linux/sound/core/pcm_lib.c
<<
>>
Prefs
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
  29#include <sound/tlv.h>
  30#include <sound/info.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/timer.h>
  34
  35#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  36#define CREATE_TRACE_POINTS
  37#include "pcm_trace.h"
  38#else
  39#define trace_hwptr(substream, pos, in_interrupt)
  40#define trace_xrun(substream)
  41#define trace_hw_ptr_error(substream, reason)
  42#endif
  43
  44/*
  45 * fill ring buffer with silence
  46 * runtime->silence_start: starting pointer to silence area
  47 * runtime->silence_filled: size filled with silence
  48 * runtime->silence_threshold: threshold from application
  49 * runtime->silence_size: maximal size from application
  50 *
  51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  52 */
  53void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  54{
  55        struct snd_pcm_runtime *runtime = substream->runtime;
  56        snd_pcm_uframes_t frames, ofs, transfer;
  57
  58        if (runtime->silence_size < runtime->boundary) {
  59                snd_pcm_sframes_t noise_dist, n;
  60                if (runtime->silence_start != runtime->control->appl_ptr) {
  61                        n = runtime->control->appl_ptr - runtime->silence_start;
  62                        if (n < 0)
  63                                n += runtime->boundary;
  64                        if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  65                                runtime->silence_filled -= n;
  66                        else
  67                                runtime->silence_filled = 0;
  68                        runtime->silence_start = runtime->control->appl_ptr;
  69                }
  70                if (runtime->silence_filled >= runtime->buffer_size)
  71                        return;
  72                noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  73                if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  74                        return;
  75                frames = runtime->silence_threshold - noise_dist;
  76                if (frames > runtime->silence_size)
  77                        frames = runtime->silence_size;
  78        } else {
  79                if (new_hw_ptr == ULONG_MAX) {  /* initialization */
  80                        snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  81                        if (avail > runtime->buffer_size)
  82                                avail = runtime->buffer_size;
  83                        runtime->silence_filled = avail > 0 ? avail : 0;
  84                        runtime->silence_start = (runtime->status->hw_ptr +
  85                                                  runtime->silence_filled) %
  86                                                 runtime->boundary;
  87                } else {
  88                        ofs = runtime->status->hw_ptr;
  89                        frames = new_hw_ptr - ofs;
  90                        if ((snd_pcm_sframes_t)frames < 0)
  91                                frames += runtime->boundary;
  92                        runtime->silence_filled -= frames;
  93                        if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  94                                runtime->silence_filled = 0;
  95                                runtime->silence_start = new_hw_ptr;
  96                        } else {
  97                                runtime->silence_start = ofs;
  98                        }
  99                }
 100                frames = runtime->buffer_size - runtime->silence_filled;
 101        }
 102        if (snd_BUG_ON(frames > runtime->buffer_size))
 103                return;
 104        if (frames == 0)
 105                return;
 106        ofs = runtime->silence_start % runtime->buffer_size;
 107        while (frames > 0) {
 108                transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 109                if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 110                    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 111                        if (substream->ops->silence) {
 112                                int err;
 113                                err = substream->ops->silence(substream, -1, ofs, transfer);
 114                                snd_BUG_ON(err < 0);
 115                        } else {
 116                                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 117                                snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 118                        }
 119                } else {
 120                        unsigned int c;
 121                        unsigned int channels = runtime->channels;
 122                        if (substream->ops->silence) {
 123                                for (c = 0; c < channels; ++c) {
 124                                        int err;
 125                                        err = substream->ops->silence(substream, c, ofs, transfer);
 126                                        snd_BUG_ON(err < 0);
 127                                }
 128                        } else {
 129                                size_t dma_csize = runtime->dma_bytes / channels;
 130                                for (c = 0; c < channels; ++c) {
 131                                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 132                                        snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 133                                }
 134                        }
 135                }
 136                runtime->silence_filled += transfer;
 137                frames -= transfer;
 138                ofs = 0;
 139        }
 140}
 141
 142#ifdef CONFIG_SND_DEBUG
 143void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 144                           char *name, size_t len)
 145{
 146        snprintf(name, len, "pcmC%dD%d%c:%d",
 147                 substream->pcm->card->number,
 148                 substream->pcm->device,
 149                 substream->stream ? 'c' : 'p',
 150                 substream->number);
 151}
 152EXPORT_SYMBOL(snd_pcm_debug_name);
 153#endif
 154
 155#define XRUN_DEBUG_BASIC        (1<<0)
 156#define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
 157#define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
 158
 159#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 160
 161#define xrun_debug(substream, mask) \
 162                        ((substream)->pstr->xrun_debug & (mask))
 163#else
 164#define xrun_debug(substream, mask)     0
 165#endif
 166
 167#define dump_stack_on_xrun(substream) do {                      \
 168                if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
 169                        dump_stack();                           \
 170        } while (0)
 171
 172static void xrun(struct snd_pcm_substream *substream)
 173{
 174        struct snd_pcm_runtime *runtime = substream->runtime;
 175
 176        trace_xrun(substream);
 177        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 178                snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 179        snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 180        if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 181                char name[16];
 182                snd_pcm_debug_name(substream, name, sizeof(name));
 183                pcm_warn(substream->pcm, "XRUN: %s\n", name);
 184                dump_stack_on_xrun(substream);
 185        }
 186}
 187
 188#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 189#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
 190        do {                                                            \
 191                trace_hw_ptr_error(substream, reason);  \
 192                if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
 193                        pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 194                                           (in_interrupt) ? 'Q' : 'P', ##args); \
 195                        dump_stack_on_xrun(substream);                  \
 196                }                                                       \
 197        } while (0)
 198
 199#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 200
 201#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 202
 203#endif
 204
 205int snd_pcm_update_state(struct snd_pcm_substream *substream,
 206                         struct snd_pcm_runtime *runtime)
 207{
 208        snd_pcm_uframes_t avail;
 209
 210        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 211                avail = snd_pcm_playback_avail(runtime);
 212        else
 213                avail = snd_pcm_capture_avail(runtime);
 214        if (avail > runtime->avail_max)
 215                runtime->avail_max = avail;
 216        if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 217                if (avail >= runtime->buffer_size) {
 218                        snd_pcm_drain_done(substream);
 219                        return -EPIPE;
 220                }
 221        } else {
 222                if (avail >= runtime->stop_threshold) {
 223                        xrun(substream);
 224                        return -EPIPE;
 225                }
 226        }
 227        if (runtime->twake) {
 228                if (avail >= runtime->twake)
 229                        wake_up(&runtime->tsleep);
 230        } else if (avail >= runtime->control->avail_min)
 231                wake_up(&runtime->sleep);
 232        return 0;
 233}
 234
 235static void update_audio_tstamp(struct snd_pcm_substream *substream,
 236                                struct timespec *curr_tstamp,
 237                                struct timespec *audio_tstamp)
 238{
 239        struct snd_pcm_runtime *runtime = substream->runtime;
 240        u64 audio_frames, audio_nsecs;
 241        struct timespec driver_tstamp;
 242
 243        if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 244                return;
 245
 246        if (!(substream->ops->get_time_info) ||
 247                (runtime->audio_tstamp_report.actual_type ==
 248                        SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 249
 250                /*
 251                 * provide audio timestamp derived from pointer position
 252                 * add delay only if requested
 253                 */
 254
 255                audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 256
 257                if (runtime->audio_tstamp_config.report_delay) {
 258                        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 259                                audio_frames -=  runtime->delay;
 260                        else
 261                                audio_frames +=  runtime->delay;
 262                }
 263                audio_nsecs = div_u64(audio_frames * 1000000000LL,
 264                                runtime->rate);
 265                *audio_tstamp = ns_to_timespec(audio_nsecs);
 266        }
 267        runtime->status->audio_tstamp = *audio_tstamp;
 268        runtime->status->tstamp = *curr_tstamp;
 269
 270        /*
 271         * re-take a driver timestamp to let apps detect if the reference tstamp
 272         * read by low-level hardware was provided with a delay
 273         */
 274        snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
 275        runtime->driver_tstamp = driver_tstamp;
 276}
 277
 278static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 279                                  unsigned int in_interrupt)
 280{
 281        struct snd_pcm_runtime *runtime = substream->runtime;
 282        snd_pcm_uframes_t pos;
 283        snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 284        snd_pcm_sframes_t hdelta, delta;
 285        unsigned long jdelta;
 286        unsigned long curr_jiffies;
 287        struct timespec curr_tstamp;
 288        struct timespec audio_tstamp;
 289        int crossed_boundary = 0;
 290
 291        old_hw_ptr = runtime->status->hw_ptr;
 292
 293        /*
 294         * group pointer, time and jiffies reads to allow for more
 295         * accurate correlations/corrections.
 296         * The values are stored at the end of this routine after
 297         * corrections for hw_ptr position
 298         */
 299        pos = substream->ops->pointer(substream);
 300        curr_jiffies = jiffies;
 301        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 302                if ((substream->ops->get_time_info) &&
 303                        (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 304                        substream->ops->get_time_info(substream, &curr_tstamp,
 305                                                &audio_tstamp,
 306                                                &runtime->audio_tstamp_config,
 307                                                &runtime->audio_tstamp_report);
 308
 309                        /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 310                        if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 311                                snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 312                } else
 313                        snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 314        }
 315
 316        if (pos == SNDRV_PCM_POS_XRUN) {
 317                xrun(substream);
 318                return -EPIPE;
 319        }
 320        if (pos >= runtime->buffer_size) {
 321                if (printk_ratelimit()) {
 322                        char name[16];
 323                        snd_pcm_debug_name(substream, name, sizeof(name));
 324                        pcm_err(substream->pcm,
 325                                "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 326                                name, pos, runtime->buffer_size,
 327                                runtime->period_size);
 328                }
 329                pos = 0;
 330        }
 331        pos -= pos % runtime->min_align;
 332        trace_hwptr(substream, pos, in_interrupt);
 333        hw_base = runtime->hw_ptr_base;
 334        new_hw_ptr = hw_base + pos;
 335        if (in_interrupt) {
 336                /* we know that one period was processed */
 337                /* delta = "expected next hw_ptr" for in_interrupt != 0 */
 338                delta = runtime->hw_ptr_interrupt + runtime->period_size;
 339                if (delta > new_hw_ptr) {
 340                        /* check for double acknowledged interrupts */
 341                        hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 342                        if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 343                                hw_base += runtime->buffer_size;
 344                                if (hw_base >= runtime->boundary) {
 345                                        hw_base = 0;
 346                                        crossed_boundary++;
 347                                }
 348                                new_hw_ptr = hw_base + pos;
 349                                goto __delta;
 350                        }
 351                }
 352        }
 353        /* new_hw_ptr might be lower than old_hw_ptr in case when */
 354        /* pointer crosses the end of the ring buffer */
 355        if (new_hw_ptr < old_hw_ptr) {
 356                hw_base += runtime->buffer_size;
 357                if (hw_base >= runtime->boundary) {
 358                        hw_base = 0;
 359                        crossed_boundary++;
 360                }
 361                new_hw_ptr = hw_base + pos;
 362        }
 363      __delta:
 364        delta = new_hw_ptr - old_hw_ptr;
 365        if (delta < 0)
 366                delta += runtime->boundary;
 367
 368        if (runtime->no_period_wakeup) {
 369                snd_pcm_sframes_t xrun_threshold;
 370                /*
 371                 * Without regular period interrupts, we have to check
 372                 * the elapsed time to detect xruns.
