linux/mm/mmap.c
<<
>>
Prefs
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
  28#include <linux/profile.h>
  29#include <linux/export.h>
  30#include <linux/mount.h>
  31#include <linux/mempolicy.h>
  32#include <linux/rmap.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/mmdebug.h>
  35#include <linux/perf_event.h>
  36#include <linux/audit.h>
  37#include <linux/khugepaged.h>
  38#include <linux/uprobes.h>
  39#include <linux/rbtree_augmented.h>
  40#include <linux/sched/sysctl.h>
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44
  45#include <asm/uaccess.h>
  46#include <asm/cacheflush.h>
  47#include <asm/tlb.h>
  48#include <asm/mmu_context.h>
  49
  50#include "internal.h"
  51
  52#ifndef arch_mmap_check
  53#define arch_mmap_check(addr, len, flags)       (0)
  54#endif
  55
  56#ifndef arch_rebalance_pgtables
  57#define arch_rebalance_pgtables(addr, len)              (addr)
  58#endif
  59
  60static void unmap_region(struct mm_struct *mm,
  61                struct vm_area_struct *vma, struct vm_area_struct *prev,
  62                unsigned long start, unsigned long end);
  63
  64/* description of effects of mapping type and prot in current implementation.
  65 * this is due to the limited x86 page protection hardware.  The expected
  66 * behavior is in parens:
  67 *
  68 * map_type     prot
  69 *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
  70 * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  71 *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
  72 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  73 *
  74 * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  75 *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
  76 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  77 *
  78 */
  79pgprot_t protection_map[16] = {
  80        __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  81        __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  82};
  83
  84pgprot_t vm_get_page_prot(unsigned long vm_flags)
  85{
  86        return __pgprot(pgprot_val(protection_map[vm_flags &
  87                                (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  88                        pgprot_val(arch_vm_get_page_prot(vm_flags)));
  89}
  90EXPORT_SYMBOL(vm_get_page_prot);
  91
  92static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
  93{
  94        return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
  95}
  96
  97/* Update vma->vm_page_prot to reflect vma->vm_flags. */
  98void vma_set_page_prot(struct vm_area_struct *vma)
  99{
 100        unsigned long vm_flags = vma->vm_flags;
 101
 102        vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 103        if (vma_wants_writenotify(vma)) {
 104                vm_flags &= ~VM_SHARED;
 105                vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
 106                                                     vm_flags);
 107        }
 108}
 109
 110
 111int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
 112int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
 113unsigned long sysctl_overcommit_kbytes __read_mostly;
 114int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 115unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 116unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 117/*
 118 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 119 * other variables. It can be updated by several CPUs frequently.
 120 */
 121struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 122
 123/*
 124 * The global memory commitment made in the system can be a metric
 125 * that can be used to drive ballooning decisions when Linux is hosted
 126 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 127 * balancing memory across competing virtual machines that are hosted.
 128 * Several metrics drive this policy engine including the guest reported
 129 * memory commitment.
 130 */
 131unsigned long vm_memory_committed(void)
 132{
 133        return percpu_counter_read_positive(&vm_committed_as);
 134}
 135EXPORT_SYMBOL_GPL(vm_memory_committed);
 136
 137/*
 138 * Check that a process has enough memory to allocate a new virtual
 139 * mapping. 0 means there is enough memory for the allocation to
 140 * succeed and -ENOMEM implies there is not.
 141 *
 142 * We currently support three overcommit policies, which are set via the
 143 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 144 *
 145 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 146 * Additional code 2002 Jul 20 by Robert Love.
 147 *
 148 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 149 *
 150 * Note this is a helper function intended to be used by LSMs which
 151 * wish to use this logic.
 152 */
 153int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 154{
 155        long free, allowed, reserve;
 156
 157        VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
 158                        -(s64)vm_committed_as_batch * num_online_cpus(),
 159                        "memory commitment underflow");
 160
 161        vm_acct_memory(pages);
 162
 163        /*
 164         * Sometimes we want to use more memory than we have
 165         */
 166        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 167                return 0;
 168
 169        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 170                free = global_page_state(NR_FREE_PAGES);
 171                free += global_page_state(NR_FILE_PAGES);
 172
 173                /*
 174                 * shmem pages shouldn't be counted as free in this
 175                 * case, they can't be purged, only swapped out, and
 176                 * that won't affect the overall amount of available
 177                 * memory in the system.
 178                 */
 179                free -= global_page_state(NR_SHMEM);
 180
 181                free += get_nr_swap_pages();
 182
 183                /*
 184                 * Any slabs which are created with the
 185                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 186                 * which are reclaimable, under pressure.  The dentry
 187                 * cache and most inode caches should fall into this
 188                 */
 189                free += global_page_state(NR_SLAB_RECLAIMABLE);
 190
 191                /*
 192                 * Leave reserved pages. The pages are not for anonymous pages.
 193                 */
 194                if (free <= totalreserve_pages)
 195                        goto error;
 196                else
 197                        free -= totalreserve_pages;
 198
 199                /*
 200                 * Reserve some for root
 201                 */
 202                if (!cap_sys_admin)
 203                        free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 204
 205                if (free > pages)
 206                        return 0;
 207
 208                goto error;
 209        }
 210
 211        allowed = vm_commit_limit();
 212        /*
 213         * Reserve some for root
 214         */
 215        if (!cap_sys_admin)
 216                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 217
 218        /*
 219         * Don't let a single process grow so big a user can't recover
 220         */
 221        if (mm) {
 222                reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 223                allowed -= min_t(long, mm->total_vm / 32, reserve);
 224        }
 225
 226        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 227                return 0;
 228error:
 229        vm_unacct_memory(pages);
 230
 231        return -ENOMEM;
 232}
 233
 234/*
 235 * Requires inode->i_mapping->i_mmap_rwsem
 236 */
 237static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 238                struct file *file, struct address_space *mapping)
 239{
 240        if (vma->vm_flags & VM_DENYWRITE)
 241                atomic_inc(&file_inode(file)->i_writecount);
 242        if (vma->vm_flags & VM_SHARED)
 243                mapping_unmap_writable(mapping);
 244
 245        flush_dcache_mmap_lock(mapping);
 246        vma_interval_tree_remove(vma, &mapping->i_mmap);
 247        flush_dcache_mmap_unlock(mapping);
 248}
 249
 250/*
 251 * Unlink a file-based vm structure from its interval tree, to hide
 252 * vma from rmap and vmtruncate before freeing its page tables.
 253 */
 254void unlink_file_vma(struct vm_area_struct *vma)
 255{
 256        struct file *file = vma->vm_file;
 257
 258        if (file) {
 259                struct address_space *mapping = file->f_mapping;
 260                i_mmap_lock_write(mapping);
 261                __remove_shared_vm_struct(vma, file, mapping);
 262                i_mmap_unlock_write(mapping);
 263        }
 264}
 265
 266/*
 267 * Close a vm structure and free it, returning the next.
 268 */
 269static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 270{
 271        struct vm_area_struct *next = vma->vm_next;
 272
 273        might_sleep();
 274        if (vma->vm_ops && vma->vm_ops->close)
 275                vma->vm_ops->close(vma);
 276        if (vma->vm_file)
 277                fput(vma->vm_file);
 278        mpol_put(vma_policy(vma));
 279        kmem_cache_free(vm_area_cachep, vma);
 280        return next;
 281}
 282
 283static unsigned long do_brk(unsigned long addr, unsigned long len);
 284
 285SYSCALL_DEFINE1(brk, unsigned long, brk)
 286{
 287        unsigned long retval;
 288        unsigned long newbrk, oldbrk;
 289        struct mm_struct *mm = current->mm;
 290        unsigned long min_brk;
 291        bool populate;
 292
 293        down_write(&mm->mmap_sem);
 294
 295#ifdef CONFIG_COMPAT_BRK
 296        /*
 297         * CONFIG_COMPAT_BRK can still be overridden by setting
 298         * randomize_va_space to 2, which will still cause mm->start_brk
 299         * to be arbitrarily shifted
 300         */
 301        if (current->brk_randomized)
 302                min_brk = mm->start_brk;
 303        else
 304                min_brk = mm->end_data;
 305#else
 306        min_brk = mm->start_brk;
 307#endif
 308        if (brk < min_brk)
 309                goto out;
 310
 311        /*
 312         * Check against rlimit here. If this check is done later after the test
 313         * of oldbrk with newbrk then it can escape the test and let the data
 314         * segment grow beyond its set limit the in case where the limit is
 315         * not page aligned -Ram Gupta
 316         */
 317        if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 318                              mm->end_data, mm->start_data))
 319                goto out;
 320
 321        newbrk = PAGE_ALIGN(brk);
 322        oldbrk = PAGE_ALIGN(mm->brk);
 323        if (oldbrk == newbrk)
 324                goto set_brk;
 325
 326        /* Always allow shrinking brk. */
 327        if (brk <= mm->brk) {
 328                if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 329                        goto set_brk;
 330                goto out;
 331        }
 332
 333        /* Check against existing mmap mappings. */
 334        if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 335                goto out;
 336
 337        /* Ok, looks good - let it rip. */
 338        if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 339                goto out;
 340
 341set_brk:
 342        mm->brk = brk;
 343        populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 344        up_write(&mm->mmap_sem);
 345        if (populate)
 346                mm_populate(oldbrk, newbrk - oldbrk);
 347        return brk;
 348
 349out:
 350        retval = mm->brk;
 351        up_write(&mm->mmap_sem);
 352        return retval;
 353}
 354
 355static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 356{
 357        unsigned long max, subtree_gap;
 358        max = vma->vm_start;
 359        if (vma->vm_prev)
 360                max -= vma->vm_prev->vm_end;
 361        if (vma->vm_rb.rb_left) {
 362                subtree_gap = rb_entry(vma->vm_rb.rb_left,
 363                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 364                if (subtree_gap > max)
 365                        max = subtree_gap;
 366        }
 367        if (vma->vm_rb.rb_right) {
 368                subtree_gap = rb_entry(vma->vm_rb.rb_right,
 369                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 370                if (subtree_gap > max)
 371                        max = subtree_gap;
 372        }
 373        return max;
 374}
 375
 376#ifdef CONFIG_DEBUG_VM_RB
 377static int browse_rb(struct rb_root *root)
 378{
 379        int i = 0, j, bug = 0;
 380        struct rb_node *nd, *pn = NULL;
 381        unsigned long prev = 0, pend = 0;
 382
 383        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 384                struct vm_area_struct *vma;
 385                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 386                if (vma->vm_start < prev) {
 387                        pr_emerg("vm_start %lx < prev %lx\n",
 388                                  vma->vm_start, prev);
 389                        bug = 1;
 390                }
 391                if (vma->vm_start < pend) {
 392                        pr_emerg("vm_start %lx < pend %lx\n",
 393                                  vma->vm_start, pend);
 394                        bug = 1;
 395                }
 396                if (vma->vm_start > vma->vm_end) {
 397                        pr_emerg("vm_start %lx > vm_end %lx\n",
 398                                  vma->vm_start, vma->vm_end);
 399                        bug = 1;
 400                }
 401                if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 402                        pr_emerg("free gap %lx, correct %lx\n",
 403                               vma->rb_subtree_gap,
 404                               vma_compute_subtree_gap(vma));
 405                        bug = 1;
 406                }
 407                i++;
 408                pn = nd;
 409                prev = vma->vm_start;
 410                pend = vma->vm_end;
 411        }
 412        j = 0;
 413        for (nd = pn; nd; nd = rb_prev(nd))
 414                j++;
 415        if (i != j) {
 416                pr_emerg("backwards %d, forwards %d\n", j, i);
 417                bug = 1;
 418        }
 419        return bug ? -1 : i;
 420}
 421
 422static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 423{
 424        struct rb_node *nd;
 425
 426        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 427                struct vm_area_struct *vma;
 428                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 429                VM_BUG_ON_VMA(vma != ignore &&
 430                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 431                        vma);
 432        }
 433}
 434
 435static void validate_mm(struct mm_struct *mm)
 436{
 437        int bug = 0;
 438        int i = 0;
 439        unsigned long highest_address = 0;
 440        struct vm_area_struct *vma = mm->mmap;
 441
 442        while (vma) {
 443                struct anon_vma_chain *avc;
 444
 445                vma_lock_anon_vma(vma);
 446                list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 447                        anon_vma_interval_tree_verify(avc);
 448                vma_unlock_anon_vma(vma);
 449                highest_address = vma->vm_end;
 450                vma = vma->vm_next;
 451                i++;
 452        }
 453        if (i != mm->map_count) {
 454                pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 455                bug = 1;
 456        }
 457        if (highest_address != mm->highest_vm_end) {
 458                pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 459                          mm->highest_vm_end, highest_address);
 460                bug = 1;
 461        }
 462        i = browse_rb(&mm->mm_rb);
 463        if (i != mm->map_count) {
 464                if (i != -1)
 465                        pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 466                bug = 1;
 467        }
 468        VM_BUG_ON_MM(bug, mm);
 469}
 470#else
 471#define validate_mm_rb(root, ignore) do { } while (0)
 472#define validate_mm(mm) do { } while (0)
 473#endif
 474
 475RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 476                     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 477
 478/*
 479 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 480 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 481 * in the rbtree.
