linux/net/ceph/messenger.c
<<
>>
Prefs
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
   9#include <linux/nsproxy.h>
  10#include <linux/slab.h>
  11#include <linux/socket.h>
  12#include <linux/string.h>
  13#ifdef  CONFIG_BLOCK
  14#include <linux/bio.h>
  15#endif  /* CONFIG_BLOCK */
  16#include <linux/dns_resolver.h>
  17#include <net/tcp.h>
  18
  19#include <linux/ceph/ceph_features.h>
  20#include <linux/ceph/libceph.h>
  21#include <linux/ceph/messenger.h>
  22#include <linux/ceph/decode.h>
  23#include <linux/ceph/pagelist.h>
  24#include <linux/export.h>
  25
  26#define list_entry_next(pos, member)                                    \
  27        list_entry(pos->member.next, typeof(*pos), member)
  28
  29/*
  30 * Ceph uses the messenger to exchange ceph_msg messages with other
  31 * hosts in the system.  The messenger provides ordered and reliable
  32 * delivery.  We tolerate TCP disconnects by reconnecting (with
  33 * exponential backoff) in the case of a fault (disconnection, bad
  34 * crc, protocol error).  Acks allow sent messages to be discarded by
  35 * the sender.
  36 */
  37
  38/*
  39 * We track the state of the socket on a given connection using
  40 * values defined below.  The transition to a new socket state is
  41 * handled by a function which verifies we aren't coming from an
  42 * unexpected state.
  43 *
  44 *      --------
  45 *      | NEW* |  transient initial state
  46 *      --------
  47 *          | con_sock_state_init()
  48 *          v
  49 *      ----------
  50 *      | CLOSED |  initialized, but no socket (and no
  51 *      ----------  TCP connection)
  52 *       ^      \
  53 *       |       \ con_sock_state_connecting()
  54 *       |        ----------------------
  55 *       |                              \
  56 *       + con_sock_state_closed()       \
  57 *       |+---------------------------    \
  58 *       | \                          \    \
  59 *       |  -----------                \    \
  60 *       |  | CLOSING |  socket event;  \    \
  61 *       |  -----------  await close     \    \
  62 *       |       ^                        \   |
  63 *       |       |                         \  |
  64 *       |       + con_sock_state_closing() \ |
  65 *       |      / \                         | |
  66 *       |     /   ---------------          | |
  67 *       |    /                   \         v v
  68 *       |   /                    --------------
  69 *       |  /    -----------------| CONNECTING |  socket created, TCP
  70 *       |  |   /                 --------------  connect initiated
  71 *       |  |   | con_sock_state_connected()
  72 *       |  |   v
  73 *      -------------
  74 *      | CONNECTED |  TCP connection established
  75 *      -------------
  76 *
  77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  78 */
  79
  80#define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
  81#define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
  82#define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
  83#define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
  84#define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
  85
  86/*
  87 * connection states
  88 */
  89#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  90#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  91#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  92#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  93#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  94#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  95
  96/*
  97 * ceph_connection flag bits
  98 */
  99#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
 100                                       * messages on errors */
 101#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 102#define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
 103#define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
 104#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 105
 106static bool con_flag_valid(unsigned long con_flag)
 107{
 108        switch (con_flag) {
 109        case CON_FLAG_LOSSYTX:
 110        case CON_FLAG_KEEPALIVE_PENDING:
 111        case CON_FLAG_WRITE_PENDING:
 112        case CON_FLAG_SOCK_CLOSED:
 113        case CON_FLAG_BACKOFF:
 114                return true;
 115        default:
 116                return false;
 117        }
 118}
 119
 120static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 121{
 122        BUG_ON(!con_flag_valid(con_flag));
 123
 124        clear_bit(con_flag, &con->flags);
 125}
 126
 127static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 128{
 129        BUG_ON(!con_flag_valid(con_flag));
 130
 131        set_bit(con_flag, &con->flags);
 132}
 133
 134static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 135{
 136        BUG_ON(!con_flag_valid(con_flag));
 137
 138        return test_bit(con_flag, &con->flags);
 139}
 140
 141static bool con_flag_test_and_clear(struct ceph_connection *con,
 142                                        unsigned long con_flag)
 143{
 144        BUG_ON(!con_flag_valid(con_flag));
 145
 146        return test_and_clear_bit(con_flag, &con->flags);
 147}
 148
 149static bool con_flag_test_and_set(struct ceph_connection *con,
 150                                        unsigned long con_flag)
 151{
 152        BUG_ON(!con_flag_valid(con_flag));
 153
 154        return test_and_set_bit(con_flag, &con->flags);
 155}
 156
 157/* Slab caches for frequently-allocated structures */
 158
 159static struct kmem_cache        *ceph_msg_cache;
 160static struct kmem_cache        *ceph_msg_data_cache;
 161
 162/* static tag bytes (protocol control messages) */
 163static char tag_msg = CEPH_MSGR_TAG_MSG;
 164static char tag_ack = CEPH_MSGR_TAG_ACK;
 165static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 166
 167#ifdef CONFIG_LOCKDEP
 168static struct lock_class_key socket_class;
 169#endif
 170
 171/*
 172 * When skipping (ignoring) a block of input we read it into a "skip
 173 * buffer," which is this many bytes in size.
 174 */
 175#define SKIP_BUF_SIZE   1024
 176
 177static void queue_con(struct ceph_connection *con);
 178static void cancel_con(struct ceph_connection *con);
 179static void con_work(struct work_struct *);
 180static void con_fault(struct ceph_connection *con);
 181
 182/*
 183 * Nicely render a sockaddr as a string.  An array of formatted
 184 * strings is used, to approximate reentrancy.
 185 */
 186#define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
 187#define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
 188#define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
 189#define MAX_ADDR_STR_LEN        64      /* 54 is enough */
 190
 191static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 192static atomic_t addr_str_seq = ATOMIC_INIT(0);
 193
 194static struct page *zero_page;          /* used in certain error cases */
 195
 196const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 197{
 198        int i;
 199        char *s;
 200        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 201        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 202
 203        i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 204        s = addr_str[i];
 205
 206        switch (ss->ss_family) {
 207        case AF_INET:
 208                snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 209                         ntohs(in4->sin_port));
 210                break;
 211
 212        case AF_INET6:
 213                snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 214                         ntohs(in6->sin6_port));
 215                break;
 216
 217        default:
 218                snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 219                         ss->ss_family);
 220        }
 221
 222        return s;
 223}
 224EXPORT_SYMBOL(ceph_pr_addr);
 225
 226static void encode_my_addr(struct ceph_messenger *msgr)
 227{
 228        memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 229        ceph_encode_addr(&msgr->my_enc_addr);
 230}
 231
 232/*
 233 * work queue for all reading and writing to/from the socket.
 234 */
 235static struct workqueue_struct *ceph_msgr_wq;
 236
 237static int ceph_msgr_slab_init(void)
 238{
 239        BUG_ON(ceph_msg_cache);
 240        ceph_msg_cache = kmem_cache_create("ceph_msg",
 241                                        sizeof (struct ceph_msg),
 242                                        __alignof__(struct ceph_msg), 0, NULL);
 243
 244        if (!ceph_msg_cache)
 245                return -ENOMEM;
 246
 247        BUG_ON(ceph_msg_data_cache);
 248        ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
 249                                        sizeof (struct ceph_msg_data),
 250                                        __alignof__(struct ceph_msg_data),
 251                                        0, NULL);
 252        if (ceph_msg_data_cache)
 253                return 0;
 254
 255        kmem_cache_destroy(ceph_msg_cache);
 256        ceph_msg_cache = NULL;
 257
 258        return -ENOMEM;
 259}
 260
 261static void ceph_msgr_slab_exit(void)
 262{
 263        BUG_ON(!ceph_msg_data_cache);
 264        kmem_cache_destroy(ceph_msg_data_cache);
 265        ceph_msg_data_cache = NULL;
 266
 267        BUG_ON(!ceph_msg_cache);
 268        kmem_cache_destroy(ceph_msg_cache);
 269        ceph_msg_cache = NULL;
 270}
 271
 272static void _ceph_msgr_exit(void)
 273{
 274        if (ceph_msgr_wq) {
 275                destroy_workqueue(ceph_msgr_wq);
 276                ceph_msgr_wq = NULL;
 277        }
 278
 279        ceph_msgr_slab_exit();
 280
 281        BUG_ON(zero_page == NULL);
 282        page_cache_release(zero_page);
 283        zero_page = NULL;
 284}
 285
 286int ceph_msgr_init(void)
 287{
 288        BUG_ON(zero_page != NULL);
 289        zero_page = ZERO_PAGE(0);
 290        page_cache_get(zero_page);
 291
 292        if (ceph_msgr_slab_init())
 293                return -ENOMEM;
 294
 295        /*
 296         * The number of active work items is limited by the number of
 297         * connections, so leave @max_active at default.
 298         */
 299        ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 300        if (ceph_msgr_wq)
 301                return 0;
 302
 303        pr_err("msgr_init failed to create workqueue\n");
 304        _ceph_msgr_exit();
 305
 306        return -ENOMEM;
 307}
 308EXPORT_SYMBOL(ceph_msgr_init);
 309
 310void ceph_msgr_exit(void)
 311{
 312        BUG_ON(ceph_msgr_wq == NULL);
 313
 314        _ceph_msgr_exit();
 315}
 316EXPORT_SYMBOL(ceph_msgr_exit);
 317
 318void ceph_msgr_flush(void)
 319{
 320        flush_workqueue(ceph_msgr_wq);
 321}
 322EXPORT_SYMBOL(ceph_msgr_flush);
 323
 324/* Connection socket state transition functions */
 325
 326static void con_sock_state_init(struct ceph_connection *con)
 327{
 328        int old_state;
 329
 330        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 331        if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 332                printk("%s: unexpected old state %d\n", __func__, old_state);
 333        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 334             CON_SOCK_STATE_CLOSED);
 335}
 336
 337static void con_sock_state_connecting(struct ceph_connection *con)
 338{
 339        int old_state;
 340
 341        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 342        if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 343                printk("%s: unexpected old state %d\n", __func__, old_state);
 344        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 345             CON_SOCK_STATE_CONNECTING);
 346}
 347
 348static void con_sock_state_connected(struct ceph_connection *con)
 349{
 350        int old_state;
 351
 352        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 353        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 354                printk("%s: unexpected old state %d\n", __func__, old_state);
 355        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 356             CON_SOCK_STATE_CONNECTED);
 357}
 358
 359static void con_sock_state_closing(struct ceph_connection *con)
 360{
 361        int old_state;
 362
 363        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 364        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 365                        old_state != CON_SOCK_STATE_CONNECTED &&
 366                        old_state != CON_SOCK_STATE_CLOSING))
 367                printk("%s: unexpected old state %d\n", __func__, old_state);
 368        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 369             CON_SOCK_STATE_CLOSING);
 370}
 371
 372static void con_sock_state_closed(struct ceph_connection *con)
 373{
 374        int old_state;
 375
 376        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 377        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 378                    old_state != CON_SOCK_STATE_CLOSING &&
 379                    old_state != CON_SOCK_STATE_CONNECTING &&
 380                    old_state != CON_SOCK_STATE_CLOSED))
 381                printk("%s: unexpected old state %d\n", __func__, old_state);
 382        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 383             CON_SOCK_STATE_CLOSED);
 384}
 385
 386/*
 387 * socket callback functions
 388 */
 389
 390/* data available on socket, or listen socket received a connect */
 391static void ceph_sock_data_ready(struct sock *sk)
 392{
 393        struct ceph_connection *con = sk->sk_user_data;
 394        if (atomic_read(&con->msgr->stopping)) {
 395                return;
 396        }
 397
 398        if (sk->sk_state != TCP_CLOSE_WAIT) {
 399                dout("%s on %p state = %lu, queueing work\n", __func__,
 400                     con, con->state);
 401                queue_con(con);
 402        }
 403}
 404
 405/* socket has buffer space for writing */
 406static void ceph_sock_write_space(struct sock *sk)
 407{
 408        struct ceph_connection *con = sk->sk_user_data;
 409
 410        /* only queue to workqueue if there is data we want to write,
 411         * and there is sufficient space in the socket buffer to accept
 412         * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 413         * doesn't get called again until try_write() fills the socket
 414         * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 415         * and net/core/stream.c:sk_stream_write_space().