 373                 */
 374                jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 375                if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 376                        goto no_delta_check;
 377                hdelta = jdelta - delta * HZ / runtime->rate;
 378                xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 379                while (hdelta > xrun_threshold) {
 380                        delta += runtime->buffer_size;
 381                        hw_base += runtime->buffer_size;
 382                        if (hw_base >= runtime->boundary) {
 383                                hw_base = 0;
 384                                crossed_boundary++;
 385                        }
 386                        new_hw_ptr = hw_base + pos;
 387                        hdelta -= runtime->hw_ptr_buffer_jiffies;
 388                }
 389                goto no_delta_check;
 390        }
 391
 392        /* something must be really wrong */
 393        if (delta >= runtime->buffer_size + runtime->period_size) {
 394                hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 395                             "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 396                             substream->stream, (long)pos,
 397                             (long)new_hw_ptr, (long)old_hw_ptr);
 398                return 0;
 399        }
 400
 401        /* Do jiffies check only in xrun_debug mode */
 402        if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 403                goto no_jiffies_check;
 404
 405        /* Skip the jiffies check for hardwares with BATCH flag.
 406         * Such hardware usually just increases the position at each IRQ,
 407         * thus it can't give any strange position.
 408         */
 409        if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 410                goto no_jiffies_check;
 411        hdelta = delta;
 412        if (hdelta < runtime->delay)
 413                goto no_jiffies_check;
 414        hdelta -= runtime->delay;
 415        jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 416        if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 417                delta = jdelta /
 418                        (((runtime->period_size * HZ) / runtime->rate)
 419                                                                + HZ/100);
 420                /* move new_hw_ptr according jiffies not pos variable */
 421                new_hw_ptr = old_hw_ptr;
 422                hw_base = delta;
 423                /* use loop to avoid checks for delta overflows */
 424                /* the delta value is small or zero in most cases */
 425                while (delta > 0) {
 426                        new_hw_ptr += runtime->period_size;
 427                        if (new_hw_ptr >= runtime->boundary) {
 428                                new_hw_ptr -= runtime->boundary;
 429                                crossed_boundary--;
 430                        }
 431                        delta--;
 432                }
 433                /* align hw_base to buffer_size */
 434                hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 435                             "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 436                             (long)pos, (long)hdelta,
 437                             (long)runtime->period_size, jdelta,
 438                             ((hdelta * HZ) / runtime->rate), hw_base,
 439                             (unsigned long)old_hw_ptr,
 440                             (unsigned long)new_hw_ptr);
 441                /* reset values to proper state */
 442                delta = 0;
 443                hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 444        }
 445 no_jiffies_check:
 446        if (delta > runtime->period_size + runtime->period_size / 2) {
 447                hw_ptr_error(substream, in_interrupt,
 448                             "Lost interrupts?",
 449                             "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 450                             substream->stream, (long)delta,
 451                             (long)new_hw_ptr,
 452                             (long)old_hw_ptr);
 453        }
 454
 455 no_delta_check:
 456        if (runtime->status->hw_ptr == new_hw_ptr) {
 457                update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 458                return 0;
 459        }
 460
 461        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 462            runtime->silence_size > 0)
 463                snd_pcm_playback_silence(substream, new_hw_ptr);
 464
 465        if (in_interrupt) {
 466                delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 467                if (delta < 0)
 468                        delta += runtime->boundary;
 469                delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 470                runtime->hw_ptr_interrupt += delta;
 471                if (runtime->hw_ptr_interrupt >= runtime->boundary)
 472                        runtime->hw_ptr_interrupt -= runtime->boundary;
 473        }
 474        runtime->hw_ptr_base = hw_base;
 475        runtime->status->hw_ptr = new_hw_ptr;
 476        runtime->hw_ptr_jiffies = curr_jiffies;
 477        if (crossed_boundary) {
 478                snd_BUG_ON(crossed_boundary != 1);
 479                runtime->hw_ptr_wrap += runtime->boundary;
 480        }
 481
 482        update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 483
 484        return snd_pcm_update_state(substream, runtime);
 485}
 486
 487/* CAUTION: call it with irq disabled */
 488int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 489{
 490        return snd_pcm_update_hw_ptr0(substream, 0);
 491}
 492
 493/**
 494 * snd_pcm_set_ops - set the PCM operators
 495 * @pcm: the pcm instance
 496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 497 * @ops: the operator table
 498 *
 499 * Sets the given PCM operators to the pcm instance.
 500 */
 501void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 502                     const struct snd_pcm_ops *ops)
 503{
 504        struct snd_pcm_str *stream = &pcm->streams[direction];
 505        struct snd_pcm_substream *substream;
 506        
 507        for (substream = stream->substream; substream != NULL; substream = substream->next)
 508                substream->ops = ops;
 509}
 510
 511EXPORT_SYMBOL(snd_pcm_set_ops);
 512
 513/**
 514 * snd_pcm_sync - set the PCM sync id
 515 * @substream: the pcm substream
 516 *
 517 * Sets the PCM sync identifier for the card.
 518 */
 519void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 520{
 521        struct snd_pcm_runtime *runtime = substream->runtime;
 522        
 523        runtime->sync.id32[0] = substream->pcm->card->number;
 524        runtime->sync.id32[1] = -1;
 525        runtime->sync.id32[2] = -1;
 526        runtime->sync.id32[3] = -1;
 527}
 528
 529EXPORT_SYMBOL(snd_pcm_set_sync);
 530
 531/*
 532 *  Standard ioctl routine
 533 */
 534
 535static inline unsigned int div32(unsigned int a, unsigned int b, 
 536                                 unsigned int *r)
 537{
 538        if (b == 0) {
 539                *r = 0;
 540                return UINT_MAX;
 541        }
 542        *r = a % b;
 543        return a / b;
 544}
 545
 546static inline unsigned int div_down(unsigned int a, unsigned int b)
 547{
 548        if (b == 0)
 549                return UINT_MAX;
 550        return a / b;
 551}
 552
 553static inline unsigned int div_up(unsigned int a, unsigned int b)
 554{
 555        unsigned int r;
 556        unsigned int q;
 557        if (b == 0)
 558                return UINT_MAX;
 559        q = div32(a, b, &r);
 560        if (r)
 561                ++q;
 562        return q;
 563}
 564
 565static inline unsigned int mul(unsigned int a, unsigned int b)
 566{
 567        if (a == 0)
 568                return 0;
 569        if (div_down(UINT_MAX, a) < b)
 570                return UINT_MAX;
 571        return a * b;
 572}
 573
 574static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 575                                    unsigned int c, unsigned int *r)
 576{
 577        u_int64_t n = (u_int64_t) a * b;
 578        if (c == 0) {
 579                snd_BUG_ON(!n);
 580                *r = 0;
 581                return UINT_MAX;
 582        }
 583        n = div_u64_rem(n, c, r);
 584        if (n >= UINT_MAX) {
 585                *r = 0;
 586                return UINT_MAX;
 587        }
 588        return n;
 589}
 590
 591/**
 592 * snd_interval_refine - refine the interval value of configurator
 593 * @i: the interval value to refine
 594 * @v: the interval value to refer to
 595 *
 596 * Refines the interval value with the reference value.
 597 * The interval is changed to the range satisfying both intervals.
 598 * The interval status (min, max, integer, etc.) are evaluated.
 599 *
 600 * Return: Positive if the value is changed, zero if it's not changed, or a
 601 * negative error code.
 602 */
 603int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 604{
 605        int changed = 0;
 606        if (snd_BUG_ON(snd_interval_empty(i)))
 607                return -EINVAL;
 608        if (i->min < v->min) {
 609                i->min = v->min;
 610                i->openmin = v->openmin;
 611                changed = 1;
 612        } else if (i->min == v->min && !i->openmin && v->openmin) {
 613                i->openmin = 1;
 614                changed = 1;
 615        }
 616        if (i->max > v->max) {
 617                i->max = v->max;
 618                i->openmax = v->openmax;
 619                changed = 1;
 620        } else if (i->max == v->max && !i->openmax && v->openmax) {
 621                i->openmax = 1;
 622                changed = 1;
 623        }
 624        if (!i->integer && v->integer) {
 625                i->integer = 1;
 626                changed = 1;
 627        }
 628        if (i->integer) {
 629                if (i->openmin) {
 630                        i->min++;
 631                        i->openmin = 0;
 632                }
 633                if (i->openmax) {
 634                        i->max--;
 635                        i->openmax = 0;
 636                }
 637        } else if (!i->openmin && !i->openmax && i->min == i->max)
 638                i->integer = 1;
 639        if (snd_interval_checkempty(i)) {
 640                snd_interval_none(i);
 641                return -EINVAL;
 642        }
 643        return changed;
 644}
 645
 646EXPORT_SYMBOL(snd_interval_refine);
 647
 648static int snd_interval_refine_first(struct snd_interval *i)
 649{
 650        if (snd_BUG_ON(snd_interval_empty(i)))
 651                return -EINVAL;
 652        if (snd_interval_single(i))
 653                return 0;
 654        i->max = i->min;
 655        i->openmax = i->openmin;
 656        if (i->openmax)
 657                i->max++;
 658        return 1;
 659}
 660
 661static int snd_interval_refine_last(struct snd_interval *i)
 662{
 663        if (snd_BUG_ON(snd_interval_empty(i)))
 664                return -EINVAL;
 665        if (snd_interval_single(i))
 666                return 0;
 667        i->min = i->max;
 668        i->openmin = i->openmax;
 669        if (i->openmin)
 670                i->min--;
 671        return 1;
 672}
 673
 674void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 675{
 676        if (a->empty || b->empty) {
 677                snd_interval_none(c);
 678                return;
 679        }
 680        c->empty = 0;
 681        c->min = mul(a->min, b->min);
 682        c->openmin = (a->openmin || b->openmin);
 683        c->max = mul(a->max,  b->max);
 684        c->openmax = (a->openmax || b->openmax);
 685        c->integer = (a->integer && b->integer);
 686}
 687
 688/**
 689 * snd_interval_div - refine the interval value with division
 690 * @a: dividend
 691 * @b: divisor
 692 * @c: quotient
 693 *
 694 * c = a / b
 695 *
 696 * Returns non-zero if the value is changed, zero if not changed.
