1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119
120#include <net/sock.h>
121
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include "internal.h"
129
130#include "slab.h"
131
132
133
134
135
136
137
138
139
140
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
152
153#define BYTES_PER_WORD sizeof(void *)
154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171
172
173
174
175static bool pfmemalloc_active __read_mostly;
176
177
178
179
180
181
182
183
184
185
186
187
188
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[];
195
196
197
198
199
200
201
202
203};
204
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
227
228
229
230
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235};
236
237
238
239
240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242#define CACHE_CACHE 0
243#define SIZE_NODE (MAX_NUMNODES)
244
245static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251static void cache_reap(struct work_struct *unused);
252
253static int slab_early_init = 1;
254
255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257static void kmem_cache_node_init(struct kmem_cache_node *parent)
258{
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
268}
269
270#define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
274 } while (0)
275
276#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
282
283#define CFLGS_OFF_SLAB (0x80000000UL)
284#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
285
286#define BATCHREFILL_LIMIT 16
287
288
289
290
291
292
293
294#define REAPTIMEOUT_AC (2*HZ)
295#define REAPTIMEOUT_NODE (4*HZ)
296
297#if STATS
298#define STATS_INC_ACTIVE(x) ((x)->num_active++)
299#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301#define STATS_INC_GROWN(x) ((x)->grown++)
302#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
303#define STATS_SET_HIGH(x) \
304 do { \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
307 } while (0)
308#define STATS_INC_ERR(x) ((x)->errors++)
309#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
310#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
311#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
312#define STATS_SET_FREEABLE(x, i) \
313 do { \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
316 } while (0)
317#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
321#else
322#define STATS_INC_ACTIVE(x) do { } while (0)
323#define STATS_DEC_ACTIVE(x) do { } while (0)
324#define STATS_INC_ALLOCED(x) do { } while (0)
325#define STATS_INC_GROWN(x) do { } while (0)
326#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
327#define STATS_SET_HIGH(x) do { } while (0)
328#define STATS_INC_ERR(x) do { } while (0)
329#define STATS_INC_NODEALLOCS(x) do { } while (0)
330#define STATS_INC_NODEFREES(x) do { } while (0)
331#define STATS_INC_ACOVERFLOW(x) do { } while (0)
332#define STATS_SET_FREEABLE(x, i) do { } while (0)
333#define STATS_INC_ALLOCHIT(x) do { } while (0)
334#define STATS_INC_ALLOCMISS(x) do { } while (0)
335#define STATS_INC_FREEHIT(x) do { } while (0)
336#define STATS_INC_FREEMISS(x) do { } while (0)
337#endif
338
339#if DEBUG
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354static int obj_offset(struct kmem_cache *cachep)
355{
356 return cachep->obj_offset;
357}
358
359static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360{
361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 return (unsigned long long*) (objp + obj_offset(cachep) -
363 sizeof(unsigned long long));
364}
365
366static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367{
368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 if (cachep->flags & SLAB_STORE_USER)
370 return (unsigned long long *)(objp + cachep->size -
371 sizeof(unsigned long long) -
372 REDZONE_ALIGN);
373 return (unsigned long long *) (objp + cachep->size -
374 sizeof(unsigned long long));
375}
376
377static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378{
379 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380 return (void **)(objp + cachep->size - BYTES_PER_WORD);
381}
382
383#else
384
385#define obj_offset(x) 0
386#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
389
390#endif
391
392#define OBJECT_FREE (0)
393#define OBJECT_ACTIVE (1)
394
395#ifdef CONFIG_DEBUG_SLAB_LEAK
396
397static void set_obj_status(struct page *page, int idx, int val)
398{
399 int freelist_size;
400 char *status;
401 struct kmem_cache *cachep = page->slab_cache;
402
403 freelist_size = cachep->num * sizeof(freelist_idx_t);
404 status = (char *)page->freelist + freelist_size;
405 status[idx] = val;
406}
407
408static inline unsigned int get_obj_status(struct page *page, int idx)
409{
410 int freelist_size;
411 char *status;
412 struct kmem_cache *cachep = page->slab_cache;
413
414 freelist_size = cachep->num * sizeof(freelist_idx_t);
415 status = (char *)page->freelist + freelist_size;
416
417 return status[idx];
418}
419
420#else
421static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423#endif
424
425
426
427
428
429#define SLAB_MAX_ORDER_HI 1
430#define SLAB_MAX_ORDER_LO 0
431static int slab_max_order = SLAB_MAX_ORDER_LO;
432static bool slab_max_order_set __initdata;
433
434static inline struct kmem_cache *virt_to_cache(const void *obj)
435{
436 struct page *page = virt_to_head_page(obj);
437 return page->slab_cache;
438}
439
440static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 unsigned int idx)
442{
443 return page->s_mem + cache->size * idx;
444}
445
446
447
448
449
450
451
452static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453 const struct page *page, void *obj)
454{
455 u32 offset = (obj - page->s_mem);
456 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457}
458
459
460static struct kmem_cache kmem_cache_boot = {
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
464 .size = sizeof(struct kmem_cache),
465 .name = "kmem_cache",
466};
467
468#define BAD_ALIEN_MAGIC 0x01020304ul
469
470static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471
472static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473{
474 return this_cpu_ptr(cachep->cpu_cache);
475}
476
477static size_t calculate_freelist_size(int nr_objs, size_t align)
478{
479 size_t freelist_size;
480
481 freelist_size = nr_objs * sizeof(freelist_idx_t);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 freelist_size += nr_objs * sizeof(char);
484
485 if (align)
486 freelist_size = ALIGN(freelist_size, align);
487
488 return freelist_size;
489}
490
491static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 size_t idx_size, size_t align)
493{
494 int nr_objs;
495 size_t remained_size;
496 size_t freelist_size;
497 int extra_space = 0;
498
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 extra_space = sizeof(char);
501
502
503
504
505
506
507
508
509 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510
511
512
513
514
515 remained_size = slab_size - nr_objs * buffer_size;
516 freelist_size = calculate_freelist_size(nr_objs, align);
517 if (remained_size < freelist_size)
518 nr_objs--;
519
520 return nr_objs;
521}
522
523
524
525
526static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 size_t align, int flags, size_t *left_over,
528 unsigned int *num)
529{
530 int nr_objs;
531 size_t mgmt_size;
532 size_t slab_size = PAGE_SIZE << gfporder;
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548 if (flags & CFLGS_OFF_SLAB) {
549 mgmt_size = 0;
550 nr_objs = slab_size / buffer_size;
551
552 } else {
553 nr_objs = calculate_nr_objs(slab_size, buffer_size,
554 sizeof(freelist_idx_t), align);
555 mgmt_size = calculate_freelist_size(nr_objs, align);
556 }
557 *num = nr_objs;
558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559}
560
561#if DEBUG
562#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563
564static void __slab_error(const char *function, struct kmem_cache *cachep,
565 char *msg)
566{
567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568 function, cachep->name, msg);
569 dump_stack();
570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571}
572#endif
573
574
575
576
577
578
579
580
581
582static int use_alien_caches __read_mostly = 1;
583static int __init noaliencache_setup(char *s)
584{
585 use_alien_caches = 0;
586 return 1;
587}
588__setup("noaliencache", noaliencache_setup);
589
590static int __init slab_max_order_setup(char *str)
591{
592 get_option(&str, &slab_max_order);
593 slab_max_order = slab_max_order < 0 ? 0 :
594 min(slab_max_order, MAX_ORDER - 1);
595 slab_max_order_set = true;
596
597 return 1;
598}
599__setup("slab_max_order=", slab_max_order_setup);
600
601#ifdef CONFIG_NUMA
602
603
604
605
606
607
608static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609
610static void init_reap_node(int cpu)
611{
612 int node;
613
614 node = next_node(cpu_to_mem(cpu), node_online_map);
615 if (node == MAX_NUMNODES)
616 node = first_node(node_online_map);
617
618 per_cpu(slab_reap_node, cpu) = node;
619}
620
621static void next_reap_node(void)
622{
623 int node = __this_cpu_read(slab_reap_node);
624
625 node = next_node(node, node_online_map);
626 if (unlikely(node >= MAX_NUMNODES))
627 node = first_node(node_online_map);
628 __this_cpu_write(slab_reap_node, node);
629}
630
631#else
632#define init_reap_node(cpu) do { } while (0)
633#define next_reap_node(void) do { } while (0)
634#endif
635
636
637
638
639
640
641
642
643static void start_cpu_timer(int cpu)
644{
645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646
647
648
649
650
651
652 if (keventd_up() && reap_work->work.func == NULL) {
653 init_reap_node(cpu);
654 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 schedule_delayed_work_on(cpu, reap_work,
656 __round_jiffies_relative(HZ, cpu));
657 }
658}
659
660static void init_arraycache(struct array_cache *ac, int limit, int batch)
661{
662
663
664
665
666
667
668
669 kmemleak_no_scan(ac);
670 if (ac) {
671 ac->avail = 0;
672 ac->limit = limit;
673 ac->batchcount = batch;
674 ac->touched = 0;
675 }
676}
677
678static struct array_cache *alloc_arraycache(int node, int entries,
679 int batchcount, gfp_t gfp)
680{
681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 struct array_cache *ac = NULL;
683
684 ac = kmalloc_node(memsize, gfp, node);
685 init_arraycache(ac, entries, batchcount);
686 return ac;
687}
688
689static inline bool is_slab_pfmemalloc(struct page *page)
690{
691 return PageSlabPfmemalloc(page);
692}
693
694
695static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 struct array_cache *ac)
697{
698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699 struct page *page;
700 unsigned long flags;
701
702 if (!pfmemalloc_active)
703 return;
704
705 spin_lock_irqsave(&n->list_lock, flags);
706 list_for_each_entry(page, &n->slabs_full, lru)
707 if (is_slab_pfmemalloc(page))
708 goto out;
709
710 list_for_each_entry(page, &n->slabs_partial, lru)
711 if (is_slab_pfmemalloc(page))
712 goto out;
713
714 list_for_each_entry(page, &n->slabs_free, lru)
715 if (is_slab_pfmemalloc(page))
716 goto out;
717
718 pfmemalloc_active = false;
719out:
720 spin_unlock_irqrestore(&n->list_lock, flags);
721}
722
723static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 gfp_t flags, bool force_refill)
725{
726 int i;
727 void *objp = ac->entry[--ac->avail];
728
729
730 if (unlikely(is_obj_pfmemalloc(objp))) {
731 struct kmem_cache_node *n;
732
733 if (gfp_pfmemalloc_allowed(flags)) {
734 clear_obj_pfmemalloc(&objp);
735 return objp;
736 }
737
738
739 for (i = 0; i < ac->avail; i++) {
740
741 if (!is_obj_pfmemalloc(ac->entry[i])) {
742 objp = ac->entry[i];
743 ac->entry[i] = ac->entry[ac->avail];
744 ac->entry[ac->avail] = objp;
745 return objp;
746 }
747 }
748
749
750
751
752
753 n = get_node(cachep, numa_mem_id());
754 if (!list_empty(&n->slabs_free) && force_refill) {
755 struct page *page = virt_to_head_page(objp);
756 ClearPageSlabPfmemalloc(page);
757 clear_obj_pfmemalloc(&objp);
758 recheck_pfmemalloc_active(cachep, ac);
759 return objp;
760 }
761
762
763 ac->avail++;
764 objp = NULL;
765 }
766
767 return objp;
768}
769
770static inline void *ac_get_obj(struct kmem_cache *cachep,
771 struct array_cache *ac, gfp_t flags, bool force_refill)
772{
773 void *objp;
774
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 else
778 objp = ac->entry[--ac->avail];
779
780 return objp;
781}
782
783static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 struct array_cache *ac, void *objp)
785{
786 if (unlikely(pfmemalloc_active)) {
787
788 struct page *page = virt_to_head_page(objp);
789 if (PageSlabPfmemalloc(page))
790 set_obj_pfmemalloc(&objp);
791 }
792
793 return objp;
794}
795
796static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 void *objp)
798{
799 if (unlikely(sk_memalloc_socks()))
800 objp = __ac_put_obj(cachep, ac, objp);
801
802 ac->entry[ac->avail++] = objp;
803}
804
805
806
807
808
809
810
811static int transfer_objects(struct array_cache *to,
812 struct array_cache *from, unsigned int max)
813{
814
815 int nr = min3(from->avail, max, to->limit - to->avail);
816
817 if (!nr)
818 return 0;
819
820 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 sizeof(void *) *nr);
822
823 from->avail -= nr;
824 to->avail += nr;
825 return nr;
826}
827
828#ifndef CONFIG_NUMA
829
830#define drain_alien_cache(cachep, alien) do { } while (0)
831#define reap_alien(cachep, n) do { } while (0)
832
833static inline struct alien_cache **alloc_alien_cache(int node,
834 int limit, gfp_t gfp)
835{
836 return (struct alien_cache **)BAD_ALIEN_MAGIC;
837}
838
839static inline void free_alien_cache(struct alien_cache **ac_ptr)
840{
841}
842
843static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844{
845 return 0;
846}
847
848static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 gfp_t flags)
850{
851 return NULL;
852}
853
854static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 gfp_t flags, int nodeid)
856{
857 return NULL;
858}
859
860static inline gfp_t gfp_exact_node(gfp_t flags)
861{
862 return flags;
863}
864
865#else
866
867static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869
870static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 int batch, gfp_t gfp)
872{
873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
874 struct alien_cache *alc = NULL;
875
876 alc = kmalloc_node(memsize, gfp, node);
877 init_arraycache(&alc->ac, entries, batch);
878 spin_lock_init(&alc->lock);
879 return alc;
880}
881
882static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883{
884 struct alien_cache **alc_ptr;
885 size_t memsize = sizeof(void *) * nr_node_ids;
886 int i;
887
888 if (limit > 1)
889 limit = 12;
890 alc_ptr = kzalloc_node(memsize, gfp, node);
891 if (!alc_ptr)
892 return NULL;
893
894 for_each_node(i) {
895 if (i == node || !node_online(i))
896 continue;
897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898 if (!alc_ptr[i]) {
899 for (i--; i >= 0; i--)
900 kfree(alc_ptr[i]);
901 kfree(alc_ptr);
902 return NULL;
903 }
904 }
905 return alc_ptr;
906}
907
908static void free_alien_cache(struct alien_cache **alc_ptr)
909{
910 int i;
911
912 if (!alc_ptr)
913 return;
914 for_each_node(i)
915 kfree(alc_ptr[i]);
916 kfree(alc_ptr);
917}
918
919static void __drain_alien_cache(struct kmem_cache *cachep,
920 struct array_cache *ac, int node,
921 struct list_head *list)
922{
923 struct kmem_cache_node *n = get_node(cachep, node);
924
925 if (ac->avail) {
926 spin_lock(&n->list_lock);
927
928
929
930
931
932 if (n->shared)
933 transfer_objects(n->shared, ac, ac->limit);
934
935 free_block(cachep, ac->entry, ac->avail, node, list);
936 ac->avail = 0;
937 spin_unlock(&n->list_lock);
938 }
939}
940
941
942
943
944static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945{
946 int node = __this_cpu_read(slab_reap_node);
947
948 if (n->alien) {
949 struct alien_cache *alc = n->alien[node];
950 struct array_cache *ac;
951
952 if (alc) {
953 ac = &alc->ac;
954 if (ac->avail && spin_trylock_irq(&alc->lock)) {
955 LIST_HEAD(list);
956
957 __drain_alien_cache(cachep, ac, node, &list);
958 spin_unlock_irq(&alc->lock);
959 slabs_destroy(cachep, &list);
960 }
961 }
962 }
963}
964
965static void drain_alien_cache(struct kmem_cache *cachep,
966 struct alien_cache **alien)
967{
968 int i = 0;
969 struct alien_cache *alc;
970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
974 alc = alien[i];
975 if (alc) {
976 LIST_HEAD(list);
977
978 ac = &alc->ac;
979 spin_lock_irqsave(&alc->lock, flags);
980 __drain_alien_cache(cachep, ac, i, &list);
981 spin_unlock_irqrestore(&alc->lock, flags);
982 slabs_destroy(cachep, &list);
983 }
984 }
985}
986
987static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
988 int node, int page_node)
989{
990 struct kmem_cache_node *n;
991 struct alien_cache *alien = NULL;
992 struct array_cache *ac;
993 LIST_HEAD(list);
994
995 n = get_node(cachep, node);
996 STATS_INC_NODEFREES(cachep);
997 if (n->alien && n->alien[page_node]) {
998 alien = n->alien[page_node];
999 ac = &alien->ac;
1000 spin_lock(&alien->lock);
1001 if (unlikely(ac->avail == ac->limit)) {
1002 STATS_INC_ACOVERFLOW(cachep);
1003 __drain_alien_cache(cachep, ac, page_node, &list);
1004 }
1005 ac_put_obj(cachep, ac, objp);
1006 spin_unlock(&alien->lock);
1007 slabs_destroy(cachep, &list);
1008 } else {
1009 n = get_node(cachep, page_node);
1010 spin_lock(&n->list_lock);
1011 free_block(cachep, &objp, 1, page_node, &list);
1012 spin_unlock(&n->list_lock);
1013 slabs_destroy(cachep, &list);
1014 }
1015 return 1;
1016}
1017
1018static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019{
1020 int page_node = page_to_nid(virt_to_page(objp));
1021 int node = numa_mem_id();
1022
1023
1024
1025
1026 if (likely(node == page_node))
1027 return 0;
1028
1029 return __cache_free_alien(cachep, objp, node, page_node);
1030}
1031
1032
1033
1034
1035
1036static inline gfp_t gfp_exact_node(gfp_t flags)
1037{
1038 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
1039}
1040#endif
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051static int init_cache_node_node(int node)
1052{
1053 struct kmem_cache *cachep;
1054 struct kmem_cache_node *n;
1055 const size_t memsize = sizeof(struct kmem_cache_node);
1056
1057 list_for_each_entry(cachep, &slab_caches, list) {
1058
1059
1060
1061
1062
1063 n = get_node(cachep, node);
1064 if (!n) {
1065 n = kmalloc_node(memsize, GFP_KERNEL, node);
1066 if (!n)
1067 return -ENOMEM;
1068 kmem_cache_node_init(n);
1069 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1070 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1071
1072
1073
1074
1075
1076
1077 cachep->node[node] = n;
1078 }
1079
1080 spin_lock_irq(&n->list_lock);
1081 n->free_limit =
1082 (1 + nr_cpus_node(node)) *
1083 cachep->batchcount + cachep->num;
1084 spin_unlock_irq(&n->list_lock);
1085 }
1086 return 0;
1087}
1088
1089static inline int slabs_tofree(struct kmem_cache *cachep,
1090 struct kmem_cache_node *n)
1091{
1092 return (n->free_objects + cachep->num - 1) / cachep->num;
1093}
1094
1095static void cpuup_canceled(long cpu)
1096{
1097 struct kmem_cache *cachep;
1098 struct kmem_cache_node *n = NULL;
1099 int node = cpu_to_mem(cpu);
1100 const struct cpumask *mask = cpumask_of_node(node);
1101
1102 list_for_each_entry(cachep, &slab_caches, list) {
1103 struct array_cache *nc;
1104 struct array_cache *shared;
1105 struct alien_cache **alien;
1106 LIST_HEAD(list);
1107
1108 n = get_node(cachep, node);
1109 if (!n)
1110 continue;
1111
1112 spin_lock_irq(&n->list_lock);
1113
1114
1115 n->free_limit -= cachep->batchcount;
1116
1117
1118 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1119 if (nc) {
1120 free_block(cachep, nc->entry, nc->avail, node, &list);
1121 nc->avail = 0;
1122 }
1123
1124 if (!cpumask_empty(mask)) {
1125 spin_unlock_irq(&n->list_lock);
1126 goto free_slab;
1127 }
1128
1129 shared = n->shared;
1130 if (shared) {
1131 free_block(cachep, shared->entry,
1132 shared->avail, node, &list);
1133 n->shared = NULL;
1134 }
1135
1136 alien = n->alien;
1137 n->alien = NULL;
1138
1139 spin_unlock_irq(&n->list_lock);
1140
1141 kfree(shared);
1142 if (alien) {
1143 drain_alien_cache(cachep, alien);
1144 free_alien_cache(alien);
1145 }
1146
1147free_slab:
1148 slabs_destroy(cachep, &list);
1149 }
1150
1151
1152
1153
1154
1155 list_for_each_entry(cachep, &slab_caches, list) {
1156 n = get_node(cachep, node);
1157 if (!n)
1158 continue;
1159 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1160 }
1161}
1162
1163static int cpuup_prepare(long cpu)
1164{
1165 struct kmem_cache *cachep;
1166 struct kmem_cache_node *n = NULL;
1167 int node = cpu_to_mem(cpu);
1168 int err;
1169
1170
1171
1172
1173
1174
1175
1176 err = init_cache_node_node(node);
1177 if (err < 0)
1178 goto bad;
1179
1180
1181
1182
1183
1184 list_for_each_entry(cachep, &slab_caches, list) {
1185 struct array_cache *shared = NULL;
1186 struct alien_cache **alien = NULL;
1187
1188 if (cachep->shared) {
1189 shared = alloc_arraycache(node,
1190 cachep->shared * cachep->batchcount,
1191 0xbaadf00d, GFP_KERNEL);
1192 if (!shared)
1193 goto bad;
1194 }
1195 if (use_alien_caches) {
1196 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1197 if (!alien) {
1198 kfree(shared);
1199 goto bad;
1200 }
1201 }
1202 n = get_node(cachep, node);
1203 BUG_ON(!n);
1204
1205 spin_lock_irq(&n->list_lock);
1206 if (!n->shared) {
1207
1208
1209
1210
1211 n->shared = shared;
1212 shared = NULL;
1213 }
1214#ifdef CONFIG_NUMA
1215 if (!n->alien) {
1216 n->alien = alien;
1217 alien = NULL;
1218 }
1219#endif
1220 spin_unlock_irq(&n->list_lock);
1221 kfree(shared);
1222 free_alien_cache(alien);
1223 }
1224
1225 return 0;
1226bad:
1227 cpuup_canceled(cpu);
1228 return -ENOMEM;
1229}
1230
1231static int cpuup_callback(struct notifier_block *nfb,
1232 unsigned long action, void *hcpu)
1233{
1234 long cpu = (long)hcpu;
1235 int err = 0;
1236
1237 switch (action) {
1238 case CPU_UP_PREPARE:
1239 case CPU_UP_PREPARE_FROZEN:
1240 mutex_lock(&slab_mutex);
1241 err = cpuup_prepare(cpu);
1242 mutex_unlock(&slab_mutex);
1243 break;
1244 case CPU_ONLINE:
1245 case CPU_ONLINE_FROZEN:
1246 start_cpu_timer(cpu);