 416         */
 417        if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 418                if (sk_stream_is_writeable(sk)) {
 419                        dout("%s %p queueing write work\n", __func__, con);
 420                        clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 421                        queue_con(con);
 422                }
 423        } else {
 424                dout("%s %p nothing to write\n", __func__, con);
 425        }
 426}
 427
 428/* socket's state has changed */
 429static void ceph_sock_state_change(struct sock *sk)
 430{
 431        struct ceph_connection *con = sk->sk_user_data;
 432
 433        dout("%s %p state = %lu sk_state = %u\n", __func__,
 434             con, con->state, sk->sk_state);
 435
 436        switch (sk->sk_state) {
 437        case TCP_CLOSE:
 438                dout("%s TCP_CLOSE\n", __func__);
 439        case TCP_CLOSE_WAIT:
 440                dout("%s TCP_CLOSE_WAIT\n", __func__);
 441                con_sock_state_closing(con);
 442                con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 443                queue_con(con);
 444                break;
 445        case TCP_ESTABLISHED:
 446                dout("%s TCP_ESTABLISHED\n", __func__);
 447                con_sock_state_connected(con);
 448                queue_con(con);
 449                break;
 450        default:        /* Everything else is uninteresting */
 451                break;
 452        }
 453}
 454
 455/*
 456 * set up socket callbacks
 457 */
 458static void set_sock_callbacks(struct socket *sock,
 459                               struct ceph_connection *con)
 460{
 461        struct sock *sk = sock->sk;
 462        sk->sk_user_data = con;
 463        sk->sk_data_ready = ceph_sock_data_ready;
 464        sk->sk_write_space = ceph_sock_write_space;
 465        sk->sk_state_change = ceph_sock_state_change;
 466}
 467
 468
 469/*
 470 * socket helpers
 471 */
 472
 473/*
 474 * initiate connection to a remote socket.
 475 */
 476static int ceph_tcp_connect(struct ceph_connection *con)
 477{
 478        struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 479        struct socket *sock;
 480        int ret;
 481
 482        BUG_ON(con->sock);
 483        ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 484                               SOCK_STREAM, IPPROTO_TCP, &sock);
 485        if (ret)
 486                return ret;
 487        sock->sk->sk_allocation = GFP_NOFS;
 488
 489#ifdef CONFIG_LOCKDEP
 490        lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 491#endif
 492
 493        set_sock_callbacks(sock, con);
 494
 495        dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 496
 497        con_sock_state_connecting(con);
 498        ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 499                                 O_NONBLOCK);
 500        if (ret == -EINPROGRESS) {
 501                dout("connect %s EINPROGRESS sk_state = %u\n",
 502                     ceph_pr_addr(&con->peer_addr.in_addr),
 503                     sock->sk->sk_state);
 504        } else if (ret < 0) {
 505                pr_err("connect %s error %d\n",
 506                       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 507                sock_release(sock);
 508                return ret;
 509        }
 510
 511        if (con->msgr->tcp_nodelay) {
 512                int optval = 1;
 513
 514                ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 515                                        (char *)&optval, sizeof(optval));
 516                if (ret)
 517                        pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 518                               ret);
 519        }
 520
 521        con->sock = sock;
 522        return 0;
 523}
 524
 525static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 526{
 527        struct kvec iov = {buf, len};
 528        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 529        int r;
 530
 531        r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 532        if (r == -EAGAIN)
 533                r = 0;
 534        return r;
 535}
 536
 537static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 538                     int page_offset, size_t length)
 539{
 540        void *kaddr;
 541        int ret;
 542
 543        BUG_ON(page_offset + length > PAGE_SIZE);
 544
 545        kaddr = kmap(page);
 546        BUG_ON(!kaddr);
 547        ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
 548        kunmap(page);
 549
 550        return ret;
 551}
 552
 553/*
 554 * write something.  @more is true if caller will be sending more data
 555 * shortly.
 556 */
 557static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 558                     size_t kvlen, size_t len, int more)
 559{
 560        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 561        int r;
 562
 563        if (more)
 564                msg.msg_flags |= MSG_MORE;
 565        else
 566                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 567
 568        r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 569        if (r == -EAGAIN)
 570                r = 0;
 571        return r;
 572}
 573
 574static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 575                     int offset, size_t size, bool more)
 576{
 577        int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 578        int ret;
 579
 580        ret = kernel_sendpage(sock, page, offset, size, flags);
 581        if (ret == -EAGAIN)
 582                ret = 0;
 583
 584        return ret;
 585}
 586
 587static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 588                     int offset, size_t size, bool more)
 589{
 590        int ret;
 591        struct kvec iov;
 592
 593        /* sendpage cannot properly handle pages with page_count == 0,
 594         * we need to fallback to sendmsg if that's the case */
 595        if (page_count(page) >= 1)
 596                return __ceph_tcp_sendpage(sock, page, offset, size, more);
 597
 598        iov.iov_base = kmap(page) + offset;
 599        iov.iov_len = size;
 600        ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
 601        kunmap(page);
 602
 603        return ret;
 604}
 605
 606/*
 607 * Shutdown/close the socket for the given connection.
 608 */
 609static int con_close_socket(struct ceph_connection *con)
 610{
 611        int rc = 0;
 612
 613        dout("con_close_socket on %p sock %p\n", con, con->sock);
 614        if (con->sock) {
 615                rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 616                sock_release(con->sock);
 617                con->sock = NULL;
 618        }
 619
 620        /*
 621         * Forcibly clear the SOCK_CLOSED flag.  It gets set
 622         * independent of the connection mutex, and we could have
 623         * received a socket close event before we had the chance to
 624         * shut the socket down.
 625         */
 626        con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 627
 628        con_sock_state_closed(con);
 629        return rc;
 630}
 631
 632/*
 633 * Reset a connection.  Discard all incoming and outgoing messages
 634 * and clear *_seq state.
 635 */
 636static void ceph_msg_remove(struct ceph_msg *msg)
 637{
 638        list_del_init(&msg->list_head);
 639        BUG_ON(msg->con == NULL);
 640        msg->con->ops->put(msg->con);
 641        msg->con = NULL;
 642
 643        ceph_msg_put(msg);
 644}
 645static void ceph_msg_remove_list(struct list_head *head)
 646{
 647        while (!list_empty(head)) {
 648                struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 649                                                        list_head);
 650                ceph_msg_remove(msg);
 651        }
 652}
 653
 654static void reset_connection(struct ceph_connection *con)
 655{
 656        /* reset connection, out_queue, msg_ and connect_seq */
 657        /* discard existing out_queue and msg_seq */
 658        dout("reset_connection %p\n", con);
 659        ceph_msg_remove_list(&con->out_queue);
 660        ceph_msg_remove_list(&con->out_sent);
 661
 662        if (con->in_msg) {
 663                BUG_ON(con->in_msg->con != con);
 664                con->in_msg->con = NULL;
 665                ceph_msg_put(con->in_msg);
 666                con->in_msg = NULL;
 667                con->ops->put(con);
 668        }
 669
 670        con->connect_seq = 0;
 671        con->out_seq = 0;
 672        if (con->out_msg) {
 673                ceph_msg_put(con->out_msg);
 674                con->out_msg = NULL;
 675        }
 676        con->in_seq = 0;
 677        con->in_seq_acked = 0;
 678}
 679
 680/*
 681 * mark a peer down.  drop any open connections.
 682 */
 683void ceph_con_close(struct ceph_connection *con)
 684{
 685        mutex_lock(&con->mutex);
 686        dout("con_close %p peer %s\n", con,
 687             ceph_pr_addr(&con->peer_addr.in_addr));
 688        con->state = CON_STATE_CLOSED;
 689
 690        con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
 691        con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 692        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 693        con_flag_clear(con, CON_FLAG_BACKOFF);
 694
 695        reset_connection(con);
 696        con->peer_global_seq = 0;
 697        cancel_con(con);
 698        con_close_socket(con);
 699        mutex_unlock(&con->mutex);
 700}
 701EXPORT_SYMBOL(ceph_con_close);
 702
 703/*
 704 * Reopen a closed connection, with a new peer address.
 705 */
 706void ceph_con_open(struct ceph_connection *con,
 707                   __u8 entity_type, __u64 entity_num,
 708                   struct ceph_entity_addr *addr)
 709{
 710        mutex_lock(&con->mutex);
 711        dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 712
 713        WARN_ON(con->state != CON_STATE_CLOSED);
 714        con->state = CON_STATE_PREOPEN;
 715
 716        con->peer_name.type = (__u8) entity_type;
 717        con->peer_name.num = cpu_to_le64(entity_num);
 718
 719        memcpy(&con->peer_addr, addr, sizeof(*addr));
 720        con->delay = 0;      /* reset backoff memory */
 721        mutex_unlock(&con->mutex);
 722        queue_con(con);
 723}
 724EXPORT_SYMBOL(ceph_con_open);
 725
 726/*
 727 * return true if this connection ever successfully opened
 728 */
 729bool ceph_con_opened(struct ceph_connection *con)
 730{
 731        return con->connect_seq > 0;
 732}
 733
 734/*
 735 * initialize a new connection.
 736 */
 737void ceph_con_init(struct ceph_connection *con, void *private,
 738        const struct ceph_connection_operations *ops,
 739        struct ceph_messenger *msgr)
 740{
 741        dout("con_init %p\n", con);
 742        memset(con, 0, sizeof(*con));
 743        con->private = private;
 744        con->ops = ops;
 745        con->msgr = msgr;
 746
 747        con_sock_state_init(con);
 748
 749        mutex_init(&con->mutex);
 750        INIT_LIST_HEAD(&con->out_queue);
 751        INIT_LIST_HEAD(&con->out_sent);
 752        INIT_DELAYED_WORK(&con->work, con_work);
 753
 754        con->state = CON_STATE_CLOSED;
 755}
 756EXPORT_SYMBOL(ceph_con_init);
 757
 758
 759/*
 760 * We maintain a global counter to order connection attempts.  Get
 761 * a unique seq greater than @gt.
 762 */
 763static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 764{
 765        u32 ret;
 766
 767        spin_lock(&msgr->global_seq_lock);
 768        if (msgr->global_seq < gt)
 769                msgr->global_seq = gt;
 770        ret = ++msgr->global_seq;
 771        spin_unlock(&msgr->global_seq_lock);
 772        return ret;
 773}
 774
 775static void con_out_kvec_reset(struct ceph_connection *con)
 776{
 777        con->out_kvec_left = 0;
 778        con->out_kvec_bytes = 0;
 779        con->out_kvec_cur = &con->out_kvec[0];
 780}
 781
 782static void con_out_kvec_add(struct ceph_connection *con,
 783                                size_t size, void *data)
 784{
 785        int index;
 786
 787        index = con->out_kvec_left;
 788        BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 789
 790        con->out_kvec[index].iov_len = size;
 791        con->out_kvec[index].iov_base = data;
 792        con->out_kvec_left++;
 793        con->out_kvec_bytes += size;
 794}
 795
 796#ifdef CONFIG_BLOCK
 797
 798/*
 799 * For a bio data item, a piece is whatever remains of the next
 800 * entry in the current bio iovec, or the first entry in the next
 801 * bio in the list.
 802 */
 803static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 804                                        size_t length)
 805{
 806        struct ceph_msg_data *data = cursor->data;
 807        struct bio *bio;
 808
 809        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 810
 811        bio = data->bio;
 812        BUG_ON(!bio);
 813
 814        cursor->resid = min(length, data->bio_length);
 815        cursor->bio = bio;
 816        cursor->bvec_iter = bio->bi_iter;
 817        cursor->last_piece =
 818                cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
 819}
 820
 821static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 822                                                size_t *page_offset,
 823                                                size_t *length)
 824{
 825        struct ceph_msg_data *data = cursor->data;
 826        struct bio *bio;
 827        struct bio_vec bio_vec;
 828
 829        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 830
 831        bio = cursor->bio;
 832        BUG_ON(!bio);
 833
 834        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 835
 836        *page_offset = (size_t) bio_vec.bv_offset;
 837        BUG_ON(*page_offset >= PAGE_SIZE);
 838        if (cursor->last_piece) /* pagelist offset is always 0 */
 839                *length = cursor->resid;
 840        else
 841                *length = (size_t) bio_vec.bv_len;
 842        BUG_ON(*length > cursor->resid);
 843        BUG_ON(*page_offset + *length > PAGE_SIZE);
 844
 845        return bio_vec.bv_page;
 846}
 847
 848static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 849                                        size_t bytes)
 850{
 851        struct bio *bio;
 852        struct bio_vec bio_vec;
 853
 854        BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 855
 856        bio = cursor->bio;
 857        BUG_ON(!bio);
 858
 859        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 860
 861        /* Advance the cursor offset */
 862
 863        BUG_ON(cursor->resid < bytes);
 864        cursor->resid -= bytes;
 865
 866        bio_advance_iter(bio, &cursor->bvec_iter, bytes);
 867
 868        if (bytes < bio_vec.bv_len)
 869                return false;   /* more bytes to process in this segment */
 870
 871        /* Move on to the next segment, and possibly the next bio */
 872
 873        if (!cursor->bvec_iter.bi_size) {
 874                bio = bio->bi_next;
 875                cursor->bio = bio;
 876                if (bio)
 877                        cursor->bvec_iter = bio->bi_iter;
 878                else
 879                        memset(&cursor->bvec_iter, 0,
 880                               sizeof(cursor->bvec_iter));
 881        }
 882
 883        if (!cursor->last_piece) {
 884                BUG_ON(!cursor->resid);
 885                BUG_ON(!bio);
 886                /* A short read is OK, so use <= rather than == */
 887                if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
 888                        cursor->last_piece = true;
 889        }
 890
 891        return true;
 892}
 893#endif /* CONFIG_BLOCK */
 894
 895/*
 896 * For a page array, a piece comes from the first page in the array
 897 * that has not already been fully consumed.
