linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/rcupdate.h>
 106#include        <linux/string.h>
 107#include        <linux/uaccess.h>
 108#include        <linux/nodemask.h>
 109#include        <linux/kmemleak.h>
 110#include        <linux/mempolicy.h>
 111#include        <linux/mutex.h>
 112#include        <linux/fault-inject.h>
 113#include        <linux/rtmutex.h>
 114#include        <linux/reciprocal_div.h>
 115#include        <linux/debugobjects.h>
 116#include        <linux/kmemcheck.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119
 120#include        <net/sock.h>
 121
 122#include        <asm/cacheflush.h>
 123#include        <asm/tlbflush.h>
 124#include        <asm/page.h>
 125
 126#include <trace/events/kmem.h>
 127
 128#include        "internal.h"
 129
 130#include        "slab.h"
 131
 132/*
 133 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 134 *                0 for faster, smaller code (especially in the critical paths).
 135 *
 136 * STATS        - 1 to collect stats for /proc/slabinfo.
 137 *                0 for faster, smaller code (especially in the critical paths).
 138 *
 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 140 */
 141
 142#ifdef CONFIG_DEBUG_SLAB
 143#define DEBUG           1
 144#define STATS           1
 145#define FORCED_DEBUG    1
 146#else
 147#define DEBUG           0
 148#define STATS           0
 149#define FORCED_DEBUG    0
 150#endif
 151
 152/* Shouldn't this be in a header file somewhere? */
 153#define BYTES_PER_WORD          sizeof(void *)
 154#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 155
 156#ifndef ARCH_KMALLOC_FLAGS
 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 158#endif
 159
 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 161                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 162
 163#if FREELIST_BYTE_INDEX
 164typedef unsigned char freelist_idx_t;
 165#else
 166typedef unsigned short freelist_idx_t;
 167#endif
 168
 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 170
 171/*
 172 * true if a page was allocated from pfmemalloc reserves for network-based
 173 * swap
 174 */
 175static bool pfmemalloc_active __read_mostly;
 176
 177/*
 178 * struct array_cache
 179 *
 180 * Purpose:
 181 * - LIFO ordering, to hand out cache-warm objects from _alloc
 182 * - reduce the number of linked list operations
 183 * - reduce spinlock operations
 184 *
 185 * The limit is stored in the per-cpu structure to reduce the data cache
 186 * footprint.
 187 *
 188 */
 189struct array_cache {
 190        unsigned int avail;
 191        unsigned int limit;
 192        unsigned int batchcount;
 193        unsigned int touched;
 194        void *entry[];  /*
 195                         * Must have this definition in here for the proper
 196                         * alignment of array_cache. Also simplifies accessing
 197                         * the entries.
 198                         *
 199                         * Entries should not be directly dereferenced as
 200                         * entries belonging to slabs marked pfmemalloc will
 201                         * have the lower bits set SLAB_OBJ_PFMEMALLOC
 202                         */
 203};
 204
 205struct alien_cache {
 206        spinlock_t lock;
 207        struct array_cache ac;
 208};
 209
 210#define SLAB_OBJ_PFMEMALLOC     1
 211static inline bool is_obj_pfmemalloc(void *objp)
 212{
 213        return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
 214}
 215
 216static inline void set_obj_pfmemalloc(void **objp)
 217{
 218        *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
 219        return;
 220}
 221
 222static inline void clear_obj_pfmemalloc(void **objp)
 223{
 224        *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
 225}
 226
 227/*
 228 * bootstrap: The caches do not work without cpuarrays anymore, but the
 229 * cpuarrays are allocated from the generic caches...
 230 */
 231#define BOOT_CPUCACHE_ENTRIES   1
 232struct arraycache_init {
 233        struct array_cache cache;
 234        void *entries[BOOT_CPUCACHE_ENTRIES];
 235};
 236
 237/*
 238 * Need this for bootstrapping a per node allocator.
 239 */
 240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 242#define CACHE_CACHE 0
 243#define SIZE_NODE (MAX_NUMNODES)
 244
 245static int drain_freelist(struct kmem_cache *cache,
 246                        struct kmem_cache_node *n, int tofree);
 247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 248                        int node, struct list_head *list);
 249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 251static void cache_reap(struct work_struct *unused);
 252
 253static int slab_early_init = 1;
 254
 255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 256
 257static void kmem_cache_node_init(struct kmem_cache_node *parent)
 258{
 259        INIT_LIST_HEAD(&parent->slabs_full);
 260        INIT_LIST_HEAD(&parent->slabs_partial);
 261        INIT_LIST_HEAD(&parent->slabs_free);
 262        parent->shared = NULL;
 263        parent->alien = NULL;
 264        parent->colour_next = 0;
 265        spin_lock_init(&parent->list_lock);
 266        parent->free_objects = 0;
 267        parent->free_touched = 0;
 268}
 269
 270#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 271        do {                                                            \
 272                INIT_LIST_HEAD(listp);                                  \
 273                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 274        } while (0)
 275
 276#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 277        do {                                                            \
 278        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 279        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 280        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 281        } while (0)
 282
 283#define CFLGS_OFF_SLAB          (0x80000000UL)
 284#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 285
 286#define BATCHREFILL_LIMIT       16
 287/*
 288 * Optimization question: fewer reaps means less probability for unnessary
 289 * cpucache drain/refill cycles.
 290 *
 291 * OTOH the cpuarrays can contain lots of objects,
 292 * which could lock up otherwise freeable slabs.
 293 */
 294#define REAPTIMEOUT_AC          (2*HZ)
 295#define REAPTIMEOUT_NODE        (4*HZ)
 296
 297#if STATS
 298#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 299#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 300#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 301#define STATS_INC_GROWN(x)      ((x)->grown++)
 302#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 303#define STATS_SET_HIGH(x)                                               \
 304        do {                                                            \
 305                if ((x)->num_active > (x)->high_mark)                   \
 306                        (x)->high_mark = (x)->num_active;               \
 307        } while (0)
 308#define STATS_INC_ERR(x)        ((x)->errors++)
 309#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 310#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 311#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 312#define STATS_SET_FREEABLE(x, i)                                        \
 313        do {                                                            \
 314                if ((x)->max_freeable < i)                              \
 315                        (x)->max_freeable = i;                          \
 316        } while (0)
 317#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 318#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 319#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 320#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 321#else
 322#define STATS_INC_ACTIVE(x)     do { } while (0)
 323#define STATS_DEC_ACTIVE(x)     do { } while (0)
 324#define STATS_INC_ALLOCED(x)    do { } while (0)
 325#define STATS_INC_GROWN(x)      do { } while (0)
 326#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 327#define STATS_SET_HIGH(x)       do { } while (0)
 328#define STATS_INC_ERR(x)        do { } while (0)
 329#define STATS_INC_NODEALLOCS(x) do { } while (0)
 330#define STATS_INC_NODEFREES(x)  do { } while (0)
 331#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 332#define STATS_SET_FREEABLE(x, i) do { } while (0)
 333#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 334#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 335#define STATS_INC_FREEHIT(x)    do { } while (0)
 336#define STATS_INC_FREEMISS(x)   do { } while (0)
 337#endif
 338
 339#if DEBUG
 340
 341/*
 342 * memory layout of objects:
 343 * 0            : objp
 344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 345 *              the end of an object is aligned with the end of the real
 346 *              allocation. Catches writes behind the end of the allocation.
 347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 348 *              redzone word.
 349 * cachep->obj_offset: The real object.
 350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 351 * cachep->size - 1* BYTES_PER_WORD: last caller address
 352 *                                      [BYTES_PER_WORD long]
 353 */
 354static int obj_offset(struct kmem_cache *cachep)
 355{
 356        return cachep->obj_offset;
 357}
 358
 359static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 360{
 361        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 362        return (unsigned long long*) (objp + obj_offset(cachep) -
 363                                      sizeof(unsigned long long));
 364}
 365
 366static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 367{
 368        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 369        if (cachep->flags & SLAB_STORE_USER)
 370                return (unsigned long long *)(objp + cachep->size -
 371                                              sizeof(unsigned long long) -
 372                                              REDZONE_ALIGN);
 373        return (unsigned long long *) (objp + cachep->size -
 374                                       sizeof(unsigned long long));
 375}
 376
 377static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 378{
 379        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 380        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 381}
 382
 383#else
 384
 385#define obj_offset(x)                   0
 386#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 387#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 388#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 389
 390#endif
 391
 392#define OBJECT_FREE (0)
 393#define OBJECT_ACTIVE (1)
 394
 395#ifdef CONFIG_DEBUG_SLAB_LEAK
 396
 397static void set_obj_status(struct page *page, int idx, int val)
 398{
 399        int freelist_size;
 400        char *status;
 401        struct kmem_cache *cachep = page->slab_cache;
 402
 403        freelist_size = cachep->num * sizeof(freelist_idx_t);
 404        status = (char *)page->freelist + freelist_size;
 405        status[idx] = val;
 406}
 407
 408static inline unsigned int get_obj_status(struct page *page, int idx)
 409{
 410        int freelist_size;
 411        char *status;
 412        struct kmem_cache *cachep = page->slab_cache;
 413
 414        freelist_size = cachep->num * sizeof(freelist_idx_t);
 415        status = (char *)page->freelist + freelist_size;
 416
 417        return status[idx];
 418}
 419
 420#else
 421static inline void set_obj_status(struct page *page, int idx, int val) {}
 422
 423#endif
 424
 425/*
 426 * Do not go above this order unless 0 objects fit into the slab or
 427 * overridden on the command line.
 428 */
 429#define SLAB_MAX_ORDER_HI       1
 430#define SLAB_MAX_ORDER_LO       0
 431static int slab_max_order = SLAB_MAX_ORDER_LO;
 432static bool slab_max_order_set __initdata;
 433
 434static inline struct kmem_cache *virt_to_cache(const void *obj)
 435{
 436        struct page *page = virt_to_head_page(obj);
 437        return page->slab_cache;
 438}
 439
 440static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 441                                 unsigned int idx)
 442{
 443        return page->s_mem + cache->size * idx;
 444}
 445
 446/*
 447 * We want to avoid an expensive divide : (offset / cache->size)
 448 *   Using the fact that size is a constant for a particular cache,
 449 *   we can replace (offset / cache->size) by
 450 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 451 */
 452static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 453                                        const struct page *page, void *obj)
 454{
 455        u32 offset = (obj - page->s_mem);
 456        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 457}
 458
 459/* internal cache of cache description objs */
 460static struct kmem_cache kmem_cache_boot = {
 461        .batchcount = 1,
 462        .limit = BOOT_CPUCACHE_ENTRIES,
 463        .shared = 1,
 464        .size = sizeof(struct kmem_cache),
 465        .name = "kmem_cache",
 466};
 467
 468#define BAD_ALIEN_MAGIC 0x01020304ul
 469
 470static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 471
 472static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 473{
 474        return this_cpu_ptr(cachep->cpu_cache);
 475}
 476
 477static size_t calculate_freelist_size(int nr_objs, size_t align)
 478{
 479        size_t freelist_size;
 480
 481        freelist_size = nr_objs * sizeof(freelist_idx_t);
 482        if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
 483                freelist_size += nr_objs * sizeof(char);
 484
 485        if (align)
 486                freelist_size = ALIGN(freelist_size, align);
 487
 488        return freelist_size;
 489}
 490
 491static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
 492                                size_t idx_size, size_t align)
 493{
 494        int nr_objs;
 495        size_t remained_size;
 496        size_t freelist_size;
 497        int extra_space = 0;
 498
 499        if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
 500                extra_space = sizeof(char);
 501        /*
 502         * Ignore padding for the initial guess. The padding
 503         * is at most @align-1 bytes, and @buffer_size is at
 504         * least @align. In the worst case, this result will
 505         * be one greater than the number of objects that fit
 506         * into the memory allocation when taking the padding
 507         * into account.
 508         */
 509        nr_objs = slab_size / (buffer_size + idx_size + extra_space);
 510
 511        /*
 512         * This calculated number will be either the right
 513         * amount, or one greater than what we want.
 514         */
 515        remained_size = slab_size - nr_objs * buffer_size;
 516        freelist_size = calculate_freelist_size(nr_objs, align);
 517        if (remained_size < freelist_size)
 518                nr_objs--;
 519
 520        return nr_objs;
 521}
 522
 523/*
 524 * Calculate the number of objects and left-over bytes for a given buffer size.
 525 */
 526static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 527                           size_t align, int flags, size_t *left_over,
 528                           unsigned int *num)
 529{
 530        int nr_objs;
 531        size_t mgmt_size;
 532        size_t slab_size = PAGE_SIZE << gfporder;
 533
 534        /*
 535         * The slab management structure can be either off the slab or
 536         * on it. For the latter case, the memory allocated for a
 537         * slab is used for:
 538         *
 539         * - One unsigned int for each object
 540         * - Padding to respect alignment of @align
 541         * - @buffer_size bytes for each object
 542         *
 543         * If the slab management structure is off the slab, then the
 544         * alignment will already be calculated into the size. Because
 545         * the slabs are all pages aligned, the objects will be at the
 546         * correct alignment when allocated.
 547         */
 548        if (flags & CFLGS_OFF_SLAB) {
 549                mgmt_size = 0;
 550                nr_objs = slab_size / buffer_size;
 551
 552        } else {
 553                nr_objs = calculate_nr_objs(slab_size, buffer_size,
 554                                        sizeof(freelist_idx_t), align);
 555                mgmt_size = calculate_freelist_size(nr_objs, align);
 556        }
 557        *num = nr_objs;
 558        *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 559}
 560
 561#if DEBUG
 562#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 563
 564static void __slab_error(const char *function, struct kmem_cache *cachep,
 565                        char *msg)
 566{
 567        printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 568               function, cachep->name, msg);
 569        dump_stack();
 570        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 571}
 572#endif
 573
 574/*
 575 * By default on NUMA we use alien caches to stage the freeing of
 576 * objects allocated from other nodes. This causes massive memory
 577 * inefficiencies when using fake NUMA setup to split memory into a
 578 * large number of small nodes, so it can be disabled on the command
 579 * line
 580  */
 581
 582static int use_alien_caches __read_mostly = 1;
 583static int __init noaliencache_setup(char *s)
 584{
 585        use_alien_caches = 0;
 586        return 1;
 587}
 588__setup("noaliencache", noaliencache_setup);
 589
 590static int __init slab_max_order_setup(char *str)
 591{
 592        get_option(&str, &slab_max_order);
 593        slab_max_order = slab_max_order < 0 ? 0 :
 594                                min(slab_max_order, MAX_ORDER - 1);
 595        slab_max_order_set = true;
 596
 597        return 1;
 598}
 599__setup("slab_max_order=", slab_max_order_setup);
 600
 601#ifdef CONFIG_NUMA
 602/*
 603 * Special reaping functions for NUMA systems called from cache_reap().
 604 * These take care of doing round robin flushing of alien caches (containing
 605 * objects freed on different nodes from which they were allocated) and the
 606 * flushing of remote pcps by calling drain_node_pages.
 607 */
 608static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 609
 610static void init_reap_node(int cpu)
 611{
 612        int node;
 613
 614        node = next_node(cpu_to_mem(cpu), node_online_map);
 615        if (node == MAX_NUMNODES)
 616                node = first_node(node_online_map);
 617
 618        per_cpu(slab_reap_node, cpu) = node;
 619}
 620
 621static void next_reap_node(void)
 622{
 623        int node = __this_cpu_read(slab_reap_node);
 624
 625        node = next_node(node, node_online_map);
 626        if (unlikely(node >= MAX_NUMNODES))
 627                node = first_node(node_online_map);
 628        __this_cpu_write(slab_reap_node, node);
 629}
 630
 631#else
 632#define init_reap_node(cpu) do { } while (0)
 633#define next_reap_node(void) do { } while (0)
 634#endif
 635
 636/*
 637 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 638 * via the workqueue/eventd.
