linux/tools/perf/util/evsel.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
   3 *
   4 * Parts came from builtin-{top,stat,record}.c, see those files for further
   5 * copyright notes.
   6 *
   7 * Released under the GPL v2. (and only v2, not any later version)
   8 */
   9
  10#include <byteswap.h>
  11#include <linux/bitops.h>
  12#include <api/fs/debugfs.h>
  13#include <traceevent/event-parse.h>
  14#include <linux/hw_breakpoint.h>
  15#include <linux/perf_event.h>
  16#include <sys/resource.h>
  17#include "asm/bug.h"
  18#include "callchain.h"
  19#include "cgroup.h"
  20#include "evsel.h"
  21#include "evlist.h"
  22#include "util.h"
  23#include "cpumap.h"
  24#include "thread_map.h"
  25#include "target.h"
  26#include "perf_regs.h"
  27#include "debug.h"
  28#include "trace-event.h"
  29#include "stat.h"
  30
  31static struct {
  32        bool sample_id_all;
  33        bool exclude_guest;
  34        bool mmap2;
  35        bool cloexec;
  36        bool clockid;
  37        bool clockid_wrong;
  38} perf_missing_features;
  39
  40static clockid_t clockid;
  41
  42static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
  43{
  44        return 0;
  45}
  46
  47static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
  48{
  49}
  50
  51static struct {
  52        size_t  size;
  53        int     (*init)(struct perf_evsel *evsel);
  54        void    (*fini)(struct perf_evsel *evsel);
  55} perf_evsel__object = {
  56        .size = sizeof(struct perf_evsel),
  57        .init = perf_evsel__no_extra_init,
  58        .fini = perf_evsel__no_extra_fini,
  59};
  60
  61int perf_evsel__object_config(size_t object_size,
  62                              int (*init)(struct perf_evsel *evsel),
  63                              void (*fini)(struct perf_evsel *evsel))
  64{
  65
  66        if (object_size == 0)
  67                goto set_methods;
  68
  69        if (perf_evsel__object.size > object_size)
  70                return -EINVAL;
  71
  72        perf_evsel__object.size = object_size;
  73
  74set_methods:
  75        if (init != NULL)
  76                perf_evsel__object.init = init;
  77
  78        if (fini != NULL)
  79                perf_evsel__object.fini = fini;
  80
  81        return 0;
  82}
  83
  84#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  85
  86int __perf_evsel__sample_size(u64 sample_type)
  87{
  88        u64 mask = sample_type & PERF_SAMPLE_MASK;
  89        int size = 0;
  90        int i;
  91
  92        for (i = 0; i < 64; i++) {
  93                if (mask & (1ULL << i))
  94                        size++;
  95        }
  96
  97        size *= sizeof(u64);
  98
  99        return size;
 100}
 101
 102/**
 103 * __perf_evsel__calc_id_pos - calculate id_pos.
 104 * @sample_type: sample type
 105 *
 106 * This function returns the position of the event id (PERF_SAMPLE_ID or
 107 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
 108 * sample_event.
 109 */
 110static int __perf_evsel__calc_id_pos(u64 sample_type)
 111{
 112        int idx = 0;
 113
 114        if (sample_type & PERF_SAMPLE_IDENTIFIER)
 115                return 0;
 116
 117        if (!(sample_type & PERF_SAMPLE_ID))
 118                return -1;
 119
 120        if (sample_type & PERF_SAMPLE_IP)
 121                idx += 1;
 122
 123        if (sample_type & PERF_SAMPLE_TID)
 124                idx += 1;
 125
 126        if (sample_type & PERF_SAMPLE_TIME)
 127                idx += 1;
 128
 129        if (sample_type & PERF_SAMPLE_ADDR)
 130                idx += 1;
 131
 132        return idx;
 133}
 134
 135/**
 136 * __perf_evsel__calc_is_pos - calculate is_pos.
 137 * @sample_type: sample type
 138 *
 139 * This function returns the position (counting backwards) of the event id
 140 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
 141 * sample_id_all is used there is an id sample appended to non-sample events.
 142 */
 143static int __perf_evsel__calc_is_pos(u64 sample_type)
 144{
 145        int idx = 1;
 146
 147        if (sample_type & PERF_SAMPLE_IDENTIFIER)
 148                return 1;
 149
 150        if (!(sample_type & PERF_SAMPLE_ID))
 151                return -1;
 152
 153        if (sample_type & PERF_SAMPLE_CPU)
 154                idx += 1;
 155
 156        if (sample_type & PERF_SAMPLE_STREAM_ID)
 157                idx += 1;
 158
 159        return idx;
 160}
 161
 162void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
 163{
 164        evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
 165        evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
 166}
 167
 168void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
 169                                  enum perf_event_sample_format bit)
 170{
 171        if (!(evsel->attr.sample_type & bit)) {
 172                evsel->attr.sample_type |= bit;
 173                evsel->sample_size += sizeof(u64);
 174                perf_evsel__calc_id_pos(evsel);
 175        }
 176}
 177
 178void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
 179                                    enum perf_event_sample_format bit)
 180{
 181        if (evsel->attr.sample_type & bit) {
 182                evsel->attr.sample_type &= ~bit;
 183                evsel->sample_size -= sizeof(u64);
 184                perf_evsel__calc_id_pos(evsel);
 185        }
 186}
 187
 188void perf_evsel__set_sample_id(struct perf_evsel *evsel,
 189                               bool can_sample_identifier)
 190{
 191        if (can_sample_identifier) {
 192                perf_evsel__reset_sample_bit(evsel, ID);
 193                perf_evsel__set_sample_bit(evsel, IDENTIFIER);
 194        } else {
 195                perf_evsel__set_sample_bit(evsel, ID);
 196        }
 197        evsel->attr.read_format |= PERF_FORMAT_ID;
 198}
 199
 200void perf_evsel__init(struct perf_evsel *evsel,
 201                      struct perf_event_attr *attr, int idx)
 202{
 203        evsel->idx         = idx;
 204        evsel->tracking    = !idx;
 205        evsel->attr        = *attr;
 206        evsel->leader      = evsel;
 207        evsel->unit        = "";
 208        evsel->scale       = 1.0;
 209        INIT_LIST_HEAD(&evsel->node);
 210        perf_evsel__object.init(evsel);
 211        evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
 212        perf_evsel__calc_id_pos(evsel);
 213}
 214
 215struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
 216{
 217        struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
 218
 219        if (evsel != NULL)
 220                perf_evsel__init(evsel, attr, idx);
 221
 222        return evsel;
 223}
 224
 225struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
 226{
 227        struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
 228
 229        if (evsel != NULL) {
