linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122                              struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126                              unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130                             int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132                                struct pipe_inode_info *pipe, size_t len,
 133                                unsigned int flags);
 134
 135/*
 136 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *      in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141        .owner =        THIS_MODULE,
 142        .llseek =       no_llseek,
 143        .read_iter =    sock_read_iter,
 144        .write_iter =   sock_write_iter,
 145        .poll =         sock_poll,
 146        .unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148        .compat_ioctl = compat_sock_ioctl,
 149#endif
 150        .mmap =         sock_mmap,
 151        .release =      sock_close,
 152        .fasync =       sock_fasync,
 153        .sendpage =     sock_sendpage,
 154        .splice_write = generic_splice_sendpage,
 155        .splice_read =  sock_splice_read,
 156};
 157
 158/*
 159 *      The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *      Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *      move_addr_to_kernel     -       copy a socket address into kernel space
 179 *      @uaddr: Address in user space
 180 *      @kaddr: Address in kernel space
 181 *      @ulen: Length in user space
 182 *
 183 *      The address is copied into kernel space. If the provided address is
 184 *      too long an error code of -EINVAL is returned. If the copy gives
 185 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191                return -EINVAL;
 192        if (ulen == 0)
 193                return 0;
 194        if (copy_from_user(kaddr, uaddr, ulen))
 195                return -EFAULT;
 196        return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *      move_addr_to_user       -       copy an address to user space
 201 *      @kaddr: kernel space address
 202 *      @klen: length of address in kernel
 203 *      @uaddr: user space address
 204 *      @ulen: pointer to user length field
 205 *
 206 *      The value pointed to by ulen on entry is the buffer length available.
 207 *      This is overwritten with the buffer space used. -EINVAL is returned
 208 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *      is returned if either the buffer or the length field are not
 210 *      accessible.
 211 *      After copying the data up to the limit the user specifies, the true
 212 *      length of the data is written over the length limit the user
 213 *      specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217                             void __user *uaddr, int __user *ulen)
 218{
 219        int err;
 220        int len;
 221
 222        BUG_ON(klen > sizeof(struct sockaddr_storage));
 223        err = get_user(len, ulen);
 224        if (err)
 225                return err;
 226        if (len > klen)
 227                len = klen;
 228        if (len < 0)
 229                return -EINVAL;
 230        if (len) {
 231                if (audit_sockaddr(klen, kaddr))
 232                        return -ENOMEM;
 233                if (copy_to_user(uaddr, kaddr, len))
 234                        return -EFAULT;
 235        }
 236        /*
 237         *      "fromlen shall refer to the value before truncation.."
 238         *                      1003.1g
 239         */
 240        return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247        struct socket_alloc *ei;
 248        struct socket_wq *wq;
 249
 250        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251        if (!ei)
 252                return NULL;
 253        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254        if (!wq) {
 255                kmem_cache_free(sock_inode_cachep, ei);
 256                return NULL;
 257        }
 258        init_waitqueue_head(&wq->wait);
 259        wq->fasync_list = NULL;
 260        RCU_INIT_POINTER(ei->socket.wq, wq);
 261
 262        ei->socket.state = SS_UNCONNECTED;
 263        ei->socket.flags = 0;
 264        ei->socket.ops = NULL;
 265        ei->socket.sk = NULL;
 266        ei->socket.file = NULL;
 267
 268        return &ei->vfs_inode;
 269}
 270
 271static void sock_destroy_inode(struct inode *inode)
 272{
 273        struct socket_alloc *ei;
 274        struct socket_wq *wq;
 275
 276        ei = container_of(inode, struct socket_alloc, vfs_inode);
 277        wq = rcu_dereference_protected(ei->socket.wq, 1);
 278        kfree_rcu(wq, rcu);
 279        kmem_cache_free(sock_inode_cachep, ei);
 280}
 281
 282static void init_once(void *foo)
 283{
 284        struct socket_alloc *ei = (struct socket_alloc *)foo;
 285
 286        inode_init_once(&ei->vfs_inode);
 287}
 288
 289static int init_inodecache(void)
 290{
 291        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 292                                              sizeof(struct socket_alloc),
 293                                              0,
 294                                              (SLAB_HWCACHE_ALIGN |
 295                                               SLAB_RECLAIM_ACCOUNT |
 296                                               SLAB_MEM_SPREAD),
 297                                              init_once);
 298        if (sock_inode_cachep == NULL)
 299                return -ENOMEM;
 300        return 0;
 301}
 302
 303static const struct super_operations sockfs_ops = {
 304        .alloc_inode    = sock_alloc_inode,
 305        .destroy_inode  = sock_destroy_inode,
 306        .statfs         = simple_statfs,
 307};
 308
 309/*
 310 * sockfs_dname() is called from d_path().
 311 */
 312static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 313{
 314        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 315                                d_inode(dentry)->i_ino);
 316}
 317
 318static const struct dentry_operations sockfs_dentry_operations = {
 319        .d_dname  = sockfs_dname,
 320};
 321
 322static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 323                         int flags, const char *dev_name, void *data)
 324{
 325        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 326                &sockfs_dentry_operations, SOCKFS_MAGIC);
 327}
 328
 329static struct vfsmount *sock_mnt __read_mostly;
 330
 331static struct file_system_type sock_fs_type = {
 332        .name =         "sockfs",
 333        .mount =        sockfs_mount,
 334        .kill_sb =      kill_anon_super,
 335};
 336
 337/*
 338 *      Obtains the first available file descriptor and sets it up for use.
 339 *
 340 *      These functions create file structures and maps them to fd space
 341 *      of the current process. On success it returns file descriptor
 342 *      and file struct implicitly stored in sock->file.
 343 *      Note that another thread may close file descriptor before we return
 344 *      from this function. We use the fact that now we do not refer
 345 *      to socket after mapping. If one day we will need it, this
 346 *      function will increment ref. count on file by 1.
 347 *
 348 *      In any case returned fd MAY BE not valid!
 349 *      This race condition is unavoidable
 350 *      with shared fd spaces, we cannot solve it inside kernel,
 351 *      but we take care of internal coherence yet.
 352 */
 353
 354struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 355{
 356        struct qstr name = { .name = "" };
 357        struct path path;
 358        struct file *file;
 359
 360        if (dname) {
 361                name.name = dname;
 362                name.len = strlen(name.name);
 363        } else if (sock->sk) {
 364                name.name = sock->sk->sk_prot_creator->name;
 365                name.len = strlen(name.name);
 366        }
 367        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 368        if (unlikely(!path.dentry))
 369                return ERR_PTR(-ENOMEM);
 370        path.mnt = mntget(sock_mnt);
 371
 372        d_instantiate(path.dentry, SOCK_INODE(sock));
 373
 374        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 375                  &socket_file_ops);
 376        if (unlikely(IS_ERR(file))) {
 377                /* drop dentry, keep inode */
 378                ihold(d_inode(path.dentry));
 379                path_put(&path);
 380                return file;
 381        }
 382
 383        sock->file = file;
 384        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 385        file->private_data = sock;
 386        return file;
 387}
 388EXPORT_SYMBOL(sock_alloc_file);
 389
 390static int sock_map_fd(struct socket *sock, int flags)
 391{
 392        struct file *newfile;
 393        int fd = get_unused_fd_flags(flags);
 394        if (unlikely(fd < 0))
 395                return fd;
 396
 397        newfile = sock_alloc_file(sock, flags, NULL);
 398        if (likely(!IS_ERR(newfile))) {
 399                fd_install(fd, newfile);
 400                return fd;
 401        }
 402
 403        put_unused_fd(fd);
 404        return PTR_ERR(newfile);
 405}
 406
 407struct socket *sock_from_file(struct file *file, int *err)
 408{
 409        if (file->f_op == &socket_file_ops)
 410                return file->private_data;      /* set in sock_map_fd */
 411
 412        *err = -ENOTSOCK;
 413        return NULL;
 414}
 415EXPORT_SYMBOL(sock_from_file);
 416
 417/**
 418 *      sockfd_lookup - Go from a file number to its socket slot
 419 *      @fd: file handle
 420 *      @err: pointer to an error code return
 421 *
 422 *      The file handle passed in is locked and the socket it is bound
 423 *      too is returned. If an error occurs the err pointer is overwritten
 424 *      with a negative errno code and NULL is returned. The function checks
 425 *      for both invalid handles and passing a handle which is not a socket.
 426 *
 427 *      On a success the socket object pointer is returned.
 428 */
 429
 430struct socket *sockfd_lookup(int fd, int *err)
 431{
 432        struct file *file;
 433        struct socket *sock;
 434
 435        file = fget(fd);
 436        if (!file) {
 437                *err = -EBADF;
 438                return NULL;
 439        }
 440
 441        sock = sock_from_file(file, err);
 442        if (!sock)
 443                fput(file);
 444        return sock;
 445}
 446EXPORT_SYMBOL(sockfd_lookup);
 447
 448static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 449{
 450        struct fd f = fdget(fd);
 451        struct socket *sock;
 452
 453        *err = -EBADF;
 454        if (f.file) {
 455                sock = sock_from_file(f.file, err);
 456                if (likely(sock)) {
 457                        *fput_needed = f.flags;
 458                        return sock;
 459                }
 460                fdput(f);
 461        }
 462        return NULL;
 463}
 464
 465#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 466#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 467#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 468static ssize_t sockfs_getxattr(struct dentry *dentry,
 469                               const char *name, void *value, size_t size)
 470{
 471        const char *proto_name;
 472        size_t proto_size;
 473        int error;
 474
 475        error = -ENODATA;
 476        if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 477                proto_name = dentry->d_name.name;
 478                proto_size = strlen(proto_name);
 479
 480                if (value) {
 481                        error = -ERANGE;
 482                        if (proto_size + 1 > size)
 483                                goto out;
 484
 485                        strncpy(value, proto_name, proto_size + 1);
 486                }
 487                error = proto_size + 1;
 488        }
 489
 490out:
 491        return error;
 492}
 493
 494static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 495                                size_t size)
 496{
 497        ssize_t len;
 498        ssize_t used = 0;
 499
 500        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 501        if (len < 0)
 502                return len;
 503        used += len;
 504        if (buffer) {
 505                if (size < used)
 506                        return -ERANGE;
 507                buffer += len;
 508        }
 509
 510        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 511        used += len;
 512        if (buffer) {
 513                if (size < used)
 514                        return -ERANGE;
 515                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 516                buffer += len;
 517        }
 518
 519        return used;
 520}
 521
 522static const struct inode_operations sockfs_inode_ops = {
 523        .getxattr = sockfs_getxattr,
 524        .listxattr = sockfs_listxattr,
 525};
 526
 527/**
 528 *      sock_alloc      -       allocate a socket
 529 *
 530 *      Allocate a new inode and socket object. The two are bound together
 531 *      and initialised. The socket is then returned. If we are out of inodes
 532 *      NULL is returned.