 639 * Add the CPU number into the expiration time to minimize the possibility of
 640 * the CPUs getting into lockstep and contending for the global cache chain
 641 * lock.
 642 */
 643static void start_cpu_timer(int cpu)
 644{
 645        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 646
 647        /*
 648         * When this gets called from do_initcalls via cpucache_init(),
 649         * init_workqueues() has already run, so keventd will be setup
 650         * at that time.
 651         */
 652        if (keventd_up() && reap_work->work.func == NULL) {
 653                init_reap_node(cpu);
 654                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 655                schedule_delayed_work_on(cpu, reap_work,
 656                                        __round_jiffies_relative(HZ, cpu));
 657        }
 658}
 659
 660static void init_arraycache(struct array_cache *ac, int limit, int batch)
 661{
 662        /*
 663         * The array_cache structures contain pointers to free object.
 664         * However, when such objects are allocated or transferred to another
 665         * cache the pointers are not cleared and they could be counted as
 666         * valid references during a kmemleak scan. Therefore, kmemleak must
 667         * not scan such objects.
 668         */
 669        kmemleak_no_scan(ac);
 670        if (ac) {
 671                ac->avail = 0;
 672                ac->limit = limit;
 673                ac->batchcount = batch;
 674                ac->touched = 0;
 675        }
 676}
 677
 678static struct array_cache *alloc_arraycache(int node, int entries,
 679                                            int batchcount, gfp_t gfp)
 680{
 681        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 682        struct array_cache *ac = NULL;
 683
 684        ac = kmalloc_node(memsize, gfp, node);
 685        init_arraycache(ac, entries, batchcount);
 686        return ac;
 687}
 688
 689static inline bool is_slab_pfmemalloc(struct page *page)
 690{
 691        return PageSlabPfmemalloc(page);
 692}
 693
 694/* Clears pfmemalloc_active if no slabs have pfmalloc set */
 695static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
 696                                                struct array_cache *ac)
 697{
 698        struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
 699        struct page *page;
 700        unsigned long flags;
 701
 702        if (!pfmemalloc_active)
 703                return;
 704
 705        spin_lock_irqsave(&n->list_lock, flags);
 706        list_for_each_entry(page, &n->slabs_full, lru)
 707                if (is_slab_pfmemalloc(page))
 708                        goto out;
 709
 710        list_for_each_entry(page, &n->slabs_partial, lru)
 711                if (is_slab_pfmemalloc(page))
 712                        goto out;
 713
 714        list_for_each_entry(page, &n->slabs_free, lru)
 715                if (is_slab_pfmemalloc(page))
 716                        goto out;
 717
 718        pfmemalloc_active = false;
 719out:
 720        spin_unlock_irqrestore(&n->list_lock, flags);
 721}
 722
 723static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
 724                                                gfp_t flags, bool force_refill)
 725{
 726        int i;
 727        void *objp = ac->entry[--ac->avail];
 728
 729        /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
 730        if (unlikely(is_obj_pfmemalloc(objp))) {
 731                struct kmem_cache_node *n;
 732
 733                if (gfp_pfmemalloc_allowed(flags)) {
 734                        clear_obj_pfmemalloc(&objp);
 735                        return objp;
 736                }
 737
 738                /* The caller cannot use PFMEMALLOC objects, find another one */
 739                for (i = 0; i < ac->avail; i++) {
 740                        /* If a !PFMEMALLOC object is found, swap them */
 741                        if (!is_obj_pfmemalloc(ac->entry[i])) {
 742                                objp = ac->entry[i];
 743                                ac->entry[i] = ac->entry[ac->avail];
 744                                ac->entry[ac->avail] = objp;
 745                                return objp;
 746                        }
 747                }
 748
 749                /*
 750                 * If there are empty slabs on the slabs_free list and we are
 751                 * being forced to refill the cache, mark this one !pfmemalloc.
 752                 */
 753                n = get_node(cachep, numa_mem_id());
 754                if (!list_empty(&n->slabs_free) && force_refill) {
 755                        struct page *page = virt_to_head_page(objp);
 756                        ClearPageSlabPfmemalloc(page);
 757                        clear_obj_pfmemalloc(&objp);
 758                        recheck_pfmemalloc_active(cachep, ac);
 759                        return objp;
 760                }
 761
 762                /* No !PFMEMALLOC objects available */
 763                ac->avail++;
 764                objp = NULL;
 765        }
 766
 767        return objp;
 768}
 769
 770static inline void *ac_get_obj(struct kmem_cache *cachep,
 771                        struct array_cache *ac, gfp_t flags, bool force_refill)
 772{
 773        void *objp;
 774
 775        if (unlikely(sk_memalloc_socks()))
 776                objp = __ac_get_obj(cachep, ac, flags, force_refill);
 777        else
 778                objp = ac->entry[--ac->avail];
 779
 780        return objp;
 781}
 782
 783static noinline void *__ac_put_obj(struct kmem_cache *cachep,
 784                        struct array_cache *ac, void *objp)
 785{
 786        if (unlikely(pfmemalloc_active)) {
 787                /* Some pfmemalloc slabs exist, check if this is one */
 788                struct page *page = virt_to_head_page(objp);
 789                if (PageSlabPfmemalloc(page))
 790                        set_obj_pfmemalloc(&objp);
 791        }
 792
 793        return objp;
 794}
 795
 796static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
 797                                                                void *objp)
 798{
 799        if (unlikely(sk_memalloc_socks()))
 800                objp = __ac_put_obj(cachep, ac, objp);
 801
 802        ac->entry[ac->avail++] = objp;
 803}
 804
 805/*
 806 * Transfer objects in one arraycache to another.
 807 * Locking must be handled by the caller.
 808 *
 809 * Return the number of entries transferred.
 810 */
 811static int transfer_objects(struct array_cache *to,
 812                struct array_cache *from, unsigned int max)
 813{
 814        /* Figure out how many entries to transfer */
 815        int nr = min3(from->avail, max, to->limit - to->avail);
 816
 817        if (!nr)
 818                return 0;
 819
 820        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 821                        sizeof(void *) *nr);
 822
 823        from->avail -= nr;
 824        to->avail += nr;
 825        return nr;
 826}
 827
 828#ifndef CONFIG_NUMA
 829
 830#define drain_alien_cache(cachep, alien) do { } while (0)
 831#define reap_alien(cachep, n) do { } while (0)
 832
 833static inline struct alien_cache **alloc_alien_cache(int node,
 834                                                int limit, gfp_t gfp)
 835{
 836        return (struct alien_cache **)BAD_ALIEN_MAGIC;
 837}
 838
 839static inline void free_alien_cache(struct alien_cache **ac_ptr)
 840{
 841}
 842
 843static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 844{
 845        return 0;
 846}
 847
 848static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 849                gfp_t flags)
 850{
 851        return NULL;
 852}
 853
 854static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 855                 gfp_t flags, int nodeid)
 856{
 857        return NULL;
 858}
 859
 860static inline gfp_t gfp_exact_node(gfp_t flags)
 861{
 862        return flags;
 863}
 864
 865#else   /* CONFIG_NUMA */
 866
 867static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 868static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 869
 870static struct alien_cache *__alloc_alien_cache(int node, int entries,
 871                                                int batch, gfp_t gfp)
 872{
 873        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 874        struct alien_cache *alc = NULL;
 875
 876        alc = kmalloc_node(memsize, gfp, node);
 877        init_arraycache(&alc->ac, entries, batch);
 878        spin_lock_init(&alc->lock);
 879        return alc;
 880}
 881
 882static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 883{
 884        struct alien_cache **alc_ptr;
 885        size_t memsize = sizeof(void *) * nr_node_ids;
 886        int i;
 887
 888        if (limit > 1)
 889                limit = 12;
 890        alc_ptr = kzalloc_node(memsize, gfp, node);
 891        if (!alc_ptr)
 892                return NULL;
 893
 894        for_each_node(i) {
 895                if (i == node || !node_online(i))
 896                        continue;
 897                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 898                if (!alc_ptr[i]) {
 899                        for (i--; i >= 0; i--)
 900                                kfree(alc_ptr[i]);
 901                        kfree(alc_ptr);
 902                        return NULL;
 903                }
 904        }
 905        return alc_ptr;
 906}
 907
 908static void free_alien_cache(struct alien_cache **alc_ptr)
 909{
 910        int i;
 911
 912        if (!alc_ptr)
 913                return;
 914        for_each_node(i)
 915            kfree(alc_ptr[i]);
 916        kfree(alc_ptr);
 917}
 918
 919static void __drain_alien_cache(struct kmem_cache *cachep,
 920                                struct array_cache *ac, int node,
 921                                struct list_head *list)
 922{
 923        struct kmem_cache_node *n = get_node(cachep, node);
 924
 925        if (ac->avail) {
 926                spin_lock(&n->list_lock);
 927                /*
 928                 * Stuff objects into the remote nodes shared array first.
 929                 * That way we could avoid the overhead of putting the objects
 930                 * into the free lists and getting them back later.
 931                 */
 932                if (n->shared)
 933                        transfer_objects(n->shared, ac, ac->limit);
 934
 935                free_block(cachep, ac->entry, ac->avail, node, list);
 936                ac->avail = 0;
 937                spin_unlock(&n->list_lock);
 938        }
 939}
 940
 941/*
 942 * Called from cache_reap() to regularly drain alien caches round robin.
 943 */
 944static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 945{
 946        int node = __this_cpu_read(slab_reap_node);
 947
 948        if (n->alien) {
 949                struct alien_cache *alc = n->alien[node];
 950                struct array_cache *ac;
 951
 952                if (alc) {
 953                        ac = &alc->ac;
 954                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 955                                LIST_HEAD(list);
 956
 957                                __drain_alien_cache(cachep, ac, node, &list);
 958                                spin_unlock_irq(&alc->lock);
 959                                slabs_destroy(cachep, &list);
 960                        }
 961                }
 962        }
 963}
 964
 965static void drain_alien_cache(struct kmem_cache *cachep,
 966                                struct alien_cache **alien)
 967{
 968        int i = 0;
 969        struct alien_cache *alc;
 970        struct array_cache *ac;
 971        unsigned long flags;
 972
 973        for_each_online_node(i) {
 974                alc = alien[i];
 975                if (alc) {
 976                        LIST_HEAD(list);
 977
 978                        ac = &alc->ac;
 979                        spin_lock_irqsave(&alc->lock, flags);
 980                        __drain_alien_cache(cachep, ac, i, &list);
 981                        spin_unlock_irqrestore(&alc->lock, flags);
 982                        slabs_destroy(cachep, &list);
 983                }
 984        }
 985}
 986
 987static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 988                                int node, int page_node)
 989{
 990        struct kmem_cache_node *n;
 991        struct alien_cache *alien = NULL;
 992        struct array_cache *ac;
 993        LIST_HEAD(list);
 994
 995        n = get_node(cachep, node);
 996        STATS_INC_NODEFREES(cachep);
 997        if (n->alien && n->alien[page_node]) {
 998                alien = n->alien[page_node];
 999                ac = &alien->ac;
1000                spin_lock(&alien->lock);
1001                if (unlikely(ac->avail == ac->limit)) {
1002                        STATS_INC_ACOVERFLOW(cachep);
1003                        __drain_alien_cache(cachep, ac, page_node, &list);
1004                }
1005                ac_put_obj(cachep, ac, objp);
1006                spin_unlock(&alien->lock);
1007                slabs_destroy(cachep, &list);
1008        } else {
1009                n = get_node(cachep, page_node);
1010                spin_lock(&n->list_lock);
1011                free_block(cachep, &objp, 1, page_node, &list);
1012                spin_unlock(&n->list_lock);
1013                slabs_destroy(cachep, &list);
1014        }
1015        return 1;
1016}
1017
1018static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019{
1020        int page_node = page_to_nid(virt_to_page(objp));
1021        int node = numa_mem_id();
1022        /*
1023         * Make sure we are not freeing a object from another node to the array
1024         * cache on this cpu.
1025         */
1026        if (likely(node == page_node))
1027                return 0;
1028
1029        return __cache_free_alien(cachep, objp, node, page_node);
1030}
1031
1032/*
1033 * Construct gfp mask to allocate from a specific node but do not invoke reclaim
1034 * or warn about failures.
1035 */
1036static inline gfp_t gfp_exact_node(gfp_t flags)
1037{
1038        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
1039}
1040#endif
1041
1042/*
1043 * Allocates and initializes node for a node on each slab cache, used for
1044 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1045 * will be allocated off-node since memory is not yet online for the new node.
1046 * When hotplugging memory or a cpu, existing node are not replaced if
1047 * already in use.
1048 *
1049 * Must hold slab_mutex.
1050 */
1051static int init_cache_node_node(int node)
1052{
1053        struct kmem_cache *cachep;
1054        struct kmem_cache_node *n;
1055        const size_t memsize = sizeof(struct kmem_cache_node);
1056
1057        list_for_each_entry(cachep, &slab_caches, list) {
1058                /*
1059                 * Set up the kmem_cache_node for cpu before we can
1060                 * begin anything. Make sure some other cpu on this
1061                 * node has not already allocated this
1062                 */
1063                n = get_node(cachep, node);
1064                if (!n) {
1065                        n = kmalloc_node(memsize, GFP_KERNEL, node);
1066                        if (!n)
1067                                return -ENOMEM;
1068                        kmem_cache_node_init(n);
1069                        n->next_reap = jiffies + REAPTIMEOUT_NODE +
1070                            ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1071
1072                        /*
1073                         * The kmem_cache_nodes don't come and go as CPUs
1074                         * come and go.  slab_mutex is sufficient
1075                         * protection here.
1076                         */
1077                        cachep->node[node] = n;
1078                }
1079
1080                spin_lock_irq(&n->list_lock);
1081                n->free_limit =
1082                        (1 + nr_cpus_node(node)) *
1083                        cachep->batchcount + cachep->num;
1084                spin_unlock_irq(&n->list_lock);
1085        }
1086        return 0;
1087}
1088
1089static inline int slabs_tofree(struct kmem_cache *cachep,
1090                                                struct kmem_cache_node *n)
1091{
1092        return (n->free_objects + cachep->num - 1) / cachep->num;
1093}
1094
1095static void cpuup_canceled(long cpu)
1096{
1097        struct kmem_cache *cachep;
1098        struct kmem_cache_node *n = NULL;
1099        int node = cpu_to_mem(cpu);
1100        const struct cpumask *mask = cpumask_of_node(node);
1101
1102        list_for_each_entry(cachep, &slab_caches, list) {
1103                struct array_cache *nc;
1104                struct array_cache *shared;
1105                struct alien_cache **alien;
1106                LIST_HEAD(list);
1107
1108                n = get_node(cachep, node);
1109                if (!n)
1110                        continue;
1111
1112                spin_lock_irq(&n->list_lock);
1113
1114                /* Free limit for this kmem_cache_node */
1115                n->free_limit -= cachep->batchcount;
1116
1117                /* cpu is dead; no one can alloc from it. */
1118                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1119                if (nc) {
1120                        free_block(cachep, nc->entry, nc->avail, node, &list);
1121                        nc->avail = 0;
1122                }
1123
1124                if (!cpumask_empty(mask)) {
1125                        spin_unlock_irq(&n->list_lock);
1126                        goto free_slab;
1127                }
1128
1129                shared = n->shared;
1130                if (shared) {
1131                        free_block(cachep, shared->entry,
1132                                   shared->avail, node, &list);
1133                        n->shared = NULL;
1134                }
1135
1136                alien = n->alien;
1137                n->alien = NULL;
1138
1139                spin_unlock_irq(&n->list_lock);
1140
1141                kfree(shared);
1142                if (alien) {
1143                        drain_alien_cache(cachep, alien);
1144                        free_alien_cache(alien);
1145                }
1146
1147free_slab:
1148                slabs_destroy(cachep, &list);
1149        }
1150        /*
1151         * In the previous loop, all the objects were freed to
1152         * the respective cache's slabs,  now we can go ahead and
1153         * shrink each nodelist to its limit.