 697 */
 698void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 699{
 700        unsigned int r;
 701        if (a->empty || b->empty) {
 702                snd_interval_none(c);
 703                return;
 704        }
 705        c->empty = 0;
 706        c->min = div32(a->min, b->max, &r);
 707        c->openmin = (r || a->openmin || b->openmax);
 708        if (b->min > 0) {
 709                c->max = div32(a->max, b->min, &r);
 710                if (r) {
 711                        c->max++;
 712                        c->openmax = 1;
 713                } else
 714                        c->openmax = (a->openmax || b->openmin);
 715        } else {
 716                c->max = UINT_MAX;
 717                c->openmax = 0;
 718        }
 719        c->integer = 0;
 720}
 721
 722/**
 723 * snd_interval_muldivk - refine the interval value
 724 * @a: dividend 1
 725 * @b: dividend 2
 726 * @k: divisor (as integer)
 727 * @c: result
 728  *
 729 * c = a * b / k
 730 *
 731 * Returns non-zero if the value is changed, zero if not changed.
 732 */
 733void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 734                      unsigned int k, struct snd_interval *c)
 735{
 736        unsigned int r;
 737        if (a->empty || b->empty) {
 738                snd_interval_none(c);
 739                return;
 740        }
 741        c->empty = 0;
 742        c->min = muldiv32(a->min, b->min, k, &r);
 743        c->openmin = (r || a->openmin || b->openmin);
 744        c->max = muldiv32(a->max, b->max, k, &r);
 745        if (r) {
 746                c->max++;
 747                c->openmax = 1;
 748        } else
 749                c->openmax = (a->openmax || b->openmax);
 750        c->integer = 0;
 751}
 752
 753/**
 754 * snd_interval_mulkdiv - refine the interval value
 755 * @a: dividend 1
 756 * @k: dividend 2 (as integer)
 757 * @b: divisor
 758 * @c: result
 759 *
 760 * c = a * k / b
 761 *
 762 * Returns non-zero if the value is changed, zero if not changed.
 763 */
 764void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 765                      const struct snd_interval *b, struct snd_interval *c)
 766{
 767        unsigned int r;
 768        if (a->empty || b->empty) {
 769                snd_interval_none(c);
 770                return;
 771        }
 772        c->empty = 0;
 773        c->min = muldiv32(a->min, k, b->max, &r);
 774        c->openmin = (r || a->openmin || b->openmax);
 775        if (b->min > 0) {
 776                c->max = muldiv32(a->max, k, b->min, &r);
 777                if (r) {
 778                        c->max++;
 779                        c->openmax = 1;
 780                } else
 781                        c->openmax = (a->openmax || b->openmin);
 782        } else {
 783                c->max = UINT_MAX;
 784                c->openmax = 0;
 785        }
 786        c->integer = 0;
 787}
 788
 789/* ---- */
 790
 791
 792/**
 793 * snd_interval_ratnum - refine the interval value
 794 * @i: interval to refine
 795 * @rats_count: number of ratnum_t 
 796 * @rats: ratnum_t array
 797 * @nump: pointer to store the resultant numerator
 798 * @denp: pointer to store the resultant denominator
 799 *
 800 * Return: Positive if the value is changed, zero if it's not changed, or a
 801 * negative error code.
 802 */
 803int snd_interval_ratnum(struct snd_interval *i,
 804                        unsigned int rats_count, struct snd_ratnum *rats,
 805                        unsigned int *nump, unsigned int *denp)
 806{
 807        unsigned int best_num, best_den;
 808        int best_diff;
 809        unsigned int k;
 810        struct snd_interval t;
 811        int err;
 812        unsigned int result_num, result_den;
 813        int result_diff;
 814
 815        best_num = best_den = best_diff = 0;
 816        for (k = 0; k < rats_count; ++k) {
 817                unsigned int num = rats[k].num;
 818                unsigned int den;
 819                unsigned int q = i->min;
 820                int diff;
 821                if (q == 0)
 822                        q = 1;
 823                den = div_up(num, q);
 824                if (den < rats[k].den_min)
 825                        continue;
 826                if (den > rats[k].den_max)
 827                        den = rats[k].den_max;
 828                else {
 829                        unsigned int r;
 830                        r = (den - rats[k].den_min) % rats[k].den_step;
 831                        if (r != 0)
 832                                den -= r;
 833                }
 834                diff = num - q * den;
 835                if (diff < 0)
 836                        diff = -diff;
 837                if (best_num == 0 ||
 838                    diff * best_den < best_diff * den) {
 839                        best_diff = diff;
 840                        best_den = den;
 841                        best_num = num;
 842                }
 843        }
 844        if (best_den == 0) {
 845                i->empty = 1;
 846                return -EINVAL;
 847        }
 848        t.min = div_down(best_num, best_den);
 849        t.openmin = !!(best_num % best_den);
 850        
 851        result_num = best_num;
 852        result_diff = best_diff;
 853        result_den = best_den;
 854        best_num = best_den = best_diff = 0;
 855        for (k = 0; k < rats_count; ++k) {
 856                unsigned int num = rats[k].num;
 857                unsigned int den;
 858                unsigned int q = i->max;
 859                int diff;
 860                if (q == 0) {
 861                        i->empty = 1;
 862                        return -EINVAL;
 863                }
 864                den = div_down(num, q);
 865                if (den > rats[k].den_max)
 866                        continue;
 867                if (den < rats[k].den_min)
 868                        den = rats[k].den_min;
 869                else {
 870                        unsigned int r;
 871                        r = (den - rats[k].den_min) % rats[k].den_step;
 872                        if (r != 0)
 873                                den += rats[k].den_step - r;
 874                }
 875                diff = q * den - num;
 876                if (diff < 0)
 877                        diff = -diff;
 878                if (best_num == 0 ||
 879                    diff * best_den < best_diff * den) {
 880                        best_diff = diff;
 881                        best_den = den;
 882                        best_num = num;
 883                }
 884        }
 885        if (best_den == 0) {
 886                i->empty = 1;
 887                return -EINVAL;
 888        }
 889        t.max = div_up(best_num, best_den);
 890        t.openmax = !!(best_num % best_den);
 891        t.integer = 0;
 892        err = snd_interval_refine(i, &t);
 893        if (err < 0)
 894                return err;
 895
 896        if (snd_interval_single(i)) {
 897                if (best_diff * result_den < result_diff * best_den) {
 898                        result_num = best_num;
 899                        result_den = best_den;
 900                }
 901                if (nump)
 902                        *nump = result_num;
 903                if (denp)
 904                        *denp = result_den;
 905        }
 906        return err;
 907}
 908
 909EXPORT_SYMBOL(snd_interval_ratnum);
 910
 911/**
 912 * snd_interval_ratden - refine the interval value
 913 * @i: interval to refine
 914 * @rats_count: number of struct ratden
 915 * @rats: struct ratden array
 916 * @nump: pointer to store the resultant numerator
 917 * @denp: pointer to store the resultant denominator
 918 *
 919 * Return: Positive if the value is changed, zero if it's not changed, or a
 920 * negative error code.
 921 */
 922static int snd_interval_ratden(struct snd_interval *i,
 923                               unsigned int rats_count, struct snd_ratden *rats,
 924                               unsigned int *nump, unsigned int *denp)
 925{
 926        unsigned int best_num, best_diff, best_den;
 927        unsigned int k;
 928        struct snd_interval t;
 929        int err;
 930
 931        best_num = best_den = best_diff = 0;
 932        for (k = 0; k < rats_count; ++k) {
 933                unsigned int num;
 934                unsigned int den = rats[k].den;
 935                unsigned int q = i->min;
 936                int diff;
 937                num = mul(q, den);
 938                if (num > rats[k].num_max)
 939                        continue;
 940                if (num < rats[k].num_min)
 941                        num = rats[k].num_max;
 942                else {
 943                        unsigned int r;
 944                        r = (num - rats[k].num_min) % rats[k].num_step;
 945                        if (r != 0)
 946                                num += rats[k].num_step - r;
 947                }
 948                diff = num - q * den;
 949                if (best_num == 0 ||
 950                    diff * best_den < best_diff * den) {
 951                        best_diff = diff;
 952                        best_den = den;
 953                        best_num = num;
 954                }
 955        }
 956        if (best_den == 0) {
 957                i->empty = 1;
 958                return -EINVAL;
 959        }
 960        t.min = div_down(best_num, best_den);
 961        t.openmin = !!(best_num % best_den);
 962        
 963        best_num = best_den = best_diff = 0;
 964        for (k = 0; k < rats_count; ++k) {
 965                unsigned int num;
 966                unsigned int den = rats[k].den;
 967                unsigned int q = i->max;
 968                int diff;
 969                num = mul(q, den);
 970                if (num < rats[k].num_min)
 971                        continue;
 972                if (num > rats[k].num_max)
 973                        num = rats[k].num_max;
 974                else {
 975                        unsigned int r;
 976                        r = (num - rats[k].num_min) % rats[k].num_step;
 977                        if (r != 0)
 978                                num -= r;
 979                }
 980                diff = q * den - num;
 981                if (best_num == 0 ||
 982                    diff * best_den < best_diff * den) {
 983                        best_diff = diff;
 984                        best_den = den;
 985                        best_num = num;
 986                }
 987        }
 988        if (best_den == 0) {
 989                i->empty = 1;
 990                return -EINVAL;
 991        }
 992        t.max = div_up(best_num, best_den);
 993        t.openmax = !!(best_num % best_den);
 994        t.integer = 0;
 995        err = snd_interval_refine(i, &t);
 996        if (err < 0)
 997                return err;
 998
 999        if (snd_interval_single(i)) {
1000                if (nump)
1001                        *nump = best_num;
1002                if (denp)
1003                        *denp = best_den;
1004        }
1005        return err;
1006}
1007
1008/**
1009 * snd_interval_list - refine the interval value from the list
1010 * @i: the interval value to refine
1011 * @count: the number of elements in the list
1012 * @list: the value list
1013 * @mask: the bit-mask to evaluate
1014 *
1015 * Refines the interval value from the list.