 533 */
 534
 535static struct socket *sock_alloc(void)
 536{
 537        struct inode *inode;
 538        struct socket *sock;
 539
 540        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 541        if (!inode)
 542                return NULL;
 543
 544        sock = SOCKET_I(inode);
 545
 546        kmemcheck_annotate_bitfield(sock, type);
 547        inode->i_ino = get_next_ino();
 548        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 549        inode->i_uid = current_fsuid();
 550        inode->i_gid = current_fsgid();
 551        inode->i_op = &sockfs_inode_ops;
 552
 553        this_cpu_add(sockets_in_use, 1);
 554        return sock;
 555}
 556
 557/**
 558 *      sock_release    -       close a socket
 559 *      @sock: socket to close
 560 *
 561 *      The socket is released from the protocol stack if it has a release
 562 *      callback, and the inode is then released if the socket is bound to
 563 *      an inode not a file.
 564 */
 565
 566void sock_release(struct socket *sock)
 567{
 568        if (sock->ops) {
 569                struct module *owner = sock->ops->owner;
 570
 571                sock->ops->release(sock);
 572                sock->ops = NULL;
 573                module_put(owner);
 574        }
 575
 576        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 577                pr_err("%s: fasync list not empty!\n", __func__);
 578
 579        this_cpu_sub(sockets_in_use, 1);
 580        if (!sock->file) {
 581                iput(SOCK_INODE(sock));
 582                return;
 583        }
 584        sock->file = NULL;
 585}
 586EXPORT_SYMBOL(sock_release);
 587
 588void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
 589{
 590        u8 flags = *tx_flags;
 591
 592        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 593                flags |= SKBTX_HW_TSTAMP;
 594
 595        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 596                flags |= SKBTX_SW_TSTAMP;
 597
 598        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
 599                flags |= SKBTX_SCHED_TSTAMP;
 600
 601        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
 602                flags |= SKBTX_ACK_TSTAMP;
 603
 604        *tx_flags = flags;
 605}
 606EXPORT_SYMBOL(__sock_tx_timestamp);
 607
 608static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 609{
 610        int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 611        BUG_ON(ret == -EIOCBQUEUED);
 612        return ret;
 613}
 614
 615int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 616{
 617        int err = security_socket_sendmsg(sock, msg,
 618                                          msg_data_left(msg));
 619
 620        return err ?: sock_sendmsg_nosec(sock, msg);
 621}
 622EXPORT_SYMBOL(sock_sendmsg);
 623
 624int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 625                   struct kvec *vec, size_t num, size_t size)
 626{
 627        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 628        return sock_sendmsg(sock, msg);
 629}
 630EXPORT_SYMBOL(kernel_sendmsg);
 631
 632/*
 633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 634 */
 635void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 636        struct sk_buff *skb)
 637{
 638        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 639        struct scm_timestamping tss;
 640        int empty = 1;
 641        struct skb_shared_hwtstamps *shhwtstamps =
 642                skb_hwtstamps(skb);
 643
 644        /* Race occurred between timestamp enabling and packet
 645           receiving.  Fill in the current time for now. */
 646        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 647                __net_timestamp(skb);
 648
 649        if (need_software_tstamp) {
 650                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 651                        struct timeval tv;
 652                        skb_get_timestamp(skb, &tv);
 653                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 654                                 sizeof(tv), &tv);
 655                } else {
 656                        struct timespec ts;
 657                        skb_get_timestampns(skb, &ts);
 658                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 659                                 sizeof(ts), &ts);
 660                }
 661        }
 662
 663        memset(&tss, 0, sizeof(tss));
 664        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 665            ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 666                empty = 0;
 667        if (shhwtstamps &&
 668            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 669            ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 670                empty = 0;
 671        if (!empty)
 672                put_cmsg(msg, SOL_SOCKET,
 673                         SCM_TIMESTAMPING, sizeof(tss), &tss);
 674}
 675EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 676
 677void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 678        struct sk_buff *skb)
 679{
 680        int ack;
 681
 682        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 683                return;
 684        if (!skb->wifi_acked_valid)
 685                return;
 686
 687        ack = skb->wifi_acked;
 688
 689        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 690}
 691EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 692
 693static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 694                                   struct sk_buff *skb)
 695{
 696        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 697                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 698                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 699}
 700
 701void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 702        struct sk_buff *skb)
 703{
 704        sock_recv_timestamp(msg, sk, skb);
 705        sock_recv_drops(msg, sk, skb);
 706}
 707EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 708
 709static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 710                                     size_t size, int flags)
 711{
 712        return sock->ops->recvmsg(sock, msg, size, flags);
 713}
 714
 715int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
 716                 int flags)
 717{
 718        int err = security_socket_recvmsg(sock, msg, size, flags);
 719
 720        return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
 721}
 722EXPORT_SYMBOL(sock_recvmsg);
 723
 724/**
 725 * kernel_recvmsg - Receive a message from a socket (kernel space)
 726 * @sock:       The socket to receive the message from
 727 * @msg:        Received message
 728 * @vec:        Input s/g array for message data
 729 * @num:        Size of input s/g array
 730 * @size:       Number of bytes to read
 731 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 732 *
 733 * On return the msg structure contains the scatter/gather array passed in the
 734 * vec argument. The array is modified so that it consists of the unfilled
 735 * portion of the original array.
 736 *
 737 * The returned value is the total number of bytes received, or an error.
 738 */
 739int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 740                   struct kvec *vec, size_t num, size_t size, int flags)
 741{
 742        mm_segment_t oldfs = get_fs();
 743        int result;
 744
 745        iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 746        set_fs(KERNEL_DS);
 747        result = sock_recvmsg(sock, msg, size, flags);
 748        set_fs(oldfs);
 749        return result;
 750}
 751EXPORT_SYMBOL(kernel_recvmsg);
 752
 753static ssize_t sock_sendpage(struct file *file, struct page *page,
 754                             int offset, size_t size, loff_t *ppos, int more)
 755{
 756        struct socket *sock;
 757        int flags;
 758
 759        sock = file->private_data;
 760
 761        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 762        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 763        flags |= more;
 764
 765        return kernel_sendpage(sock, page, offset, size, flags);
 766}
 767
 768static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 769                                struct pipe_inode_info *pipe, size_t len,
 770                                unsigned int flags)
 771{
 772        struct socket *sock = file->private_data;
 773
 774        if (unlikely(!sock->ops->splice_read))
 775                return -EINVAL;
 776
 777        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 778}
 779
 780static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 781{
 782        struct file *file = iocb->ki_filp;
 783        struct socket *sock = file->private_data;
 784        struct msghdr msg = {.msg_iter = *to,
 785                             .msg_iocb = iocb};
 786        ssize_t res;
 787
 788        if (file->f_flags & O_NONBLOCK)
 789                msg.msg_flags = MSG_DONTWAIT;
 790
 791        if (iocb->ki_pos != 0)
 792                return -ESPIPE;
 793
 794        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 795                return 0;
 796
 797        res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
 798        *to = msg.msg_iter;
 799        return res;
 800}
 801
 802static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 803{
 804        struct file *file = iocb->ki_filp;
 805        struct socket *sock = file->private_data;
 806        struct msghdr msg = {.msg_iter = *from,
 807                             .msg_iocb = iocb};
 808        ssize_t res;
 809
 810        if (iocb->ki_pos != 0)
 811                return -ESPIPE;
 812
 813        if (file->f_flags & O_NONBLOCK)
 814                msg.msg_flags = MSG_DONTWAIT;
 815
 816        if (sock->type == SOCK_SEQPACKET)
 817                msg.msg_flags |= MSG_EOR;
 818
 819        res = sock_sendmsg(sock, &msg);
 820        *from = msg.msg_iter;
 821        return res;
 822}
 823
 824/*
 825 * Atomic setting of ioctl hooks to avoid race
 826 * with module unload.
 827 */
 828
 829static DEFINE_MUTEX(br_ioctl_mutex);
 830static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 831
 832void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 833{
 834        mutex_lock(&br_ioctl_mutex);
 835        br_ioctl_hook = hook;
 836        mutex_unlock(&br_ioctl_mutex);
 837}
 838EXPORT_SYMBOL(brioctl_set);
 839
 840static DEFINE_MUTEX(vlan_ioctl_mutex);
 841static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 842
 843void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 844{
 845        mutex_lock(&vlan_ioctl_mutex);
 846        vlan_ioctl_hook = hook;
 847        mutex_unlock(&vlan_ioctl_mutex);
 848}
 849EXPORT_SYMBOL(vlan_ioctl_set);
 850
 851static DEFINE_MUTEX(dlci_ioctl_mutex);
 852static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 853
 854void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 855{
 856        mutex_lock(&dlci_ioctl_mutex);
 857        dlci_ioctl_hook = hook;
 858        mutex_unlock(&dlci_ioctl_mutex);
 859}
 860EXPORT_SYMBOL(dlci_ioctl_set);
 861
 862static long sock_do_ioctl(struct net *net, struct socket *sock,
 863                                 unsigned int cmd, unsigned long arg)
 864{
 865        int err;
 866        void __user *argp = (void __user *)arg;
 867
 868        err = sock->ops->ioctl(sock, cmd, arg);
 869
 870        /*
 871         * If this ioctl is unknown try to hand it down
 872         * to the NIC driver.
 873         */
 874        if (err == -ENOIOCTLCMD)
 875                err = dev_ioctl(net, cmd, argp);
 876
 877        return err;
 878}
 879
 880/*
 881 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 882 *      what to do with it - that's up to the protocol still.