 230                struct perf_event_attr attr = {
 231                        .type          = PERF_TYPE_TRACEPOINT,
 232                        .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
 233                                          PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
 234                };
 235
 236                if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
 237                        goto out_free;
 238
 239                evsel->tp_format = trace_event__tp_format(sys, name);
 240                if (evsel->tp_format == NULL)
 241                        goto out_free;
 242
 243                event_attr_init(&attr);
 244                attr.config = evsel->tp_format->id;
 245                attr.sample_period = 1;
 246                perf_evsel__init(evsel, &attr, idx);
 247        }
 248
 249        return evsel;
 250
 251out_free:
 252        zfree(&evsel->name);
 253        free(evsel);
 254        return NULL;
 255}
 256
 257const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
 258        "cycles",
 259        "instructions",
 260        "cache-references",
 261        "cache-misses",
 262        "branches",
 263        "branch-misses",
 264        "bus-cycles",
 265        "stalled-cycles-frontend",
 266        "stalled-cycles-backend",
 267        "ref-cycles",
 268};
 269
 270static const char *__perf_evsel__hw_name(u64 config)
 271{
 272        if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
 273                return perf_evsel__hw_names[config];
 274
 275        return "unknown-hardware";
 276}
 277
 278static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
 279{
 280        int colon = 0, r = 0;
 281        struct perf_event_attr *attr = &evsel->attr;
 282        bool exclude_guest_default = false;
 283
 284#define MOD_PRINT(context, mod) do {                                    \
 285                if (!attr->exclude_##context) {                         \
 286                        if (!colon) colon = ++r;                        \
 287                        r += scnprintf(bf + r, size - r, "%c", mod);    \
 288                } } while(0)
 289
 290        if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
 291                MOD_PRINT(kernel, 'k');
 292                MOD_PRINT(user, 'u');
 293                MOD_PRINT(hv, 'h');
 294                exclude_guest_default = true;
 295        }
 296
 297        if (attr->precise_ip) {
 298                if (!colon)
 299                        colon = ++r;
 300                r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
 301                exclude_guest_default = true;
 302        }
 303
 304        if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
 305                MOD_PRINT(host, 'H');
 306                MOD_PRINT(guest, 'G');
 307        }
 308#undef MOD_PRINT
 309        if (colon)
 310                bf[colon - 1] = ':';
 311        return r;
 312}
 313
 314static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
 315{
 316        int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
 317        return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 318}
 319
 320const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
 321        "cpu-clock",
 322        "task-clock",
 323        "page-faults",
 324        "context-switches",
 325        "cpu-migrations",
 326        "minor-faults",
 327        "major-faults",
 328        "alignment-faults",
 329        "emulation-faults",
 330        "dummy",
 331};
 332
 333static const char *__perf_evsel__sw_name(u64 config)
 334{
 335        if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
 336                return perf_evsel__sw_names[config];
 337        return "unknown-software";
 338}
 339
 340static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
 341{
 342        int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
 343        return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 344}
 345
 346static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
 347{
 348        int r;
 349
 350        r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
 351
 352        if (type & HW_BREAKPOINT_R)
 353                r += scnprintf(bf + r, size - r, "r");
 354
 355        if (type & HW_BREAKPOINT_W)
 356                r += scnprintf(bf + r, size - r, "w");
 357
 358        if (type & HW_BREAKPOINT_X)
 359                r += scnprintf(bf + r, size - r, "x");
 360
 361        return r;
 362}
 363
 364static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
 365{
 366        struct perf_event_attr *attr = &evsel->attr;
 367        int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
 368        return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
 369}
 370
 371const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
 372                                [PERF_EVSEL__MAX_ALIASES] = {
 373 { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
 374 { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
 375 { "LLC",       "L2",                                                   },
 376 { "dTLB",      "d-tlb",        "Data-TLB",                             },
 377 { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
 378 { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
 379 { "node",                                                              },
 380};
 381
 382const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
 383                                   [PERF_EVSEL__MAX_ALIASES] = {
 384 { "load",      "loads",        "read",                                 },
 385 { "store",     "stores",       "write",                                },
 386 { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
 387};
 388
 389const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
 390                                       [PERF_EVSEL__MAX_ALIASES] = {
 391 { "refs",      "Reference",    "ops",          "access",               },
 392 { "misses",    "miss",                                                 },
 393};
 394
 395#define C(x)            PERF_COUNT_HW_CACHE_##x
 396#define CACHE_READ      (1 << C(OP_READ))
 397#define CACHE_WRITE     (1 << C(OP_WRITE))
 398#define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
 399#define COP(x)          (1 << x)
 400
 401/*
 402 * cache operartion stat
 403 * L1I : Read and prefetch only
 404 * ITLB and BPU : Read-only
 405 */
 406static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
 407 [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 408 [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
 409 [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 410 [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 411 [C(ITLB)]      = (CACHE_READ),
 412 [C(BPU)]       = (CACHE_READ),
 413 [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 414};
 415