1016 * When mask is non-zero, only the elements corresponding to bit 1 are
1017 * evaluated.
1018 *
1019 * Return: Positive if the value is changed, zero if it's not changed, or a
1020 * negative error code.
1021 */
1022int snd_interval_list(struct snd_interval *i, unsigned int count,
1023                      const unsigned int *list, unsigned int mask)
1024{
1025        unsigned int k;
1026        struct snd_interval list_range;
1027
1028        if (!count) {
1029                i->empty = 1;
1030                return -EINVAL;
1031        }
1032        snd_interval_any(&list_range);
1033        list_range.min = UINT_MAX;
1034        list_range.max = 0;
1035        for (k = 0; k < count; k++) {
1036                if (mask && !(mask & (1 << k)))
1037                        continue;
1038                if (!snd_interval_test(i, list[k]))
1039                        continue;
1040                list_range.min = min(list_range.min, list[k]);
1041                list_range.max = max(list_range.max, list[k]);
1042        }
1043        return snd_interval_refine(i, &list_range);
1044}
1045
1046EXPORT_SYMBOL(snd_interval_list);
1047
1048/**
1049 * snd_interval_ranges - refine the interval value from the list of ranges
1050 * @i: the interval value to refine
1051 * @count: the number of elements in the list of ranges
1052 * @ranges: the ranges list
1053 * @mask: the bit-mask to evaluate
1054 *
1055 * Refines the interval value from the list of ranges.
1056 * When mask is non-zero, only the elements corresponding to bit 1 are
1057 * evaluated.
1058 *
1059 * Return: Positive if the value is changed, zero if it's not changed, or a
1060 * negative error code.
1061 */
1062int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1063                        const struct snd_interval *ranges, unsigned int mask)
1064{
1065        unsigned int k;
1066        struct snd_interval range_union;
1067        struct snd_interval range;
1068
1069        if (!count) {
1070                snd_interval_none(i);
1071                return -EINVAL;
1072        }
1073        snd_interval_any(&range_union);
1074        range_union.min = UINT_MAX;
1075        range_union.max = 0;
1076        for (k = 0; k < count; k++) {
1077                if (mask && !(mask & (1 << k)))
1078                        continue;
1079                snd_interval_copy(&range, &ranges[k]);
1080                if (snd_interval_refine(&range, i) < 0)
1081                        continue;
1082                if (snd_interval_empty(&range))
1083                        continue;
1084
1085                if (range.min < range_union.min) {
1086                        range_union.min = range.min;
1087                        range_union.openmin = 1;
1088                }
1089                if (range.min == range_union.min && !range.openmin)
1090                        range_union.openmin = 0;
1091                if (range.max > range_union.max) {
1092                        range_union.max = range.max;
1093                        range_union.openmax = 1;
1094                }
1095                if (range.max == range_union.max && !range.openmax)
1096                        range_union.openmax = 0;
1097        }
1098        return snd_interval_refine(i, &range_union);
1099}
1100EXPORT_SYMBOL(snd_interval_ranges);
1101
1102static int snd_interval_step(struct snd_interval *i, unsigned int step)
1103{
1104        unsigned int n;
1105        int changed = 0;
1106        n = i->min % step;
1107        if (n != 0 || i->openmin) {
1108                i->min += step - n;
1109                i->openmin = 0;
1110                changed = 1;
1111        }
1112        n = i->max % step;
1113        if (n != 0 || i->openmax) {
1114                i->max -= n;
1115                i->openmax = 0;
1116                changed = 1;
1117        }
1118        if (snd_interval_checkempty(i)) {
1119                i->empty = 1;
1120                return -EINVAL;
1121        }
1122        return changed;
1123}
1124
1125/* Info constraints helpers */
1126
1127/**
1128 * snd_pcm_hw_rule_add - add the hw-constraint rule
1129 * @runtime: the pcm runtime instance
1130 * @cond: condition bits
1131 * @var: the variable to evaluate
1132 * @func: the evaluation function
1133 * @private: the private data pointer passed to function
1134 * @dep: the dependent variables
1135 *
1136 * Return: Zero if successful, or a negative error code on failure.
1137 */
1138int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1139                        int var,
1140                        snd_pcm_hw_rule_func_t func, void *private,
1141                        int dep, ...)
1142{
1143        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1144        struct snd_pcm_hw_rule *c;
1145        unsigned int k;
1146        va_list args;
1147        va_start(args, dep);
1148        if (constrs->rules_num >= constrs->rules_all) {
1149                struct snd_pcm_hw_rule *new;
1150                unsigned int new_rules = constrs->rules_all + 16;
1151                new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1152                if (!new) {
1153                        va_end(args);
1154                        return -ENOMEM;
1155                }
1156                if (constrs->rules) {
1157                        memcpy(new, constrs->rules,
1158                               constrs->rules_num * sizeof(*c));
1159                        kfree(constrs->rules);
1160                }
1161                constrs->rules = new;
1162                constrs->rules_all = new_rules;
1163        }
1164        c = &constrs->rules[constrs->rules_num];
1165        c->cond = cond;
1166        c->func = func;
1167        c->var = var;
1168        c->private = private;
1169        k = 0;
1170        while (1) {
1171                if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1172                        va_end(args);
1173                        return -EINVAL;
1174                }
1175                c->deps[k++] = dep;
1176                if (dep < 0)
1177                        break;
1178                dep = va_arg(args, int);
1179        }
1180        constrs->rules_num++;
1181        va_end(args);
1182        return 0;
1183}
1184
1185EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1186
1187/**
1188 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1189 * @runtime: PCM runtime instance
1190 * @var: hw_params variable to apply the mask
1191 * @mask: the bitmap mask
1192 *
1193 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1194 *
1195 * Return: Zero if successful, or a negative error code on failure.
1196 */
1197int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1198                               u_int32_t mask)
1199{
1200        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1201        struct snd_mask *maskp = constrs_mask(constrs, var);
1202        *maskp->bits &= mask;
1203        memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1204        if (*maskp->bits == 0)
1205                return -EINVAL;
1206        return 0;
1207}
1208
1209/**
1210 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the mask
1213 * @mask: the 64bit bitmap mask
1214 *
1215 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1216 *
1217 * Return: Zero if successful, or a negative error code on failure.
1218 */
1219int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220                                 u_int64_t mask)
1221{
1222        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223        struct snd_mask *maskp = constrs_mask(constrs, var);
1224        maskp->bits[0] &= (u_int32_t)mask;
1225        maskp->bits[1] &= (u_int32_t)(mask >> 32);
1226        memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1227        if (! maskp->bits[0] && ! maskp->bits[1])
1228                return -EINVAL;
1229        return 0;
1230}
1231EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1232
1233/**
1234 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1235 * @runtime: PCM runtime instance
1236 * @var: hw_params variable to apply the integer constraint
1237 *
1238 * Apply the constraint of integer to an interval parameter.
1239 *
1240 * Return: Positive if the value is changed, zero if it's not changed, or a
1241 * negative error code.
1242 */
1243int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1244{
1245        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1246        return snd_interval_setinteger(constrs_interval(constrs, var));
1247}
1248
1249EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1250
1251/**
1252 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1253 * @runtime: PCM runtime instance
1254 * @var: hw_params variable to apply the range
1255 * @min: the minimal value
1256 * @max: the maximal value
1257 * 
1258 * Apply the min/max range constraint to an interval parameter.
1259 *
1260 * Return: Positive if the value is changed, zero if it's not changed, or a
1261 * negative error code.
1262 */
1263int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1264                                 unsigned int min, unsigned int max)
1265{
1266        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1267        struct snd_interval t;
1268        t.min = min;
1269        t.max = max;
1270        t.openmin = t.openmax = 0;
1271        t.integer = 0;
1272        return snd_interval_refine(constrs_interval(constrs, var), &t);
1273}
1274
1275EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278                                struct snd_pcm_hw_rule *rule)
1279{
1280        struct snd_pcm_hw_constraint_list *list = rule->private;
1281        return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282}               
1283
1284
1285/**
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1290 * @l: list
1291 * 
1292 * Apply the list of constraints to an interval parameter.
1293 *
1294 * Return: Zero if successful, or a negative error code on failure.
1295 */
1296int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297                               unsigned int cond,
1298                               snd_pcm_hw_param_t var,
1299                               const struct snd_pcm_hw_constraint_list *l)
1300{
1301        return snd_pcm_hw_rule_add(runtime, cond, var,
1302                                   snd_pcm_hw_rule_list, (void *)l,
1303                                   var, -1);
1304}
1305
1306EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1307
1308static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1309                                  struct snd_pcm_hw_rule *rule)
1310{
1311        struct snd_pcm_hw_constraint_ranges *r = rule->private;
1312        return snd_interval_ranges(hw_param_interval(params, rule->var),
1313                                   r->count, r->ranges, r->mask);
1314}
1315
1316
1317/**
1318 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1319 * @runtime: PCM runtime instance
1320 * @cond: condition bits
1321 * @var: hw_params variable to apply the list of range constraints
1322 * @r: ranges
1323 *
1324 * Apply the list of range constraints to an interval parameter.