 883 */
 884
 885static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 886{
 887        struct socket *sock;
 888        struct sock *sk;
 889        void __user *argp = (void __user *)arg;
 890        int pid, err;
 891        struct net *net;
 892
 893        sock = file->private_data;
 894        sk = sock->sk;
 895        net = sock_net(sk);
 896        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 897                err = dev_ioctl(net, cmd, argp);
 898        } else
 899#ifdef CONFIG_WEXT_CORE
 900        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 901                err = dev_ioctl(net, cmd, argp);
 902        } else
 903#endif
 904                switch (cmd) {
 905                case FIOSETOWN:
 906                case SIOCSPGRP:
 907                        err = -EFAULT;
 908                        if (get_user(pid, (int __user *)argp))
 909                                break;
 910                        f_setown(sock->file, pid, 1);
 911                        err = 0;
 912                        break;
 913                case FIOGETOWN:
 914                case SIOCGPGRP:
 915                        err = put_user(f_getown(sock->file),
 916                                       (int __user *)argp);
 917                        break;
 918                case SIOCGIFBR:
 919                case SIOCSIFBR:
 920                case SIOCBRADDBR:
 921                case SIOCBRDELBR:
 922                        err = -ENOPKG;
 923                        if (!br_ioctl_hook)
 924                                request_module("bridge");
 925
 926                        mutex_lock(&br_ioctl_mutex);
 927                        if (br_ioctl_hook)
 928                                err = br_ioctl_hook(net, cmd, argp);
 929                        mutex_unlock(&br_ioctl_mutex);
 930                        break;
 931                case SIOCGIFVLAN:
 932                case SIOCSIFVLAN:
 933                        err = -ENOPKG;
 934                        if (!vlan_ioctl_hook)
 935                                request_module("8021q");
 936
 937                        mutex_lock(&vlan_ioctl_mutex);
 938                        if (vlan_ioctl_hook)
 939                                err = vlan_ioctl_hook(net, argp);
 940                        mutex_unlock(&vlan_ioctl_mutex);
 941                        break;
 942                case SIOCADDDLCI:
 943                case SIOCDELDLCI:
 944                        err = -ENOPKG;
 945                        if (!dlci_ioctl_hook)
 946                                request_module("dlci");
 947
 948                        mutex_lock(&dlci_ioctl_mutex);
 949                        if (dlci_ioctl_hook)
 950                                err = dlci_ioctl_hook(cmd, argp);
 951                        mutex_unlock(&dlci_ioctl_mutex);
 952                        break;
 953                default:
 954                        err = sock_do_ioctl(net, sock, cmd, arg);
 955                        break;
 956                }
 957        return err;
 958}
 959
 960int sock_create_lite(int family, int type, int protocol, struct socket **res)
 961{
 962        int err;
 963        struct socket *sock = NULL;
 964
 965        err = security_socket_create(family, type, protocol, 1);
 966        if (err)
 967                goto out;
 968
 969        sock = sock_alloc();
 970        if (!sock) {
 971                err = -ENOMEM;
 972                goto out;
 973        }
 974
 975        sock->type = type;
 976        err = security_socket_post_create(sock, family, type, protocol, 1);
 977        if (err)
 978                goto out_release;
 979
 980out:
 981        *res = sock;
 982        return err;
 983out_release:
 984        sock_release(sock);
 985        sock = NULL;
 986        goto out;
 987}
 988EXPORT_SYMBOL(sock_create_lite);
 989
 990/* No kernel lock held - perfect */
 991static unsigned int sock_poll(struct file *file, poll_table *wait)
 992{
 993        unsigned int busy_flag = 0;
 994        struct socket *sock;
 995
 996        /*
 997         *      We can't return errors to poll, so it's either yes or no.
 998         */
 999        sock = file->private_data;
1000
1001        if (sk_can_busy_loop(sock->sk)) {
1002                /* this socket can poll_ll so tell the system call */
1003                busy_flag = POLL_BUSY_LOOP;
1004
1005                /* once, only if requested by syscall */
1006                if (wait && (wait->_key & POLL_BUSY_LOOP))
1007                        sk_busy_loop(sock->sk, 1);
1008        }
1009
1010        return busy_flag | sock->ops->poll(file, sock, wait);
1011}
1012
1013static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1014{
1015        struct socket *sock = file->private_data;
1016
1017        return sock->ops->mmap(file, sock, vma);
1018}
1019
1020static int sock_close(struct inode *inode, struct file *filp)
1021{
1022        sock_release(SOCKET_I(inode));
1023        return 0;
1024}
1025
1026/*
1027 *      Update the socket async list
1028 *
1029 *      Fasync_list locking strategy.
1030 *
1031 *      1. fasync_list is modified only under process context socket lock
1032 *         i.e. under semaphore.
1033 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1034 *         or under socket lock
1035 */
1036
1037static int sock_fasync(int fd, struct file *filp, int on)
1038{
1039        struct socket *sock = filp->private_data;
1040        struct sock *sk = sock->sk;
1041        struct socket_wq *wq;
1042
1043        if (sk == NULL)
1044                return -EINVAL;
1045
1046        lock_sock(sk);
1047        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1048        fasync_helper(fd, filp, on, &wq->fasync_list);
1049
1050        if (!wq->fasync_list)
1051                sock_reset_flag(sk, SOCK_FASYNC);
1052        else
1053                sock_set_flag(sk, SOCK_FASYNC);
1054
1055        release_sock(sk);
1056        return 0;
1057}
1058
1059/* This function may be called only under socket lock or callback_lock or rcu_lock */
1060
1061int sock_wake_async(struct socket *sock, int how, int band)
1062{
1063        struct socket_wq *wq;
1064
1065        if (!sock)
1066                return -1;
1067        rcu_read_lock();
1068        wq = rcu_dereference(sock->wq);
1069        if (!wq || !wq->fasync_list) {
1070                rcu_read_unlock();
1071                return -1;
1072        }
1073        switch (how) {
1074        case SOCK_WAKE_WAITD:
1075                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1076                        break;
1077                goto call_kill;
1078        case SOCK_WAKE_SPACE:
1079                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1080                        break;
1081                /* fall through */
1082        case SOCK_WAKE_IO:
1083call_kill:
1084                kill_fasync(&wq->fasync_list, SIGIO, band);
1085                break;
1086        case SOCK_WAKE_URG:
1087                kill_fasync(&wq->fasync_list, SIGURG, band);
1088        }
1089        rcu_read_unlock();
1090        return 0;
1091}
1092EXPORT_SYMBOL(sock_wake_async);
1093
1094int __sock_create(struct net *net, int family, int type, int protocol,
1095                         struct socket **res, int kern)
1096{
1097        int err;
1098        struct socket *sock;
1099        const struct net_proto_family *pf;
1100
1101        /*
1102         *      Check protocol is in range
1103         */
1104        if (family < 0 || family >= NPROTO)
1105                return -EAFNOSUPPORT;
1106        if (type < 0 || type >= SOCK_MAX)
1107                return -EINVAL;
1108
1109        /* Compatibility.
1110
1111           This uglymoron is moved from INET layer to here to avoid
1112           deadlock in module load.
1113         */
1114        if (family == PF_INET && type == SOCK_PACKET) {
1115                static int warned;
1116                if (!warned) {
1117                        warned = 1;
1118                        pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119                                current->comm);
1120                }
1121                family = PF_PACKET;
1122        }
1123
1124        err = security_socket_create(family, type, protocol, kern);
1125        if (err)
1126                return err;
1127
1128        /*
1129         *      Allocate the socket and allow the family to set things up. if
1130         *      the protocol is 0, the family is instructed to select an appropriate
1131         *      default.
1132         */
1133        sock = sock_alloc();
1134        if (!sock) {
1135                net_warn_ratelimited("socket: no more sockets\n");
1136                return -ENFILE; /* Not exactly a match, but its the
1137                                   closest posix thing */
1138        }
1139
1140        sock->type = type;
1141
1142#ifdef CONFIG_MODULES
1143        /* Attempt to load a protocol module if the find failed.
1144         *
1145         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1146         * requested real, full-featured networking support upon configuration.
1147         * Otherwise module support will break!
1148         */
1149        if (rcu_access_pointer(net_families[family]) == NULL)
1150                request_module("net-pf-%d", family);
1151#endif
1152
1153        rcu_read_lock();
1154        pf = rcu_dereference(net_families[family]);
1155        err = -EAFNOSUPPORT;
1156        if (!pf)
1157                goto out_release;
1158
1159        /*
1160         * We will call the ->create function, that possibly is in a loadable
1161         * module, so we have to bump that loadable module refcnt first.
1162         */
1163        if (!try_module_get(pf->owner))
1164                goto out_release;
1165
1166        /* Now protected by module ref count */
1167        rcu_read_unlock();
1168
1169        err = pf->create(net, sock, protocol, kern);
1170        if (err < 0)
1171                goto out_module_put;
1172
1173        /*
1174         * Now to bump the refcnt of the [loadable] module that owns this
1175         * socket at sock_release time we decrement its refcnt.
1176         */
1177        if (!try_module_get(sock->ops->owner))
1178                goto out_module_busy;
1179
1180        /*
1181         * Now that we're done with the ->create function, the [loadable]
1182         * module can have its refcnt decremented
1183         */
1184        module_put(pf->owner);
1185        err = security_socket_post_create(sock, family, type, protocol, kern);
1186        if (err)
1187                goto out_sock_release;
1188        *res = sock;
1189
1190        return 0;
1191
1192out_module_busy:
1193        err = -EAFNOSUPPORT;
1194out_module_put:
1195        sock->ops = NULL;
1196        module_put(pf->owner);
1197out_sock_release:
1198        sock_release(sock);
1199        return err;
1200
1201out_release:
1202        rcu_read_unlock();
1203        goto out_sock_release;
1204}
1205EXPORT_SYMBOL(__sock_create);
1206
1207int sock_create(int family, int type, int protocol, struct socket **res)
1208{
1209        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210}
1211EXPORT_SYMBOL(sock_create);
1212
1213int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1214{
1215        return __sock_create(net, family, type, protocol, res, 1);
1216}
1217EXPORT_SYMBOL(sock_create_kern);
1218
1219SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1220{
1221        int retval;
1222        struct socket *sock;
1223        int flags;
1224
1225        /* Check the SOCK_* constants for consistency.  */
1226        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1227        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1228        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1229        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1230
1231        flags = type & ~SOCK_TYPE_MASK;
1232        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1233                return -EINVAL;
1234        type &= SOCK_TYPE_MASK;
1235
1236        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1237                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1238
1239        retval = sock_create(family, type, protocol, &sock);
1240        if (retval < 0)
1241                goto out;
1242
1243        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1244        if (retval < 0)
1245                goto out_release;
1246
1247out:
1248        /* It may be already another descriptor 8) Not kernel problem. */
1249        return retval;
1250
1251out_release:
1252        sock_release(sock);
1253        return retval;
1254}
1255
1256/*
1257 *      Create a pair of connected sockets.
1258 */
1259
1260SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1261                int __user *, usockvec)
1262{
1263        struct socket *sock1, *sock2;
1264        int fd1, fd2, err;
1265        struct file *newfile1, *newfile2;
1266        int flags;
1267
1268        flags = type & ~SOCK_TYPE_MASK;
1269        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1270                return -EINVAL;
1271        type &= SOCK_TYPE_MASK;
1272
1273        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1274                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1275
1276        /*
1277         * Obtain the first socket and check if the underlying protocol
1278         * supports the socketpair call.
1279         */
1280
1281        err = sock_create(family, type, protocol, &sock1);
1282        if (err < 0)
1283                goto out;
1284
1285        err = sock_create(family, type, protocol, &sock2);
1286        if (err < 0)
1287                goto out_release_1;
1288
1289        err = sock1->ops->socketpair(sock1, sock2);
1290        if (err < 0)
1291                goto out_release_both;
1292
1293        fd1 = get_unused_fd_flags(flags);
1294        if (unlikely(fd1 < 0)) {
1295                err = fd1;
1296                goto out_release_both;
1297        }
1298
1299        fd2 = get_unused_fd_flags(flags);
1300        if (unlikely(fd2 < 0)) {
1301                err = fd2;
1302                goto out_put_unused_1;
1303        }
1304
1305        newfile1 = sock_alloc_file(sock1, flags, NULL);
1306        if (unlikely(IS_ERR(newfile1))) {
1307                err = PTR_ERR(newfile1);
1308                goto out_put_unused_both;
1309        }
1310
1311        newfile2 = sock_alloc_file(sock2, flags, NULL);
1312        if (IS_ERR(newfile2)) {
1313                err = PTR_ERR(newfile2);
1314                goto out_fput_1;
1315        }
1316
1317        err = put_user(fd1, &usockvec[0]);
1318        if (err)
1319                goto out_fput_both;
1320
1321        err = put_user(fd2, &usockvec[1]);
1322        if (err)
1323                goto out_fput_both;
1324
1325        audit_fd_pair(fd1, fd2);
1326
1327        fd_install(fd1, newfile1);
1328        fd_install(fd2, newfile2);
1329        /* fd1 and fd2 may be already another descriptors.