 416bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
 417{
 418        if (perf_evsel__hw_cache_stat[type] & COP(op))
 419                return true;    /* valid */
 420        else
 421                return false;   /* invalid */
 422}
 423
 424int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
 425                                            char *bf, size_t size)
 426{
 427        if (result) {
 428                return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
 429                                 perf_evsel__hw_cache_op[op][0],
 430                                 perf_evsel__hw_cache_result[result][0]);
 431        }
 432
 433        return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
 434                         perf_evsel__hw_cache_op[op][1]);
 435}
 436
 437static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
 438{
 439        u8 op, result, type = (config >>  0) & 0xff;
 440        const char *err = "unknown-ext-hardware-cache-type";
 441
 442        if (type > PERF_COUNT_HW_CACHE_MAX)
 443                goto out_err;
 444
 445        op = (config >>  8) & 0xff;
 446        err = "unknown-ext-hardware-cache-op";
 447        if (op > PERF_COUNT_HW_CACHE_OP_MAX)
 448                goto out_err;
 449
 450        result = (config >> 16) & 0xff;
 451        err = "unknown-ext-hardware-cache-result";
 452        if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
 453                goto out_err;
 454
 455        err = "invalid-cache";
 456        if (!perf_evsel__is_cache_op_valid(type, op))
 457                goto out_err;
 458
 459        return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
 460out_err:
 461        return scnprintf(bf, size, "%s", err);
 462}
 463
 464static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
 465{
 466        int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
 467        return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
 468}
 469
 470static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
 471{
 472        int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
 473        return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
 474}
 475
 476const char *perf_evsel__name(struct perf_evsel *evsel)
 477{
 478        char bf[128];
 479
 480        if (evsel->name)
 481                return evsel->name;
 482
 483        switch (evsel->attr.type) {
 484        case PERF_TYPE_RAW:
 485                perf_evsel__raw_name(evsel, bf, sizeof(bf));
 486                break;
 487
 488        case PERF_TYPE_HARDWARE:
 489                perf_evsel__hw_name(evsel, bf, sizeof(bf));
 490                break;
 491
 492        case PERF_TYPE_HW_CACHE:
 493                perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
 494                break;
 495
 496        case PERF_TYPE_SOFTWARE:
 497                perf_evsel__sw_name(evsel, bf, sizeof(bf));
 498                break;
 499
 500        case PERF_TYPE_TRACEPOINT:
 501                scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
 502                break;
 503
 504        case PERF_TYPE_BREAKPOINT:
 505                perf_evsel__bp_name(evsel, bf, sizeof(bf));
 506                break;
 507
 508        default:
 509                scnprintf(bf, sizeof(bf), "unknown attr type: %d",
 510                          evsel->attr.type);
 511                break;
 512        }
 513
 514        evsel->name = strdup(bf);
 515
 516        return evsel->name ?: "unknown";
 517}
 518
 519const char *perf_evsel__group_name(struct perf_evsel *evsel)
 520{
 521        return evsel->group_name ?: "anon group";
 522}
 523
 524int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
 525{
 526        int ret;
 527        struct perf_evsel *pos;
 528        const char *group_name = perf_evsel__group_name(evsel);
 529
 530        ret = scnprintf(buf, size, "%s", group_name);
 531
 532        ret += scnprintf(buf + ret, size - ret, " { %s",
 533                         perf_evsel__name(evsel));
 534
 535        for_each_group_member(pos, evsel)
 536                ret += scnprintf(buf + ret, size - ret, ", %s",
 537                                 perf_evsel__name(pos));
 538
 539        ret += scnprintf(buf + ret, size - ret, " }");
 540
 541        return ret;
 542}
 543
 544static void
 545perf_evsel__config_callgraph(struct perf_evsel *evsel,
 546                             struct record_opts *opts)
 547{
 548        bool function = perf_evsel__is_function_event(evsel);
 549        struct perf_event_attr *attr = &evsel->attr;
 550
 551        perf_evsel__set_sample_bit(evsel, CALLCHAIN);
 552
 553        if (callchain_param.record_mode == CALLCHAIN_LBR) {
 554                if (!opts->branch_stack) {
 555                        if (attr->exclude_user) {
 556                                pr_warning("LBR callstack option is only available "
 557                                           "to get user callchain information. "
 558                                           "Falling back to framepointers.\n");
 559                        } else {
 560                                perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
 561                                attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
 562                                                        PERF_SAMPLE_BRANCH_CALL_STACK;
 563                        }
 564                } else
 565                         pr_warning("Cannot use LBR callstack with branch stack. "
 566                                    "Falling back to framepointers.\n");
 567        }
 568
 569        if (callchain_param.record_mode == CALLCHAIN_DWARF) {
 570                if (!function) {
 571                        perf_evsel__set_sample_bit(evsel, REGS_USER);
 572                        perf_evsel__set_sample_bit(evsel, STACK_USER);
 573                        attr->sample_regs_user = PERF_REGS_MASK;
 574                        attr->sample_stack_user = callchain_param.dump_size;
 575                        attr->exclude_callchain_user = 1;
 576                } else {
 577                        pr_info("Cannot use DWARF unwind for function trace event,"
 578                                " falling back to framepointers.\n");
 579                }
 580        }
 581
 582        if (function) {
 583                pr_info("Disabling user space callchains for function trace event.\n");
 584                attr->exclude_callchain_user = 1;
 585        }
 586}
 587
 588/*
 589 * The enable_on_exec/disabled value strategy:
 590 *
 591 *  1) For any type of traced program:
 592 *    - all independent events and group leaders are disabled
 593 *    - all group members are enabled
 594 *
 595 *     Group members are ruled by group leaders. They need to
 596 *     be enabled, because the group scheduling relies on that.