1325 *
1326 * Return: Zero if successful, or a negative error code on failure.
1327 */
1328int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1329                                 unsigned int cond,
1330                                 snd_pcm_hw_param_t var,
1331                                 const struct snd_pcm_hw_constraint_ranges *r)
1332{
1333        return snd_pcm_hw_rule_add(runtime, cond, var,
1334                                   snd_pcm_hw_rule_ranges, (void *)r,
1335                                   var, -1);
1336}
1337EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1338
1339static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1340                                   struct snd_pcm_hw_rule *rule)
1341{
1342        struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1343        unsigned int num = 0, den = 0;
1344        int err;
1345        err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1346                                  r->nrats, r->rats, &num, &den);
1347        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1348                params->rate_num = num;
1349                params->rate_den = den;
1350        }
1351        return err;
1352}
1353
1354/**
1355 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1356 * @runtime: PCM runtime instance
1357 * @cond: condition bits
1358 * @var: hw_params variable to apply the ratnums constraint
1359 * @r: struct snd_ratnums constriants
1360 *
1361 * Return: Zero if successful, or a negative error code on failure.
1362 */
1363int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1364                                  unsigned int cond,
1365                                  snd_pcm_hw_param_t var,
1366                                  struct snd_pcm_hw_constraint_ratnums *r)
1367{
1368        return snd_pcm_hw_rule_add(runtime, cond, var,
1369                                   snd_pcm_hw_rule_ratnums, r,
1370                                   var, -1);
1371}
1372
1373EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1374
1375static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1376                                   struct snd_pcm_hw_rule *rule)
1377{
1378        struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1379        unsigned int num = 0, den = 0;
1380        int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1381                                  r->nrats, r->rats, &num, &den);
1382        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1383                params->rate_num = num;
1384                params->rate_den = den;
1385        }
1386        return err;
1387}
1388
1389/**
1390 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @var: hw_params variable to apply the ratdens constraint
1394 * @r: struct snd_ratdens constriants
1395 *
1396 * Return: Zero if successful, or a negative error code on failure.
1397 */
1398int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1399                                  unsigned int cond,
1400                                  snd_pcm_hw_param_t var,
1401                                  struct snd_pcm_hw_constraint_ratdens *r)
1402{
1403        return snd_pcm_hw_rule_add(runtime, cond, var,
1404                                   snd_pcm_hw_rule_ratdens, r,
1405                                   var, -1);
1406}
1407
1408EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1409
1410static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1411                                  struct snd_pcm_hw_rule *rule)
1412{
1413        unsigned int l = (unsigned long) rule->private;
1414        int width = l & 0xffff;
1415        unsigned int msbits = l >> 16;
1416        struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1417
1418        if (!snd_interval_single(i))
1419                return 0;
1420
1421        if ((snd_interval_value(i) == width) ||
1422            (width == 0 && snd_interval_value(i) > msbits))
1423                params->msbits = min_not_zero(params->msbits, msbits);
1424
1425        return 0;
1426}
1427
1428/**
1429 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1430 * @runtime: PCM runtime instance
1431 * @cond: condition bits
1432 * @width: sample bits width
1433 * @msbits: msbits width
1434 *
1435 * This constraint will set the number of most significant bits (msbits) if a
1436 * sample format with the specified width has been select. If width is set to 0
1437 * the msbits will be set for any sample format with a width larger than the
1438 * specified msbits.
1439 *
1440 * Return: Zero if successful, or a negative error code on failure.
1441 */
1442int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1443                                 unsigned int cond,
1444                                 unsigned int width,
1445                                 unsigned int msbits)
1446{
1447        unsigned long l = (msbits << 16) | width;
1448        return snd_pcm_hw_rule_add(runtime, cond, -1,
1449                                    snd_pcm_hw_rule_msbits,
1450                                    (void*) l,
1451                                    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1452}
1453
1454EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1455
1456static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1457                                struct snd_pcm_hw_rule *rule)
1458{
1459        unsigned long step = (unsigned long) rule->private;
1460        return snd_interval_step(hw_param_interval(params, rule->var), step);
1461}
1462
1463/**
1464 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1465 * @runtime: PCM runtime instance
1466 * @cond: condition bits
1467 * @var: hw_params variable to apply the step constraint
1468 * @step: step size
1469 *
1470 * Return: Zero if successful, or a negative error code on failure.
1471 */
1472int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1473                               unsigned int cond,
1474                               snd_pcm_hw_param_t var,
1475                               unsigned long step)
1476{
1477        return snd_pcm_hw_rule_add(runtime, cond, var, 
1478                                   snd_pcm_hw_rule_step, (void *) step,
1479                                   var, -1);
1480}
1481
1482EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1483
1484static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1485{
1486        static unsigned int pow2_sizes[] = {
1487                1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1488                1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1489                1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1490                1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1491        };
1492        return snd_interval_list(hw_param_interval(params, rule->var),
1493                                 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1494}               
1495
1496/**
1497 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1498 * @runtime: PCM runtime instance
1499 * @cond: condition bits
1500 * @var: hw_params variable to apply the power-of-2 constraint
1501 *
1502 * Return: Zero if successful, or a negative error code on failure.
1503 */
1504int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1505                               unsigned int cond,
1506                               snd_pcm_hw_param_t var)
1507{
1508        return snd_pcm_hw_rule_add(runtime, cond, var, 
1509                                   snd_pcm_hw_rule_pow2, NULL,
1510                                   var, -1);
1511}
1512
1513EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1514
1515static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1516                                           struct snd_pcm_hw_rule *rule)
1517{
1518        unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1519        struct snd_interval *rate;
1520
1521        rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1522        return snd_interval_list(rate, 1, &base_rate, 0);
1523}
1524
1525/**
1526 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1527 * @runtime: PCM runtime instance
1528 * @base_rate: the rate at which the hardware does not resample
1529 *
1530 * Return: Zero if successful, or a negative error code on failure.
1531 */
1532int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1533                               unsigned int base_rate)
1534{
1535        return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1536                                   SNDRV_PCM_HW_PARAM_RATE,
1537                                   snd_pcm_hw_rule_noresample_func,
1538                                   (void *)(uintptr_t)base_rate,
1539                                   SNDRV_PCM_HW_PARAM_RATE, -1);
1540}
1541EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1542
1543static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1544                                  snd_pcm_hw_param_t var)
1545{
1546        if (hw_is_mask(var)) {
1547                snd_mask_any(hw_param_mask(params, var));
1548                params->cmask |= 1 << var;
1549                params->rmask |= 1 << var;
1550                return;
1551        }
1552        if (hw_is_interval(var)) {
1553                snd_interval_any(hw_param_interval(params, var));
1554                params->cmask |= 1 << var;
1555                params->rmask |= 1 << var;
1556                return;
1557        }
1558        snd_BUG();
1559}
1560
1561void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1562{
1563        unsigned int k;
1564        memset(params, 0, sizeof(*params));
1565        for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1566                _snd_pcm_hw_param_any(params, k);
1567        for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1568                _snd_pcm_hw_param_any(params, k);
1569        params->info = ~0U;
1570}
1571
1572EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1573
1574/**
1575 * snd_pcm_hw_param_value - return @params field @var value
1576 * @params: the hw_params instance
1577 * @var: parameter to retrieve
1578 * @dir: pointer to the direction (-1,0,1) or %NULL
1579 *
1580 * Return: The value for field @var if it's fixed in configuration space
1581 * defined by @params. -%EINVAL otherwise.
1582 */
1583int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1584                           snd_pcm_hw_param_t var, int *dir)
1585{
1586        if (hw_is_mask(var)) {
1587                const struct snd_mask *mask = hw_param_mask_c(params, var);
1588                if (!snd_mask_single(mask))
1589                        return -EINVAL;
1590                if (dir)
1591                        *dir = 0;
1592                return snd_mask_value(mask);
1593        }
1594        if (hw_is_interval(var)) {
1595                const struct snd_interval *i = hw_param_interval_c(params, var);
1596                if (!snd_interval_single(i))
1597                        return -EINVAL;
1598                if (dir)
1599                        *dir = i->openmin;
1600                return snd_interval_value(i);
1601        }
1602        return -EINVAL;
1603}
1604
1605EXPORT_SYMBOL(snd_pcm_hw_param_value);
1606
1607void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1608                                snd_pcm_hw_param_t var)
1609{
1610        if (hw_is_mask(var)) {
1611                snd_mask_none(hw_param_mask(params, var));
1612                params->cmask |= 1 << var;
1613                params->rmask |= 1 << var;
1614        } else if (hw_is_interval(var)) {
1615                snd_interval_none(hw_param_interval(params, var));
1616                params->cmask |= 1 << var;
1617                params->rmask |= 1 << var;
1618        } else {
1619                snd_BUG();
1620        }
1621}
1622
1623EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1624
1625static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1626                                   snd_pcm_hw_param_t var)
1627{
1628        int changed;
1629        if (hw_is_mask(var))
1630                changed = snd_mask_refine_first(hw_param_mask(params, var));
1631        else if (hw_is_interval(var))
1632                changed = snd_interval_refine_first(hw_param_interval(params, var));
1633        else
1634                return -EINVAL;
1635        if (changed) {
1636                params->cmask |= 1 << var;
1637                params->rmask |= 1 << var;
1638        }
1639        return changed;
1640}
1641
1642
1643/**
1644 * snd_pcm_hw_param_first - refine config space and return minimum value
1645 * @pcm: PCM instance
1646 * @params: the hw_params instance
1647 * @var: parameter to retrieve
1648 * @dir: pointer to the direction (-1,0,1) or %NULL
1649 *
1650 * Inside configuration space defined by @params remove from @var all
1651 * values > minimum. Reduce configuration space accordingly.
1652 *
1653 * Return: The minimum, or a negative error code on failure.