1330         * Not kernel problem.
1331         */
1332
1333        return 0;
1334
1335out_fput_both:
1336        fput(newfile2);
1337        fput(newfile1);
1338        put_unused_fd(fd2);
1339        put_unused_fd(fd1);
1340        goto out;
1341
1342out_fput_1:
1343        fput(newfile1);
1344        put_unused_fd(fd2);
1345        put_unused_fd(fd1);
1346        sock_release(sock2);
1347        goto out;
1348
1349out_put_unused_both:
1350        put_unused_fd(fd2);
1351out_put_unused_1:
1352        put_unused_fd(fd1);
1353out_release_both:
1354        sock_release(sock2);
1355out_release_1:
1356        sock_release(sock1);
1357out:
1358        return err;
1359}
1360
1361/*
1362 *      Bind a name to a socket. Nothing much to do here since it's
1363 *      the protocol's responsibility to handle the local address.
1364 *
1365 *      We move the socket address to kernel space before we call
1366 *      the protocol layer (having also checked the address is ok).
1367 */
1368
1369SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1370{
1371        struct socket *sock;
1372        struct sockaddr_storage address;
1373        int err, fput_needed;
1374
1375        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1376        if (sock) {
1377                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1378                if (err >= 0) {
1379                        err = security_socket_bind(sock,
1380                                                   (struct sockaddr *)&address,
1381                                                   addrlen);
1382                        if (!err)
1383                                err = sock->ops->bind(sock,
1384                                                      (struct sockaddr *)
1385                                                      &address, addrlen);
1386                }
1387                fput_light(sock->file, fput_needed);
1388        }
1389        return err;
1390}
1391
1392/*
1393 *      Perform a listen. Basically, we allow the protocol to do anything
1394 *      necessary for a listen, and if that works, we mark the socket as
1395 *      ready for listening.
1396 */
1397
1398SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1399{
1400        struct socket *sock;
1401        int err, fput_needed;
1402        int somaxconn;
1403
1404        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1405        if (sock) {
1406                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1407                if ((unsigned int)backlog > somaxconn)
1408                        backlog = somaxconn;
1409
1410                err = security_socket_listen(sock, backlog);
1411                if (!err)
1412                        err = sock->ops->listen(sock, backlog);
1413
1414                fput_light(sock->file, fput_needed);
1415        }
1416        return err;
1417}
1418
1419/*
1420 *      For accept, we attempt to create a new socket, set up the link
1421 *      with the client, wake up the client, then return the new
1422 *      connected fd. We collect the address of the connector in kernel
1423 *      space and move it to user at the very end. This is unclean because
1424 *      we open the socket then return an error.
1425 *
1426 *      1003.1g adds the ability to recvmsg() to query connection pending
1427 *      status to recvmsg. We need to add that support in a way thats
1428 *      clean when we restucture accept also.
1429 */
1430
1431SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1432                int __user *, upeer_addrlen, int, flags)
1433{
1434        struct socket *sock, *newsock;
1435        struct file *newfile;
1436        int err, len, newfd, fput_needed;
1437        struct sockaddr_storage address;
1438
1439        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1440                return -EINVAL;
1441
1442        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1443                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1444
1445        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1446        if (!sock)
1447                goto out;
1448
1449        err = -ENFILE;
1450        newsock = sock_alloc();
1451        if (!newsock)
1452                goto out_put;
1453
1454        newsock->type = sock->type;
1455        newsock->ops = sock->ops;
1456
1457        /*
1458         * We don't need try_module_get here, as the listening socket (sock)
1459         * has the protocol module (sock->ops->owner) held.
1460         */
1461        __module_get(newsock->ops->owner);
1462
1463        newfd = get_unused_fd_flags(flags);
1464        if (unlikely(newfd < 0)) {
1465                err = newfd;
1466                sock_release(newsock);
1467                goto out_put;
1468        }
1469        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1470        if (unlikely(IS_ERR(newfile))) {
1471                err = PTR_ERR(newfile);
1472                put_unused_fd(newfd);
1473                sock_release(newsock);
1474                goto out_put;
1475        }
1476
1477        err = security_socket_accept(sock, newsock);
1478        if (err)
1479                goto out_fd;
1480
1481        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1482        if (err < 0)
1483                goto out_fd;
1484
1485        if (upeer_sockaddr) {
1486                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1487                                          &len, 2) < 0) {
1488                        err = -ECONNABORTED;
1489                        goto out_fd;
1490                }
1491                err = move_addr_to_user(&address,
1492                                        len, upeer_sockaddr, upeer_addrlen);
1493                if (err < 0)
1494                        goto out_fd;
1495        }
1496
1497        /* File flags are not inherited via accept() unlike another OSes. */
1498
1499        fd_install(newfd, newfile);
1500        err = newfd;
1501
1502out_put:
1503        fput_light(sock->file, fput_needed);
1504out:
1505        return err;
1506out_fd:
1507        fput(newfile);
1508        put_unused_fd(newfd);
1509        goto out_put;
1510}
1511
1512SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1513                int __user *, upeer_addrlen)
1514{
1515        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1516}
1517
1518/*
1519 *      Attempt to connect to a socket with the server address.  The address
1520 *      is in user space so we verify it is OK and move it to kernel space.
1521 *
1522 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1523 *      break bindings
1524 *
1525 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1526 *      other SEQPACKET protocols that take time to connect() as it doesn't
1527 *      include the -EINPROGRESS status for such sockets.
1528 */
1529
1530SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1531                int, addrlen)
1532{
1533        struct socket *sock;
1534        struct sockaddr_storage address;
1535        int err, fput_needed;
1536
1537        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538        if (!sock)
1539                goto out;
1540        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1541        if (err < 0)
1542                goto out_put;
1543
1544        err =
1545            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1546        if (err)
1547                goto out_put;
1548
1549        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1550                                 sock->file->f_flags);
1551out_put:
1552        fput_light(sock->file, fput_needed);
1553out:
1554        return err;
1555}
1556
1557/*
1558 *      Get the local address ('name') of a socket object. Move the obtained
1559 *      name to user space.
1560 */
1561
1562SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1563                int __user *, usockaddr_len)
1564{
1565        struct socket *sock;
1566        struct sockaddr_storage address;
1567        int len, err, fput_needed;
1568
1569        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1570        if (!sock)
1571                goto out;
1572
1573        err = security_socket_getsockname(sock);
1574        if (err)
1575                goto out_put;
1576
1577        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1578        if (err)
1579                goto out_put;
1580        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1581
1582out_put:
1583        fput_light(sock->file, fput_needed);
1584out:
1585        return err;
1586}
1587
1588/*
1589 *      Get the remote address ('name') of a socket object. Move the obtained
1590 *      name to user space.
1591 */
1592
1593SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1594                int __user *, usockaddr_len)
1595{
1596        struct socket *sock;
1597        struct sockaddr_storage address;
1598        int len, err, fput_needed;
1599
1600        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601        if (sock != NULL) {
1602                err = security_socket_getpeername(sock);
1603                if (err) {
1604                        fput_light(sock->file, fput_needed);
1605                        return err;
1606                }
1607
1608                err =
1609                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1610                                       1);
1611                if (!err)
1612                        err = move_addr_to_user(&address, len, usockaddr,
1613                                                usockaddr_len);
1614                fput_light(sock->file, fput_needed);
1615        }
1616        return err;
1617}
1618
1619/*
1620 *      Send a datagram to a given address. We move the address into kernel
1621 *      space and check the user space data area is readable before invoking
1622 *      the protocol.
1623 */
1624
1625SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1626                unsigned int, flags, struct sockaddr __user *, addr,
1627                int, addr_len)
1628{
1629        struct socket *sock;
1630        struct sockaddr_storage address;
1631        int err;
1632        struct msghdr msg;
1633        struct iovec iov;
1634        int fput_needed;
1635
1636        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1637        if (unlikely(err))
1638                return err;
1639        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640        if (!sock)
1641                goto out;
1642
1643        msg.msg_name = NULL;
1644        msg.msg_control = NULL;
1645        msg.msg_controllen = 0;
1646        msg.msg_namelen = 0;
1647        if (addr) {
1648                err = move_addr_to_kernel(addr, addr_len, &address);
1649                if (err < 0)
1650                        goto out_put;
1651                msg.msg_name = (struct sockaddr *)&address;
1652                msg.msg_namelen = addr_len;
1653        }
1654        if (sock->file->f_flags & O_NONBLOCK)
1655                flags |= MSG_DONTWAIT;
1656        msg.msg_flags = flags;
1657        err = sock_sendmsg(sock, &msg);
1658
1659out_put:
1660        fput_light(sock->file, fput_needed);
1661out:
1662        return err;
1663}
1664
1665/*
1666 *      Send a datagram down a socket.
1667 */
1668
1669SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1670                unsigned int, flags)
1671{
1672        return sys_sendto(fd, buff, len, flags, NULL, 0);
1673}
1674
1675/*
1676 *      Receive a frame from the socket and optionally record the address of the
1677 *      sender. We verify the buffers are writable and if needed move the
1678 *      sender address from kernel to user space.
1679 */
1680
1681SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1682                unsigned int, flags, struct sockaddr __user *, addr,
1683                int __user *, addr_len)
1684{
1685        struct socket *sock;
1686        struct iovec iov;
1687        struct msghdr msg;
1688        struct sockaddr_storage address;
1689        int err, err2;
1690        int fput_needed;
1691
1692        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1693        if (unlikely(err))
1694                return err;
1695        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696        if (!sock)
1697                goto out;
1698
1699        msg.msg_control = NULL;
1700        msg.msg_controllen = 0;
1701        /* Save some cycles and don't copy the address if not needed */
1702        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1703        /* We assume all kernel code knows the size of sockaddr_storage */
1704        msg.msg_namelen = 0;
1705        if (sock->file->f_flags & O_NONBLOCK)
1706                flags |= MSG_DONTWAIT;
1707        err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1708
1709        if (err >= 0 && addr != NULL) {
1710                err2 = move_addr_to_user(&address,
1711                                         msg.msg_namelen, addr, addr_len);
1712                if (err2 < 0)
1713                        err = err2;
1714        }
1715
1716        fput_light(sock->file, fput_needed);
1717out:
1718        return err;
1719}
1720
1721/*
1722 *      Receive a datagram from a socket.
1723 */
1724
1725SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1726                unsigned int, flags)
1727{
1728        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1729}
1730
1731/*
1732 *      Set a socket option. Because we don't know the option lengths we have
1733 *      to pass the user mode parameter for the protocols to sort out.