 482 */
 483static void vma_gap_update(struct vm_area_struct *vma)
 484{
 485        /*
 486         * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 487         * function that does exacltly what we want.
 488         */
 489        vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 490}
 491
 492static inline void vma_rb_insert(struct vm_area_struct *vma,
 493                                 struct rb_root *root)
 494{
 495        /* All rb_subtree_gap values must be consistent prior to insertion */
 496        validate_mm_rb(root, NULL);
 497
 498        rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 499}
 500
 501static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 502{
 503        /*
 504         * All rb_subtree_gap values must be consistent prior to erase,
 505         * with the possible exception of the vma being erased.
 506         */
 507        validate_mm_rb(root, vma);
 508
 509        /*
 510         * Note rb_erase_augmented is a fairly large inline function,
 511         * so make sure we instantiate it only once with our desired
 512         * augmented rbtree callbacks.
 513         */
 514        rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 515}
 516
 517/*
 518 * vma has some anon_vma assigned, and is already inserted on that
 519 * anon_vma's interval trees.
 520 *
 521 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 522 * vma must be removed from the anon_vma's interval trees using
 523 * anon_vma_interval_tree_pre_update_vma().
 524 *
 525 * After the update, the vma will be reinserted using
 526 * anon_vma_interval_tree_post_update_vma().
 527 *
 528 * The entire update must be protected by exclusive mmap_sem and by
 529 * the root anon_vma's mutex.
 530 */
 531static inline void
 532anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 533{
 534        struct anon_vma_chain *avc;
 535
 536        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 537                anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 538}
 539
 540static inline void
 541anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 542{
 543        struct anon_vma_chain *avc;
 544
 545        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 546                anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 547}
 548
 549static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 550                unsigned long end, struct vm_area_struct **pprev,
 551                struct rb_node ***rb_link, struct rb_node **rb_parent)
 552{
 553        struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 554
 555        __rb_link = &mm->mm_rb.rb_node;
 556        rb_prev = __rb_parent = NULL;
 557
 558        while (*__rb_link) {
 559                struct vm_area_struct *vma_tmp;
 560
 561                __rb_parent = *__rb_link;
 562                vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 563
 564                if (vma_tmp->vm_end > addr) {
 565                        /* Fail if an existing vma overlaps the area */
 566                        if (vma_tmp->vm_start < end)
 567                                return -ENOMEM;
 568                        __rb_link = &__rb_parent->rb_left;
 569                } else {
 570                        rb_prev = __rb_parent;
 571                        __rb_link = &__rb_parent->rb_right;
 572                }
 573        }
 574
 575        *pprev = NULL;
 576        if (rb_prev)
 577                *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 578        *rb_link = __rb_link;
 579        *rb_parent = __rb_parent;
 580        return 0;
 581}
 582
 583static unsigned long count_vma_pages_range(struct mm_struct *mm,
 584                unsigned long addr, unsigned long end)
 585{
 586        unsigned long nr_pages = 0;
 587        struct vm_area_struct *vma;
 588
 589        /* Find first overlaping mapping */
 590        vma = find_vma_intersection(mm, addr, end);
 591        if (!vma)
 592                return 0;
 593
 594        nr_pages = (min(end, vma->vm_end) -
 595                max(addr, vma->vm_start)) >> PAGE_SHIFT;
 596
 597        /* Iterate over the rest of the overlaps */
 598        for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 599                unsigned long overlap_len;
 600
 601                if (vma->vm_start > end)
 602                        break;
 603
 604                overlap_len = min(end, vma->vm_end) - vma->vm_start;
 605                nr_pages += overlap_len >> PAGE_SHIFT;
 606        }
 607
 608        return nr_pages;
 609}
 610
 611void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 612                struct rb_node **rb_link, struct rb_node *rb_parent)
 613{
 614        /* Update tracking information for the gap following the new vma. */
 615        if (vma->vm_next)
 616                vma_gap_update(vma->vm_next);
 617        else
 618                mm->highest_vm_end = vma->vm_end;
 619
 620        /*
 621         * vma->vm_prev wasn't known when we followed the rbtree to find the
 622         * correct insertion point for that vma. As a result, we could not
 623         * update the vma vm_rb parents rb_subtree_gap values on the way down.
 624         * So, we first insert the vma with a zero rb_subtree_gap value
 625         * (to be consistent with what we did on the way down), and then
 626         * immediately update the gap to the correct value. Finally we
 627         * rebalance the rbtree after all augmented values have been set.
 628         */
 629        rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 630        vma->rb_subtree_gap = 0;
 631        vma_gap_update(vma);
 632        vma_rb_insert(vma, &mm->mm_rb);
 633}
 634
 635static void __vma_link_file(struct vm_area_struct *vma)
 636{
 637        struct file *file;
 638
 639        file = vma->vm_file;
 640        if (file) {
 641                struct address_space *mapping = file->f_mapping;
 642
 643                if (vma->vm_flags & VM_DENYWRITE)
 644                        atomic_dec(&file_inode(file)->i_writecount);
 645                if (vma->vm_flags & VM_SHARED)
 646                        atomic_inc(&mapping->i_mmap_writable);
 647
 648                flush_dcache_mmap_lock(mapping);
 649                vma_interval_tree_insert(vma, &mapping->i_mmap);
 650                flush_dcache_mmap_unlock(mapping);
 651        }
 652}
 653
 654static void
 655__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 656        struct vm_area_struct *prev, struct rb_node **rb_link,
 657        struct rb_node *rb_parent)
 658{
 659        __vma_link_list(mm, vma, prev, rb_parent);
 660        __vma_link_rb(mm, vma, rb_link, rb_parent);
 661}
 662
 663static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 664                        struct vm_area_struct *prev, struct rb_node **rb_link,
 665                        struct rb_node *rb_parent)
 666{
 667        struct address_space *mapping = NULL;
 668
 669        if (vma->vm_file) {
 670                mapping = vma->vm_file->f_mapping;
 671                i_mmap_lock_write(mapping);
 672        }
 673
 674        __vma_link(mm, vma, prev, rb_link, rb_parent);
 675        __vma_link_file(vma);
 676
 677        if (mapping)
 678                i_mmap_unlock_write(mapping);
 679
 680        mm->map_count++;
 681        validate_mm(mm);
 682}
 683
 684/*
 685 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 686 * mm's list and rbtree.  It has already been inserted into the interval tree.
 687 */
 688static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 689{
 690        struct vm_area_struct *prev;
 691        struct rb_node **rb_link, *rb_parent;
 692
 693        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 694                           &prev, &rb_link, &rb_parent))
 695                BUG();
 696        __vma_link(mm, vma, prev, rb_link, rb_parent);
 697        mm->map_count++;
 698}
 699
 700static inline void
 701__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 702                struct vm_area_struct *prev)
 703{
 704        struct vm_area_struct *next;
 705
 706        vma_rb_erase(vma, &mm->mm_rb);
 707        prev->vm_next = next = vma->vm_next;
 708        if (next)
 709                next->vm_prev = prev;
 710
 711        /* Kill the cache */
 712        vmacache_invalidate(mm);
 713}
 714
 715/*
 716 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 717 * is already present in an i_mmap tree without adjusting the tree.
 718 * The following helper function should be used when such adjustments
 719 * are necessary.  The "insert" vma (if any) is to be inserted
 720 * before we drop the necessary locks.
 721 */
 722int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 723        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 724{
 725        struct mm_struct *mm = vma->vm_mm;
 726        struct vm_area_struct *next = vma->vm_next;
 727        struct vm_area_struct *importer = NULL;
 728        struct address_space *mapping = NULL;
 729        struct rb_root *root = NULL;
 730        struct anon_vma *anon_vma = NULL;
 731        struct file *file = vma->vm_file;
 732        bool start_changed = false, end_changed = false;
 733        long adjust_next = 0;
 734        int remove_next = 0;
 735
 736        if (next && !insert) {
 737                struct vm_area_struct *exporter = NULL;
 738
 739                if (end >= next->vm_end) {
 740                        /*
 741                         * vma expands, overlapping all the next, and
 742                         * perhaps the one after too (mprotect case 6).
 743                         */
 744again:                  remove_next = 1 + (end > next->vm_end);
 745                        end = next->vm_end;
 746                        exporter = next;
 747                        importer = vma;
 748                } else if (end > next->vm_start) {
 749                        /*
 750                         * vma expands, overlapping part of the next:
 751                         * mprotect case 5 shifting the boundary up.
 752                         */
 753                        adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 754                        exporter = next;
 755                        importer = vma;
 756                } else if (end < vma->vm_end) {
 757                        /*
 758                         * vma shrinks, and !insert tells it's not
 759                         * split_vma inserting another: so it must be
 760                         * mprotect case 4 shifting the boundary down.
 761                         */
 762                        adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 763                        exporter = vma;
 764                        importer = next;
 765                }
 766
 767                /*
 768                 * Easily overlooked: when mprotect shifts the boundary,
 769                 * make sure the expanding vma has anon_vma set if the
 770                 * shrinking vma had, to cover any anon pages imported.
 771                 */
 772                if (exporter && exporter->anon_vma && !importer->anon_vma) {
 773                        int error;
 774
 775                        importer->anon_vma = exporter->anon_vma;
 776                        error = anon_vma_clone(importer, exporter);
 777                        if (error)
 778                                return error;
 779                }
 780        }
 781
 782        if (file) {
 783                mapping = file->f_mapping;
 784                root = &mapping->i_mmap;
 785                uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 786
 787                if (adjust_next)
 788                        uprobe_munmap(next, next->vm_start, next->vm_end);
 789
 790                i_mmap_lock_write(mapping);
 791                if (insert) {
 792                        /*
 793                         * Put into interval tree now, so instantiated pages
 794                         * are visible to arm/parisc __flush_dcache_page
 795                         * throughout; but we cannot insert into address
 796                         * space until vma start or end is updated.
 797                         */
 798                        __vma_link_file(insert);
 799                }
 800        }
 801
 802        vma_adjust_trans_huge(vma, start, end, adjust_next);
 803
 804        anon_vma = vma->anon_vma;
 805        if (!anon_vma && adjust_next)
 806                anon_vma = next->anon_vma;
 807        if (anon_vma) {
 808                VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
 809                          anon_vma != next->anon_vma, next);
 810                anon_vma_lock_write(anon_vma);
 811                anon_vma_interval_tree_pre_update_vma(vma);
 812                if (adjust_next)
 813                        anon_vma_interval_tree_pre_update_vma(next);
 814        }
 815
 816        if (root) {
 817                flush_dcache_mmap_lock(mapping);
 818                vma_interval_tree_remove(vma, root);
 819                if (adjust_next)
 820                        vma_interval_tree_remove(next, root);
 821        }
 822
 823        if (start != vma->vm_start) {
 824                vma->vm_start = start;
 825                start_changed = true;
 826        }
 827        if (end != vma->vm_end) {
 828                vma->vm_end = end;
 829                end_changed = true;
 830        }
 831        vma->vm_pgoff = pgoff;
 832        if (adjust_next) {
 833                next->vm_start += adjust_next << PAGE_SHIFT;
 834                next->vm_pgoff += adjust_next;
 835        }
 836
 837        if (root) {
 838                if (adjust_next)
 839                        vma_interval_tree_insert(next, root);
 840                vma_interval_tree_insert(vma, root);
 841                flush_dcache_mmap_unlock(mapping);
 842        }
 843
 844        if (remove_next) {
 845                /*
 846                 * vma_merge has merged next into vma, and needs
 847                 * us to remove next before dropping the locks.
 848                 */
 849                __vma_unlink(mm, next, vma);
 850                if (file)
 851                        __remove_shared_vm_struct(next, file, mapping);
 852        } else if (insert) {
 853                /*
 854                 * split_vma has split insert from vma, and needs
 855                 * us to insert it before dropping the locks
 856                 * (it may either follow vma or precede it).
 857                 */
 858                __insert_vm_struct(mm, insert);
 859        } else {
 860                if (start_changed)
 861                        vma_gap_update(vma);
 862                if (end_changed) {
 863                        if (!next)
 864                                mm->highest_vm_end = end;
 865                        else if (!adjust_next)
 866                                vma_gap_update(next);
 867                }
 868        }
 869
 870        if (anon_vma) {
 871                anon_vma_interval_tree_post_update_vma(vma);
 872                if (adjust_next)
 873                        anon_vma_interval_tree_post_update_vma(next);
 874                anon_vma_unlock_write(anon_vma);
 875        }
 876        if (mapping)
 877                i_mmap_unlock_write(mapping);
 878
 879        if (root) {
 880                uprobe_mmap(vma);
 881
 882                if (adjust_next)
 883                        uprobe_mmap(next);
 884        }
 885
 886        if (remove_next) {
 887                if (file) {
 888                        uprobe_munmap(next, next->vm_start, next->vm_end);
 889                        fput(file);
 890                }
 891                if (next->anon_vma)
 892                        anon_vma_merge(vma, next);
 893                mm->map_count--;
 894                mpol_put(vma_policy(next));
 895                kmem_cache_free(vm_area_cachep, next);
 896                /*
 897                 * In mprotect's case 6 (see comments on vma_merge),
 898                 * we must remove another next too. It would clutter
 899                 * up the code too much to do both in one go.