 597 *
 598 *  2) For traced programs executed by perf:
 599 *     - all independent events and group leaders have
 600 *       enable_on_exec set
 601 *     - we don't specifically enable or disable any event during
 602 *       the record command
 603 *
 604 *     Independent events and group leaders are initially disabled
 605 *     and get enabled by exec. Group members are ruled by group
 606 *     leaders as stated in 1).
 607 *
 608 *  3) For traced programs attached by perf (pid/tid):
 609 *     - we specifically enable or disable all events during
 610 *       the record command
 611 *
 612 *     When attaching events to already running traced we
 613 *     enable/disable events specifically, as there's no
 614 *     initial traced exec call.
 615 */
 616void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
 617{
 618        struct perf_evsel *leader = evsel->leader;
 619        struct perf_event_attr *attr = &evsel->attr;
 620        int track = evsel->tracking;
 621        bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
 622
 623        attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
 624        attr->inherit       = !opts->no_inherit;
 625
 626        perf_evsel__set_sample_bit(evsel, IP);
 627        perf_evsel__set_sample_bit(evsel, TID);
 628
 629        if (evsel->sample_read) {
 630                perf_evsel__set_sample_bit(evsel, READ);
 631
 632                /*
 633                 * We need ID even in case of single event, because
 634                 * PERF_SAMPLE_READ process ID specific data.
 635                 */
 636                perf_evsel__set_sample_id(evsel, false);
 637
 638                /*
 639                 * Apply group format only if we belong to group
 640                 * with more than one members.
 641                 */
 642                if (leader->nr_members > 1) {
 643                        attr->read_format |= PERF_FORMAT_GROUP;
 644                        attr->inherit = 0;
 645                }
 646        }
 647
 648        /*
 649         * We default some events to have a default interval. But keep
 650         * it a weak assumption overridable by the user.
 651         */
 652        if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
 653                                     opts->user_interval != ULLONG_MAX)) {
 654                if (opts->freq) {
 655                        perf_evsel__set_sample_bit(evsel, PERIOD);
 656                        attr->freq              = 1;
 657                        attr->sample_freq       = opts->freq;
 658                } else {
 659                        attr->sample_period = opts->default_interval;
 660                }
 661        }
 662
 663        /*
 664         * Disable sampling for all group members other
 665         * than leader in case leader 'leads' the sampling.
 666         */
 667        if ((leader != evsel) && leader->sample_read) {
 668                attr->sample_freq   = 0;
 669                attr->sample_period = 0;
 670        }
 671
 672        if (opts->no_samples)
 673                attr->sample_freq = 0;
 674
 675        if (opts->inherit_stat)
 676                attr->inherit_stat = 1;
 677
 678        if (opts->sample_address) {
 679                perf_evsel__set_sample_bit(evsel, ADDR);
 680                attr->mmap_data = track;
 681        }
 682
 683        /*
 684         * We don't allow user space callchains for  function trace
 685         * event, due to issues with page faults while tracing page
 686         * fault handler and its overall trickiness nature.
 687         */
 688        if (perf_evsel__is_function_event(evsel))
 689                evsel->attr.exclude_callchain_user = 1;
 690
 691        if (callchain_param.enabled && !evsel->no_aux_samples)
 692                perf_evsel__config_callgraph(evsel, opts);
 693
 694        if (opts->sample_intr_regs) {
 695                attr->sample_regs_intr = PERF_REGS_MASK;
 696                perf_evsel__set_sample_bit(evsel, REGS_INTR);
 697        }
 698
 699        if (target__has_cpu(&opts->target))
 700                perf_evsel__set_sample_bit(evsel, CPU);
 701
 702        if (opts->period)
 703                perf_evsel__set_sample_bit(evsel, PERIOD);
 704
 705        /*
 706         * When the user explicitely disabled time don't force it here.
 707         */
 708        if (opts->sample_time &&
 709            (!perf_missing_features.sample_id_all &&
 710            (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
 711                perf_evsel__set_sample_bit(evsel, TIME);
 712
 713        if (opts->raw_samples && !evsel->no_aux_samples) {
 714                perf_evsel__set_sample_bit(evsel, TIME);
 715                perf_evsel__set_sample_bit(evsel, RAW);
 716                perf_evsel__set_sample_bit(evsel, CPU);
 717        }
 718
 719        if (opts->sample_address)
 720                perf_evsel__set_sample_bit(evsel, DATA_SRC);
 721
 722        if (opts->no_buffering) {
 723                attr->watermark = 0;
 724                attr->wakeup_events = 1;
 725        }
 726        if (opts->branch_stack && !evsel->no_aux_samples) {
 727                perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
 728                attr->branch_sample_type = opts->branch_stack;
 729        }
 730
 731        if (opts->sample_weight)
 732                perf_evsel__set_sample_bit(evsel, WEIGHT);
 733
 734        attr->task  = track;
 735        attr->mmap  = track;
 736        attr->mmap2 = track && !perf_missing_features.mmap2;
 737        attr->comm  = track;
 738
 739        if (opts->sample_transaction)
 740                perf_evsel__set_sample_bit(evsel, TRANSACTION);
 741
 742        if (opts->running_time) {
 743                evsel->attr.read_format |=
 744                        PERF_FORMAT_TOTAL_TIME_ENABLED |
 745                        PERF_FORMAT_TOTAL_TIME_RUNNING;
 746        }
 747
 748        /*
 749         * XXX see the function comment above
 750         *
 751         * Disabling only independent events or group leaders,
 752         * keeping group members enabled.
 753         */
 754        if (perf_evsel__is_group_leader(evsel))
 755                attr->disabled = 1;
 756
 757        /*
 758         * Setting enable_on_exec for independent events and
 759         * group leaders for traced executed by perf.
