When there's less then two users of this mm there cannot be a
 365         * concurrent page-table walk.
 366         */
 367        if (atomic_read(&tlb->mm->mm_users) < 2) {
 368                __tlb_remove_table(table);
 369                return;
 370        }
 371
 372        if (*batch == NULL) {
 373                *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 374                if (*batch == NULL) {
 375                        tlb_remove_table_one(table);
 376                        return;
 377                }
 378                (*batch)->nr = 0;
 379        }
 380        (*batch)->tables[(*batch)->nr++] = table;
 381        if ((*batch)->nr == MAX_TABLE_BATCH)
 382                tlb_table_flush(tlb);
 383}
 384
 385#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 386
 387/*
 388 * Note: this doesn't free the actual pages themselves. That
 389 * has been handled earlier when unmapping all the memory regions.
 390 */
 391static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 392                           unsigned long addr)
 393{
 394        pgtable_t token = pmd_pgtable(*pmd);
 395        pmd_clear(pmd);
 396        pte_free_tlb(tlb, token, addr);
 397        atomic_long_dec(&tlb->mm->nr_ptes);
 398}
 399
 400static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 401                                unsigned long addr, unsigned long end,
 402                                unsigned long floor, unsigned long ceiling)
 403{
 404        pmd_t *pmd;
 405        unsigned long next;
 406        unsigned long start;
 407
 408        start = addr;
 409        pmd = pmd_offset(pud, addr);
 410        do {
 411                next = pmd_addr_end(addr, end);
 412                if (pmd_none_or_clear_bad(pmd))
 413                        continue;
 414                free_pte_range(tlb, pmd, addr);
 415        } while (pmd++, addr = next, addr != end);
 416
 417        start &= PUD_MASK;
 418        if (start < floor)
 419                return;
 420        if (ceiling) {
 421                ceiling &= PUD_MASK;
 422                if (!ceiling)
 423                        return;
 424        }
 425        if (end - 1 > ceiling - 1)
 426                return;
 427
 428        pmd = pmd_offset(pud, start);
 429        pud_clear(pud);
 430        pmd_free_tlb(tlb, pmd, start);
 431        mm_dec_nr_pmds(tlb->mm);
 432}
 433
 434static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 435                                unsigned long addr, unsigned long end,
 436                                unsigned long floor, unsigned long ceiling)
 437{
 438        pud_t *pud;
 439        unsigned long next;
 440        unsigned long start;
 441
 442        start = addr;
 443        pud = pud_offset(pgd, addr);
 444        do {
 445                next = pud_addr_end(addr, end);
 446                if (pud_none_or_clear_bad(pud))
 447                        continue;
 448                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 449        } while (pud++, addr = next, addr != end);
 450
 451        start &= PGDIR_MASK;
 452        if (start < floor)
 453                return;
 454        if (ceiling) {
 455                ceiling &= PGDIR_MASK;
 456                if (!ceiling)
 457                        return;
 458        }
 459        if (end - 1 > ceiling - 1)
 460                return;
 461
 462        pud = pud_offset(pgd, start);
 463        pgd_clear(pgd);
 464        pud_free_tlb(tlb, pud, start);
 465}
 466
 467/*
 468 * This function frees user-level page tables of a process.
 469 */
 470void free_pgd_range(struct mmu_gather *tlb,
 471                        unsigned long addr, unsigned long end,
 472                        unsigned long floor, unsigned long ceiling)
 473{
 474        pgd_t *pgd;
 475        unsigned long next;
 476
 477        /*
 478         * The next few lines have given us lots of grief...
 479         *
 480         * Why are we testing PMD* at this top level?  Because often
 481         * there will be no work to do at all, and we'd prefer not to
 482         * go all the way down to the bottom just to discover that.
 483         *
 484         * Why all these "- 1"s?  Because 0 represents both the bottom
 485         * of the address space and the top of it (using -1 for the
 486         * top wouldn't help much: the masks would do the wrong thing).
 487         * The rule is that addr 0 and floor 0 refer to the bottom of
 488         * the address space, but end 0 and ceiling 0 refer to the top
 489         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 490         * that end 0 case should be mythical).
 491         *
 492         * Wherever addr is brought up or ceiling brought down, we must
 493         * be careful to reject "the opposite 0" before it confuses the
 494         * subsequent tests.  But what about where end is brought down
 495         * by PMD_SIZE below? no, end can't go down to 0 there.
 496         *
 497         * Whereas we round start (addr) and ceiling down, by different
 498         * masks at different levels, in order to test whether a table
 499         * now has no other vmas using it, so can be freed, we don't
 500         * bother to round floor or end up - the tests don't need that.
 501         */
 502
 503        addr &= PMD_MASK;
 504        if (addr < floor) {
 505                addr += PMD_SIZE;
 506                if (!addr)
 507                        return;
 508        }
 509        if (ceiling) {
 510                ceiling &= PMD_MASK;
 511                if (!ceiling)
 512                        return;
 513        }
 514        if (end - 1 > ceiling - 1)
 515                end -= PMD_SIZE;
 516        if (addr > end - 1)
 517                return;
 518
 519        pgd = pgd_offset(tlb->mm, addr);
 520        do {
 521                next = pgd_addr_end(addr, end);
 522                if (pgd_none_or_clear_bad(pgd))
 523                        continue;
 524                free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 525        } while (pgd++, addr = next, addr != end);
 526}
 527
 528void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 529                unsigned long floor, unsigned long ceiling)
 530{
 531        while (vma) {
 532                struct vm_area_struct *next = vma->vm_next;
 533                unsigned long addr = vma->vm_start;
 534
 535                /*
 536                 * Hide vma from rmap and truncate_pagecache before freeing
 537                 * pgtables
 538                 */
 539                unlink_anon_vmas(vma);
 540                unlink_file_vma(vma);
 541
 542                if (is_vm_hugetlb_page(vma)) {
 543                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 544                                floor, next? next->vm_start: ceiling);
 545                } else {
 546                        /*
 547                         * Optimization: gather nearby vmas into one call down
 548                         */
 549                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 550                               && !is_vm_hugetlb_page(next)) {
 551                                vma = next;
 552                                next = vma->vm_next;
 553                                unlink_anon_vmas(vma);
 554                                unlink_file_vma(vma);
 555                        }
 556                        free_pgd_range(tlb, addr, vma->vm_end,
 557                                floor, next? next->vm_start: ceiling);
 558                }
 559                vma = next;
 560        }
 561}
 562
 563int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 564                pmd_t *pmd, unsigned long address)
 565{
 566        spinlock_t *ptl;
 567        pgtable_t new = pte_alloc_one(mm, address);
 568        int wait_split_huge_page;
 569        if (!new)
 570                return -ENOMEM;
 571
 572        /*
 573         * Ensure all pte setup (eg. pte page lock and page clearing) are
 574         * visible before the pte is made visible to other CPUs by being
 575         * put into page tables.
 576         *
 577         * The other side of the story is the pointer chasing in the page
 578         * table walking code (when walking the page table without locking;
 579         * ie. most of the time). Fortunately, these data accesses consist
 580         * of a chain of data-dependent loads, meaning most CPUs (alpha
 581         * being the notable exception) will already guarantee loads are
 582         * seen in-order. See the alpha page table accessors for the
 583         * smp_read_barrier_depends() barriers in page table walking code.
 584         */
 585        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 586
 587        ptl = pmd_lock(mm, pmd);
 588        wait_split_huge_page = 0;
 589        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 590                atomic_long_inc(&mm->nr_ptes);
 591                pmd_populate(mm, pmd, new);
 592                new = NULL;
 593        } else if (unlikely(pmd_trans_splitting(*pmd)))
 594                wait_split_huge_page = 1;
 595        spin_unlock(ptl);
 596        if (new)
 597                pte_free(mm, new);
 598        if (wait_split_huge_page)
 599                wait_split_huge_page(vma->anon_vma, pmd);
 600        return 0;
 601}
 602
 603int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 604{
 605        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 606        if (!new)
 607                return -ENOMEM;
 608
 609        smp_wmb(); /* See comment in __pte_alloc */
 610
 611        spin_lock(&init_mm.page_table_lock);
 612        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 613                pmd_populate_kernel(&init_mm, pmd, new);
 614                new = NULL;
 615        } else
 616                VM_BUG_ON(pmd_trans_splitting(*pmd));
 617        spin_unlock(&init_mm.page_table_lock);
 618        if (new)
 619                pte_free_kernel(&init_mm, new);
 620        return 0;
 621}
 622
 623static inline void init_rss_vec(int *rss)
 624{
 625        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 626}
 627
 628static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 629{
 630        int i;
 631
 632        if (current->mm == mm)
 633                sync_mm_rss(mm);
 634        for (i = 0; i < NR_MM_COUNTERS; i++)
 635                if (rss[i])
 636                        add_mm_counter(mm, i, rss[i]);
 637}
 638
 639/*
 640 * This function is called to print an error when a bad pte
 641 * is found. For example, we might have a PFN-mapped pte in
 642 * a region that doesn't allow it.
 643 *
 644 * The calling function must still handle the error.
 645 */
 646static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 647                          pte_t pte, struct page *page)
 648{
 649        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 650        pud_t *pud = pud_offset(pgd, addr);
 651        pmd_t *pmd = pmd_offset(pud, addr);
 652        struct address_space *mapping;
 653        pgoff_t index;
 654        static unsigned long resume;
 655        static unsigned long nr_shown;
 656        static unsigned long nr_unshown;
 657
 658        /*
 659         * Allow a burst of 60 reports, then keep quiet for that minute;
 660         * or allow a steady drip of one report per second.
 661         */
 662        if (nr_shown == 60) {
 663                if (time_before(jiffies, resume)) {
 664                        nr_unshown++;
 665                        return;
 666                }
 667                if (nr_unshown) {
 668                        printk(KERN_ALERT
 669                                "BUG: Bad page map: %lu messages suppressed\n",
 670                                nr_unshown);
 671                        nr_unshown = 0;
 672                }
 673                nr_shown = 0;
 674        }
 675        if (nr_shown++ == 0)
 676                resume = jiffies + 60 * HZ;
 677
 678        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 679        index = linear_page_index(vma, addr);
 680
 681        printk(KERN_ALERT
 682                "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 683                current->comm,
 684                (long long)pte_val(pte), (long long)pmd_val(*pmd));
 685        if (page)
 686                dump_page(page, "bad pte");
 687        printk(KERN_ALERT
 688                "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 689                (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 690        /*
 691         * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 692         */
 693        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 694                 vma->vm_file,
 695                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 696                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 697                 mapping ? mapping->a_ops->readpage : NULL);
 698        dump_stack();
 699        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 700}
 701
 702/*
 703 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 704 *
 705 * "Special" mappings do not wish to be associated with a "struct page" (either
 706 * it doesn't exist, or it exists but they don't want to touch it). In this
 707 * case, NULL is returned here. "Normal" mappings do have a struct page.
 708 *
 709 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 710 * pte bit, in which case this function is trivial. Secondly, an architecture
 711 * may not have a spare pte bit, which requires a more complicated scheme,
 712 * described below.
 713 *
 714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 715 * special mapping (even if there are underlying and valid "struct pages").
 716 * COWed pages of a VM_PFNMAP are always normal.
 717 *
 718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 721 * mapping will always honor the rule
 722 *
 723 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 724 *
 725 * And for normal mappings this is false.
 726 *
 727 * This restricts such mappings to be a linear translation from virtual address
 728 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 729 * as the vma is not a COW mapping; in that case, we know that all ptes are
 730 * special (because none can have been COWed).
 731 *
 732 *
 733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 734 *
 735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 736 * page" backing, however the difference is that _all_ pages with a struct
 737 * page (that is, those where pfn_valid is true) are refcounted and considered
 738 * normal pages by the VM. The disadvantage is that pages are refcounted
 739 * (which can be slower and simply not an option for some PFNMAP users). The
 740 * advantage is that we don't have to follow the strict linearity rule of
 741 * PFNMAP mappings in order to support COWable mappings.
 742 *
 743 */
 744#ifdef __HAVE_ARCH_PTE_SPECIAL
 745# define HAVE_PTE_SPECIAL 1
 746#else
 747# define HAVE_PTE_SPECIAL 0
 748#endif
 749struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 750                                pte_t pte)
 751{
 752        unsigned long pfn = pte_pfn(pte);
 753
 754        if (HAVE_PTE_SPECIAL) {
 755                if (likely(!pte_special(pte)))
 756                        goto check_pfn;
 757                if (vma->vm_ops && vma->vm_ops->find_special_page)
 758                        return vma->vm_ops->find_special_page(vma, addr);
 759                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 760                        return NULL;
 761                if (!is_zero_pfn(pfn))
 762                        print_bad_pte(vma, addr, pte, NULL);
 763                return NULL;
 764        }
 765
 766        /* !HAVE_PTE_SPECIAL case follows: */
 767
 768        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 769                if (vma->vm_flags & VM_MIXEDMAP) {
 770                        if (!pfn_valid(pfn))
 771                                return NULL;
 772                        goto out;
 773                } else {
 774                        unsigned long off;
 775                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 776                        if (pfn == vma->vm_pgoff + off)
 777                                return NULL;
 778                        if (!is_cow_mapping(vma->vm_flags))
 779                                return NULL;
 780                }
 781        }
 782
 783        if (is_zero_pfn(pfn))
 784                return NULL;
 785check_pfn:
 786        if (unlikely(pfn > highest_memmap_pfn)) {
 787                print_bad_pte(vma, addr, pte, NULL);
 788                return NULL;
 789        }
 790
 791        /*
 792         * NOTE! We still have PageReserved() pages in the page tables.
 793         * eg. VDSO mappings can cause them to exist.
 794         */
 795out:
 796        return pfn_to_page(pfn);
 797}
 798
 799/*
 800 * copy one vm_area from one task to the other. Assumes the page tables
 801 * already present in the new task to be cleared in the whole range
 802 * covered by this vma.