1734 */
1735
1736SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1737                char __user *, optval, int, optlen)
1738{
1739        int err, fput_needed;
1740        struct socket *sock;
1741
1742        if (optlen < 0)
1743                return -EINVAL;
1744
1745        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746        if (sock != NULL) {
1747                err = security_socket_setsockopt(sock, level, optname);
1748                if (err)
1749                        goto out_put;
1750
1751                if (level == SOL_SOCKET)
1752                        err =
1753                            sock_setsockopt(sock, level, optname, optval,
1754                                            optlen);
1755                else
1756                        err =
1757                            sock->ops->setsockopt(sock, level, optname, optval,
1758                                                  optlen);
1759out_put:
1760                fput_light(sock->file, fput_needed);
1761        }
1762        return err;
1763}
1764
1765/*
1766 *      Get a socket option. Because we don't know the option lengths we have
1767 *      to pass a user mode parameter for the protocols to sort out.
1768 */
1769
1770SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1771                char __user *, optval, int __user *, optlen)
1772{
1773        int err, fput_needed;
1774        struct socket *sock;
1775
1776        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777        if (sock != NULL) {
1778                err = security_socket_getsockopt(sock, level, optname);
1779                if (err)
1780                        goto out_put;
1781
1782                if (level == SOL_SOCKET)
1783                        err =
1784                            sock_getsockopt(sock, level, optname, optval,
1785                                            optlen);
1786                else
1787                        err =
1788                            sock->ops->getsockopt(sock, level, optname, optval,
1789                                                  optlen);
1790out_put:
1791                fput_light(sock->file, fput_needed);
1792        }
1793        return err;
1794}
1795
1796/*
1797 *      Shutdown a socket.
1798 */
1799
1800SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1801{
1802        int err, fput_needed;
1803        struct socket *sock;
1804
1805        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806        if (sock != NULL) {
1807                err = security_socket_shutdown(sock, how);
1808                if (!err)
1809                        err = sock->ops->shutdown(sock, how);
1810                fput_light(sock->file, fput_needed);
1811        }
1812        return err;
1813}
1814
1815/* A couple of helpful macros for getting the address of the 32/64 bit
1816 * fields which are the same type (int / unsigned) on our platforms.
1817 */
1818#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1819#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1820#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1821
1822struct used_address {
1823        struct sockaddr_storage name;
1824        unsigned int name_len;
1825};
1826
1827static int copy_msghdr_from_user(struct msghdr *kmsg,
1828                                 struct user_msghdr __user *umsg,
1829                                 struct sockaddr __user **save_addr,
1830                                 struct iovec **iov)
1831{
1832        struct sockaddr __user *uaddr;
1833        struct iovec __user *uiov;
1834        size_t nr_segs;
1835        ssize_t err;
1836
1837        if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1838            __get_user(uaddr, &umsg->msg_name) ||
1839            __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1840            __get_user(uiov, &umsg->msg_iov) ||
1841            __get_user(nr_segs, &umsg->msg_iovlen) ||
1842            __get_user(kmsg->msg_control, &umsg->msg_control) ||
1843            __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1844            __get_user(kmsg->msg_flags, &umsg->msg_flags))
1845                return -EFAULT;
1846
1847        if (!uaddr)
1848                kmsg->msg_namelen = 0;
1849
1850        if (kmsg->msg_namelen < 0)
1851                return -EINVAL;
1852
1853        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1854                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1855
1856        if (save_addr)
1857                *save_addr = uaddr;
1858
1859        if (uaddr && kmsg->msg_namelen) {
1860                if (!save_addr) {
1861                        err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1862                                                  kmsg->msg_name);
1863                        if (err < 0)
1864                                return err;
1865                }
1866        } else {
1867                kmsg->msg_name = NULL;
1868                kmsg->msg_namelen = 0;
1869        }
1870
1871        if (nr_segs > UIO_MAXIOV)
1872                return -EMSGSIZE;
1873
1874        kmsg->msg_iocb = NULL;
1875
1876        return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1877                            UIO_FASTIOV, iov, &kmsg->msg_iter);
1878}
1879
1880static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1881                         struct msghdr *msg_sys, unsigned int flags,
1882                         struct used_address *used_address)
1883{
1884        struct compat_msghdr __user *msg_compat =
1885            (struct compat_msghdr __user *)msg;
1886        struct sockaddr_storage address;
1887        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1888        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1889            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1890        /* 20 is size of ipv6_pktinfo */
1891        unsigned char *ctl_buf = ctl;
1892        int ctl_len;
1893        ssize_t err;
1894
1895        msg_sys->msg_name = &address;
1896
1897        if (MSG_CMSG_COMPAT & flags)
1898                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1899        else
1900                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1901        if (err < 0)
1902                return err;
1903
1904        err = -ENOBUFS;
1905
1906        if (msg_sys->msg_controllen > INT_MAX)
1907                goto out_freeiov;
1908        ctl_len = msg_sys->msg_controllen;
1909        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1910                err =
1911                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1912                                                     sizeof(ctl));
1913                if (err)
1914                        goto out_freeiov;
1915                ctl_buf = msg_sys->msg_control;
1916                ctl_len = msg_sys->msg_controllen;
1917        } else if (ctl_len) {
1918                if (ctl_len > sizeof(ctl)) {
1919                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1920                        if (ctl_buf == NULL)
1921                                goto out_freeiov;
1922                }
1923                err = -EFAULT;
1924                /*
1925                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1926                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1927                 * checking falls down on this.
1928                 */
1929                if (copy_from_user(ctl_buf,
1930                                   (void __user __force *)msg_sys->msg_control,
1931                                   ctl_len))
1932                        goto out_freectl;
1933                msg_sys->msg_control = ctl_buf;
1934        }
1935        msg_sys->msg_flags = flags;
1936
1937        if (sock->file->f_flags & O_NONBLOCK)
1938                msg_sys->msg_flags |= MSG_DONTWAIT;
1939        /*
1940         * If this is sendmmsg() and current destination address is same as
1941         * previously succeeded address, omit asking LSM's decision.
1942         * used_address->name_len is initialized to UINT_MAX so that the first
1943         * destination address never matches.
1944         */
1945        if (used_address && msg_sys->msg_name &&
1946            used_address->name_len == msg_sys->msg_namelen &&
1947            !memcmp(&used_address->name, msg_sys->msg_name,
1948                    used_address->name_len)) {
1949                err = sock_sendmsg_nosec(sock, msg_sys);
1950                goto out_freectl;
1951        }
1952        err = sock_sendmsg(sock, msg_sys);
1953        /*
1954         * If this is sendmmsg() and sending to current destination address was
1955         * successful, remember it.
1956         */
1957        if (used_address && err >= 0) {
1958                used_address->name_len = msg_sys->msg_namelen;
1959                if (msg_sys->msg_name)
1960                        memcpy(&used_address->name, msg_sys->msg_name,
1961                               used_address->name_len);
1962        }
1963
1964out_freectl:
1965        if (ctl_buf != ctl)
1966                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1967out_freeiov:
1968        kfree(iov);
1969        return err;
1970}
1971
1972/*
1973 *      BSD sendmsg interface
1974 */
1975
1976long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1977{
1978        int fput_needed, err;
1979        struct msghdr msg_sys;
1980        struct socket *sock;
1981
1982        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1983        if (!sock)
1984                goto out;
1985
1986        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1987
1988        fput_light(sock->file, fput_needed);
1989out:
1990        return err;
1991}
1992
1993SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1994{
1995        if (flags & MSG_CMSG_COMPAT)
1996                return -EINVAL;
1997        return __sys_sendmsg(fd, msg, flags);
1998}
1999
2000/*
2001 *      Linux sendmmsg interface
2002 */
2003
2004int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2005                   unsigned int flags)
2006{
2007        int fput_needed, err, datagrams;
2008        struct socket *sock;
2009        struct mmsghdr __user *entry;
2010        struct compat_mmsghdr __user *compat_entry;
2011        struct msghdr msg_sys;
2012        struct used_address used_address;
2013
2014        if (vlen > UIO_MAXIOV)
2015                vlen = UIO_MAXIOV;
2016
2017        datagrams = 0;
2018
2019        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2020        if (!sock)
2021                return err;
2022
2023        used_address.name_len = UINT_MAX;
2024        entry = mmsg;
2025        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2026        err = 0;
2027
2028        while (datagrams < vlen) {
2029                if (MSG_CMSG_COMPAT & flags) {
2030                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2031                                             &msg_sys, flags, &used_address);
2032                        if (err < 0)
2033                                break;
2034                        err = __put_user(err, &compat_entry->msg_len);
2035                        ++compat_entry;
2036                } else {
2037                        err = ___sys_sendmsg(sock,
2038                                             (struct user_msghdr __user *)entry,
2039                                             &msg_sys, flags, &used_address);
2040                        if (err < 0)
2041                                break;
2042                        err = put_user(err, &entry->msg_len);
2043                        ++entry;
2044                }
2045
2046                if (err)
2047                        break;
2048                ++datagrams;
2049        }
2050
2051        fput_light(sock->file, fput_needed);
2052
2053        /* We only return an error if no datagrams were able to be sent */
2054        if (datagrams != 0)
2055                return datagrams;
2056
2057        return err;
2058}
2059
2060SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2061                unsigned int, vlen, unsigned int, flags)
2062{
2063        if (flags & MSG_CMSG_COMPAT)
2064                return -EINVAL;
2065        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066}
2067
2068static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2069                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2070{
2071        struct compat_msghdr __user *msg_compat =
2072            (struct compat_msghdr __user *)msg;
2073        struct iovec iovstack[UIO_FASTIOV];
2074        struct iovec *iov = iovstack;
2075        unsigned long cmsg_ptr;
2076        int total_len, len;
2077        ssize_t err;
2078
2079        /* kernel mode address */
2080        struct sockaddr_storage addr;
2081
2082        /* user mode address pointers */
2083        struct sockaddr __user *uaddr;
2084        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2085
2086        msg_sys->msg_name = &addr;
2087
2088        if (MSG_CMSG_COMPAT & flags)
2089                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2090        else
2091                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2092        if (err < 0)
2093                return err;
2094        total_len = iov_iter_count(&msg_sys->msg_iter);
2095
2096        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2097        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098
2099        /* We assume all kernel code knows the size of sockaddr_storage */
2100        msg_sys->msg_namelen = 0;
2101
2102        if (sock->file->f_flags & O_NONBLOCK)
2103                flags |= MSG_DONTWAIT;
2104        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2105                                                          total_len, flags);
2106        if (err < 0)
2107                goto out_freeiov;
2108        len = err;
2109
2110        if (uaddr != NULL) {
2111                err = move_addr_to_user(&addr,
2112                                        msg_sys->msg_namelen, uaddr,
2113                                        uaddr_len);
2114                if (err < 0)
2115                        goto out_freeiov;
2116        }
2117        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2118                         COMPAT_FLAGS(msg));
2119        if (err)
2120                goto out_freeiov;
2121        if (MSG_CMSG_COMPAT & flags)
2122                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2123                                 &msg_compat->msg_controllen);
2124        else
2125                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126                                 &msg->msg_controllen);
2127        if (err)
2128                goto out_freeiov;
2129        err = len;
2130
2131out_freeiov:
2132        kfree(iov);
2133        return err;
2134}
2135
2136/*
2137 *      BSD recvmsg interface
2138 */
2139
2140long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2141{
2142        int fput_needed, err;
2143        struct msghdr msg_sys;
2144        struct socket *sock;
2145
2146        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147        if (!sock)
2148                goto out;
2149
2150        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2151
2152        fput_light(sock->file, fput_needed);
2153out:
2154        return err;
2155}
2156
2157SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2158                unsigned int, flags)
2159{
2160        if (flags & MSG_CMSG_COMPAT)
2161                return -EINVAL;
2162        return __sys_recvmsg(fd, msg, flags);
2163}
2164
2165/*
2166 *     Linux recvmmsg interface
2167 */
2168
2169int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170                   unsigned int flags, struct timespec *timeout)
2171{
2172        int fput_needed, err, datagrams;
2173        struct socket *sock;
2174        struct mmsghdr __user *entry;
2175        struct compat_mmsghdr __user *compat_entry;
2176        struct msghdr msg_sys;
2177        struct timespec end_time;
2178
2179        if (timeout &&
2180            poll_select_set_timeout(&end_time, timeout->tv_sec,
2181                                    timeout->tv_nsec))
2182                return -EINVAL;
2183
2184        datagrams = 0;
2185
2186        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187        if (!sock)
2188                return err;
2189
2190        err = sock_error(sock->sk);
2191        if (err)
2192                goto out_put;
2193
2194        entry = mmsg;
2195        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196
2197        while (datagrams < vlen) {
2198                /*
2199                 * No need to ask LSM for more than the first datagram.