 760         */
 761        if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
 762                !opts->initial_delay)
 763                attr->enable_on_exec = 1;
 764
 765        if (evsel->immediate) {
 766                attr->disabled = 0;
 767                attr->enable_on_exec = 0;
 768        }
 769
 770        clockid = opts->clockid;
 771        if (opts->use_clockid) {
 772                attr->use_clockid = 1;
 773                attr->clockid = opts->clockid;
 774        }
 775}
 776
 777static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
 778{
 779        int cpu, thread;
 780
 781        if (evsel->system_wide)
 782                nthreads = 1;
 783
 784        evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
 785
 786        if (evsel->fd) {
 787                for (cpu = 0; cpu < ncpus; cpu++) {
 788                        for (thread = 0; thread < nthreads; thread++) {
 789                                FD(evsel, cpu, thread) = -1;
 790                        }
 791                }
 792        }
 793
 794        return evsel->fd != NULL ? 0 : -ENOMEM;
 795}
 796
 797static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
 798                          int ioc,  void *arg)
 799{
 800        int cpu, thread;
 801
 802        if (evsel->system_wide)
 803                nthreads = 1;
 804
 805        for (cpu = 0; cpu < ncpus; cpu++) {
 806                for (thread = 0; thread < nthreads; thread++) {
 807                        int fd = FD(evsel, cpu, thread),
 808                            err = ioctl(fd, ioc, arg);
 809
 810                        if (err)
 811                                return err;
 812                }
 813        }
 814
 815        return 0;
 816}
 817
 818int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
 819                           const char *filter)
 820{
 821        return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
 822                                     PERF_EVENT_IOC_SET_FILTER,
 823                                     (void *)filter);
 824}
 825
 826int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
 827{
 828        return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
 829                                     PERF_EVENT_IOC_ENABLE,
 830                                     0);
 831}
 832
 833int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
 834{
 835        if (ncpus == 0 || nthreads == 0)
 836                return 0;
 837
 838        if (evsel->system_wide)
 839                nthreads = 1;
 840
 841        evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
 842        if (evsel->sample_id == NULL)
 843                return -ENOMEM;
 844
 845        evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
 846        if (evsel->id == NULL) {
 847                xyarray__delete(evsel->sample_id);
 848                evsel->sample_id = NULL;
 849                return -ENOMEM;
 850        }
 851
 852        return 0;
 853}
 854
 855static void perf_evsel__free_fd(struct perf_evsel *evsel)
 856{
 857        xyarray__delete(evsel->fd);
 858        evsel->fd = NULL;
 859}
 860
 861static void perf_evsel__free_id(struct perf_evsel *evsel)
 862{
 863        xyarray__delete(evsel->sample_id);
 864        evsel->sample_id = NULL;
 865        zfree(&evsel->id);
 866}
 867
 868void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
 869{
 870        int cpu, thread;
 871
 872        if (evsel->system_wide)
 873                nthreads = 1;
 874
 875        for (cpu = 0; cpu < ncpus; cpu++)
 876                for (thread = 0; thread < nthreads; ++thread) {
 877                        close(FD(evsel, cpu, thread));
 878                        FD(evsel, cpu, thread) = -1;
 879                }
 880}
 881
 882void perf_evsel__exit(struct perf_evsel *evsel)
 883{
 884        assert(list_empty(&evsel->node));
 885        perf_evsel__free_fd(evsel);
 886        perf_evsel__free_id(evsel);
 887        close_cgroup(evsel->cgrp);
 888        cpu_map__put(evsel->cpus);
 889        thread_map__put(evsel->threads);
 890        zfree(&evsel->group_name);
 891        zfree(&evsel->name);
 892        perf_evsel__object.fini(evsel);
 893}
 894
 895void perf_evsel__delete(struct perf_evsel *evsel)
 896{
 897        perf_evsel__exit(evsel);
 898        free(evsel);
 899}
 900
 901void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
 902                                struct perf_counts_values *count)
 903{
 904        struct perf_counts_values tmp;
 905
 906        if (!evsel->prev_raw_counts)
 907                return;
 908
 909        if (cpu == -1) {
 910                tmp = evsel->prev_raw_counts->aggr;
 911                evsel->prev_raw_counts->aggr = *count;
 912        } else {
 913                tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
 914                *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
 915        }
 916
 917        count->val = count->val - tmp.val;
 918        count->ena = count->ena - tmp.ena;
 919        count->run = count->run - tmp.run;
 920}
 921
 922void perf_counts_values__scale(struct perf_counts_values *count,
 923                               bool scale, s8 *pscaled)
 924{
 925        s8 scaled = 0;
 926
 927        if (scale) {
 928                if (count->run == 0) {
 929                        scaled = -1;
 930                        count->val = 0;
 931                } else if (count->run < count->ena) {
 932                        scaled = 1;
 933                        count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
 934                }
 935        } else
 936                count->ena = count->run = 0;
 937
 938        if (pscaled)
 939                *pscaled = scaled;
 940}
 941
 942int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
 943                     struct perf_counts_values *count)
 944{
 945        memset(count, 0, sizeof(*count));
 946
 947        if (FD(evsel, cpu, thread) < 0)
 948                return -EINVAL;
 949
 950        if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
 951                return -errno;
 952
 953        return 0;
 954}
 955
 956int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
 957                              int cpu, int thread, bool scale)
 958{
 959        struct perf_counts_values count;
 960        size_t nv = scale ? 3 : 1;
 961
 962        if (FD(evsel, cpu, thread) < 0)
 963                return -EINVAL;
 964
 965        if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
 966                return -ENOMEM;
 967
 968        if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
 969                return -errno;
 970
 971        perf_evsel__compute_deltas(evsel, cpu, thread, &count);
 972        perf_counts_values__scale(&count, scale, NULL);
 973        *perf_counts(evsel->counts, cpu, thread) = count;
 974        return 0;
 975}
 976
 977static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
 978{
 979        struct perf_evsel *leader = evsel->leader;
 980        int fd;
 981
 982        if (perf_evsel__is_group_leader(evsel))
 983                return -1;
 984
 985        /*
 986         * Leader must be already processed/open,
 987         * if not it's a bug.