 900                 */
 901                next = vma->vm_next;
 902                if (remove_next == 2)
 903                        goto again;
 904                else if (next)
 905                        vma_gap_update(next);
 906                else
 907                        mm->highest_vm_end = end;
 908        }
 909        if (insert && file)
 910                uprobe_mmap(insert);
 911
 912        validate_mm(mm);
 913
 914        return 0;
 915}
 916
 917/*
 918 * If the vma has a ->close operation then the driver probably needs to release
 919 * per-vma resources, so we don't attempt to merge those.
 920 */
 921static inline int is_mergeable_vma(struct vm_area_struct *vma,
 922                        struct file *file, unsigned long vm_flags)
 923{
 924        /*
 925         * VM_SOFTDIRTY should not prevent from VMA merging, if we
 926         * match the flags but dirty bit -- the caller should mark
 927         * merged VMA as dirty. If dirty bit won't be excluded from
 928         * comparison, we increase pressue on the memory system forcing
 929         * the kernel to generate new VMAs when old one could be
 930         * extended instead.
 931         */
 932        if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 933                return 0;
 934        if (vma->vm_file != file)
 935                return 0;
 936        if (vma->vm_ops && vma->vm_ops->close)
 937                return 0;
 938        return 1;
 939}
 940
 941static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 942                                        struct anon_vma *anon_vma2,
 943                                        struct vm_area_struct *vma)
 944{
 945        /*
 946         * The list_is_singular() test is to avoid merging VMA cloned from
 947         * parents. This can improve scalability caused by anon_vma lock.
 948         */
 949        if ((!anon_vma1 || !anon_vma2) && (!vma ||
 950                list_is_singular(&vma->anon_vma_chain)))
 951                return 1;
 952        return anon_vma1 == anon_vma2;
 953}
 954
 955/*
 956 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 957 * in front of (at a lower virtual address and file offset than) the vma.
 958 *
 959 * We cannot merge two vmas if they have differently assigned (non-NULL)
 960 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 961 *
 962 * We don't check here for the merged mmap wrapping around the end of pagecache
 963 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 964 * wrap, nor mmaps which cover the final page at index -1UL.
 965 */
 966static int
 967can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 968        struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 969{
 970        if (is_mergeable_vma(vma, file, vm_flags) &&
 971            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 972                if (vma->vm_pgoff == vm_pgoff)
 973                        return 1;
 974        }
 975        return 0;
 976}
 977
 978/*
 979 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 980 * beyond (at a higher virtual address and file offset than) the vma.
 981 *
 982 * We cannot merge two vmas if they have differently assigned (non-NULL)
 983 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 984 */
 985static int
 986can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 987        struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 988{
 989        if (is_mergeable_vma(vma, file, vm_flags) &&
 990            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 991                pgoff_t vm_pglen;
 992                vm_pglen = vma_pages(vma);
 993                if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 994                        return 1;
 995        }
 996        return 0;
 997}
 998
 999/*
1000 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1001 * whether that can be merged with its predecessor or its successor.
1002 * Or both (it neatly fills a hole).
1003 *
1004 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1005 * certain not to be mapped by the time vma_merge is called; but when
1006 * called for mprotect, it is certain to be already mapped (either at
1007 * an offset within prev, or at the start of next), and the flags of
1008 * this area are about to be changed to vm_flags - and the no-change
1009 * case has already been eliminated.
1010 *
1011 * The following mprotect cases have to be considered, where AAAA is
1012 * the area passed down from mprotect_fixup, never extending beyond one
1013 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1014 *
1015 *     AAAA             AAAA                AAAA          AAAA
1016 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1017 *    cannot merge    might become    might become    might become
1018 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1019 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1020 *    mremap move:                                    PPPPNNNNNNNN 8
1021 *        AAAA
1022 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1023 *    might become    case 1 below    case 2 below    case 3 below
1024 *
1025 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1026 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1027 */
1028struct vm_area_struct *vma_merge(struct mm_struct *mm,
1029                        struct vm_area_struct *prev, unsigned long addr,
1030                        unsigned long end, unsigned long vm_flags,
1031                        struct anon_vma *anon_vma, struct file *file,
1032                        pgoff_t pgoff, struct mempolicy *policy)
1033{
1034        pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1035        struct vm_area_struct *area, *next;
1036        int err;
1037
1038        /*
1039         * We later require that vma->vm_flags == vm_flags,
1040         * so this tests vma->vm_flags & VM_SPECIAL, too.
1041         */
1042        if (vm_flags & VM_SPECIAL)
1043                return NULL;
1044
1045        if (prev)
1046                next = prev->vm_next;
1047        else
1048                next = mm->mmap;
1049        area = next;
1050        if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1051                next = next->vm_next;
1052
1053        /*
1054         * Can it merge with the predecessor?
1055         */
1056        if (prev && prev->vm_end == addr &&
1057                        mpol_equal(vma_policy(prev), policy) &&
1058                        can_vma_merge_after(prev, vm_flags,
1059                                                anon_vma, file, pgoff)) {
1060                /*
1061                 * OK, it can.  Can we now merge in the successor as well?
1062                 */
1063                if (next && end == next->vm_start &&
1064                                mpol_equal(policy, vma_policy(next)) &&
1065                                can_vma_merge_before(next, vm_flags,
1066                                        anon_vma, file, pgoff+pglen) &&
1067                                is_mergeable_anon_vma(prev->anon_vma,
1068                                                      next->anon_vma, NULL)) {
1069                                                        /* cases 1, 6 */
1070                        err = vma_adjust(prev, prev->vm_start,
1071                                next->vm_end, prev->vm_pgoff, NULL);
1072                } else                                  /* cases 2, 5, 7 */
1073                        err = vma_adjust(prev, prev->vm_start,
1074                                end, prev->vm_pgoff, NULL);
1075                if (err)
1076                        return NULL;
1077                khugepaged_enter_vma_merge(prev, vm_flags);
1078                return prev;
1079        }
1080
1081        /*
1082         * Can this new request be merged in front of next?
1083         */
1084        if (next && end == next->vm_start &&
1085                        mpol_equal(policy, vma_policy(next)) &&
1086                        can_vma_merge_before(next, vm_flags,
1087                                        anon_vma, file, pgoff+pglen)) {
1088                if (prev && addr < prev->vm_end)        /* case 4 */
1089                        err = vma_adjust(prev, prev->vm_start,
1090                                addr, prev->vm_pgoff, NULL);
1091                else                                    /* cases 3, 8 */
1092                        err = vma_adjust(area, addr, next->vm_end,
1093                                next->vm_pgoff - pglen, NULL);
1094                if (err)
1095                        return NULL;
1096                khugepaged_enter_vma_merge(area, vm_flags);
1097                return area;
1098        }
1099
1100        return NULL;
1101}
1102
1103/*
1104 * Rough compatbility check to quickly see if it's even worth looking
1105 * at sharing an anon_vma.
1106 *
1107 * They need to have the same vm_file, and the flags can only differ
1108 * in things that mprotect may change.
1109 *
1110 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1111 * we can merge the two vma's. For example, we refuse to merge a vma if
1112 * there is a vm_ops->close() function, because that indicates that the
1113 * driver is doing some kind of reference counting. But that doesn't
1114 * really matter for the anon_vma sharing case.
1115 */
1116static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1117{
1118        return a->vm_end == b->vm_start &&
1119                mpol_equal(vma_policy(a), vma_policy(b)) &&
1120                a->vm_file == b->vm_file &&
1121                !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1122                b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1123}
1124
1125/*
1126 * Do some basic sanity checking to see if we can re-use the anon_vma
1127 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1128 * the same as 'old', the other will be the new one that is trying
1129 * to share the anon_vma.
1130 *
1131 * NOTE! This runs with mm_sem held for reading, so it is possible that
1132 * the anon_vma of 'old' is concurrently in the process of being set up
1133 * by another page fault trying to merge _that_. But that's ok: if it
1134 * is being set up, that automatically means that it will be a singleton
1135 * acceptable for merging, so we can do all of this optimistically. But
1136 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1137 *
1138 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1139 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1140 * is to return an anon_vma that is "complex" due to having gone through
1141 * a fork).
1142 *
1143 * We also make sure that the two vma's are compatible (adjacent,
1144 * and with the same memory policies). That's all stable, even with just
1145 * a read lock on the mm_sem.
1146 */
1147static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1148{
1149        if (anon_vma_compatible(a, b)) {
1150                struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1151
1152                if (anon_vma && list_is_singular(&old->anon_vma_chain))
1153                        return anon_vma;
1154        }
1155        return NULL;
1156}
1157
1158/*
1159 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1160 * neighbouring vmas for a suitable anon_vma, before it goes off
1161 * to allocate a new anon_vma.  It checks because a repetitive
1162 * sequence of mprotects and faults may otherwise lead to distinct
1163 * anon_vmas being allocated, preventing vma merge in subsequent
1164 * mprotect.
1165 */
1166struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1167{
1168        struct anon_vma *anon_vma;
1169        struct vm_area_struct *near;
1170
1171        near = vma->vm_next;
1172        if (!near)
1173                goto try_prev;
1174
1175        anon_vma = reusable_anon_vma(near, vma, near);
1176        if (anon_vma)
1177                return anon_vma;
1178try_prev:
1179        near = vma->vm_prev;
1180        if (!near)
1181                goto none;
1182
1183        anon_vma = reusable_anon_vma(near, near, vma);
1184        if (anon_vma)
1185                return anon_vma;
1186none:
1187        /*
1188         * There's no absolute need to look only at touching neighbours:
1189         * we could search further afield for "compatible" anon_vmas.
1190         * But it would probably just be a waste of time searching,
1191         * or lead to too many vmas hanging off the same anon_vma.
1192         * We're trying to allow mprotect remerging later on,
1193         * not trying to minimize memory used for anon_vmas.
1194         */
1195        return NULL;
1196}
1197
1198#ifdef CONFIG_PROC_FS
1199void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1200                                                struct file *file, long pages)
1201{
1202        const unsigned long stack_flags
1203                = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1204
1205        mm->total_vm += pages;
1206
1207        if (file) {
1208                mm->shared_vm += pages;
1209                if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1210                        mm->exec_vm += pages;
1211        } else if (flags & stack_flags)
1212                mm->stack_vm += pages;
1213}
1214#endif /* CONFIG_PROC_FS */
1215
1216/*
1217 * If a hint addr is less than mmap_min_addr change hint to be as
1218 * low as possible but still greater than mmap_min_addr
1219 */
1220static inline unsigned long round_hint_to_min(unsigned long hint)
1221{
1222        hint &= PAGE_MASK;
1223        if (((void *)hint != NULL) &&
1224            (hint < mmap_min_addr))
1225                return PAGE_ALIGN(mmap_min_addr);
1226        return hint;
1227}
1228
1229static inline int mlock_future_check(struct mm_struct *mm,
1230                                     unsigned long flags,
1231                                     unsigned long len)
1232{
1233        unsigned long locked, lock_limit;
1234
1235        /*  mlock MCL_FUTURE? */
1236        if (flags & VM_LOCKED) {
1237                locked = len >> PAGE_SHIFT;
1238                locked += mm->locked_vm;
1239                lock_limit = rlimit(RLIMIT_MEMLOCK);
1240                lock_limit >>= PAGE_SHIFT;
1241                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1242                        return -EAGAIN;
1243        }
1244        return 0;
1245}
1246
1247/*
1248 * The caller must hold down_write(&current->mm->mmap_sem).
1249 */
1250
1251unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1252                        unsigned long len, unsigned long prot,
1253                        unsigned long flags, unsigned long pgoff,
1254                        unsigned long *populate)
1255{
1256        struct mm_struct *mm = current->mm;
1257        vm_flags_t vm_flags;
1258
1259        *populate = 0;
1260
1261        if (!len)
1262                return -EINVAL;
1263
1264        /*
1265         * Does the application expect PROT_READ to imply PROT_EXEC?
1266         *
1267         * (the exception is when the underlying filesystem is noexec
1268         *  mounted, in which case we dont add PROT_EXEC.)
1269         */
1270        if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1271                if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1272                        prot |= PROT_EXEC;
1273
1274        if (!(flags & MAP_FIXED))
1275                addr = round_hint_to_min(addr);
1276
1277        /* Careful about overflows.. */
1278        len = PAGE_ALIGN(len);
1279        if (!len)
1280                return -ENOMEM;
1281
1282        /* offset overflow? */
1283        if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1284                return -EOVERFLOW;
1285
1286        /* Too many mappings? */
1287        if (mm->map_count > sysctl_max_map_count)
1288                return -ENOMEM;
1289
1290        /* Obtain the address to map to. we verify (or select) it and ensure
1291         * that it represents a valid section of the address space.
1292         */
1293        addr = get_unmapped_area(file, addr, len, pgoff, flags);
1294        if (addr & ~PAGE_MASK)
1295                return addr;
1296
1297        /* Do simple checking here so the lower-level routines won't have
1298         * to. we assume access permissions have been handled by the open
1299         * of the memory object, so we don't do any here.