 803 */
 804
 805static inline unsigned long
 806copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 807                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 808                unsigned long addr, int *rss)
 809{
 810        unsigned long vm_flags = vma->vm_flags;
 811        pte_t pte = *src_pte;
 812        struct page *page;
 813
 814        /* pte contains position in swap or file, so copy. */
 815        if (unlikely(!pte_present(pte))) {
 816                swp_entry_t entry = pte_to_swp_entry(pte);
 817
 818                if (likely(!non_swap_entry(entry))) {
 819                        if (swap_duplicate(entry) < 0)
 820                                return entry.val;
 821
 822                        /* make sure dst_mm is on swapoff's mmlist. */
 823                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 824                                spin_lock(&mmlist_lock);
 825                                if (list_empty(&dst_mm->mmlist))
 826                                        list_add(&dst_mm->mmlist,
 827                                                        &src_mm->mmlist);
 828                                spin_unlock(&mmlist_lock);
 829                        }
 830                        rss[MM_SWAPENTS]++;
 831                } else if (is_migration_entry(entry)) {
 832                        page = migration_entry_to_page(entry);
 833
 834                        if (PageAnon(page))
 835                                rss[MM_ANONPAGES]++;
 836                        else
 837                                rss[MM_FILEPAGES]++;
 838
 839                        if (is_write_migration_entry(entry) &&
 840                                        is_cow_mapping(vm_flags)) {
 841                                /*
 842                                 * COW mappings require pages in both
 843                                 * parent and child to be set to read.
 844                                 */
 845                                make_migration_entry_read(&entry);
 846                                pte = swp_entry_to_pte(entry);
 847                                if (pte_swp_soft_dirty(*src_pte))
 848                                        pte = pte_swp_mksoft_dirty(pte);
 849                                set_pte_at(src_mm, addr, src_pte, pte);
 850                        }
 851                }
 852                goto out_set_pte;
 853        }
 854
 855        /*
 856         * If it's a COW mapping, write protect it both
 857         * in the parent and the child
 858         */
 859        if (is_cow_mapping(vm_flags)) {
 860                ptep_set_wrprotect(src_mm, addr, src_pte);
 861                pte = pte_wrprotect(pte);
 862        }
 863
 864        /*
 865         * If it's a shared mapping, mark it clean in
 866         * the child
 867         */
 868        if (vm_flags & VM_SHARED)
 869                pte = pte_mkclean(pte);
 870        pte = pte_mkold(pte);
 871
 872        page = vm_normal_page(vma, addr, pte);
 873        if (page) {
 874                get_page(page);
 875                page_dup_rmap(page);
 876                if (PageAnon(page))
 877                        rss[MM_ANONPAGES]++;
 878                else
 879                        rss[MM_FILEPAGES]++;
 880        }
 881
 882out_set_pte:
 883        set_pte_at(dst_mm, addr, dst_pte, pte);
 884        return 0;
 885}
 886
 887static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 888                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 889                   unsigned long addr, unsigned long end)
 890{
 891        pte_t *orig_src_pte, *orig_dst_pte;
 892        pte_t *src_pte, *dst_pte;
 893        spinlock_t *src_ptl, *dst_ptl;
 894        int progress = 0;
 895        int rss[NR_MM_COUNTERS];
 896        swp_entry_t entry = (swp_entry_t){0};
 897
 898again:
 899        init_rss_vec(rss);
 900
 901        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 902        if (!dst_pte)
 903                return -ENOMEM;
 904        src_pte = pte_offset_map(src_pmd, addr);
 905        src_ptl = pte_lockptr(src_mm, src_pmd);
 906        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 907        orig_src_pte = src_pte;
 908        orig_dst_pte = dst_pte;
 909        arch_enter_lazy_mmu_mode();
 910
 911        do {
 912                /*
 913                 * We are holding two locks at this point - either of them
 914                 * could generate latencies in another task on another CPU.
 915                 */
 916                if (progress >= 32) {
 917                        progress = 0;
 918                        if (need_resched() ||
 919                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 920                                break;
 921                }
 922                if (pte_none(*src_pte)) {
 923                        progress++;
 924                        continue;
 925                }
 926                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 927                                                        vma, addr, rss);
 928                if (entry.val)
 929                        break;
 930                progress += 8;
 931        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 932
 933        arch_leave_lazy_mmu_mode();
 934        spin_unlock(src_ptl);
 935        pte_unmap(orig_src_pte);
 936        add_mm_rss_vec(dst_mm, rss);
 937        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 938        cond_resched();
 939
 940        if (entry.val) {
 941                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 942                        return -ENOMEM;
 943                progress = 0;
 944        }
 945        if (addr != end)
 946                goto again;
 947        return 0;
 948}
 949
 950static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 951                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 952                unsigned long addr, unsigned long end)
 953{
 954        pmd_t *src_pmd, *dst_pmd;
 955        unsigned long next;
 956
 957        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 958        if (!dst_pmd)
 959                return -ENOMEM;
 960        src_pmd = pmd_offset(src_pud, addr);
 961        do {
 962                next = pmd_addr_end(addr, end);
 963                if (pmd_trans_huge(*src_pmd)) {
 964                        int err;
 965                        VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 966                        err = copy_huge_pmd(dst_mm, src_mm,
 967                                            dst_pmd, src_pmd, addr, vma);
 968                        if (err == -ENOMEM)
 969                                return -ENOMEM;
 970                        if (!err)
 971                                continue;
 972                        /* fall through */
 973                }
 974                if (pmd_none_or_clear_bad(src_pmd))
 975                        continue;
 976                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 977                                                vma, addr, next))
 978                        return -ENOMEM;
 979        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 980        return 0;
 981}
 982
 983static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 984                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 985                unsigned long addr, unsigned long end)
 986{
 987        pud_t *src_pud, *dst_pud;
 988        unsigned long next;
 989
 990        dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 991        if (!dst_pud)
 992                return -ENOMEM;
 993        src_pud = pud_offset(src_pgd, addr);
 994        do {
 995                next = pud_addr_end(addr, end);
 996                if (pud_none_or_clear_bad(src_pud))
 997                        continue;
 998                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 999                                                vma, addr, next))
1000                        return -ENOMEM;
1001        } while (dst_pud++, src_pud++, addr = next, addr != end);
1002        return 0;
1003}
1004
1005int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006                struct vm_area_struct *vma)
1007{
1008        pgd_t *src_pgd, *dst_pgd;
1009        unsigned long next;
1010        unsigned long addr = vma->vm_start;
1011        unsigned long end = vma->vm_end;
1012        unsigned long mmun_start;       /* For mmu_notifiers */
1013        unsigned long mmun_end;         /* For mmu_notifiers */
1014        bool is_cow;
1015        int ret;
1016
1017        /*
1018         * Don't copy ptes where a page fault will fill them correctly.
1019         * Fork becomes much lighter when there are big shared or private
1020         * readonly mappings. The tradeoff is that copy_page_range is more
1021         * efficient than faulting.
1022         */
1023        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1024                        !vma->anon_vma)
1025                return 0;
1026
1027        if (is_vm_hugetlb_page(vma))
1028                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1029
1030        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1031                /*
1032                 * We do not free on error cases below as remove_vma
1033                 * gets called on error from higher level routine
1034                 */
1035                ret = track_pfn_copy(vma);
1036                if (ret)
1037                        return ret;
1038        }
1039
1040        /*
1041         * We need to invalidate the secondary MMU mappings only when
1042         * there could be a permission downgrade on the ptes of the
1043         * parent mm. And a permission downgrade will only happen if
1044         * is_cow_mapping() returns true.
1045         */
1046        is_cow = is_cow_mapping(vma->vm_flags);
1047        mmun_start = addr;
1048        mmun_end   = end;
1049        if (is_cow)
1050                mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1051                                                    mmun_end);
1052
1053        ret = 0;
1054        dst_pgd = pgd_offset(dst_mm, addr);
1055        src_pgd = pgd_offset(src_mm, addr);
1056        do {
1057                next = pgd_addr_end(addr, end);
1058                if (pgd_none_or_clear_bad(src_pgd))
1059                        continue;
1060                if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1061                                            vma, addr, next))) {
1062                        ret = -ENOMEM;
1063                        break;
1064                }
1065        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1066
1067        if (is_cow)
1068                mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1069        return ret;
1070}
1071
1072static unsigned long zap_pte_range(struct mmu_gather *tlb,
1073                                struct vm_area_struct *vma, pmd_t *pmd,
1074                                unsigned long addr, unsigned long end,
1075                                struct zap_details *details)
1076{
1077        struct mm_struct *mm = tlb->mm;
1078        int force_flush = 0;
1079        int rss[NR_MM_COUNTERS];
1080        spinlock_t *ptl;
1081        pte_t *start_pte;
1082        pte_t *pte;
1083        swp_entry_t entry;
1084
1085again:
1086        init_rss_vec(rss);
1087        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088        pte = start_pte;
1089        arch_enter_lazy_mmu_mode();
1090        do {
1091                pte_t ptent = *pte;
1092                if (pte_none(ptent)) {
1093                        continue;
1094                }
1095
1096                if (pte_present(ptent)) {
1097                        struct page *page;
1098
1099                        page = vm_normal_page(vma, addr, ptent);
1100                        if (unlikely(details) && page) {
1101                                /*
1102                                 * unmap_shared_mapping_pages() wants to
1103                                 * invalidate cache without truncating:
1104                                 * unmap shared but keep private pages.
1105                                 */
1106                                if (details->check_mapping &&
1107                                    details->check_mapping != page->mapping)
1108                                        continue;
1109                        }
1110                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1111                                                        tlb->fullmm);
1112                        tlb_remove_tlb_entry(tlb, pte, addr);
1113                        if (unlikely(!page))
1114                                continue;
1115                        if (PageAnon(page))
1116                                rss[MM_ANONPAGES]--;
1117                        else {
1118                                if (pte_dirty(ptent)) {
1119                                        force_flush = 1;
1120                                        set_page_dirty(page);
1121                                }
1122                                if (pte_young(ptent) &&
1123                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1124                                        mark_page_accessed(page);
1125                                rss[MM_FILEPAGES]--;
1126                        }
1127                        page_remove_rmap(page);
1128                        if (unlikely(page_mapcount(page) < 0))
1129                                print_bad_pte(vma, addr, ptent, page);
1130                        if (unlikely(!__tlb_remove_page(tlb, page))) {
1131                                force_flush = 1;
1132                                addr += PAGE_SIZE;
1133                                break;
1134                        }
1135                        continue;
1136                }
1137                /* If details->check_mapping, we leave swap entries. */
1138                if (unlikely(details))
1139                        continue;
1140
1141                entry = pte_to_swp_entry(ptent);
1142                if (!non_swap_entry(entry))
1143                        rss[MM_SWAPENTS]--;
1144                else if (is_migration_entry(entry)) {
1145                        struct page *page;
1146
1147                        page = migration_entry_to_page(entry);
1148
1149                        if (PageAnon(page))
1150                                rss[MM_ANONPAGES]--;
1151                        else
1152                                rss[MM_FILEPAGES]--;
1153                }
1154                if (unlikely(!free_swap_and_cache(entry)))
1155                        print_bad_pte(vma, addr, ptent, NULL);
1156                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1157        } while (pte++, addr += PAGE_SIZE, addr != end);
1158
1159        add_mm_rss_vec(mm, rss);
1160        arch_leave_lazy_mmu_mode();
1161
1162        /* Do the actual TLB flush before dropping ptl */
1163        if (force_flush)
1164                tlb_flush_mmu_tlbonly(tlb);
1165        pte_unmap_unlock(start_pte, ptl);
1166
1167        /*
1168         * If we forced a TLB flush (either due to running out of
1169         * batch buffers or because we needed to flush dirty TLB
1170         * entries before releasing the ptl), free the batched
1171         * memory too. Restart if we didn't do everything.
1172         */
1173        if (force_flush) {
1174                force_flush = 0;
1175                tlb_flush_mmu_free(tlb);
1176
1177                if (addr != end)
1178                        goto again;
1179        }
1180
1181        return addr;
1182}
1183
1184static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1185                                struct vm_area_struct *vma, pud_t *pud,
1186                                unsigned long addr, unsigned long end,
1187                                struct zap_details *details)
1188{
1189        pmd_t *pmd;
1190        unsigned long next;
1191
1192        pmd = pmd_offset(pud, addr);
1193        do {
1194                next = pmd_addr_end(addr, end);
1195                if (pmd_trans_huge(*pmd)) {
1196                        if (next - addr != HPAGE_PMD_SIZE) {
1197#ifdef CONFIG_DEBUG_VM
1198                                if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1199                                        pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1200                                                __func__, addr, end,
1201                                                vma->vm_start,
1202                                                vma->vm_end);
1203                                        BUG();
1204                                }
1205#endif
1206                                split_huge_page_pmd(vma, addr, pmd);
1207                        } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1208                                goto next;
1209                        /* fall through */
1210                }
1211                /*
1212                 * Here there can be other concurrent MADV_DONTNEED or
1213                 * trans huge page faults running, and if the pmd is
1214                 * none or trans huge it can change under us. This is
1215                 * because MADV_DONTNEED holds the mmap_sem in read
1216                 * mode.