 988         */
 989        BUG_ON(!leader->fd);
 990
 991        fd = FD(leader, cpu, thread);
 992        BUG_ON(fd == -1);
 993
 994        return fd;
 995}
 996
 997struct bit_names {
 998        int bit;
 999        const char *name;
1000};
1001
1002static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1003{
1004        bool first_bit = true;
1005        int i = 0;
1006
1007        do {
1008                if (value & bits[i].bit) {
1009                        buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1010                        first_bit = false;
1011                }
1012        } while (bits[++i].name != NULL);
1013}
1014
1015static void __p_sample_type(char *buf, size_t size, u64 value)
1016{
1017#define bit_name(n) { PERF_SAMPLE_##n, #n }
1018        struct bit_names bits[] = {
1019                bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1020                bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1021                bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1022                bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1023                bit_name(IDENTIFIER), bit_name(REGS_INTR),
1024                { .name = NULL, }
1025        };
1026#undef bit_name
1027        __p_bits(buf, size, value, bits);
1028}
1029
1030static void __p_read_format(char *buf, size_t size, u64 value)
1031{
1032#define bit_name(n) { PERF_FORMAT_##n, #n }
1033        struct bit_names bits[] = {
1034                bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1035                bit_name(ID), bit_name(GROUP),
1036                { .name = NULL, }
1037        };
1038#undef bit_name
1039        __p_bits(buf, size, value, bits);
1040}
1041
1042#define BUF_SIZE                1024
1043
1044#define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1045#define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1046#define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1047#define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1048#define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1049
1050#define PRINT_ATTRn(_n, _f, _p)                         \
1051do {                                                    \
1052        if (attr->_f) {                                 \
1053                _p(attr->_f);                           \
1054                ret += attr__fprintf(fp, _n, buf, priv);\
1055        }                                               \
1056} while (0)
1057
1058#define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1059
1060int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1061                             attr__fprintf_f attr__fprintf, void *priv)
1062{
1063        char buf[BUF_SIZE];
1064        int ret = 0;
1065
1066        PRINT_ATTRf(type, p_unsigned);
1067        PRINT_ATTRf(size, p_unsigned);
1068        PRINT_ATTRf(config, p_hex);
1069        PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1070        PRINT_ATTRf(sample_type, p_sample_type);
1071        PRINT_ATTRf(read_format, p_read_format);
1072
1073        PRINT_ATTRf(disabled, p_unsigned);
1074        PRINT_ATTRf(inherit, p_unsigned);
1075        PRINT_ATTRf(pinned, p_unsigned);
1076        PRINT_ATTRf(exclusive, p_unsigned);
1077        PRINT_ATTRf(exclude_user, p_unsigned);
1078        PRINT_ATTRf(exclude_kernel, p_unsigned);
1079        PRINT_ATTRf(exclude_hv, p_unsigned);
1080        PRINT_ATTRf(exclude_idle, p_unsigned);
1081        PRINT_ATTRf(mmap, p_unsigned);
1082        PRINT_ATTRf(comm, p_unsigned);
1083        PRINT_ATTRf(freq, p_unsigned);
1084        PRINT_ATTRf(inherit_stat, p_unsigned);
1085        PRINT_ATTRf(enable_on_exec, p_unsigned);
1086        PRINT_ATTRf(task, p_unsigned);
1087        PRINT_ATTRf(watermark, p_unsigned);
1088        PRINT_ATTRf(precise_ip, p_unsigned);
1089        PRINT_ATTRf(mmap_data, p_unsigned);
1090        PRINT_ATTRf(sample_id_all, p_unsigned);
1091        PRINT_ATTRf(exclude_host, p_unsigned);
1092        PRINT_ATTRf(exclude_guest, p_unsigned);
1093        PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1094        PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1095        PRINT_ATTRf(mmap2, p_unsigned);
1096        PRINT_ATTRf(comm_exec, p_unsigned);
1097        PRINT_ATTRf(use_clockid, p_unsigned);
1098
1099        PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1100        PRINT_ATTRf(bp_type, p_unsigned);
1101        PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1102        PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1103        PRINT_ATTRf(sample_regs_user, p_hex);
1104        PRINT_ATTRf(sample_stack_user, p_unsigned);
1105        PRINT_ATTRf(clockid, p_signed);
1106        PRINT_ATTRf(sample_regs_intr, p_hex);
1107        PRINT_ATTRf(aux_watermark, p_unsigned);
1108
1109        return ret;
1110}
1111
1112static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1113                                void *priv __attribute__((unused)))
1114{
1115        return fprintf(fp, "  %-32s %s\n", name, val);
1116}
1117
1118static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1119                              struct thread_map *threads)
1120{
1121        int cpu, thread, nthreads;
1122        unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1123        int pid = -1, err;
1124        enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1125
1126        if (evsel->system_wide)
1127                nthreads = 1;
1128        else
1129                nthreads = threads->nr;
1130
1131        if (evsel->fd == NULL &&
1132            perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1133                return -ENOMEM;
1134
1135        if (evsel->cgrp) {
1136                flags |= PERF_FLAG_PID_CGROUP;
1137                pid = evsel->cgrp->fd;
1138        }
1139
1140fallback_missing_features:
1141        if (perf_missing_features.clockid_wrong)
1142                evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1143        if (perf_missing_features.clockid) {
1144                evsel->attr.use_clockid = 0;
1145                evsel->attr.clockid = 0;
1146        }
1147        if (perf_missing_features.cloexec)
1148                flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1149        if (perf_missing_features.mmap2)
1150                evsel->attr.mmap2 = 0;
1151        if (perf_missing_features.exclude_guest)
1152                evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1153retry_sample_id:
1154        if (perf_missing_features.sample_id_all)
1155                evsel->attr.sample_id_all = 0;
1156
1157        if (verbose >= 2) {
1158                fprintf(stderr, "%.60s\n", graph_dotted_line);
1159                fprintf(stderr, "perf_event_attr:\n");