1247 break;
1248#ifdef CONFIG_HOTPLUG_CPU
1249 case CPU_DOWN_PREPARE:
1250 case CPU_DOWN_PREPARE_FROZEN:
1251
1252
1253
1254
1255
1256
1257 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1258
1259 per_cpu(slab_reap_work, cpu).work.func = NULL;
1260 break;
1261 case CPU_DOWN_FAILED:
1262 case CPU_DOWN_FAILED_FROZEN:
1263 start_cpu_timer(cpu);
1264 break;
1265 case CPU_DEAD:
1266 case CPU_DEAD_FROZEN:
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276#endif
1277 case CPU_UP_CANCELED:
1278 case CPU_UP_CANCELED_FROZEN:
1279 mutex_lock(&slab_mutex);
1280 cpuup_canceled(cpu);
1281 mutex_unlock(&slab_mutex);
1282 break;
1283 }
1284 return notifier_from_errno(err);
1285}
1286
1287static struct notifier_block cpucache_notifier = {
1288 &cpuup_callback, NULL, 0
1289};
1290
1291#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1292
1293
1294
1295
1296
1297
1298
1299static int __meminit drain_cache_node_node(int node)
1300{
1301 struct kmem_cache *cachep;
1302 int ret = 0;
1303
1304 list_for_each_entry(cachep, &slab_caches, list) {
1305 struct kmem_cache_node *n;
1306
1307 n = get_node(cachep, node);
1308 if (!n)
1309 continue;
1310
1311 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1312
1313 if (!list_empty(&n->slabs_full) ||
1314 !list_empty(&n->slabs_partial)) {
1315 ret = -EBUSY;
1316 break;
1317 }
1318 }
1319 return ret;
1320}
1321
1322static int __meminit slab_memory_callback(struct notifier_block *self,
1323 unsigned long action, void *arg)
1324{
1325 struct memory_notify *mnb = arg;
1326 int ret = 0;
1327 int nid;
1328
1329 nid = mnb->status_change_nid;
1330 if (nid < 0)
1331 goto out;
1332
1333 switch (action) {
1334 case MEM_GOING_ONLINE:
1335 mutex_lock(&slab_mutex);
1336 ret = init_cache_node_node(nid);
1337 mutex_unlock(&slab_mutex);
1338 break;
1339 case MEM_GOING_OFFLINE:
1340 mutex_lock(&slab_mutex);
1341 ret = drain_cache_node_node(nid);
1342 mutex_unlock(&slab_mutex);
1343 break;
1344 case MEM_ONLINE:
1345 case MEM_OFFLINE:
1346 case MEM_CANCEL_ONLINE:
1347 case MEM_CANCEL_OFFLINE:
1348 break;
1349 }
1350out:
1351 return notifier_from_errno(ret);
1352}
1353#endif
1354
1355
1356
1357
1358static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1359 int nodeid)
1360{
1361 struct kmem_cache_node *ptr;
1362
1363 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1364 BUG_ON(!ptr);
1365
1366 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1367
1368
1369
1370 spin_lock_init(&ptr->list_lock);
1371
1372 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1373 cachep->node[nodeid] = ptr;
1374}
1375
1376
1377
1378
1379
1380static void __init set_up_node(struct kmem_cache *cachep, int index)
1381{
1382 int node;
1383
1384 for_each_online_node(node) {
1385 cachep->node[node] = &init_kmem_cache_node[index + node];
1386 cachep->node[node]->next_reap = jiffies +
1387 REAPTIMEOUT_NODE +
1388 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1389 }
1390}
1391
1392
1393
1394
1395
1396void __init kmem_cache_init(void)
1397{
1398 int i;
1399
1400 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1401 sizeof(struct rcu_head));
1402 kmem_cache = &kmem_cache_boot;
1403
1404 if (num_possible_nodes() == 1)
1405 use_alien_caches = 0;
1406
1407 for (i = 0; i < NUM_INIT_LISTS; i++)
1408 kmem_cache_node_init(&init_kmem_cache_node[i]);
1409
1410
1411
1412
1413
1414
1415 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1416 slab_max_order = SLAB_MAX_ORDER_HI;
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443 create_boot_cache(kmem_cache, "kmem_cache",
1444 offsetof(struct kmem_cache, node) +
1445 nr_node_ids * sizeof(struct kmem_cache_node *),
1446 SLAB_HWCACHE_ALIGN);
1447 list_add(&kmem_cache->list, &slab_caches);
1448 slab_state = PARTIAL;
1449
1450
1451
1452
1453
1454 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1455 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1456 slab_state = PARTIAL_NODE;
1457 setup_kmalloc_cache_index_table();
1458
1459 slab_early_init = 0;
1460
1461
1462 {
1463 int nid;
1464
1465 for_each_online_node(nid) {
1466 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1467
1468 init_list(kmalloc_caches[INDEX_NODE],
1469 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1470 }
1471 }
1472
1473 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1474}
1475
1476void __init kmem_cache_init_late(void)
1477{
1478 struct kmem_cache *cachep;
1479
1480 slab_state = UP;
1481
1482
1483 mutex_lock(&slab_mutex);
1484 list_for_each_entry(cachep, &slab_caches, list)
1485 if (enable_cpucache(cachep, GFP_NOWAIT))
1486 BUG();
1487 mutex_unlock(&slab_mutex);
1488
1489
1490 slab_state = FULL;
1491
1492
1493
1494
1495
1496 register_cpu_notifier(&cpucache_notifier);
1497
1498#ifdef CONFIG_NUMA
1499
1500
1501
1502
1503 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1504#endif
1505
1506
1507
1508
1509
1510}
1511
1512static int __init cpucache_init(void)
1513{
1514 int cpu;
1515
1516
1517
1518
1519 for_each_online_cpu(cpu)
1520 start_cpu_timer(cpu);
1521
1522
1523 slab_state = FULL;
1524 return 0;
1525}
1526__initcall(cpucache_init);
1527
1528static noinline void
1529slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1530{
1531#if DEBUG
1532 struct kmem_cache_node *n;
1533 struct page *page;
1534 unsigned long flags;
1535 int node;
1536 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1537 DEFAULT_RATELIMIT_BURST);
1538
1539 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1540 return;
1541
1542 printk(KERN_WARNING
1543 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1544 nodeid, gfpflags);
1545 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1546 cachep->name, cachep->size, cachep->gfporder);
1547
1548 for_each_kmem_cache_node(cachep, node, n) {
1549 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1550 unsigned long active_slabs = 0, num_slabs = 0;
1551
1552 spin_lock_irqsave(&n->list_lock, flags);
1553 list_for_each_entry(page, &n->slabs_full, lru) {
1554 active_objs += cachep->num;
1555 active_slabs++;
1556 }
1557 list_for_each_entry(page, &n->slabs_partial, lru) {
1558 active_objs += page->active;
1559 active_slabs++;
1560 }
1561 list_for_each_entry(page, &n->slabs_free, lru)
1562 num_slabs++;
1563
1564 free_objects += n->free_objects;
1565 spin_unlock_irqrestore(&n->list_lock, flags);
1566
1567 num_slabs += active_slabs;
1568 num_objs = num_slabs * cachep->num;
1569 printk(KERN_WARNING
1570 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1571 node, active_slabs, num_slabs, active_objs, num_objs,
1572 free_objects);
1573 }
1574#endif
1575}
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1586 int nodeid)
1587{
1588 struct page *page;
1589 int nr_pages;
1590
1591 flags |= cachep->allocflags;
1592 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1593 flags |= __GFP_RECLAIMABLE;
1594
1595 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1596 return NULL;
1597
1598 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1599 if (!page) {
1600 memcg_uncharge_slab(cachep, cachep->gfporder);
1601 slab_out_of_memory(cachep, flags, nodeid);
1602 return NULL;
1603 }
1604
1605
1606 if (page_is_pfmemalloc(page))
1607 pfmemalloc_active = true;
1608
1609 nr_pages = (1 << cachep->gfporder);
1610 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1611 add_zone_page_state(page_zone(page),
1612 NR_SLAB_RECLAIMABLE, nr_pages);
1613 else
1614 add_zone_page_state(page_zone(page),
1615 NR_SLAB_UNRECLAIMABLE, nr_pages);
1616 __SetPageSlab(page);
1617 if (page_is_pfmemalloc(page))
1618 SetPageSlabPfmemalloc(page);
1619
1620 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1621 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1622
1623 if (cachep->ctor)
1624 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1625 else
1626 kmemcheck_mark_unallocated_pages(page, nr_pages);
1627 }
1628
1629 return page;
1630}
1631
1632
1633
1634
1635static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1636{
1637 const unsigned long nr_freed = (1 << cachep->gfporder);
1638
1639 kmemcheck_free_shadow(page, cachep->gfporder);
1640
1641 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1642 sub_zone_page_state(page_zone(page),
1643 NR_SLAB_RECLAIMABLE, nr_freed);
1644 else
1645 sub_zone_page_state(page_zone(page),
1646 NR_SLAB_UNRECLAIMABLE, nr_freed);
1647
1648 BUG_ON(!PageSlab(page));
1649 __ClearPageSlabPfmemalloc(page);
1650 __ClearPageSlab(page);
1651 page_mapcount_reset(page);
1652 page->mapping = NULL;
1653
1654 if (current->reclaim_state)
1655 current->reclaim_state->reclaimed_slab += nr_freed;
1656 __free_pages(page, cachep->gfporder);
1657 memcg_uncharge_slab(cachep, cachep->gfporder);
1658}
1659
1660static void kmem_rcu_free(struct rcu_head *head)
1661{
1662 struct kmem_cache *cachep;
1663 struct page *page;
1664
1665 page = container_of(head, struct page, rcu_head);
1666 cachep = page->slab_cache;
1667
1668 kmem_freepages(cachep, page);
1669}
1670
1671#if DEBUG
1672
1673#ifdef CONFIG_DEBUG_PAGEALLOC
1674static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1675 unsigned long caller)
1676{
1677 int size = cachep->object_size;
1678
1679 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1680
1681 if (size < 5 * sizeof(unsigned long))
1682 return;
1683
1684 *addr++ = 0x12345678;
1685 *addr++ = caller;
1686 *addr++ = smp_processor_id();
1687 size -= 3 * sizeof(unsigned long);
1688 {
1689 unsigned long *sptr = &caller;
1690 unsigned long svalue;
1691
1692 while (!kstack_end(sptr)) {
1693 svalue = *sptr++;
1694 if (kernel_text_address(svalue)) {
1695 *addr++ = svalue;
1696 size -= sizeof(unsigned long);
1697 if (size <= sizeof(unsigned long))
1698 break;
1699 }
1700 }
1701
1702 }
1703 *addr++ = 0x87654321;
1704}
1705#endif
1706
1707static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1708{
1709 int size = cachep->object_size;
1710 addr = &((char *)addr)[obj_offset(cachep)];
1711
1712 memset(addr, val, size);
1713 *(unsigned char *)(addr + size - 1) = POISON_END;
1714}
1715
1716static void dump_line(char *data, int offset, int limit)
1717{
1718 int i;
1719 unsigned char error = 0;
1720 int bad_count = 0;
1721
1722 printk(KERN_ERR "%03x: ", offset);
1723 for (i = 0; i < limit; i++) {
1724 if (data[offset + i] != POISON_FREE) {
1725 error = data[offset + i];
1726 bad_count++;
1727 }
1728 }
1729 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1730 &data[offset], limit, 1);
1731
1732 if (bad_count == 1) {
1733 error ^= POISON_FREE;
1734 if (!(error & (error - 1))) {
1735 printk(KERN_ERR "Single bit error detected. Probably "
1736 "bad RAM.\n");
1737#ifdef CONFIG_X86
1738 printk(KERN_ERR "Run memtest86+ or a similar memory "
1739 "test tool.\n");
1740#else
1741 printk(KERN_ERR "Run a memory test tool.\n");
1742#endif
1743 }
1744 }
1745}
1746#endif
1747
1748#if DEBUG
1749
1750static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1751{
1752 int i, size;
1753 char *realobj;
1754
1755 if (cachep->flags & SLAB_RED_ZONE) {
1756 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1757 *dbg_redzone1(cachep, objp),