1217                 */
1218                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1219                        goto next;
1220                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1221next:
1222                cond_resched();
1223        } while (pmd++, addr = next, addr != end);
1224
1225        return addr;
1226}
1227
1228static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1229                                struct vm_area_struct *vma, pgd_t *pgd,
1230                                unsigned long addr, unsigned long end,
1231                                struct zap_details *details)
1232{
1233        pud_t *pud;
1234        unsigned long next;
1235
1236        pud = pud_offset(pgd, addr);
1237        do {
1238                next = pud_addr_end(addr, end);
1239                if (pud_none_or_clear_bad(pud))
1240                        continue;
1241                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1242        } while (pud++, addr = next, addr != end);
1243
1244        return addr;
1245}
1246
1247static void unmap_page_range(struct mmu_gather *tlb,
1248                             struct vm_area_struct *vma,
1249                             unsigned long addr, unsigned long end,
1250                             struct zap_details *details)
1251{
1252        pgd_t *pgd;
1253        unsigned long next;
1254
1255        if (details && !details->check_mapping)
1256                details = NULL;
1257
1258        BUG_ON(addr >= end);
1259        tlb_start_vma(tlb, vma);
1260        pgd = pgd_offset(vma->vm_mm, addr);
1261        do {
1262                next = pgd_addr_end(addr, end);
1263                if (pgd_none_or_clear_bad(pgd))
1264                        continue;
1265                next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1266        } while (pgd++, addr = next, addr != end);
1267        tlb_end_vma(tlb, vma);
1268}
1269
1270
1271static void unmap_single_vma(struct mmu_gather *tlb,
1272                struct vm_area_struct *vma, unsigned long start_addr,
1273                unsigned long end_addr,
1274                struct zap_details *details)
1275{
1276        unsigned long start = max(vma->vm_start, start_addr);
1277        unsigned long end;
1278
1279        if (start >= vma->vm_end)
1280                return;
1281        end = min(vma->vm_end, end_addr);
1282        if (end <= vma->vm_start)
1283                return;
1284
1285        if (vma->vm_file)
1286                uprobe_munmap(vma, start, end);
1287
1288        if (unlikely(vma->vm_flags & VM_PFNMAP))
1289                untrack_pfn(vma, 0, 0);
1290
1291        if (start != end) {
1292                if (unlikely(is_vm_hugetlb_page(vma))) {
1293                        /*
1294                         * It is undesirable to test vma->vm_file as it
1295                         * should be non-null for valid hugetlb area.
1296                         * However, vm_file will be NULL in the error
1297                         * cleanup path of mmap_region. When
1298                         * hugetlbfs ->mmap method fails,
1299                         * mmap_region() nullifies vma->vm_file
1300                         * before calling this function to clean up.
1301                         * Since no pte has actually been setup, it is
1302                         * safe to do nothing in this case.
1303                         */
1304                        if (vma->vm_file) {
1305                                i_mmap_lock_write(vma->vm_file->f_mapping);
1306                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1308                        }
1309                } else
1310                        unmap_page_range(tlb, vma, start, end, details);
1311        }
1312}
1313
1314/**
1315 * unmap_vmas - unmap a range of memory covered by a list of vma's
1316 * @tlb: address of the caller's struct mmu_gather
1317 * @vma: the starting vma
1318 * @start_addr: virtual address at which to start unmapping
1319 * @end_addr: virtual address at which to end unmapping
1320 *
1321 * Unmap all pages in the vma list.
1322 *
1323 * Only addresses between `start' and `end' will be unmapped.
1324 *
1325 * The VMA list must be sorted in ascending virtual address order.
1326 *
1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328 * range after unmap_vmas() returns.  So the only responsibility here is to
1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330 * drops the lock and schedules.
1331 */
1332void unmap_vmas(struct mmu_gather *tlb,
1333                struct vm_area_struct *vma, unsigned long start_addr,
1334                unsigned long end_addr)
1335{
1336        struct mm_struct *mm = vma->vm_mm;
1337
1338        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1341        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1342}
1343
1344/**
1345 * zap_page_range - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @start: starting address of pages to zap
1348 * @size: number of bytes to zap
1349 * @details: details of shared cache invalidation
1350 *
1351 * Caller must protect the VMA list
1352 */
1353void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354                unsigned long size, struct zap_details *details)
1355{
1356        struct mm_struct *mm = vma->vm_mm;
1357        struct mmu_gather tlb;
1358        unsigned long end = start + size;
1359
1360        lru_add_drain();
1361        tlb_gather_mmu(&tlb, mm, start, end);
1362        update_hiwater_rss(mm);
1363        mmu_notifier_invalidate_range_start(mm, start, end);
1364        for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1365                unmap_single_vma(&tlb, vma, start, end, details);
1366        mmu_notifier_invalidate_range_end(mm, start, end);
1367        tlb_finish_mmu(&tlb, start, end);
1368}
1369
1370/**
1371 * zap_page_range_single - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of shared cache invalidation
1376 *
1377 * The range must fit into one VMA.
1378 */
1379static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1380                unsigned long size, struct zap_details *details)
1381{
1382        struct mm_struct *mm = vma->vm_mm;
1383        struct mmu_gather tlb;
1384        unsigned long end = address + size;
1385
1386        lru_add_drain();
1387        tlb_gather_mmu(&tlb, mm, address, end);
1388        update_hiwater_rss(mm);
1389        mmu_notifier_invalidate_range_start(mm, address, end);
1390        unmap_single_vma(&tlb, vma, address, end, details);
1391        mmu_notifier_invalidate_range_end(mm, address, end);
1392        tlb_finish_mmu(&tlb, address, end);
1393}
1394
1395/**
1396 * zap_vma_ptes - remove ptes mapping the vma
1397 * @vma: vm_area_struct holding ptes to be zapped
1398 * @address: starting address of pages to zap
1399 * @size: number of bytes to zap
1400 *
1401 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1402 *
1403 * The entire address range must be fully contained within the vma.
1404 *
1405 * Returns 0 if successful.
1406 */
1407int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1408                unsigned long size)
1409{
1410        if (address < vma->vm_start || address + size > vma->vm_end ||
1411                        !(vma->vm_flags & VM_PFNMAP))
1412                return -1;
1413        zap_page_range_single(vma, address, size, NULL);
1414        return 0;
1415}
1416EXPORT_SYMBOL_GPL(zap_vma_ptes);
1417
1418pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1419                        spinlock_t **ptl)
1420{
1421        pgd_t * pgd = pgd_offset(mm, addr);
1422        pud_t * pud = pud_alloc(mm, pgd, addr);
1423        if (pud) {
1424                pmd_t * pmd = pmd_alloc(mm, pud, addr);
1425                if (pmd) {
1426                        VM_BUG_ON(pmd_trans_huge(*pmd));
1427                        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1428                }
1429        }
1430        return NULL;
1431}
1432
1433/*
1434 * This is the old fallback for page remapping.
1435 *
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1439 */
1440static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441                        struct page *page, pgprot_t prot)
1442{
1443        struct mm_struct *mm = vma->vm_mm;
1444        int retval;
1445        pte_t *pte;
1446        spinlock_t *ptl;
1447
1448        retval = -EINVAL;
1449        if (PageAnon(page))
1450                goto out;
1451        retval = -ENOMEM;
1452        flush_dcache_page(page);
1453        pte = get_locked_pte(mm, addr, &ptl);
1454        if (!pte)
1455                goto out;
1456        retval = -EBUSY;
1457        if (!pte_none(*pte))
1458                goto out_unlock;
1459
1460        /* Ok, finally just insert the thing.. */
1461        get_page(page);
1462        inc_mm_counter_fast(mm, MM_FILEPAGES);
1463        page_add_file_rmap(page);
1464        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466        retval = 0;
1467        pte_unmap_unlock(pte, ptl);
1468        return retval;
1469out_unlock:
1470        pte_unmap_unlock(pte, ptl);
1471out:
1472        return retval;
1473}
1474
1475/**
1476 * vm_insert_page - insert single page into user vma
1477 * @vma: user vma to map to
1478 * @addr: target user address of this page
1479 * @page: source kernel page
1480 *
1481 * This allows drivers to insert individual pages they've allocated
1482 * into a user vma.
1483 *
1484 * The page has to be a nice clean _individual_ kernel allocation.
1485 * If you allocate a compound page, you need to have marked it as
1486 * such (__GFP_COMP), or manually just split the page up yourself
1487 * (see split_page()).
1488 *
1489 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1490 * took an arbitrary page protection parameter. This doesn't allow
1491 * that. Your vma protection will have to be set up correctly, which
1492 * means that if you want a shared writable mapping, you'd better
1493 * ask for a shared writable mapping!
1494 *
1495 * The page does not need to be reserved.
1496 *
1497 * Usually this function is called from f_op->mmap() handler
1498 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1499 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1500 * function from other places, for example from page-fault handler.
1501 */
1502int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503                        struct page *page)
1504{
1505        if (addr < vma->vm_start || addr >= vma->vm_end)
1506                return -EFAULT;
1507        if (!page_count(page))
1508                return -EINVAL;
1509        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511                BUG_ON(vma->vm_flags & VM_PFNMAP);
1512                vma->vm_flags |= VM_MIXEDMAP;
1513        }
1514        return insert_page(vma, addr, page, vma->vm_page_prot);
1515}
1516EXPORT_SYMBOL(vm_insert_page);
1517
1518static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1519                        unsigned long pfn, pgprot_t prot)
1520{
1521        struct mm_struct *mm = vma->vm_mm;
1522        int retval;
1523        pte_t *pte, entry;
1524        spinlock_t *ptl;
1525
1526        retval = -ENOMEM;
1527        pte = get_locked_pte(mm, addr, &ptl);
1528        if (!pte)
1529                goto out;
1530        retval = -EBUSY;
1531        if (!pte_none(*pte))
1532                goto out_unlock;
1533
1534        /* Ok, finally just insert the thing.. */
1535        entry = pte_mkspecial(pfn_pte(pfn, prot));
1536        set_pte_at(mm, addr, pte, entry);
1537        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1538
1539        retval = 0;
1540out_unlock:
1541        pte_unmap_unlock(pte, ptl);
1542out:
1543        return retval;
1544}
1545
1546/**
1547 * vm_insert_pfn - insert single pfn into user vma
1548 * @vma: user vma to map to
1549 * @addr: target user address of this page
1550 * @pfn: source kernel pfn
1551 *
1552 * Similar to vm_insert_page, this allows drivers to insert individual pages
1553 * they've allocated into a user vma. Same comments apply.
1554 *
1555 * This function should only be called from a vm_ops->fault handler, and
1556 * in that case the handler should return NULL.
1557 *
1558 * vma cannot be a COW mapping.
1559 *
1560 * As this is called only for pages that do not currently exist, we
1561 * do not need to flush old virtual caches or the TLB.
1562 */
1563int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1564                        unsigned long pfn)
1565{
1566        int ret;
1567        pgprot_t pgprot = vma->vm_page_prot;
1568        /*
1569         * Technically, architectures with pte_special can avoid all these
1570         * restrictions (same for remap_pfn_range).  However we would like
1571         * consistency in testing and feature parity among all, so we should
1572         * try to keep these invariants in place for everybody.
1573         */
1574        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1575        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1576                                                (VM_PFNMAP|VM_MIXEDMAP));
1577        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1578        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1579
1580        if (addr < vma->vm_start || addr >= vma->vm_end)
1581                return -EFAULT;
1582        if (track_pfn_insert(vma, &pgprot, pfn))
1583                return -EINVAL;
1584
1585        ret = insert_pfn(vma, addr, pfn, pgprot);
1586
1587        return ret;
1588}
1589EXPORT_SYMBOL(vm_insert_pfn);
1590
1591int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1592                        unsigned long pfn)
1593{
1594        BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1595
1596        if (addr < vma->vm_start || addr >= vma->vm_end)
1597                return -EFAULT;
1598
1599        /*
1600         * If we don't have pte special, then we have to use the pfn_valid()
1601         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1602         * refcount the page if pfn_valid is true (hence insert_page rather
1603         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1604         * without pte special, it would there be refcounted as a normal page.
1605         */
1606        if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1607                struct page *page;
1608
1609                page = pfn_to_page(pfn);
1610                return insert_page(vma, addr, page, vma->vm_page_prot);
1611        }
1612        return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1613}
1614EXPORT_SYMBOL(vm_insert_mixed);
1615
1616/*
1617 * maps a range of physical memory into the requested pages. the old
1618 * mappings are removed. any references to nonexistent pages results
1619 * in null mappings (currently treated as "copy-on-access")
1620 */
1621static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1622                        unsigned long addr, unsigned long end,
1623                        unsigned long pfn, pgprot_t prot)
1624{
1625        pte_t *pte;
1626        spinlock_t *ptl;
1627
1628        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1629        if (!pte)
1630                return -ENOMEM;
1631        arch_enter_lazy_mmu_mode();
1632        do {
1633                BUG_ON(!pte_none(*pte));
1634                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1635                pfn++;
1636        } while (pte++, addr += PAGE_SIZE, addr != end);
1637        arch_leave_lazy_mmu_mode();
1638        pte_unmap_unlock(pte - 1, ptl);
1639        return 0;
1640}
1641
1642static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1643                        unsigned long addr, unsigned long end,
1644                        unsigned long pfn, pgprot_t prot)
1645{
1646        pmd_t *pmd;
1647        unsigned long next;
1648
1649        pfn -= addr >> PAGE_SHIFT;
1650        pmd = pmd_alloc(mm, pud, addr);
1651        if (!pmd)
1652                return -ENOMEM;
1653        VM_BUG_ON(pmd_trans_huge(*pmd));
1654        do {
1655                next = pmd_addr_end(addr, end);
1656                if (remap_pte_range(mm, pmd, addr, next,
1657                                pfn + (addr >> PAGE_SHIFT), prot))
1658                        return -ENOMEM;
1659        } while (pmd++, addr = next, addr != end);
1660        return 0;
1661}
1662
1663static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1664                        unsigned long addr, unsigned long end,
1665                        unsigned long pfn, pgprot_t prot)
1666{
1667        pud_t *pud;
1668        unsigned long next;
1669
1670        pfn -= addr >> PAGE_SHIFT;
1671        pud = pud_alloc(mm, pgd, addr);
1672        if (!pud)
1673                return -ENOMEM;
1674        do {
1675                next = pud_addr_end(addr, end);
1676                if (remap_pmd_range(mm, pud, addr, next,
1677                                pfn + (addr >> PAGE_SHIFT), prot))
1678                        return -ENOMEM;
1679        } while (pud++, addr = next, addr != end);
1680        return 0;
1681}
1682
1683/**
1684 * remap_pfn_range - remap kernel memory to userspace
1685 * @vma: user vma to map to
1686 * @addr: target user address to start at
1687 * @pfn: physical address of kernel memory
1688 * @size: size of map area
1689 * @prot: page protection flags for this mapping
1690 *
1691 *  Note: this is only safe if the mm semaphore is held when called.