 898 */
 899static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 900                                        size_t length)
 901{
 902        struct ceph_msg_data *data = cursor->data;
 903        int page_count;
 904
 905        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 906
 907        BUG_ON(!data->pages);
 908        BUG_ON(!data->length);
 909
 910        cursor->resid = min(length, data->length);
 911        page_count = calc_pages_for(data->alignment, (u64)data->length);
 912        cursor->page_offset = data->alignment & ~PAGE_MASK;
 913        cursor->page_index = 0;
 914        BUG_ON(page_count > (int)USHRT_MAX);
 915        cursor->page_count = (unsigned short)page_count;
 916        BUG_ON(length > SIZE_MAX - cursor->page_offset);
 917        cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 918}
 919
 920static struct page *
 921ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 922                                        size_t *page_offset, size_t *length)
 923{
 924        struct ceph_msg_data *data = cursor->data;
 925
 926        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 927
 928        BUG_ON(cursor->page_index >= cursor->page_count);
 929        BUG_ON(cursor->page_offset >= PAGE_SIZE);
 930
 931        *page_offset = cursor->page_offset;
 932        if (cursor->last_piece)
 933                *length = cursor->resid;
 934        else
 935                *length = PAGE_SIZE - *page_offset;
 936
 937        return data->pages[cursor->page_index];
 938}
 939
 940static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 941                                                size_t bytes)
 942{
 943        BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 944
 945        BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 946
 947        /* Advance the cursor page offset */
 948
 949        cursor->resid -= bytes;
 950        cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 951        if (!bytes || cursor->page_offset)
 952                return false;   /* more bytes to process in the current page */
 953
 954        if (!cursor->resid)
 955                return false;   /* no more data */
 956
 957        /* Move on to the next page; offset is already at 0 */
 958
 959        BUG_ON(cursor->page_index >= cursor->page_count);
 960        cursor->page_index++;
 961        cursor->last_piece = cursor->resid <= PAGE_SIZE;
 962
 963        return true;
 964}
 965
 966/*
 967 * For a pagelist, a piece is whatever remains to be consumed in the
 968 * first page in the list, or the front of the next page.
 969 */
 970static void
 971ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 972                                        size_t length)
 973{
 974        struct ceph_msg_data *data = cursor->data;
 975        struct ceph_pagelist *pagelist;
 976        struct page *page;
 977
 978        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 979
 980        pagelist = data->pagelist;
 981        BUG_ON(!pagelist);
 982
 983        if (!length)
 984                return;         /* pagelist can be assigned but empty */
 985
 986        BUG_ON(list_empty(&pagelist->head));
 987        page = list_first_entry(&pagelist->head, struct page, lru);
 988
 989        cursor->resid = min(length, pagelist->length);
 990        cursor->page = page;
 991        cursor->offset = 0;
 992        cursor->last_piece = cursor->resid <= PAGE_SIZE;
 993}
 994
 995static struct page *
 996ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
 997                                size_t *page_offset, size_t *length)
 998{
 999        struct ceph_msg_data *data = cursor->data;
1000        struct ceph_pagelist *pagelist;
1001
1002        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1003
1004        pagelist = data->pagelist;
1005        BUG_ON(!pagelist);
1006
1007        BUG_ON(!cursor->page);
1008        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1009
1010        /* offset of first page in pagelist is always 0 */
1011        *page_offset = cursor->offset & ~PAGE_MASK;
1012        if (cursor->last_piece)
1013                *length = cursor->resid;
1014        else
1015                *length = PAGE_SIZE - *page_offset;
1016
1017        return cursor->page;
1018}
1019
1020static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1021                                                size_t bytes)
1022{
1023        struct ceph_msg_data *data = cursor->data;
1024        struct ceph_pagelist *pagelist;
1025
1026        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1027
1028        pagelist = data->pagelist;
1029        BUG_ON(!pagelist);
1030
1031        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1032        BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1033
1034        /* Advance the cursor offset */
1035
1036        cursor->resid -= bytes;
1037        cursor->offset += bytes;
1038        /* offset of first page in pagelist is always 0 */
1039        if (!bytes || cursor->offset & ~PAGE_MASK)
1040                return false;   /* more bytes to process in the current page */
1041
1042        if (!cursor->resid)
1043                return false;   /* no more data */
1044
1045        /* Move on to the next page */
1046
1047        BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1048        cursor->page = list_entry_next(cursor->page, lru);
1049        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1050
1051        return true;
1052}
1053
1054/*
1055 * Message data is handled (sent or received) in pieces, where each
1056 * piece resides on a single page.  The network layer might not
1057 * consume an entire piece at once.  A data item's cursor keeps
1058 * track of which piece is next to process and how much remains to
1059 * be processed in that piece.  It also tracks whether the current
1060 * piece is the last one in the data item.
1061 */
1062static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1063{
1064        size_t length = cursor->total_resid;
1065
1066        switch (cursor->data->type) {
1067        case CEPH_MSG_DATA_PAGELIST:
1068                ceph_msg_data_pagelist_cursor_init(cursor, length);
1069                break;
1070        case CEPH_MSG_DATA_PAGES:
1071                ceph_msg_data_pages_cursor_init(cursor, length);
1072                break;
1073#ifdef CONFIG_BLOCK
1074        case CEPH_MSG_DATA_BIO:
1075                ceph_msg_data_bio_cursor_init(cursor, length);
1076                break;
1077#endif /* CONFIG_BLOCK */
1078        case CEPH_MSG_DATA_NONE:
1079        default:
1080                /* BUG(); */
1081                break;
1082        }
1083        cursor->need_crc = true;
1084}
1085
1086static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1087{
1088        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1089        struct ceph_msg_data *data;
1090
1091        BUG_ON(!length);
1092        BUG_ON(length > msg->data_length);
1093        BUG_ON(list_empty(&msg->data));
1094
1095        cursor->data_head = &msg->data;
1096        cursor->total_resid = length;
1097        data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1098        cursor->data = data;
1099
1100        __ceph_msg_data_cursor_init(cursor);
1101}
1102
1103/*
1104 * Return the page containing the next piece to process for a given
1105 * data item, and supply the page offset and length of that piece.
1106 * Indicate whether this is the last piece in this data item.
1107 */
1108static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1109                                        size_t *page_offset, size_t *length,
1110                                        bool *last_piece)
1111{
1112        struct page *page;
1113
1114        switch (cursor->data->type) {
1115        case CEPH_MSG_DATA_PAGELIST:
1116                page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1117                break;
1118        case CEPH_MSG_DATA_PAGES:
1119                page = ceph_msg_data_pages_next(cursor, page_offset, length);
1120                break;
1121#ifdef CONFIG_BLOCK
1122        case CEPH_MSG_DATA_BIO:
1123                page = ceph_msg_data_bio_next(cursor, page_offset, length);
1124                break;
1125#endif /* CONFIG_BLOCK */
1126        case CEPH_MSG_DATA_NONE:
1127        default:
1128                page = NULL;
1129                break;
1130        }
1131        BUG_ON(!page);
1132        BUG_ON(*page_offset + *length > PAGE_SIZE);
1133        BUG_ON(!*length);
1134        if (last_piece)
1135                *last_piece = cursor->last_piece;
1136
1137        return page;
1138}
1139
1140/*
1141 * Returns true if the result moves the cursor on to the next piece
1142 * of the data item.
1143 */
1144static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1145                                size_t bytes)
1146{
1147        bool new_piece;
1148
1149        BUG_ON(bytes > cursor->resid);
1150        switch (cursor->data->type) {
1151        case CEPH_MSG_DATA_PAGELIST:
1152                new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1153                break;
1154        case CEPH_MSG_DATA_PAGES:
1155                new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1156                break;
1157#ifdef CONFIG_BLOCK
1158        case CEPH_MSG_DATA_BIO:
1159                new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1160                break;
1161#endif /* CONFIG_BLOCK */
1162        case CEPH_MSG_DATA_NONE:
1163        default:
1164                BUG();
1165                break;
1166        }
1167        cursor->total_resid -= bytes;
1168
1169        if (!cursor->resid && cursor->total_resid) {
1170                WARN_ON(!cursor->last_piece);
1171                BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1172                cursor->data = list_entry_next(cursor->data, links);
1173                __ceph_msg_data_cursor_init(cursor);
1174                new_piece = true;
1175        }
1176        cursor->need_crc = new_piece;
1177
1178        return new_piece;
1179}
1180
1181static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1182{
1183        BUG_ON(!msg);
1184        BUG_ON(!data_len);
1185
1186        /* Initialize data cursor */
1187
1188        ceph_msg_data_cursor_init(msg, (size_t)data_len);
1189}
1190
1191/*
1192 * Prepare footer for currently outgoing message, and finish things
1193 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1194 */
1195static void prepare_write_message_footer(struct ceph_connection *con)
1196{
1197        struct ceph_msg *m = con->out_msg;
1198        int v = con->out_kvec_left;
1199
1200        m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1201
1202        dout("prepare_write_message_footer %p\n", con);
1203        con->out_kvec_is_msg = true;
1204        con->out_kvec[v].iov_base = &m->footer;
1205        if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1206                if (con->ops->sign_message)
1207                        con->ops->sign_message(con, m);
1208                else
1209                        m->footer.sig = 0;
1210                con->out_kvec[v].iov_len = sizeof(m->footer);
1211                con->out_kvec_bytes += sizeof(m->footer);
1212        } else {
1213                m->old_footer.flags = m->footer.flags;
1214                con->out_kvec[v].iov_len = sizeof(m->old_footer);
1215                con->out_kvec_bytes += sizeof(m->old_footer);
1216        }
1217        con->out_kvec_left++;
1218        con->out_more = m->more_to_follow;
1219        con->out_msg_done = true;
1220}
1221
1222/*
1223 * Prepare headers for the next outgoing message.
1224 */
1225static void prepare_write_message(struct ceph_connection *con)
1226{
1227        struct ceph_msg *m;
1228        u32 crc;
1229
1230        con_out_kvec_reset(con);
1231        con->out_kvec_is_msg = true;
1232        con->out_msg_done = false;
1233
1234        /* Sneak an ack in there first?  If we can get it into the same
1235         * TCP packet that's a good thing. */
1236        if (con->in_seq > con->in_seq_acked) {
1237                con->in_seq_acked = con->in_seq;
1238                con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1239                con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1240                con_out_kvec_add(con, sizeof (con->out_temp_ack),
1241                        &con->out_temp_ack);
1242        }
1243
1244        BUG_ON(list_empty(&con->out_queue));
1245        m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1246        con->out_msg = m;
1247        BUG_ON(m->con != con);
1248
1249        /* put message on sent list */
1250        ceph_msg_get(m);
1251        list_move_tail(&m->list_head, &con->out_sent);
1252
1253        /*
1254         * only assign outgoing seq # if we haven't sent this message
1255         * yet.  if it is requeued, resend with it's original seq.
1256         */
1257        if (m->needs_out_seq) {
1258                m->hdr.seq = cpu_to_le64(++con->out_seq);
1259                m->needs_out_seq = false;
1260        }
1261        WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1262
1263        dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1264             m, con->out_seq, le16_to_cpu(m->hdr.type),
1265             le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1266             m->data_length);
1267        BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1268
1269        /* tag + hdr + front + middle */
1270        con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1271        con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1272        con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1273
1274        if (m->middle)
1275                con_out_kvec_add(con, m->middle->vec.iov_len,
1276                        m->middle->vec.iov_base);
1277
1278        /* fill in crc (except data pages), footer */
1279        crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1280        con->out_msg->hdr.crc = cpu_to_le32(crc);
1281        con->out_msg->footer.flags = 0;
1282
1283        crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1284        con->out_msg->footer.front_crc = cpu_to_le32(crc);
1285        if (m->middle) {
1286                crc = crc32c(0, m->middle->vec.iov_base,
1287                                m->middle->vec.iov_len);
1288                con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1289        } else
1290                con->out_msg->footer.middle_crc = 0;
1291        dout("%s front_crc %u middle_crc %u\n", __func__,
1292             le32_to_cpu(con->out_msg->footer.front_crc),
1293             le32_to_cpu(con->out_msg->footer.middle_crc));
1294
1295        /* is there a data payload? */
1296        con->out_msg->footer.data_crc = 0;
1297        if (m->data_length) {
1298                prepare_message_data(con->out_msg, m->data_length);
1299                con->out_more = 1;  /* data + footer will follow */
1300        } else {
1301                /* no, queue up footer too and be done */
1302                prepare_write_message_footer(con);
1303        }
1304
1305        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1306}
1307
1308/*
1309 * Prepare an ack.