1654 */
1655int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1656                           struct snd_pcm_hw_params *params, 
1657                           snd_pcm_hw_param_t var, int *dir)
1658{
1659        int changed = _snd_pcm_hw_param_first(params, var);
1660        if (changed < 0)
1661                return changed;
1662        if (params->rmask) {
1663                int err = snd_pcm_hw_refine(pcm, params);
1664                if (snd_BUG_ON(err < 0))
1665                        return err;
1666        }
1667        return snd_pcm_hw_param_value(params, var, dir);
1668}
1669
1670EXPORT_SYMBOL(snd_pcm_hw_param_first);
1671
1672static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1673                                  snd_pcm_hw_param_t var)
1674{
1675        int changed;
1676        if (hw_is_mask(var))
1677                changed = snd_mask_refine_last(hw_param_mask(params, var));
1678        else if (hw_is_interval(var))
1679                changed = snd_interval_refine_last(hw_param_interval(params, var));
1680        else
1681                return -EINVAL;
1682        if (changed) {
1683                params->cmask |= 1 << var;
1684                params->rmask |= 1 << var;
1685        }
1686        return changed;
1687}
1688
1689
1690/**
1691 * snd_pcm_hw_param_last - refine config space and return maximum value
1692 * @pcm: PCM instance
1693 * @params: the hw_params instance
1694 * @var: parameter to retrieve
1695 * @dir: pointer to the direction (-1,0,1) or %NULL
1696 *
1697 * Inside configuration space defined by @params remove from @var all
1698 * values < maximum. Reduce configuration space accordingly.
1699 *
1700 * Return: The maximum, or a negative error code on failure.
1701 */
1702int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1703                          struct snd_pcm_hw_params *params,
1704                          snd_pcm_hw_param_t var, int *dir)
1705{
1706        int changed = _snd_pcm_hw_param_last(params, var);
1707        if (changed < 0)
1708                return changed;
1709        if (params->rmask) {
1710                int err = snd_pcm_hw_refine(pcm, params);
1711                if (snd_BUG_ON(err < 0))
1712                        return err;
1713        }
1714        return snd_pcm_hw_param_value(params, var, dir);
1715}
1716
1717EXPORT_SYMBOL(snd_pcm_hw_param_last);
1718
1719/**
1720 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1721 * @pcm: PCM instance
1722 * @params: the hw_params instance
1723 *
1724 * Choose one configuration from configuration space defined by @params.
1725 * The configuration chosen is that obtained fixing in this order:
1726 * first access, first format, first subformat, min channels,
1727 * min rate, min period time, max buffer size, min tick time
1728 *
1729 * Return: Zero if successful, or a negative error code on failure.
1730 */
1731int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1732                             struct snd_pcm_hw_params *params)
1733{
1734        static int vars[] = {
1735                SNDRV_PCM_HW_PARAM_ACCESS,
1736                SNDRV_PCM_HW_PARAM_FORMAT,
1737                SNDRV_PCM_HW_PARAM_SUBFORMAT,
1738                SNDRV_PCM_HW_PARAM_CHANNELS,
1739                SNDRV_PCM_HW_PARAM_RATE,
1740                SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1741                SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1742                SNDRV_PCM_HW_PARAM_TICK_TIME,
1743                -1
1744        };
1745        int err, *v;
1746
1747        for (v = vars; *v != -1; v++) {
1748                if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1749                        err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1750                else
1751                        err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1752                if (snd_BUG_ON(err < 0))
1753                        return err;
1754        }
1755        return 0;
1756}
1757
1758static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1759                                   void *arg)
1760{
1761        struct snd_pcm_runtime *runtime = substream->runtime;
1762        unsigned long flags;
1763        snd_pcm_stream_lock_irqsave(substream, flags);
1764        if (snd_pcm_running(substream) &&
1765            snd_pcm_update_hw_ptr(substream) >= 0)
1766                runtime->status->hw_ptr %= runtime->buffer_size;
1767        else {
1768                runtime->status->hw_ptr = 0;
1769                runtime->hw_ptr_wrap = 0;
1770        }
1771        snd_pcm_stream_unlock_irqrestore(substream, flags);
1772        return 0;
1773}
1774
1775static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1776                                          void *arg)
1777{
1778        struct snd_pcm_channel_info *info = arg;
1779        struct snd_pcm_runtime *runtime = substream->runtime;
1780        int width;
1781        if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1782                info->offset = -1;
1783                return 0;
1784        }
1785        width = snd_pcm_format_physical_width(runtime->format);
1786        if (width < 0)
1787                return width;
1788        info->offset = 0;
1789        switch (runtime->access) {
1790        case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1791        case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1792                info->first = info->channel * width;
1793                info->step = runtime->channels * width;
1794                break;
1795        case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1796        case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1797        {
1798                size_t size = runtime->dma_bytes / runtime->channels;
1799                info->first = info->channel * size * 8;
1800                info->step = width;
1801                break;
1802        }
1803        default:
1804                snd_BUG();
1805                break;
1806        }
1807        return 0;
1808}
1809
1810static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1811                                       void *arg)
1812{
1813        struct snd_pcm_hw_params *params = arg;
1814        snd_pcm_format_t format;
1815        int channels;
1816        ssize_t frame_size;
1817
1818        params->fifo_size = substream->runtime->hw.fifo_size;
1819        if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1820                format = params_format(params);
1821                channels = params_channels(params);
1822                frame_size = snd_pcm_format_size(format, channels);
1823                if (frame_size > 0)
1824                        params->fifo_size /= (unsigned)frame_size;
1825        }
1826        return 0;
1827}
1828
1829/**
1830 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1831 * @substream: the pcm substream instance
1832 * @cmd: ioctl command
1833 * @arg: ioctl argument
1834 *
1835 * Processes the generic ioctl commands for PCM.
1836 * Can be passed as the ioctl callback for PCM ops.
1837 *
1838 * Return: Zero if successful, or a negative error code on failure.
1839 */
1840int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1841                      unsigned int cmd, void *arg)
1842{
1843        switch (cmd) {
1844        case SNDRV_PCM_IOCTL1_INFO:
1845                return 0;
1846        case SNDRV_PCM_IOCTL1_RESET:
1847                return snd_pcm_lib_ioctl_reset(substream, arg);
1848        case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1849                return snd_pcm_lib_ioctl_channel_info(substream, arg);
1850        case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1851                return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1852        }
1853        return -ENXIO;
1854}
1855
1856EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1857
1858/**
1859 * snd_pcm_period_elapsed - update the pcm status for the next period
1860 * @substream: the pcm substream instance
1861 *
1862 * This function is called from the interrupt handler when the
1863 * PCM has processed the period size.  It will update the current
1864 * pointer, wake up sleepers, etc.
1865 *
1866 * Even if more than one periods have elapsed since the last call, you
1867 * have to call this only once.
1868 */
1869void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1870{
1871        struct snd_pcm_runtime *runtime;
1872        unsigned long flags;
1873
1874        if (PCM_RUNTIME_CHECK(substream))
1875                return;
1876        runtime = substream->runtime;
1877
1878        if (runtime->transfer_ack_begin)
1879                runtime->transfer_ack_begin(substream);
1880
1881        snd_pcm_stream_lock_irqsave(substream, flags);
1882        if (!snd_pcm_running(substream) ||
1883            snd_pcm_update_hw_ptr0(substream, 1) < 0)
1884                goto _end;
1885
1886        if (substream->timer_running)
1887                snd_timer_interrupt(substream->timer, 1);
1888 _end:
1889        snd_pcm_stream_unlock_irqrestore(substream, flags);
1890        if (runtime->transfer_ack_end)
1891                runtime->transfer_ack_end(substream);
1892        kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1893}
1894
1895EXPORT_SYMBOL(snd_pcm_period_elapsed);
1896
1897/*
1898 * Wait until avail_min data becomes available
1899 * Returns a negative error code if any error occurs during operation.
1900 * The available space is stored on availp.  When err = 0 and avail = 0
1901 * on the capture stream, it indicates the stream is in DRAINING state.
1902 */
1903static int wait_for_avail(struct snd_pcm_substream *substream,
1904                              snd_pcm_uframes_t *availp)
1905{
1906        struct snd_pcm_runtime *runtime = substream->runtime;
1907        int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1908        wait_queue_t wait;
1909        int err = 0;
1910        snd_pcm_uframes_t avail = 0;
1911        long wait_time, tout;
1912
1913        init_waitqueue_entry(&wait, current);
1914        set_current_state(TASK_INTERRUPTIBLE);
1915        add_wait_queue(&runtime->tsleep, &wait);
1916
1917        if (runtime->no_period_wakeup)
1918                wait_time = MAX_SCHEDULE_TIMEOUT;
1919        else {
1920                wait_time = 10;
1921                if (runtime->rate) {
1922                        long t = runtime->period_size * 2 / runtime->rate;
1923                        wait_time = max(t, wait_time);
1924                }
1925                wait_time = msecs_to_jiffies(wait_time * 1000);
1926        }
1927
1928        for (;;) {
1929                if (signal_pending(current)) {
1930                        err = -ERESTARTSYS;
1931                        break;
1932                }
1933
1934                /*
1935                 * We need to check if space became available already
1936                 * (and thus the wakeup happened already) first to close
1937                 * the race of space already having become available.
1938                 * This check must happen after been added to the waitqueue
1939                 * and having current state be INTERRUPTIBLE.