1758 *dbg_redzone2(cachep, objp));
1759 }
1760
1761 if (cachep->flags & SLAB_STORE_USER) {
1762 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1763 *dbg_userword(cachep, objp),
1764 *dbg_userword(cachep, objp));
1765 }
1766 realobj = (char *)objp + obj_offset(cachep);
1767 size = cachep->object_size;
1768 for (i = 0; i < size && lines; i += 16, lines--) {
1769 int limit;
1770 limit = 16;
1771 if (i + limit > size)
1772 limit = size - i;
1773 dump_line(realobj, i, limit);
1774 }
1775}
1776
1777static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1778{
1779 char *realobj;
1780 int size, i;
1781 int lines = 0;
1782
1783 realobj = (char *)objp + obj_offset(cachep);
1784 size = cachep->object_size;
1785
1786 for (i = 0; i < size; i++) {
1787 char exp = POISON_FREE;
1788 if (i == size - 1)
1789 exp = POISON_END;
1790 if (realobj[i] != exp) {
1791 int limit;
1792
1793
1794 if (lines == 0) {
1795 printk(KERN_ERR
1796 "Slab corruption (%s): %s start=%p, len=%d\n",
1797 print_tainted(), cachep->name, realobj, size);
1798 print_objinfo(cachep, objp, 0);
1799 }
1800
1801 i = (i / 16) * 16;
1802 limit = 16;
1803 if (i + limit > size)
1804 limit = size - i;
1805 dump_line(realobj, i, limit);
1806 i += 16;
1807 lines++;
1808
1809 if (lines > 5)
1810 break;
1811 }
1812 }
1813 if (lines != 0) {
1814
1815
1816
1817 struct page *page = virt_to_head_page(objp);
1818 unsigned int objnr;
1819
1820 objnr = obj_to_index(cachep, page, objp);
1821 if (objnr) {
1822 objp = index_to_obj(cachep, page, objnr - 1);
1823 realobj = (char *)objp + obj_offset(cachep);
1824 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1825 realobj, size);
1826 print_objinfo(cachep, objp, 2);
1827 }
1828 if (objnr + 1 < cachep->num) {
1829 objp = index_to_obj(cachep, page, objnr + 1);
1830 realobj = (char *)objp + obj_offset(cachep);
1831 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1832 realobj, size);
1833 print_objinfo(cachep, objp, 2);
1834 }
1835 }
1836}
1837#endif
1838
1839#if DEBUG
1840static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1841 struct page *page)
1842{
1843 int i;
1844 for (i = 0; i < cachep->num; i++) {
1845 void *objp = index_to_obj(cachep, page, i);
1846
1847 if (cachep->flags & SLAB_POISON) {
1848#ifdef CONFIG_DEBUG_PAGEALLOC
1849 if (cachep->size % PAGE_SIZE == 0 &&
1850 OFF_SLAB(cachep))
1851 kernel_map_pages(virt_to_page(objp),
1852 cachep->size / PAGE_SIZE, 1);
1853 else
1854 check_poison_obj(cachep, objp);
1855#else
1856 check_poison_obj(cachep, objp);
1857#endif
1858 }
1859 if (cachep->flags & SLAB_RED_ZONE) {
1860 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1861 slab_error(cachep, "start of a freed object "
1862 "was overwritten");
1863 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1864 slab_error(cachep, "end of a freed object "
1865 "was overwritten");
1866 }
1867 }
1868}
1869#else
1870static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1871 struct page *page)
1872{
1873}
1874#endif
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1886{
1887 void *freelist;
1888
1889 freelist = page->freelist;
1890 slab_destroy_debugcheck(cachep, page);
1891 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1892 struct rcu_head *head;
1893
1894
1895
1896
1897
1898
1899
1900 head = (void *)&page->rcu_head;
1901 call_rcu(head, kmem_rcu_free);
1902
1903 } else {
1904 kmem_freepages(cachep, page);
1905 }
1906
1907
1908
1909
1910
1911 if (OFF_SLAB(cachep))
1912 kmem_cache_free(cachep->freelist_cache, freelist);
1913}
1914
1915static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1916{
1917 struct page *page, *n;
1918
1919 list_for_each_entry_safe(page, n, list, lru) {
1920 list_del(&page->lru);
1921 slab_destroy(cachep, page);
1922 }
1923}
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938static size_t calculate_slab_order(struct kmem_cache *cachep,
1939 size_t size, size_t align, unsigned long flags)
1940{
1941 unsigned long offslab_limit;
1942 size_t left_over = 0;
1943 int gfporder;
1944
1945 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1946 unsigned int num;
1947 size_t remainder;
1948
1949 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1950 if (!num)
1951 continue;
1952
1953
1954 if (num > SLAB_OBJ_MAX_NUM)
1955 break;
1956
1957 if (flags & CFLGS_OFF_SLAB) {
1958 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1959
1960
1961
1962
1963
1964 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1965 freelist_size_per_obj += sizeof(char);
1966 offslab_limit = size;
1967 offslab_limit /= freelist_size_per_obj;
1968
1969 if (num > offslab_limit)
1970 break;
1971 }
1972
1973
1974 cachep->num = num;
1975 cachep->gfporder = gfporder;
1976 left_over = remainder;
1977
1978
1979
1980
1981
1982
1983 if (flags & SLAB_RECLAIM_ACCOUNT)
1984 break;
1985
1986
1987
1988
1989
1990 if (gfporder >= slab_max_order)
1991 break;
1992
1993
1994
1995
1996 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1997 break;
1998 }
1999 return left_over;
2000}
2001
2002static struct array_cache __percpu *alloc_kmem_cache_cpus(
2003 struct kmem_cache *cachep, int entries, int batchcount)
2004{
2005 int cpu;
2006 size_t size;
2007 struct array_cache __percpu *cpu_cache;
2008
2009 size = sizeof(void *) * entries + sizeof(struct array_cache);
2010 cpu_cache = __alloc_percpu(size, sizeof(void *));
2011
2012 if (!cpu_cache)
2013 return NULL;
2014
2015 for_each_possible_cpu(cpu) {
2016 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2017 entries, batchcount);
2018 }
2019
2020 return cpu_cache;
2021}
2022
2023static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2024{
2025 if (slab_state >= FULL)
2026 return enable_cpucache(cachep, gfp);
2027
2028 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2029 if (!cachep->cpu_cache)
2030 return 1;
2031
2032 if (slab_state == DOWN) {
2033
2034 set_up_node(kmem_cache, CACHE_CACHE);
2035 } else if (slab_state == PARTIAL) {
2036
2037 set_up_node(cachep, SIZE_NODE);
2038 } else {
2039 int node;
2040
2041 for_each_online_node(node) {
2042 cachep->node[node] = kmalloc_node(
2043 sizeof(struct kmem_cache_node), gfp, node);
2044 BUG_ON(!cachep->node[node]);
2045 kmem_cache_node_init(cachep->node[node]);
2046 }
2047 }
2048
2049 cachep->node[numa_mem_id()]->next_reap =
2050 jiffies + REAPTIMEOUT_NODE +
2051 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2052
2053 cpu_cache_get(cachep)->avail = 0;
2054 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2055 cpu_cache_get(cachep)->batchcount = 1;
2056 cpu_cache_get(cachep)->touched = 0;
2057 cachep->batchcount = 1;
2058 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2059 return 0;
2060}
2061
2062unsigned long kmem_cache_flags(unsigned long object_size,
2063 unsigned long flags, const char *name,
2064 void (*ctor)(void *))
2065{
2066 return flags;
2067}
2068
2069struct kmem_cache *
2070__kmem_cache_alias(const char *name, size_t size, size_t align,
2071 unsigned long flags, void (*ctor)(void *))
2072{
2073 struct kmem_cache *cachep;
2074
2075 cachep = find_mergeable(size, align, flags, name, ctor);
2076 if (cachep) {
2077 cachep->refcount++;
2078
2079
2080
2081
2082
2083 cachep->object_size = max_t(int, cachep->object_size, size);
2084 }
2085 return cachep;
2086}
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109int
2110__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2111{
2112 size_t left_over, freelist_size;
2113 size_t ralign = BYTES_PER_WORD;
2114 gfp_t gfp;
2115 int err;
2116 size_t size = cachep->size;
2117
2118#if DEBUG
2119#if FORCED_DEBUG
2120
2121
2122
2123
2124
2125
2126 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2127 2 * sizeof(unsigned long long)))
2128 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2129 if (!(flags & SLAB_DESTROY_BY_RCU))
2130 flags |= SLAB_POISON;
2131#endif
2132 if (flags & SLAB_DESTROY_BY_RCU)
2133 BUG_ON(flags & SLAB_POISON);
2134#endif
2135
2136
2137
2138
2139
2140
2141 if (size & (BYTES_PER_WORD - 1)) {
2142 size += (BYTES_PER_WORD - 1);
2143 size &= ~(BYTES_PER_WORD - 1);
2144 }
2145
2146 if (flags & SLAB_RED_ZONE) {
2147 ralign = REDZONE_ALIGN;
2148
2149
2150 size += REDZONE_ALIGN - 1;
2151 size &= ~(REDZONE_ALIGN - 1);
2152 }
2153
2154
2155 if (ralign < cachep->align) {
2156 ralign = cachep->align;
2157 }
2158
2159 if (ralign > __alignof__(unsigned long long))
2160 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2161
2162
2163
2164 cachep->align = ralign;
2165
2166 if (slab_is_available())
2167 gfp = GFP_KERNEL;
2168 else
2169 gfp = GFP_NOWAIT;
2170
2171#if DEBUG
2172
2173
2174
2175
2176
2177 if (flags & SLAB_RED_ZONE) {
2178
2179 cachep->obj_offset += sizeof(unsigned long long);
2180 size += 2 * sizeof(unsigned long long);
2181 }
2182 if (flags & SLAB_STORE_USER) {
2183
2184
2185
2186
2187 if (flags & SLAB_RED_ZONE)
2188 size += REDZONE_ALIGN;
2189 else
2190 size += BYTES_PER_WORD;
2191 }
2192#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2193 if (size >= kmalloc_size(INDEX_NODE + 1)
2194 && cachep->object_size > cache_line_size()
2195 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2196 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2197 size = PAGE_SIZE;
2198 }
2199#endif
2200#endif
2201
2202
2203
2204
2205
2206
2207
2208 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2209 !(flags & SLAB_NOLEAKTRACE))
2210
2211
2212
2213
2214 flags |= CFLGS_OFF_SLAB;
2215
2216 size = ALIGN(size, cachep->align);
2217
2218
2219
2220
2221 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2222 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2223
2224 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2225
2226 if (!cachep->num)
2227 return -E2BIG;
2228
2229 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2230
2231
2232
2233
2234
2235 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2236 flags &= ~CFLGS_OFF_SLAB;
2237 left_over -= freelist_size;
2238 }
2239
2240 if (flags & CFLGS_OFF_SLAB) {
2241
2242 freelist_size = calculate_freelist_size(cachep->num, 0);
2243
2244#ifdef CONFIG_PAGE_POISONING
2245
2246
2247
2248
2249 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2250 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2251#endif
2252 }
2253
2254 cachep->colour_off = cache_line_size();
2255
2256 if (cachep->colour_off < cachep->align)
2257 cachep->colour_off = cachep->align;
2258 cachep->colour = left_over / cachep->colour_off;
2259 cachep->freelist_size = freelist_size;
2260 cachep->flags = flags;
2261 cachep->allocflags = __GFP_COMP;
2262 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2263 cachep->allocflags |= GFP_DMA;
2264 cachep->size = size;
2265 cachep->reciprocal_buffer_size = reciprocal_value(size);
2266
2267 if (flags & CFLGS_OFF_SLAB) {
2268 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2269
2270
2271
2272
2273
2274
2275
2276 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2277 }
2278
2279 err = setup_cpu_cache(cachep, gfp);
2280 if (err) {
2281 __kmem_cache_shutdown(cachep);
2282 return err;
2283 }
2284
2285 return 0;
2286}
2287
2288#if DEBUG