1310 */
1311static void prepare_write_ack(struct ceph_connection *con)
1312{
1313        dout("prepare_write_ack %p %llu -> %llu\n", con,
1314             con->in_seq_acked, con->in_seq);
1315        con->in_seq_acked = con->in_seq;
1316
1317        con_out_kvec_reset(con);
1318
1319        con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1320
1321        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1322        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1323                                &con->out_temp_ack);
1324
1325        con->out_more = 1;  /* more will follow.. eventually.. */
1326        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1327}
1328
1329/*
1330 * Prepare to share the seq during handshake
1331 */
1332static void prepare_write_seq(struct ceph_connection *con)
1333{
1334        dout("prepare_write_seq %p %llu -> %llu\n", con,
1335             con->in_seq_acked, con->in_seq);
1336        con->in_seq_acked = con->in_seq;
1337
1338        con_out_kvec_reset(con);
1339
1340        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1341        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1342                         &con->out_temp_ack);
1343
1344        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1345}
1346
1347/*
1348 * Prepare to write keepalive byte.
1349 */
1350static void prepare_write_keepalive(struct ceph_connection *con)
1351{
1352        dout("prepare_write_keepalive %p\n", con);
1353        con_out_kvec_reset(con);
1354        con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1355        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1356}
1357
1358/*
1359 * Connection negotiation.
1360 */
1361
1362static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1363                                                int *auth_proto)
1364{
1365        struct ceph_auth_handshake *auth;
1366
1367        if (!con->ops->get_authorizer) {
1368                con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1369                con->out_connect.authorizer_len = 0;
1370                return NULL;
1371        }
1372
1373        /* Can't hold the mutex while getting authorizer */
1374        mutex_unlock(&con->mutex);
1375        auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1376        mutex_lock(&con->mutex);
1377
1378        if (IS_ERR(auth))
1379                return auth;
1380        if (con->state != CON_STATE_NEGOTIATING)
1381                return ERR_PTR(-EAGAIN);
1382
1383        con->auth_reply_buf = auth->authorizer_reply_buf;
1384        con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1385        return auth;
1386}
1387
1388/*
1389 * We connected to a peer and are saying hello.
1390 */
1391static void prepare_write_banner(struct ceph_connection *con)
1392{
1393        con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1394        con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1395                                        &con->msgr->my_enc_addr);
1396
1397        con->out_more = 0;
1398        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1399}
1400
1401static int prepare_write_connect(struct ceph_connection *con)
1402{
1403        unsigned int global_seq = get_global_seq(con->msgr, 0);
1404        int proto;
1405        int auth_proto;
1406        struct ceph_auth_handshake *auth;
1407
1408        switch (con->peer_name.type) {
1409        case CEPH_ENTITY_TYPE_MON:
1410                proto = CEPH_MONC_PROTOCOL;
1411                break;
1412        case CEPH_ENTITY_TYPE_OSD:
1413                proto = CEPH_OSDC_PROTOCOL;
1414                break;
1415        case CEPH_ENTITY_TYPE_MDS:
1416                proto = CEPH_MDSC_PROTOCOL;
1417                break;
1418        default:
1419                BUG();
1420        }
1421
1422        dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1423             con->connect_seq, global_seq, proto);
1424
1425        con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1426        con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1427        con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1428        con->out_connect.global_seq = cpu_to_le32(global_seq);
1429        con->out_connect.protocol_version = cpu_to_le32(proto);
1430        con->out_connect.flags = 0;
1431
1432        auth_proto = CEPH_AUTH_UNKNOWN;
1433        auth = get_connect_authorizer(con, &auth_proto);
1434        if (IS_ERR(auth))
1435                return PTR_ERR(auth);
1436
1437        con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1438        con->out_connect.authorizer_len = auth ?
1439                cpu_to_le32(auth->authorizer_buf_len) : 0;
1440
1441        con_out_kvec_add(con, sizeof (con->out_connect),
1442                                        &con->out_connect);
1443        if (auth && auth->authorizer_buf_len)
1444                con_out_kvec_add(con, auth->authorizer_buf_len,
1445                                        auth->authorizer_buf);
1446
1447        con->out_more = 0;
1448        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1449
1450        return 0;
1451}
1452
1453/*
1454 * write as much of pending kvecs to the socket as we can.
1455 *  1 -> done
1456 *  0 -> socket full, but more to do
1457 * <0 -> error
1458 */
1459static int write_partial_kvec(struct ceph_connection *con)
1460{
1461        int ret;
1462
1463        dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1464        while (con->out_kvec_bytes > 0) {
1465                ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1466                                       con->out_kvec_left, con->out_kvec_bytes,
1467                                       con->out_more);
1468                if (ret <= 0)
1469                        goto out;
1470                con->out_kvec_bytes -= ret;
1471                if (con->out_kvec_bytes == 0)
1472                        break;            /* done */
1473
1474                /* account for full iov entries consumed */
1475                while (ret >= con->out_kvec_cur->iov_len) {
1476                        BUG_ON(!con->out_kvec_left);
1477                        ret -= con->out_kvec_cur->iov_len;
1478                        con->out_kvec_cur++;
1479                        con->out_kvec_left--;
1480                }
1481                /* and for a partially-consumed entry */
1482                if (ret) {
1483                        con->out_kvec_cur->iov_len -= ret;
1484                        con->out_kvec_cur->iov_base += ret;
1485                }
1486        }
1487        con->out_kvec_left = 0;
1488        con->out_kvec_is_msg = false;
1489        ret = 1;
1490out:
1491        dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1492             con->out_kvec_bytes, con->out_kvec_left, ret);
1493        return ret;  /* done! */
1494}
1495
1496static u32 ceph_crc32c_page(u32 crc, struct page *page,
1497                                unsigned int page_offset,
1498                                unsigned int length)
1499{
1500        char *kaddr;
1501
1502        kaddr = kmap(page);
1503        BUG_ON(kaddr == NULL);
1504        crc = crc32c(crc, kaddr + page_offset, length);
1505        kunmap(page);
1506
1507        return crc;
1508}
1509/*
1510 * Write as much message data payload as we can.  If we finish, queue
1511 * up the footer.
1512 *  1 -> done, footer is now queued in out_kvec[].
1513 *  0 -> socket full, but more to do
1514 * <0 -> error
1515 */
1516static int write_partial_message_data(struct ceph_connection *con)
1517{
1518        struct ceph_msg *msg = con->out_msg;
1519        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1520        bool do_datacrc = !con->msgr->nocrc;
1521        u32 crc;
1522
1523        dout("%s %p msg %p\n", __func__, con, msg);
1524
1525        if (list_empty(&msg->data))
1526                return -EINVAL;
1527
1528        /*
1529         * Iterate through each page that contains data to be
1530         * written, and send as much as possible for each.
1531         *
1532         * If we are calculating the data crc (the default), we will
1533         * need to map the page.  If we have no pages, they have
1534         * been revoked, so use the zero page.
1535         */
1536        crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1537        while (cursor->resid) {
1538                struct page *page;
1539                size_t page_offset;
1540                size_t length;
1541                bool last_piece;
1542                bool need_crc;
1543                int ret;
1544
1545                page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1546                                                        &last_piece);
1547                ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1548                                        length, !last_piece);
1549                if (ret <= 0) {
1550                        if (do_datacrc)
1551                                msg->footer.data_crc = cpu_to_le32(crc);
1552
1553                        return ret;
1554                }
1555                if (do_datacrc && cursor->need_crc)
1556                        crc = ceph_crc32c_page(crc, page, page_offset, length);
1557                need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1558        }
1559
1560        dout("%s %p msg %p done\n", __func__, con, msg);
1561
1562        /* prepare and queue up footer, too */
1563        if (do_datacrc)
1564                msg->footer.data_crc = cpu_to_le32(crc);
1565        else
1566                msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1567        con_out_kvec_reset(con);
1568        prepare_write_message_footer(con);
1569
1570        return 1;       /* must return > 0 to indicate success */
1571}
1572
1573/*
1574 * write some zeros
1575 */
1576static int write_partial_skip(struct ceph_connection *con)
1577{
1578        int ret;
1579
1580        while (con->out_skip > 0) {
1581                size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1582
1583                ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1584                if (ret <= 0)
1585                        goto out;
1586                con->out_skip -= ret;
1587        }
1588        ret = 1;
1589out:
1590        return ret;
1591}
1592
1593/*
1594 * Prepare to read connection handshake, or an ack.
1595 */
1596static void prepare_read_banner(struct ceph_connection *con)
1597{
1598        dout("prepare_read_banner %p\n", con);
1599        con->in_base_pos = 0;
1600}
1601
1602static void prepare_read_connect(struct ceph_connection *con)
1603{
1604        dout("prepare_read_connect %p\n", con);
1605        con->in_base_pos = 0;
1606}
1607
1608static void prepare_read_ack(struct ceph_connection *con)
1609{
1610        dout("prepare_read_ack %p\n", con);
1611        con->in_base_pos = 0;
1612}
1613
1614static void prepare_read_seq(struct ceph_connection *con)
1615{
1616        dout("prepare_read_seq %p\n", con);
1617        con->in_base_pos = 0;
1618        con->in_tag = CEPH_MSGR_TAG_SEQ;
1619}
1620
1621static void prepare_read_tag(struct ceph_connection *con)
1622{
1623        dout("prepare_read_tag %p\n", con);
1624        con->in_base_pos = 0;
1625        con->in_tag = CEPH_MSGR_TAG_READY;
1626}
1627
1628/*
1629 * Prepare to read a message.
1630 */
1631static int prepare_read_message(struct ceph_connection *con)
1632{
1633        dout("prepare_read_message %p\n", con);
1634        BUG_ON(con->in_msg != NULL);
1635        con->in_base_pos = 0;
1636        con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1637        return 0;
1638}
1639
1640
1641static int read_partial(struct ceph_connection *con,
1642                        int end, int size, void *object)
1643{
1644        while (con->in_base_pos < end) {
1645                int left = end - con->in_base_pos;
1646                int have = size - left;
1647                int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1648                if (ret <= 0)
1649                        return ret;
1650                con->in_base_pos += ret;
1651        }
1652        return 1;
1653}
1654
1655
1656/*
1657 * Read all or part of the connect-side handshake on a new connection
1658 */
1659static int read_partial_banner(struct ceph_connection *con)
1660{
1661        int size;
1662        int end;
1663        int ret;
1664
1665        dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1666
1667        /* peer's banner */
1668        size = strlen(CEPH_BANNER);
1669        end = size;
1670        ret = read_partial(con, end, size, con->in_banner);
1671        if (ret <= 0)
1672                goto out;
1673
1674        size = sizeof (con->actual_peer_addr);
1675        end += size;
1676        ret = read_partial(con, end, size, &con->actual_peer_addr);
1677        if (ret <= 0)
1678                goto out;
1679
1680        size = sizeof (con->peer_addr_for_me);
1681        end += size;
1682        ret = read_partial(con, end, size, &con->peer_addr_for_me);
1683        if (ret <= 0)
1684                goto out;
1685
1686out:
1687        return ret;
1688}
1689
1690static int read_partial_connect(struct ceph_connection *con)
1691{
1692        int size;
1693        int end;
1694        int ret;
1695
1696        dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1697
1698        size = sizeof (con->in_reply);
1699        end = size;
1700        ret = read_partial(con, end, size, &con->in_reply);
1701        if (ret <= 0)
1702                goto out;
1703
1704        size = le32_to_cpu(con->in_reply.authorizer_len);
1705        end += size;
1706        ret = read_partial(con, end, size, con->auth_reply_buf);
1707        if (ret <= 0)
1708                goto out;
1709
1710        dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1711             con, (int)con->in_reply.tag,
1712             le32_to_cpu(con->in_reply.connect_seq),
1713             le32_to_cpu(con->in_reply.global_seq));
1714out:
1715        return ret;
1716
1717}
1718
1719/*
1720 * Verify the hello banner looks okay.
1721 */
1722static int verify_hello(struct ceph_connection *con)
1723{
1724        if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1725                pr_err("connect to %s got bad banner\n",
1726                       ceph_pr_addr(&con->peer_addr.in_addr));
1727                con->error_msg = "protocol error, bad banner";
1728                return -1;
1729        }
1730        return 0;
1731}
1732
1733static bool addr_is_blank(struct sockaddr_storage *ss)
1734{
1735        struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1736        struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1737
1738        switch (ss->ss_family) {
1739        case AF_INET:
1740                return addr->s_addr == htonl(INADDR_ANY);
1741        case AF_INET6:
1742                return ipv6_addr_any(addr6);
1743        default:
1744                return true;
1745        }
1746}
1747
1748static int addr_port(struct sockaddr_storage *ss)
1749{
1750        switch (ss->ss_family) {
1751        case AF_INET:
1752                return ntohs(((struct sockaddr_in *)ss)->sin_port);
1753        case AF_INET6:
1754                return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1755        }
1756        return 0;
1757}
1758
1759static void addr_set_port(struct sockaddr_storage *ss, int p)
1760{
1761        switch (ss->ss_family) {
1762        case AF_INET:
1763                ((struct sockaddr_in *)ss)->sin_port = htons(p);
1764                break;
1765        case AF_INET6:
1766                ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1767                break;
1768        }
1769}
1770
1771/*
1772 * Unlike other *_pton function semantics, zero indicates success.