1154         */
1155        list_for_each_entry(cachep, &slab_caches, list) {
1156                n = get_node(cachep, node);
1157                if (!n)
1158                        continue;
1159                drain_freelist(cachep, n, slabs_tofree(cachep, n));
1160        }
1161}
1162
1163static int cpuup_prepare(long cpu)
1164{
1165        struct kmem_cache *cachep;
1166        struct kmem_cache_node *n = NULL;
1167        int node = cpu_to_mem(cpu);
1168        int err;
1169
1170        /*
1171         * We need to do this right in the beginning since
1172         * alloc_arraycache's are going to use this list.
1173         * kmalloc_node allows us to add the slab to the right
1174         * kmem_cache_node and not this cpu's kmem_cache_node
1175         */
1176        err = init_cache_node_node(node);
1177        if (err < 0)
1178                goto bad;
1179
1180        /*
1181         * Now we can go ahead with allocating the shared arrays and
1182         * array caches
1183         */
1184        list_for_each_entry(cachep, &slab_caches, list) {
1185                struct array_cache *shared = NULL;
1186                struct alien_cache **alien = NULL;
1187
1188                if (cachep->shared) {
1189                        shared = alloc_arraycache(node,
1190                                cachep->shared * cachep->batchcount,
1191                                0xbaadf00d, GFP_KERNEL);
1192                        if (!shared)
1193                                goto bad;
1194                }
1195                if (use_alien_caches) {
1196                        alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1197                        if (!alien) {
1198                                kfree(shared);
1199                                goto bad;
1200                        }
1201                }
1202                n = get_node(cachep, node);
1203                BUG_ON(!n);
1204
1205                spin_lock_irq(&n->list_lock);
1206                if (!n->shared) {
1207                        /*
1208                         * We are serialised from CPU_DEAD or
1209                         * CPU_UP_CANCELLED by the cpucontrol lock
1210                         */
1211                        n->shared = shared;
1212                        shared = NULL;
1213                }
1214#ifdef CONFIG_NUMA
1215                if (!n->alien) {
1216                        n->alien = alien;
1217                        alien = NULL;
1218                }
1219#endif
1220                spin_unlock_irq(&n->list_lock);
1221                kfree(shared);
1222                free_alien_cache(alien);
1223        }
1224
1225        return 0;
1226bad:
1227        cpuup_canceled(cpu);
1228        return -ENOMEM;
1229}
1230
1231static int cpuup_callback(struct notifier_block *nfb,
1232                                    unsigned long action, void *hcpu)
1233{
1234        long cpu = (long)hcpu;
1235        int err = 0;
1236
1237        switch (action) {
1238        case CPU_UP_PREPARE:
1239        case CPU_UP_PREPARE_FROZEN:
1240                mutex_lock(&slab_mutex);
1241                err = cpuup_prepare(cpu);
1242                mutex_unlock(&slab_mutex);
1243                break;
1244        case CPU_ONLINE:
1245        case CPU_ONLINE_FROZEN:
1246                start_cpu_timer(cpu);
1247                break;
1248#ifdef CONFIG_HOTPLUG_CPU
1249        case CPU_DOWN_PREPARE:
1250        case CPU_DOWN_PREPARE_FROZEN:
1251                /*
1252                 * Shutdown cache reaper. Note that the slab_mutex is
1253                 * held so that if cache_reap() is invoked it cannot do
1254                 * anything expensive but will only modify reap_work
1255                 * and reschedule the timer.
1256                */
1257                cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1258                /* Now the cache_reaper is guaranteed to be not running. */
1259                per_cpu(slab_reap_work, cpu).work.func = NULL;
1260                break;
1261        case CPU_DOWN_FAILED:
1262        case CPU_DOWN_FAILED_FROZEN:
1263                start_cpu_timer(cpu);
1264                break;
1265        case CPU_DEAD:
1266        case CPU_DEAD_FROZEN:
1267                /*
1268                 * Even if all the cpus of a node are down, we don't free the
1269                 * kmem_cache_node of any cache. This to avoid a race between
1270                 * cpu_down, and a kmalloc allocation from another cpu for
1271                 * memory from the node of the cpu going down.  The node
1272                 * structure is usually allocated from kmem_cache_create() and
1273                 * gets destroyed at kmem_cache_destroy().
1274                 */
1275                /* fall through */
1276#endif
1277        case CPU_UP_CANCELED:
1278        case CPU_UP_CANCELED_FROZEN:
1279                mutex_lock(&slab_mutex);
1280                cpuup_canceled(cpu);
1281                mutex_unlock(&slab_mutex);
1282                break;
1283        }
1284        return notifier_from_errno(err);
1285}
1286
1287static struct notifier_block cpucache_notifier = {
1288        &cpuup_callback, NULL, 0
1289};
1290
1291#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1292/*
1293 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1294 * Returns -EBUSY if all objects cannot be drained so that the node is not
1295 * removed.
1296 *
1297 * Must hold slab_mutex.
1298 */
1299static int __meminit drain_cache_node_node(int node)
1300{
1301        struct kmem_cache *cachep;
1302        int ret = 0;
1303
1304        list_for_each_entry(cachep, &slab_caches, list) {
1305                struct kmem_cache_node *n;
1306
1307                n = get_node(cachep, node);
1308                if (!n)
1309                        continue;
1310
1311                drain_freelist(cachep, n, slabs_tofree(cachep, n));
1312
1313                if (!list_empty(&n->slabs_full) ||
1314                    !list_empty(&n->slabs_partial)) {
1315                        ret = -EBUSY;
1316                        break;
1317                }
1318        }
1319        return ret;
1320}
1321
1322static int __meminit slab_memory_callback(struct notifier_block *self,
1323                                        unsigned long action, void *arg)
1324{
1325        struct memory_notify *mnb = arg;
1326        int ret = 0;
1327        int nid;
1328
1329        nid = mnb->status_change_nid;
1330        if (nid < 0)
1331                goto out;
1332
1333        switch (action) {
1334        case MEM_GOING_ONLINE:
1335                mutex_lock(&slab_mutex);
1336                ret = init_cache_node_node(nid);
1337                mutex_unlock(&slab_mutex);
1338                break;
1339        case MEM_GOING_OFFLINE:
1340                mutex_lock(&slab_mutex);
1341                ret = drain_cache_node_node(nid);
1342                mutex_unlock(&slab_mutex);
1343                break;
1344        case MEM_ONLINE:
1345        case MEM_OFFLINE:
1346        case MEM_CANCEL_ONLINE:
1347        case MEM_CANCEL_OFFLINE:
1348                break;
1349        }
1350out:
1351        return notifier_from_errno(ret);
1352}
1353#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1354
1355/*
1356 * swap the static kmem_cache_node with kmalloced memory
1357 */
1358static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1359                                int nodeid)
1360{
1361        struct kmem_cache_node *ptr;
1362
1363        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1364        BUG_ON(!ptr);
1365
1366        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1367        /*
1368         * Do not assume that spinlocks can be initialized via memcpy:
1369         */
1370        spin_lock_init(&ptr->list_lock);
1371
1372        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1373        cachep->node[nodeid] = ptr;
1374}
1375
1376/*
1377 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1378 * size of kmem_cache_node.
1379 */
1380static void __init set_up_node(struct kmem_cache *cachep, int index)
1381{
1382        int node;
1383
1384        for_each_online_node(node) {
1385                cachep->node[node] = &init_kmem_cache_node[index + node];
1386                cachep->node[node]->next_reap = jiffies +
1387                    REAPTIMEOUT_NODE +
1388                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1389        }
1390}
1391
1392/*
1393 * Initialisation.  Called after the page allocator have been initialised and
1394 * before smp_init().
1395 */
1396void __init kmem_cache_init(void)
1397{
1398        int i;
1399
1400        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1401                                        sizeof(struct rcu_head));
1402        kmem_cache = &kmem_cache_boot;
1403
1404        if (num_possible_nodes() == 1)
1405                use_alien_caches = 0;
1406
1407        for (i = 0; i < NUM_INIT_LISTS; i++)
1408                kmem_cache_node_init(&init_kmem_cache_node[i]);
1409
1410        /*
1411         * Fragmentation resistance on low memory - only use bigger
1412         * page orders on machines with more than 32MB of memory if
1413         * not overridden on the command line.
1414         */
1415        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1416                slab_max_order = SLAB_MAX_ORDER_HI;
1417
1418        /* Bootstrap is tricky, because several objects are allocated
1419         * from caches that do not exist yet:
1420         * 1) initialize the kmem_cache cache: it contains the struct
1421         *    kmem_cache structures of all caches, except kmem_cache itself:
1422         *    kmem_cache is statically allocated.
1423         *    Initially an __init data area is used for the head array and the
1424         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1425         *    array at the end of the bootstrap.
1426         * 2) Create the first kmalloc cache.
1427         *    The struct kmem_cache for the new cache is allocated normally.
1428         *    An __init data area is used for the head array.
1429         * 3) Create the remaining kmalloc caches, with minimally sized
1430         *    head arrays.
1431         * 4) Replace the __init data head arrays for kmem_cache and the first
1432         *    kmalloc cache with kmalloc allocated arrays.
1433         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1434         *    the other cache's with kmalloc allocated memory.
1435         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1436         */
1437
1438        /* 1) create the kmem_cache */
1439
1440        /*
1441         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1442         */
1443        create_boot_cache(kmem_cache, "kmem_cache",
1444                offsetof(struct kmem_cache, node) +
1445                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1446                                  SLAB_HWCACHE_ALIGN);
1447        list_add(&kmem_cache->list, &slab_caches);
1448        slab_state = PARTIAL;
1449
1450        /*
1451         * Initialize the caches that provide memory for the  kmem_cache_node
1452         * structures first.  Without this, further allocations will bug.
1453         */
1454        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1455                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1456        slab_state = PARTIAL_NODE;
1457        setup_kmalloc_cache_index_table();
1458
1459        slab_early_init = 0;
1460
1461        /* 5) Replace the bootstrap kmem_cache_node */
1462        {
1463                int nid;
1464
1465                for_each_online_node(nid) {
1466                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1467
1468                        init_list(kmalloc_caches[INDEX_NODE],
1469                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1470                }
1471        }
1472
1473        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1474}
1475
1476void __init kmem_cache_init_late(void)
1477{
1478        struct kmem_cache *cachep;
1479
1480        slab_state = UP;
1481
1482        /* 6) resize the head arrays to their final sizes */
1483        mutex_lock(&slab_mutex);
1484        list_for_each_entry(cachep, &slab_caches, list)
1485                if (enable_cpucache(cachep, GFP_NOWAIT))
1486                        BUG();
1487        mutex_unlock(&slab_mutex);
1488
1489        /* Done! */
1490        slab_state = FULL;
1491
1492        /*
1493         * Register a cpu startup notifier callback that initializes
1494         * cpu_cache_get for all new cpus
1495         */
1496        register_cpu_notifier(&cpucache_notifier);
1497
1498#ifdef CONFIG_NUMA
1499        /*
1500         * Register a memory hotplug callback that initializes and frees
1501         * node.
1502         */
1503        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1504#endif
1505
1506        /*
1507         * The reap timers are started later, with a module init call: That part
1508         * of the kernel is not yet operational.
1509         */
1510}
1511
1512static int __init cpucache_init(void)
1513{
1514        int cpu;
1515
1516        /*
1517         * Register the timers that return unneeded pages to the page allocator
1518         */
1519        for_each_online_cpu(cpu)
1520                start_cpu_timer(cpu);
1521
1522        /* Done! */
1523        slab_state = FULL;
1524        return 0;
1525}
1526__initcall(cpucache_init);
1527
1528static noinline void
1529slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1530{
1531#if DEBUG
1532        struct kmem_cache_node *n;
1533        struct page *page;
1534        unsigned long flags;
1535        int node;
1536        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1537                                      DEFAULT_RATELIMIT_BURST);
1538
1539        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1540                return;
1541
1542        printk(KERN_WARNING
1543                "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1544                nodeid, gfpflags);
1545        printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1546                cachep->name, cachep->size, cachep->gfporder);
1547
1548        for_each_kmem_cache_node(cachep, node, n) {
1549                unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1550                unsigned long active_slabs = 0, num_slabs = 0;
1551
1552                spin_lock_irqsave(&n->list_lock, flags);
1553                list_for_each_entry(page, &n->slabs_full, lru) {
1554                        active_objs += cachep->num;
1555                        active_slabs++;
1556                }
1557                list_for_each_entry(page, &n->slabs_partial, lru) {
1558                        active_objs += page->active;
1559                        active_slabs++;
1560                }
1561                list_for_each_entry(page, &n->slabs_free, lru)
1562                        num_slabs++;
1563
1564                free_objects += n->free_objects;
1565                spin_unlock_irqrestore(&n->list_lock, flags);
1566
1567                num_slabs += active_slabs;
1568                num_objs = num_slabs * cachep->num;
1569                printk(KERN_WARNING
1570                        "  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1571                        node, active_slabs, num_slabs, active_objs, num_objs,
1572                        free_objects);
1573        }
1574#endif
1575}
1576
1577/*
1578 * Interface to system's page allocator. No need to hold the
1579 * kmem_cache_node ->list_lock.
1580 *
1581 * If we requested dmaable memory, we will get it. Even if we
1582 * did not request dmaable memory, we might get it, but that
1583 * would be relatively rare and ignorable.
1584 */
1585static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1586                                                                int nodeid)
1587{
1588        struct page *page;
1589        int nr_pages;
1590
1591        flags |= cachep->allocflags;
1592        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1593                flags |= __GFP_RECLAIMABLE;
1594
1595        if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1596                return NULL;
1597
1598        page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1599        if (!page) {
1600                memcg_uncharge_slab(cachep, cachep->gfporder);
1601                slab_out_of_memory(cachep, flags, nodeid);
1602                return NULL;
1603        }
1604
1605        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1606        if (page_is_pfmemalloc(page))
1607                pfmemalloc_active = true;
1608
1609        nr_pages = (1 << cachep->gfporder);
1610        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1611                add_zone_page_state(page_zone(page),
1612                        NR_SLAB_RECLAIMABLE, nr_pages);
1613        else
1614                add_zone_page_state(page_zone(page),
1615                        NR_SLAB_UNRECLAIMABLE, nr_pages);
1616        __SetPageSlab(page);
1617        if (page_is_pfmemalloc(page))
1618                SetPageSlabPfmemalloc(page);
1619
1620        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1621                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1622
1623                if (cachep->ctor)
1624                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1625                else
1626                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1627        }
1628
1629        return page;
1630}
1631
1632/*
1633 * Interface to system's page release.