2289static void check_irq_off(void)
2290{
2291 BUG_ON(!irqs_disabled());
2292}
2293
2294static void check_irq_on(void)
2295{
2296 BUG_ON(irqs_disabled());
2297}
2298
2299static void check_spinlock_acquired(struct kmem_cache *cachep)
2300{
2301#ifdef CONFIG_SMP
2302 check_irq_off();
2303 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2304#endif
2305}
2306
2307static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2308{
2309#ifdef CONFIG_SMP
2310 check_irq_off();
2311 assert_spin_locked(&get_node(cachep, node)->list_lock);
2312#endif
2313}
2314
2315#else
2316#define check_irq_off() do { } while(0)
2317#define check_irq_on() do { } while(0)
2318#define check_spinlock_acquired(x) do { } while(0)
2319#define check_spinlock_acquired_node(x, y) do { } while(0)
2320#endif
2321
2322static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2323 struct array_cache *ac,
2324 int force, int node);
2325
2326static void do_drain(void *arg)
2327{
2328 struct kmem_cache *cachep = arg;
2329 struct array_cache *ac;
2330 int node = numa_mem_id();
2331 struct kmem_cache_node *n;
2332 LIST_HEAD(list);
2333
2334 check_irq_off();
2335 ac = cpu_cache_get(cachep);
2336 n = get_node(cachep, node);
2337 spin_lock(&n->list_lock);
2338 free_block(cachep, ac->entry, ac->avail, node, &list);
2339 spin_unlock(&n->list_lock);
2340 slabs_destroy(cachep, &list);
2341 ac->avail = 0;
2342}
2343
2344static void drain_cpu_caches(struct kmem_cache *cachep)
2345{
2346 struct kmem_cache_node *n;
2347 int node;
2348
2349 on_each_cpu(do_drain, cachep, 1);
2350 check_irq_on();
2351 for_each_kmem_cache_node(cachep, node, n)
2352 if (n->alien)
2353 drain_alien_cache(cachep, n->alien);
2354
2355 for_each_kmem_cache_node(cachep, node, n)
2356 drain_array(cachep, n, n->shared, 1, node);
2357}
2358
2359
2360
2361
2362
2363
2364
2365static int drain_freelist(struct kmem_cache *cache,
2366 struct kmem_cache_node *n, int tofree)
2367{
2368 struct list_head *p;
2369 int nr_freed;
2370 struct page *page;
2371
2372 nr_freed = 0;
2373 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2374
2375 spin_lock_irq(&n->list_lock);
2376 p = n->slabs_free.prev;
2377 if (p == &n->slabs_free) {
2378 spin_unlock_irq(&n->list_lock);
2379 goto out;
2380 }
2381
2382 page = list_entry(p, struct page, lru);
2383#if DEBUG
2384 BUG_ON(page->active);
2385#endif
2386 list_del(&page->lru);
2387
2388
2389
2390
2391 n->free_objects -= cache->num;
2392 spin_unlock_irq(&n->list_lock);
2393 slab_destroy(cache, page);
2394 nr_freed++;
2395 }
2396out:
2397 return nr_freed;
2398}
2399
2400int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2401{
2402 int ret = 0;
2403 int node;
2404 struct kmem_cache_node *n;
2405
2406 drain_cpu_caches(cachep);
2407
2408 check_irq_on();
2409 for_each_kmem_cache_node(cachep, node, n) {
2410 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2411
2412 ret += !list_empty(&n->slabs_full) ||
2413 !list_empty(&n->slabs_partial);
2414 }
2415 return (ret ? 1 : 0);
2416}
2417
2418int __kmem_cache_shutdown(struct kmem_cache *cachep)
2419{
2420 int i;
2421 struct kmem_cache_node *n;
2422 int rc = __kmem_cache_shrink(cachep, false);
2423
2424 if (rc)
2425 return rc;
2426
2427 free_percpu(cachep->cpu_cache);
2428
2429
2430 for_each_kmem_cache_node(cachep, i, n) {
2431 kfree(n->shared);
2432 free_alien_cache(n->alien);
2433 kfree(n);
2434 cachep->node[i] = NULL;
2435 }
2436 return 0;
2437}
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453static void *alloc_slabmgmt(struct kmem_cache *cachep,
2454 struct page *page, int colour_off,
2455 gfp_t local_flags, int nodeid)
2456{
2457 void *freelist;
2458 void *addr = page_address(page);
2459
2460 if (OFF_SLAB(cachep)) {
2461
2462 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2463 local_flags, nodeid);
2464 if (!freelist)
2465 return NULL;
2466 } else {
2467 freelist = addr + colour_off;
2468 colour_off += cachep->freelist_size;
2469 }
2470 page->active = 0;
2471 page->s_mem = addr + colour_off;
2472 return freelist;
2473}
2474
2475static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2476{
2477 return ((freelist_idx_t *)page->freelist)[idx];
2478}
2479
2480static inline void set_free_obj(struct page *page,
2481 unsigned int idx, freelist_idx_t val)
2482{
2483 ((freelist_idx_t *)(page->freelist))[idx] = val;
2484}
2485
2486static void cache_init_objs(struct kmem_cache *cachep,
2487 struct page *page)
2488{
2489 int i;
2490
2491 for (i = 0; i < cachep->num; i++) {
2492 void *objp = index_to_obj(cachep, page, i);
2493#if DEBUG
2494
2495 if (cachep->flags & SLAB_POISON)
2496 poison_obj(cachep, objp, POISON_FREE);
2497 if (cachep->flags & SLAB_STORE_USER)
2498 *dbg_userword(cachep, objp) = NULL;
2499
2500 if (cachep->flags & SLAB_RED_ZONE) {
2501 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2502 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2503 }
2504
2505
2506
2507
2508
2509 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2510 cachep->ctor(objp + obj_offset(cachep));
2511
2512 if (cachep->flags & SLAB_RED_ZONE) {
2513 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2514 slab_error(cachep, "constructor overwrote the"
2515 " end of an object");
2516 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2517 slab_error(cachep, "constructor overwrote the"
2518 " start of an object");
2519 }
2520 if ((cachep->size % PAGE_SIZE) == 0 &&
2521 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2522 kernel_map_pages(virt_to_page(objp),
2523 cachep->size / PAGE_SIZE, 0);
2524#else
2525 if (cachep->ctor)
2526 cachep->ctor(objp);
2527#endif
2528 set_obj_status(page, i, OBJECT_FREE);
2529 set_free_obj(page, i, i);
2530 }
2531}
2532
2533static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2534{
2535 if (CONFIG_ZONE_DMA_FLAG) {
2536 if (flags & GFP_DMA)
2537 BUG_ON(!(cachep->allocflags & GFP_DMA));
2538 else
2539 BUG_ON(cachep->allocflags & GFP_DMA);
2540 }
2541}
2542
2543static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2544 int nodeid)
2545{
2546 void *objp;
2547
2548 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2549 page->active++;
2550#if DEBUG
2551 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2552#endif
2553
2554 return objp;
2555}
2556
2557static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2558 void *objp, int nodeid)
2559{
2560 unsigned int objnr = obj_to_index(cachep, page, objp);
2561#if DEBUG
2562 unsigned int i;
2563
2564
2565 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2566
2567
2568 for (i = page->active; i < cachep->num; i++) {
2569 if (get_free_obj(page, i) == objnr) {
2570 printk(KERN_ERR "slab: double free detected in cache "
2571 "'%s', objp %p\n", cachep->name, objp);
2572 BUG();
2573 }
2574 }
2575#endif
2576 page->active--;
2577 set_free_obj(page, page->active, objnr);
2578}
2579
2580
2581
2582
2583
2584
2585static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2586 void *freelist)
2587{
2588 page->slab_cache = cache;
2589 page->freelist = freelist;
2590}
2591
2592
2593
2594
2595
2596static int cache_grow(struct kmem_cache *cachep,
2597 gfp_t flags, int nodeid, struct page *page)
2598{
2599 void *freelist;
2600 size_t offset;
2601 gfp_t local_flags;
2602 struct kmem_cache_node *n;
2603
2604
2605
2606
2607
2608 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2609 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2610 BUG();
2611 }
2612 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2613
2614
2615 check_irq_off();
2616 n = get_node(cachep, nodeid);
2617 spin_lock(&n->list_lock);
2618
2619
2620 offset = n->colour_next;
2621 n->colour_next++;
2622 if (n->colour_next >= cachep->colour)
2623 n->colour_next = 0;
2624 spin_unlock(&n->list_lock);
2625
2626 offset *= cachep->colour_off;
2627
2628 if (local_flags & __GFP_WAIT)
2629 local_irq_enable();
2630
2631
2632
2633
2634
2635
2636
2637 kmem_flagcheck(cachep, flags);
2638
2639
2640
2641
2642
2643 if (!page)
2644 page = kmem_getpages(cachep, local_flags, nodeid);
2645 if (!page)
2646 goto failed;
2647
2648
2649 freelist = alloc_slabmgmt(cachep, page, offset,
2650 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2651 if (!freelist)
2652 goto opps1;
2653
2654 slab_map_pages(cachep, page, freelist);
2655
2656 cache_init_objs(cachep, page);
2657
2658 if (local_flags & __GFP_WAIT)
2659 local_irq_disable();
2660 check_irq_off();
2661 spin_lock(&n->list_lock);
2662
2663
2664 list_add_tail(&page->lru, &(n->slabs_free));
2665 STATS_INC_GROWN(cachep);
2666 n->free_objects += cachep->num;
2667 spin_unlock(&n->list_lock);
2668 return 1;
2669opps1:
2670 kmem_freepages(cachep, page);
2671failed:
2672 if (local_flags & __GFP_WAIT)
2673 local_irq_disable();
2674 return 0;
2675}
2676
2677#if DEBUG
2678
2679
2680
2681
2682
2683
2684static void kfree_debugcheck(const void *objp)
2685{
2686 if (!virt_addr_valid(objp)) {
2687 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2688 (unsigned long)objp);
2689 BUG();
2690 }
2691}
2692
2693static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2694{
2695 unsigned long long redzone1, redzone2;
2696
2697 redzone1 = *dbg_redzone1(cache, obj);
2698 redzone2 = *dbg_redzone2(cache, obj);
2699
2700
2701
2702
2703 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2704 return;
2705
2706 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2707 slab_error(cache, "double free detected");
2708 else
2709 slab_error(cache, "memory outside object was overwritten");
2710
2711 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2712 obj, redzone1, redzone2);
2713}
2714
2715static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2716 unsigned long caller)
2717{
2718 unsigned int objnr;
2719 struct page *page;
2720
2721 BUG_ON(virt_to_cache(objp) != cachep);
2722
2723 objp -= obj_offset(cachep);
2724 kfree_debugcheck(objp);
2725 page = virt_to_head_page(objp);
2726
2727 if (cachep->flags & SLAB_RED_ZONE) {
2728 verify_redzone_free(cachep, objp);
2729 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2730 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2731 }
2732 if (cachep->flags & SLAB_STORE_USER)
2733 *dbg_userword(cachep, objp) = (void *)caller;
2734
2735 objnr = obj_to_index(cachep, page, objp);
2736
2737 BUG_ON(objnr >= cachep->num);
2738 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2739
2740 set_obj_status(page, objnr, OBJECT_FREE);
2741 if (cachep->flags & SLAB_POISON) {
2742#ifdef CONFIG_DEBUG_PAGEALLOC
2743 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2744 store_stackinfo(cachep, objp, caller);
2745 kernel_map_pages(virt_to_page(objp),
2746 cachep->size / PAGE_SIZE, 0);
2747 } else {
2748 poison_obj(cachep, objp, POISON_FREE);
2749 }
2750#else
2751 poison_obj(cachep, objp, POISON_FREE);
2752#endif
2753 }
2754 return objp;
2755}
2756
2757#else
2758#define kfree_debugcheck(x) do { } while(0)
2759#define cache_free_debugcheck(x,objp,z) (objp)
2760#endif
2761
2762static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2763 bool force_refill)
2764{
2765 int batchcount;
2766 struct kmem_cache_node *n;