1773 */
1774static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1775                char delim, const char **ipend)
1776{
1777        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1778        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1779
1780        memset(ss, 0, sizeof(*ss));
1781
1782        if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1783                ss->ss_family = AF_INET;
1784                return 0;
1785        }
1786
1787        if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1788                ss->ss_family = AF_INET6;
1789                return 0;
1790        }
1791
1792        return -EINVAL;
1793}
1794
1795/*
1796 * Extract hostname string and resolve using kernel DNS facility.
1797 */
1798#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1799static int ceph_dns_resolve_name(const char *name, size_t namelen,
1800                struct sockaddr_storage *ss, char delim, const char **ipend)
1801{
1802        const char *end, *delim_p;
1803        char *colon_p, *ip_addr = NULL;
1804        int ip_len, ret;
1805
1806        /*
1807         * The end of the hostname occurs immediately preceding the delimiter or
1808         * the port marker (':') where the delimiter takes precedence.
1809         */
1810        delim_p = memchr(name, delim, namelen);
1811        colon_p = memchr(name, ':', namelen);
1812
1813        if (delim_p && colon_p)
1814                end = delim_p < colon_p ? delim_p : colon_p;
1815        else if (!delim_p && colon_p)
1816                end = colon_p;
1817        else {
1818                end = delim_p;
1819                if (!end) /* case: hostname:/ */
1820                        end = name + namelen;
1821        }
1822
1823        if (end <= name)
1824                return -EINVAL;
1825
1826        /* do dns_resolve upcall */
1827        ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1828        if (ip_len > 0)
1829                ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1830        else
1831                ret = -ESRCH;
1832
1833        kfree(ip_addr);
1834
1835        *ipend = end;
1836
1837        pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1838                        ret, ret ? "failed" : ceph_pr_addr(ss));
1839
1840        return ret;
1841}
1842#else
1843static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1844                struct sockaddr_storage *ss, char delim, const char **ipend)
1845{
1846        return -EINVAL;
1847}
1848#endif
1849
1850/*
1851 * Parse a server name (IP or hostname). If a valid IP address is not found
1852 * then try to extract a hostname to resolve using userspace DNS upcall.
1853 */
1854static int ceph_parse_server_name(const char *name, size_t namelen,
1855                        struct sockaddr_storage *ss, char delim, const char **ipend)
1856{
1857        int ret;
1858
1859        ret = ceph_pton(name, namelen, ss, delim, ipend);
1860        if (ret)
1861                ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1862
1863        return ret;
1864}
1865
1866/*
1867 * Parse an ip[:port] list into an addr array.  Use the default
1868 * monitor port if a port isn't specified.
1869 */
1870int ceph_parse_ips(const char *c, const char *end,
1871                   struct ceph_entity_addr *addr,
1872                   int max_count, int *count)
1873{
1874        int i, ret = -EINVAL;
1875        const char *p = c;
1876
1877        dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1878        for (i = 0; i < max_count; i++) {
1879                const char *ipend;
1880                struct sockaddr_storage *ss = &addr[i].in_addr;
1881                int port;
1882                char delim = ',';
1883
1884                if (*p == '[') {
1885                        delim = ']';
1886                        p++;
1887                }
1888
1889                ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1890                if (ret)
1891                        goto bad;
1892                ret = -EINVAL;
1893
1894                p = ipend;
1895
1896                if (delim == ']') {
1897                        if (*p != ']') {
1898                                dout("missing matching ']'\n");
1899                                goto bad;
1900                        }
1901                        p++;
1902                }
1903
1904                /* port? */
1905                if (p < end && *p == ':') {
1906                        port = 0;
1907                        p++;
1908                        while (p < end && *p >= '0' && *p <= '9') {
1909                                port = (port * 10) + (*p - '0');
1910                                p++;
1911                        }
1912                        if (port == 0)
1913                                port = CEPH_MON_PORT;
1914                        else if (port > 65535)
1915                                goto bad;
1916                } else {
1917                        port = CEPH_MON_PORT;
1918                }
1919
1920                addr_set_port(ss, port);
1921
1922                dout("parse_ips got %s\n", ceph_pr_addr(ss));
1923
1924                if (p == end)
1925                        break;
1926                if (*p != ',')
1927                        goto bad;
1928                p++;
1929        }
1930
1931        if (p != end)
1932                goto bad;
1933
1934        if (count)
1935                *count = i + 1;
1936        return 0;
1937
1938bad:
1939        pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1940        return ret;
1941}
1942EXPORT_SYMBOL(ceph_parse_ips);
1943
1944static int process_banner(struct ceph_connection *con)
1945{
1946        dout("process_banner on %p\n", con);
1947
1948        if (verify_hello(con) < 0)
1949                return -1;
1950
1951        ceph_decode_addr(&con->actual_peer_addr);
1952        ceph_decode_addr(&con->peer_addr_for_me);
1953
1954        /*
1955         * Make sure the other end is who we wanted.  note that the other
1956         * end may not yet know their ip address, so if it's 0.0.0.0, give
1957         * them the benefit of the doubt.
1958         */
1959        if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1960                   sizeof(con->peer_addr)) != 0 &&
1961            !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1962              con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1963                pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1964                        ceph_pr_addr(&con->peer_addr.in_addr),
1965                        (int)le32_to_cpu(con->peer_addr.nonce),
1966                        ceph_pr_addr(&con->actual_peer_addr.in_addr),
1967                        (int)le32_to_cpu(con->actual_peer_addr.nonce));
1968                con->error_msg = "wrong peer at address";
1969                return -1;
1970        }
1971
1972        /*
1973         * did we learn our address?
1974         */
1975        if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1976                int port = addr_port(&con->msgr->inst.addr.in_addr);
1977
1978                memcpy(&con->msgr->inst.addr.in_addr,
1979                       &con->peer_addr_for_me.in_addr,
1980                       sizeof(con->peer_addr_for_me.in_addr));
1981                addr_set_port(&con->msgr->inst.addr.in_addr, port);
1982                encode_my_addr(con->msgr);
1983                dout("process_banner learned my addr is %s\n",
1984                     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1985        }
1986
1987        return 0;
1988}
1989
1990static int process_connect(struct ceph_connection *con)
1991{
1992        u64 sup_feat = con->msgr->supported_features;
1993        u64 req_feat = con->msgr->required_features;
1994        u64 server_feat = ceph_sanitize_features(
1995                                le64_to_cpu(con->in_reply.features));
1996        int ret;
1997
1998        dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1999
2000        switch (con->in_reply.tag) {
2001        case CEPH_MSGR_TAG_FEATURES:
2002                pr_err("%s%lld %s feature set mismatch,"
2003                       " my %llx < server's %llx, missing %llx\n",
2004                       ENTITY_NAME(con->peer_name),
2005                       ceph_pr_addr(&con->peer_addr.in_addr),
2006                       sup_feat, server_feat, server_feat & ~sup_feat);
2007                con->error_msg = "missing required protocol features";
2008                reset_connection(con);
2009                return -1;
2010
2011        case CEPH_MSGR_TAG_BADPROTOVER:
2012                pr_err("%s%lld %s protocol version mismatch,"
2013                       " my %d != server's %d\n",
2014                       ENTITY_NAME(con->peer_name),
2015                       ceph_pr_addr(&con->peer_addr.in_addr),
2016                       le32_to_cpu(con->out_connect.protocol_version),
2017                       le32_to_cpu(con->in_reply.protocol_version));
2018                con->error_msg = "protocol version mismatch";
2019                reset_connection(con);
2020                return -1;
2021
2022        case CEPH_MSGR_TAG_BADAUTHORIZER:
2023                con->auth_retry++;
2024                dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2025                     con->auth_retry);
2026                if (con->auth_retry == 2) {
2027                        con->error_msg = "connect authorization failure";
2028                        return -1;
2029                }
2030                con_out_kvec_reset(con);
2031                ret = prepare_write_connect(con);
2032                if (ret < 0)
2033                        return ret;
2034                prepare_read_connect(con);
2035                break;
2036
2037        case CEPH_MSGR_TAG_RESETSESSION:
2038                /*
2039                 * If we connected with a large connect_seq but the peer
2040                 * has no record of a session with us (no connection, or
2041                 * connect_seq == 0), they will send RESETSESION to indicate
2042                 * that they must have reset their session, and may have
2043                 * dropped messages.
2044                 */
2045                dout("process_connect got RESET peer seq %u\n",
2046                     le32_to_cpu(con->in_reply.connect_seq));
2047                pr_err("%s%lld %s connection reset\n",
2048                       ENTITY_NAME(con->peer_name),
2049                       ceph_pr_addr(&con->peer_addr.in_addr));
2050                reset_connection(con);
2051                con_out_kvec_reset(con);
2052                ret = prepare_write_connect(con);
2053                if (ret < 0)
2054                        return ret;
2055                prepare_read_connect(con);
2056
2057                /* Tell ceph about it. */
2058                mutex_unlock(&con->mutex);
2059                pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2060                if (con->ops->peer_reset)
2061                        con->ops->peer_reset(con);
2062                mutex_lock(&con->mutex);
2063                if (con->state != CON_STATE_NEGOTIATING)
2064                        return -EAGAIN;
2065                break;
2066
2067        case CEPH_MSGR_TAG_RETRY_SESSION:
2068                /*
2069                 * If we sent a smaller connect_seq than the peer has, try
2070                 * again with a larger value.
2071                 */
2072                dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2073                     le32_to_cpu(con->out_connect.connect_seq),
2074                     le32_to_cpu(con->in_reply.connect_seq));
2075                con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2076                con_out_kvec_reset(con);
2077                ret = prepare_write_connect(con);
2078                if (ret < 0)
2079                        return ret;
2080                prepare_read_connect(con);
2081                break;
2082
2083        case CEPH_MSGR_TAG_RETRY_GLOBAL:
2084                /*
2085                 * If we sent a smaller global_seq than the peer has, try
2086                 * again with a larger value.
2087                 */
2088                dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2089                     con->peer_global_seq,
2090                     le32_to_cpu(con->in_reply.global_seq));
2091                get_global_seq(con->msgr,
2092                               le32_to_cpu(con->in_reply.global_seq));
2093                con_out_kvec_reset(con);
2094                ret = prepare_write_connect(con);
2095                if (ret < 0)
2096                        return ret;
2097                prepare_read_connect(con);
2098                break;
2099
2100        case CEPH_MSGR_TAG_SEQ:
2101        case CEPH_MSGR_TAG_READY:
2102                if (req_feat & ~server_feat) {
2103                        pr_err("%s%lld %s protocol feature mismatch,"
2104                               " my required %llx > server's %llx, need %llx\n",
2105                               ENTITY_NAME(con->peer_name),
2106                               ceph_pr_addr(&con->peer_addr.in_addr),
2107                               req_feat, server_feat, req_feat & ~server_feat);
2108                        con->error_msg = "missing required protocol features";
2109                        reset_connection(con);
2110                        return -1;
2111                }
2112
2113                WARN_ON(con->state != CON_STATE_NEGOTIATING);
2114                con->state = CON_STATE_OPEN;
2115                con->auth_retry = 0;    /* we authenticated; clear flag */
2116                con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2117                con->connect_seq++;
2118                con->peer_features = server_feat;
2119                dout("process_connect got READY gseq %d cseq %d (%d)\n",
2120                     con->peer_global_seq,
2121                     le32_to_cpu(con->in_reply.connect_seq),
2122                     con->connect_seq);
2123                WARN_ON(con->connect_seq !=
2124                        le32_to_cpu(con->in_reply.connect_seq));
2125
2126                if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2127                        con_flag_set(con, CON_FLAG_LOSSYTX);
2128
2129                con->delay = 0;      /* reset backoff memory */
2130
2131                if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2132                        prepare_write_seq(con);
2133                        prepare_read_seq(con);
2134                } else {
2135                        prepare_read_tag(con);
2136                }
2137                break;
2138
2139        case CEPH_MSGR_TAG_WAIT:
2140                /*
2141                 * If there is a connection race (we are opening
2142                 * connections to each other), one of us may just have
2143                 * to WAIT.  This shouldn't happen if we are the
2144                 * client.