1300         */
1301        vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1302                        mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1303
1304        if (flags & MAP_LOCKED)
1305                if (!can_do_mlock())
1306                        return -EPERM;
1307
1308        if (mlock_future_check(mm, vm_flags, len))
1309                return -EAGAIN;
1310
1311        if (file) {
1312                struct inode *inode = file_inode(file);
1313
1314                switch (flags & MAP_TYPE) {
1315                case MAP_SHARED:
1316                        if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1317                                return -EACCES;
1318
1319                        /*
1320                         * Make sure we don't allow writing to an append-only
1321                         * file..
1322                         */
1323                        if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1324                                return -EACCES;
1325
1326                        /*
1327                         * Make sure there are no mandatory locks on the file.
1328                         */
1329                        if (locks_verify_locked(file))
1330                                return -EAGAIN;
1331
1332                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1333                        if (!(file->f_mode & FMODE_WRITE))
1334                                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1335
1336                        /* fall through */
1337                case MAP_PRIVATE:
1338                        if (!(file->f_mode & FMODE_READ))
1339                                return -EACCES;
1340                        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1341                                if (vm_flags & VM_EXEC)
1342                                        return -EPERM;
1343                                vm_flags &= ~VM_MAYEXEC;
1344                        }
1345
1346                        if (!file->f_op->mmap)
1347                                return -ENODEV;
1348                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1349                                return -EINVAL;
1350                        break;
1351
1352                default:
1353                        return -EINVAL;
1354                }
1355        } else {
1356                switch (flags & MAP_TYPE) {
1357                case MAP_SHARED:
1358                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1359                                return -EINVAL;
1360                        /*
1361                         * Ignore pgoff.
1362                         */
1363                        pgoff = 0;
1364                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1365                        break;
1366                case MAP_PRIVATE:
1367                        /*
1368                         * Set pgoff according to addr for anon_vma.
1369                         */
1370                        pgoff = addr >> PAGE_SHIFT;
1371                        break;
1372                default:
1373                        return -EINVAL;
1374                }
1375        }
1376
1377        /*
1378         * Set 'VM_NORESERVE' if we should not account for the
1379         * memory use of this mapping.
1380         */
1381        if (flags & MAP_NORESERVE) {
1382                /* We honor MAP_NORESERVE if allowed to overcommit */
1383                if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1384                        vm_flags |= VM_NORESERVE;
1385
1386                /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1387                if (file && is_file_hugepages(file))
1388                        vm_flags |= VM_NORESERVE;
1389        }
1390
1391        addr = mmap_region(file, addr, len, vm_flags, pgoff);
1392        if (!IS_ERR_VALUE(addr) &&
1393            ((vm_flags & VM_LOCKED) ||
1394             (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1395                *populate = len;
1396        return addr;
1397}
1398
1399SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1400                unsigned long, prot, unsigned long, flags,
1401                unsigned long, fd, unsigned long, pgoff)
1402{
1403        struct file *file = NULL;
1404        unsigned long retval = -EBADF;
1405
1406        if (!(flags & MAP_ANONYMOUS)) {
1407                audit_mmap_fd(fd, flags);
1408                file = fget(fd);
1409                if (!file)
1410                        goto out;
1411                if (is_file_hugepages(file))
1412                        len = ALIGN(len, huge_page_size(hstate_file(file)));
1413                retval = -EINVAL;
1414                if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1415                        goto out_fput;
1416        } else if (flags & MAP_HUGETLB) {
1417                struct user_struct *user = NULL;
1418                struct hstate *hs;
1419
1420                hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1421                if (!hs)
1422                        return -EINVAL;
1423
1424                len = ALIGN(len, huge_page_size(hs));
1425                /*
1426                 * VM_NORESERVE is used because the reservations will be
1427                 * taken when vm_ops->mmap() is called
1428                 * A dummy user value is used because we are not locking
1429                 * memory so no accounting is necessary
1430                 */
1431                file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1432                                VM_NORESERVE,
1433                                &user, HUGETLB_ANONHUGE_INODE,
1434                                (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1435                if (IS_ERR(file))
1436                        return PTR_ERR(file);
1437        }
1438
1439        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1440
1441        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1442out_fput:
1443        if (file)
1444                fput(file);
1445out:
1446        return retval;
1447}
1448
1449#ifdef __ARCH_WANT_SYS_OLD_MMAP
1450struct mmap_arg_struct {
1451        unsigned long addr;
1452        unsigned long len;
1453        unsigned long prot;
1454        unsigned long flags;
1455        unsigned long fd;
1456        unsigned long offset;
1457};
1458
1459SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1460{
1461        struct mmap_arg_struct a;
1462
1463        if (copy_from_user(&a, arg, sizeof(a)))
1464                return -EFAULT;
1465        if (a.offset & ~PAGE_MASK)
1466                return -EINVAL;
1467
1468        return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1469                              a.offset >> PAGE_SHIFT);
1470}
1471#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1472
1473/*
1474 * Some shared mappigns will want the pages marked read-only
1475 * to track write events. If so, we'll downgrade vm_page_prot
1476 * to the private version (using protection_map[] without the
1477 * VM_SHARED bit).
1478 */
1479int vma_wants_writenotify(struct vm_area_struct *vma)
1480{
1481        vm_flags_t vm_flags = vma->vm_flags;
1482
1483        /* If it was private or non-writable, the write bit is already clear */
1484        if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1485                return 0;
1486
1487        /* The backer wishes to know when pages are first written to? */
1488        if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1489                return 1;
1490
1491        /* The open routine did something to the protections that pgprot_modify
1492         * won't preserve? */
1493        if (pgprot_val(vma->vm_page_prot) !=
1494            pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1495                return 0;
1496
1497        /* Do we need to track softdirty? */
1498        if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1499                return 1;
1500
1501        /* Specialty mapping? */
1502        if (vm_flags & VM_PFNMAP)
1503                return 0;
1504
1505        /* Can the mapping track the dirty pages? */
1506        return vma->vm_file && vma->vm_file->f_mapping &&
1507                mapping_cap_account_dirty(vma->vm_file->f_mapping);
1508}
1509
1510/*
1511 * We account for memory if it's a private writeable mapping,
1512 * not hugepages and VM_NORESERVE wasn't set.
1513 */
1514static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1515{
1516        /*
1517         * hugetlb has its own accounting separate from the core VM
1518         * VM_HUGETLB may not be set yet so we cannot check for that flag.
1519         */
1520        if (file && is_file_hugepages(file))
1521                return 0;
1522
1523        return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1524}
1525
1526unsigned long mmap_region(struct file *file, unsigned long addr,
1527                unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1528{
1529        struct mm_struct *mm = current->mm;
1530        struct vm_area_struct *vma, *prev;
1531        int error;
1532        struct rb_node **rb_link, *rb_parent;
1533        unsigned long charged = 0;
1534
1535        /* Check against address space limit. */
1536        if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1537                unsigned long nr_pages;
1538
1539                /*
1540                 * MAP_FIXED may remove pages of mappings that intersects with
1541                 * requested mapping. Account for the pages it would unmap.
1542                 */
1543                if (!(vm_flags & MAP_FIXED))
1544                        return -ENOMEM;
1545
1546                nr_pages = count_vma_pages_range(mm, addr, addr + len);
1547
1548                if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1549                        return -ENOMEM;
1550        }
1551
1552        /* Clear old maps */
1553        error = -ENOMEM;
1554        while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1555                              &rb_parent)) {
1556                if (do_munmap(mm, addr, len))
1557                        return -ENOMEM;
1558        }
1559
1560        /*
1561         * Private writable mapping: check memory availability
1562         */
1563        if (accountable_mapping(file, vm_flags)) {
1564                charged = len >> PAGE_SHIFT;
1565                if (security_vm_enough_memory_mm(mm, charged))
1566                        return -ENOMEM;
1567                vm_flags |= VM_ACCOUNT;
1568        }
1569
1570        /*
1571         * Can we just expand an old mapping?
1572         */
1573        vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1574                        NULL);
1575        if (vma)
1576                goto out;
1577
1578        /*
1579         * Determine the object being mapped and call the appropriate
1580         * specific mapper. the address has already been validated, but
1581         * not unmapped, but the maps are removed from the list.
1582         */
1583        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1584        if (!vma) {
1585                error = -ENOMEM;
1586                goto unacct_error;
1587        }
1588
1589        vma->vm_mm = mm;
1590        vma->vm_start = addr;
1591        vma->vm_end = addr + len;
1592        vma->vm_flags = vm_flags;
1593        vma->vm_page_prot = vm_get_page_prot(vm_flags);
1594        vma->vm_pgoff = pgoff;
1595        INIT_LIST_HEAD(&vma->anon_vma_chain);
1596
1597        if (file) {
1598                if (vm_flags & VM_DENYWRITE) {
1599                        error = deny_write_access(file);
1600                        if (error)
1601                                goto free_vma;
1602                }
1603                if (vm_flags & VM_SHARED) {
1604                        error = mapping_map_writable(file->f_mapping);
1605                        if (error)
1606                                goto allow_write_and_free_vma;
1607                }
1608
1609                /* ->mmap() can change vma->vm_file, but must guarantee that
1610                 * vma_link() below can deny write-access if VM_DENYWRITE is set
1611                 * and map writably if VM_SHARED is set. This usually means the
1612                 * new file must not have been exposed to user-space, yet.
1613                 */
1614                vma->vm_file = get_file(file);
1615                error = file->f_op->mmap(file, vma);
1616                if (error)
1617                        goto unmap_and_free_vma;
1618
1619                /* Can addr have changed??
1620                 *
1621                 * Answer: Yes, several device drivers can do it in their
1622                 *         f_op->mmap method. -DaveM
1623                 * Bug: If addr is changed, prev, rb_link, rb_parent should
1624                 *      be updated for vma_link()
1625                 */
1626                WARN_ON_ONCE(addr != vma->vm_start);
1627
1628                addr = vma->vm_start;
1629                vm_flags = vma->vm_flags;
1630        } else if (vm_flags & VM_SHARED) {
1631                error = shmem_zero_setup(vma);
1632                if (error)
1633                        goto free_vma;
1634        }
1635
1636        vma_link(mm, vma, prev, rb_link, rb_parent);
1637        /* Once vma denies write, undo our temporary denial count */
1638        if (file) {
1639                if (vm_flags & VM_SHARED)
1640                        mapping_unmap_writable(file->f_mapping);
1641                if (vm_flags & VM_DENYWRITE)
1642                        allow_write_access(file);
1643        }
1644        file = vma->vm_file;
1645out:
1646        perf_event_mmap(vma);
1647
1648        vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1649        if (vm_flags & VM_LOCKED) {
1650                if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1651                                        vma == get_gate_vma(current->mm)))
1652                        mm->locked_vm += (len >> PAGE_SHIFT);
1653                else
1654                        vma->vm_flags &= ~VM_LOCKED;
1655        }
1656
1657        if (file)
1658                uprobe_mmap(vma);
1659
1660        /*
1661         * New (or expanded) vma always get soft dirty status.
1662         * Otherwise user-space soft-dirty page tracker won't
1663         * be able to distinguish situation when vma area unmapped,
1664         * then new mapped in-place (which must be aimed as
1665         * a completely new data area).