1692 */
1693int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1694                    unsigned long pfn, unsigned long size, pgprot_t prot)
1695{
1696        pgd_t *pgd;
1697        unsigned long next;
1698        unsigned long end = addr + PAGE_ALIGN(size);
1699        struct mm_struct *mm = vma->vm_mm;
1700        int err;
1701
1702        /*
1703         * Physically remapped pages are special. Tell the
1704         * rest of the world about it:
1705         *   VM_IO tells people not to look at these pages
1706         *      (accesses can have side effects).
1707         *   VM_PFNMAP tells the core MM that the base pages are just
1708         *      raw PFN mappings, and do not have a "struct page" associated
1709         *      with them.
1710         *   VM_DONTEXPAND
1711         *      Disable vma merging and expanding with mremap().
1712         *   VM_DONTDUMP
1713         *      Omit vma from core dump, even when VM_IO turned off.
1714         *
1715         * There's a horrible special case to handle copy-on-write
1716         * behaviour that some programs depend on. We mark the "original"
1717         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1718         * See vm_normal_page() for details.
1719         */
1720        if (is_cow_mapping(vma->vm_flags)) {
1721                if (addr != vma->vm_start || end != vma->vm_end)
1722                        return -EINVAL;
1723                vma->vm_pgoff = pfn;
1724        }
1725
1726        err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1727        if (err)
1728                return -EINVAL;
1729
1730        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731
1732        BUG_ON(addr >= end);
1733        pfn -= addr >> PAGE_SHIFT;
1734        pgd = pgd_offset(mm, addr);
1735        flush_cache_range(vma, addr, end);
1736        do {
1737                next = pgd_addr_end(addr, end);
1738                err = remap_pud_range(mm, pgd, addr, next,
1739                                pfn + (addr >> PAGE_SHIFT), prot);
1740                if (err)
1741                        break;
1742        } while (pgd++, addr = next, addr != end);
1743
1744        if (err)
1745                untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1746
1747        return err;
1748}
1749EXPORT_SYMBOL(remap_pfn_range);
1750
1751/**
1752 * vm_iomap_memory - remap memory to userspace
1753 * @vma: user vma to map to
1754 * @start: start of area
1755 * @len: size of area
1756 *
1757 * This is a simplified io_remap_pfn_range() for common driver use. The
1758 * driver just needs to give us the physical memory range to be mapped,
1759 * we'll figure out the rest from the vma information.
1760 *
1761 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1762 * whatever write-combining details or similar.
1763 */
1764int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1765{
1766        unsigned long vm_len, pfn, pages;
1767
1768        /* Check that the physical memory area passed in looks valid */
1769        if (start + len < start)
1770                return -EINVAL;
1771        /*
1772         * You *really* shouldn't map things that aren't page-aligned,
1773         * but we've historically allowed it because IO memory might
1774         * just have smaller alignment.
1775         */
1776        len += start & ~PAGE_MASK;
1777        pfn = start >> PAGE_SHIFT;
1778        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1779        if (pfn + pages < pfn)
1780                return -EINVAL;
1781
1782        /* We start the mapping 'vm_pgoff' pages into the area */
1783        if (vma->vm_pgoff > pages)
1784                return -EINVAL;
1785        pfn += vma->vm_pgoff;
1786        pages -= vma->vm_pgoff;
1787
1788        /* Can we fit all of the mapping? */
1789        vm_len = vma->vm_end - vma->vm_start;
1790        if (vm_len >> PAGE_SHIFT > pages)
1791                return -EINVAL;
1792
1793        /* Ok, let it rip */
1794        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1795}
1796EXPORT_SYMBOL(vm_iomap_memory);
1797
1798static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1799                                     unsigned long addr, unsigned long end,
1800                                     pte_fn_t fn, void *data)
1801{
1802        pte_t *pte;
1803        int err;
1804        pgtable_t token;
1805        spinlock_t *uninitialized_var(ptl);
1806
1807        pte = (mm == &init_mm) ?
1808                pte_alloc_kernel(pmd, addr) :
1809                pte_alloc_map_lock(mm, pmd, addr, &ptl);
1810        if (!pte)
1811                return -ENOMEM;
1812
1813        BUG_ON(pmd_huge(*pmd));
1814
1815        arch_enter_lazy_mmu_mode();
1816
1817        token = pmd_pgtable(*pmd);
1818
1819        do {
1820                err = fn(pte++, token, addr, data);
1821                if (err)
1822                        break;
1823        } while (addr += PAGE_SIZE, addr != end);
1824
1825        arch_leave_lazy_mmu_mode();
1826
1827        if (mm != &init_mm)
1828                pte_unmap_unlock(pte-1, ptl);
1829        return err;
1830}
1831
1832static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1833                                     unsigned long addr, unsigned long end,
1834                                     pte_fn_t fn, void *data)
1835{
1836        pmd_t *pmd;
1837        unsigned long next;
1838        int err;
1839
1840        BUG_ON(pud_huge(*pud));
1841
1842        pmd = pmd_alloc(mm, pud, addr);
1843        if (!pmd)
1844                return -ENOMEM;
1845        do {
1846                next = pmd_addr_end(addr, end);
1847                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1848                if (err)
1849                        break;
1850        } while (pmd++, addr = next, addr != end);
1851        return err;
1852}
1853
1854static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1855                                     unsigned long addr, unsigned long end,
1856                                     pte_fn_t fn, void *data)
1857{
1858        pud_t *pud;
1859        unsigned long next;
1860        int err;
1861
1862        pud = pud_alloc(mm, pgd, addr);
1863        if (!pud)
1864                return -ENOMEM;
1865        do {
1866                next = pud_addr_end(addr, end);
1867                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1868                if (err)
1869                        break;
1870        } while (pud++, addr = next, addr != end);
1871        return err;
1872}
1873
1874/*
1875 * Scan a region of virtual memory, filling in page tables as necessary
1876 * and calling a provided function on each leaf page table.
1877 */
1878int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1879                        unsigned long size, pte_fn_t fn, void *data)
1880{
1881        pgd_t *pgd;
1882        unsigned long next;
1883        unsigned long end = addr + size;
1884        int err;
1885
1886        BUG_ON(addr >= end);
1887        pgd = pgd_offset(mm, addr);
1888        do {
1889                next = pgd_addr_end(addr, end);
1890                err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1891                if (err)
1892                        break;
1893        } while (pgd++, addr = next, addr != end);
1894
1895        return err;
1896}
1897EXPORT_SYMBOL_GPL(apply_to_page_range);
1898
1899/*
1900 * handle_pte_fault chooses page fault handler according to an entry which was
1901 * read non-atomically.  Before making any commitment, on those architectures
1902 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1903 * parts, do_swap_page must check under lock before unmapping the pte and
1904 * proceeding (but do_wp_page is only called after already making such a check;
1905 * and do_anonymous_page can safely check later on).
1906 */
1907static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1908                                pte_t *page_table, pte_t orig_pte)
1909{
1910        int same = 1;
1911#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1912        if (sizeof(pte_t) > sizeof(unsigned long)) {
1913                spinlock_t *ptl = pte_lockptr(mm, pmd);
1914                spin_lock(ptl);
1915                same = pte_same(*page_table, orig_pte);
1916                spin_unlock(ptl);
1917        }
1918#endif
1919        pte_unmap(page_table);
1920        return same;
1921}
1922
1923static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1924{
1925        debug_dma_assert_idle(src);
1926
1927        /*
1928         * If the source page was a PFN mapping, we don't have
1929         * a "struct page" for it. We do a best-effort copy by
1930         * just copying from the original user address. If that
1931         * fails, we just zero-fill it. Live with it.
1932         */
1933        if (unlikely(!src)) {
1934                void *kaddr = kmap_atomic(dst);
1935                void __user *uaddr = (void __user *)(va & PAGE_MASK);
1936
1937                /*
1938                 * This really shouldn't fail, because the page is there
1939                 * in the page tables. But it might just be unreadable,
1940                 * in which case we just give up and fill the result with
1941                 * zeroes.
1942                 */
1943                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1944                        clear_page(kaddr);
1945                kunmap_atomic(kaddr);
1946                flush_dcache_page(dst);
1947        } else
1948                copy_user_highpage(dst, src, va, vma);
1949}
1950
1951/*
1952 * Notify the address space that the page is about to become writable so that
1953 * it can prohibit this or wait for the page to get into an appropriate state.
1954 *
1955 * We do this without the lock held, so that it can sleep if it needs to.
1956 */
1957static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1958               unsigned long address)
1959{
1960        struct vm_fault vmf;
1961        int ret;
1962
1963        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1964        vmf.pgoff = page->index;
1965        vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1966        vmf.page = page;
1967        vmf.cow_page = NULL;
1968
1969        ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1970        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1971                return ret;
1972        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1973                lock_page(page);
1974                if (!page->mapping) {
1975                        unlock_page(page);
1976                        return 0; /* retry */
1977                }
1978                ret |= VM_FAULT_LOCKED;
1979        } else
1980                VM_BUG_ON_PAGE(!PageLocked(page), page);
1981        return ret;
1982}
1983
1984/*
1985 * Handle write page faults for pages that can be reused in the current vma
1986 *
1987 * This can happen either due to the mapping being with the VM_SHARED flag,
1988 * or due to us being the last reference standing to the page. In either
1989 * case, all we need to do here is to mark the page as writable and update
1990 * any related book-keeping.
1991 */
1992static inline int wp_page_reuse(struct mm_struct *mm,
1993                        struct vm_area_struct *vma, unsigned long address,
1994                        pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1995                        struct page *page, int page_mkwrite,
1996                        int dirty_shared)
1997        __releases(ptl)
1998{
1999        pte_t entry;
2000        /*
2001         * Clear the pages cpupid information as the existing
2002         * information potentially belongs to a now completely
2003         * unrelated process.
2004         */
2005        if (page)
2006                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2007
2008        flush_cache_page(vma, address, pte_pfn(orig_pte));
2009        entry = pte_mkyoung(orig_pte);
2010        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2011        if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2012                update_mmu_cache(vma, address, page_table);
2013        pte_unmap_unlock(page_table, ptl);
2014
2015        if (dirty_shared) {
2016                struct address_space *mapping;
2017                int dirtied;
2018
2019                if (!page_mkwrite)
2020                        lock_page(page);
2021
2022                dirtied = set_page_dirty(page);
2023                VM_BUG_ON_PAGE(PageAnon(page), page);
2024                mapping = page->mapping;
2025                unlock_page(page);
2026                page_cache_release(page);
2027
2028                if ((dirtied || page_mkwrite) && mapping) {
2029                        /*
2030                         * Some device drivers do not set page.mapping
2031                         * but still dirty their pages
2032                         */
2033                        balance_dirty_pages_ratelimited(mapping);
2034                }
2035
2036                if (!page_mkwrite)
2037                        file_update_time(vma->vm_file);
2038        }
2039
2040        return VM_FAULT_WRITE;
2041}
2042
2043/*
2044 * Handle the case of a page which we actually need to copy to a new page.
2045 *
2046 * Called with mmap_sem locked and the old page referenced, but
2047 * without the ptl held.
2048 *
2049 * High level logic flow:
2050 *
2051 * - Allocate a page, copy the content of the old page to the new one.
2052 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2053 * - Take the PTL. If the pte changed, bail out and release the allocated page
2054 * - If the pte is still the way we remember it, update the page table and all
2055 *   relevant references. This includes dropping the reference the page-table
2056 *   held to the old page, as well as updating the rmap.
2057 * - In any case, unlock the PTL and drop the reference we took to the old page.
2058 */
2059static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2060                        unsigned long address, pte_t *page_table, pmd_t *pmd,
2061                        pte_t orig_pte, struct page *old_page)
2062{
2063        struct page *new_page = NULL;
2064        spinlock_t *ptl = NULL;
2065        pte_t entry;
2066        int page_copied = 0;
2067        const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2068        const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2069        struct mem_cgroup *memcg;
2070
2071        if (unlikely(anon_vma_prepare(vma)))
2072                goto oom;
2073
2074        if (is_zero_pfn(pte_pfn(orig_pte))) {
2075                new_page = alloc_zeroed_user_highpage_movable(vma, address);
2076                if (!new_page)
2077                        goto oom;
2078        } else {
2079                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2080                if (!new_page)
2081                        goto oom;
2082                cow_user_page(new_page, old_page, address, vma);
2083        }
2084
2085        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2086                goto oom_free_new;
2087
2088        __SetPageUptodate(new_page);
2089
2090        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2091
2092        /*
2093         * Re-check the pte - we dropped the lock
2094         */
2095        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2096        if (likely(pte_same(*page_table, orig_pte))) {
2097                if (old_page) {
2098                        if (!PageAnon(old_page)) {
2099                                dec_mm_counter_fast(mm, MM_FILEPAGES);
2100                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2101                        }
2102                } else {
2103                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2104                }
2105                flush_cache_page(vma, address, pte_pfn(orig_pte));
2106                entry = mk_pte(new_page, vma->vm_page_prot);
2107                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108                /*
2109                 * Clear the pte entry and flush it first, before updating the
2110                 * pte with the new entry. This will avoid a race condition
2111                 * seen in the presence of one thread doing SMC and another
2112                 * thread doing COW.
2113                 */
2114                ptep_clear_flush_notify(vma, address, page_table);
2115                page_add_new_anon_rmap(new_page, vma, address);
2116                mem_cgroup_commit_charge(new_page, memcg, false);
2117                lru_cache_add_active_or_unevictable(new_page, vma);
2118                /*
2119                 * We call the notify macro here because, when using secondary
2120                 * mmu page tables (such as kvm shadow page tables), we want the
2121                 * new page to be mapped directly into the secondary page table.