1634 */
1635static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1636{
1637        const unsigned long nr_freed = (1 << cachep->gfporder);
1638
1639        kmemcheck_free_shadow(page, cachep->gfporder);
1640
1641        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1642                sub_zone_page_state(page_zone(page),
1643                                NR_SLAB_RECLAIMABLE, nr_freed);
1644        else
1645                sub_zone_page_state(page_zone(page),
1646                                NR_SLAB_UNRECLAIMABLE, nr_freed);
1647
1648        BUG_ON(!PageSlab(page));
1649        __ClearPageSlabPfmemalloc(page);
1650        __ClearPageSlab(page);
1651        page_mapcount_reset(page);
1652        page->mapping = NULL;
1653
1654        if (current->reclaim_state)
1655                current->reclaim_state->reclaimed_slab += nr_freed;
1656        __free_pages(page, cachep->gfporder);
1657        memcg_uncharge_slab(cachep, cachep->gfporder);
1658}
1659
1660static void kmem_rcu_free(struct rcu_head *head)
1661{
1662        struct kmem_cache *cachep;
1663        struct page *page;
1664
1665        page = container_of(head, struct page, rcu_head);
1666        cachep = page->slab_cache;
1667
1668        kmem_freepages(cachep, page);
1669}
1670
1671#if DEBUG
1672
1673#ifdef CONFIG_DEBUG_PAGEALLOC
1674static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1675                            unsigned long caller)
1676{
1677        int size = cachep->object_size;
1678
1679        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1680
1681        if (size < 5 * sizeof(unsigned long))
1682                return;
1683
1684        *addr++ = 0x12345678;
1685        *addr++ = caller;
1686        *addr++ = smp_processor_id();
1687        size -= 3 * sizeof(unsigned long);
1688        {
1689                unsigned long *sptr = &caller;
1690                unsigned long svalue;
1691
1692                while (!kstack_end(sptr)) {
1693                        svalue = *sptr++;
1694                        if (kernel_text_address(svalue)) {
1695                                *addr++ = svalue;
1696                                size -= sizeof(unsigned long);
1697                                if (size <= sizeof(unsigned long))
1698                                        break;
1699                        }
1700                }
1701
1702        }
1703        *addr++ = 0x87654321;
1704}
1705#endif
1706
1707static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1708{
1709        int size = cachep->object_size;
1710        addr = &((char *)addr)[obj_offset(cachep)];
1711
1712        memset(addr, val, size);
1713        *(unsigned char *)(addr + size - 1) = POISON_END;
1714}
1715
1716static void dump_line(char *data, int offset, int limit)
1717{
1718        int i;
1719        unsigned char error = 0;
1720        int bad_count = 0;
1721
1722        printk(KERN_ERR "%03x: ", offset);
1723        for (i = 0; i < limit; i++) {
1724                if (data[offset + i] != POISON_FREE) {
1725                        error = data[offset + i];
1726                        bad_count++;
1727                }
1728        }
1729        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1730                        &data[offset], limit, 1);
1731
1732        if (bad_count == 1) {
1733                error ^= POISON_FREE;
1734                if (!(error & (error - 1))) {
1735                        printk(KERN_ERR "Single bit error detected. Probably "
1736                                        "bad RAM.\n");
1737#ifdef CONFIG_X86
1738                        printk(KERN_ERR "Run memtest86+ or a similar memory "
1739                                        "test tool.\n");
1740#else
1741                        printk(KERN_ERR "Run a memory test tool.\n");
1742#endif
1743                }
1744        }
1745}
1746#endif
1747
1748#if DEBUG
1749
1750static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1751{
1752        int i, size;
1753        char *realobj;
1754
1755        if (cachep->flags & SLAB_RED_ZONE) {
1756                printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1757                        *dbg_redzone1(cachep, objp),
1758                        *dbg_redzone2(cachep, objp));
1759        }
1760
1761        if (cachep->flags & SLAB_STORE_USER) {
1762                printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1763                       *dbg_userword(cachep, objp),
1764                       *dbg_userword(cachep, objp));
1765        }
1766        realobj = (char *)objp + obj_offset(cachep);
1767        size = cachep->object_size;
1768        for (i = 0; i < size && lines; i += 16, lines--) {
1769                int limit;
1770                limit = 16;
1771                if (i + limit > size)
1772                        limit = size - i;
1773                dump_line(realobj, i, limit);
1774        }
1775}
1776
1777static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1778{
1779        char *realobj;
1780        int size, i;
1781        int lines = 0;
1782
1783        realobj = (char *)objp + obj_offset(cachep);
1784        size = cachep->object_size;
1785
1786        for (i = 0; i < size; i++) {
1787                char exp = POISON_FREE;
1788                if (i == size - 1)
1789                        exp = POISON_END;
1790                if (realobj[i] != exp) {
1791                        int limit;
1792                        /* Mismatch ! */
1793                        /* Print header */
1794                        if (lines == 0) {
1795                                printk(KERN_ERR
1796                                        "Slab corruption (%s): %s start=%p, len=%d\n",
1797                                        print_tainted(), cachep->name, realobj, size);
1798                                print_objinfo(cachep, objp, 0);
1799                        }
1800                        /* Hexdump the affected line */
1801                        i = (i / 16) * 16;
1802                        limit = 16;
1803                        if (i + limit > size)
1804                                limit = size - i;
1805                        dump_line(realobj, i, limit);
1806                        i += 16;
1807                        lines++;
1808                        /* Limit to 5 lines */
1809                        if (lines > 5)
1810                                break;
1811                }
1812        }
1813        if (lines != 0) {
1814                /* Print some data about the neighboring objects, if they
1815                 * exist:
1816                 */
1817                struct page *page = virt_to_head_page(objp);
1818                unsigned int objnr;
1819
1820                objnr = obj_to_index(cachep, page, objp);
1821                if (objnr) {
1822                        objp = index_to_obj(cachep, page, objnr - 1);
1823                        realobj = (char *)objp + obj_offset(cachep);
1824                        printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1825                               realobj, size);
1826                        print_objinfo(cachep, objp, 2);
1827                }
1828                if (objnr + 1 < cachep->num) {
1829                        objp = index_to_obj(cachep, page, objnr + 1);
1830                        realobj = (char *)objp + obj_offset(cachep);
1831                        printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1832                               realobj, size);
1833                        print_objinfo(cachep, objp, 2);
1834                }
1835        }
1836}
1837#endif
1838
1839#if DEBUG
1840static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1841                                                struct page *page)
1842{
1843        int i;
1844        for (i = 0; i < cachep->num; i++) {
1845                void *objp = index_to_obj(cachep, page, i);
1846
1847                if (cachep->flags & SLAB_POISON) {
1848#ifdef CONFIG_DEBUG_PAGEALLOC
1849                        if (cachep->size % PAGE_SIZE == 0 &&
1850                                        OFF_SLAB(cachep))
1851                                kernel_map_pages(virt_to_page(objp),
1852                                        cachep->size / PAGE_SIZE, 1);
1853                        else
1854                                check_poison_obj(cachep, objp);
1855#else
1856                        check_poison_obj(cachep, objp);
1857#endif
1858                }
1859                if (cachep->flags & SLAB_RED_ZONE) {
1860                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1861                                slab_error(cachep, "start of a freed object "
1862                                           "was overwritten");
1863                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1864                                slab_error(cachep, "end of a freed object "
1865                                           "was overwritten");
1866                }
1867        }
1868}
1869#else
1870static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1871                                                struct page *page)
1872{
1873}
1874#endif
1875
1876/**
1877 * slab_destroy - destroy and release all objects in a slab
1878 * @cachep: cache pointer being destroyed
1879 * @page: page pointer being destroyed
1880 *
1881 * Destroy all the objs in a slab page, and release the mem back to the system.
1882 * Before calling the slab page must have been unlinked from the cache. The
1883 * kmem_cache_node ->list_lock is not held/needed.
1884 */
1885static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1886{
1887        void *freelist;
1888
1889        freelist = page->freelist;
1890        slab_destroy_debugcheck(cachep, page);
1891        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1892                struct rcu_head *head;
1893
1894                /*
1895                 * RCU free overloads the RCU head over the LRU.
1896                 * slab_page has been overloeaded over the LRU,
1897                 * however it is not used from now on so that
1898                 * we can use it safely.
1899                 */
1900                head = (void *)&page->rcu_head;
1901                call_rcu(head, kmem_rcu_free);
1902
1903        } else {
1904                kmem_freepages(cachep, page);
1905        }
1906
1907        /*
1908         * From now on, we don't use freelist
1909         * although actual page can be freed in rcu context
1910         */
1911        if (OFF_SLAB(cachep))
1912                kmem_cache_free(cachep->freelist_cache, freelist);
1913}
1914
1915static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1916{
1917        struct page *page, *n;
1918
1919        list_for_each_entry_safe(page, n, list, lru) {
1920                list_del(&page->lru);
1921                slab_destroy(cachep, page);
1922        }
1923}
1924
1925/**
1926 * calculate_slab_order - calculate size (page order) of slabs
1927 * @cachep: pointer to the cache that is being created
1928 * @size: size of objects to be created in this cache.
1929 * @align: required alignment for the objects.
1930 * @flags: slab allocation flags
1931 *
1932 * Also calculates the number of objects per slab.
1933 *
1934 * This could be made much more intelligent.  For now, try to avoid using
1935 * high order pages for slabs.  When the gfp() functions are more friendly
1936 * towards high-order requests, this should be changed.
1937 */
1938static size_t calculate_slab_order(struct kmem_cache *cachep,
1939                        size_t size, size_t align, unsigned long flags)
1940{
1941        unsigned long offslab_limit;
1942        size_t left_over = 0;
1943        int gfporder;
1944
1945        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1946                unsigned int num;
1947                size_t remainder;
1948
1949                cache_estimate(gfporder, size, align, flags, &remainder, &num);
1950                if (!num)
1951                        continue;
1952
1953                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1954                if (num > SLAB_OBJ_MAX_NUM)
1955                        break;
1956
1957                if (flags & CFLGS_OFF_SLAB) {
1958                        size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1959                        /*
1960                         * Max number of objs-per-slab for caches which
1961                         * use off-slab slabs. Needed to avoid a possible
1962                         * looping condition in cache_grow().
1963                         */
1964                        if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1965                                freelist_size_per_obj += sizeof(char);
1966                        offslab_limit = size;
1967                        offslab_limit /= freelist_size_per_obj;
1968
1969                        if (num > offslab_limit)
1970                                break;
1971                }
1972
1973                /* Found something acceptable - save it away */
1974                cachep->num = num;
1975                cachep->gfporder = gfporder;
1976                left_over = remainder;
1977
1978                /*
1979                 * A VFS-reclaimable slab tends to have most allocations
1980                 * as GFP_NOFS and we really don't want to have to be allocating
1981                 * higher-order pages when we are unable to shrink dcache.
1982                 */
1983                if (flags & SLAB_RECLAIM_ACCOUNT)
1984                        break;
1985
1986                /*
1987                 * Large number of objects is good, but very large slabs are
1988                 * currently bad for the gfp()s.
1989                 */
1990                if (gfporder >= slab_max_order)
1991                        break;
1992
1993                /*
1994                 * Acceptable internal fragmentation?
1995                 */
1996                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1997                        break;
1998        }
1999        return left_over;
2000}
2001
2002static struct array_cache __percpu *alloc_kmem_cache_cpus(
2003                struct kmem_cache *cachep, int entries, int batchcount)
2004{
2005        int cpu;
2006        size_t size;
2007        struct array_cache __percpu *cpu_cache;
2008
2009        size = sizeof(void *) * entries + sizeof(struct array_cache);
2010        cpu_cache = __alloc_percpu(size, sizeof(void *));
2011
2012        if (!cpu_cache)
2013                return NULL;
2014
2015        for_each_possible_cpu(cpu) {
2016                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2017                                entries, batchcount);
2018        }
2019
2020        return cpu_cache;
2021}
2022
2023static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2024{
2025        if (slab_state >= FULL)
2026                return enable_cpucache(cachep, gfp);
2027
2028        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2029        if (!cachep->cpu_cache)
2030                return 1;
2031
2032        if (slab_state == DOWN) {
2033                /* Creation of first cache (kmem_cache). */
2034                set_up_node(kmem_cache, CACHE_CACHE);
2035        } else if (slab_state == PARTIAL) {
2036                /* For kmem_cache_node */
2037                set_up_node(cachep, SIZE_NODE);
2038        } else {
2039                int node;
2040
2041                for_each_online_node(node) {
2042                        cachep->node[node] = kmalloc_node(
2043                                sizeof(struct kmem_cache_node), gfp, node);
2044                        BUG_ON(!cachep->node[node]);
2045                        kmem_cache_node_init(cachep->node[node]);
2046                }
2047        }
2048
2049        cachep->node[numa_mem_id()]->next_reap =
2050                        jiffies + REAPTIMEOUT_NODE +
2051                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2052
2053        cpu_cache_get(cachep)->avail = 0;
2054        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2055        cpu_cache_get(cachep)->batchcount = 1;
2056        cpu_cache_get(cachep)->touched = 0;
2057        cachep->batchcount = 1;
2058        cachep->limit = BOOT_CPUCACHE_ENTRIES;
2059        return 0;
2060}
2061
2062unsigned long kmem_cache_flags(unsigned long object_size,
2063        unsigned long flags, const char *name,
2064        void (*ctor)(void *))
2065{
2066        return flags;
2067}
2068
2069struct kmem_cache *
2070__kmem_cache_alias(const char *name, size_t size, size_t align,
2071                   unsigned long flags, void (*ctor)(void *))
2072{
2073        struct kmem_cache *cachep;
2074
2075        cachep = find_mergeable(size, align, flags, name, ctor);
2076        if (cachep) {
2077                cachep->refcount++;
2078
2079                /*
2080                 * Adjust the object sizes so that we clear
2081                 * the complete object on kzalloc.
2082                 */
2083                cachep->object_size = max_t(int, cachep->object_size, size);
2084        }
2085        return cachep;
2086}
2087
2088/**
2089 * __kmem_cache_create - Create a cache.
2090 * @cachep: cache management descriptor
2091 * @flags: SLAB flags
2092 *
2093 * Returns a ptr to the cache on success, NULL on failure.
2094 * Cannot be called within a int, but can be interrupted.
2095 * The @ctor is run when new pages are allocated by the cache.
2096 *
2097 * The flags are
2098 *
2099 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2100 * to catch references to uninitialised memory.
2101 *
2102 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2103 * for buffer overruns.
2104 *
2105 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2106 * cacheline.  This can be beneficial if you're counting cycles as closely
2107 * as davem.
2108 */
2109int
2110__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2111{
2112        size_t left_over, freelist_size;
2113        size_t ralign = BYTES_PER_WORD;
2114        gfp_t gfp;
2115        int err;
2116        size_t size = cachep->size;
2117
2118#if DEBUG
2119#if FORCED_DEBUG
2120        /*
2121         * Enable redzoning and last user accounting, except for caches with
2122         * large objects, if the increased size would increase the object size
2123         * above the next power of two: caches with object sizes just above a
2124         * power of two have a significant amount of internal fragmentation.
2125         */
2126        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2127                                                2 * sizeof(unsigned long long)))
2128                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2129        if (!(flags & SLAB_DESTROY_BY_RCU))
2130                flags |= SLAB_POISON;
2131#endif
2132        if (flags & SLAB_DESTROY_BY_RCU)
2133                BUG_ON(flags & SLAB_POISON);
2134#endif
2135
2136        /*
2137         * Check that size is in terms of words.  This is needed to avoid
2138         * unaligned accesses for some archs when redzoning is used, and makes
2139         * sure any on-slab bufctl's are also correctly aligned.
2140         */
2141        if (size & (BYTES_PER_WORD - 1)) {
2142                size += (BYTES_PER_WORD - 1);
2143                size &= ~(BYTES_PER_WORD - 1);
2144        }
2145
2146        if (flags & SLAB_RED_ZONE) {
2147                ralign = REDZONE_ALIGN;
2148                /* If redzoning, ensure that the second redzone is suitably
2149                 * aligned, by adjusting the object size accordingly. */
2150                size += REDZONE_ALIGN - 1;
2151                size &= ~(REDZONE_ALIGN - 1);
2152        }
2153
2154        /* 3) caller mandated alignment */
2155        if (ralign < cachep->align) {
2156                ralign = cachep->align;
2157        }
2158        /* disable debug if necessary */
2159        if (ralign > __alignof__(unsigned long long))
2160                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2161        /*
2162         * 4) Store it.