1940                 */
1941                if (is_playback)
1942                        avail = snd_pcm_playback_avail(runtime);
1943                else
1944                        avail = snd_pcm_capture_avail(runtime);
1945                if (avail >= runtime->twake)
1946                        break;
1947                snd_pcm_stream_unlock_irq(substream);
1948
1949                tout = schedule_timeout(wait_time);
1950
1951                snd_pcm_stream_lock_irq(substream);
1952                set_current_state(TASK_INTERRUPTIBLE);
1953                switch (runtime->status->state) {
1954                case SNDRV_PCM_STATE_SUSPENDED:
1955                        err = -ESTRPIPE;
1956                        goto _endloop;
1957                case SNDRV_PCM_STATE_XRUN:
1958                        err = -EPIPE;
1959                        goto _endloop;
1960                case SNDRV_PCM_STATE_DRAINING:
1961                        if (is_playback)
1962                                err = -EPIPE;
1963                        else 
1964                                avail = 0; /* indicate draining */
1965                        goto _endloop;
1966                case SNDRV_PCM_STATE_OPEN:
1967                case SNDRV_PCM_STATE_SETUP:
1968                case SNDRV_PCM_STATE_DISCONNECTED:
1969                        err = -EBADFD;
1970                        goto _endloop;
1971                case SNDRV_PCM_STATE_PAUSED:
1972                        continue;
1973                }
1974                if (!tout) {
1975                        pcm_dbg(substream->pcm,
1976                                "%s write error (DMA or IRQ trouble?)\n",
1977                                is_playback ? "playback" : "capture");
1978                        err = -EIO;
1979                        break;
1980                }
1981        }
1982 _endloop:
1983        set_current_state(TASK_RUNNING);
1984        remove_wait_queue(&runtime->tsleep, &wait);
1985        *availp = avail;
1986        return err;
1987}
1988        
1989static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1990                                      unsigned int hwoff,
1991                                      unsigned long data, unsigned int off,
1992                                      snd_pcm_uframes_t frames)
1993{
1994        struct snd_pcm_runtime *runtime = substream->runtime;
1995        int err;
1996        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1997        if (substream->ops->copy) {
1998                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1999                        return err;
2000        } else {
2001                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2002                if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2003                        return -EFAULT;
2004        }
2005        return 0;
2006}
2007 
2008typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2009                          unsigned long data, unsigned int off,
2010                          snd_pcm_uframes_t size);
2011
2012static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2013                                            unsigned long data,
2014                                            snd_pcm_uframes_t size,
2015                                            int nonblock,
2016                                            transfer_f transfer)
2017{
2018        struct snd_pcm_runtime *runtime = substream->runtime;
2019        snd_pcm_uframes_t xfer = 0;
2020        snd_pcm_uframes_t offset = 0;
2021        snd_pcm_uframes_t avail;
2022        int err = 0;
2023
2024        if (size == 0)
2025                return 0;
2026
2027        snd_pcm_stream_lock_irq(substream);
2028        switch (runtime->status->state) {
2029        case SNDRV_PCM_STATE_PREPARED:
2030        case SNDRV_PCM_STATE_RUNNING:
2031        case SNDRV_PCM_STATE_PAUSED:
2032                break;
2033        case SNDRV_PCM_STATE_XRUN:
2034                err = -EPIPE;
2035                goto _end_unlock;
2036        case SNDRV_PCM_STATE_SUSPENDED:
2037                err = -ESTRPIPE;
2038                goto _end_unlock;
2039        default:
2040                err = -EBADFD;
2041                goto _end_unlock;
2042        }
2043
2044        runtime->twake = runtime->control->avail_min ? : 1;
2045        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2046                snd_pcm_update_hw_ptr(substream);
2047        avail = snd_pcm_playback_avail(runtime);
2048        while (size > 0) {
2049                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2050                snd_pcm_uframes_t cont;
2051                if (!avail) {
2052                        if (nonblock) {
2053                                err = -EAGAIN;
2054                                goto _end_unlock;
2055                        }
2056                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2057                                        runtime->control->avail_min ? : 1);
2058                        err = wait_for_avail(substream, &avail);
2059                        if (err < 0)
2060                                goto _end_unlock;
2061                }
2062                frames = size > avail ? avail : size;
2063                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2064                if (frames > cont)
2065                        frames = cont;
2066                if (snd_BUG_ON(!frames)) {
2067                        runtime->twake = 0;
2068                        snd_pcm_stream_unlock_irq(substream);
2069                        return -EINVAL;
2070                }
2071                appl_ptr = runtime->control->appl_ptr;
2072                appl_ofs = appl_ptr % runtime->buffer_size;
2073                snd_pcm_stream_unlock_irq(substream);
2074                err = transfer(substream, appl_ofs, data, offset, frames);
2075                snd_pcm_stream_lock_irq(substream);
2076                if (err < 0)
2077                        goto _end_unlock;
2078                switch (runtime->status->state) {
2079                case SNDRV_PCM_STATE_XRUN:
2080                        err = -EPIPE;
2081                        goto _end_unlock;
2082                case SNDRV_PCM_STATE_SUSPENDED:
2083                        err = -ESTRPIPE;
2084                        goto _end_unlock;
2085                default:
2086                        break;
2087                }
2088                appl_ptr += frames;
2089                if (appl_ptr >= runtime->boundary)
2090                        appl_ptr -= runtime->boundary;
2091                runtime->control->appl_ptr = appl_ptr;
2092                if (substream->ops->ack)
2093                        substream->ops->ack(substream);
2094
2095                offset += frames;
2096                size -= frames;
2097                xfer += frames;
2098                avail -= frames;
2099                if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2100                    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2101                        err = snd_pcm_start(substream);
2102                        if (err < 0)
2103                                goto _end_unlock;
2104                }
2105        }
2106 _end_unlock:
2107        runtime->twake = 0;
2108        if (xfer > 0 && err >= 0)
2109                snd_pcm_update_state(substream, runtime);
2110        snd_pcm_stream_unlock_irq(substream);
2111        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2112}
2113
2114/* sanity-check for read/write methods */
2115static int pcm_sanity_check(struct snd_pcm_substream *substream)
2116{
2117        struct snd_pcm_runtime *runtime;
2118        if (PCM_RUNTIME_CHECK(substream))
2119                return -ENXIO;
2120        runtime = substream->runtime;
2121        if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2122                return -EINVAL;
2123        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2124                return -EBADFD;
2125        return 0;
2126}
2127
2128snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2129{
2130        struct snd_pcm_runtime *runtime;
2131        int nonblock;
2132        int err;
2133
2134        err = pcm_sanity_check(substream);
2135        if (err < 0)
2136                return err;
2137        runtime = substream->runtime;
2138        nonblock = !!(substream->f_flags & O_NONBLOCK);
2139
2140        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2141            runtime->channels > 1)
2142                return -EINVAL;
2143        return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2144                                  snd_pcm_lib_write_transfer);
2145}
2146
2147EXPORT_SYMBOL(snd_pcm_lib_write);
2148
2149static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2150                                       unsigned int hwoff,
2151                                       unsigned long data, unsigned int off,
2152                                       snd_pcm_uframes_t frames)
2153{
2154        struct snd_pcm_runtime *runtime = substream->runtime;
2155        int err;
2156        void __user **bufs = (void __user **)data;
2157        int channels = runtime->channels;
2158        int c;
2159        if (substream->ops->copy) {
2160                if (snd_BUG_ON(!substream->ops->silence))
2161                        return -EINVAL;
2162                for (c = 0; c < channels; ++c, ++bufs) {
2163                        if (*bufs == NULL) {
2164                                if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2165                                        return err;
2166                        } else {
2167                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2168                                if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2169                                        return err;
2170                        }
2171                }
2172        } else {
2173                /* default transfer behaviour */
2174                size_t dma_csize = runtime->dma_bytes / channels;
2175                for (c = 0; c < channels; ++c, ++bufs) {
2176                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2177                        if (*bufs == NULL) {
2178                                snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2179                        } else {
2180                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2181                                if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2182                                        return -EFAULT;
2183                        }
2184                }
2185        }
2186        return 0;
2187}
2188 
2189snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2190                                     void __user **bufs,
2191                                     snd_pcm_uframes_t frames)
2192{
2193        struct snd_pcm_runtime *runtime;
2194        int nonblock;
2195        int err;
2196
2197        err = pcm_sanity_check(substream);
2198        if (err < 0)
2199                return err;
2200        runtime = substream->runtime;
2201        nonblock = !!(substream->f_flags & O_NONBLOCK);
2202
2203        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2204                return -EINVAL;
2205        return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2206                                  nonblock, snd_pcm_lib_writev_transfer);
2207}
2208
2209EXPORT_SYMBOL(snd_pcm_lib_writev);
2210
2211static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2212                                     unsigned int hwoff,
2213                                     unsigned long data, unsigned int off,
2214                                     snd_pcm_uframes_t frames)
2215{
2216        struct snd_pcm_runtime *runtime = substream->runtime;
2217        int err;
2218        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2219        if (substream->ops->copy) {
2220                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2221                        return err;
2222        } else {
2223                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2224                if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2225                        return -EFAULT;
2226        }
2227        return 0;
2228}
2229
2230static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2231                                           unsigned long data,
2232                                           snd_pcm_uframes_t size,
2233                                           int nonblock,
2234                                           transfer_f transfer)
2235{
2236        struct snd_pcm_runtime *runtime = substream->runtime;
2237        snd_pcm_uframes_t xfer = 0;
2238        snd_pcm_uframes_t offset = 0;
2239        snd_pcm_uframes_t avail;
2240        int err = 0;
2241
2242        if (size == 0)
2243                return 0;
2244
2245        snd_pcm_stream_lock_irq(substream);
2246        switch (runtime->status->state) {
2247        case SNDRV_PCM_STATE_PREPARED:
2248                if (size >= runtime->start_threshold) {
2249                        err = snd_pcm_start(substream);
2250                        if (err < 0)
2251                                goto _end_unlock;
2252                }
2253                break;
2254        case SNDRV_PCM_STATE_DRAINING:
2255        case SNDRV_PCM_STATE_RUNNING:
2256        case SNDRV_PCM_STATE_PAUSED:
2257                break;
2258        case SNDRV_PCM_STATE_XRUN:
2259                err = -EPIPE;
2260                goto _end_unlock;
2261        case SNDRV_PCM_STATE_SUSPENDED:
2262                err = -ESTRPIPE;
2263                goto _end_unlock;
2264        default:
2265                err = -EBADFD;
2266                goto _end_unlock;
2267        }
2268
2269        runtime->twake = runtime->control->avail_min ? : 1;
2270        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2271                snd_pcm_update_hw_ptr(substream);
2272        avail = snd_pcm_capture_avail(runtime);
2273        while (size > 0) {
2274                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2275                snd_pcm_uframes_t cont;
2276                if (!avail) {
2277                        if (runtime->status->state ==
2278                            SNDRV_PCM_STATE_DRAINING) {
2279                                snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2280                                goto _end_unlock;
2281                        }
2282                        if (nonblock) {