2122                 */
2123                set_pte_at_notify(mm, address, page_table, entry);
2124                update_mmu_cache(vma, address, page_table);
2125                if (old_page) {
2126                        /*
2127                         * Only after switching the pte to the new page may
2128                         * we remove the mapcount here. Otherwise another
2129                         * process may come and find the rmap count decremented
2130                         * before the pte is switched to the new page, and
2131                         * "reuse" the old page writing into it while our pte
2132                         * here still points into it and can be read by other
2133                         * threads.
2134                         *
2135                         * The critical issue is to order this
2136                         * page_remove_rmap with the ptp_clear_flush above.
2137                         * Those stores are ordered by (if nothing else,)
2138                         * the barrier present in the atomic_add_negative
2139                         * in page_remove_rmap.
2140                         *
2141                         * Then the TLB flush in ptep_clear_flush ensures that
2142                         * no process can access the old page before the
2143                         * decremented mapcount is visible. And the old page
2144                         * cannot be reused until after the decremented
2145                         * mapcount is visible. So transitively, TLBs to
2146                         * old page will be flushed before it can be reused.
2147                         */
2148                        page_remove_rmap(old_page);
2149                }
2150
2151                /* Free the old page.. */
2152                new_page = old_page;
2153                page_copied = 1;
2154        } else {
2155                mem_cgroup_cancel_charge(new_page, memcg);
2156        }
2157
2158        if (new_page)
2159                page_cache_release(new_page);
2160
2161        pte_unmap_unlock(page_table, ptl);
2162        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2163        if (old_page) {
2164                /*
2165                 * Don't let another task, with possibly unlocked vma,
2166                 * keep the mlocked page.
2167                 */
2168                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2169                        lock_page(old_page);    /* LRU manipulation */
2170                        munlock_vma_page(old_page);
2171                        unlock_page(old_page);
2172                }
2173                page_cache_release(old_page);
2174        }
2175        return page_copied ? VM_FAULT_WRITE : 0;
2176oom_free_new:
2177        page_cache_release(new_page);
2178oom:
2179        if (old_page)
2180                page_cache_release(old_page);
2181        return VM_FAULT_OOM;
2182}
2183
2184/*
2185 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2186 * mapping
2187 */
2188static int wp_pfn_shared(struct mm_struct *mm,
2189                        struct vm_area_struct *vma, unsigned long address,
2190                        pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2191                        pmd_t *pmd)
2192{
2193        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2194                struct vm_fault vmf = {
2195                        .page = NULL,
2196                        .pgoff = linear_page_index(vma, address),
2197                        .virtual_address = (void __user *)(address & PAGE_MASK),
2198                        .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2199                };
2200                int ret;
2201
2202                pte_unmap_unlock(page_table, ptl);
2203                ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2204                if (ret & VM_FAULT_ERROR)
2205                        return ret;
2206                page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2207                /*
2208                 * We might have raced with another page fault while we
2209                 * released the pte_offset_map_lock.
2210                 */
2211                if (!pte_same(*page_table, orig_pte)) {
2212                        pte_unmap_unlock(page_table, ptl);
2213                        return 0;
2214                }
2215        }
2216        return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2217                             NULL, 0, 0);
2218}
2219
2220static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2221                          unsigned long address, pte_t *page_table,
2222                          pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2223                          struct page *old_page)
2224        __releases(ptl)
2225{
2226        int page_mkwrite = 0;
2227
2228        page_cache_get(old_page);
2229
2230        /*
2231         * Only catch write-faults on shared writable pages,
2232         * read-only shared pages can get COWed by
2233         * get_user_pages(.write=1, .force=1).
2234         */
2235        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2236                int tmp;
2237
2238                pte_unmap_unlock(page_table, ptl);
2239                tmp = do_page_mkwrite(vma, old_page, address);
2240                if (unlikely(!tmp || (tmp &
2241                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2242                        page_cache_release(old_page);
2243                        return tmp;
2244                }
2245                /*
2246                 * Since we dropped the lock we need to revalidate
2247                 * the PTE as someone else may have changed it.  If
2248                 * they did, we just return, as we can count on the
2249                 * MMU to tell us if they didn't also make it writable.
2250                 */
2251                page_table = pte_offset_map_lock(mm, pmd, address,
2252                                                 &ptl);
2253                if (!pte_same(*page_table, orig_pte)) {
2254                        unlock_page(old_page);
2255                        pte_unmap_unlock(page_table, ptl);
2256                        page_cache_release(old_page);
2257                        return 0;
2258                }
2259                page_mkwrite = 1;
2260        }
2261
2262        return wp_page_reuse(mm, vma, address, page_table, ptl,
2263                             orig_pte, old_page, page_mkwrite, 1);
2264}
2265
2266/*
2267 * This routine handles present pages, when users try to write
2268 * to a shared page. It is done by copying the page to a new address
2269 * and decrementing the shared-page counter for the old page.
2270 *
2271 * Note that this routine assumes that the protection checks have been
2272 * done by the caller (the low-level page fault routine in most cases).
2273 * Thus we can safely just mark it writable once we've done any necessary
2274 * COW.
2275 *
2276 * We also mark the page dirty at this point even though the page will
2277 * change only once the write actually happens. This avoids a few races,
2278 * and potentially makes it more efficient.
2279 *
2280 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2281 * but allow concurrent faults), with pte both mapped and locked.
2282 * We return with mmap_sem still held, but pte unmapped and unlocked.
2283 */
2284static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2285                unsigned long address, pte_t *page_table, pmd_t *pmd,
2286                spinlock_t *ptl, pte_t orig_pte)
2287        __releases(ptl)
2288{
2289        struct page *old_page;
2290
2291        old_page = vm_normal_page(vma, address, orig_pte);
2292        if (!old_page) {
2293                /*
2294                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2295                 * VM_PFNMAP VMA.
2296                 *
2297                 * We should not cow pages in a shared writeable mapping.
2298                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2299                 */
2300                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2301                                     (VM_WRITE|VM_SHARED))
2302                        return wp_pfn_shared(mm, vma, address, page_table, ptl,
2303                                             orig_pte, pmd);
2304
2305                pte_unmap_unlock(page_table, ptl);
2306                return wp_page_copy(mm, vma, address, page_table, pmd,
2307                                    orig_pte, old_page);
2308        }
2309
2310        /*
2311         * Take out anonymous pages first, anonymous shared vmas are
2312         * not dirty accountable.
2313         */
2314        if (PageAnon(old_page) && !PageKsm(old_page)) {
2315                if (!trylock_page(old_page)) {
2316                        page_cache_get(old_page);
2317                        pte_unmap_unlock(page_table, ptl);
2318                        lock_page(old_page);
2319                        page_table = pte_offset_map_lock(mm, pmd, address,
2320                                                         &ptl);
2321                        if (!pte_same(*page_table, orig_pte)) {
2322                                unlock_page(old_page);
2323                                pte_unmap_unlock(page_table, ptl);
2324                                page_cache_release(old_page);
2325                                return 0;
2326                        }
2327                        page_cache_release(old_page);
2328                }
2329                if (reuse_swap_page(old_page)) {
2330                        /*
2331                         * The page is all ours.  Move it to our anon_vma so
2332                         * the rmap code will not search our parent or siblings.
2333                         * Protected against the rmap code by the page lock.
2334                         */
2335                        page_move_anon_rmap(old_page, vma, address);
2336                        unlock_page(old_page);
2337                        return wp_page_reuse(mm, vma, address, page_table, ptl,
2338                                             orig_pte, old_page, 0, 0);
2339                }
2340                unlock_page(old_page);
2341        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2342                                        (VM_WRITE|VM_SHARED))) {
2343                return wp_page_shared(mm, vma, address, page_table, pmd,
2344                                      ptl, orig_pte, old_page);
2345        }
2346
2347        /*
2348         * Ok, we need to copy. Oh, well..
2349         */
2350        page_cache_get(old_page);
2351
2352        pte_unmap_unlock(page_table, ptl);
2353        return wp_page_copy(mm, vma, address, page_table, pmd,
2354                            orig_pte, old_page);
2355}
2356
2357static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2358                unsigned long start_addr, unsigned long end_addr,
2359                struct zap_details *details)
2360{
2361        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2362}
2363
2364static inline void unmap_mapping_range_tree(struct rb_root *root,
2365                                            struct zap_details *details)
2366{
2367        struct vm_area_struct *vma;
2368        pgoff_t vba, vea, zba, zea;
2369
2370        vma_interval_tree_foreach(vma, root,
2371                        details->first_index, details->last_index) {
2372
2373                vba = vma->vm_pgoff;
2374                vea = vba + vma_pages(vma) - 1;
2375                /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2376                zba = details->first_index;
2377                if (zba < vba)
2378                        zba = vba;
2379                zea = details->last_index;
2380                if (zea > vea)
2381                        zea = vea;
2382
2383                unmap_mapping_range_vma(vma,
2384                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2385                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2386                                details);
2387        }
2388}
2389
2390/**
2391 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2392 * address_space corresponding to the specified page range in the underlying
2393 * file.
2394 *
2395 * @mapping: the address space containing mmaps to be unmapped.
2396 * @holebegin: byte in first page to unmap, relative to the start of
2397 * the underlying file.  This will be rounded down to a PAGE_SIZE
2398 * boundary.  Note that this is different from truncate_pagecache(), which
2399 * must keep the partial page.  In contrast, we must get rid of
2400 * partial pages.
2401 * @holelen: size of prospective hole in bytes.  This will be rounded
2402 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2403 * end of the file.
2404 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2405 * but 0 when invalidating pagecache, don't throw away private data.
2406 */
2407void unmap_mapping_range(struct address_space *mapping,
2408                loff_t const holebegin, loff_t const holelen, int even_cows)
2409{
2410        struct zap_details details;
2411        pgoff_t hba = holebegin >> PAGE_SHIFT;
2412        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2413
2414        /* Check for overflow. */
2415        if (sizeof(holelen) > sizeof(hlen)) {
2416                long long holeend =
2417                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2418                if (holeend & ~(long long)ULONG_MAX)
2419                        hlen = ULONG_MAX - hba + 1;
2420        }
2421
2422        details.check_mapping = even_cows? NULL: mapping;
2423        details.first_index = hba;
2424        details.last_index = hba + hlen - 1;
2425        if (details.last_index < details.first_index)
2426                details.last_index = ULONG_MAX;
2427
2428
2429        /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2430        i_mmap_lock_write(mapping);
2431        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2432                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2433        i_mmap_unlock_write(mapping);
2434}
2435EXPORT_SYMBOL(unmap_mapping_range);
2436
2437/*
2438 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2439 * but allow concurrent faults), and pte mapped but not yet locked.
2440 * We return with pte unmapped and unlocked.
2441 *
2442 * We return with the mmap_sem locked or unlocked in the same cases
2443 * as does filemap_fault().
2444 */
2445static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2446                unsigned long address, pte_t *page_table, pmd_t *pmd,
2447                unsigned int flags, pte_t orig_pte)
2448{
2449        spinlock_t *ptl;
2450        struct page *page, *swapcache;
2451        struct mem_cgroup *memcg;
2452        swp_entry_t entry;
2453        pte_t pte;
2454        int locked;
2455        int exclusive = 0;
2456        int ret = 0;
2457
2458        if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2459                goto out;
2460
2461        entry = pte_to_swp_entry(orig_pte);
2462        if (unlikely(non_swap_entry(entry))) {
2463                if (is_migration_entry(entry)) {
2464                        migration_entry_wait(mm, pmd, address);
2465                } else if (is_hwpoison_entry(entry)) {
2466                        ret = VM_FAULT_HWPOISON;
2467                } else {
2468                        print_bad_pte(vma, address, orig_pte, NULL);
2469                        ret = VM_FAULT_SIGBUS;
2470                }
2471                goto out;
2472        }
2473        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2474        page = lookup_swap_cache(entry);
2475        if (!page) {
2476                page = swapin_readahead(entry,
2477                                        GFP_HIGHUSER_MOVABLE, vma, address);
2478                if (!page) {
2479                        /*
2480                         * Back out if somebody else faulted in this pte
2481                         * while we released the pte lock.
2482                         */
2483                        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2484                        if (likely(pte_same(*page_table, orig_pte)))
2485                                ret = VM_FAULT_OOM;
2486                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2487                        goto unlock;
2488                }
2489
2490                /* Had to read the page from swap area: Major fault */
2491                ret = VM_FAULT_MAJOR;
2492                count_vm_event(PGMAJFAULT);
2493                mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2494        } else if (PageHWPoison(page)) {
2495                /*
2496                 * hwpoisoned dirty swapcache pages are kept for killing
2497                 * owner processes (which may be unknown at hwpoison time)
2498                 */
2499                ret = VM_FAULT_HWPOISON;
2500                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2501                swapcache = page;
2502                goto out_release;
2503        }
2504
2505        swapcache = page;
2506        locked = lock_page_or_retry(page, mm, flags);
2507
2508        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2509        if (!locked) {
2510                ret |= VM_FAULT_RETRY;
2511                goto out_release;
2512        }
2513
2514        /*
2515         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2516         * release the swapcache from under us.  The page pin, and pte_same
2517         * test below, are not enough to exclude that.  Even if it is still
2518         * swapcache, we need to check that the page's swap has not changed.
2519         */
2520        if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2521                goto out_page;
2522
2523        page = ksm_might_need_to_copy(page, vma, address);
2524        if (unlikely(!page)) {
2525                ret = VM_FAULT_OOM;
2526                page = swapcache;
2527                goto out_page;
2528        }
2529
2530        if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2531                ret = VM_FAULT_OOM;
2532                goto out_page;
2533        }
2534
2535        /*
2536         * Back out if somebody else already faulted in this pte.