2163         */
2164        cachep->align = ralign;
2165
2166        if (slab_is_available())
2167                gfp = GFP_KERNEL;
2168        else
2169                gfp = GFP_NOWAIT;
2170
2171#if DEBUG
2172
2173        /*
2174         * Both debugging options require word-alignment which is calculated
2175         * into align above.
2176         */
2177        if (flags & SLAB_RED_ZONE) {
2178                /* add space for red zone words */
2179                cachep->obj_offset += sizeof(unsigned long long);
2180                size += 2 * sizeof(unsigned long long);
2181        }
2182        if (flags & SLAB_STORE_USER) {
2183                /* user store requires one word storage behind the end of
2184                 * the real object. But if the second red zone needs to be
2185                 * aligned to 64 bits, we must allow that much space.
2186                 */
2187                if (flags & SLAB_RED_ZONE)
2188                        size += REDZONE_ALIGN;
2189                else
2190                        size += BYTES_PER_WORD;
2191        }
2192#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2193        if (size >= kmalloc_size(INDEX_NODE + 1)
2194            && cachep->object_size > cache_line_size()
2195            && ALIGN(size, cachep->align) < PAGE_SIZE) {
2196                cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2197                size = PAGE_SIZE;
2198        }
2199#endif
2200#endif
2201
2202        /*
2203         * Determine if the slab management is 'on' or 'off' slab.
2204         * (bootstrapping cannot cope with offslab caches so don't do
2205         * it too early on. Always use on-slab management when
2206         * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2207         */
2208        if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2209            !(flags & SLAB_NOLEAKTRACE))
2210                /*
2211                 * Size is large, assume best to place the slab management obj
2212                 * off-slab (should allow better packing of objs).
2213                 */
2214                flags |= CFLGS_OFF_SLAB;
2215
2216        size = ALIGN(size, cachep->align);
2217        /*
2218         * We should restrict the number of objects in a slab to implement
2219         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2220         */
2221        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2222                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2223
2224        left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2225
2226        if (!cachep->num)
2227                return -E2BIG;
2228
2229        freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2230
2231        /*
2232         * If the slab has been placed off-slab, and we have enough space then
2233         * move it on-slab. This is at the expense of any extra colouring.
2234         */
2235        if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2236                flags &= ~CFLGS_OFF_SLAB;
2237                left_over -= freelist_size;
2238        }
2239
2240        if (flags & CFLGS_OFF_SLAB) {
2241                /* really off slab. No need for manual alignment */
2242                freelist_size = calculate_freelist_size(cachep->num, 0);
2243
2244#ifdef CONFIG_PAGE_POISONING
2245                /* If we're going to use the generic kernel_map_pages()
2246                 * poisoning, then it's going to smash the contents of
2247                 * the redzone and userword anyhow, so switch them off.
2248                 */
2249                if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2250                        flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2251#endif
2252        }
2253
2254        cachep->colour_off = cache_line_size();
2255        /* Offset must be a multiple of the alignment. */
2256        if (cachep->colour_off < cachep->align)
2257                cachep->colour_off = cachep->align;
2258        cachep->colour = left_over / cachep->colour_off;
2259        cachep->freelist_size = freelist_size;
2260        cachep->flags = flags;
2261        cachep->allocflags = __GFP_COMP;
2262        if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2263                cachep->allocflags |= GFP_DMA;
2264        cachep->size = size;
2265        cachep->reciprocal_buffer_size = reciprocal_value(size);
2266
2267        if (flags & CFLGS_OFF_SLAB) {
2268                cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2269                /*
2270                 * This is a possibility for one of the kmalloc_{dma,}_caches.
2271                 * But since we go off slab only for object size greater than
2272                 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2273                 * in ascending order,this should not happen at all.
2274                 * But leave a BUG_ON for some lucky dude.
2275                 */
2276                BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2277        }
2278
2279        err = setup_cpu_cache(cachep, gfp);
2280        if (err) {
2281                __kmem_cache_shutdown(cachep);
2282                return err;
2283        }
2284
2285        return 0;
2286}
2287
2288#if DEBUG
2289static void check_irq_off(void)
2290{
2291        BUG_ON(!irqs_disabled());
2292}
2293
2294static void check_irq_on(void)
2295{
2296        BUG_ON(irqs_disabled());
2297}
2298
2299static void check_spinlock_acquired(struct kmem_cache *cachep)
2300{
2301#ifdef CONFIG_SMP
2302        check_irq_off();
2303        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2304#endif
2305}
2306
2307static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2308{
2309#ifdef CONFIG_SMP
2310        check_irq_off();
2311        assert_spin_locked(&get_node(cachep, node)->list_lock);
2312#endif
2313}
2314
2315#else
2316#define check_irq_off() do { } while(0)
2317#define check_irq_on()  do { } while(0)
2318#define check_spinlock_acquired(x) do { } while(0)
2319#define check_spinlock_acquired_node(x, y) do { } while(0)
2320#endif
2321
2322static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2323                        struct array_cache *ac,
2324                        int force, int node);
2325
2326static void do_drain(void *arg)
2327{
2328        struct kmem_cache *cachep = arg;
2329        struct array_cache *ac;
2330        int node = numa_mem_id();
2331        struct kmem_cache_node *n;
2332        LIST_HEAD(list);
2333
2334        check_irq_off();
2335        ac = cpu_cache_get(cachep);
2336        n = get_node(cachep, node);
2337        spin_lock(&n->list_lock);
2338        free_block(cachep, ac->entry, ac->avail, node, &list);
2339        spin_unlock(&n->list_lock);
2340        slabs_destroy(cachep, &list);
2341        ac->avail = 0;
2342}
2343
2344static void drain_cpu_caches(struct kmem_cache *cachep)
2345{
2346        struct kmem_cache_node *n;
2347        int node;
2348
2349        on_each_cpu(do_drain, cachep, 1);
2350        check_irq_on();
2351        for_each_kmem_cache_node(cachep, node, n)
2352                if (n->alien)
2353                        drain_alien_cache(cachep, n->alien);
2354
2355        for_each_kmem_cache_node(cachep, node, n)
2356                drain_array(cachep, n, n->shared, 1, node);
2357}
2358
2359/*
2360 * Remove slabs from the list of free slabs.
2361 * Specify the number of slabs to drain in tofree.
2362 *
2363 * Returns the actual number of slabs released.
2364 */
2365static int drain_freelist(struct kmem_cache *cache,
2366                        struct kmem_cache_node *n, int tofree)
2367{
2368        struct list_head *p;
2369        int nr_freed;
2370        struct page *page;
2371
2372        nr_freed = 0;
2373        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2374
2375                spin_lock_irq(&n->list_lock);
2376                p = n->slabs_free.prev;
2377                if (p == &n->slabs_free) {
2378                        spin_unlock_irq(&n->list_lock);
2379                        goto out;
2380                }
2381
2382                page = list_entry(p, struct page, lru);
2383#if DEBUG
2384                BUG_ON(page->active);
2385#endif
2386                list_del(&page->lru);
2387                /*
2388                 * Safe to drop the lock. The slab is no longer linked
2389                 * to the cache.
2390                 */
2391                n->free_objects -= cache->num;
2392                spin_unlock_irq(&n->list_lock);
2393                slab_destroy(cache, page);
2394                nr_freed++;
2395        }
2396out:
2397        return nr_freed;
2398}
2399
2400int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2401{
2402        int ret = 0;
2403        int node;
2404        struct kmem_cache_node *n;
2405
2406        drain_cpu_caches(cachep);
2407
2408        check_irq_on();
2409        for_each_kmem_cache_node(cachep, node, n) {
2410                drain_freelist(cachep, n, slabs_tofree(cachep, n));
2411
2412                ret += !list_empty(&n->slabs_full) ||
2413                        !list_empty(&n->slabs_partial);
2414        }
2415        return (ret ? 1 : 0);
2416}
2417
2418int __kmem_cache_shutdown(struct kmem_cache *cachep)
2419{
2420        int i;
2421        struct kmem_cache_node *n;
2422        int rc = __kmem_cache_shrink(cachep, false);
2423
2424        if (rc)
2425                return rc;
2426
2427        free_percpu(cachep->cpu_cache);
2428
2429        /* NUMA: free the node structures */
2430        for_each_kmem_cache_node(cachep, i, n) {
2431                kfree(n->shared);
2432                free_alien_cache(n->alien);
2433                kfree(n);
2434                cachep->node[i] = NULL;
2435        }
2436        return 0;
2437}
2438
2439/*
2440 * Get the memory for a slab management obj.
2441 *
2442 * For a slab cache when the slab descriptor is off-slab, the
2443 * slab descriptor can't come from the same cache which is being created,
2444 * Because if it is the case, that means we defer the creation of
2445 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2446 * And we eventually call down to __kmem_cache_create(), which
2447 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2448 * This is a "chicken-and-egg" problem.
2449 *
2450 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2451 * which are all initialized during kmem_cache_init().
2452 */
2453static void *alloc_slabmgmt(struct kmem_cache *cachep,
2454                                   struct page *page, int colour_off,
2455                                   gfp_t local_flags, int nodeid)
2456{
2457        void *freelist;
2458        void *addr = page_address(page);
2459
2460        if (OFF_SLAB(cachep)) {
2461                /* Slab management obj is off-slab. */
2462                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2463                                              local_flags, nodeid);
2464                if (!freelist)
2465                        return NULL;
2466        } else {
2467                freelist = addr + colour_off;
2468                colour_off += cachep->freelist_size;
2469        }
2470        page->active = 0;
2471        page->s_mem = addr + colour_off;
2472        return freelist;
2473}
2474
2475static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2476{
2477        return ((freelist_idx_t *)page->freelist)[idx];
2478}
2479
2480static inline void set_free_obj(struct page *page,
2481                                        unsigned int idx, freelist_idx_t val)
2482{
2483        ((freelist_idx_t *)(page->freelist))[idx] = val;
2484}
2485
2486static void cache_init_objs(struct kmem_cache *cachep,
2487                            struct page *page)
2488{
2489        int i;
2490
2491        for (i = 0; i < cachep->num; i++) {
2492                void *objp = index_to_obj(cachep, page, i);
2493#if DEBUG
2494                /* need to poison the objs? */
2495                if (cachep->flags & SLAB_POISON)
2496                        poison_obj(cachep, objp, POISON_FREE);
2497                if (cachep->flags & SLAB_STORE_USER)
2498                        *dbg_userword(cachep, objp) = NULL;
2499
2500                if (cachep->flags & SLAB_RED_ZONE) {
2501                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2502                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2503                }
2504                /*
2505                 * Constructors are not allowed to allocate memory from the same
2506                 * cache which they are a constructor for.  Otherwise, deadlock.
2507                 * They must also be threaded.
2508                 */
2509                if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2510                        cachep->ctor(objp + obj_offset(cachep));
2511
2512                if (cachep->flags & SLAB_RED_ZONE) {
2513                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2514                                slab_error(cachep, "constructor overwrote the"
2515                                           " end of an object");
2516                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2517                                slab_error(cachep, "constructor overwrote the"
2518                                           " start of an object");
2519                }
2520                if ((cachep->size % PAGE_SIZE) == 0 &&
2521                            OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2522                        kernel_map_pages(virt_to_page(objp),
2523                                         cachep->size / PAGE_SIZE, 0);
2524#else
2525                if (cachep->ctor)
2526                        cachep->ctor(objp);
2527#endif
2528                set_obj_status(page, i, OBJECT_FREE);
2529                set_free_obj(page, i, i);
2530        }
2531}
2532
2533static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2534{
2535        if (CONFIG_ZONE_DMA_FLAG) {
2536                if (flags & GFP_DMA)
2537                        BUG_ON(!(cachep->allocflags & GFP_DMA));
2538                else
2539                        BUG_ON(cachep->allocflags & GFP_DMA);
2540        }
2541}
2542
2543static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2544                                int nodeid)
2545{
2546        void *objp;
2547
2548        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2549        page->active++;
2550#if DEBUG
2551        WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2552#endif
2553
2554        return objp;
2555}
2556
2557static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2558                                void *objp, int nodeid)
2559{
2560        unsigned int objnr = obj_to_index(cachep, page, objp);
2561#if DEBUG
2562        unsigned int i;
2563
2564        /* Verify that the slab belongs to the intended node */
2565        WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2566
2567        /* Verify double free bug */
2568        for (i = page->active; i < cachep->num; i++) {
2569                if (get_free_obj(page, i) == objnr) {
2570                        printk(KERN_ERR "slab: double free detected in cache "
2571                                        "'%s', objp %p\n", cachep->name, objp);
2572                        BUG();
2573                }
2574        }
2575#endif
2576        page->active--;
2577        set_free_obj(page, page->active, objnr);
2578}
2579
2580/*
2581 * Map pages beginning at addr to the given cache and slab. This is required
2582 * for the slab allocator to be able to lookup the cache and slab of a
2583 * virtual address for kfree, ksize, and slab debugging.
2584 */
2585static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2586                           void *freelist)
2587{
2588        page->slab_cache = cache;
2589        page->freelist = freelist;
2590}
2591
2592/*
2593 * Grow (by 1) the number of slabs within a cache.  This is called by
2594 * kmem_cache_alloc() when there are no active objs left in a cache.
2595 */
2596static int cache_grow(struct kmem_cache *cachep,
2597                gfp_t flags, int nodeid, struct page *page)
2598{
2599        void *freelist;
2600        size_t offset;
2601        gfp_t local_flags;
2602        struct kmem_cache_node *n;
2603
2604        /*
2605         * Be lazy and only check for valid flags here,  keeping it out of the
2606         * critical path in kmem_cache_alloc().
2607         */
2608        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2609                pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2610                BUG();
2611        }
2612        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2613
2614        /* Take the node list lock to change the colour_next on this node */
2615        check_irq_off();
2616        n = get_node(cachep, nodeid);
2617        spin_lock(&n->list_lock);
2618
2619        /* Get colour for the slab, and cal the next value. */
2620        offset = n->colour_next;
2621        n->colour_next++;
2622        if (n->colour_next >= cachep->colour)
2623                n->colour_next = 0;
2624        spin_unlock(&n->list_lock);
2625
2626        offset *= cachep->colour_off;
2627
2628        if (local_flags & __GFP_WAIT)
2629                local_irq_enable();
2630
2631        /*
2632         * The test for missing atomic flag is performed here, rather than
2633         * the more obvious place, simply to reduce the critical path length
2634         * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2635         * will eventually be caught here (where it matters).
2636         */
2637        kmem_flagcheck(cachep, flags);
2638
2639        /*
2640         * Get mem for the objs.  Attempt to allocate a physical page from
2641         * 'nodeid'.
2642         */
2643        if (!page)
2644                page = kmem_getpages(cachep, local_flags, nodeid);
2645        if (!page)
2646                goto failed;
2647
2648        /* Get slab management. */
2649        freelist = alloc_slabmgmt(cachep, page, offset,
2650                        local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2651        if (!freelist)
2652                goto opps1;
2653
2654        slab_map_pages(cachep, page, freelist);
2655
2656        cache_init_objs(cachep, page);
2657
2658        if (local_flags & __GFP_WAIT)
2659                local_irq_disable();
2660        check_irq_off();
2661        spin_lock(&n->list_lock);
2662
2663        /* Make slab active. */
2664        list_add_tail(&page->lru, &(n->slabs_free));
2665        STATS_INC_GROWN(cachep);
2666        n->free_objects += cachep->num;
2667        spin_unlock(&n->list_lock);
2668        return 1;
2669opps1:
2670        kmem_freepages(cachep, page);
2671failed:
2672        if (local_flags & __GFP_WAIT)
2673                local_irq_disable();
2674        return 0;
2675}
2676
2677#if DEBUG
2678
2679/*
2680 * Perform extra freeing checks:
2681 * - detect bad pointers.