2200                 */
2201                if (MSG_CMSG_COMPAT & flags) {
2202                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203                                             &msg_sys, flags & ~MSG_WAITFORONE,
2204                                             datagrams);
2205                        if (err < 0)
2206                                break;
2207                        err = __put_user(err, &compat_entry->msg_len);
2208                        ++compat_entry;
2209                } else {
2210                        err = ___sys_recvmsg(sock,
2211                                             (struct user_msghdr __user *)entry,
2212                                             &msg_sys, flags & ~MSG_WAITFORONE,
2213                                             datagrams);
2214                        if (err < 0)
2215                                break;
2216                        err = put_user(err, &entry->msg_len);
2217                        ++entry;
2218                }
2219
2220                if (err)
2221                        break;
2222                ++datagrams;
2223
2224                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225                if (flags & MSG_WAITFORONE)
2226                        flags |= MSG_DONTWAIT;
2227
2228                if (timeout) {
2229                        ktime_get_ts(timeout);
2230                        *timeout = timespec_sub(end_time, *timeout);
2231                        if (timeout->tv_sec < 0) {
2232                                timeout->tv_sec = timeout->tv_nsec = 0;
2233                                break;
2234                        }
2235
2236                        /* Timeout, return less than vlen datagrams */
2237                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238                                break;
2239                }
2240
2241                /* Out of band data, return right away */
2242                if (msg_sys.msg_flags & MSG_OOB)
2243                        break;
2244        }
2245
2246out_put:
2247        fput_light(sock->file, fput_needed);
2248
2249        if (err == 0)
2250                return datagrams;
2251
2252        if (datagrams != 0) {
2253                /*
2254                 * We may return less entries than requested (vlen) if the
2255                 * sock is non block and there aren't enough datagrams...
2256                 */
2257                if (err != -EAGAIN) {
2258                        /*
2259                         * ... or  if recvmsg returns an error after we
2260                         * received some datagrams, where we record the
2261                         * error to return on the next call or if the
2262                         * app asks about it using getsockopt(SO_ERROR).
2263                         */
2264                        sock->sk->sk_err = -err;
2265                }
2266
2267                return datagrams;
2268        }
2269
2270        return err;
2271}
2272
2273SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2274                unsigned int, vlen, unsigned int, flags,
2275                struct timespec __user *, timeout)
2276{
2277        int datagrams;
2278        struct timespec timeout_sys;
2279
2280        if (flags & MSG_CMSG_COMPAT)
2281                return -EINVAL;
2282
2283        if (!timeout)
2284                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2285
2286        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2287                return -EFAULT;
2288
2289        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2290
2291        if (datagrams > 0 &&
2292            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2293                datagrams = -EFAULT;
2294
2295        return datagrams;
2296}
2297
2298#ifdef __ARCH_WANT_SYS_SOCKETCALL
2299/* Argument list sizes for sys_socketcall */
2300#define AL(x) ((x) * sizeof(unsigned long))
2301static const unsigned char nargs[21] = {
2302        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2303        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2304        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2305        AL(4), AL(5), AL(4)
2306};
2307
2308#undef AL
2309
2310/*
2311 *      System call vectors.
2312 *
2313 *      Argument checking cleaned up. Saved 20% in size.
2314 *  This function doesn't need to set the kernel lock because
2315 *  it is set by the callees.
2316 */
2317
2318SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2319{
2320        unsigned long a[AUDITSC_ARGS];
2321        unsigned long a0, a1;
2322        int err;
2323        unsigned int len;
2324
2325        if (call < 1 || call > SYS_SENDMMSG)
2326                return -EINVAL;
2327
2328        len = nargs[call];
2329        if (len > sizeof(a))
2330                return -EINVAL;
2331
2332        /* copy_from_user should be SMP safe. */
2333        if (copy_from_user(a, args, len))
2334                return -EFAULT;
2335
2336        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2337        if (err)
2338                return err;
2339
2340        a0 = a[0];
2341        a1 = a[1];
2342
2343        switch (call) {
2344        case SYS_SOCKET:
2345                err = sys_socket(a0, a1, a[2]);
2346                break;
2347        case SYS_BIND:
2348                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2349                break;
2350        case SYS_CONNECT:
2351                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2352                break;
2353        case SYS_LISTEN:
2354                err = sys_listen(a0, a1);
2355                break;
2356        case SYS_ACCEPT:
2357                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2358                                  (int __user *)a[2], 0);
2359                break;
2360        case SYS_GETSOCKNAME:
2361                err =
2362                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2363                                    (int __user *)a[2]);
2364                break;
2365        case SYS_GETPEERNAME:
2366                err =
2367                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2368                                    (int __user *)a[2]);
2369                break;
2370        case SYS_SOCKETPAIR:
2371                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2372                break;
2373        case SYS_SEND:
2374                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2375                break;
2376        case SYS_SENDTO:
2377                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2378                                 (struct sockaddr __user *)a[4], a[5]);
2379                break;
2380        case SYS_RECV:
2381                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2382                break;
2383        case SYS_RECVFROM:
2384                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2385                                   (struct sockaddr __user *)a[4],
2386                                   (int __user *)a[5]);
2387                break;
2388        case SYS_SHUTDOWN:
2389                err = sys_shutdown(a0, a1);
2390                break;
2391        case SYS_SETSOCKOPT:
2392                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2393                break;
2394        case SYS_GETSOCKOPT:
2395                err =
2396                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2397                                   (int __user *)a[4]);
2398                break;
2399        case SYS_SENDMSG:
2400                err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2401                break;
2402        case SYS_SENDMMSG:
2403                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2404                break;
2405        case SYS_RECVMSG:
2406                err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2407                break;
2408        case SYS_RECVMMSG:
2409                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2410                                   (struct timespec __user *)a[4]);
2411                break;
2412        case SYS_ACCEPT4:
2413                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2414                                  (int __user *)a[2], a[3]);
2415                break;
2416        default:
2417                err = -EINVAL;
2418                break;
2419        }
2420        return err;
2421}
2422
2423#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2424
2425/**
2426 *      sock_register - add a socket protocol handler
2427 *      @ops: description of protocol
2428 *
2429 *      This function is called by a protocol handler that wants to
2430 *      advertise its address family, and have it linked into the
2431 *      socket interface. The value ops->family corresponds to the
2432 *      socket system call protocol family.
2433 */
2434int sock_register(const struct net_proto_family *ops)
2435{
2436        int err;
2437
2438        if (ops->family >= NPROTO) {
2439                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2440                return -ENOBUFS;
2441        }
2442
2443        spin_lock(&net_family_lock);
2444        if (rcu_dereference_protected(net_families[ops->family],
2445                                      lockdep_is_held(&net_family_lock)))
2446                err = -EEXIST;
2447        else {
2448                rcu_assign_pointer(net_families[ops->family], ops);
2449                err = 0;
2450        }
2451        spin_unlock(&net_family_lock);
2452
2453        pr_info("NET: Registered protocol family %d\n", ops->family);
2454        return err;
2455}
2456EXPORT_SYMBOL(sock_register);
2457
2458/**
2459 *      sock_unregister - remove a protocol handler
2460 *      @family: protocol family to remove
2461 *
2462 *      This function is called by a protocol handler that wants to
2463 *      remove its address family, and have it unlinked from the
2464 *      new socket creation.
2465 *
2466 *      If protocol handler is a module, then it can use module reference
2467 *      counts to protect against new references. If protocol handler is not
2468 *      a module then it needs to provide its own protection in
2469 *      the ops->create routine.
2470 */
2471void sock_unregister(int family)
2472{
2473        BUG_ON(family < 0 || family >= NPROTO);
2474
2475        spin_lock(&net_family_lock);
2476        RCU_INIT_POINTER(net_families[family], NULL);
2477        spin_unlock(&net_family_lock);
2478
2479        synchronize_rcu();
2480
2481        pr_info("NET: Unregistered protocol family %d\n", family);
2482}
2483EXPORT_SYMBOL(sock_unregister);
2484
2485static int __init sock_init(void)
2486{
2487        int err;
2488        /*
2489         *      Initialize the network sysctl infrastructure.
2490         */
2491        err = net_sysctl_init();
2492        if (err)
2493                goto out;
2494
2495        /*
2496         *      Initialize skbuff SLAB cache
2497         */
2498        skb_init();
2499
2500        /*
2501         *      Initialize the protocols module.
2502         */
2503
2504        init_inodecache();
2505
2506        err = register_filesystem(&sock_fs_type);
2507        if (err)
2508                goto out_fs;
2509        sock_mnt = kern_mount(&sock_fs_type);
2510        if (IS_ERR(sock_mnt)) {
2511                err = PTR_ERR(sock_mnt);
2512                goto out_mount;
2513        }
2514
2515        /* The real protocol initialization is performed in later initcalls.