1666         */
1667        vma->vm_flags |= VM_SOFTDIRTY;
1668
1669        vma_set_page_prot(vma);
1670
1671        return addr;
1672
1673unmap_and_free_vma:
1674        vma->vm_file = NULL;
1675        fput(file);
1676
1677        /* Undo any partial mapping done by a device driver. */
1678        unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1679        charged = 0;
1680        if (vm_flags & VM_SHARED)
1681                mapping_unmap_writable(file->f_mapping);
1682allow_write_and_free_vma:
1683        if (vm_flags & VM_DENYWRITE)
1684                allow_write_access(file);
1685free_vma:
1686        kmem_cache_free(vm_area_cachep, vma);
1687unacct_error:
1688        if (charged)
1689                vm_unacct_memory(charged);
1690        return error;
1691}
1692
1693unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1694{
1695        /*
1696         * We implement the search by looking for an rbtree node that
1697         * immediately follows a suitable gap. That is,
1698         * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1699         * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1700         * - gap_end - gap_start >= length
1701         */
1702
1703        struct mm_struct *mm = current->mm;
1704        struct vm_area_struct *vma;
1705        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1706
1707        /* Adjust search length to account for worst case alignment overhead */
1708        length = info->length + info->align_mask;
1709        if (length < info->length)
1710                return -ENOMEM;
1711
1712        /* Adjust search limits by the desired length */
1713        if (info->high_limit < length)
1714                return -ENOMEM;
1715        high_limit = info->high_limit - length;
1716
1717        if (info->low_limit > high_limit)
1718                return -ENOMEM;
1719        low_limit = info->low_limit + length;
1720
1721        /* Check if rbtree root looks promising */
1722        if (RB_EMPTY_ROOT(&mm->mm_rb))
1723                goto check_highest;
1724        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1725        if (vma->rb_subtree_gap < length)
1726                goto check_highest;
1727
1728        while (true) {
1729                /* Visit left subtree if it looks promising */
1730                gap_end = vma->vm_start;
1731                if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1732                        struct vm_area_struct *left =
1733                                rb_entry(vma->vm_rb.rb_left,
1734                                         struct vm_area_struct, vm_rb);
1735                        if (left->rb_subtree_gap >= length) {
1736                                vma = left;
1737                                continue;
1738                        }
1739                }
1740
1741                gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1742check_current:
1743                /* Check if current node has a suitable gap */
1744                if (gap_start > high_limit)
1745                        return -ENOMEM;
1746                if (gap_end >= low_limit && gap_end - gap_start >= length)
1747                        goto found;
1748
1749                /* Visit right subtree if it looks promising */
1750                if (vma->vm_rb.rb_right) {
1751                        struct vm_area_struct *right =
1752                                rb_entry(vma->vm_rb.rb_right,
1753                                         struct vm_area_struct, vm_rb);
1754                        if (right->rb_subtree_gap >= length) {
1755                                vma = right;
1756                                continue;
1757                        }
1758                }
1759
1760                /* Go back up the rbtree to find next candidate node */
1761                while (true) {
1762                        struct rb_node *prev = &vma->vm_rb;
1763                        if (!rb_parent(prev))
1764                                goto check_highest;
1765                        vma = rb_entry(rb_parent(prev),
1766                                       struct vm_area_struct, vm_rb);
1767                        if (prev == vma->vm_rb.rb_left) {
1768                                gap_start = vma->vm_prev->vm_end;
1769                                gap_end = vma->vm_start;
1770                                goto check_current;
1771                        }
1772                }
1773        }
1774
1775check_highest:
1776        /* Check highest gap, which does not precede any rbtree node */
1777        gap_start = mm->highest_vm_end;
1778        gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1779        if (gap_start > high_limit)
1780                return -ENOMEM;
1781
1782found:
1783        /* We found a suitable gap. Clip it with the original low_limit. */
1784        if (gap_start < info->low_limit)
1785                gap_start = info->low_limit;
1786
1787        /* Adjust gap address to the desired alignment */
1788        gap_start += (info->align_offset - gap_start) & info->align_mask;
1789
1790        VM_BUG_ON(gap_start + info->length > info->high_limit);
1791        VM_BUG_ON(gap_start + info->length > gap_end);
1792        return gap_start;
1793}
1794
1795unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1796{
1797        struct mm_struct *mm = current->mm;
1798        struct vm_area_struct *vma;
1799        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1800
1801        /* Adjust search length to account for worst case alignment overhead */
1802        length = info->length + info->align_mask;
1803        if (length < info->length)
1804                return -ENOMEM;
1805
1806        /*
1807         * Adjust search limits by the desired length.
1808         * See implementation comment at top of unmapped_area().
1809         */
1810        gap_end = info->high_limit;
1811        if (gap_end < length)
1812                return -ENOMEM;
1813        high_limit = gap_end - length;
1814
1815        if (info->low_limit > high_limit)
1816                return -ENOMEM;
1817        low_limit = info->low_limit + length;
1818
1819        /* Check highest gap, which does not precede any rbtree node */
1820        gap_start = mm->highest_vm_end;
1821        if (gap_start <= high_limit)
1822                goto found_highest;
1823
1824        /* Check if rbtree root looks promising */
1825        if (RB_EMPTY_ROOT(&mm->mm_rb))
1826                return -ENOMEM;
1827        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1828        if (vma->rb_subtree_gap < length)
1829                return -ENOMEM;
1830
1831        while (true) {
1832                /* Visit right subtree if it looks promising */
1833                gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1834                if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1835                        struct vm_area_struct *right =
1836                                rb_entry(vma->vm_rb.rb_right,
1837                                         struct vm_area_struct, vm_rb);
1838                        if (right->rb_subtree_gap >= length) {
1839                                vma = right;
1840                                continue;
1841                        }
1842                }
1843
1844check_current:
1845                /* Check if current node has a suitable gap */
1846                gap_end = vma->vm_start;
1847                if (gap_end < low_limit)
1848                        return -ENOMEM;
1849                if (gap_start <= high_limit && gap_end - gap_start >= length)
1850                        goto found;
1851
1852                /* Visit left subtree if it looks promising */
1853                if (vma->vm_rb.rb_left) {
1854                        struct vm_area_struct *left =
1855                                rb_entry(vma->vm_rb.rb_left,
1856                                         struct vm_area_struct, vm_rb);
1857                        if (left->rb_subtree_gap >= length) {
1858                                vma = left;
1859                                continue;
1860                        }
1861                }
1862
1863                /* Go back up the rbtree to find next candidate node */
1864                while (true) {
1865                        struct rb_node *prev = &vma->vm_rb;
1866                        if (!rb_parent(prev))
1867                                return -ENOMEM;
1868                        vma = rb_entry(rb_parent(prev),
1869                                       struct vm_area_struct, vm_rb);
1870                        if (prev == vma->vm_rb.rb_right) {
1871                                gap_start = vma->vm_prev ?
1872                                        vma->vm_prev->vm_end : 0;
1873                                goto check_current;
1874                        }
1875                }
1876        }
1877
1878found:
1879        /* We found a suitable gap. Clip it with the original high_limit. */
1880        if (gap_end > info->high_limit)
1881                gap_end = info->high_limit;
1882
1883found_highest:
1884        /* Compute highest gap address at the desired alignment */
1885        gap_end -= info->length;
1886        gap_end -= (gap_end - info->align_offset) & info->align_mask;
1887
1888        VM_BUG_ON(gap_end < info->low_limit);
1889        VM_BUG_ON(gap_end < gap_start);
1890        return gap_end;
1891}
1892
1893/* Get an address range which is currently unmapped.
1894 * For shmat() with addr=0.
1895 *
1896 * Ugly calling convention alert:
1897 * Return value with the low bits set means error value,
1898 * ie
1899 *      if (ret & ~PAGE_MASK)
1900 *              error = ret;
1901 *
1902 * This function "knows" that -ENOMEM has the bits set.
1903 */
1904#ifndef HAVE_ARCH_UNMAPPED_AREA
1905unsigned long
1906arch_get_unmapped_area(struct file *filp, unsigned long addr,
1907                unsigned long len, unsigned long pgoff, unsigned long flags)
1908{
1909        struct mm_struct *mm = current->mm;
1910        struct vm_area_struct *vma;
1911        struct vm_unmapped_area_info info;
1912
1913        if (len > TASK_SIZE - mmap_min_addr)
1914                return -ENOMEM;
1915
1916        if (flags & MAP_FIXED)
1917                return addr;
1918
1919        if (addr) {
1920                addr = PAGE_ALIGN(addr);
1921                vma = find_vma(mm, addr);
1922                if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1923                    (!vma || addr + len <= vma->vm_start))
1924                        return addr;
1925        }
1926
1927        info.flags = 0;
1928        info.length = len;
1929        info.low_limit = mm->mmap_base;
1930        info.high_limit = TASK_SIZE;
1931        info.align_mask = 0;
1932        return vm_unmapped_area(&info);
1933}
1934#endif
1935
1936/*
1937 * This mmap-allocator allocates new areas top-down from below the
1938 * stack's low limit (the base):
1939 */
1940#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1941unsigned long
1942arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1943                          const unsigned long len, const unsigned long pgoff,
1944                          const unsigned long flags)
1945{
1946        struct vm_area_struct *vma;
1947        struct mm_struct *mm = current->mm;
1948        unsigned long addr = addr0;
1949        struct vm_unmapped_area_info info;
1950
1951        /* requested length too big for entire address space */
1952        if (len > TASK_SIZE - mmap_min_addr)
1953                return -ENOMEM;
1954
1955        if (flags & MAP_FIXED)
1956                return addr;
1957
1958        /* requesting a specific address */
1959        if (addr) {
1960                addr = PAGE_ALIGN(addr);
1961                vma = find_vma(mm, addr);
1962                if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1963                                (!vma || addr + len <= vma->vm_start))
1964                        return addr;
1965        }
1966
1967        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1968        info.length = len;
1969        info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1970        info.high_limit = mm->mmap_base;
1971        info.align_mask = 0;
1972        addr = vm_unmapped_area(&info);
1973
1974        /*
1975         * A failed mmap() very likely causes application failure,
1976         * so fall back to the bottom-up function here. This scenario
1977         * can happen with large stack limits and large mmap()
1978         * allocations.
1979         */
1980        if (addr & ~PAGE_MASK) {
1981                VM_BUG_ON(addr != -ENOMEM);
1982                info.flags = 0;
1983                info.low_limit = TASK_UNMAPPED_BASE;
1984                info.high_limit = TASK_SIZE;
1985                addr = vm_unmapped_area(&info);
1986        }
1987
1988        return addr;
1989}
1990#endif
1991
1992unsigned long
1993get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1994                unsigned long pgoff, unsigned long flags)
1995{
1996        unsigned long (*get_area)(struct file *, unsigned long,
1997                                  unsigned long, unsigned long, unsigned long);
1998
1999        unsigned long error = arch_mmap_check(addr, len, flags);
2000        if (error)
2001                return error;
2002
2003        /* Careful about overflows.. */
2004        if (len > TASK_SIZE)
2005                return -ENOMEM;
2006
2007        get_area = current->mm->get_unmapped_area;
2008        if (file && file->f_op->get_unmapped_area)
2009                get_area = file->f_op->get_unmapped_area;
2010        addr = get_area(file, addr, len, pgoff, flags);
2011        if (IS_ERR_VALUE(addr))
2012                return addr;
2013
2014        if (addr > TASK_SIZE - len)
2015                return -ENOMEM;
2016        if (addr & ~PAGE_MASK)
2017                return -EINVAL;
2018
2019        addr = arch_rebalance_pgtables(addr, len);
2020        error = security_mmap_addr(addr);
2021        return error ? error : addr;
2022}
2023
2024EXPORT_SYMBOL(get_unmapped_area);
2025
2026/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2027struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2028{
2029        struct rb_node *rb_node;
2030        struct vm_area_struct *vma;
2031
2032        /* Check the cache first. */
2033        vma = vmacache_find(mm, addr);
2034        if (likely(vma))
2035                return vma;
2036
2037        rb_node = mm->mm_rb.rb_node;
2038        vma = NULL;
2039
2040        while (rb_node) {
2041                struct vm_area_struct *tmp;
2042
2043                tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2044
2045                if (tmp->vm_end > addr) {
2046                        vma = tmp;
2047                        if (tmp->vm_start <= addr)
2048                                break;
2049                        rb_node = rb_node->rb_left;
2050                } else
2051                        rb_node = rb_node->rb_right;
2052        }
2053
2054        if (vma)
2055                vmacache_update(addr, vma);
2056        return vma;
2057}
2058
2059EXPORT_SYMBOL(find_vma);
2060
2061/*
2062 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2063 */
2064struct vm_area_struct *
2065find_vma_prev(struct mm_struct *mm, unsigned long addr,
2066                        struct vm_area_struct **pprev)
2067{
2068        struct vm_area_struct *vma;
2069
2070        vma = find_vma(mm, addr);
2071        if (vma) {
2072                *pprev = vma->vm_prev;
2073        } else {
2074                struct rb_node *rb_node = mm->mm_rb.rb_node;
2075                *pprev = NULL;
2076                while (rb_node) {
2077                        *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2078                        rb_node = rb_node->rb_right;
2079                }
2080        }
2081        return vma;
2082}
2083
2084/*
2085 * Verify that the stack growth is acceptable and
2086 * update accounting. This is shared with both the
2087 * grow-up and grow-down cases.
2088 */
2089static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2090{
2091        struct mm_struct *mm = vma->vm_mm;
2092        struct rlimit *rlim = current->signal->rlim;
2093        unsigned long new_start, actual_size;
2094
2095        /* address space limit tests */
2096        if (!may_expand_vm(mm, grow))
2097                return -ENOMEM;
2098
2099        /* Stack limit test */
2100        actual_size = size;
2101        if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2102                actual_size -= PAGE_SIZE;
2103        if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2104                return -ENOMEM;
2105
2106        /* mlock limit tests */
2107        if (vma->vm_flags & VM_LOCKED) {
2108                unsigned long locked;
2109                unsigned long limit;
2110                locked = mm->locked_vm + grow;
2111                limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2112                limit >>= PAGE_SHIFT;
2113                if (locked > limit && !capable(CAP_IPC_LOCK))
2114                        return -ENOMEM;
2115        }
2116
2117        /* Check to ensure the stack will not grow into a hugetlb-only region */
2118        new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2119                        vma->vm_end - size;
2120        if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2121                return -EFAULT;
2122
2123        /*
2124         * Overcommit..  This must be the final test, as it will
2125         * update security statistics.
2126         */
2127        if (security_vm_enough_memory_mm(mm, grow))
2128                return -ENOMEM;
2129
2130        /* Ok, everything looks good - let it rip */
2131        if (vma->vm_flags & VM_LOCKED)
2132                mm->locked_vm += grow;
2133        vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2134        return 0;
2135}
2136
2137#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2138/*
2139 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2140 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2141 */
2142int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2143{
2144        int error;
2145
2146        if (!(vma->vm_flags & VM_GROWSUP))
2147                return -EFAULT;
2148
2149        /*
2150         * We must make sure the anon_vma is allocated
2151         * so that the anon_vma locking is not a noop.
2152         */
2153        if (unlikely(anon_vma_prepare(vma)))
2154                return -ENOMEM;
2155        vma_lock_anon_vma(vma);
2156
2157        /*
2158         * vma->vm_start/vm_end cannot change under us because the caller
2159         * is required to hold the mmap_sem in read mode.  We need the
2160         * anon_vma lock to serialize against concurrent expand_stacks.