2283                                err = -EAGAIN;
2284                                goto _end_unlock;
2285                        }
2286                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2287                                        runtime->control->avail_min ? : 1);
2288                        err = wait_for_avail(substream, &avail);
2289                        if (err < 0)
2290                                goto _end_unlock;
2291                        if (!avail)
2292                                continue; /* draining */
2293                }
2294                frames = size > avail ? avail : size;
2295                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2296                if (frames > cont)
2297                        frames = cont;
2298                if (snd_BUG_ON(!frames)) {
2299                        runtime->twake = 0;
2300                        snd_pcm_stream_unlock_irq(substream);
2301                        return -EINVAL;
2302                }
2303                appl_ptr = runtime->control->appl_ptr;
2304                appl_ofs = appl_ptr % runtime->buffer_size;
2305                snd_pcm_stream_unlock_irq(substream);
2306                err = transfer(substream, appl_ofs, data, offset, frames);
2307                snd_pcm_stream_lock_irq(substream);
2308                if (err < 0)
2309                        goto _end_unlock;
2310                switch (runtime->status->state) {
2311                case SNDRV_PCM_STATE_XRUN:
2312                        err = -EPIPE;
2313                        goto _end_unlock;
2314                case SNDRV_PCM_STATE_SUSPENDED:
2315                        err = -ESTRPIPE;
2316                        goto _end_unlock;
2317                default:
2318                        break;
2319                }
2320                appl_ptr += frames;
2321                if (appl_ptr >= runtime->boundary)
2322                        appl_ptr -= runtime->boundary;
2323                runtime->control->appl_ptr = appl_ptr;
2324                if (substream->ops->ack)
2325                        substream->ops->ack(substream);
2326
2327                offset += frames;
2328                size -= frames;
2329                xfer += frames;
2330                avail -= frames;
2331        }
2332 _end_unlock:
2333        runtime->twake = 0;
2334        if (xfer > 0 && err >= 0)
2335                snd_pcm_update_state(substream, runtime);
2336        snd_pcm_stream_unlock_irq(substream);
2337        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2338}
2339
2340snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2341{
2342        struct snd_pcm_runtime *runtime;
2343        int nonblock;
2344        int err;
2345        
2346        err = pcm_sanity_check(substream);
2347        if (err < 0)
2348                return err;
2349        runtime = substream->runtime;
2350        nonblock = !!(substream->f_flags & O_NONBLOCK);
2351        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2352                return -EINVAL;
2353        return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2354}
2355
2356EXPORT_SYMBOL(snd_pcm_lib_read);
2357
2358static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2359                                      unsigned int hwoff,
2360                                      unsigned long data, unsigned int off,
2361                                      snd_pcm_uframes_t frames)
2362{
2363        struct snd_pcm_runtime *runtime = substream->runtime;
2364        int err;
2365        void __user **bufs = (void __user **)data;
2366        int channels = runtime->channels;
2367        int c;
2368        if (substream->ops->copy) {
2369                for (c = 0; c < channels; ++c, ++bufs) {
2370                        char __user *buf;
2371                        if (*bufs == NULL)
2372                                continue;
2373                        buf = *bufs + samples_to_bytes(runtime, off);
2374                        if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2375                                return err;
2376                }
2377        } else {
2378                snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2379                for (c = 0; c < channels; ++c, ++bufs) {
2380                        char *hwbuf;
2381                        char __user *buf;
2382                        if (*bufs == NULL)
2383                                continue;
2384
2385                        hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2386                        buf = *bufs + samples_to_bytes(runtime, off);
2387                        if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2388                                return -EFAULT;
2389                }
2390        }
2391        return 0;
2392}
2393 
2394snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2395                                    void __user **bufs,
2396                                    snd_pcm_uframes_t frames)
2397{
2398        struct snd_pcm_runtime *runtime;
2399        int nonblock;
2400        int err;
2401
2402        err = pcm_sanity_check(substream);
2403        if (err < 0)
2404                return err;
2405        runtime = substream->runtime;
2406        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2407                return -EBADFD;
2408
2409        nonblock = !!(substream->f_flags & O_NONBLOCK);
2410        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2411                return -EINVAL;
2412        return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2413}
2414
2415EXPORT_SYMBOL(snd_pcm_lib_readv);
2416
2417/*
2418 * standard channel mapping helpers
2419 */
2420
2421/* default channel maps for multi-channel playbacks, up to 8 channels */
2422const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2423        { .channels = 1,
2424          .map = { SNDRV_CHMAP_MONO } },
2425        { .channels = 2,
2426          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2427        { .channels = 4,
2428          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2429                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2430        { .channels = 6,
2431          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2432                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2433                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2434        { .channels = 8,
2435          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2436                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2437                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2438                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2439        { }
2440};
2441EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2442
2443/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2444const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2445        { .channels = 1,
2446          .map = { SNDRV_CHMAP_MONO } },
2447        { .channels = 2,
2448          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2449        { .channels = 4,
2450          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2451                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2452        { .channels = 6,
2453          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2454                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2455                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2456        { .channels = 8,
2457          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2458                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2459                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2460                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2461        { }
2462};
2463EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2464
2465static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2466{
2467        if (ch > info->max_channels)
2468                return false;
2469        return !info->channel_mask || (info->channel_mask & (1U << ch));
2470}
2471
2472static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2473                              struct snd_ctl_elem_info *uinfo)
2474{
2475        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2476
2477        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2478        uinfo->count = 0;
2479        uinfo->count = info->max_channels;
2480        uinfo->value.integer.min = 0;
2481        uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2482        return 0;
2483}
2484
2485/* get callback for channel map ctl element
2486 * stores the channel position firstly matching with the current channels
2487 */
2488static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2489                             struct snd_ctl_elem_value *ucontrol)
2490{
2491        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2492        unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2493        struct snd_pcm_substream *substream;
2494        const struct snd_pcm_chmap_elem *map;
2495
2496        if (snd_BUG_ON(!info->chmap))
2497                return -EINVAL;
2498        substream = snd_pcm_chmap_substream(info, idx);
2499        if (!substream)
2500                return -ENODEV;
2501        memset(ucontrol->value.integer.value, 0,
2502               sizeof(ucontrol->value.integer.value));
2503        if (!substream->runtime)
2504                return 0; /* no channels set */
2505        for (map = info->chmap; map->channels; map++) {
2506                int i;
2507                if (map->channels == substream->runtime->channels &&
2508                    valid_chmap_channels(info, map->channels)) {
2509                        for (i = 0; i < map->channels; i++)
2510                                ucontrol->value.integer.value[i] = map->map[i];
2511                        return 0;
2512                }
2513        }
2514        return -EINVAL;
2515}
2516
2517/* tlv callback for channel map ctl element
2518 * expands the pre-defined channel maps in a form of TLV
2519 */
2520static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2521                             unsigned int size, unsigned int __user *tlv)
2522{
2523        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2524        const struct snd_pcm_chmap_elem *map;
2525        unsigned int __user *dst;
2526        int c, count = 0;
2527
2528        if (snd_BUG_ON(!info->chmap))
2529                return -EINVAL;
2530        if (size < 8)
2531                return -ENOMEM;
2532        if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2533                return -EFAULT;
2534        size -= 8;
2535        dst = tlv + 2;
2536        for (map = info->chmap; map->channels; map++) {
2537                int chs_bytes = map->channels * 4;
2538                if (!valid_chmap_channels(info, map->channels))
2539                        continue;
2540                if (size < 8)
2541                        return -ENOMEM;
2542                if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2543                    put_user(chs_bytes, dst + 1))
2544                        return -EFAULT;
2545                dst += 2;
2546                size -= 8;
2547                count += 8;
2548                if (size < chs_bytes)
2549                        return -ENOMEM;
2550                size -= chs_bytes;
2551                count += chs_bytes;
2552                for (c = 0; c < map->channels; c++) {
2553                        if (put_user(map->map[c], dst))
2554                                return -EFAULT;
2555                        dst++;
2556                }
2557        }
2558        if (put_user(count, tlv + 1))
2559                return -EFAULT;
2560        return 0;
2561}
2562
2563static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2564{
2565        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2566        info->pcm->streams[info->stream].chmap_kctl = NULL;
2567        kfree(info);
2568}
2569
2570/**
2571 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2572 * @pcm: the assigned PCM instance
2573 * @stream: stream direction
2574 * @chmap: channel map elements (for query)
2575 * @max_channels: the max number of channels for the stream
2576 * @private_value: the value passed to each kcontrol's private_value field
2577 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2578 *
2579 * Create channel-mapping control elements assigned to the given PCM stream(s).
2580 * Return: Zero if successful, or a negative error value.
2581 */
2582int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2583                           const struct snd_pcm_chmap_elem *chmap,
2584                           int max_channels,
2585                           unsigned long private_value,
2586                           struct snd_pcm_chmap **info_ret)
2587{
2588        struct snd_pcm_chmap *info;
2589        struct snd_kcontrol_new knew = {
2590                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2591                .access = SNDRV_CTL_ELEM_ACCESS_READ |
2592                        SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2593                        SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2594                .info = pcm_chmap_ctl_info,
2595                .get = pcm_chmap_ctl_get,
2596                .tlv.c = pcm_chmap_ctl_tlv,
2597        };
2598        int err;
2599
2600        info = kzalloc(sizeof(*info), GFP_KERNEL);
2601        if (!info)
2602                return -ENOMEM;
2603        info->pcm = pcm;
2604        info->stream = stream;
2605        info->chmap = chmap;
2606        info->max_channels = max_channels;
2607        if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2608                knew.name = "Playback Channel Map";
2609        else
2610                knew.name = "Capture Channel Map";
2611        knew.device = pcm->device;
2612        knew.count = pcm->streams[stream].substream_count;
2613        knew.private_value = private_value;
2614        info->kctl = snd_ctl_new1(&knew, info);
2615        if (!info->kctl) {
2616                kfree(info);
2617                return -ENOMEM;
2618        }
2619        info->kctl->private_free = pcm_chmap_ctl_private_free;
2620        err = snd_ctl_add(pcm->card, info->kctl);
2621        if (err < 0)
2622                return err;
2623        pcm->streams[stream].chmap_kctl = info->kctl;
2624        if (info_ret)
2625                *info_ret = info;
2626        return 0;
2627}
2628EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2629