1160                perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1161                fprintf(stderr, "%.60s\n", graph_dotted_line);
1162        }
1163
1164        for (cpu = 0; cpu < cpus->nr; cpu++) {
1165
1166                for (thread = 0; thread < nthreads; thread++) {
1167                        int group_fd;
1168
1169                        if (!evsel->cgrp && !evsel->system_wide)
1170                                pid = thread_map__pid(threads, thread);
1171
1172                        group_fd = get_group_fd(evsel, cpu, thread);
1173retry_open:
1174                        pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1175                                  pid, cpus->map[cpu], group_fd, flags);
1176
1177                        FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1178                                                                     pid,
1179                                                                     cpus->map[cpu],
1180                                                                     group_fd, flags);
1181                        if (FD(evsel, cpu, thread) < 0) {
1182                                err = -errno;
1183                                pr_debug2("sys_perf_event_open failed, error %d\n",
1184                                          err);
1185                                goto try_fallback;
1186                        }
1187                        set_rlimit = NO_CHANGE;
1188
1189                        /*
1190                         * If we succeeded but had to kill clockid, fail and
1191                         * have perf_evsel__open_strerror() print us a nice
1192                         * error.
1193                         */
1194                        if (perf_missing_features.clockid ||
1195                            perf_missing_features.clockid_wrong) {
1196                                err = -EINVAL;
1197                                goto out_close;
1198                        }
1199                }
1200        }
1201
1202        return 0;
1203
1204try_fallback:
1205        /*
1206         * perf stat needs between 5 and 22 fds per CPU. When we run out
1207         * of them try to increase the limits.
1208         */
1209        if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1210                struct rlimit l;
1211                int old_errno = errno;
1212
1213                if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1214                        if (set_rlimit == NO_CHANGE)
1215                                l.rlim_cur = l.rlim_max;
1216                        else {
1217                                l.rlim_cur = l.rlim_max + 1000;
1218                                l.rlim_max = l.rlim_cur;
1219                        }
1220                        if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1221                                set_rlimit++;
1222                                errno = old_errno;
1223                                goto retry_open;
1224                        }
1225                }
1226                errno = old_errno;
1227        }
1228
1229        if (err != -EINVAL || cpu > 0 || thread > 0)
1230                goto out_close;
1231
1232        /*
1233         * Must probe features in the order they were added to the
1234         * perf_event_attr interface.
1235         */
1236        if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1237                perf_missing_features.clockid_wrong = true;
1238                goto fallback_missing_features;
1239        } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1240                perf_missing_features.clockid = true;
1241                goto fallback_missing_features;
1242        } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1243                perf_missing_features.cloexec = true;
1244                goto fallback_missing_features;
1245        } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1246                perf_missing_features.mmap2 = true;
1247                goto fallback_missing_features;
1248        } else if (!perf_missing_features.exclude_guest &&
1249                   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1250                perf_missing_features.exclude_guest = true;
1251                goto fallback_missing_features;
1252        } else if (!perf_missing_features.sample_id_all) {
1253                perf_missing_features.sample_id_all = true;
1254                goto retry_sample_id;
1255        }
1256
1257out_close:
1258        do {
1259                while (--thread >= 0) {
1260                        close(FD(evsel, cpu, thread));
1261                        FD(evsel, cpu, thread) = -1;
1262                }
1263                thread = nthreads;
1264        } while (--cpu >= 0);
1265        return err;
1266}
1267
1268void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1269{
1270        if (evsel->fd == NULL)
1271                return;
1272
1273        perf_evsel__close_fd(evsel, ncpus, nthreads);
1274        perf_evsel__free_fd(evsel);
1275}
1276
1277static struct {
1278        struct cpu_map map;
1279        int cpus[1];
1280} empty_cpu_map = {
1281        .map.nr = 1,
1282        .cpus   = { -1, },
1283};
1284
1285static struct {
1286        struct thread_map map;
1287        int threads[1];
1288} empty_thread_map = {
1289        .map.nr  = 1,
1290        .threads = { -1, },
1291};
1292
1293int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1294                     struct thread_map *threads)
1295{
1296        if (cpus == NULL) {
1297                /* Work around old compiler warnings about strict aliasing */
1298                cpus = &empty_cpu_map.map;
1299        }
1300
1301        if (threads == NULL)
1302                threads = &empty_thread_map.map;
1303
1304        return __perf_evsel__open(evsel, cpus, threads);
1305}
1306
1307int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1308                             struct cpu_map *cpus)
1309{
1310        return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1311}
1312
1313int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1314                                struct thread_map *threads)
1315{
1316        return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1317}
1318
1319static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1320                                       const union perf_event *event,
1321                                       struct perf_sample *sample)
1322{
1323        u64 type = evsel->attr.sample_type;
1324        const u64 *array = event->sample.array;
1325        bool swapped = evsel->needs_swap;
1326        union u64_swap u;
1327
1328        array += ((event->header.size -
1329                   sizeof(event->header)) / sizeof(u64)) - 1;
1330
1331        if (type & PERF_SAMPLE_IDENTIFIER) {