2682 * - POISON/RED_ZONE checking
2683 */
2684static void kfree_debugcheck(const void *objp)
2685{
2686        if (!virt_addr_valid(objp)) {
2687                printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2688                       (unsigned long)objp);
2689                BUG();
2690        }
2691}
2692
2693static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2694{
2695        unsigned long long redzone1, redzone2;
2696
2697        redzone1 = *dbg_redzone1(cache, obj);
2698        redzone2 = *dbg_redzone2(cache, obj);
2699
2700        /*
2701         * Redzone is ok.
2702         */
2703        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2704                return;
2705
2706        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2707                slab_error(cache, "double free detected");
2708        else
2709                slab_error(cache, "memory outside object was overwritten");
2710
2711        printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2712                        obj, redzone1, redzone2);
2713}
2714
2715static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2716                                   unsigned long caller)
2717{
2718        unsigned int objnr;
2719        struct page *page;
2720
2721        BUG_ON(virt_to_cache(objp) != cachep);
2722
2723        objp -= obj_offset(cachep);
2724        kfree_debugcheck(objp);
2725        page = virt_to_head_page(objp);
2726
2727        if (cachep->flags & SLAB_RED_ZONE) {
2728                verify_redzone_free(cachep, objp);
2729                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2730                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2731        }
2732        if (cachep->flags & SLAB_STORE_USER)
2733                *dbg_userword(cachep, objp) = (void *)caller;
2734
2735        objnr = obj_to_index(cachep, page, objp);
2736
2737        BUG_ON(objnr >= cachep->num);
2738        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2739
2740        set_obj_status(page, objnr, OBJECT_FREE);
2741        if (cachep->flags & SLAB_POISON) {
2742#ifdef CONFIG_DEBUG_PAGEALLOC
2743                if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2744                        store_stackinfo(cachep, objp, caller);
2745                        kernel_map_pages(virt_to_page(objp),
2746                                         cachep->size / PAGE_SIZE, 0);
2747                } else {
2748                        poison_obj(cachep, objp, POISON_FREE);
2749                }
2750#else
2751                poison_obj(cachep, objp, POISON_FREE);
2752#endif
2753        }
2754        return objp;
2755}
2756
2757#else
2758#define kfree_debugcheck(x) do { } while(0)
2759#define cache_free_debugcheck(x,objp,z) (objp)
2760#endif
2761
2762static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2763                                                        bool force_refill)
2764{
2765        int batchcount;
2766        struct kmem_cache_node *n;
2767        struct array_cache *ac;
2768        int node;
2769
2770        check_irq_off();
2771        node = numa_mem_id();
2772        if (unlikely(force_refill))
2773                goto force_grow;
2774retry:
2775        ac = cpu_cache_get(cachep);
2776        batchcount = ac->batchcount;
2777        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2778                /*
2779                 * If there was little recent activity on this cache, then
2780                 * perform only a partial refill.  Otherwise we could generate
2781                 * refill bouncing.
2782                 */
2783                batchcount = BATCHREFILL_LIMIT;
2784        }
2785        n = get_node(cachep, node);
2786
2787        BUG_ON(ac->avail > 0 || !n);
2788        spin_lock(&n->list_lock);
2789
2790        /* See if we can refill from the shared array */
2791        if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2792                n->shared->touched = 1;
2793                goto alloc_done;
2794        }
2795
2796        while (batchcount > 0) {
2797                struct list_head *entry;
2798                struct page *page;
2799                /* Get slab alloc is to come from. */
2800                entry = n->slabs_partial.next;
2801                if (entry == &n->slabs_partial) {
2802                        n->free_touched = 1;
2803                        entry = n->slabs_free.next;
2804                        if (entry == &n->slabs_free)
2805                                goto must_grow;
2806                }
2807
2808                page = list_entry(entry, struct page, lru);
2809                check_spinlock_acquired(cachep);
2810
2811                /*
2812                 * The slab was either on partial or free list so
2813                 * there must be at least one object available for
2814                 * allocation.
2815                 */
2816                BUG_ON(page->active >= cachep->num);
2817
2818                while (page->active < cachep->num && batchcount--) {
2819                        STATS_INC_ALLOCED(cachep);
2820                        STATS_INC_ACTIVE(cachep);
2821                        STATS_SET_HIGH(cachep);
2822
2823                        ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2824                                                                        node));
2825                }
2826
2827                /* move slabp to correct slabp list: */
2828                list_del(&page->lru);
2829                if (page->active == cachep->num)
2830                        list_add(&page->lru, &n->slabs_full);
2831                else
2832                        list_add(&page->lru, &n->slabs_partial);
2833        }
2834
2835must_grow:
2836        n->free_objects -= ac->avail;
2837alloc_done:
2838        spin_unlock(&n->list_lock);
2839
2840        if (unlikely(!ac->avail)) {
2841                int x;
2842force_grow:
2843                x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2844
2845                /* cache_grow can reenable interrupts, then ac could change. */
2846                ac = cpu_cache_get(cachep);
2847                node = numa_mem_id();
2848
2849                /* no objects in sight? abort */
2850                if (!x && (ac->avail == 0 || force_refill))
2851                        return NULL;
2852
2853                if (!ac->avail)         /* objects refilled by interrupt? */
2854                        goto retry;
2855        }
2856        ac->touched = 1;
2857
2858        return ac_get_obj(cachep, ac, flags, force_refill);
2859}
2860
2861static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2862                                                gfp_t flags)
2863{
2864        might_sleep_if(flags & __GFP_WAIT);
2865#if DEBUG
2866        kmem_flagcheck(cachep, flags);
2867#endif
2868}
2869
2870#if DEBUG
2871static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2872                                gfp_t flags, void *objp, unsigned long caller)
2873{
2874        struct page *page;
2875
2876        if (!objp)
2877                return objp;
2878        if (cachep->flags & SLAB_POISON) {
2879#ifdef CONFIG_DEBUG_PAGEALLOC
2880                if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2881                        kernel_map_pages(virt_to_page(objp),
2882                                         cachep->size / PAGE_SIZE, 1);
2883                else
2884                        check_poison_obj(cachep, objp);
2885#else
2886                check_poison_obj(cachep, objp);
2887#endif
2888                poison_obj(cachep, objp, POISON_INUSE);
2889        }
2890        if (cachep->flags & SLAB_STORE_USER)
2891                *dbg_userword(cachep, objp) = (void *)caller;
2892
2893        if (cachep->flags & SLAB_RED_ZONE) {
2894                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2895                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2896                        slab_error(cachep, "double free, or memory outside"
2897                                                " object was overwritten");
2898                        printk(KERN_ERR
2899                                "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2900                                objp, *dbg_redzone1(cachep, objp),
2901                                *dbg_redzone2(cachep, objp));
2902                }
2903                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2904                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2905        }
2906
2907        page = virt_to_head_page(objp);
2908        set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2909        objp += obj_offset(cachep);
2910        if (cachep->ctor && cachep->flags & SLAB_POISON)
2911                cachep->ctor(objp);
2912        if (ARCH_SLAB_MINALIGN &&
2913            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2914                printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2915                       objp, (int)ARCH_SLAB_MINALIGN);
2916        }
2917        return objp;
2918}
2919#else
2920#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2921#endif
2922
2923static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2924{
2925        if (unlikely(cachep == kmem_cache))
2926                return false;
2927
2928        return should_failslab(cachep->object_size, flags, cachep->flags);
2929}
2930
2931static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2932{
2933        void *objp;
2934        struct array_cache *ac;
2935        bool force_refill = false;
2936
2937        check_irq_off();
2938
2939        ac = cpu_cache_get(cachep);
2940        if (likely(ac->avail)) {
2941                ac->touched = 1;
2942                objp = ac_get_obj(cachep, ac, flags, false);
2943
2944                /*
2945                 * Allow for the possibility all avail objects are not allowed
2946                 * by the current flags
2947                 */
2948                if (objp) {
2949                        STATS_INC_ALLOCHIT(cachep);
2950                        goto out;
2951                }
2952                force_refill = true;
2953        }
2954
2955        STATS_INC_ALLOCMISS(cachep);
2956        objp = cache_alloc_refill(cachep, flags, force_refill);
2957        /*
2958         * the 'ac' may be updated by cache_alloc_refill(),
2959         * and kmemleak_erase() requires its correct value.
2960         */
2961        ac = cpu_cache_get(cachep);
2962
2963out:
2964        /*
2965         * To avoid a false negative, if an object that is in one of the
2966         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2967         * treat the array pointers as a reference to the object.
2968         */
2969        if (objp)
2970                kmemleak_erase(&ac->entry[ac->avail]);
2971        return objp;
2972}
2973
2974#ifdef CONFIG_NUMA
2975/*
2976 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2977 *
2978 * If we are in_interrupt, then process context, including cpusets and
2979 * mempolicy, may not apply and should not be used for allocation policy.
2980 */
2981static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2982{
2983        int nid_alloc, nid_here;
2984
2985        if (in_interrupt() || (flags & __GFP_THISNODE))
2986                return NULL;
2987        nid_alloc = nid_here = numa_mem_id();
2988        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2989                nid_alloc = cpuset_slab_spread_node();
2990        else if (current->mempolicy)
2991                nid_alloc = mempolicy_slab_node();
2992        if (nid_alloc != nid_here)
2993                return ____cache_alloc_node(cachep, flags, nid_alloc);
2994        return NULL;
2995}
2996
2997/*
2998 * Fallback function if there was no memory available and no objects on a
2999 * certain node and fall back is permitted. First we scan all the
3000 * available node for available objects. If that fails then we
3001 * perform an allocation without specifying a node. This allows the page
3002 * allocator to do its reclaim / fallback magic. We then insert the
3003 * slab into the proper nodelist and then allocate from it.
3004 */
3005static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3006{
3007        struct zonelist *zonelist;
3008        gfp_t local_flags;
3009        struct zoneref *z;
3010        struct zone *zone;
3011        enum zone_type high_zoneidx = gfp_zone(flags);
3012        void *obj = NULL;
3013        int nid;
3014        unsigned int cpuset_mems_cookie;
3015
3016        if (flags & __GFP_THISNODE)
3017                return NULL;
3018
3019        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3020
3021retry_cpuset:
3022        cpuset_mems_cookie = read_mems_allowed_begin();
3023        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3024
3025retry:
3026        /*
3027         * Look through allowed nodes for objects available
3028         * from existing per node queues.
3029         */
3030        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3031                nid = zone_to_nid(zone);
3032
3033                if (cpuset_zone_allowed(zone, flags) &&
3034                        get_node(cache, nid) &&
3035                        get_node(cache, nid)->free_objects) {
3036                                obj = ____cache_alloc_node(cache,
3037                                        gfp_exact_node(flags), nid);
3038                                if (obj)
3039                                        break;
3040                }
3041        }
3042
3043        if (!obj) {
3044                /*
3045                 * This allocation will be performed within the constraints
3046                 * of the current cpuset / memory policy requirements.
3047                 * We may trigger various forms of reclaim on the allowed
3048                 * set and go into memory reserves if necessary.
3049                 */
3050                struct page *page;
3051
3052                if (local_flags & __GFP_WAIT)
3053                        local_irq_enable();
3054                kmem_flagcheck(cache, flags);
3055                page = kmem_getpages(cache, local_flags, numa_mem_id());
3056                if (local_flags & __GFP_WAIT)
3057                        local_irq_disable();
3058                if (page) {
3059                        /*
3060                         * Insert into the appropriate per node queues
3061                         */
3062                        nid = page_to_nid(page);
3063                        if (cache_grow(cache, flags, nid, page)) {
3064                                obj = ____cache_alloc_node(cache,
3065                                        gfp_exact_node(flags), nid);
3066                                if (!obj)
3067                                        /*
3068                                         * Another processor may allocate the
3069                                         * objects in the slab since we are
3070                                         * not holding any locks.
3071                                         */
3072                                        goto retry;
3073                        } else {
3074                                /* cache_grow already freed obj */
3075                                obj = NULL;
3076                        }
3077                }
3078        }
3079
3080        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3081                goto retry_cpuset;
3082        return obj;
3083}
3084
3085/*
3086 * A interface to enable slab creation on nodeid
3087 */
3088static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3089                                int nodeid)
3090{
3091        struct list_head *entry;
3092        struct page *page;
3093        struct kmem_cache_node *n;
3094        void *obj;
3095        int x;
3096
3097        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3098        n = get_node(cachep, nodeid);
3099        BUG_ON(!n);
3100
3101retry:
3102        check_irq_off();
3103        spin_lock(&n->list_lock);
3104        entry = n->slabs_partial.next;
3105        if (entry == &n->slabs_partial) {
3106                n->free_touched = 1;
3107                entry = n->slabs_free.next;
3108                if (entry == &n->slabs_free)
3109                        goto must_grow;
3110        }
3111
3112        page = list_entry(entry, struct page, lru);
3113        check_spinlock_acquired_node(cachep, nodeid);
3114
3115        STATS_INC_NODEALLOCS(cachep);
3116        STATS_INC_ACTIVE(cachep);
3117        STATS_SET_HIGH(cachep);
3118
3119        BUG_ON(page->active == cachep->num);
3120
3121        obj = slab_get_obj(cachep, page, nodeid);
3122        n->free_objects--;
3123        /* move slabp to correct slabp list: */
3124        list_del(&page->lru);
3125
3126        if (page->active == cachep->num)
3127                list_add(&page->lru, &n->slabs_full);
3128        else
3129                list_add(&page->lru, &n->slabs_partial);
3130
3131        spin_unlock(&n->list_lock);
3132        goto done;
3133
3134must_grow:
3135        spin_unlock(&n->list_lock);
3136        x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3137        if (x)
3138                goto retry;
3139
3140        return fallback_alloc(cachep, flags);
3141
3142done:
3143        return obj;
3144}
3145
3146static __always_inline void *
3147slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3148                   unsigned long caller)
3149{
3150        unsigned long save_flags;
3151        void *ptr;
3152        int slab_node = numa_mem_id();
3153
3154        flags &= gfp_allowed_mask;
3155
3156        lockdep_trace_alloc(flags);
3157
3158        if (slab_should_failslab(cachep, flags))
3159                return NULL;
3160
3161        cachep = memcg_kmem_get_cache(cachep, flags);
3162
3163        cache_alloc_debugcheck_before(cachep, flags);
3164        local_irq_save(save_flags);
3165
3166        if (nodeid == NUMA_NO_NODE)
3167                nodeid = slab_node;
3168
3169        if (unlikely(!get_node(cachep, nodeid))) {
3170                /* Node not bootstrapped yet */
3171                ptr = fallback_alloc(cachep, flags);
3172                goto out;
3173        }
3174
3175        if (nodeid == slab_node) {
3176                /*
3177                 * Use the locally cached objects if possible.
3178                 * However ____cache_alloc does not allow fallback
3179                 * to other nodes. It may fail while we still have
3180                 * objects on other nodes available.