2537         */
2538        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2539        if (unlikely(!pte_same(*page_table, orig_pte)))
2540                goto out_nomap;
2541
2542        if (unlikely(!PageUptodate(page))) {
2543                ret = VM_FAULT_SIGBUS;
2544                goto out_nomap;
2545        }
2546
2547        /*
2548         * The page isn't present yet, go ahead with the fault.
2549         *
2550         * Be careful about the sequence of operations here.
2551         * To get its accounting right, reuse_swap_page() must be called
2552         * while the page is counted on swap but not yet in mapcount i.e.
2553         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2554         * must be called after the swap_free(), or it will never succeed.
2555         */
2556
2557        inc_mm_counter_fast(mm, MM_ANONPAGES);
2558        dec_mm_counter_fast(mm, MM_SWAPENTS);
2559        pte = mk_pte(page, vma->vm_page_prot);
2560        if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2561                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2562                flags &= ~FAULT_FLAG_WRITE;
2563                ret |= VM_FAULT_WRITE;
2564                exclusive = 1;
2565        }
2566        flush_icache_page(vma, page);
2567        if (pte_swp_soft_dirty(orig_pte))
2568                pte = pte_mksoft_dirty(pte);
2569        set_pte_at(mm, address, page_table, pte);
2570        if (page == swapcache) {
2571                do_page_add_anon_rmap(page, vma, address, exclusive);
2572                mem_cgroup_commit_charge(page, memcg, true);
2573        } else { /* ksm created a completely new copy */
2574                page_add_new_anon_rmap(page, vma, address);
2575                mem_cgroup_commit_charge(page, memcg, false);
2576                lru_cache_add_active_or_unevictable(page, vma);
2577        }
2578
2579        swap_free(entry);
2580        if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2581                try_to_free_swap(page);
2582        unlock_page(page);
2583        if (page != swapcache) {
2584                /*
2585                 * Hold the lock to avoid the swap entry to be reused
2586                 * until we take the PT lock for the pte_same() check
2587                 * (to avoid false positives from pte_same). For
2588                 * further safety release the lock after the swap_free
2589                 * so that the swap count won't change under a
2590                 * parallel locked swapcache.
2591                 */
2592                unlock_page(swapcache);
2593                page_cache_release(swapcache);
2594        }
2595
2596        if (flags & FAULT_FLAG_WRITE) {
2597                ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2598                if (ret & VM_FAULT_ERROR)
2599                        ret &= VM_FAULT_ERROR;
2600                goto out;
2601        }
2602
2603        /* No need to invalidate - it was non-present before */
2604        update_mmu_cache(vma, address, page_table);
2605unlock:
2606        pte_unmap_unlock(page_table, ptl);
2607out:
2608        return ret;
2609out_nomap:
2610        mem_cgroup_cancel_charge(page, memcg);
2611        pte_unmap_unlock(page_table, ptl);
2612out_page:
2613        unlock_page(page);
2614out_release:
2615        page_cache_release(page);
2616        if (page != swapcache) {
2617                unlock_page(swapcache);
2618                page_cache_release(swapcache);
2619        }
2620        return ret;
2621}
2622
2623/*
2624 * This is like a special single-page "expand_{down|up}wards()",
2625 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2626 * doesn't hit another vma.
2627 */
2628static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2629{
2630        address &= PAGE_MASK;
2631        if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2632                struct vm_area_struct *prev = vma->vm_prev;
2633
2634                /*
2635                 * Is there a mapping abutting this one below?
2636                 *
2637                 * That's only ok if it's the same stack mapping
2638                 * that has gotten split..
2639                 */
2640                if (prev && prev->vm_end == address)
2641                        return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2642
2643                return expand_downwards(vma, address - PAGE_SIZE);
2644        }
2645        if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2646                struct vm_area_struct *next = vma->vm_next;
2647
2648                /* As VM_GROWSDOWN but s/below/above/ */
2649                if (next && next->vm_start == address + PAGE_SIZE)
2650                        return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2651
2652                return expand_upwards(vma, address + PAGE_SIZE);
2653        }
2654        return 0;
2655}
2656
2657/*
2658 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2659 * but allow concurrent faults), and pte mapped but not yet locked.
2660 * We return with mmap_sem still held, but pte unmapped and unlocked.
2661 */
2662static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2663                unsigned long address, pte_t *page_table, pmd_t *pmd,
2664                unsigned int flags)
2665{
2666        struct mem_cgroup *memcg;
2667        struct page *page;
2668        spinlock_t *ptl;
2669        pte_t entry;
2670
2671        pte_unmap(page_table);
2672
2673        /* File mapping without ->vm_ops ? */
2674        if (vma->vm_flags & VM_SHARED)
2675                return VM_FAULT_SIGBUS;
2676
2677        /* Check if we need to add a guard page to the stack */
2678        if (check_stack_guard_page(vma, address) < 0)
2679                return VM_FAULT_SIGSEGV;
2680
2681        /* Use the zero-page for reads */
2682        if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2683                entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2684                                                vma->vm_page_prot));
2685                page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2686                if (!pte_none(*page_table))
2687                        goto unlock;
2688                goto setpte;
2689        }
2690
2691        /* Allocate our own private page. */
2692        if (unlikely(anon_vma_prepare(vma)))
2693                goto oom;
2694        page = alloc_zeroed_user_highpage_movable(vma, address);
2695        if (!page)
2696                goto oom;
2697
2698        if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2699                goto oom_free_page;
2700
2701        /*
2702         * The memory barrier inside __SetPageUptodate makes sure that
2703         * preceeding stores to the page contents become visible before
2704         * the set_pte_at() write.
2705         */
2706        __SetPageUptodate(page);
2707
2708        entry = mk_pte(page, vma->vm_page_prot);
2709        if (vma->vm_flags & VM_WRITE)
2710                entry = pte_mkwrite(pte_mkdirty(entry));
2711
2712        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2713        if (!pte_none(*page_table))
2714                goto release;
2715
2716        inc_mm_counter_fast(mm, MM_ANONPAGES);
2717        page_add_new_anon_rmap(page, vma, address);
2718        mem_cgroup_commit_charge(page, memcg, false);
2719        lru_cache_add_active_or_unevictable(page, vma);
2720setpte:
2721        set_pte_at(mm, address, page_table, entry);
2722
2723        /* No need to invalidate - it was non-present before */
2724        update_mmu_cache(vma, address, page_table);
2725unlock:
2726        pte_unmap_unlock(page_table, ptl);
2727        return 0;
2728release:
2729        mem_cgroup_cancel_charge(page, memcg);
2730        page_cache_release(page);
2731        goto unlock;
2732oom_free_page:
2733        page_cache_release(page);
2734oom:
2735        return VM_FAULT_OOM;
2736}
2737
2738/*
2739 * The mmap_sem must have been held on entry, and may have been
2740 * released depending on flags and vma->vm_ops->fault() return value.
2741 * See filemap_fault() and __lock_page_retry().
2742 */
2743static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2744                        pgoff_t pgoff, unsigned int flags,
2745                        struct page *cow_page, struct page **page)
2746{
2747        struct vm_fault vmf;
2748        int ret;
2749
2750        vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2751        vmf.pgoff = pgoff;
2752        vmf.flags = flags;
2753        vmf.page = NULL;
2754        vmf.cow_page = cow_page;
2755
2756        ret = vma->vm_ops->fault(vma, &vmf);
2757        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2758                return ret;
2759        if (!vmf.page)
2760                goto out;
2761
2762        if (unlikely(PageHWPoison(vmf.page))) {
2763                if (ret & VM_FAULT_LOCKED)
2764                        unlock_page(vmf.page);
2765                page_cache_release(vmf.page);
2766                return VM_FAULT_HWPOISON;
2767        }
2768
2769        if (unlikely(!(ret & VM_FAULT_LOCKED)))
2770                lock_page(vmf.page);
2771        else
2772                VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2773
2774 out:
2775        *page = vmf.page;
2776        return ret;
2777}
2778
2779/**
2780 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2781 *
2782 * @vma: virtual memory area
2783 * @address: user virtual address
2784 * @page: page to map
2785 * @pte: pointer to target page table entry
2786 * @write: true, if new entry is writable
2787 * @anon: true, if it's anonymous page
2788 *
2789 * Caller must hold page table lock relevant for @pte.
2790 *
2791 * Target users are page handler itself and implementations of
2792 * vm_ops->map_pages.
2793 */
2794void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2795                struct page *page, pte_t *pte, bool write, bool anon)
2796{
2797        pte_t entry;
2798
2799        flush_icache_page(vma, page);
2800        entry = mk_pte(page, vma->vm_page_prot);
2801        if (write)
2802                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2803        if (anon) {
2804                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2805                page_add_new_anon_rmap(page, vma, address);
2806        } else {
2807                inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2808                page_add_file_rmap(page);
2809        }
2810        set_pte_at(vma->vm_mm, address, pte, entry);
2811
2812        /* no need to invalidate: a not-present page won't be cached */
2813        update_mmu_cache(vma, address, pte);
2814}
2815
2816static unsigned long fault_around_bytes __read_mostly =
2817        rounddown_pow_of_two(65536);
2818
2819#ifdef CONFIG_DEBUG_FS
2820static int fault_around_bytes_get(void *data, u64 *val)
2821{
2822        *val = fault_around_bytes;
2823        return 0;
2824}
2825
2826/*
2827 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2828 * rounded down to nearest page order. It's what do_fault_around() expects to
2829 * see.
2830 */
2831static int fault_around_bytes_set(void *data, u64 val)
2832{
2833        if (val / PAGE_SIZE > PTRS_PER_PTE)
2834                return -EINVAL;
2835        if (val > PAGE_SIZE)
2836                fault_around_bytes = rounddown_pow_of_two(val);
2837        else
2838                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2839        return 0;
2840}
2841DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2842                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2843
2844static int __init fault_around_debugfs(void)
2845{
2846        void *ret;
2847
2848        ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2849                        &fault_around_bytes_fops);
2850        if (!ret)
2851                pr_warn("Failed to create fault_around_bytes in debugfs");
2852        return 0;
2853}
2854late_initcall(fault_around_debugfs);
2855#endif
2856
2857/*
2858 * do_fault_around() tries to map few pages around the fault address. The hope
2859 * is that the pages will be needed soon and this will lower the number of
2860 * faults to handle.
2861 *
2862 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2863 * not ready to be mapped: not up-to-date, locked, etc.
2864 *
2865 * This function is called with the page table lock taken. In the split ptlock
2866 * case the page table lock only protects only those entries which belong to
2867 * the page table corresponding to the fault address.
2868 *
2869 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2870 * only once.
2871 *
2872 * fault_around_pages() defines how many pages we'll try to map.
2873 * do_fault_around() expects it to return a power of two less than or equal to
2874 * PTRS_PER_PTE.
2875 *
2876 * The virtual address of the area that we map is naturally aligned to the
2877 * fault_around_pages() value (and therefore to page order).  This way it's
2878 * easier to guarantee that we don't cross page table boundaries.
2879 */
2880static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2881                pte_t *pte, pgoff_t pgoff, unsigned int flags)
2882{
2883        unsigned long start_addr, nr_pages, mask;
2884        pgoff_t max_pgoff;
2885        struct vm_fault vmf;
2886        int off;
2887
2888        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2889        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2890
2891        start_addr = max(address & mask, vma->vm_start);
2892        off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2893        pte -= off;
2894        pgoff -= off;
2895
2896        /*
2897         *  max_pgoff is either end of page table or end of vma
2898         *  or fault_around_pages() from pgoff, depending what is nearest.
2899         */
2900        max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2901                PTRS_PER_PTE - 1;
2902        max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2903                        pgoff + nr_pages - 1);
2904
2905        /* Check if it makes any sense to call ->map_pages */
2906        while (!pte_none(*pte)) {
2907                if (++pgoff > max_pgoff)
2908                        return;
2909                start_addr += PAGE_SIZE;
2910                if (start_addr >= vma->vm_end)
2911                        return;
2912                pte++;
2913        }
2914
2915        vmf.virtual_address = (void __user *) start_addr;
2916        vmf.pte = pte;
2917        vmf.pgoff = pgoff;
2918        vmf.max_pgoff = max_pgoff;
2919        vmf.flags = flags;
2920        vma->vm_ops->map_pages(vma, &vmf);
2921}
2922
2923static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2924                unsigned long address, pmd_t *pmd,
2925                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2926{
2927        struct page *fault_page;
2928        spinlock_t *ptl;
2929        pte_t *pte;
2930        int ret = 0;
2931
2932        /*
2933         * Let's call ->map_pages() first and use ->fault() as fallback
2934         * if page by the offset is not ready to be mapped (cold cache or
2935         * something).
2936         */
2937        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2938                pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2939                do_fault_around(vma, address, pte, pgoff, flags);
2940                if (!pte_same(*pte, orig_pte))
2941                        goto unlock_out;
2942                pte_unmap_unlock(pte, ptl);
2943        }
2944
2945        ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2946        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2947                return ret;
2948
2949        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2950        if (unlikely(!pte_same(*pte, orig_pte))) {
2951                pte_unmap_unlock(pte, ptl);
2952                unlock_page(fault_page);
2953                page_cache_release(fault_page);
2954                return ret;
2955        }
2956        do_set_pte(vma, address, fault_page, pte, false, false);
2957        unlock_page(fault_page);
2958unlock_out:
2959        pte_unmap_unlock(pte, ptl);
2960        return ret;
2961}
2962
2963static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2964                unsigned long address, pmd_t *pmd,
2965                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2966{
2967        struct page *fault_page, *new_page;
2968        struct mem_cgroup *memcg;
2969        spinlock_t *ptl;
2970        pte_t *pte;
2971        int ret;
2972
2973        if (unlikely(anon_vma_prepare(vma)))
2974                return VM_FAULT_OOM;
2975
2976        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2977        if (!new_page)
2978                return VM_FAULT_OOM;
2979
2980        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2981                page_cache_release(new_page);
2982                return VM_FAULT_OOM;
2983        }
2984
2985        ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2986        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2987                goto uncharge_out;
2988
2989        if (fault_page)
2990                copy_user_highpage(new_page, fault_page, address, vma);
2991        __SetPageUptodate(new_page);
2992
2993        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2994        if (unlikely(!pte_same(*pte, orig_pte))) {
2995                pte_unmap_unlock(pte, ptl);
2996                if (fault_page) {
2997                        unlock_page(fault_page);
2998                        page_cache_release(fault_page);
2999                } else {
3000                        /*
3001                         * The fault handler has no page to lock, so it holds
3002                         * i_mmap_lock for read to protect against truncate.