2161         * Also guard against wrapping around to address 0.
2162         */
2163        if (address < PAGE_ALIGN(address+4))
2164                address = PAGE_ALIGN(address+4);
2165        else {
2166                vma_unlock_anon_vma(vma);
2167                return -ENOMEM;
2168        }
2169        error = 0;
2170
2171        /* Somebody else might have raced and expanded it already */
2172        if (address > vma->vm_end) {
2173                unsigned long size, grow;
2174
2175                size = address - vma->vm_start;
2176                grow = (address - vma->vm_end) >> PAGE_SHIFT;
2177
2178                error = -ENOMEM;
2179                if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2180                        error = acct_stack_growth(vma, size, grow);
2181                        if (!error) {
2182                                /*
2183                                 * vma_gap_update() doesn't support concurrent
2184                                 * updates, but we only hold a shared mmap_sem
2185                                 * lock here, so we need to protect against
2186                                 * concurrent vma expansions.
2187                                 * vma_lock_anon_vma() doesn't help here, as
2188                                 * we don't guarantee that all growable vmas
2189                                 * in a mm share the same root anon vma.
2190                                 * So, we reuse mm->page_table_lock to guard
2191                                 * against concurrent vma expansions.
2192                                 */
2193                                spin_lock(&vma->vm_mm->page_table_lock);
2194                                anon_vma_interval_tree_pre_update_vma(vma);
2195                                vma->vm_end = address;
2196                                anon_vma_interval_tree_post_update_vma(vma);
2197                                if (vma->vm_next)
2198                                        vma_gap_update(vma->vm_next);
2199                                else
2200                                        vma->vm_mm->highest_vm_end = address;
2201                                spin_unlock(&vma->vm_mm->page_table_lock);
2202
2203                                perf_event_mmap(vma);
2204                        }
2205                }
2206        }
2207        vma_unlock_anon_vma(vma);
2208        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2209        validate_mm(vma->vm_mm);
2210        return error;
2211}
2212#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2213
2214/*
2215 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2216 */
2217int expand_downwards(struct vm_area_struct *vma,
2218                                   unsigned long address)
2219{
2220        int error;
2221
2222        /*
2223         * We must make sure the anon_vma is allocated
2224         * so that the anon_vma locking is not a noop.
2225         */
2226        if (unlikely(anon_vma_prepare(vma)))
2227                return -ENOMEM;
2228
2229        address &= PAGE_MASK;
2230        error = security_mmap_addr(address);
2231        if (error)
2232                return error;
2233
2234        vma_lock_anon_vma(vma);
2235
2236        /*
2237         * vma->vm_start/vm_end cannot change under us because the caller
2238         * is required to hold the mmap_sem in read mode.  We need the
2239         * anon_vma lock to serialize against concurrent expand_stacks.
2240         */
2241
2242        /* Somebody else might have raced and expanded it already */
2243        if (address < vma->vm_start) {
2244                unsigned long size, grow;
2245
2246                size = vma->vm_end - address;
2247                grow = (vma->vm_start - address) >> PAGE_SHIFT;
2248
2249                error = -ENOMEM;
2250                if (grow <= vma->vm_pgoff) {
2251                        error = acct_stack_growth(vma, size, grow);
2252                        if (!error) {
2253                                /*
2254                                 * vma_gap_update() doesn't support concurrent
2255                                 * updates, but we only hold a shared mmap_sem
2256                                 * lock here, so we need to protect against
2257                                 * concurrent vma expansions.
2258                                 * vma_lock_anon_vma() doesn't help here, as
2259                                 * we don't guarantee that all growable vmas
2260                                 * in a mm share the same root anon vma.
2261                                 * So, we reuse mm->page_table_lock to guard
2262                                 * against concurrent vma expansions.
2263                                 */
2264                                spin_lock(&vma->vm_mm->page_table_lock);
2265                                anon_vma_interval_tree_pre_update_vma(vma);
2266                                vma->vm_start = address;
2267                                vma->vm_pgoff -= grow;
2268                                anon_vma_interval_tree_post_update_vma(vma);
2269                                vma_gap_update(vma);
2270                                spin_unlock(&vma->vm_mm->page_table_lock);
2271
2272                                perf_event_mmap(vma);
2273                        }
2274                }
2275        }
2276        vma_unlock_anon_vma(vma);
2277        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2278        validate_mm(vma->vm_mm);
2279        return error;
2280}
2281
2282/*
2283 * Note how expand_stack() refuses to expand the stack all the way to
2284 * abut the next virtual mapping, *unless* that mapping itself is also
2285 * a stack mapping. We want to leave room for a guard page, after all
2286 * (the guard page itself is not added here, that is done by the
2287 * actual page faulting logic)
2288 *
2289 * This matches the behavior of the guard page logic (see mm/memory.c:
2290 * check_stack_guard_page()), which only allows the guard page to be
2291 * removed under these circumstances.
2292 */
2293#ifdef CONFIG_STACK_GROWSUP
2294int expand_stack(struct vm_area_struct *vma, unsigned long address)
2295{
2296        struct vm_area_struct *next;
2297
2298        address &= PAGE_MASK;
2299        next = vma->vm_next;
2300        if (next && next->vm_start == address + PAGE_SIZE) {
2301                if (!(next->vm_flags & VM_GROWSUP))
2302                        return -ENOMEM;
2303        }
2304        return expand_upwards(vma, address);
2305}
2306
2307struct vm_area_struct *
2308find_extend_vma(struct mm_struct *mm, unsigned long addr)
2309{
2310        struct vm_area_struct *vma, *prev;
2311
2312        addr &= PAGE_MASK;
2313        vma = find_vma_prev(mm, addr, &prev);
2314        if (vma && (vma->vm_start <= addr))
2315                return vma;
2316        if (!prev || expand_stack(prev, addr))
2317                return NULL;
2318        if (prev->vm_flags & VM_LOCKED)
2319                populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2320        return prev;
2321}
2322#else
2323int expand_stack(struct vm_area_struct *vma, unsigned long address)
2324{
2325        struct vm_area_struct *prev;
2326
2327        address &= PAGE_MASK;
2328        prev = vma->vm_prev;
2329        if (prev && prev->vm_end == address) {
2330                if (!(prev->vm_flags & VM_GROWSDOWN))
2331                        return -ENOMEM;
2332        }
2333        return expand_downwards(vma, address);
2334}
2335
2336struct vm_area_struct *
2337find_extend_vma(struct mm_struct *mm, unsigned long addr)
2338{
2339        struct vm_area_struct *vma;
2340        unsigned long start;
2341
2342        addr &= PAGE_MASK;
2343        vma = find_vma(mm, addr);
2344        if (!vma)
2345                return NULL;
2346        if (vma->vm_start <= addr)
2347                return vma;
2348        if (!(vma->vm_flags & VM_GROWSDOWN))
2349                return NULL;
2350        start = vma->vm_start;
2351        if (expand_stack(vma, addr))
2352                return NULL;
2353        if (vma->vm_flags & VM_LOCKED)
2354                populate_vma_page_range(vma, addr, start, NULL);
2355        return vma;
2356}
2357#endif
2358
2359EXPORT_SYMBOL_GPL(find_extend_vma);
2360
2361/*
2362 * Ok - we have the memory areas we should free on the vma list,
2363 * so release them, and do the vma updates.
2364 *
2365 * Called with the mm semaphore held.
2366 */
2367static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2368{
2369        unsigned long nr_accounted = 0;
2370
2371        /* Update high watermark before we lower total_vm */
2372        update_hiwater_vm(mm);
2373        do {
2374                long nrpages = vma_pages(vma);
2375
2376                if (vma->vm_flags & VM_ACCOUNT)
2377                        nr_accounted += nrpages;
2378                vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2379                vma = remove_vma(vma);
2380        } while (vma);
2381        vm_unacct_memory(nr_accounted);
2382        validate_mm(mm);
2383}
2384
2385/*
2386 * Get rid of page table information in the indicated region.
2387 *
2388 * Called with the mm semaphore held.
2389 */
2390static void unmap_region(struct mm_struct *mm,
2391                struct vm_area_struct *vma, struct vm_area_struct *prev,
2392                unsigned long start, unsigned long end)
2393{
2394        struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2395        struct mmu_gather tlb;
2396
2397        lru_add_drain();
2398        tlb_gather_mmu(&tlb, mm, start, end);
2399        update_hiwater_rss(mm);
2400        unmap_vmas(&tlb, vma, start, end);
2401        free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2402                                 next ? next->vm_start : USER_PGTABLES_CEILING);
2403        tlb_finish_mmu(&tlb, start, end);
2404}
2405
2406/*
2407 * Create a list of vma's touched by the unmap, removing them from the mm's
2408 * vma list as we go..
2409 */
2410static void
2411detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2412        struct vm_area_struct *prev, unsigned long end)
2413{
2414        struct vm_area_struct **insertion_point;
2415        struct vm_area_struct *tail_vma = NULL;
2416
2417        insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2418        vma->vm_prev = NULL;
2419        do {
2420                vma_rb_erase(vma, &mm->mm_rb);
2421                mm->map_count--;
2422                tail_vma = vma;
2423                vma = vma->vm_next;
2424        } while (vma && vma->vm_start < end);
2425        *insertion_point = vma;
2426        if (vma) {
2427                vma->vm_prev = prev;
2428                vma_gap_update(vma);
2429        } else
2430                mm->highest_vm_end = prev ? prev->vm_end : 0;
2431        tail_vma->vm_next = NULL;
2432
2433        /* Kill the cache */
2434        vmacache_invalidate(mm);
2435}
2436
2437/*
2438 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2439 * munmap path where it doesn't make sense to fail.
2440 */
2441static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2442              unsigned long addr, int new_below)
2443{
2444        struct vm_area_struct *new;
2445        int err = -ENOMEM;
2446
2447        if (is_vm_hugetlb_page(vma) && (addr &
2448                                        ~(huge_page_mask(hstate_vma(vma)))))
2449                return -EINVAL;
2450
2451        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2452        if (!new)
2453                goto out_err;
2454
2455        /* most fields are the same, copy all, and then fixup */
2456        *new = *vma;
2457
2458        INIT_LIST_HEAD(&new->anon_vma_chain);
2459
2460        if (new_below)
2461                new->vm_end = addr;
2462        else {
2463                new->vm_start = addr;
2464                new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2465        }
2466
2467        err = vma_dup_policy(vma, new);
2468        if (err)
2469                goto out_free_vma;
2470
2471        err = anon_vma_clone(new, vma);
2472        if (err)
2473                goto out_free_mpol;
2474
2475        if (new->vm_file)
2476                get_file(new->vm_file);
2477
2478        if (new->vm_ops && new->vm_ops->open)
2479                new->vm_ops->open(new);
2480
2481        if (new_below)
2482                err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2483                        ((addr - new->vm_start) >> PAGE_SHIFT), new);
2484        else
2485                err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2486
2487        /* Success. */
2488        if (!err)
2489                return 0;
2490
2491        /* Clean everything up if vma_adjust failed. */
2492        if (new->vm_ops && new->vm_ops->close)
2493                new->vm_ops->close(new);
2494        if (new->vm_file)
2495                fput(new->vm_file);
2496        unlink_anon_vmas(new);
2497 out_free_mpol:
2498        mpol_put(vma_policy(new));
2499 out_free_vma:
2500        kmem_cache_free(vm_area_cachep, new);
2501 out_err:
2502        return err;
2503}
2504
2505/*
2506 * Split a vma into two pieces at address 'addr', a new vma is allocated
2507 * either for the first part or the tail.
2508 */
2509int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2510              unsigned long addr, int new_below)
2511{
2512        if (mm->map_count >= sysctl_max_map_count)
2513                return -ENOMEM;
2514
2515        return __split_vma(mm, vma, addr, new_below);
2516}
2517
2518/* Munmap is split into 2 main parts -- this part which finds
2519 * what needs doing, and the areas themselves, which do the
2520 * work.  This now handles partial unmappings.
2521 * Jeremy Fitzhardinge <jeremy@goop.org>
2522 */
2523int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2524{
2525        unsigned long end;
2526        struct vm_area_struct *vma, *prev, *last;
2527
2528        if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2529                return -EINVAL;
2530
2531        len = PAGE_ALIGN(len);
2532        if (len == 0)
2533                return -EINVAL;
2534
2535        /* Find the first overlapping VMA */
2536        vma = find_vma(mm, start);
2537        if (!vma)
2538                return 0;
2539        prev = vma->vm_prev;
2540        /* we have  start < vma->vm_end  */
2541
2542        /* if it doesn't overlap, we have nothing.. */
2543        end = start + len;
2544        if (vma->vm_start >= end)
2545                return 0;
2546
2547        /*
2548         * If we need to split any vma, do it now to save pain later.
2549         *
2550         * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2551         * unmapped vm_area_struct will remain in use: so lower split_vma
2552         * places tmp vma above, and higher split_vma places tmp vma below.
2553         */
2554        if (start > vma->vm_start) {
2555                int error;
2556
2557                /*
2558                 * Make sure that map_count on return from munmap() will
2559                 * not exceed its limit; but let map_count go just above
2560                 * its limit temporarily, to help free resources as expected.