2145                 */
2146                con->error_msg = "protocol error, got WAIT as client";
2147                return -1;
2148
2149        default:
2150                con->error_msg = "protocol error, garbage tag during connect";
2151                return -1;
2152        }
2153        return 0;
2154}
2155
2156
2157/*
2158 * read (part of) an ack
2159 */
2160static int read_partial_ack(struct ceph_connection *con)
2161{
2162        int size = sizeof (con->in_temp_ack);
2163        int end = size;
2164
2165        return read_partial(con, end, size, &con->in_temp_ack);
2166}
2167
2168/*
2169 * We can finally discard anything that's been acked.
2170 */
2171static void process_ack(struct ceph_connection *con)
2172{
2173        struct ceph_msg *m;
2174        u64 ack = le64_to_cpu(con->in_temp_ack);
2175        u64 seq;
2176
2177        while (!list_empty(&con->out_sent)) {
2178                m = list_first_entry(&con->out_sent, struct ceph_msg,
2179                                     list_head);
2180                seq = le64_to_cpu(m->hdr.seq);
2181                if (seq > ack)
2182                        break;
2183                dout("got ack for seq %llu type %d at %p\n", seq,
2184                     le16_to_cpu(m->hdr.type), m);
2185                m->ack_stamp = jiffies;
2186                ceph_msg_remove(m);
2187        }
2188        prepare_read_tag(con);
2189}
2190
2191
2192static int read_partial_message_section(struct ceph_connection *con,
2193                                        struct kvec *section,
2194                                        unsigned int sec_len, u32 *crc)
2195{
2196        int ret, left;
2197
2198        BUG_ON(!section);
2199
2200        while (section->iov_len < sec_len) {
2201                BUG_ON(section->iov_base == NULL);
2202                left = sec_len - section->iov_len;
2203                ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2204                                       section->iov_len, left);
2205                if (ret <= 0)
2206                        return ret;
2207                section->iov_len += ret;
2208        }
2209        if (section->iov_len == sec_len)
2210                *crc = crc32c(0, section->iov_base, section->iov_len);
2211
2212        return 1;
2213}
2214
2215static int read_partial_msg_data(struct ceph_connection *con)
2216{
2217        struct ceph_msg *msg = con->in_msg;
2218        struct ceph_msg_data_cursor *cursor = &msg->cursor;
2219        const bool do_datacrc = !con->msgr->nocrc;
2220        struct page *page;
2221        size_t page_offset;
2222        size_t length;
2223        u32 crc = 0;
2224        int ret;
2225
2226        BUG_ON(!msg);
2227        if (list_empty(&msg->data))
2228                return -EIO;
2229
2230        if (do_datacrc)
2231                crc = con->in_data_crc;
2232        while (cursor->resid) {
2233                page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2234                                                        NULL);
2235                ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2236                if (ret <= 0) {
2237                        if (do_datacrc)
2238                                con->in_data_crc = crc;
2239
2240                        return ret;
2241                }
2242
2243                if (do_datacrc)
2244                        crc = ceph_crc32c_page(crc, page, page_offset, ret);
2245                (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2246        }
2247        if (do_datacrc)
2248                con->in_data_crc = crc;
2249
2250        return 1;       /* must return > 0 to indicate success */
2251}
2252
2253/*
2254 * read (part of) a message.
2255 */
2256static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2257
2258static int read_partial_message(struct ceph_connection *con)
2259{
2260        struct ceph_msg *m = con->in_msg;
2261        int size;
2262        int end;
2263        int ret;
2264        unsigned int front_len, middle_len, data_len;
2265        bool do_datacrc = !con->msgr->nocrc;
2266        bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2267        u64 seq;
2268        u32 crc;
2269
2270        dout("read_partial_message con %p msg %p\n", con, m);
2271
2272        /* header */
2273        size = sizeof (con->in_hdr);
2274        end = size;
2275        ret = read_partial(con, end, size, &con->in_hdr);
2276        if (ret <= 0)
2277                return ret;
2278
2279        crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2280        if (cpu_to_le32(crc) != con->in_hdr.crc) {
2281                pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2282                       crc, con->in_hdr.crc);
2283                return -EBADMSG;
2284        }
2285
2286        front_len = le32_to_cpu(con->in_hdr.front_len);
2287        if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2288                return -EIO;
2289        middle_len = le32_to_cpu(con->in_hdr.middle_len);
2290        if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2291                return -EIO;
2292        data_len = le32_to_cpu(con->in_hdr.data_len);
2293        if (data_len > CEPH_MSG_MAX_DATA_LEN)
2294                return -EIO;
2295
2296        /* verify seq# */
2297        seq = le64_to_cpu(con->in_hdr.seq);
2298        if ((s64)seq - (s64)con->in_seq < 1) {
2299                pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2300                        ENTITY_NAME(con->peer_name),
2301                        ceph_pr_addr(&con->peer_addr.in_addr),
2302                        seq, con->in_seq + 1);
2303                con->in_base_pos = -front_len - middle_len - data_len -
2304                        sizeof(m->footer);
2305                con->in_tag = CEPH_MSGR_TAG_READY;
2306                return 0;
2307        } else if ((s64)seq - (s64)con->in_seq > 1) {
2308                pr_err("read_partial_message bad seq %lld expected %lld\n",
2309                       seq, con->in_seq + 1);
2310                con->error_msg = "bad message sequence # for incoming message";
2311                return -EBADE;
2312        }
2313
2314        /* allocate message? */
2315        if (!con->in_msg) {
2316                int skip = 0;
2317
2318                dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2319                     front_len, data_len);
2320                ret = ceph_con_in_msg_alloc(con, &skip);
2321                if (ret < 0)
2322                        return ret;
2323
2324                BUG_ON(!con->in_msg ^ skip);
2325                if (con->in_msg && data_len > con->in_msg->data_length) {
2326                        pr_warn("%s skipping long message (%u > %zd)\n",
2327                                __func__, data_len, con->in_msg->data_length);
2328                        ceph_msg_put(con->in_msg);
2329                        con->in_msg = NULL;
2330                        skip = 1;
2331                }
2332                if (skip) {
2333                        /* skip this message */
2334                        dout("alloc_msg said skip message\n");
2335                        con->in_base_pos = -front_len - middle_len - data_len -
2336                                sizeof(m->footer);
2337                        con->in_tag = CEPH_MSGR_TAG_READY;
2338                        con->in_seq++;
2339                        return 0;
2340                }
2341
2342                BUG_ON(!con->in_msg);
2343                BUG_ON(con->in_msg->con != con);
2344                m = con->in_msg;
2345                m->front.iov_len = 0;    /* haven't read it yet */
2346                if (m->middle)
2347                        m->middle->vec.iov_len = 0;
2348
2349                /* prepare for data payload, if any */
2350
2351                if (data_len)
2352                        prepare_message_data(con->in_msg, data_len);
2353        }
2354
2355        /* front */
2356        ret = read_partial_message_section(con, &m->front, front_len,
2357                                           &con->in_front_crc);
2358        if (ret <= 0)
2359                return ret;
2360
2361        /* middle */
2362        if (m->middle) {
2363                ret = read_partial_message_section(con, &m->middle->vec,
2364                                                   middle_len,
2365                                                   &con->in_middle_crc);
2366                if (ret <= 0)
2367                        return ret;
2368        }
2369
2370        /* (page) data */
2371        if (data_len) {
2372                ret = read_partial_msg_data(con);
2373                if (ret <= 0)
2374                        return ret;
2375        }
2376
2377        /* footer */
2378        if (need_sign)
2379                size = sizeof(m->footer);
2380        else
2381                size = sizeof(m->old_footer);
2382
2383        end += size;
2384        ret = read_partial(con, end, size, &m->footer);
2385        if (ret <= 0)
2386                return ret;
2387
2388        if (!need_sign) {
2389                m->footer.flags = m->old_footer.flags;
2390                m->footer.sig = 0;
2391        }
2392
2393        dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2394             m, front_len, m->footer.front_crc, middle_len,
2395             m->footer.middle_crc, data_len, m->footer.data_crc);
2396
2397        /* crc ok? */
2398        if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2399                pr_err("read_partial_message %p front crc %u != exp. %u\n",
2400                       m, con->in_front_crc, m->footer.front_crc);
2401                return -EBADMSG;
2402        }
2403        if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2404                pr_err("read_partial_message %p middle crc %u != exp %u\n",
2405                       m, con->in_middle_crc, m->footer.middle_crc);
2406                return -EBADMSG;
2407        }
2408        if (do_datacrc &&
2409            (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2410            con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2411                pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2412                       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2413                return -EBADMSG;
2414        }
2415
2416        if (need_sign && con->ops->check_message_signature &&
2417            con->ops->check_message_signature(con, m)) {
2418                pr_err("read_partial_message %p signature check failed\n", m);
2419                return -EBADMSG;
2420        }
2421
2422        return 1; /* done! */
2423}
2424
2425/*
2426 * Process message.  This happens in the worker thread.  The callback should
2427 * be careful not to do anything that waits on other incoming messages or it
2428 * may deadlock.
2429 */
2430static void process_message(struct ceph_connection *con)
2431{
2432        struct ceph_msg *msg;
2433
2434        BUG_ON(con->in_msg->con != con);
2435        con->in_msg->con = NULL;
2436        msg = con->in_msg;
2437        con->in_msg = NULL;
2438        con->ops->put(con);
2439
2440        /* if first message, set peer_name */
2441        if (con->peer_name.type == 0)
2442                con->peer_name = msg->hdr.src;
2443
2444        con->in_seq++;
2445        mutex_unlock(&con->mutex);
2446
2447        dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2448             msg, le64_to_cpu(msg->hdr.seq),
2449             ENTITY_NAME(msg->hdr.src),
2450             le16_to_cpu(msg->hdr.type),
2451             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2452             le32_to_cpu(msg->hdr.front_len),
2453             le32_to_cpu(msg->hdr.data_len),
2454             con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2455        con->ops->dispatch(con, msg);
2456
2457        mutex_lock(&con->mutex);
2458}
2459
2460
2461/*
2462 * Write something to the socket.  Called in a worker thread when the
2463 * socket appears to be writeable and we have something ready to send.
2464 */
2465static int try_write(struct ceph_connection *con)
2466{
2467        int ret = 1;
2468
2469        dout("try_write start %p state %lu\n", con, con->state);
2470
2471more:
2472        dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2473
2474        /* open the socket first? */
2475        if (con->state == CON_STATE_PREOPEN) {
2476                BUG_ON(con->sock);
2477                con->state = CON_STATE_CONNECTING;
2478
2479                con_out_kvec_reset(con);
2480                prepare_write_banner(con);
2481                prepare_read_banner(con);
2482
2483                BUG_ON(con->in_msg);
2484                con->in_tag = CEPH_MSGR_TAG_READY;
2485                dout("try_write initiating connect on %p new state %lu\n",
2486                     con, con->state);
2487                ret = ceph_tcp_connect(con);
2488                if (ret < 0) {
2489                        con->error_msg = "connect error";
2490                        goto out;
2491                }
2492        }
2493
2494more_kvec:
2495        /* kvec data queued? */
2496        if (con->out_skip) {
2497                ret = write_partial_skip(con);
2498                if (ret <= 0)
2499                        goto out;
2500        }
2501        if (con->out_kvec_left) {
2502                ret = write_partial_kvec(con);
2503                if (ret <= 0)
2504                        goto out;
2505        }
2506
2507        /* msg pages? */
2508        if (con->out_msg) {
2509                if (con->out_msg_done) {
2510                        ceph_msg_put(con->out_msg);
2511                        con->out_msg = NULL;   /* we're done with this one */
2512                        goto do_next;
2513                }
2514
2515                ret = write_partial_message_data(con);
2516                if (ret == 1)
2517                        goto more_kvec;  /* we need to send the footer, too! */
2518                if (ret == 0)
2519                        goto out;
2520                if (ret < 0) {
2521                        dout("try_write write_partial_message_data err %d\n",
2522                             ret);
2523                        goto out;
2524                }
2525        }
2526
2527do_next:
2528        if (con->state == CON_STATE_OPEN) {
2529                /* is anything else pending? */
2530                if (!list_empty(&con->out_queue)) {
2531                        prepare_write_message(con);
2532                        goto more;
2533                }
2534                if (con->in_seq > con->in_seq_acked) {
2535                        prepare_write_ack(con);
2536                        goto more;
2537                }
2538                if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2539                        prepare_write_keepalive(con);
2540                        goto more;
2541                }
2542        }
2543
2544        /* Nothing to do! */
2545        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2546        dout("try_write nothing else to write.\n");
2547        ret = 0;
2548out:
2549        dout("try_write done on %p ret %d\n", con, ret);
2550        return ret;
2551}
2552
2553
2554
2555/*
2556 * Read what we can from the socket.