3003                         */
3004                        i_mmap_unlock_read(vma->vm_file->f_mapping);
3005                }
3006                goto uncharge_out;
3007        }
3008        do_set_pte(vma, address, new_page, pte, true, true);
3009        mem_cgroup_commit_charge(new_page, memcg, false);
3010        lru_cache_add_active_or_unevictable(new_page, vma);
3011        pte_unmap_unlock(pte, ptl);
3012        if (fault_page) {
3013                unlock_page(fault_page);
3014                page_cache_release(fault_page);
3015        } else {
3016                /*
3017                 * The fault handler has no page to lock, so it holds
3018                 * i_mmap_lock for read to protect against truncate.
3019                 */
3020                i_mmap_unlock_read(vma->vm_file->f_mapping);
3021        }
3022        return ret;
3023uncharge_out:
3024        mem_cgroup_cancel_charge(new_page, memcg);
3025        page_cache_release(new_page);
3026        return ret;
3027}
3028
3029static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3030                unsigned long address, pmd_t *pmd,
3031                pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3032{
3033        struct page *fault_page;
3034        struct address_space *mapping;
3035        spinlock_t *ptl;
3036        pte_t *pte;
3037        int dirtied = 0;
3038        int ret, tmp;
3039
3040        ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3041        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3042                return ret;
3043
3044        /*
3045         * Check if the backing address space wants to know that the page is
3046         * about to become writable
3047         */
3048        if (vma->vm_ops->page_mkwrite) {
3049                unlock_page(fault_page);
3050                tmp = do_page_mkwrite(vma, fault_page, address);
3051                if (unlikely(!tmp ||
3052                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3053                        page_cache_release(fault_page);
3054                        return tmp;
3055                }
3056        }
3057
3058        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3059        if (unlikely(!pte_same(*pte, orig_pte))) {
3060                pte_unmap_unlock(pte, ptl);
3061                unlock_page(fault_page);
3062                page_cache_release(fault_page);
3063                return ret;
3064        }
3065        do_set_pte(vma, address, fault_page, pte, true, false);
3066        pte_unmap_unlock(pte, ptl);
3067
3068        if (set_page_dirty(fault_page))
3069                dirtied = 1;
3070        /*
3071         * Take a local copy of the address_space - page.mapping may be zeroed
3072         * by truncate after unlock_page().   The address_space itself remains
3073         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3074         * release semantics to prevent the compiler from undoing this copying.
3075         */
3076        mapping = fault_page->mapping;
3077        unlock_page(fault_page);
3078        if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3079                /*
3080                 * Some device drivers do not set page.mapping but still
3081                 * dirty their pages
3082                 */
3083                balance_dirty_pages_ratelimited(mapping);
3084        }
3085
3086        if (!vma->vm_ops->page_mkwrite)
3087                file_update_time(vma->vm_file);
3088
3089        return ret;
3090}
3091
3092/*
3093 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3094 * but allow concurrent faults).
3095 * The mmap_sem may have been released depending on flags and our
3096 * return value.  See filemap_fault() and __lock_page_or_retry().
3097 */
3098static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3099                unsigned long address, pte_t *page_table, pmd_t *pmd,
3100                unsigned int flags, pte_t orig_pte)
3101{
3102        pgoff_t pgoff = (((address & PAGE_MASK)
3103                        - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3104
3105        pte_unmap(page_table);
3106        /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3107        if (!vma->vm_ops->fault)
3108                return VM_FAULT_SIGBUS;
3109        if (!(flags & FAULT_FLAG_WRITE))
3110                return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3111                                orig_pte);
3112        if (!(vma->vm_flags & VM_SHARED))
3113                return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3114                                orig_pte);
3115        return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3116}
3117
3118static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3119                                unsigned long addr, int page_nid,
3120                                int *flags)
3121{
3122        get_page(page);
3123
3124        count_vm_numa_event(NUMA_HINT_FAULTS);
3125        if (page_nid == numa_node_id()) {
3126                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3127                *flags |= TNF_FAULT_LOCAL;
3128        }
3129
3130        return mpol_misplaced(page, vma, addr);
3131}
3132
3133static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3134                   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3135{
3136        struct page *page = NULL;
3137        spinlock_t *ptl;
3138        int page_nid = -1;
3139        int last_cpupid;
3140        int target_nid;
3141        bool migrated = false;
3142        bool was_writable = pte_write(pte);
3143        int flags = 0;
3144
3145        /* A PROT_NONE fault should not end up here */
3146        BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3147
3148        /*
3149        * The "pte" at this point cannot be used safely without
3150        * validation through pte_unmap_same(). It's of NUMA type but
3151        * the pfn may be screwed if the read is non atomic.
3152        *
3153        * We can safely just do a "set_pte_at()", because the old
3154        * page table entry is not accessible, so there would be no
3155        * concurrent hardware modifications to the PTE.
3156        */
3157        ptl = pte_lockptr(mm, pmd);
3158        spin_lock(ptl);
3159        if (unlikely(!pte_same(*ptep, pte))) {
3160                pte_unmap_unlock(ptep, ptl);
3161                goto out;
3162        }
3163
3164        /* Make it present again */
3165        pte = pte_modify(pte, vma->vm_page_prot);
3166        pte = pte_mkyoung(pte);
3167        if (was_writable)
3168                pte = pte_mkwrite(pte);
3169        set_pte_at(mm, addr, ptep, pte);
3170        update_mmu_cache(vma, addr, ptep);
3171
3172        page = vm_normal_page(vma, addr, pte);
3173        if (!page) {
3174                pte_unmap_unlock(ptep, ptl);
3175                return 0;
3176        }
3177
3178        /*
3179         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3180         * much anyway since they can be in shared cache state. This misses
3181         * the case where a mapping is writable but the process never writes
3182         * to it but pte_write gets cleared during protection updates and
3183         * pte_dirty has unpredictable behaviour between PTE scan updates,
3184         * background writeback, dirty balancing and application behaviour.
3185         */
3186        if (!(vma->vm_flags & VM_WRITE))
3187                flags |= TNF_NO_GROUP;
3188
3189        /*
3190         * Flag if the page is shared between multiple address spaces. This
3191         * is later used when determining whether to group tasks together
3192         */
3193        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3194                flags |= TNF_SHARED;
3195
3196        last_cpupid = page_cpupid_last(page);
3197        page_nid = page_to_nid(page);
3198        target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3199        pte_unmap_unlock(ptep, ptl);
3200        if (target_nid == -1) {
3201                put_page(page);
3202                goto out;
3203        }
3204
3205        /* Migrate to the requested node */
3206        migrated = migrate_misplaced_page(page, vma, target_nid);
3207        if (migrated) {
3208                page_nid = target_nid;
3209                flags |= TNF_MIGRATED;
3210        } else
3211                flags |= TNF_MIGRATE_FAIL;
3212
3213out:
3214        if (page_nid != -1)
3215                task_numa_fault(last_cpupid, page_nid, 1, flags);
3216        return 0;
3217}
3218
3219/*
3220 * These routines also need to handle stuff like marking pages dirty
3221 * and/or accessed for architectures that don't do it in hardware (most
3222 * RISC architectures).  The early dirtying is also good on the i386.
3223 *
3224 * There is also a hook called "update_mmu_cache()" that architectures
3225 * with external mmu caches can use to update those (ie the Sparc or
3226 * PowerPC hashed page tables that act as extended TLBs).
3227 *
3228 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3229 * but allow concurrent faults), and pte mapped but not yet locked.
3230 * We return with pte unmapped and unlocked.
3231 *
3232 * The mmap_sem may have been released depending on flags and our
3233 * return value.  See filemap_fault() and __lock_page_or_retry().
3234 */
3235static int handle_pte_fault(struct mm_struct *mm,
3236                     struct vm_area_struct *vma, unsigned long address,
3237                     pte_t *pte, pmd_t *pmd, unsigned int flags)
3238{
3239        pte_t entry;
3240        spinlock_t *ptl;
3241
3242        /*
3243         * some architectures can have larger ptes than wordsize,
3244         * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3245         * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3246         * The code below just needs a consistent view for the ifs and
3247         * we later double check anyway with the ptl lock held. So here
3248         * a barrier will do.
3249         */
3250        entry = *pte;
3251        barrier();
3252        if (!pte_present(entry)) {
3253                if (pte_none(entry)) {
3254                        if (vma->vm_ops)
3255                                return do_fault(mm, vma, address, pte, pmd,
3256                                                flags, entry);
3257
3258                        return do_anonymous_page(mm, vma, address, pte, pmd,
3259                                        flags);
3260                }
3261                return do_swap_page(mm, vma, address,
3262                                        pte, pmd, flags, entry);
3263        }
3264
3265        if (pte_protnone(entry))
3266                return do_numa_page(mm, vma, address, entry, pte, pmd);
3267
3268        ptl = pte_lockptr(mm, pmd);
3269        spin_lock(ptl);
3270        if (unlikely(!pte_same(*pte, entry)))
3271                goto unlock;
3272        if (flags & FAULT_FLAG_WRITE) {
3273                if (!pte_write(entry))
3274                        return do_wp_page(mm, vma, address,
3275                                        pte, pmd, ptl, entry);
3276                entry = pte_mkdirty(entry);
3277        }
3278        entry = pte_mkyoung(entry);
3279        if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3280                update_mmu_cache(vma, address, pte);
3281        } else {
3282                /*
3283                 * This is needed only for protection faults but the arch code
3284                 * is not yet telling us if this is a protection fault or not.
3285                 * This still avoids useless tlb flushes for .text page faults
3286                 * with threads.
3287                 */
3288                if (flags & FAULT_FLAG_WRITE)
3289                        flush_tlb_fix_spurious_fault(vma, address);
3290        }
3291unlock:
3292        pte_unmap_unlock(pte, ptl);
3293        return 0;
3294}
3295
3296/*
3297 * By the time we get here, we already hold the mm semaphore
3298 *
3299 * The mmap_sem may have been released depending on flags and our
3300 * return value.  See filemap_fault() and __lock_page_or_retry().
3301 */
3302static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3303                             unsigned long address, unsigned int flags)
3304{
3305        pgd_t *pgd;
3306        pud_t *pud;
3307        pmd_t *pmd;
3308        pte_t *pte;
3309
3310        if (unlikely(is_vm_hugetlb_page(vma)))
3311                return hugetlb_fault(mm, vma, address, flags);
3312
3313        pgd = pgd_offset(mm, address);
3314        pud = pud_alloc(mm, pgd, address);
3315        if (!pud)
3316                return VM_FAULT_OOM;
3317        pmd = pmd_alloc(mm, pud, address);
3318        if (!pmd)
3319                return VM_FAULT_OOM;
3320        if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3321                int ret = VM_FAULT_FALLBACK;
3322                if (!vma->vm_ops)
3323                        ret = do_huge_pmd_anonymous_page(mm, vma, address,
3324                                        pmd, flags);
3325                if (!(ret & VM_FAULT_FALLBACK))
3326                        return ret;
3327        } else {
3328                pmd_t orig_pmd = *pmd;
3329                int ret;
3330
3331                barrier();
3332                if (pmd_trans_huge(orig_pmd)) {
3333                        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3334
3335                        /*
3336                         * If the pmd is splitting, return and retry the
3337                         * the fault.  Alternative: wait until the split
3338                         * is done, and goto retry.
3339                         */
3340                        if (pmd_trans_splitting(orig_pmd))
3341                                return 0;
3342
3343                        if (pmd_protnone(orig_pmd))
3344                                return do_huge_pmd_numa_page(mm, vma, address,
3345                                                             orig_pmd, pmd);
3346
3347                        if (dirty && !pmd_write(orig_pmd)) {
3348                                ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3349                                                          orig_pmd);
3350                                if (!(ret & VM_FAULT_FALLBACK))
3351                                        return ret;
3352                        } else {
3353                                huge_pmd_set_accessed(mm, vma, address, pmd,
3354                                                      orig_pmd, dirty);
3355                                return 0;
3356                        }
3357                }
3358        }
3359
3360        /*
3361         * Use __pte_alloc instead of pte_alloc_map, because we can't
3362         * run pte_offset_map on the pmd, if an huge pmd could
3363         * materialize from under us from a different thread.
3364         */
3365        if (unlikely(pmd_none(*pmd)) &&
3366            unlikely(__pte_alloc(mm, vma, pmd, address)))
3367                return VM_FAULT_OOM;
3368        /* if an huge pmd materialized from under us just retry later */
3369        if (unlikely(pmd_trans_huge(*pmd)))
3370                return 0;
3371        /*
3372         * A regular pmd is established and it can't morph into a huge pmd
3373         * from under us anymore at this point because we hold the mmap_sem
3374         * read mode and khugepaged takes it in write mode. So now it's
3375         * safe to run pte_offset_map().
3376         */
3377        pte = pte_offset_map(pmd, address);
3378
3379        return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3380}
3381
3382/*
3383 * By the time we get here, we already hold the mm semaphore
3384 *
3385 * The mmap_sem may have been released depending on flags and our
3386 * return value.  See filemap_fault() and __lock_page_or_retry().