3181                 */
3182                ptr = ____cache_alloc(cachep, flags);
3183                if (ptr)
3184                        goto out;
3185        }
3186        /* ___cache_alloc_node can fall back to other nodes */
3187        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3188  out:
3189        local_irq_restore(save_flags);
3190        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3191        kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3192                                 flags);
3193
3194        if (likely(ptr)) {
3195                kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3196                if (unlikely(flags & __GFP_ZERO))
3197                        memset(ptr, 0, cachep->object_size);
3198        }
3199
3200        memcg_kmem_put_cache(cachep);
3201        return ptr;
3202}
3203
3204static __always_inline void *
3205__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3206{
3207        void *objp;
3208
3209        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3210                objp = alternate_node_alloc(cache, flags);
3211                if (objp)
3212                        goto out;
3213        }
3214        objp = ____cache_alloc(cache, flags);
3215
3216        /*
3217         * We may just have run out of memory on the local node.
3218         * ____cache_alloc_node() knows how to locate memory on other nodes
3219         */
3220        if (!objp)
3221                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3222
3223  out:
3224        return objp;
3225}
3226#else
3227
3228static __always_inline void *
3229__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3230{
3231        return ____cache_alloc(cachep, flags);
3232}
3233
3234#endif /* CONFIG_NUMA */
3235
3236static __always_inline void *
3237slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3238{
3239        unsigned long save_flags;
3240        void *objp;
3241
3242        flags &= gfp_allowed_mask;
3243
3244        lockdep_trace_alloc(flags);
3245
3246        if (slab_should_failslab(cachep, flags))
3247                return NULL;
3248
3249        cachep = memcg_kmem_get_cache(cachep, flags);
3250
3251        cache_alloc_debugcheck_before(cachep, flags);
3252        local_irq_save(save_flags);
3253        objp = __do_cache_alloc(cachep, flags);
3254        local_irq_restore(save_flags);
3255        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3256        kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3257                                 flags);
3258        prefetchw(objp);
3259
3260        if (likely(objp)) {
3261                kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3262                if (unlikely(flags & __GFP_ZERO))
3263                        memset(objp, 0, cachep->object_size);
3264        }
3265
3266        memcg_kmem_put_cache(cachep);
3267        return objp;
3268}
3269
3270/*
3271 * Caller needs to acquire correct kmem_cache_node's list_lock
3272 * @list: List of detached free slabs should be freed by caller
3273 */
3274static void free_block(struct kmem_cache *cachep, void **objpp,
3275                        int nr_objects, int node, struct list_head *list)
3276{
3277        int i;
3278        struct kmem_cache_node *n = get_node(cachep, node);
3279
3280        for (i = 0; i < nr_objects; i++) {
3281                void *objp;
3282                struct page *page;
3283
3284                clear_obj_pfmemalloc(&objpp[i]);
3285                objp = objpp[i];
3286
3287                page = virt_to_head_page(objp);
3288                list_del(&page->lru);
3289                check_spinlock_acquired_node(cachep, node);
3290                slab_put_obj(cachep, page, objp, node);
3291                STATS_DEC_ACTIVE(cachep);
3292                n->free_objects++;
3293
3294                /* fixup slab chains */
3295                if (page->active == 0) {
3296                        if (n->free_objects > n->free_limit) {
3297                                n->free_objects -= cachep->num;
3298                                list_add_tail(&page->lru, list);
3299                        } else {
3300                                list_add(&page->lru, &n->slabs_free);
3301                        }
3302                } else {
3303                        /* Unconditionally move a slab to the end of the
3304                         * partial list on free - maximum time for the
3305                         * other objects to be freed, too.
3306                         */
3307                        list_add_tail(&page->lru, &n->slabs_partial);
3308                }
3309        }
3310}
3311
3312static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3313{
3314        int batchcount;
3315        struct kmem_cache_node *n;
3316        int node = numa_mem_id();
3317        LIST_HEAD(list);
3318
3319        batchcount = ac->batchcount;
3320#if DEBUG
3321        BUG_ON(!batchcount || batchcount > ac->avail);
3322#endif
3323        check_irq_off();
3324        n = get_node(cachep, node);
3325        spin_lock(&n->list_lock);
3326        if (n->shared) {
3327                struct array_cache *shared_array = n->shared;
3328                int max = shared_array->limit - shared_array->avail;
3329                if (max) {
3330                        if (batchcount > max)
3331                                batchcount = max;
3332                        memcpy(&(shared_array->entry[shared_array->avail]),
3333                               ac->entry, sizeof(void *) * batchcount);
3334                        shared_array->avail += batchcount;
3335                        goto free_done;
3336                }
3337        }
3338
3339        free_block(cachep, ac->entry, batchcount, node, &list);
3340free_done:
3341#if STATS
3342        {
3343                int i = 0;
3344                struct list_head *p;
3345
3346                p = n->slabs_free.next;
3347                while (p != &(n->slabs_free)) {
3348                        struct page *page;
3349
3350                        page = list_entry(p, struct page, lru);
3351                        BUG_ON(page->active);
3352
3353                        i++;
3354                        p = p->next;
3355                }
3356                STATS_SET_FREEABLE(cachep, i);
3357        }
3358#endif
3359        spin_unlock(&n->list_lock);
3360        slabs_destroy(cachep, &list);
3361        ac->avail -= batchcount;
3362        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3363}
3364
3365/*
3366 * Release an obj back to its cache. If the obj has a constructed state, it must
3367 * be in this state _before_ it is released.  Called with disabled ints.
3368 */
3369static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3370                                unsigned long caller)
3371{
3372        struct array_cache *ac = cpu_cache_get(cachep);
3373
3374        check_irq_off();
3375        kmemleak_free_recursive(objp, cachep->flags);
3376        objp = cache_free_debugcheck(cachep, objp, caller);
3377
3378        kmemcheck_slab_free(cachep, objp, cachep->object_size);
3379
3380        /*
3381         * Skip calling cache_free_alien() when the platform is not numa.
3382         * This will avoid cache misses that happen while accessing slabp (which
3383         * is per page memory  reference) to get nodeid. Instead use a global
3384         * variable to skip the call, which is mostly likely to be present in
3385         * the cache.
3386         */
3387        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3388                return;
3389
3390        if (ac->avail < ac->limit) {
3391                STATS_INC_FREEHIT(cachep);
3392        } else {
3393                STATS_INC_FREEMISS(cachep);
3394                cache_flusharray(cachep, ac);
3395        }
3396
3397        ac_put_obj(cachep, ac, objp);
3398}
3399
3400/**
3401 * kmem_cache_alloc - Allocate an object
3402 * @cachep: The cache to allocate from.
3403 * @flags: See kmalloc().
3404 *
3405 * Allocate an object from this cache.  The flags are only relevant
3406 * if the cache has no available objects.
3407 */
3408void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3409{
3410        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3411
3412        trace_kmem_cache_alloc(_RET_IP_, ret,
3413                               cachep->object_size, cachep->size, flags);
3414
3415        return ret;
3416}
3417EXPORT_SYMBOL(kmem_cache_alloc);
3418
3419#ifdef CONFIG_TRACING
3420void *
3421kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3422{
3423        void *ret;
3424
3425        ret = slab_alloc(cachep, flags, _RET_IP_);
3426
3427        trace_kmalloc(_RET_IP_, ret,
3428                      size, cachep->size, flags);
3429        return ret;
3430}
3431EXPORT_SYMBOL(kmem_cache_alloc_trace);
3432#endif
3433
3434#ifdef CONFIG_NUMA
3435/**
3436 * kmem_cache_alloc_node - Allocate an object on the specified node
3437 * @cachep: The cache to allocate from.
3438 * @flags: See kmalloc().
3439 * @nodeid: node number of the target node.
3440 *
3441 * Identical to kmem_cache_alloc but it will allocate memory on the given
3442 * node, which can improve the performance for cpu bound structures.
3443 *
3444 * Fallback to other node is possible if __GFP_THISNODE is not set.
3445 */
3446void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3447{
3448        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3449
3450        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3451                                    cachep->object_size, cachep->size,
3452                                    flags, nodeid);
3453
3454        return ret;
3455}
3456EXPORT_SYMBOL(kmem_cache_alloc_node);
3457
3458#ifdef CONFIG_TRACING
3459void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3460                                  gfp_t flags,
3461                                  int nodeid,
3462                                  size_t size)
3463{
3464        void *ret;
3465
3466        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3467
3468        trace_kmalloc_node(_RET_IP_, ret,
3469                           size, cachep->size,
3470                           flags, nodeid);
3471        return ret;
3472}
3473EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3474#endif
3475
3476static __always_inline void *
3477__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3478{
3479        struct kmem_cache *cachep;
3480
3481        cachep = kmalloc_slab(size, flags);
3482        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3483                return cachep;
3484        return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3485}
3486
3487void *__kmalloc_node(size_t size, gfp_t flags, int node)
3488{
3489        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3490}
3491EXPORT_SYMBOL(__kmalloc_node);
3492
3493void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3494                int node, unsigned long caller)
3495{
3496        return __do_kmalloc_node(size, flags, node, caller);
3497}
3498EXPORT_SYMBOL(__kmalloc_node_track_caller);
3499#endif /* CONFIG_NUMA */
3500
3501/**
3502 * __do_kmalloc - allocate memory
3503 * @size: how many bytes of memory are required.
3504 * @flags: the type of memory to allocate (see kmalloc).
3505 * @caller: function caller for debug tracking of the caller
3506 */
3507static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3508                                          unsigned long caller)
3509{
3510        struct kmem_cache *cachep;
3511        void *ret;
3512
3513        cachep = kmalloc_slab(size, flags);
3514        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3515                return cachep;
3516        ret = slab_alloc(cachep, flags, caller);
3517
3518        trace_kmalloc(caller, ret,
3519                      size, cachep->size, flags);
3520
3521        return ret;
3522}
3523
3524void *__kmalloc(size_t size, gfp_t flags)
3525{
3526        return __do_kmalloc(size, flags, _RET_IP_);
3527}
3528EXPORT_SYMBOL(__kmalloc);
3529
3530void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3531{
3532        return __do_kmalloc(size, flags, caller);
3533}
3534EXPORT_SYMBOL(__kmalloc_track_caller);
3535
3536/**
3537 * kmem_cache_free - Deallocate an object
3538 * @cachep: The cache the allocation was from.
3539 * @objp: The previously allocated object.
3540 *
3541 * Free an object which was previously allocated from this
3542 * cache.
3543 */
3544void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3545{
3546        unsigned long flags;
3547        cachep = cache_from_obj(cachep, objp);
3548        if (!cachep)
3549                return;
3550
3551        local_irq_save(flags);
3552        debug_check_no_locks_freed(objp, cachep->object_size);
3553        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3554                debug_check_no_obj_freed(objp, cachep->object_size);
3555        __cache_free(cachep, objp, _RET_IP_);
3556        local_irq_restore(flags);
3557
3558        trace_kmem_cache_free(_RET_IP_, objp);
3559}
3560EXPORT_SYMBOL(kmem_cache_free);
3561
3562/**
3563 * kfree - free previously allocated memory
3564 * @objp: pointer returned by kmalloc.
3565 *
3566 * If @objp is NULL, no operation is performed.
3567 *
3568 * Don't free memory not originally allocated by kmalloc()
3569 * or you will run into trouble.
3570 */
3571void kfree(const void *objp)
3572{
3573        struct kmem_cache *c;
3574        unsigned long flags;
3575
3576        trace_kfree(_RET_IP_, objp);
3577
3578        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3579                return;
3580        local_irq_save(flags);
3581        kfree_debugcheck(objp);
3582        c = virt_to_cache(objp);
3583        debug_check_no_locks_freed(objp, c->object_size);
3584
3585        debug_check_no_obj_freed(objp, c->object_size);
3586        __cache_free(c, (void *)objp, _RET_IP_);
3587        local_irq_restore(flags);
3588}
3589EXPORT_SYMBOL(kfree);
3590
3591/*
3592 * This initializes kmem_cache_node or resizes various caches for all nodes.
3593 */
3594static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3595{
3596        int node;
3597        struct kmem_cache_node *n;
3598        struct array_cache *new_shared;
3599        struct alien_cache **new_alien = NULL;
3600
3601        for_each_online_node(node) {
3602
3603                if (use_alien_caches) {
3604                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3605                        if (!new_alien)
3606                                goto fail;
3607                }
3608
3609                new_shared = NULL;
3610                if (cachep->shared) {
3611                        new_shared = alloc_arraycache(node,
3612                                cachep->shared*cachep->batchcount,
3613                                        0xbaadf00d, gfp);
3614                        if (!new_shared) {
3615                                free_alien_cache(new_alien);
3616                                goto fail;
3617                        }
3618                }
3619
3620                n = get_node(cachep, node);
3621                if (n) {
3622                        struct array_cache *shared = n->shared;
3623                        LIST_HEAD(list);
3624
3625                        spin_lock_irq(&n->list_lock);
3626
3627                        if (shared)
3628                                free_block(cachep, shared->entry,
3629                                                shared->avail, node, &list);
3630
3631                        n->shared = new_shared;
3632                        if (!n->alien) {
3633                                n->alien = new_alien;
3634                                new_alien = NULL;
3635                        }
3636                        n->free_limit = (1 + nr_cpus_node(node)) *
3637                                        cachep->batchcount + cachep->num;
3638                        spin_unlock_irq(&n->list_lock);
3639                        slabs_destroy(cachep, &list);
3640                        kfree(shared);
3641                        free_alien_cache(new_alien);
3642                        continue;
3643                }
3644                n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3645                if (!n) {
3646                        free_alien_cache(new_alien);
3647                        kfree(new_shared);
3648                        goto fail;
3649                }
3650
3651                kmem_cache_node_init(n);
3652                n->next_reap = jiffies + REAPTIMEOUT_NODE +
3653                                ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3654                n->shared = new_shared;
3655                n->alien = new_alien;
3656                n->free_limit = (1 + nr_cpus_node(node)) *
3657                                        cachep->batchcount + cachep->num;
3658                cachep->node[node] = n;
3659        }
3660        return 0;
3661
3662fail:
3663        if (!cachep->list.next) {
3664                /* Cache is not active yet. Roll back what we did */
3665                node--;
3666                while (node >= 0) {
3667                        n = get_node(cachep, node);
3668                        if (n) {
3669                                kfree(n->shared);
3670                                free_alien_cache(n->alien);
3671                                kfree(n);
3672                                cachep->node[node] = NULL;
3673                        }
3674                        node--;
3675                }
3676        }
3677        return -ENOMEM;
3678}
3679
3680/* Always called with the slab_mutex held */
3681static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3682                                int batchcount, int shared, gfp_t gfp)
3683{
3684        struct array_cache __percpu *cpu_cache, *prev;
3685        int cpu;
3686
3687        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3688        if (!cpu_cache)
3689                return -ENOMEM;
3690
3691        prev = cachep->cpu_cache;
3692        cachep->cpu_cache = cpu_cache;
3693        kick_all_cpus_sync();
3694
3695        check_irq_on();
3696        cachep->batchcount = batchcount;
3697        cachep->limit = limit;
3698        cachep->shared = shared;
3699
3700        if (!prev)
3701                goto alloc_node;
3702
3703        for_each_online_cpu(cpu) {
3704                LIST_HEAD(list);
3705                int node;
3706                struct kmem_cache_node *n;
3707                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3708
3709                node = cpu_to_mem(cpu);
3710                n = get_node(cachep, node);
3711                spin_lock_irq(&n->list_lock);
3712                free_block(cachep, ac->entry, ac->avail, node, &list);
3713                spin_unlock_irq(&n->list_lock);
3714                slabs_destroy(cachep, &list);
3715        }
3716        free_percpu(prev);
3717
3718alloc_node:
3719        return alloc_kmem_cache_node(cachep, gfp);
3720}
3721
3722static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3723                                int batchcount, int shared, gfp_t gfp)
3724{
3725        int ret;
3726        struct kmem_cache *c;
3727
3728        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3729
3730        if (slab_state < FULL)
3731                return ret;
3732
3733        if ((ret < 0) || !is_root_cache(cachep))
3734                return ret;
3735
3736        lockdep_assert_held(&slab_mutex);
3737        for_each_memcg_cache(c, cachep) {
3738                /* return value determined by the root cache only */
3739                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3740        }
3741
3742        return ret;
3743}
3744
3745/* Called with slab_mutex held always */
3746static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3747{
3748        int err;
3749        int limit = 0;
3750        int shared = 0;
3751        int batchcount = 0;
3752
3753        if (!is_root_cache(cachep)) {
3754                struct kmem_cache *root = memcg_root_cache(cachep);
3755                limit = root->limit;
3756                shared = root->shared;
3757                batchcount = root->batchcount;
3758        }
3759
3760        if (limit && shared && batchcount)
3761                goto skip_setup;
3762        /*
3763         * The head array serves three purposes:
3764         * - create a LIFO ordering, i.e. return objects that are cache-warm
3765         * - reduce the number of spinlock operations.