2557 */
2558static int try_read(struct ceph_connection *con)
2559{
2560        int ret = -1;
2561
2562more:
2563        dout("try_read start on %p state %lu\n", con, con->state);
2564        if (con->state != CON_STATE_CONNECTING &&
2565            con->state != CON_STATE_NEGOTIATING &&
2566            con->state != CON_STATE_OPEN)
2567                return 0;
2568
2569        BUG_ON(!con->sock);
2570
2571        dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2572             con->in_base_pos);
2573
2574        if (con->state == CON_STATE_CONNECTING) {
2575                dout("try_read connecting\n");
2576                ret = read_partial_banner(con);
2577                if (ret <= 0)
2578                        goto out;
2579                ret = process_banner(con);
2580                if (ret < 0)
2581                        goto out;
2582
2583                con->state = CON_STATE_NEGOTIATING;
2584
2585                /*
2586                 * Received banner is good, exchange connection info.
2587                 * Do not reset out_kvec, as sending our banner raced
2588                 * with receiving peer banner after connect completed.
2589                 */
2590                ret = prepare_write_connect(con);
2591                if (ret < 0)
2592                        goto out;
2593                prepare_read_connect(con);
2594
2595                /* Send connection info before awaiting response */
2596                goto out;
2597        }
2598
2599        if (con->state == CON_STATE_NEGOTIATING) {
2600                dout("try_read negotiating\n");
2601                ret = read_partial_connect(con);
2602                if (ret <= 0)
2603                        goto out;
2604                ret = process_connect(con);
2605                if (ret < 0)
2606                        goto out;
2607                goto more;
2608        }
2609
2610        WARN_ON(con->state != CON_STATE_OPEN);
2611
2612        if (con->in_base_pos < 0) {
2613                /*
2614                 * skipping + discarding content.
2615                 *
2616                 * FIXME: there must be a better way to do this!
2617                 */
2618                static char buf[SKIP_BUF_SIZE];
2619                int skip = min((int) sizeof (buf), -con->in_base_pos);
2620
2621                dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2622                ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2623                if (ret <= 0)
2624                        goto out;
2625                con->in_base_pos += ret;
2626                if (con->in_base_pos)
2627                        goto more;
2628        }
2629        if (con->in_tag == CEPH_MSGR_TAG_READY) {
2630                /*
2631                 * what's next?
2632                 */
2633                ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2634                if (ret <= 0)
2635                        goto out;
2636                dout("try_read got tag %d\n", (int)con->in_tag);
2637                switch (con->in_tag) {
2638                case CEPH_MSGR_TAG_MSG:
2639                        prepare_read_message(con);
2640                        break;
2641                case CEPH_MSGR_TAG_ACK:
2642                        prepare_read_ack(con);
2643                        break;
2644                case CEPH_MSGR_TAG_CLOSE:
2645                        con_close_socket(con);
2646                        con->state = CON_STATE_CLOSED;
2647                        goto out;
2648                default:
2649                        goto bad_tag;
2650                }
2651        }
2652        if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2653                ret = read_partial_message(con);
2654                if (ret <= 0) {
2655                        switch (ret) {
2656                        case -EBADMSG:
2657                                con->error_msg = "bad crc";
2658                                /* fall through */
2659                        case -EBADE:
2660                                ret = -EIO;
2661                                break;
2662                        case -EIO:
2663                                con->error_msg = "io error";
2664                                break;
2665                        }
2666                        goto out;
2667                }
2668                if (con->in_tag == CEPH_MSGR_TAG_READY)
2669                        goto more;
2670                process_message(con);
2671                if (con->state == CON_STATE_OPEN)
2672                        prepare_read_tag(con);
2673                goto more;
2674        }
2675        if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2676            con->in_tag == CEPH_MSGR_TAG_SEQ) {
2677                /*
2678                 * the final handshake seq exchange is semantically
2679                 * equivalent to an ACK
2680                 */
2681                ret = read_partial_ack(con);
2682                if (ret <= 0)
2683                        goto out;
2684                process_ack(con);
2685                goto more;
2686        }
2687
2688out:
2689        dout("try_read done on %p ret %d\n", con, ret);
2690        return ret;
2691
2692bad_tag:
2693        pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2694        con->error_msg = "protocol error, garbage tag";
2695        ret = -1;
2696        goto out;
2697}
2698
2699
2700/*
2701 * Atomically queue work on a connection after the specified delay.
2702 * Bump @con reference to avoid races with connection teardown.
2703 * Returns 0 if work was queued, or an error code otherwise.
2704 */
2705static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2706{
2707        if (!con->ops->get(con)) {
2708                dout("%s %p ref count 0\n", __func__, con);
2709                return -ENOENT;
2710        }
2711
2712        if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2713                dout("%s %p - already queued\n", __func__, con);
2714                con->ops->put(con);
2715                return -EBUSY;
2716        }
2717
2718        dout("%s %p %lu\n", __func__, con, delay);
2719        return 0;
2720}
2721
2722static void queue_con(struct ceph_connection *con)
2723{
2724        (void) queue_con_delay(con, 0);
2725}
2726
2727static void cancel_con(struct ceph_connection *con)
2728{
2729        if (cancel_delayed_work(&con->work)) {
2730                dout("%s %p\n", __func__, con);
2731                con->ops->put(con);
2732        }
2733}
2734
2735static bool con_sock_closed(struct ceph_connection *con)
2736{
2737        if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2738                return false;
2739
2740#define CASE(x)                                                         \
2741        case CON_STATE_ ## x:                                           \
2742                con->error_msg = "socket closed (con state " #x ")";    \
2743                break;
2744
2745        switch (con->state) {
2746        CASE(CLOSED);
2747        CASE(PREOPEN);
2748        CASE(CONNECTING);
2749        CASE(NEGOTIATING);
2750        CASE(OPEN);
2751        CASE(STANDBY);
2752        default:
2753                pr_warn("%s con %p unrecognized state %lu\n",
2754                        __func__, con, con->state);
2755                con->error_msg = "unrecognized con state";
2756                BUG();
2757                break;
2758        }
2759#undef CASE
2760
2761        return true;
2762}
2763
2764static bool con_backoff(struct ceph_connection *con)
2765{
2766        int ret;
2767
2768        if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2769                return false;
2770
2771        ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2772        if (ret) {
2773                dout("%s: con %p FAILED to back off %lu\n", __func__,
2774                        con, con->delay);
2775                BUG_ON(ret == -ENOENT);
2776                con_flag_set(con, CON_FLAG_BACKOFF);
2777        }
2778
2779        return true;
2780}
2781
2782/* Finish fault handling; con->mutex must *not* be held here */
2783
2784static void con_fault_finish(struct ceph_connection *con)
2785{
2786        /*
2787         * in case we faulted due to authentication, invalidate our
2788         * current tickets so that we can get new ones.
2789         */
2790        if (con->auth_retry && con->ops->invalidate_authorizer) {
2791                dout("calling invalidate_authorizer()\n");
2792                con->ops->invalidate_authorizer(con);
2793        }
2794
2795        if (con->ops->fault)
2796                con->ops->fault(con);
2797}
2798
2799/*
2800 * Do some work on a connection.  Drop a connection ref when we're done.
2801 */
2802static void con_work(struct work_struct *work)
2803{
2804        struct ceph_connection *con = container_of(work, struct ceph_connection,
2805                                                   work.work);
2806        bool fault;
2807
2808        mutex_lock(&con->mutex);
2809        while (true) {
2810                int ret;
2811
2812                if ((fault = con_sock_closed(con))) {
2813                        dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2814                        break;
2815                }
2816                if (con_backoff(con)) {
2817                        dout("%s: con %p BACKOFF\n", __func__, con);
2818                        break;
2819                }
2820                if (con->state == CON_STATE_STANDBY) {
2821                        dout("%s: con %p STANDBY\n", __func__, con);
2822                        break;
2823                }
2824                if (con->state == CON_STATE_CLOSED) {
2825                        dout("%s: con %p CLOSED\n", __func__, con);
2826                        BUG_ON(con->sock);
2827                        break;
2828                }
2829                if (con->state == CON_STATE_PREOPEN) {
2830                        dout("%s: con %p PREOPEN\n", __func__, con);
2831                        BUG_ON(con->sock);
2832                }
2833
2834                ret = try_read(con);
2835                if (ret < 0) {
2836                        if (ret == -EAGAIN)
2837                                continue;
2838                        if (!con->error_msg)
2839                                con->error_msg = "socket error on read";
2840                        fault = true;
2841                        break;
2842                }
2843
2844                ret = try_write(con);
2845                if (ret < 0) {
2846                        if (ret == -EAGAIN)
2847                                continue;
2848                        if (!con->error_msg)
2849                                con->error_msg = "socket error on write";
2850                        fault = true;
2851                }
2852
2853                break;  /* If we make it to here, we're done */
2854        }
2855        if (fault)
2856                con_fault(con);
2857        mutex_unlock(&con->mutex);
2858
2859        if (fault)
2860                con_fault_finish(con);
2861
2862        con->ops->put(con);
2863}
2864
2865/*
2866 * Generic error/fault handler.  A retry mechanism is used with
2867 * exponential backoff
2868 */
2869static void con_fault(struct ceph_connection *con)
2870{
2871        dout("fault %p state %lu to peer %s\n",
2872             con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2873
2874        pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2875                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2876        con->error_msg = NULL;
2877
2878        WARN_ON(con->state != CON_STATE_CONNECTING &&
2879               con->state != CON_STATE_NEGOTIATING &&
2880               con->state != CON_STATE_OPEN);
2881
2882        con_close_socket(con);
2883
2884        if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2885                dout("fault on LOSSYTX channel, marking CLOSED\n");
2886                con->state = CON_STATE_CLOSED;
2887                return;
2888        }
2889
2890        if (con->in_msg) {
2891                BUG_ON(con->in_msg->con != con);
2892                con->in_msg->con = NULL;
2893                ceph_msg_put(con->in_msg);
2894                con->in_msg = NULL;
2895                con->ops->put(con);
2896        }
2897
2898        /* Requeue anything that hasn't been acked */
2899        list_splice_init(&con->out_sent, &con->out_queue);
2900
2901        /* If there are no messages queued or keepalive pending, place
2902         * the connection in a STANDBY state */
2903        if (list_empty(&con->out_queue) &&
2904            !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2905                dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2906                con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2907                con->state = CON_STATE_STANDBY;
2908        } else {
2909                /* retry after a delay. */
2910                con->state = CON_STATE_PREOPEN;
2911                if (con->delay == 0)
2912                        con->delay = BASE_DELAY_INTERVAL;
2913                else if (con->delay < MAX_DELAY_INTERVAL)
2914                        con->delay *= 2;
2915                con_flag_set(con, CON_FLAG_BACKOFF);
2916                queue_con(con);
2917        }
2918}
2919
2920
2921
2922/*
2923 * initialize a new messenger instance
2924 */
2925void ceph_messenger_init(struct ceph_messenger *msgr,
2926                        struct ceph_entity_addr *myaddr,
2927                        u64 supported_features,
2928                        u64 required_features,
2929                        bool nocrc,
2930                        bool tcp_nodelay)
2931{
2932        msgr->supported_features = supported_features;
2933        msgr->required_features = required_features;
2934
2935        spin_lock_init(&msgr->global_seq_lock);
2936
2937        if (myaddr)
2938                msgr->inst.addr = *myaddr;
2939
2940        /* select a random nonce */
2941        msgr->inst.addr.type = 0;
2942        get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2943        encode_my_addr(msgr);
2944        msgr->nocrc = nocrc;
2945        msgr->tcp_nodelay = tcp_nodelay;
2946
2947        atomic_set(&msgr->stopping, 0);
2948        write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2949
2950        dout("%s %p\n", __func__, msgr);
2951}
2952EXPORT_SYMBOL(ceph_messenger_init);
2953
2954void ceph_messenger_fini(struct ceph_messenger *msgr)
2955{
2956        put_net(read_pnet(&msgr->net));
2957}
2958EXPORT_SYMBOL(ceph_messenger_fini);
2959
2960static void clear_standby(struct ceph_connection *con)
2961{
2962        /* come back from STANDBY? */
2963        if (con->state == CON_STATE_STANDBY) {
2964                dout("clear_standby %p and ++connect_seq\n", con);
2965                con->state = CON_STATE_PREOPEN;
2966                con->connect_seq++;
2967                WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2968                WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2969        }
2970}
2971
2972/*
2973 * Queue up an outgoing message on the given connection.