2767 struct array_cache *ac;
2768 int node;
2769
2770 check_irq_off();
2771 node = numa_mem_id();
2772 if (unlikely(force_refill))
2773 goto force_grow;
2774retry:
2775 ac = cpu_cache_get(cachep);
2776 batchcount = ac->batchcount;
2777 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2778
2779
2780
2781
2782
2783 batchcount = BATCHREFILL_LIMIT;
2784 }
2785 n = get_node(cachep, node);
2786
2787 BUG_ON(ac->avail > 0 || !n);
2788 spin_lock(&n->list_lock);
2789
2790
2791 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2792 n->shared->touched = 1;
2793 goto alloc_done;
2794 }
2795
2796 while (batchcount > 0) {
2797 struct list_head *entry;
2798 struct page *page;
2799
2800 entry = n->slabs_partial.next;
2801 if (entry == &n->slabs_partial) {
2802 n->free_touched = 1;
2803 entry = n->slabs_free.next;
2804 if (entry == &n->slabs_free)
2805 goto must_grow;
2806 }
2807
2808 page = list_entry(entry, struct page, lru);
2809 check_spinlock_acquired(cachep);
2810
2811
2812
2813
2814
2815
2816 BUG_ON(page->active >= cachep->num);
2817
2818 while (page->active < cachep->num && batchcount--) {
2819 STATS_INC_ALLOCED(cachep);
2820 STATS_INC_ACTIVE(cachep);
2821 STATS_SET_HIGH(cachep);
2822
2823 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2824 node));
2825 }
2826
2827
2828 list_del(&page->lru);
2829 if (page->active == cachep->num)
2830 list_add(&page->lru, &n->slabs_full);
2831 else
2832 list_add(&page->lru, &n->slabs_partial);
2833 }
2834
2835must_grow:
2836 n->free_objects -= ac->avail;
2837alloc_done:
2838 spin_unlock(&n->list_lock);
2839
2840 if (unlikely(!ac->avail)) {
2841 int x;
2842force_grow:
2843 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2844
2845
2846 ac = cpu_cache_get(cachep);
2847 node = numa_mem_id();
2848
2849
2850 if (!x && (ac->avail == 0 || force_refill))
2851 return NULL;
2852
2853 if (!ac->avail)
2854 goto retry;
2855 }
2856 ac->touched = 1;
2857
2858 return ac_get_obj(cachep, ac, flags, force_refill);
2859}
2860
2861static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2862 gfp_t flags)
2863{
2864 might_sleep_if(flags & __GFP_WAIT);
2865#if DEBUG
2866 kmem_flagcheck(cachep, flags);
2867#endif
2868}
2869
2870#if DEBUG
2871static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2872 gfp_t flags, void *objp, unsigned long caller)
2873{
2874 struct page *page;
2875
2876 if (!objp)
2877 return objp;
2878 if (cachep->flags & SLAB_POISON) {
2879#ifdef CONFIG_DEBUG_PAGEALLOC
2880 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2881 kernel_map_pages(virt_to_page(objp),
2882 cachep->size / PAGE_SIZE, 1);
2883 else
2884 check_poison_obj(cachep, objp);
2885#else
2886 check_poison_obj(cachep, objp);
2887#endif
2888 poison_obj(cachep, objp, POISON_INUSE);
2889 }
2890 if (cachep->flags & SLAB_STORE_USER)
2891 *dbg_userword(cachep, objp) = (void *)caller;
2892
2893 if (cachep->flags & SLAB_RED_ZONE) {
2894 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2895 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2896 slab_error(cachep, "double free, or memory outside"
2897 " object was overwritten");
2898 printk(KERN_ERR
2899 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2900 objp, *dbg_redzone1(cachep, objp),
2901 *dbg_redzone2(cachep, objp));
2902 }
2903 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2904 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2905 }
2906
2907 page = virt_to_head_page(objp);
2908 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2909 objp += obj_offset(cachep);
2910 if (cachep->ctor && cachep->flags & SLAB_POISON)
2911 cachep->ctor(objp);
2912 if (ARCH_SLAB_MINALIGN &&
2913 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2914 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2915 objp, (int)ARCH_SLAB_MINALIGN);
2916 }
2917 return objp;
2918}
2919#else
2920#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2921#endif
2922
2923static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2924{
2925 if (unlikely(cachep == kmem_cache))
2926 return false;
2927
2928 return should_failslab(cachep->object_size, flags, cachep->flags);
2929}
2930
2931static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2932{
2933 void *objp;
2934 struct array_cache *ac;
2935 bool force_refill = false;
2936
2937 check_irq_off();
2938
2939 ac = cpu_cache_get(cachep);
2940 if (likely(ac->avail)) {
2941 ac->touched = 1;
2942 objp = ac_get_obj(cachep, ac, flags, false);
2943
2944
2945
2946
2947
2948 if (objp) {
2949 STATS_INC_ALLOCHIT(cachep);
2950 goto out;
2951 }
2952 force_refill = true;
2953 }
2954
2955 STATS_INC_ALLOCMISS(cachep);
2956 objp = cache_alloc_refill(cachep, flags, force_refill);
2957
2958
2959
2960
2961 ac = cpu_cache_get(cachep);
2962
2963out:
2964
2965
2966
2967
2968
2969 if (objp)
2970 kmemleak_erase(&ac->entry[ac->avail]);
2971 return objp;
2972}
2973
2974#ifdef CONFIG_NUMA
2975
2976
2977
2978
2979
2980
2981static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2982{
2983 int nid_alloc, nid_here;
2984
2985 if (in_interrupt() || (flags & __GFP_THISNODE))
2986 return NULL;
2987 nid_alloc = nid_here = numa_mem_id();
2988 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2989 nid_alloc = cpuset_slab_spread_node();
2990 else if (current->mempolicy)
2991 nid_alloc = mempolicy_slab_node();
2992 if (nid_alloc != nid_here)
2993 return ____cache_alloc_node(cachep, flags, nid_alloc);
2994 return NULL;
2995}
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3006{
3007 struct zonelist *zonelist;
3008 gfp_t local_flags;
3009 struct zoneref *z;
3010 struct zone *zone;
3011 enum zone_type high_zoneidx = gfp_zone(flags);
3012 void *obj = NULL;
3013 int nid;
3014 unsigned int cpuset_mems_cookie;
3015
3016 if (flags & __GFP_THISNODE)
3017 return NULL;
3018
3019 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3020
3021retry_cpuset:
3022 cpuset_mems_cookie = read_mems_allowed_begin();
3023 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3024
3025retry:
3026
3027
3028
3029
3030 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3031 nid = zone_to_nid(zone);
3032
3033 if (cpuset_zone_allowed(zone, flags) &&
3034 get_node(cache, nid) &&
3035 get_node(cache, nid)->free_objects) {
3036 obj = ____cache_alloc_node(cache,
3037 gfp_exact_node(flags), nid);
3038 if (obj)
3039 break;
3040 }
3041 }
3042
3043 if (!obj) {
3044
3045
3046
3047
3048
3049
3050 struct page *page;
3051
3052 if (local_flags & __GFP_WAIT)
3053 local_irq_enable();
3054 kmem_flagcheck(cache, flags);
3055 page = kmem_getpages(cache, local_flags, numa_mem_id());
3056 if (local_flags & __GFP_WAIT)
3057 local_irq_disable();
3058 if (page) {
3059
3060
3061
3062 nid = page_to_nid(page);
3063 if (cache_grow(cache, flags, nid, page)) {
3064 obj = ____cache_alloc_node(cache,
3065 gfp_exact_node(flags), nid);
3066 if (!obj)
3067
3068
3069
3070
3071
3072 goto retry;
3073 } else {
3074
3075 obj = NULL;
3076 }
3077 }
3078 }
3079
3080 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3081 goto retry_cpuset;
3082 return obj;
3083}
3084
3085
3086
3087
3088static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3089 int nodeid)
3090{
3091 struct list_head *entry;
3092 struct page *page;
3093 struct kmem_cache_node *n;
3094 void *obj;
3095 int x;
3096
3097 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3098 n = get_node(cachep, nodeid);
3099 BUG_ON(!n);
3100
3101retry:
3102 check_irq_off();
3103 spin_lock(&n->list_lock);
3104 entry = n->slabs_partial.next;
3105 if (entry == &n->slabs_partial) {
3106 n->free_touched = 1;
3107 entry = n->slabs_free.next;
3108 if (entry == &n->slabs_free)
3109 goto must_grow;
3110 }
3111
3112 page = list_entry(entry, struct page, lru);
3113 check_spinlock_acquired_node(cachep, nodeid);
3114
3115 STATS_INC_NODEALLOCS(cachep);
3116 STATS_INC_ACTIVE(cachep);
3117 STATS_SET_HIGH(cachep);
3118
3119 BUG_ON(page->active == cachep->num);
3120
3121 obj = slab_get_obj(cachep, page, nodeid);
3122 n->free_objects--;
3123
3124 list_del(&page->lru);
3125
3126 if (page->active == cachep->num)
3127 list_add(&page->lru, &n->slabs_full);
3128 else
3129 list_add(&page->lru, &n->slabs_partial);
3130
3131 spin_unlock(&n->list_lock);
3132 goto done;
3133
3134must_grow:
3135 spin_unlock(&n->list_lock);
3136 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3137 if (x)
3138 goto retry;
3139
3140 return fallback_alloc(cachep, flags);
3141
3142done:
3143 return obj;
3144}
3145
3146static __always_inline void *
3147slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3148 unsigned long caller)
3149{
3150 unsigned long save_flags;
3151 void *ptr;
3152 int slab_node = numa_mem_id();
3153
3154 flags &= gfp_allowed_mask;
3155
3156 lockdep_trace_alloc(flags);
3157
3158 if (slab_should_failslab(cachep, flags))
3159 return NULL;
3160
3161 cachep = memcg_kmem_get_cache(cachep, flags);
3162
3163 cache_alloc_debugcheck_before(cachep, flags);
3164 local_irq_save(save_flags);
3165
3166 if (nodeid == NUMA_NO_NODE)
3167 nodeid = slab_node;
3168
3169 if (unlikely(!get_node(cachep, nodeid))) {
3170
3171 ptr = fallback_alloc(cachep, flags);
3172 goto out;
3173 }
3174
3175 if (nodeid == slab_node) {
3176
3177
3178
3179
3180
3181
3182 ptr = ____cache_alloc(cachep, flags);
3183 if (ptr)
3184 goto out;
3185 }
3186
3187 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3188 out:
3189 local_irq_restore(save_flags);
3190 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3191 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3192 flags);
3193
3194 if (likely(ptr)) {
3195 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3196 if (unlikely(flags & __GFP_ZERO))
3197 memset(ptr, 0, cachep->object_size);
3198 }
3199
3200 memcg_kmem_put_cache(cachep);
3201 return ptr;
3202}
3203
3204static __always_inline void *
3205__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3206{
3207 void *objp;
3208
3209 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3210 objp = alternate_node_alloc(cache, flags);
3211 if (objp)
3212 goto out;
3213 }
3214 objp = ____cache_alloc(cache, flags);
3215
3216
3217
3218
3219
3220 if (!objp)
3221 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3222
3223 out:
3224 return objp;
3225}
3226#else
3227
3228static __always_inline void *
3229__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3230{
3231 return ____cache_alloc(cachep, flags);
3232}
3233
3234#endif
3235
3236static __always_inline void *
3237slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3238{
3239 unsigned long save_flags;
3240 void *objp;
3241
3242 flags &= gfp_allowed_mask;
3243
3244 lockdep_trace_alloc(flags);
3245
3246 if (slab_should_failslab(cachep, flags))
3247 return NULL;
3248
3249 cachep = memcg_kmem_get_cache(cachep, flags);
3250
3251 cache_alloc_debugcheck_before(cachep, flags);
3252 local_irq_save(save_flags);
3253 objp = __do_cache_alloc(cachep, flags);
3254 local_irq_restore(save_flags);
3255 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3256 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3257 flags);
3258 prefetchw(objp);
3259
3260 if (likely(objp)) {