3766         * - reduce the number of linked list operations on the slab and
3767         *   bufctl chains: array operations are cheaper.
3768         * The numbers are guessed, we should auto-tune as described by
3769         * Bonwick.
3770         */
3771        if (cachep->size > 131072)
3772                limit = 1;
3773        else if (cachep->size > PAGE_SIZE)
3774                limit = 8;
3775        else if (cachep->size > 1024)
3776                limit = 24;
3777        else if (cachep->size > 256)
3778                limit = 54;
3779        else
3780                limit = 120;
3781
3782        /*
3783         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3784         * allocation behaviour: Most allocs on one cpu, most free operations
3785         * on another cpu. For these cases, an efficient object passing between
3786         * cpus is necessary. This is provided by a shared array. The array
3787         * replaces Bonwick's magazine layer.
3788         * On uniprocessor, it's functionally equivalent (but less efficient)
3789         * to a larger limit. Thus disabled by default.
3790         */
3791        shared = 0;
3792        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3793                shared = 8;
3794
3795#if DEBUG
3796        /*
3797         * With debugging enabled, large batchcount lead to excessively long
3798         * periods with disabled local interrupts. Limit the batchcount
3799         */
3800        if (limit > 32)
3801                limit = 32;
3802#endif
3803        batchcount = (limit + 1) / 2;
3804skip_setup:
3805        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3806        if (err)
3807                printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3808                       cachep->name, -err);
3809        return err;
3810}
3811
3812/*
3813 * Drain an array if it contains any elements taking the node lock only if
3814 * necessary. Note that the node listlock also protects the array_cache
3815 * if drain_array() is used on the shared array.
3816 */
3817static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3818                         struct array_cache *ac, int force, int node)
3819{
3820        LIST_HEAD(list);
3821        int tofree;
3822
3823        if (!ac || !ac->avail)
3824                return;
3825        if (ac->touched && !force) {
3826                ac->touched = 0;
3827        } else {
3828                spin_lock_irq(&n->list_lock);
3829                if (ac->avail) {
3830                        tofree = force ? ac->avail : (ac->limit + 4) / 5;
3831                        if (tofree > ac->avail)
3832                                tofree = (ac->avail + 1) / 2;
3833                        free_block(cachep, ac->entry, tofree, node, &list);
3834                        ac->avail -= tofree;
3835                        memmove(ac->entry, &(ac->entry[tofree]),
3836                                sizeof(void *) * ac->avail);
3837                }
3838                spin_unlock_irq(&n->list_lock);
3839                slabs_destroy(cachep, &list);
3840        }
3841}
3842
3843/**
3844 * cache_reap - Reclaim memory from caches.
3845 * @w: work descriptor
3846 *
3847 * Called from workqueue/eventd every few seconds.
3848 * Purpose:
3849 * - clear the per-cpu caches for this CPU.
3850 * - return freeable pages to the main free memory pool.
3851 *
3852 * If we cannot acquire the cache chain mutex then just give up - we'll try
3853 * again on the next iteration.
3854 */
3855static void cache_reap(struct work_struct *w)
3856{
3857        struct kmem_cache *searchp;
3858        struct kmem_cache_node *n;
3859        int node = numa_mem_id();
3860        struct delayed_work *work = to_delayed_work(w);
3861
3862        if (!mutex_trylock(&slab_mutex))
3863                /* Give up. Setup the next iteration. */
3864                goto out;
3865
3866        list_for_each_entry(searchp, &slab_caches, list) {
3867                check_irq_on();
3868
3869                /*
3870                 * We only take the node lock if absolutely necessary and we
3871                 * have established with reasonable certainty that
3872                 * we can do some work if the lock was obtained.
3873                 */
3874                n = get_node(searchp, node);
3875
3876                reap_alien(searchp, n);
3877
3878                drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3879
3880                /*
3881                 * These are racy checks but it does not matter
3882                 * if we skip one check or scan twice.
3883                 */
3884                if (time_after(n->next_reap, jiffies))
3885                        goto next;
3886
3887                n->next_reap = jiffies + REAPTIMEOUT_NODE;
3888
3889                drain_array(searchp, n, n->shared, 0, node);
3890
3891                if (n->free_touched)
3892                        n->free_touched = 0;
3893                else {
3894                        int freed;
3895
3896                        freed = drain_freelist(searchp, n, (n->free_limit +
3897                                5 * searchp->num - 1) / (5 * searchp->num));
3898                        STATS_ADD_REAPED(searchp, freed);
3899                }
3900next:
3901                cond_resched();
3902        }
3903        check_irq_on();
3904        mutex_unlock(&slab_mutex);
3905        next_reap_node();
3906out:
3907        /* Set up the next iteration */
3908        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3909}
3910
3911#ifdef CONFIG_SLABINFO
3912void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3913{
3914        struct page *page;
3915        unsigned long active_objs;
3916        unsigned long num_objs;
3917        unsigned long active_slabs = 0;
3918        unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3919        const char *name;
3920        char *error = NULL;
3921        int node;
3922        struct kmem_cache_node *n;
3923
3924        active_objs = 0;
3925        num_slabs = 0;
3926        for_each_kmem_cache_node(cachep, node, n) {
3927
3928                check_irq_on();
3929                spin_lock_irq(&n->list_lock);
3930
3931                list_for_each_entry(page, &n->slabs_full, lru) {
3932                        if (page->active != cachep->num && !error)
3933                                error = "slabs_full accounting error";
3934                        active_objs += cachep->num;
3935                        active_slabs++;
3936                }
3937                list_for_each_entry(page, &n->slabs_partial, lru) {
3938                        if (page->active == cachep->num && !error)
3939                                error = "slabs_partial accounting error";
3940                        if (!page->active && !error)
3941                                error = "slabs_partial accounting error";
3942                        active_objs += page->active;
3943                        active_slabs++;
3944                }
3945                list_for_each_entry(page, &n->slabs_free, lru) {
3946                        if (page->active && !error)
3947                                error = "slabs_free accounting error";
3948                        num_slabs++;
3949                }
3950                free_objects += n->free_objects;
3951                if (n->shared)
3952                        shared_avail += n->shared->avail;
3953
3954                spin_unlock_irq(&n->list_lock);
3955        }
3956        num_slabs += active_slabs;
3957        num_objs = num_slabs * cachep->num;
3958        if (num_objs - active_objs != free_objects && !error)
3959                error = "free_objects accounting error";
3960
3961        name = cachep->name;
3962        if (error)
3963                printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3964
3965        sinfo->active_objs = active_objs;
3966        sinfo->num_objs = num_objs;
3967        sinfo->active_slabs = active_slabs;
3968        sinfo->num_slabs = num_slabs;
3969        sinfo->shared_avail = shared_avail;
3970        sinfo->limit = cachep->limit;
3971        sinfo->batchcount = cachep->batchcount;
3972        sinfo->shared = cachep->shared;
3973        sinfo->objects_per_slab = cachep->num;
3974        sinfo->cache_order = cachep->gfporder;
3975}
3976
3977void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3978{
3979#if STATS
3980        {                       /* node stats */
3981                unsigned long high = cachep->high_mark;
3982                unsigned long allocs = cachep->num_allocations;
3983                unsigned long grown = cachep->grown;
3984                unsigned long reaped = cachep->reaped;
3985                unsigned long errors = cachep->errors;
3986                unsigned long max_freeable = cachep->max_freeable;
3987                unsigned long node_allocs = cachep->node_allocs;
3988                unsigned long node_frees = cachep->node_frees;
3989                unsigned long overflows = cachep->node_overflow;
3990
3991                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3992                           "%4lu %4lu %4lu %4lu %4lu",
3993                           allocs, high, grown,
3994                           reaped, errors, max_freeable, node_allocs,
3995                           node_frees, overflows);
3996        }
3997        /* cpu stats */
3998        {
3999                unsigned long allochit = atomic_read(&cachep->allochit);
4000                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4001                unsigned long freehit = atomic_read(&cachep->freehit);
4002                unsigned long freemiss = atomic_read(&cachep->freemiss);
4003
4004                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4005                           allochit, allocmiss, freehit, freemiss);
4006        }
4007#endif
4008}
4009
4010#define MAX_SLABINFO_WRITE 128
4011/**
4012 * slabinfo_write - Tuning for the slab allocator
4013 * @file: unused
4014 * @buffer: user buffer
4015 * @count: data length
4016 * @ppos: unused
4017 */
4018ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4019                       size_t count, loff_t *ppos)
4020{
4021        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4022        int limit, batchcount, shared, res;
4023        struct kmem_cache *cachep;
4024
4025        if (count > MAX_SLABINFO_WRITE)
4026                return -EINVAL;
4027        if (copy_from_user(&kbuf, buffer, count))
4028                return -EFAULT;
4029        kbuf[MAX_SLABINFO_WRITE] = '\0';
4030
4031        tmp = strchr(kbuf, ' ');
4032        if (!tmp)
4033                return -EINVAL;
4034        *tmp = '\0';
4035        tmp++;
4036        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4037                return -EINVAL;
4038
4039        /* Find the cache in the chain of caches. */
4040        mutex_lock(&slab_mutex);
4041        res = -EINVAL;
4042        list_for_each_entry(cachep, &slab_caches, list) {
4043                if (!strcmp(cachep->name, kbuf)) {
4044                        if (limit < 1 || batchcount < 1 ||
4045                                        batchcount > limit || shared < 0) {
4046                                res = 0;
4047                        } else {
4048                                res = do_tune_cpucache(cachep, limit,
4049                                                       batchcount, shared,
4050                                                       GFP_KERNEL);
4051                        }
4052                        break;
4053                }
4054        }
4055        mutex_unlock(&slab_mutex);
4056        if (res >= 0)
4057                res = count;
4058        return res;
4059}
4060
4061#ifdef CONFIG_DEBUG_SLAB_LEAK
4062
4063static inline int add_caller(unsigned long *n, unsigned long v)
4064{
4065        unsigned long *p;
4066        int l;
4067        if (!v)
4068                return 1;
4069        l = n[1];
4070        p = n + 2;
4071        while (l) {
4072                int i = l/2;
4073                unsigned long *q = p + 2 * i;
4074                if (*q == v) {
4075                        q[1]++;
4076                        return 1;
4077                }
4078                if (*q > v) {
4079                        l = i;
4080                } else {
4081                        p = q + 2;
4082                        l -= i + 1;
4083                }
4084        }
4085        if (++n[1] == n[0])
4086                return 0;
4087        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4088        p[0] = v;
4089        p[1] = 1;
4090        return 1;
4091}
4092
4093static void handle_slab(unsigned long *n, struct kmem_cache *c,
4094                                                struct page *page)
4095{
4096        void *p;
4097        int i;
4098
4099        if (n[0] == n[1])
4100                return;
4101        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4102                if (get_obj_status(page, i) != OBJECT_ACTIVE)
4103                        continue;
4104
4105                if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4106                        return;
4107        }
4108}
4109
4110static void show_symbol(struct seq_file *m, unsigned long address)
4111{
4112#ifdef CONFIG_KALLSYMS
4113        unsigned long offset, size;
4114        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4115
4116        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4117                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4118                if (modname[0])
4119                        seq_printf(m, " [%s]", modname);
4120                return;
4121        }
4122#endif
4123        seq_printf(m, "%p", (void *)address);
4124}
4125
4126static int leaks_show(struct seq_file *m, void *p)
4127{
4128        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4129        struct page *page;
4130        struct kmem_cache_node *n;
4131        const char *name;
4132        unsigned long *x = m->private;
4133        int node;
4134        int i;
4135
4136        if (!(cachep->flags & SLAB_STORE_USER))
4137                return 0;
4138        if (!(cachep->flags & SLAB_RED_ZONE))
4139                return 0;
4140
4141        /* OK, we can do it */
4142
4143        x[1] = 0;
4144
4145        for_each_kmem_cache_node(cachep, node, n) {
4146
4147                check_irq_on();
4148                spin_lock_irq(&n->list_lock);
4149
4150                list_for_each_entry(page, &n->slabs_full, lru)
4151                        handle_slab(x, cachep, page);
4152                list_for_each_entry(page, &n->slabs_partial, lru)
4153                        handle_slab(x, cachep, page);
4154                spin_unlock_irq(&n->list_lock);
4155        }
4156        name = cachep->name;
4157        if (x[0] == x[1]) {
4158                /* Increase the buffer size */
4159                mutex_unlock(&slab_mutex);
4160                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4161                if (!m->private) {
4162                        /* Too bad, we are really out */
4163                        m->private = x;
4164                        mutex_lock(&slab_mutex);
4165                        return -ENOMEM;
4166                }
4167                *(unsigned long *)m->private = x[0] * 2;
4168                kfree(x);
4169                mutex_lock(&slab_mutex);
4170                /* Now make sure this entry will be retried */
4171                m->count = m->size;
4172                return 0;
4173        }
4174        for (i = 0; i < x[1]; i++) {
4175                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4176                show_symbol(m, x[2*i+2]);
4177                seq_putc(m, '\n');
4178        }
4179
4180        return 0;
4181}
4182
4183static const struct seq_operations slabstats_op = {
4184        .start = slab_start,
4185        .next = slab_next,
4186        .stop = slab_stop,
4187        .show = leaks_show,
4188};
4189
4190static int slabstats_open(struct inode *inode, struct file *file)
4191{
4192        unsigned long *n;
4193
4194        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4195        if (!n)
4196                return -ENOMEM;
4197
4198        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4199
4200        return 0;
4201}
4202
4203static const struct file_operations proc_slabstats_operations = {
4204        .open           = slabstats_open,
4205        .read           = seq_read,
4206        .llseek         = seq_lseek,
4207        .release        = seq_release_private,
4208};
4209#endif
4210
4211static int __init slab_proc_init(void)
4212{
4213#ifdef CONFIG_DEBUG_SLAB_LEAK
4214        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4215#endif
4216        return 0;
4217}
4218module_init(slab_proc_init);
4219#endif
4220
4221/**
4222 * ksize - get the actual amount of memory allocated for a given object
4223 * @objp: Pointer to the object
4224 *
4225 * kmalloc may internally round up allocations and return more memory
4226 * than requested. ksize() can be used to determine the actual amount of
4227 * memory allocated. The caller may use this additional memory, even though
4228 * a smaller amount of memory was initially specified with the kmalloc call.
4229 * The caller must guarantee that objp points to a valid object previously
4230 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4231 * must not be freed during the duration of the call.
4232 */
4233size_t ksize(const void *objp)
4234{
4235        BUG_ON(!objp);
4236        if (unlikely(objp == ZERO_SIZE_PTR))
4237                return 0;
4238
4239        return virt_to_cache(objp)->object_size;
4240}
4241EXPORT_SYMBOL(ksize);
4242