2974 */
2975void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2976{
2977        /* set src+dst */
2978        msg->hdr.src = con->msgr->inst.name;
2979        BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2980        msg->needs_out_seq = true;
2981
2982        mutex_lock(&con->mutex);
2983
2984        if (con->state == CON_STATE_CLOSED) {
2985                dout("con_send %p closed, dropping %p\n", con, msg);
2986                ceph_msg_put(msg);
2987                mutex_unlock(&con->mutex);
2988                return;
2989        }
2990
2991        BUG_ON(msg->con != NULL);
2992        msg->con = con->ops->get(con);
2993        BUG_ON(msg->con == NULL);
2994
2995        BUG_ON(!list_empty(&msg->list_head));
2996        list_add_tail(&msg->list_head, &con->out_queue);
2997        dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2998             ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2999             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3000             le32_to_cpu(msg->hdr.front_len),
3001             le32_to_cpu(msg->hdr.middle_len),
3002             le32_to_cpu(msg->hdr.data_len));
3003
3004        clear_standby(con);
3005        mutex_unlock(&con->mutex);
3006
3007        /* if there wasn't anything waiting to send before, queue
3008         * new work */
3009        if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3010                queue_con(con);
3011}
3012EXPORT_SYMBOL(ceph_con_send);
3013
3014/*
3015 * Revoke a message that was previously queued for send
3016 */
3017void ceph_msg_revoke(struct ceph_msg *msg)
3018{
3019        struct ceph_connection *con = msg->con;
3020
3021        if (!con)
3022                return;         /* Message not in our possession */
3023
3024        mutex_lock(&con->mutex);
3025        if (!list_empty(&msg->list_head)) {
3026                dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3027                list_del_init(&msg->list_head);
3028                BUG_ON(msg->con == NULL);
3029                msg->con->ops->put(msg->con);
3030                msg->con = NULL;
3031                msg->hdr.seq = 0;
3032
3033                ceph_msg_put(msg);
3034        }
3035        if (con->out_msg == msg) {
3036                dout("%s %p msg %p - was sending\n", __func__, con, msg);
3037                con->out_msg = NULL;
3038                if (con->out_kvec_is_msg) {
3039                        con->out_skip = con->out_kvec_bytes;
3040                        con->out_kvec_is_msg = false;
3041                }
3042                msg->hdr.seq = 0;
3043
3044                ceph_msg_put(msg);
3045        }
3046        mutex_unlock(&con->mutex);
3047}
3048
3049/*
3050 * Revoke a message that we may be reading data into
3051 */
3052void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3053{
3054        struct ceph_connection *con;
3055
3056        BUG_ON(msg == NULL);
3057        if (!msg->con) {
3058                dout("%s msg %p null con\n", __func__, msg);
3059
3060                return;         /* Message not in our possession */
3061        }
3062
3063        con = msg->con;
3064        mutex_lock(&con->mutex);
3065        if (con->in_msg == msg) {
3066                unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3067                unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3068                unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3069
3070                /* skip rest of message */
3071                dout("%s %p msg %p revoked\n", __func__, con, msg);
3072                con->in_base_pos = con->in_base_pos -
3073                                sizeof(struct ceph_msg_header) -
3074                                front_len -
3075                                middle_len -
3076                                data_len -
3077                                sizeof(struct ceph_msg_footer);
3078                ceph_msg_put(con->in_msg);
3079                con->in_msg = NULL;
3080                con->in_tag = CEPH_MSGR_TAG_READY;
3081                con->in_seq++;
3082        } else {
3083                dout("%s %p in_msg %p msg %p no-op\n",
3084                     __func__, con, con->in_msg, msg);
3085        }
3086        mutex_unlock(&con->mutex);
3087}
3088
3089/*
3090 * Queue a keepalive byte to ensure the tcp connection is alive.
3091 */
3092void ceph_con_keepalive(struct ceph_connection *con)
3093{
3094        dout("con_keepalive %p\n", con);
3095        mutex_lock(&con->mutex);
3096        clear_standby(con);
3097        mutex_unlock(&con->mutex);
3098        if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3099            con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3100                queue_con(con);
3101}
3102EXPORT_SYMBOL(ceph_con_keepalive);
3103
3104static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3105{
3106        struct ceph_msg_data *data;
3107
3108        if (WARN_ON(!ceph_msg_data_type_valid(type)))
3109                return NULL;
3110
3111        data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3112        if (data)
3113                data->type = type;
3114        INIT_LIST_HEAD(&data->links);
3115
3116        return data;
3117}
3118
3119static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3120{
3121        if (!data)
3122                return;
3123
3124        WARN_ON(!list_empty(&data->links));
3125        if (data->type == CEPH_MSG_DATA_PAGELIST)
3126                ceph_pagelist_release(data->pagelist);
3127        kmem_cache_free(ceph_msg_data_cache, data);
3128}
3129
3130void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3131                size_t length, size_t alignment)
3132{
3133        struct ceph_msg_data *data;
3134
3135        BUG_ON(!pages);
3136        BUG_ON(!length);
3137
3138        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3139        BUG_ON(!data);
3140        data->pages = pages;
3141        data->length = length;
3142        data->alignment = alignment & ~PAGE_MASK;
3143
3144        list_add_tail(&data->links, &msg->data);
3145        msg->data_length += length;
3146}
3147EXPORT_SYMBOL(ceph_msg_data_add_pages);
3148
3149void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3150                                struct ceph_pagelist *pagelist)
3151{
3152        struct ceph_msg_data *data;
3153
3154        BUG_ON(!pagelist);
3155        BUG_ON(!pagelist->length);
3156
3157        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3158        BUG_ON(!data);
3159        data->pagelist = pagelist;
3160
3161        list_add_tail(&data->links, &msg->data);
3162        msg->data_length += pagelist->length;
3163}
3164EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3165
3166#ifdef  CONFIG_BLOCK
3167void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3168                size_t length)
3169{
3170        struct ceph_msg_data *data;
3171
3172        BUG_ON(!bio);
3173
3174        data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3175        BUG_ON(!data);
3176        data->bio = bio;
3177        data->bio_length = length;
3178
3179        list_add_tail(&data->links, &msg->data);
3180        msg->data_length += length;
3181}
3182EXPORT_SYMBOL(ceph_msg_data_add_bio);
3183#endif  /* CONFIG_BLOCK */
3184
3185/*
3186 * construct a new message with given type, size
3187 * the new msg has a ref count of 1.
3188 */
3189struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3190                              bool can_fail)
3191{
3192        struct ceph_msg *m;
3193
3194        m = kmem_cache_zalloc(ceph_msg_cache, flags);
3195        if (m == NULL)
3196                goto out;
3197
3198        m->hdr.type = cpu_to_le16(type);
3199        m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3200        m->hdr.front_len = cpu_to_le32(front_len);
3201
3202        INIT_LIST_HEAD(&m->list_head);
3203        kref_init(&m->kref);
3204        INIT_LIST_HEAD(&m->data);
3205
3206        /* front */
3207        if (front_len) {
3208                m->front.iov_base = ceph_kvmalloc(front_len, flags);
3209                if (m->front.iov_base == NULL) {
3210                        dout("ceph_msg_new can't allocate %d bytes\n",
3211                             front_len);
3212                        goto out2;
3213                }
3214        } else {
3215                m->front.iov_base = NULL;
3216        }
3217        m->front_alloc_len = m->front.iov_len = front_len;
3218
3219        dout("ceph_msg_new %p front %d\n", m, front_len);
3220        return m;
3221
3222out2:
3223        ceph_msg_put(m);
3224out:
3225        if (!can_fail) {
3226                pr_err("msg_new can't create type %d front %d\n", type,
3227                       front_len);
3228                WARN_ON(1);
3229        } else {
3230                dout("msg_new can't create type %d front %d\n", type,
3231                     front_len);
3232        }
3233        return NULL;
3234}
3235EXPORT_SYMBOL(ceph_msg_new);
3236
3237/*
3238 * Allocate "middle" portion of a message, if it is needed and wasn't
3239 * allocated by alloc_msg.  This allows us to read a small fixed-size
3240 * per-type header in the front and then gracefully fail (i.e.,
3241 * propagate the error to the caller based on info in the front) when
3242 * the middle is too large.
3243 */
3244static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3245{
3246        int type = le16_to_cpu(msg->hdr.type);
3247        int middle_len = le32_to_cpu(msg->hdr.middle_len);
3248
3249        dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3250             ceph_msg_type_name(type), middle_len);
3251        BUG_ON(!middle_len);
3252        BUG_ON(msg->middle);
3253
3254        msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3255        if (!msg->middle)
3256                return -ENOMEM;
3257        return 0;
3258}
3259
3260/*
3261 * Allocate a message for receiving an incoming message on a
3262 * connection, and save the result in con->in_msg.  Uses the
3263 * connection's private alloc_msg op if available.
3264 *
3265 * Returns 0 on success, or a negative error code.
3266 *
3267 * On success, if we set *skip = 1:
3268 *  - the next message should be skipped and ignored.
3269 *  - con->in_msg == NULL
3270 * or if we set *skip = 0:
3271 *  - con->in_msg is non-null.
3272 * On error (ENOMEM, EAGAIN, ...),
3273 *  - con->in_msg == NULL
3274 */
3275static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3276{
3277        struct ceph_msg_header *hdr = &con->in_hdr;
3278        int middle_len = le32_to_cpu(hdr->middle_len);
3279        struct ceph_msg *msg;
3280        int ret = 0;
3281
3282        BUG_ON(con->in_msg != NULL);
3283        BUG_ON(!con->ops->alloc_msg);
3284
3285        mutex_unlock(&con->mutex);
3286        msg = con->ops->alloc_msg(con, hdr, skip);
3287        mutex_lock(&con->mutex);
3288        if (con->state != CON_STATE_OPEN) {
3289                if (msg)
3290                        ceph_msg_put(msg);
3291                return -EAGAIN;
3292        }
3293        if (msg) {
3294                BUG_ON(*skip);
3295                con->in_msg = msg;
3296                con->in_msg->con = con->ops->get(con);
3297                BUG_ON(con->in_msg->con == NULL);
3298        } else {
3299                /*
3300                 * Null message pointer means either we should skip
3301                 * this message or we couldn't allocate memory.  The
3302                 * former is not an error.
3303                 */
3304                if (*skip)
3305                        return 0;
3306
3307                con->error_msg = "error allocating memory for incoming message";
3308                return -ENOMEM;
3309        }
3310        memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3311
3312        if (middle_len && !con->in_msg->middle) {
3313                ret = ceph_alloc_middle(con, con->in_msg);
3314                if (ret < 0) {
3315                        ceph_msg_put(con->in_msg);
3316                        con->in_msg = NULL;
3317                }
3318        }
3319
3320        return ret;
3321}
3322
3323
3324/*
3325 * Free a generically kmalloc'd message.
3326 */
3327static void ceph_msg_free(struct ceph_msg *m)
3328{
3329        dout("%s %p\n", __func__, m);
3330        kvfree(m->front.iov_base);
3331        kmem_cache_free(ceph_msg_cache, m);
3332}
3333
3334static void ceph_msg_release(struct kref *kref)
3335{
3336        struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3337        LIST_HEAD(data);
3338        struct list_head *links;
3339        struct list_head *next;
3340
3341        dout("%s %p\n", __func__, m);
3342        WARN_ON(!list_empty(&m->list_head));
3343
3344        /* drop middle, data, if any */
3345        if (m->middle) {
3346                ceph_buffer_put(m->middle);
3347                m->middle = NULL;
3348        }
3349
3350        list_splice_init(&m->data, &data);
3351        list_for_each_safe(links, next, &data) {
3352                struct ceph_msg_data *data;
3353
3354                data = list_entry(links, struct ceph_msg_data, links);
3355                list_del_init(links);
3356                ceph_msg_data_destroy(data);
3357        }
3358        m->data_length = 0;
3359
3360        if (m->pool)
3361                ceph_msgpool_put(m->pool, m);
3362        else
3363                ceph_msg_free(m);
3364}
3365
3366struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3367{
3368        dout("%s %p (was %d)\n", __func__, msg,
3369             atomic_read(&msg->kref.refcount));
3370        kref_get(&msg->kref);
3371        return msg;
3372}
3373EXPORT_SYMBOL(ceph_msg_get);
3374
3375void ceph_msg_put(struct ceph_msg *msg)
3376{
3377        dout("%s %p (was %d)\n", __func__, msg,
3378             atomic_read(&msg->kref.refcount));
3379        kref_put(&msg->kref, ceph_msg_release);
3380}
3381EXPORT_SYMBOL(ceph_msg_put);
3382
3383void ceph_msg_dump(struct ceph_msg *msg)
3384{
3385        pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3386                 msg->front_alloc_len, msg->data_length);
3387        print_hex_dump(KERN_DEBUG, "header: ",
3388                       DUMP_PREFIX_OFFSET, 16, 1,
3389                       &msg->hdr, sizeof(msg->hdr), true);
3390        print_hex_dump(KERN_DEBUG, " front: ",
3391                       DUMP_PREFIX_OFFSET, 16, 1,
3392                       msg->front.iov_base, msg->front.iov_len, true);
3393        if (msg->middle)
3394                print_hex_dump(KERN_DEBUG, "middle: ",
3395                               DUMP_PREFIX_OFFSET, 16, 1,
3396                               msg->middle->vec.iov_base,
3397                               msg->middle->vec.iov_len, true);
3398        print_hex_dump(KERN_DEBUG, "footer: ",
3399                       DUMP_PREFIX_OFFSET, 16, 1,
3400                       &msg->footer, sizeof(msg->footer), true);
3401}
3402EXPORT_SYMBOL(ceph_msg_dump);
3403