2516         */
2517
2518#ifdef CONFIG_NETFILTER
2519        err = netfilter_init();
2520        if (err)
2521                goto out;
2522#endif
2523
2524        ptp_classifier_init();
2525
2526out:
2527        return err;
2528
2529out_mount:
2530        unregister_filesystem(&sock_fs_type);
2531out_fs:
2532        goto out;
2533}
2534
2535core_initcall(sock_init);       /* early initcall */
2536
2537#ifdef CONFIG_PROC_FS
2538void socket_seq_show(struct seq_file *seq)
2539{
2540        int cpu;
2541        int counter = 0;
2542
2543        for_each_possible_cpu(cpu)
2544            counter += per_cpu(sockets_in_use, cpu);
2545
2546        /* It can be negative, by the way. 8) */
2547        if (counter < 0)
2548                counter = 0;
2549
2550        seq_printf(seq, "sockets: used %d\n", counter);
2551}
2552#endif                          /* CONFIG_PROC_FS */
2553
2554#ifdef CONFIG_COMPAT
2555static int do_siocgstamp(struct net *net, struct socket *sock,
2556                         unsigned int cmd, void __user *up)
2557{
2558        mm_segment_t old_fs = get_fs();
2559        struct timeval ktv;
2560        int err;
2561
2562        set_fs(KERNEL_DS);
2563        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2564        set_fs(old_fs);
2565        if (!err)
2566                err = compat_put_timeval(&ktv, up);
2567
2568        return err;
2569}
2570
2571static int do_siocgstampns(struct net *net, struct socket *sock,
2572                           unsigned int cmd, void __user *up)
2573{
2574        mm_segment_t old_fs = get_fs();
2575        struct timespec kts;
2576        int err;
2577
2578        set_fs(KERNEL_DS);
2579        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2580        set_fs(old_fs);
2581        if (!err)
2582                err = compat_put_timespec(&kts, up);
2583
2584        return err;
2585}
2586
2587static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2588{
2589        struct ifreq __user *uifr;
2590        int err;
2591
2592        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2593        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2594                return -EFAULT;
2595
2596        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2597        if (err)
2598                return err;
2599
2600        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2601                return -EFAULT;
2602
2603        return 0;
2604}
2605
2606static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2607{
2608        struct compat_ifconf ifc32;
2609        struct ifconf ifc;
2610        struct ifconf __user *uifc;
2611        struct compat_ifreq __user *ifr32;
2612        struct ifreq __user *ifr;
2613        unsigned int i, j;
2614        int err;
2615
2616        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2617                return -EFAULT;
2618
2619        memset(&ifc, 0, sizeof(ifc));
2620        if (ifc32.ifcbuf == 0) {
2621                ifc32.ifc_len = 0;
2622                ifc.ifc_len = 0;
2623                ifc.ifc_req = NULL;
2624                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2625        } else {
2626                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2627                        sizeof(struct ifreq);
2628                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2629                ifc.ifc_len = len;
2630                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2631                ifr32 = compat_ptr(ifc32.ifcbuf);
2632                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2633                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2634                                return -EFAULT;
2635                        ifr++;
2636                        ifr32++;
2637                }
2638        }
2639        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2640                return -EFAULT;
2641
2642        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2643        if (err)
2644                return err;
2645
2646        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2647                return -EFAULT;
2648
2649        ifr = ifc.ifc_req;
2650        ifr32 = compat_ptr(ifc32.ifcbuf);
2651        for (i = 0, j = 0;
2652             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2653             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2654                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2655                        return -EFAULT;
2656                ifr32++;
2657                ifr++;
2658        }
2659
2660        if (ifc32.ifcbuf == 0) {
2661                /* Translate from 64-bit structure multiple to
2662                 * a 32-bit one.
2663                 */
2664                i = ifc.ifc_len;
2665                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2666                ifc32.ifc_len = i;
2667        } else {
2668                ifc32.ifc_len = i;
2669        }
2670        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2671                return -EFAULT;
2672
2673        return 0;
2674}
2675
2676static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2677{
2678        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2679        bool convert_in = false, convert_out = false;
2680        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2681        struct ethtool_rxnfc __user *rxnfc;
2682        struct ifreq __user *ifr;
2683        u32 rule_cnt = 0, actual_rule_cnt;
2684        u32 ethcmd;
2685        u32 data;
2686        int ret;
2687
2688        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2689                return -EFAULT;
2690
2691        compat_rxnfc = compat_ptr(data);
2692
2693        if (get_user(ethcmd, &compat_rxnfc->cmd))
2694                return -EFAULT;
2695
2696        /* Most ethtool structures are defined without padding.
2697         * Unfortunately struct ethtool_rxnfc is an exception.
2698         */
2699        switch (ethcmd) {
2700        default:
2701                break;
2702        case ETHTOOL_GRXCLSRLALL:
2703                /* Buffer size is variable */
2704                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2705                        return -EFAULT;
2706                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2707                        return -ENOMEM;
2708                buf_size += rule_cnt * sizeof(u32);
2709                /* fall through */
2710        case ETHTOOL_GRXRINGS:
2711        case ETHTOOL_GRXCLSRLCNT:
2712        case ETHTOOL_GRXCLSRULE:
2713        case ETHTOOL_SRXCLSRLINS:
2714                convert_out = true;
2715                /* fall through */
2716        case ETHTOOL_SRXCLSRLDEL:
2717                buf_size += sizeof(struct ethtool_rxnfc);
2718                convert_in = true;
2719                break;
2720        }
2721
2722        ifr = compat_alloc_user_space(buf_size);
2723        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2724
2725        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2726                return -EFAULT;
2727
2728        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2729                     &ifr->ifr_ifru.ifru_data))
2730                return -EFAULT;
2731
2732        if (convert_in) {
2733                /* We expect there to be holes between fs.m_ext and
2734                 * fs.ring_cookie and at the end of fs, but nowhere else.
2735                 */
2736                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2737                             sizeof(compat_rxnfc->fs.m_ext) !=
2738                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2739                             sizeof(rxnfc->fs.m_ext));
2740                BUILD_BUG_ON(
2741                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2742                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2743                        offsetof(struct ethtool_rxnfc, fs.location) -
2744                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2745
2746                if (copy_in_user(rxnfc, compat_rxnfc,
2747                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2748                                 (void __user *)rxnfc) ||
2749                    copy_in_user(&rxnfc->fs.ring_cookie,
2750                                 &compat_rxnfc->fs.ring_cookie,
2751                                 (void __user *)(&rxnfc->fs.location + 1) -
2752                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2753                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2754                                 sizeof(rxnfc->rule_cnt)))
2755                        return -EFAULT;
2756        }
2757
2758        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2759        if (ret)
2760                return ret;
2761
2762        if (convert_out) {
2763                if (copy_in_user(compat_rxnfc, rxnfc,
2764                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2765                                 (const void __user *)rxnfc) ||
2766                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2767                                 &rxnfc->fs.ring_cookie,
2768                                 (const void __user *)(&rxnfc->fs.location + 1) -
2769                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2770                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2771                                 sizeof(rxnfc->rule_cnt)))
2772                        return -EFAULT;
2773
2774                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2775                        /* As an optimisation, we only copy the actual
2776                         * number of rules that the underlying
2777                         * function returned.  Since Mallory might
2778                         * change the rule count in user memory, we
2779                         * check that it is less than the rule count
2780                         * originally given (as the user buffer size),
2781                         * which has been range-checked.
2782                         */
2783                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2784                                return -EFAULT;
2785                        if (actual_rule_cnt < rule_cnt)
2786                                rule_cnt = actual_rule_cnt;
2787                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2788                                         &rxnfc->rule_locs[0],
2789                                         rule_cnt * sizeof(u32)))
2790                                return -EFAULT;
2791                }
2792        }
2793
2794        return 0;
2795}
2796
2797static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2798{
2799        void __user *uptr;
2800        compat_uptr_t uptr32;
2801        struct ifreq __user *uifr;
2802
2803        uifr = compat_alloc_user_space(sizeof(*uifr));
2804        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2805                return -EFAULT;
2806
2807        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2808                return -EFAULT;
2809
2810        uptr = compat_ptr(uptr32);
2811
2812        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2813                return -EFAULT;
2814
2815        return dev_ioctl(net, SIOCWANDEV, uifr);
2816}
2817
2818static int bond_ioctl(struct net *net, unsigned int cmd,
2819                         struct compat_ifreq __user *ifr32)
2820{
2821        struct ifreq kifr;
2822        mm_segment_t old_fs;
2823        int err;
2824
2825        switch (cmd) {
2826        case SIOCBONDENSLAVE:
2827        case SIOCBONDRELEASE:
2828        case SIOCBONDSETHWADDR:
2829        case SIOCBONDCHANGEACTIVE:
2830                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2831                        return -EFAULT;
2832
2833                old_fs = get_fs();
2834                set_fs(KERNEL_DS);
2835                err = dev_ioctl(net, cmd,
2836                                (struct ifreq __user __force *) &kifr);
2837                set_fs(old_fs);
2838
2839                return err;
2840        default:
2841                return -ENOIOCTLCMD;
2842        }
2843}
2844
2845/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2846static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2847                                 struct compat_ifreq __user *u_ifreq32)
2848{
2849        struct ifreq __user *u_ifreq64;
2850        char tmp_buf[IFNAMSIZ];
2851        void __user *data64;
2852        u32 data32;
2853
2854        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2855                           IFNAMSIZ))
2856                return -EFAULT;
2857        if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2858                return -EFAULT;
2859        data64 = compat_ptr(data32);
2860
2861        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2862
2863        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2864                         IFNAMSIZ))
2865                return -EFAULT;
2866        if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2867                return -EFAULT;
2868
2869        return dev_ioctl(net, cmd, u_ifreq64);
2870}
2871
2872static int dev_ifsioc(struct net *net, struct socket *sock,
2873                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2874{
2875        struct ifreq __user *uifr;
2876        int err;
2877
2878        uifr = compat_alloc_user_space(sizeof(*uifr));
2879        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2880                return -EFAULT;
2881
2882        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2883
2884        if (!err) {
2885                switch (cmd) {
2886                case SIOCGIFFLAGS:
2887                case SIOCGIFMETRIC:
2888                case SIOCGIFMTU:
2889                case SIOCGIFMEM:
2890                case SIOCGIFHWADDR:
2891                case SIOCGIFINDEX:
2892                case SIOCGIFADDR:
2893                case SIOCGIFBRDADDR:
2894                case SIOCGIFDSTADDR:
2895                case SIOCGIFNETMASK:
2896                case SIOCGIFPFLAGS:
2897                case SIOCGIFTXQLEN:
2898                case SIOCGMIIPHY:
2899                case SIOCGMIIREG:
2900                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2901                                err = -EFAULT;
2902                        break;
2903                }
2904        }
2905        return err;
2906}
2907
2908static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2909                        struct compat_ifreq __user *uifr32)
2910{
2911        struct ifreq ifr;
2912        struct compat_ifmap __user *uifmap32;
2913        mm_segment_t old_fs;
2914        int err;
2915
2916        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2917        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2918        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2919        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2920        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2921        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2922        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2923        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2924        if (err)
2925                return -EFAULT;
2926
2927        old_fs = get_fs();
2928        set_fs(KERNEL_DS);
2929        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2930        set_fs(old_fs);
2931
2932        if (cmd == SIOCGIFMAP && !err) {
2933                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2934                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2935                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2936                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2937                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2938                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2939                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2940                if (err)
2941                        err = -EFAULT;
2942        }
2943        return err;
2944}
2945
2946struct rtentry32 {
2947        u32             rt_pad1;
2948        struct sockaddr rt_dst;         /* target address               */
2949        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2950        struct sockaddr rt_genmask;     /* target network mask (IP)     */
2951        unsigned short  rt_flags;
2952        short           rt_pad2;
2953        u32             rt_pad3;
2954        unsigned char   rt_tos;
2955        unsigned char   rt_class;
2956        short           rt_pad4;
2957        short           rt_metric;      /* +1 for binary compatibility! */
2958        /* char * */ u32 rt_dev;        /* forcing the device at add    */
2959        u32             rt_mtu;         /* per route MTU/Window         */
2960        u32             rt_window;      /* Window clamping              */
2961        unsigned short  rt_irtt;        /* Initial RTT                  */
2962};
2963
2964struct in6_rtmsg32 {
2965        struct in6_addr         rtmsg_dst;
2966        struct in6_addr         rtmsg_src;
2967        struct in6_addr         rtmsg_gateway;
2968        u32                     rtmsg_type;
2969        u16                     rtmsg_dst_len;
2970        u16                     rtmsg_src_len;
2971        u32                     rtmsg_metric;
2972        u32                     rtmsg_info;
2973        u32                     rtmsg_flags;
2974        s32                     rtmsg_ifindex;
2975};
2976
2977static int routing_ioctl(struct net *net, struct socket *sock,
2978                         unsigned int cmd, void __user *argp)
2979{
2980        int ret;
2981        void *r = NULL;
2982        struct in6_rtmsg r6;
2983        struct rtentry r4;
2984        char devname[16];
2985        u32 rtdev;
2986        mm_segment_t old_fs = get_fs();
2987
2988        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2989                struct in6_rtmsg32 __user *ur6 = argp;
2990                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2991                        3 * sizeof(struct in6_addr));
2992                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2993                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2994                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2995                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2996                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2997                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2998                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2999
3000                r = (void *) &r6;
3001        } else { /* ipv4 */
3002                struct rtentry32 __user *ur4 = argp;
3003                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3004                                        3 * sizeof(struct sockaddr));
3005                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3006                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3007                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3008                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3009                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3010                ret |= get_user(rtdev, &(ur4->rt_dev));
3011                if (rtdev) {
3012                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3013                        r4.rt_dev = (char __user __force *)devname;
3014                        devname[15] = 0;
3015                } else
3016                        r4.rt_dev = NULL;
3017
3018                r = (void *) &r4;
3019        }
3020
3021        if (ret) {
3022                ret = -EFAULT;
3023                goto out;
3024        }
3025
3026        set_fs(KERNEL_DS);
3027        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3028        set_fs(old_fs);
3029
3030out:
3031        return ret;
3032}
3033
3034/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3035 * for some operations; this forces use of the newer bridge-utils that
3036 * use compatible ioctls
3037 */
3038static int old_bridge_ioctl(compat_ulong_t __user *argp)
3039{
3040        compat_ulong_t tmp;
3041
3042        if (get_user(tmp, argp))
3043                return -EFAULT;
3044        if (tmp == BRCTL_GET_VERSION)
3045                return BRCTL_VERSION + 1;
3046        return -EINVAL;
3047}
3048
3049static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3050                         unsigned int cmd, unsigned long arg)
3051{
3052        void __user *argp = compat_ptr(arg);
3053        struct sock *sk = sock->sk;
3054        struct net *net = sock_net(sk);
3055
3056        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3057                return compat_ifr_data_ioctl(net, cmd, argp);
3058
3059        switch (cmd) {
3060        case SIOCSIFBR:
3061        case SIOCGIFBR:
3062                return old_bridge_ioctl(argp);
3063        case SIOCGIFNAME:
3064                return dev_ifname32(net, argp);
3065        case SIOCGIFCONF:
3066                return dev_ifconf(net, argp);
3067        case SIOCETHTOOL:
3068                return ethtool_ioctl(net, argp);
3069        case SIOCWANDEV:
3070                return compat_siocwandev(net, argp);
3071        case SIOCGIFMAP:
3072        case SIOCSIFMAP:
3073                return compat_sioc_ifmap(net, cmd, argp);
3074        case SIOCBONDENSLAVE:
3075        case SIOCBONDRELEASE:
3076        case SIOCBONDSETHWADDR:
3077        case SIOCBONDCHANGEACTIVE:
3078                return bond_ioctl(net, cmd, argp);
3079        case SIOCADDRT:
3080        case SIOCDELRT:
3081                return routing_ioctl(net, sock, cmd, argp);
3082        case SIOCGSTAMP:
3083                return do_siocgstamp(net, sock, cmd, argp);
3084        case SIOCGSTAMPNS:
3085                return do_siocgstampns(net, sock, cmd, argp);
3086        case SIOCBONDSLAVEINFOQUERY:
3087        case SIOCBONDINFOQUERY:
3088        case SIOCSHWTSTAMP:
3089        case SIOCGHWTSTAMP:
3090                return compat_ifr_data_ioctl(net, cmd, argp);
3091
3092        case FIOSETOWN:
3093        case SIOCSPGRP:
3094        case FIOGETOWN:
3095        case SIOCGPGRP:
3096        case SIOCBRADDBR:
3097        case SIOCBRDELBR:
3098        case SIOCGIFVLAN:
3099        case SIOCSIFVLAN:
3100        case SIOCADDDLCI:
3101        case SIOCDELDLCI:
3102                return sock_ioctl(file, cmd, arg);
3103
3104        case SIOCGIFFLAGS:
3105        case SIOCSIFFLAGS:
3106        case SIOCGIFMETRIC:
3107        case SIOCSIFMETRIC:
3108        case SIOCGIFMTU:
3109        case SIOCSIFMTU:
3110        case SIOCGIFMEM:
3111        case SIOCSIFMEM:
3112        case SIOCGIFHWADDR:
3113        case SIOCSIFHWADDR:
3114        case SIOCADDMULTI:
3115        case SIOCDELMULTI:
3116        case SIOCGIFINDEX:
3117        case SIOCGIFADDR:
3118        case SIOCSIFADDR:
3119        case SIOCSIFHWBROADCAST:
3120        case SIOCDIFADDR:
3121        case SIOCGIFBRDADDR:
3122        case SIOCSIFBRDADDR:
3123        case SIOCGIFDSTADDR:
3124        case SIOCSIFDSTADDR:
3125        case SIOCGIFNETMASK:
3126        case SIOCSIFNETMASK:
3127        case SIOCSIFPFLAGS:
3128        case SIOCGIFPFLAGS:
3129        case SIOCGIFTXQLEN:
3130        case SIOCSIFTXQLEN:
3131        case SIOCBRADDIF:
3132        case SIOCBRDELIF:
3133        case SIOCSIFNAME:
3134        case SIOCGMIIPHY:
3135        case SIOCGMIIREG:
3136        case SIOCSMIIREG:
3137                return dev_ifsioc(net, sock, cmd, argp);
3138
3139        case SIOCSARP:
3140        case SIOCGARP:
3141        case SIOCDARP:
3142        case SIOCATMARK:
3143                return sock_do_ioctl(net, sock, cmd, arg);
3144        }
3145
3146        return -ENOIOCTLCMD;
3147}
3148
3149static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3150                              unsigned long arg)
3151{
3152        struct socket *sock = file->private_data;
3153        int ret = -ENOIOCTLCMD;
3154        struct sock *sk;
3155        struct net *net;
3156
3157        sk = sock->sk;
3158        net = sock_net(sk);
3159
3160        if (sock->ops->compat_ioctl)
3161                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3162
3163        if (ret == -ENOIOCTLCMD &&
3164            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3165                ret = compat_wext_handle_ioctl(net, cmd, arg);
3166
3167        if (ret == -ENOIOCTLCMD)
3168                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3169
3170        return ret;
3171}
3172#endif
3173
3174int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3175{
3176        return sock->ops->bind(sock, addr, addrlen);
3177}
3178EXPORT_SYMBOL(kernel_bind);
3179
3180int kernel_listen(struct socket *sock, int backlog)
3181{
3182        return sock->ops->listen(sock, backlog);
3183}
3184EXPORT_SYMBOL(kernel_listen);
3185
3186int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3187{
3188        struct sock *sk = sock->sk;
3189        int err;
3190
3191        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3192                               newsock);
3193        if (err < 0)
3194                goto done;
3195
3196        err = sock->ops->accept(sock, *newsock, flags);
3197        if (err < 0) {
3198                sock_release(*newsock);
3199                *newsock = NULL;
3200                goto done;
3201        }
3202
3203        (*newsock)->ops = sock->ops;
3204        __module_get((*newsock)->ops->owner);
3205
3206done:
3207        return err;
3208}
3209EXPORT_SYMBOL(kernel_accept);
3210
3211int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3212                   int flags)
3213{
3214        return sock->ops->connect(sock, addr, addrlen, flags);
3215}
3216EXPORT_SYMBOL(kernel_connect);
3217
3218int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3219                         int *addrlen)
3220{
3221        return sock->ops->getname(sock, addr, addrlen, 0);
3222}
3223EXPORT_SYMBOL(kernel_getsockname);
3224
3225int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3226                         int *addrlen)
3227{
3228        return sock->ops->getname(sock, addr, addrlen, 1);
3229}
3230EXPORT_SYMBOL(kernel_getpeername);
3231
3232int kernel_getsockopt(struct socket *sock, int level, int optname,
3233                        char *optval, int *optlen)
3234{
3235        mm_segment_t oldfs = get_fs();
3236        char __user *uoptval;
3237        int __user *uoptlen;
3238        int err;
3239
3240        uoptval = (char __user __force *) optval;
3241        uoptlen = (int __user __force *) optlen;
3242
3243        set_fs(KERNEL_DS);
3244        if (level == SOL_SOCKET)
3245                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3246        else
3247                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3248                                            uoptlen);
3249        set_fs(oldfs);
3250        return err;
3251}
3252EXPORT_SYMBOL(kernel_getsockopt);
3253
3254int kernel_setsockopt(struct socket *sock, int level, int optname,
3255                        char *optval, unsigned int optlen)
3256{
3257        mm_segment_t oldfs = get_fs();
3258        char __user *uoptval;
3259        int err;
3260
3261        uoptval = (char __user __force *) optval;
3262
3263        set_fs(KERNEL_DS);
3264        if (level == SOL_SOCKET)
3265                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3266        else
3267                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3268                                            optlen);
3269        set_fs(oldfs);
3270        return err;
3271}
3272EXPORT_SYMBOL(kernel_setsockopt);
3273
3274int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3275                    size_t size, int flags)
3276{
3277        if (sock->ops->sendpage)
3278                return sock->ops->sendpage(sock, page, offset, size, flags);
3279
3280        return sock_no_sendpage(sock, page, offset, size, flags);
3281}
3282EXPORT_SYMBOL(kernel_sendpage);
3283
3284int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3285{
3286        mm_segment_t oldfs = get_fs();
3287        int err;
3288
3289        set_fs(KERNEL_DS);
3290        err = sock->ops->ioctl(sock, cmd, arg);
3291        set_fs(oldfs);
3292
3293        return err;
3294}
3295EXPORT_SYMBOL(kernel_sock_ioctl);
3296
3297int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3298{
3299        return sock->ops->shutdown(sock, how);
3300}
3301EXPORT_SYMBOL(kernel_sock_shutdown);
3302