3261 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3262 if (unlikely(flags & __GFP_ZERO))
3263 memset(objp, 0, cachep->object_size);
3264 }
3265
3266 memcg_kmem_put_cache(cachep);
3267 return objp;
3268}
3269
3270
3271
3272
3273
3274static void free_block(struct kmem_cache *cachep, void **objpp,
3275 int nr_objects, int node, struct list_head *list)
3276{
3277 int i;
3278 struct kmem_cache_node *n = get_node(cachep, node);
3279
3280 for (i = 0; i < nr_objects; i++) {
3281 void *objp;
3282 struct page *page;
3283
3284 clear_obj_pfmemalloc(&objpp[i]);
3285 objp = objpp[i];
3286
3287 page = virt_to_head_page(objp);
3288 list_del(&page->lru);
3289 check_spinlock_acquired_node(cachep, node);
3290 slab_put_obj(cachep, page, objp, node);
3291 STATS_DEC_ACTIVE(cachep);
3292 n->free_objects++;
3293
3294
3295 if (page->active == 0) {
3296 if (n->free_objects > n->free_limit) {
3297 n->free_objects -= cachep->num;
3298 list_add_tail(&page->lru, list);
3299 } else {
3300 list_add(&page->lru, &n->slabs_free);
3301 }
3302 } else {
3303
3304
3305
3306
3307 list_add_tail(&page->lru, &n->slabs_partial);
3308 }
3309 }
3310}
3311
3312static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3313{
3314 int batchcount;
3315 struct kmem_cache_node *n;
3316 int node = numa_mem_id();
3317 LIST_HEAD(list);
3318
3319 batchcount = ac->batchcount;
3320#if DEBUG
3321 BUG_ON(!batchcount || batchcount > ac->avail);
3322#endif
3323 check_irq_off();
3324 n = get_node(cachep, node);
3325 spin_lock(&n->list_lock);
3326 if (n->shared) {
3327 struct array_cache *shared_array = n->shared;
3328 int max = shared_array->limit - shared_array->avail;
3329 if (max) {
3330 if (batchcount > max)
3331 batchcount = max;
3332 memcpy(&(shared_array->entry[shared_array->avail]),
3333 ac->entry, sizeof(void *) * batchcount);
3334 shared_array->avail += batchcount;
3335 goto free_done;
3336 }
3337 }
3338
3339 free_block(cachep, ac->entry, batchcount, node, &list);
3340free_done:
3341#if STATS
3342 {
3343 int i = 0;
3344 struct list_head *p;
3345
3346 p = n->slabs_free.next;
3347 while (p != &(n->slabs_free)) {
3348 struct page *page;
3349
3350 page = list_entry(p, struct page, lru);
3351 BUG_ON(page->active);
3352
3353 i++;
3354 p = p->next;
3355 }
3356 STATS_SET_FREEABLE(cachep, i);
3357 }
3358#endif
3359 spin_unlock(&n->list_lock);
3360 slabs_destroy(cachep, &list);
3361 ac->avail -= batchcount;
3362 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3363}
3364
3365
3366
3367
3368
3369static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3370 unsigned long caller)
3371{
3372 struct array_cache *ac = cpu_cache_get(cachep);
3373
3374 check_irq_off();
3375 kmemleak_free_recursive(objp, cachep->flags);
3376 objp = cache_free_debugcheck(cachep, objp, caller);
3377
3378 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3379
3380
3381
3382
3383
3384
3385
3386
3387 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3388 return;
3389
3390 if (ac->avail < ac->limit) {
3391 STATS_INC_FREEHIT(cachep);
3392 } else {
3393 STATS_INC_FREEMISS(cachep);
3394 cache_flusharray(cachep, ac);
3395 }
3396
3397 ac_put_obj(cachep, ac, objp);
3398}
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3409{
3410 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3411
3412 trace_kmem_cache_alloc(_RET_IP_, ret,
3413 cachep->object_size, cachep->size, flags);
3414
3415 return ret;
3416}
3417EXPORT_SYMBOL(kmem_cache_alloc);
3418
3419#ifdef CONFIG_TRACING
3420void *
3421kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3422{
3423 void *ret;
3424
3425 ret = slab_alloc(cachep, flags, _RET_IP_);
3426
3427 trace_kmalloc(_RET_IP_, ret,
3428 size, cachep->size, flags);
3429 return ret;
3430}
3431EXPORT_SYMBOL(kmem_cache_alloc_trace);
3432#endif
3433
3434#ifdef CONFIG_NUMA
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3447{
3448 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3449
3450 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3451 cachep->object_size, cachep->size,
3452 flags, nodeid);
3453
3454 return ret;
3455}
3456EXPORT_SYMBOL(kmem_cache_alloc_node);
3457
3458#ifdef CONFIG_TRACING
3459void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3460 gfp_t flags,
3461 int nodeid,
3462 size_t size)
3463{
3464 void *ret;
3465
3466 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3467
3468 trace_kmalloc_node(_RET_IP_, ret,
3469 size, cachep->size,
3470 flags, nodeid);
3471 return ret;
3472}
3473EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3474#endif
3475
3476static __always_inline void *
3477__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3478{
3479 struct kmem_cache *cachep;
3480
3481 cachep = kmalloc_slab(size, flags);
3482 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3483 return cachep;
3484 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3485}
3486
3487void *__kmalloc_node(size_t size, gfp_t flags, int node)
3488{
3489 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3490}
3491EXPORT_SYMBOL(__kmalloc_node);
3492
3493void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3494 int node, unsigned long caller)
3495{
3496 return __do_kmalloc_node(size, flags, node, caller);
3497}
3498EXPORT_SYMBOL(__kmalloc_node_track_caller);
3499#endif
3500
3501
3502
3503
3504
3505
3506
3507static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3508 unsigned long caller)
3509{
3510 struct kmem_cache *cachep;
3511 void *ret;
3512
3513 cachep = kmalloc_slab(size, flags);
3514 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3515 return cachep;
3516 ret = slab_alloc(cachep, flags, caller);
3517
3518 trace_kmalloc(caller, ret,
3519 size, cachep->size, flags);
3520
3521 return ret;
3522}
3523
3524void *__kmalloc(size_t size, gfp_t flags)
3525{
3526 return __do_kmalloc(size, flags, _RET_IP_);
3527}
3528EXPORT_SYMBOL(__kmalloc);
3529
3530void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3531{
3532 return __do_kmalloc(size, flags, caller);
3533}
3534EXPORT_SYMBOL(__kmalloc_track_caller);
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3545{
3546 unsigned long flags;
3547 cachep = cache_from_obj(cachep, objp);
3548 if (!cachep)
3549 return;
3550
3551 local_irq_save(flags);
3552 debug_check_no_locks_freed(objp, cachep->object_size);
3553 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3554 debug_check_no_obj_freed(objp, cachep->object_size);
3555 __cache_free(cachep, objp, _RET_IP_);
3556 local_irq_restore(flags);
3557
3558 trace_kmem_cache_free(_RET_IP_, objp);
3559}
3560EXPORT_SYMBOL(kmem_cache_free);
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571void kfree(const void *objp)
3572{
3573 struct kmem_cache *c;
3574 unsigned long flags;
3575
3576 trace_kfree(_RET_IP_, objp);
3577
3578 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3579 return;
3580 local_irq_save(flags);
3581 kfree_debugcheck(objp);
3582 c = virt_to_cache(objp);
3583 debug_check_no_locks_freed(objp, c->object_size);
3584
3585 debug_check_no_obj_freed(objp, c->object_size);
3586 __cache_free(c, (void *)objp, _RET_IP_);
3587 local_irq_restore(flags);
3588}
3589EXPORT_SYMBOL(kfree);
3590
3591
3592
3593
3594static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3595{
3596 int node;
3597 struct kmem_cache_node *n;
3598 struct array_cache *new_shared;
3599 struct alien_cache **new_alien = NULL;
3600
3601 for_each_online_node(node) {
3602
3603 if (use_alien_caches) {
3604 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3605 if (!new_alien)
3606 goto fail;
3607 }
3608
3609 new_shared = NULL;
3610 if (cachep->shared) {
3611 new_shared = alloc_arraycache(node,
3612 cachep->shared*cachep->batchcount,
3613 0xbaadf00d, gfp);
3614 if (!new_shared) {
3615 free_alien_cache(new_alien);
3616 goto fail;
3617 }
3618 }
3619
3620 n = get_node(cachep, node);
3621 if (n) {
3622 struct array_cache *shared = n->shared;
3623 LIST_HEAD(list);
3624
3625 spin_lock_irq(&n->list_lock);
3626
3627 if (shared)
3628 free_block(cachep, shared->entry,
3629 shared->avail, node, &list);
3630
3631 n->shared = new_shared;
3632 if (!n->alien) {
3633 n->alien = new_alien;
3634 new_alien = NULL;
3635 }
3636 n->free_limit = (1 + nr_cpus_node(node)) *
3637 cachep->batchcount + cachep->num;
3638 spin_unlock_irq(&n->list_lock);
3639 slabs_destroy(cachep, &list);
3640 kfree(shared);
3641 free_alien_cache(new_alien);
3642 continue;
3643 }
3644 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3645 if (!n) {
3646 free_alien_cache(new_alien);
3647 kfree(new_shared);
3648 goto fail;
3649 }
3650
3651 kmem_cache_node_init(n);
3652 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3653 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3654 n->shared = new_shared;
3655 n->alien = new_alien;
3656 n->free_limit = (1 + nr_cpus_node(node)) *
3657 cachep->batchcount + cachep->num;
3658 cachep->node[node] = n;
3659 }
3660 return 0;
3661
3662fail:
3663 if (!cachep->list.next) {
3664
3665 node--;
3666 while (node >= 0) {
3667 n = get_node(cachep, node);
3668 if (n) {
3669 kfree(n->shared);
3670 free_alien_cache(n->alien);
3671 kfree(n);
3672 cachep->node[node] = NULL;
3673 }
3674 node--;
3675 }
3676 }
3677 return -ENOMEM;
3678}
3679
3680
3681static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3682 int batchcount, int shared, gfp_t gfp)
3683{
3684 struct array_cache __percpu *cpu_cache, *prev;
3685 int cpu;
3686
3687 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3688 if (!cpu_cache)
3689 return -ENOMEM;
3690
3691 prev = cachep->cpu_cache;
3692 cachep->cpu_cache = cpu_cache;
3693 kick_all_cpus_sync();
3694
3695 check_irq_on();
3696 cachep->batchcount = batchcount;
3697 cachep->limit = limit;
3698 cachep->shared = shared;
3699
3700 if (!prev)
3701 goto alloc_node;
3702
3703 for_each_online_cpu(cpu) {
3704 LIST_HEAD(list);
3705 int node;
3706 struct kmem_cache_node *n;
3707 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3708
3709 node = cpu_to_mem(cpu);
3710 n = get_node(cachep, node);
3711 spin_lock_irq(&n->list_lock);
3712 free_block(cachep, ac->entry, ac->avail, node, &list);
3713 spin_unlock_irq(&n->list_lock);
3714 slabs_destroy(cachep, &list);
3715 }
3716 free_percpu(prev);
3717
3718alloc_node:
3719 return alloc_kmem_cache_node(cachep, gfp);
3720}
3721
3722static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3723 int batchcount, int shared, gfp_t gfp)
3724{
3725 int ret;
3726 struct kmem_cache *c;
3727
3728 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3729
3730 if (slab_state < FULL)
3731 return ret;
3732
3733 if ((ret < 0) || !is_root_cache(cachep))
3734 return ret;
3735
3736 lockdep_assert_held(&slab_mutex);
3737 for_each_memcg_cache(c, cachep) {
3738
3739 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3740 }
3741
3742 return ret;
3743}
3744
3745
3746static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3747{
3748 int err;
3749 int limit = 0;
3750 int shared = 0;
3751 int batchcount = 0;
3752
3753 if (!is_root_cache(cachep)) {
3754 struct kmem_cache *root = memcg_root_cache(cachep);
3755 limit = root->limit;