2561                 */
2562                if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2563                        return -ENOMEM;
2564
2565                error = __split_vma(mm, vma, start, 0);
2566                if (error)
2567                        return error;
2568                prev = vma;
2569        }
2570
2571        /* Does it split the last one? */
2572        last = find_vma(mm, end);
2573        if (last && end > last->vm_start) {
2574                int error = __split_vma(mm, last, end, 1);
2575                if (error)
2576                        return error;
2577        }
2578        vma = prev ? prev->vm_next : mm->mmap;
2579
2580        /*
2581         * unlock any mlock()ed ranges before detaching vmas
2582         */
2583        if (mm->locked_vm) {
2584                struct vm_area_struct *tmp = vma;
2585                while (tmp && tmp->vm_start < end) {
2586                        if (tmp->vm_flags & VM_LOCKED) {
2587                                mm->locked_vm -= vma_pages(tmp);
2588                                munlock_vma_pages_all(tmp);
2589                        }
2590                        tmp = tmp->vm_next;
2591                }
2592        }
2593
2594        /*
2595         * Remove the vma's, and unmap the actual pages
2596         */
2597        detach_vmas_to_be_unmapped(mm, vma, prev, end);
2598        unmap_region(mm, vma, prev, start, end);
2599
2600        arch_unmap(mm, vma, start, end);
2601
2602        /* Fix up all other VM information */
2603        remove_vma_list(mm, vma);
2604
2605        return 0;
2606}
2607
2608int vm_munmap(unsigned long start, size_t len)
2609{
2610        int ret;
2611        struct mm_struct *mm = current->mm;
2612
2613        down_write(&mm->mmap_sem);
2614        ret = do_munmap(mm, start, len);
2615        up_write(&mm->mmap_sem);
2616        return ret;
2617}
2618EXPORT_SYMBOL(vm_munmap);
2619
2620SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2621{
2622        profile_munmap(addr);
2623        return vm_munmap(addr, len);
2624}
2625
2626
2627/*
2628 * Emulation of deprecated remap_file_pages() syscall.
2629 */
2630SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2631                unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2632{
2633
2634        struct mm_struct *mm = current->mm;
2635        struct vm_area_struct *vma;
2636        unsigned long populate = 0;
2637        unsigned long ret = -EINVAL;
2638        struct file *file;
2639
2640        pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2641                        "See Documentation/vm/remap_file_pages.txt.\n",
2642                        current->comm, current->pid);
2643
2644        if (prot)
2645                return ret;
2646        start = start & PAGE_MASK;
2647        size = size & PAGE_MASK;
2648
2649        if (start + size <= start)
2650                return ret;
2651
2652        /* Does pgoff wrap? */
2653        if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2654                return ret;
2655
2656        down_write(&mm->mmap_sem);
2657        vma = find_vma(mm, start);
2658
2659        if (!vma || !(vma->vm_flags & VM_SHARED))
2660                goto out;
2661
2662        if (start < vma->vm_start || start + size > vma->vm_end)
2663                goto out;
2664
2665        if (pgoff == linear_page_index(vma, start)) {
2666                ret = 0;
2667                goto out;
2668        }
2669
2670        prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2671        prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2672        prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2673
2674        flags &= MAP_NONBLOCK;
2675        flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2676        if (vma->vm_flags & VM_LOCKED) {
2677                flags |= MAP_LOCKED;
2678                /* drop PG_Mlocked flag for over-mapped range */
2679                munlock_vma_pages_range(vma, start, start + size);
2680        }
2681
2682        file = get_file(vma->vm_file);
2683        ret = do_mmap_pgoff(vma->vm_file, start, size,
2684                        prot, flags, pgoff, &populate);
2685        fput(file);
2686out:
2687        up_write(&mm->mmap_sem);
2688        if (populate)
2689                mm_populate(ret, populate);
2690        if (!IS_ERR_VALUE(ret))
2691                ret = 0;
2692        return ret;
2693}
2694
2695static inline void verify_mm_writelocked(struct mm_struct *mm)
2696{
2697#ifdef CONFIG_DEBUG_VM
2698        if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2699                WARN_ON(1);
2700                up_read(&mm->mmap_sem);
2701        }
2702#endif
2703}
2704
2705/*
2706 *  this is really a simplified "do_mmap".  it only handles
2707 *  anonymous maps.  eventually we may be able to do some
2708 *  brk-specific accounting here.
2709 */
2710static unsigned long do_brk(unsigned long addr, unsigned long len)
2711{
2712        struct mm_struct *mm = current->mm;
2713        struct vm_area_struct *vma, *prev;
2714        unsigned long flags;
2715        struct rb_node **rb_link, *rb_parent;
2716        pgoff_t pgoff = addr >> PAGE_SHIFT;
2717        int error;
2718
2719        len = PAGE_ALIGN(len);
2720        if (!len)
2721                return addr;
2722
2723        flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2724
2725        error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2726        if (error & ~PAGE_MASK)
2727                return error;
2728
2729        error = mlock_future_check(mm, mm->def_flags, len);
2730        if (error)
2731                return error;
2732
2733        /*
2734         * mm->mmap_sem is required to protect against another thread
2735         * changing the mappings in case we sleep.
2736         */
2737        verify_mm_writelocked(mm);
2738
2739        /*
2740         * Clear old maps.  this also does some error checking for us
2741         */
2742        while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2743                              &rb_parent)) {
2744                if (do_munmap(mm, addr, len))
2745                        return -ENOMEM;
2746        }
2747
2748        /* Check against address space limits *after* clearing old maps... */
2749        if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2750                return -ENOMEM;
2751
2752        if (mm->map_count > sysctl_max_map_count)
2753                return -ENOMEM;
2754
2755        if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2756                return -ENOMEM;
2757
2758        /* Can we just expand an old private anonymous mapping? */
2759        vma = vma_merge(mm, prev, addr, addr + len, flags,
2760                                        NULL, NULL, pgoff, NULL);
2761        if (vma)
2762                goto out;
2763
2764        /*
2765         * create a vma struct for an anonymous mapping
2766         */
2767        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2768        if (!vma) {
2769                vm_unacct_memory(len >> PAGE_SHIFT);
2770                return -ENOMEM;
2771        }
2772
2773        INIT_LIST_HEAD(&vma->anon_vma_chain);
2774        vma->vm_mm = mm;
2775        vma->vm_start = addr;
2776        vma->vm_end = addr + len;
2777        vma->vm_pgoff = pgoff;
2778        vma->vm_flags = flags;
2779        vma->vm_page_prot = vm_get_page_prot(flags);
2780        vma_link(mm, vma, prev, rb_link, rb_parent);
2781out:
2782        perf_event_mmap(vma);
2783        mm->total_vm += len >> PAGE_SHIFT;
2784        if (flags & VM_LOCKED)
2785                mm->locked_vm += (len >> PAGE_SHIFT);
2786        vma->vm_flags |= VM_SOFTDIRTY;
2787        return addr;
2788}
2789
2790unsigned long vm_brk(unsigned long addr, unsigned long len)
2791{
2792        struct mm_struct *mm = current->mm;
2793        unsigned long ret;
2794        bool populate;
2795
2796        down_write(&mm->mmap_sem);
2797        ret = do_brk(addr, len);
2798        populate = ((mm->def_flags & VM_LOCKED) != 0);
2799        up_write(&mm->mmap_sem);
2800        if (populate)
2801                mm_populate(addr, len);
2802        return ret;
2803}
2804EXPORT_SYMBOL(vm_brk);
2805
2806/* Release all mmaps. */
2807void exit_mmap(struct mm_struct *mm)
2808{
2809        struct mmu_gather tlb;
2810        struct vm_area_struct *vma;
2811        unsigned long nr_accounted = 0;
2812
2813        /* mm's last user has gone, and its about to be pulled down */
2814        mmu_notifier_release(mm);
2815
2816        if (mm->locked_vm) {
2817                vma = mm->mmap;
2818                while (vma) {
2819                        if (vma->vm_flags & VM_LOCKED)
2820                                munlock_vma_pages_all(vma);
2821                        vma = vma->vm_next;
2822                }
2823        }
2824
2825        arch_exit_mmap(mm);
2826
2827        vma = mm->mmap;
2828        if (!vma)       /* Can happen if dup_mmap() received an OOM */
2829                return;
2830
2831        lru_add_drain();
2832        flush_cache_mm(mm);
2833        tlb_gather_mmu(&tlb, mm, 0, -1);
2834        /* update_hiwater_rss(mm) here? but nobody should be looking */
2835        /* Use -1 here to ensure all VMAs in the mm are unmapped */
2836        unmap_vmas(&tlb, vma, 0, -1);
2837
2838        free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2839        tlb_finish_mmu(&tlb, 0, -1);
2840
2841        /*
2842         * Walk the list again, actually closing and freeing it,
2843         * with preemption enabled, without holding any MM locks.
2844         */
2845        while (vma) {
2846                if (vma->vm_flags & VM_ACCOUNT)
2847                        nr_accounted += vma_pages(vma);
2848                vma = remove_vma(vma);
2849        }
2850        vm_unacct_memory(nr_accounted);
2851}
2852
2853/* Insert vm structure into process list sorted by address
2854 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2855 * then i_mmap_rwsem is taken here.
2856 */
2857int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2858{
2859        struct vm_area_struct *prev;
2860        struct rb_node **rb_link, *rb_parent;
2861
2862        /*
2863         * The vm_pgoff of a purely anonymous vma should be irrelevant
2864         * until its first write fault, when page's anon_vma and index
2865         * are set.  But now set the vm_pgoff it will almost certainly
2866         * end up with (unless mremap moves it elsewhere before that
2867         * first wfault), so /proc/pid/maps tells a consistent story.
2868         *
2869         * By setting it to reflect the virtual start address of the
2870         * vma, merges and splits can happen in a seamless way, just
2871         * using the existing file pgoff checks and manipulations.
2872         * Similarly in do_mmap_pgoff and in do_brk.
2873         */
2874        if (!vma->vm_file) {
2875                BUG_ON(vma->anon_vma);
2876                vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2877        }
2878        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2879                           &prev, &rb_link, &rb_parent))
2880                return -ENOMEM;
2881        if ((vma->vm_flags & VM_ACCOUNT) &&
2882             security_vm_enough_memory_mm(mm, vma_pages(vma)))
2883                return -ENOMEM;
2884
2885        vma_link(mm, vma, prev, rb_link, rb_parent);
2886        return 0;
2887}
2888
2889/*
2890 * Copy the vma structure to a new location in the same mm,
2891 * prior to moving page table entries, to effect an mremap move.
2892 */
2893struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2894        unsigned long addr, unsigned long len, pgoff_t pgoff,
2895        bool *need_rmap_locks)
2896{
2897        struct vm_area_struct *vma = *vmap;
2898        unsigned long vma_start = vma->vm_start;
2899        struct mm_struct *mm = vma->vm_mm;
2900        struct vm_area_struct *new_vma, *prev;
2901        struct rb_node **rb_link, *rb_parent;
2902        bool faulted_in_anon_vma = true;
2903
2904        /*
2905         * If anonymous vma has not yet been faulted, update new pgoff
2906         * to match new location, to increase its chance of merging.
2907         */
2908        if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2909                pgoff = addr >> PAGE_SHIFT;
2910                faulted_in_anon_vma = false;
2911        }
2912
2913        if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2914                return NULL;    /* should never get here */
2915        new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2916                        vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2917        if (new_vma) {
2918                /*
2919                 * Source vma may have been merged into new_vma
2920                 */
2921                if (unlikely(vma_start >= new_vma->vm_start &&
2922                             vma_start < new_vma->vm_end)) {
2923                        /*
2924                         * The only way we can get a vma_merge with
2925                         * self during an mremap is if the vma hasn't
2926                         * been faulted in yet and we were allowed to
2927                         * reset the dst vma->vm_pgoff to the
2928                         * destination address of the mremap to allow
2929                         * the merge to happen. mremap must change the
2930                         * vm_pgoff linearity between src and dst vmas
2931                         * (in turn preventing a vma_merge) to be
2932                         * safe. It is only safe to keep the vm_pgoff
2933                         * linear if there are no pages mapped yet.
2934                         */
2935                        VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2936                        *vmap = vma = new_vma;
2937                }
2938                *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2939        } else {
2940                new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2941                if (new_vma) {
2942                        *new_vma = *vma;
2943                        new_vma->vm_start = addr;
2944                        new_vma->vm_end = addr + len;
2945                        new_vma->vm_pgoff = pgoff;
2946                        if (vma_dup_policy(vma, new_vma))
2947                                goto out_free_vma;
2948                        INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2949                        if (anon_vma_clone(new_vma, vma))
2950                                goto out_free_mempol;
2951                        if (new_vma->vm_file)
2952                                get_file(new_vma->vm_file);
2953                        if (new_vma->vm_ops && new_vma->vm_ops->open)
2954                                new_vma->vm_ops->open(new_vma);
2955                        vma_link(mm, new_vma, prev, rb_link, rb_parent);
2956                        *need_rmap_locks = false;
2957                }
2958        }
2959        return new_vma;
2960
2961 out_free_mempol:
2962        mpol_put(vma_policy(new_vma));
2963 out_free_vma:
2964        kmem_cache_free(vm_area_cachep, new_vma);
2965        return NULL;
2966}
2967
2968/*
2969 * Return true if the calling process may expand its vm space by the passed
2970 * number of pages
2971 */
2972int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2973{
2974        unsigned long cur = mm->total_vm;       /* pages */
2975        unsigned long lim;
2976
2977        lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2978
2979        if (cur + npages > lim)
2980                return 0;
2981        return 1;
2982}
2983
2984static int special_mapping_fault(struct vm_area_struct *vma,
2985                                 struct vm_fault *vmf);
2986
2987/*
2988 * Having a close hook prevents vma merging regardless of flags.