3387 */
3388int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3389                    unsigned long address, unsigned int flags)
3390{
3391        int ret;
3392
3393        __set_current_state(TASK_RUNNING);
3394
3395        count_vm_event(PGFAULT);
3396        mem_cgroup_count_vm_event(mm, PGFAULT);
3397
3398        /* do counter updates before entering really critical section. */
3399        check_sync_rss_stat(current);
3400
3401        /*
3402         * Enable the memcg OOM handling for faults triggered in user
3403         * space.  Kernel faults are handled more gracefully.
3404         */
3405        if (flags & FAULT_FLAG_USER)
3406                mem_cgroup_oom_enable();
3407
3408        ret = __handle_mm_fault(mm, vma, address, flags);
3409
3410        if (flags & FAULT_FLAG_USER) {
3411                mem_cgroup_oom_disable();
3412                /*
3413                 * The task may have entered a memcg OOM situation but
3414                 * if the allocation error was handled gracefully (no
3415                 * VM_FAULT_OOM), there is no need to kill anything.
3416                 * Just clean up the OOM state peacefully.
3417                 */
3418                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3419                        mem_cgroup_oom_synchronize(false);
3420        }
3421
3422        return ret;
3423}
3424EXPORT_SYMBOL_GPL(handle_mm_fault);
3425
3426#ifndef __PAGETABLE_PUD_FOLDED
3427/*
3428 * Allocate page upper directory.
3429 * We've already handled the fast-path in-line.
3430 */
3431int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3432{
3433        pud_t *new = pud_alloc_one(mm, address);
3434        if (!new)
3435                return -ENOMEM;
3436
3437        smp_wmb(); /* See comment in __pte_alloc */
3438
3439        spin_lock(&mm->page_table_lock);
3440        if (pgd_present(*pgd))          /* Another has populated it */
3441                pud_free(mm, new);
3442        else
3443                pgd_populate(mm, pgd, new);
3444        spin_unlock(&mm->page_table_lock);
3445        return 0;
3446}
3447#endif /* __PAGETABLE_PUD_FOLDED */
3448
3449#ifndef __PAGETABLE_PMD_FOLDED
3450/*
3451 * Allocate page middle directory.
3452 * We've already handled the fast-path in-line.
3453 */
3454int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3455{
3456        pmd_t *new = pmd_alloc_one(mm, address);
3457        if (!new)
3458                return -ENOMEM;
3459
3460        smp_wmb(); /* See comment in __pte_alloc */
3461
3462        spin_lock(&mm->page_table_lock);
3463#ifndef __ARCH_HAS_4LEVEL_HACK
3464        if (!pud_present(*pud)) {
3465                mm_inc_nr_pmds(mm);
3466                pud_populate(mm, pud, new);
3467        } else  /* Another has populated it */
3468                pmd_free(mm, new);
3469#else
3470        if (!pgd_present(*pud)) {
3471                mm_inc_nr_pmds(mm);
3472                pgd_populate(mm, pud, new);
3473        } else /* Another has populated it */
3474                pmd_free(mm, new);
3475#endif /* __ARCH_HAS_4LEVEL_HACK */
3476        spin_unlock(&mm->page_table_lock);
3477        return 0;
3478}
3479#endif /* __PAGETABLE_PMD_FOLDED */
3480
3481static int __follow_pte(struct mm_struct *mm, unsigned long address,
3482                pte_t **ptepp, spinlock_t **ptlp)
3483{
3484        pgd_t *pgd;
3485        pud_t *pud;
3486        pmd_t *pmd;
3487        pte_t *ptep;
3488
3489        pgd = pgd_offset(mm, address);
3490        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3491                goto out;
3492
3493        pud = pud_offset(pgd, address);
3494        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3495                goto out;
3496
3497        pmd = pmd_offset(pud, address);
3498        VM_BUG_ON(pmd_trans_huge(*pmd));
3499        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3500                goto out;
3501
3502        /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3503        if (pmd_huge(*pmd))
3504                goto out;
3505
3506        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3507        if (!ptep)
3508                goto out;
3509        if (!pte_present(*ptep))
3510                goto unlock;
3511        *ptepp = ptep;
3512        return 0;
3513unlock:
3514        pte_unmap_unlock(ptep, *ptlp);
3515out:
3516        return -EINVAL;
3517}
3518
3519static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3520                             pte_t **ptepp, spinlock_t **ptlp)
3521{
3522        int res;
3523
3524        /* (void) is needed to make gcc happy */
3525        (void) __cond_lock(*ptlp,
3526                           !(res = __follow_pte(mm, address, ptepp, ptlp)));
3527        return res;
3528}
3529
3530/**
3531 * follow_pfn - look up PFN at a user virtual address
3532 * @vma: memory mapping
3533 * @address: user virtual address
3534 * @pfn: location to store found PFN
3535 *
3536 * Only IO mappings and raw PFN mappings are allowed.
3537 *
3538 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3539 */
3540int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3541        unsigned long *pfn)
3542{
3543        int ret = -EINVAL;
3544        spinlock_t *ptl;
3545        pte_t *ptep;
3546
3547        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3548                return ret;
3549
3550        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3551        if (ret)
3552                return ret;
3553        *pfn = pte_pfn(*ptep);
3554        pte_unmap_unlock(ptep, ptl);
3555        return 0;
3556}
3557EXPORT_SYMBOL(follow_pfn);
3558
3559#ifdef CONFIG_HAVE_IOREMAP_PROT
3560int follow_phys(struct vm_area_struct *vma,
3561                unsigned long address, unsigned int flags,
3562                unsigned long *prot, resource_size_t *phys)
3563{
3564        int ret = -EINVAL;
3565        pte_t *ptep, pte;
3566        spinlock_t *ptl;
3567
3568        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3569                goto out;
3570
3571        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3572                goto out;
3573        pte = *ptep;
3574
3575        if ((flags & FOLL_WRITE) && !pte_write(pte))
3576                goto unlock;
3577
3578        *prot = pgprot_val(pte_pgprot(pte));
3579        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3580
3581        ret = 0;
3582unlock:
3583        pte_unmap_unlock(ptep, ptl);
3584out:
3585        return ret;
3586}
3587
3588int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3589                        void *buf, int len, int write)
3590{
3591        resource_size_t phys_addr;
3592        unsigned long prot = 0;
3593        void __iomem *maddr;
3594        int offset = addr & (PAGE_SIZE-1);
3595
3596        if (follow_phys(vma, addr, write, &prot, &phys_addr))
3597                return -EINVAL;
3598
3599        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3600        if (write)
3601                memcpy_toio(maddr + offset, buf, len);
3602        else
3603                memcpy_fromio(buf, maddr + offset, len);
3604        iounmap(maddr);
3605
3606        return len;
3607}
3608EXPORT_SYMBOL_GPL(generic_access_phys);
3609#endif
3610
3611/*
3612 * Access another process' address space as given in mm.  If non-NULL, use the
3613 * given task for page fault accounting.
3614 */
3615static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3616                unsigned long addr, void *buf, int len, int write)
3617{
3618        struct vm_area_struct *vma;
3619        void *old_buf = buf;
3620
3621        down_read(&mm->mmap_sem);
3622        /* ignore errors, just check how much was successfully transferred */
3623        while (len) {
3624                int bytes, ret, offset;
3625                void *maddr;
3626                struct page *page = NULL;
3627
3628                ret = get_user_pages(tsk, mm, addr, 1,
3629                                write, 1, &page, &vma);
3630                if (ret <= 0) {
3631#ifndef CONFIG_HAVE_IOREMAP_PROT
3632                        break;
3633#else
3634                        /*
3635                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
3636                         * we can access using slightly different code.
3637                         */
3638                        vma = find_vma(mm, addr);
3639                        if (!vma || vma->vm_start > addr)
3640                                break;
3641                        if (vma->vm_ops && vma->vm_ops->access)
3642                                ret = vma->vm_ops->access(vma, addr, buf,
3643                                                          len, write);
3644                        if (ret <= 0)
3645                                break;
3646                        bytes = ret;
3647#endif
3648                } else {
3649                        bytes = len;
3650                        offset = addr & (PAGE_SIZE-1);
3651                        if (bytes > PAGE_SIZE-offset)
3652                                bytes = PAGE_SIZE-offset;
3653
3654                        maddr = kmap(page);
3655                        if (write) {
3656                                copy_to_user_page(vma, page, addr,
3657                                                  maddr + offset, buf, bytes);
3658                                set_page_dirty_lock(page);
3659                        } else {
3660                                copy_from_user_page(vma, page, addr,
3661                                                    buf, maddr + offset, bytes);
3662                        }
3663                        kunmap(page);
3664                        page_cache_release(page);
3665                }
3666                len -= bytes;
3667                buf += bytes;
3668                addr += bytes;
3669        }
3670        up_read(&mm->mmap_sem);
3671
3672        return buf - old_buf;
3673}
3674
3675/**
3676 * access_remote_vm - access another process' address space
3677 * @mm:         the mm_struct of the target address space
3678 * @addr:       start address to access
3679 * @buf:        source or destination buffer
3680 * @len:        number of bytes to transfer
3681 * @write:      whether the access is a write
3682 *
3683 * The caller must hold a reference on @mm.
3684 */
3685int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3686                void *buf, int len, int write)
3687{
3688        return __access_remote_vm(NULL, mm, addr, buf, len, write);
3689}
3690
3691/*
3692 * Access another process' address space.
3693 * Source/target buffer must be kernel space,
3694 * Do not walk the page table directly, use get_user_pages
3695 */
3696int access_process_vm(struct task_struct *tsk, unsigned long addr,
3697                void *buf, int len, int write)
3698{
3699        struct mm_struct *mm;
3700        int ret;
3701
3702        mm = get_task_mm(tsk);
3703        if (!mm)
3704                return 0;
3705
3706        ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3707        mmput(mm);
3708
3709        return ret;
3710}
3711
3712/*
3713 * Print the name of a VMA.
3714 */
3715void print_vma_addr(char *prefix, unsigned long ip)
3716{
3717        struct mm_struct *mm = current->mm;
3718        struct vm_area_struct *vma;
3719
3720        /*
3721         * Do not print if we are in atomic
3722         * contexts (in exception stacks, etc.):
3723         */
3724        if (preempt_count())
3725                return;
3726
3727        down_read(&mm->mmap_sem);
3728        vma = find_vma(mm, ip);
3729        if (vma && vma->vm_file) {
3730                struct file *f = vma->vm_file;
3731                char *buf = (char *)__get_free_page(GFP_KERNEL);
3732                if (buf) {
3733                        char *p;
3734
3735                        p = file_path(f, buf, PAGE_SIZE);
3736                        if (IS_ERR(p))
3737                                p = "?";
3738                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3739                                        vma->vm_start,
3740                                        vma->vm_end - vma->vm_start);
3741                        free_page((unsigned long)buf);
3742                }
3743        }
3744        up_read(&mm->mmap_sem);
3745}
3746
3747#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3748void __might_fault(const char *file, int line)
3749{
3750        /*
3751         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3752         * holding the mmap_sem, this is safe because kernel memory doesn't
3753         * get paged out, therefore we'll never actually fault, and the
3754         * below annotations will generate false positives.
3755         */
3756        if (segment_eq(get_fs(), KERNEL_DS))
3757                return;
3758        if (pagefault_disabled())
3759                return;
3760        __might_sleep(file, line, 0);
3761#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3762        if (current->mm)
3763                might_lock_read(&current->mm->mmap_sem);
3764#endif
3765}
3766EXPORT_SYMBOL(__might_fault);
3767#endif
3768
3769#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3770static void clear_gigantic_page(struct page *page,
3771                                unsigned long addr,
3772                                unsigned int pages_per_huge_page)
3773{
3774        int i;
3775        struct page *p = page;
3776
3777        might_sleep();
3778        for (i = 0; i < pages_per_huge_page;
3779             i++, p = mem_map_next(p, page, i)) {
3780                cond_resched();
3781                clear_user_highpage(p, addr + i * PAGE_SIZE);
3782        }
3783}
3784void clear_huge_page(struct page *page,
3785                     unsigned long addr, unsigned int pages_per_huge_page)
3786{
3787        int i;
3788
3789        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3790                clear_gigantic_page(page, addr, pages_per_huge_page);
3791                return;
3792        }
3793
3794        might_sleep();
3795        for (i = 0; i < pages_per_huge_page; i++) {
3796                cond_resched();
3797                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3798        }
3799}
3800
3801static void copy_user_gigantic_page(struct page *dst, struct page *src,
3802                                    unsigned long addr,
3803                                    struct vm_area_struct *vma,
3804                                    unsigned int pages_per_huge_page)
3805{
3806        int i;
3807        struct page *dst_base = dst;
3808        struct page *src_base = src;
3809
3810        for (i = 0; i < pages_per_huge_page; ) {
3811                cond_resched();
3812                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3813
3814                i++;
3815                dst = mem_map_next(dst, dst_base, i);
3816                src = mem_map_next(src, src_base, i);
3817        }
3818}
3819
3820void copy_user_huge_page(struct page *dst, struct page *src,
3821                         unsigned long addr, struct vm_area_struct *vma,
3822                         unsigned int pages_per_huge_page)
3823{
3824        int i;
3825
3826        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3827                copy_user_gigantic_page(dst, src, addr, vma,
3828                                        pages_per_huge_page);
3829                return;
3830        }
3831
3832        might_sleep();
3833        for (i = 0; i < pages_per_huge_page; i++) {
3834                cond_resched();
3835                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3836        }
3837}
3838#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3839
3840#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3841
3842static struct kmem_cache *page_ptl_cachep;
3843
3844void __init ptlock_cache_init(void)
3845{
3846        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3847                        SLAB_PANIC, NULL);
3848}
3849
3850bool ptlock_alloc(struct page *page)
3851{
3852        spinlock_t *ptl;
3853
3854        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3855        if (!ptl)
3856                return false;
3857        page->ptl = ptl;
3858        return true;
3859}
3860
3861void ptlock_free(struct page *page)
3862{
3863        kmem_cache_free(page_ptl_cachep, page->ptl);
3864}
3865#endif
3866