3756 shared = root->shared;
3757 batchcount = root->batchcount;
3758 }
3759
3760 if (limit && shared && batchcount)
3761 goto skip_setup;
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771 if (cachep->size > 131072)
3772 limit = 1;
3773 else if (cachep->size > PAGE_SIZE)
3774 limit = 8;
3775 else if (cachep->size > 1024)
3776 limit = 24;
3777 else if (cachep->size > 256)
3778 limit = 54;
3779 else
3780 limit = 120;
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791 shared = 0;
3792 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3793 shared = 8;
3794
3795#if DEBUG
3796
3797
3798
3799
3800 if (limit > 32)
3801 limit = 32;
3802#endif
3803 batchcount = (limit + 1) / 2;
3804skip_setup:
3805 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3806 if (err)
3807 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3808 cachep->name, -err);
3809 return err;
3810}
3811
3812
3813
3814
3815
3816
3817static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3818 struct array_cache *ac, int force, int node)
3819{
3820 LIST_HEAD(list);
3821 int tofree;
3822
3823 if (!ac || !ac->avail)
3824 return;
3825 if (ac->touched && !force) {
3826 ac->touched = 0;
3827 } else {
3828 spin_lock_irq(&n->list_lock);
3829 if (ac->avail) {
3830 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3831 if (tofree > ac->avail)
3832 tofree = (ac->avail + 1) / 2;
3833 free_block(cachep, ac->entry, tofree, node, &list);
3834 ac->avail -= tofree;
3835 memmove(ac->entry, &(ac->entry[tofree]),
3836 sizeof(void *) * ac->avail);
3837 }
3838 spin_unlock_irq(&n->list_lock);
3839 slabs_destroy(cachep, &list);
3840 }
3841}
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855static void cache_reap(struct work_struct *w)
3856{
3857 struct kmem_cache *searchp;
3858 struct kmem_cache_node *n;
3859 int node = numa_mem_id();
3860 struct delayed_work *work = to_delayed_work(w);
3861
3862 if (!mutex_trylock(&slab_mutex))
3863
3864 goto out;
3865
3866 list_for_each_entry(searchp, &slab_caches, list) {
3867 check_irq_on();
3868
3869
3870
3871
3872
3873
3874 n = get_node(searchp, node);
3875
3876 reap_alien(searchp, n);
3877
3878 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3879
3880
3881
3882
3883
3884 if (time_after(n->next_reap, jiffies))
3885 goto next;
3886
3887 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3888
3889 drain_array(searchp, n, n->shared, 0, node);
3890
3891 if (n->free_touched)
3892 n->free_touched = 0;
3893 else {
3894 int freed;
3895
3896 freed = drain_freelist(searchp, n, (n->free_limit +
3897 5 * searchp->num - 1) / (5 * searchp->num));
3898 STATS_ADD_REAPED(searchp, freed);
3899 }
3900next:
3901 cond_resched();
3902 }
3903 check_irq_on();
3904 mutex_unlock(&slab_mutex);
3905 next_reap_node();
3906out:
3907
3908 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3909}
3910
3911#ifdef CONFIG_SLABINFO
3912void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3913{
3914 struct page *page;
3915 unsigned long active_objs;
3916 unsigned long num_objs;
3917 unsigned long active_slabs = 0;
3918 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3919 const char *name;
3920 char *error = NULL;
3921 int node;
3922 struct kmem_cache_node *n;
3923
3924 active_objs = 0;
3925 num_slabs = 0;
3926 for_each_kmem_cache_node(cachep, node, n) {
3927
3928 check_irq_on();
3929 spin_lock_irq(&n->list_lock);
3930
3931 list_for_each_entry(page, &n->slabs_full, lru) {
3932 if (page->active != cachep->num && !error)
3933 error = "slabs_full accounting error";
3934 active_objs += cachep->num;
3935 active_slabs++;
3936 }
3937 list_for_each_entry(page, &n->slabs_partial, lru) {
3938 if (page->active == cachep->num && !error)
3939 error = "slabs_partial accounting error";
3940 if (!page->active && !error)
3941 error = "slabs_partial accounting error";
3942 active_objs += page->active;
3943 active_slabs++;
3944 }
3945 list_for_each_entry(page, &n->slabs_free, lru) {
3946 if (page->active && !error)
3947 error = "slabs_free accounting error";
3948 num_slabs++;
3949 }
3950 free_objects += n->free_objects;
3951 if (n->shared)
3952 shared_avail += n->shared->avail;
3953
3954 spin_unlock_irq(&n->list_lock);
3955 }
3956 num_slabs += active_slabs;
3957 num_objs = num_slabs * cachep->num;
3958 if (num_objs - active_objs != free_objects && !error)
3959 error = "free_objects accounting error";
3960
3961 name = cachep->name;
3962 if (error)
3963 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3964
3965 sinfo->active_objs = active_objs;
3966 sinfo->num_objs = num_objs;
3967 sinfo->active_slabs = active_slabs;
3968 sinfo->num_slabs = num_slabs;
3969 sinfo->shared_avail = shared_avail;
3970 sinfo->limit = cachep->limit;
3971 sinfo->batchcount = cachep->batchcount;
3972 sinfo->shared = cachep->shared;
3973 sinfo->objects_per_slab = cachep->num;
3974 sinfo->cache_order = cachep->gfporder;
3975}
3976
3977void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3978{
3979#if STATS
3980 {
3981 unsigned long high = cachep->high_mark;
3982 unsigned long allocs = cachep->num_allocations;
3983 unsigned long grown = cachep->grown;
3984 unsigned long reaped = cachep->reaped;
3985 unsigned long errors = cachep->errors;
3986 unsigned long max_freeable = cachep->max_freeable;
3987 unsigned long node_allocs = cachep->node_allocs;
3988 unsigned long node_frees = cachep->node_frees;
3989 unsigned long overflows = cachep->node_overflow;
3990
3991 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3992 "%4lu %4lu %4lu %4lu %4lu",
3993 allocs, high, grown,
3994 reaped, errors, max_freeable, node_allocs,
3995 node_frees, overflows);
3996 }
3997
3998 {
3999 unsigned long allochit = atomic_read(&cachep->allochit);
4000 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4001 unsigned long freehit = atomic_read(&cachep->freehit);
4002 unsigned long freemiss = atomic_read(&cachep->freemiss);
4003
4004 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4005 allochit, allocmiss, freehit, freemiss);
4006 }
4007#endif
4008}
4009
4010#define MAX_SLABINFO_WRITE 128
4011
4012
4013
4014
4015
4016
4017
4018ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4019 size_t count, loff_t *ppos)
4020{
4021 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4022 int limit, batchcount, shared, res;
4023 struct kmem_cache *cachep;
4024
4025 if (count > MAX_SLABINFO_WRITE)
4026 return -EINVAL;
4027 if (copy_from_user(&kbuf, buffer, count))
4028 return -EFAULT;
4029 kbuf[MAX_SLABINFO_WRITE] = '\0';
4030
4031 tmp = strchr(kbuf, ' ');
4032 if (!tmp)
4033 return -EINVAL;
4034 *tmp = '\0';
4035 tmp++;
4036 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4037 return -EINVAL;
4038
4039
4040 mutex_lock(&slab_mutex);
4041 res = -EINVAL;
4042 list_for_each_entry(cachep, &slab_caches, list) {
4043 if (!strcmp(cachep->name, kbuf)) {
4044 if (limit < 1 || batchcount < 1 ||
4045 batchcount > limit || shared < 0) {
4046 res = 0;
4047 } else {
4048 res = do_tune_cpucache(cachep, limit,
4049 batchcount, shared,
4050 GFP_KERNEL);
4051 }
4052 break;
4053 }
4054 }
4055 mutex_unlock(&slab_mutex);
4056 if (res >= 0)
4057 res = count;
4058 return res;
4059}
4060
4061#ifdef CONFIG_DEBUG_SLAB_LEAK
4062
4063static inline int add_caller(unsigned long *n, unsigned long v)
4064{
4065 unsigned long *p;
4066 int l;
4067 if (!v)
4068 return 1;
4069 l = n[1];
4070 p = n + 2;
4071 while (l) {
4072 int i = l/2;
4073 unsigned long *q = p + 2 * i;
4074 if (*q == v) {
4075 q[1]++;
4076 return 1;
4077 }
4078 if (*q > v) {
4079 l = i;
4080 } else {
4081 p = q + 2;
4082 l -= i + 1;
4083 }
4084 }
4085 if (++n[1] == n[0])
4086 return 0;
4087 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4088 p[0] = v;
4089 p[1] = 1;
4090 return 1;
4091}
4092
4093static void handle_slab(unsigned long *n, struct kmem_cache *c,
4094 struct page *page)
4095{
4096 void *p;
4097 int i;
4098
4099 if (n[0] == n[1])
4100 return;
4101 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4102 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4103 continue;
4104
4105 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4106 return;
4107 }
4108}
4109
4110static void show_symbol(struct seq_file *m, unsigned long address)
4111{
4112#ifdef CONFIG_KALLSYMS
4113 unsigned long offset, size;
4114 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4115
4116 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4117 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4118 if (modname[0])
4119 seq_printf(m, " [%s]", modname);
4120 return;
4121 }
4122#endif
4123 seq_printf(m, "%p", (void *)address);
4124}
4125
4126static int leaks_show(struct seq_file *m, void *p)
4127{
4128 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4129 struct page *page;
4130 struct kmem_cache_node *n;
4131 const char *name;
4132 unsigned long *x = m->private;
4133 int node;
4134 int i;
4135
4136 if (!(cachep->flags & SLAB_STORE_USER))
4137 return 0;
4138 if (!(cachep->flags & SLAB_RED_ZONE))
4139 return 0;
4140
4141
4142
4143 x[1] = 0;
4144
4145 for_each_kmem_cache_node(cachep, node, n) {
4146
4147 check_irq_on();
4148 spin_lock_irq(&n->list_lock);
4149
4150 list_for_each_entry(page, &n->slabs_full, lru)
4151 handle_slab(x, cachep, page);
4152 list_for_each_entry(page, &n->slabs_partial, lru)
4153 handle_slab(x, cachep, page);
4154 spin_unlock_irq(&n->list_lock);
4155 }
4156 name = cachep->name;
4157 if (x[0] == x[1]) {
4158
4159 mutex_unlock(&slab_mutex);
4160 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4161 if (!m->private) {
4162
4163 m->private = x;
4164 mutex_lock(&slab_mutex);
4165 return -ENOMEM;
4166 }
4167 *(unsigned long *)m->private = x[0] * 2;
4168 kfree(x);
4169 mutex_lock(&slab_mutex);
4170
4171 m->count = m->size;
4172 return 0;
4173 }
4174 for (i = 0; i < x[1]; i++) {
4175 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4176 show_symbol(m, x[2*i+2]);
4177 seq_putc(m, '\n');
4178 }
4179
4180 return 0;
4181}
4182
4183static const struct seq_operations slabstats_op = {
4184 .start = slab_start,
4185 .next = slab_next,
4186 .stop = slab_stop,
4187 .show = leaks_show,
4188};
4189
4190static int slabstats_open(struct inode *inode, struct file *file)
4191{
4192 unsigned long *n;
4193
4194 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4195 if (!n)
4196 return -ENOMEM;
4197
4198 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4199
4200 return 0;
4201}
4202
4203static const struct file_operations proc_slabstats_operations = {
4204 .open = slabstats_open,
4205 .read = seq_read,
4206 .llseek = seq_lseek,
4207 .release = seq_release_private,
4208};
4209#endif
4210
4211static int __init slab_proc_init(void)
4212{
4213#ifdef CONFIG_DEBUG_SLAB_LEAK
4214 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4215#endif
4216 return 0;
4217}
4218module_init(slab_proc_init);
4219#endif
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233size_t ksize(const void *objp)
4234{
4235 BUG_ON(!objp);
4236 if (unlikely(objp == ZERO_SIZE_PTR))
4237 return 0;
4238
4239 return virt_to_cache(objp)->object_size;
4240}
4241EXPORT_SYMBOL(ksize);
4242