2989 */
2990static void special_mapping_close(struct vm_area_struct *vma)
2991{
2992}
2993
2994static const char *special_mapping_name(struct vm_area_struct *vma)
2995{
2996        return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2997}
2998
2999static const struct vm_operations_struct special_mapping_vmops = {
3000        .close = special_mapping_close,
3001        .fault = special_mapping_fault,
3002        .name = special_mapping_name,
3003};
3004
3005static const struct vm_operations_struct legacy_special_mapping_vmops = {
3006        .close = special_mapping_close,
3007        .fault = special_mapping_fault,
3008};
3009
3010static int special_mapping_fault(struct vm_area_struct *vma,
3011                                struct vm_fault *vmf)
3012{
3013        pgoff_t pgoff;
3014        struct page **pages;
3015
3016        /*
3017         * special mappings have no vm_file, and in that case, the mm
3018         * uses vm_pgoff internally. So we have to subtract it from here.
3019         * We are allowed to do this because we are the mm; do not copy
3020         * this code into drivers!
3021         */
3022        pgoff = vmf->pgoff - vma->vm_pgoff;
3023
3024        if (vma->vm_ops == &legacy_special_mapping_vmops)
3025                pages = vma->vm_private_data;
3026        else
3027                pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3028                        pages;
3029
3030        for (; pgoff && *pages; ++pages)
3031                pgoff--;
3032
3033        if (*pages) {
3034                struct page *page = *pages;
3035                get_page(page);
3036                vmf->page = page;
3037                return 0;
3038        }
3039
3040        return VM_FAULT_SIGBUS;
3041}
3042
3043static struct vm_area_struct *__install_special_mapping(
3044        struct mm_struct *mm,
3045        unsigned long addr, unsigned long len,
3046        unsigned long vm_flags, const struct vm_operations_struct *ops,
3047        void *priv)
3048{
3049        int ret;
3050        struct vm_area_struct *vma;
3051
3052        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3053        if (unlikely(vma == NULL))
3054                return ERR_PTR(-ENOMEM);
3055
3056        INIT_LIST_HEAD(&vma->anon_vma_chain);
3057        vma->vm_mm = mm;
3058        vma->vm_start = addr;
3059        vma->vm_end = addr + len;
3060
3061        vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3062        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3063
3064        vma->vm_ops = ops;
3065        vma->vm_private_data = priv;
3066
3067        ret = insert_vm_struct(mm, vma);
3068        if (ret)
3069                goto out;
3070
3071        mm->total_vm += len >> PAGE_SHIFT;
3072
3073        perf_event_mmap(vma);
3074
3075        return vma;
3076
3077out:
3078        kmem_cache_free(vm_area_cachep, vma);
3079        return ERR_PTR(ret);
3080}
3081
3082/*
3083 * Called with mm->mmap_sem held for writing.
3084 * Insert a new vma covering the given region, with the given flags.
3085 * Its pages are supplied by the given array of struct page *.
3086 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3087 * The region past the last page supplied will always produce SIGBUS.
3088 * The array pointer and the pages it points to are assumed to stay alive
3089 * for as long as this mapping might exist.
3090 */
3091struct vm_area_struct *_install_special_mapping(
3092        struct mm_struct *mm,
3093        unsigned long addr, unsigned long len,
3094        unsigned long vm_flags, const struct vm_special_mapping *spec)
3095{
3096        return __install_special_mapping(mm, addr, len, vm_flags,
3097                                         &special_mapping_vmops, (void *)spec);
3098}
3099
3100int install_special_mapping(struct mm_struct *mm,
3101                            unsigned long addr, unsigned long len,
3102                            unsigned long vm_flags, struct page **pages)
3103{
3104        struct vm_area_struct *vma = __install_special_mapping(
3105                mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3106                (void *)pages);
3107
3108        return PTR_ERR_OR_ZERO(vma);
3109}
3110
3111static DEFINE_MUTEX(mm_all_locks_mutex);
3112
3113static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3114{
3115        if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3116                /*
3117                 * The LSB of head.next can't change from under us
3118                 * because we hold the mm_all_locks_mutex.
3119                 */
3120                down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3121                /*
3122                 * We can safely modify head.next after taking the
3123                 * anon_vma->root->rwsem. If some other vma in this mm shares
3124                 * the same anon_vma we won't take it again.
3125                 *
3126                 * No need of atomic instructions here, head.next
3127                 * can't change from under us thanks to the
3128                 * anon_vma->root->rwsem.
3129                 */
3130                if (__test_and_set_bit(0, (unsigned long *)
3131                                       &anon_vma->root->rb_root.rb_node))
3132                        BUG();
3133        }
3134}
3135
3136static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3137{
3138        if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3139                /*
3140                 * AS_MM_ALL_LOCKS can't change from under us because
3141                 * we hold the mm_all_locks_mutex.
3142                 *
3143                 * Operations on ->flags have to be atomic because
3144                 * even if AS_MM_ALL_LOCKS is stable thanks to the
3145                 * mm_all_locks_mutex, there may be other cpus
3146                 * changing other bitflags in parallel to us.
3147                 */
3148                if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3149                        BUG();
3150                down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3151        }
3152}
3153
3154/*
3155 * This operation locks against the VM for all pte/vma/mm related
3156 * operations that could ever happen on a certain mm. This includes
3157 * vmtruncate, try_to_unmap, and all page faults.
3158 *
3159 * The caller must take the mmap_sem in write mode before calling
3160 * mm_take_all_locks(). The caller isn't allowed to release the
3161 * mmap_sem until mm_drop_all_locks() returns.
3162 *
3163 * mmap_sem in write mode is required in order to block all operations
3164 * that could modify pagetables and free pages without need of
3165 * altering the vma layout. It's also needed in write mode to avoid new
3166 * anon_vmas to be associated with existing vmas.
3167 *
3168 * A single task can't take more than one mm_take_all_locks() in a row
3169 * or it would deadlock.
3170 *
3171 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3172 * mapping->flags avoid to take the same lock twice, if more than one
3173 * vma in this mm is backed by the same anon_vma or address_space.
3174 *
3175 * We can take all the locks in random order because the VM code
3176 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3177 * takes more than one of them in a row. Secondly we're protected
3178 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3179 *
3180 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3181 * that may have to take thousand of locks.
3182 *
3183 * mm_take_all_locks() can fail if it's interrupted by signals.
3184 */
3185int mm_take_all_locks(struct mm_struct *mm)
3186{
3187        struct vm_area_struct *vma;
3188        struct anon_vma_chain *avc;
3189
3190        BUG_ON(down_read_trylock(&mm->mmap_sem));
3191
3192        mutex_lock(&mm_all_locks_mutex);
3193
3194        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3195                if (signal_pending(current))
3196                        goto out_unlock;
3197                if (vma->vm_file && vma->vm_file->f_mapping)
3198                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3199        }
3200
3201        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3202                if (signal_pending(current))
3203                        goto out_unlock;
3204                if (vma->anon_vma)
3205                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3206                                vm_lock_anon_vma(mm, avc->anon_vma);
3207        }
3208
3209        return 0;
3210
3211out_unlock:
3212        mm_drop_all_locks(mm);
3213        return -EINTR;
3214}
3215
3216static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3217{
3218        if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3219                /*
3220                 * The LSB of head.next can't change to 0 from under
3221                 * us because we hold the mm_all_locks_mutex.
3222                 *
3223                 * We must however clear the bitflag before unlocking
3224                 * the vma so the users using the anon_vma->rb_root will
3225                 * never see our bitflag.
3226                 *
3227                 * No need of atomic instructions here, head.next
3228                 * can't change from under us until we release the
3229                 * anon_vma->root->rwsem.
3230                 */
3231                if (!__test_and_clear_bit(0, (unsigned long *)
3232                                          &anon_vma->root->rb_root.rb_node))
3233                        BUG();
3234                anon_vma_unlock_write(anon_vma);
3235        }
3236}
3237
3238static void vm_unlock_mapping(struct address_space *mapping)
3239{
3240        if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3241                /*
3242                 * AS_MM_ALL_LOCKS can't change to 0 from under us
3243                 * because we hold the mm_all_locks_mutex.
3244                 */
3245                i_mmap_unlock_write(mapping);
3246                if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3247                                        &mapping->flags))
3248                        BUG();
3249        }
3250}
3251
3252/*
3253 * The mmap_sem cannot be released by the caller until
3254 * mm_drop_all_locks() returns.
3255 */
3256void mm_drop_all_locks(struct mm_struct *mm)
3257{
3258        struct vm_area_struct *vma;
3259        struct anon_vma_chain *avc;
3260
3261        BUG_ON(down_read_trylock(&mm->mmap_sem));
3262        BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3263
3264        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3265                if (vma->anon_vma)
3266                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3267                                vm_unlock_anon_vma(avc->anon_vma);
3268                if (vma->vm_file && vma->vm_file->f_mapping)
3269                        vm_unlock_mapping(vma->vm_file->f_mapping);
3270        }
3271
3272        mutex_unlock(&mm_all_locks_mutex);
3273}
3274
3275/*
3276 * initialise the VMA slab
3277 */
3278void __init mmap_init(void)
3279{
3280        int ret;
3281
3282        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3283        VM_BUG_ON(ret);
3284}
3285
3286/*
3287 * Initialise sysctl_user_reserve_kbytes.
3288 *
3289 * This is intended to prevent a user from starting a single memory hogging
3290 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3291 * mode.
3292 *
3293 * The default value is min(3% of free memory, 128MB)
3294 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3295 */
3296static int init_user_reserve(void)
3297{
3298        unsigned long free_kbytes;
3299
3300        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3301
3302        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3303        return 0;
3304}
3305subsys_initcall(init_user_reserve);
3306
3307/*
3308 * Initialise sysctl_admin_reserve_kbytes.
3309 *
3310 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3311 * to log in and kill a memory hogging process.
3312 *
3313 * Systems with more than 256MB will reserve 8MB, enough to recover
3314 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3315 * only reserve 3% of free pages by default.
3316 */
3317static int init_admin_reserve(void)
3318{
3319        unsigned long free_kbytes;
3320
3321        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3322
3323        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3324        return 0;
3325}
3326subsys_initcall(init_admin_reserve);
3327
3328/*
3329 * Reinititalise user and admin reserves if memory is added or removed.
3330 *
3331 * The default user reserve max is 128MB, and the default max for the
3332 * admin reserve is 8MB. These are usually, but not always, enough to
3333 * enable recovery from a memory hogging process using login/sshd, a shell,
3334 * and tools like top. It may make sense to increase or even disable the
3335 * reserve depending on the existence of swap or variations in the recovery
3336 * tools. So, the admin may have changed them.
3337 *
3338 * If memory is added and the reserves have been eliminated or increased above
3339 * the default max, then we'll trust the admin.
3340 *
3341 * If memory is removed and there isn't enough free memory, then we
3342 * need to reset the reserves.
3343 *
3344 * Otherwise keep the reserve set by the admin.
3345 */
3346static int reserve_mem_notifier(struct notifier_block *nb,
3347                             unsigned long action, void *data)
3348{
3349        unsigned long tmp, free_kbytes;
3350
3351        switch (action) {
3352        case MEM_ONLINE:
3353                /* Default max is 128MB. Leave alone if modified by operator. */
3354                tmp = sysctl_user_reserve_kbytes;
3355                if (0 < tmp && tmp < (1UL << 17))
3356                        init_user_reserve();
3357
3358                /* Default max is 8MB.  Leave alone if modified by operator. */
3359                tmp = sysctl_admin_reserve_kbytes;
3360                if (0 < tmp && tmp < (1UL << 13))
3361                        init_admin_reserve();
3362
3363                break;
3364        case MEM_OFFLINE:
3365                free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3366
3367                if (sysctl_user_reserve_kbytes > free_kbytes) {
3368                        init_user_reserve();
3369                        pr_info("vm.user_reserve_kbytes reset to %lu\n",
3370                                sysctl_user_reserve_kbytes);
3371                }
3372
3373                if (sysctl_admin_reserve_kbytes > free_kbytes) {
3374                        init_admin_reserve();
3375                        pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3376                                sysctl_admin_reserve_kbytes);
3377                }
3378                break;
3379        default:
3380                break;
3381        }
3382        return NOTIFY_OK;
3383}
3384
3385static struct notifier_block reserve_mem_nb = {
3386        .notifier_call = reserve_mem_notifier,
3387};
3388
3389static int __meminit init_reserve_notifier(void)
3390{
3391        if (register_hotmemory_notifier(&reserve_mem_nb))
3392                pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3393
3394        return 0;
3395}
3396subsys_initcall(init_reserve_notifier);
3397