1332                sample->id = *array;
1333                array--;
1334        }
1335
1336        if (type & PERF_SAMPLE_CPU) {
1337                u.val64 = *array;
1338                if (swapped) {
1339                        /* undo swap of u64, then swap on individual u32s */
1340                        u.val64 = bswap_64(u.val64);
1341                        u.val32[0] = bswap_32(u.val32[0]);
1342                }
1343
1344                sample->cpu = u.val32[0];
1345                array--;
1346        }
1347
1348        if (type & PERF_SAMPLE_STREAM_ID) {
1349                sample->stream_id = *array;
1350                array--;
1351        }
1352
1353        if (type & PERF_SAMPLE_ID) {
1354                sample->id = *array;
1355                array--;
1356        }
1357
1358        if (type & PERF_SAMPLE_TIME) {
1359                sample->time = *array;
1360                array--;
1361        }
1362
1363        if (type & PERF_SAMPLE_TID) {
1364                u.val64 = *array;
1365                if (swapped) {
1366                        /* undo swap of u64, then swap on individual u32s */
1367                        u.val64 = bswap_64(u.val64);
1368                        u.val32[0] = bswap_32(u.val32[0]);
1369                        u.val32[1] = bswap_32(u.val32[1]);
1370                }
1371
1372                sample->pid = u.val32[0];
1373                sample->tid = u.val32[1];
1374                array--;
1375        }
1376
1377        return 0;
1378}
1379
1380static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1381                            u64 size)
1382{
1383        return size > max_size || offset + size > endp;
1384}
1385
1386#define OVERFLOW_CHECK(offset, size, max_size)                          \
1387        do {                                                            \
1388                if (overflow(endp, (max_size), (offset), (size)))       \
1389                        return -EFAULT;                                 \
1390        } while (0)
1391
1392#define OVERFLOW_CHECK_u64(offset) \
1393        OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1394
1395int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1396                             struct perf_sample *data)
1397{
1398        u64 type = evsel->attr.sample_type;
1399        bool swapped = evsel->needs_swap;
1400        const u64 *array;
1401        u16 max_size = event->header.size;
1402        const void *endp = (void *)event + max_size;
1403        u64 sz;
1404
1405        /*
1406         * used for cross-endian analysis. See git commit 65014ab3
1407         * for why this goofiness is needed.
1408         */
1409        union u64_swap u;
1410
1411        memset(data, 0, sizeof(*data));
1412        data->cpu = data->pid = data->tid = -1;
1413        data->stream_id = data->id = data->time = -1ULL;
1414        data->period = evsel->attr.sample_period;
1415        data->weight = 0;
1416
1417        if (event->header.type != PERF_RECORD_SAMPLE) {
1418                if (!evsel->attr.sample_id_all)
1419                        return 0;
1420                return perf_evsel__parse_id_sample(evsel, event, data);
1421        }
1422
1423        array = event->sample.array;
1424
1425        /*
1426         * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1427         * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1428         * check the format does not go past the end of the event.
1429         */
1430        if (evsel->sample_size + sizeof(event->header) > event->header.size)
1431                return -EFAULT;
1432
1433        data->id = -1ULL;
1434        if (type & PERF_SAMPLE_IDENTIFIER) {
1435                data->id = *array;
1436                array++;
1437        }
1438
1439        if (type & PERF_SAMPLE_IP) {
1440                data->ip = *array;
1441                array++;
1442        }
1443
1444        if (type & PERF_SAMPLE_TID) {
1445                u.val64 = *array;
1446                if (swapped) {
1447                        /* undo swap of u64, then swap on individual u32s */
1448                        u.val64 = bswap_64(u.val64);
1449                        u.val32[0] = bswap_32(u.val32[0]);
1450                        u.val32[1] = bswap_32(u.val32[1]);
1451                }
1452
1453                data->pid = u.val32[0];
1454                data->tid = u.val32[1];
1455                array++;
1456        }
1457
1458        if (type & PERF_SAMPLE_TIME) {
1459                data->time = *array;
1460                array++;
1461        }
1462
1463        data->addr = 0;
1464        if (type & PERF_SAMPLE_ADDR) {
1465                data->addr = *array;
1466                array++;
1467        }
1468
1469        if (type & PERF_SAMPLE_ID) {
1470                data->id = *array;
1471                array++;
1472        }
1473
1474        if (type & PERF_SAMPLE_STREAM_ID) {
1475                data->stream_id = *array;
1476                array++;
1477        }
1478
1479        if (type & PERF_SAMPLE_CPU) {
1480
1481                u.val64 = *array;
1482                if (swapped) {
1483                        /* undo swap of u64, then swap on individual u32s */
1484                        u.val64 = bswap_64(u.val64);
1485                        u.val32[0] = bswap_32(u.val32[0]);
1486                }
1487
1488                data->cpu = u.val32[0];
1489                array++;
1490        }
1491
1492        if (type & PERF_SAMPLE_PERIOD) {
1493                data->period = *array;
1494                array++;
1495        }
1496
1497        if (type & PERF_SAMPLE_READ) {
1498                u64 read_format = evsel->attr.read_format;
1499
1500                OVERFLOW_CHECK_u64(array);
1501                if (read_format & PERF_FORMAT_GROUP)
1502                        data->read.group.nr = *array;
1503                else
1504                        data->read.one.value = *array;
1505
1506                array++;
1507
1508                if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1509                        OVERFLOW_CHECK_u64(array);
1510                        data->read.time_enabled = *array;
1511                        array++;
1512                }
1513
1514                if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1515                        OVERFLOW_CHECK_u64(array);
1516                        data->read.time_running = *array;
1517                        array++;
1518                }
1519
1520                /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1521                if (read_format & PERF_FORMAT_GROUP) {
1522                        const u64 max_group_nr = UINT64_MAX /
1523                                        sizeof(struct sample_read_value);
1524
1525                        if (data->read.group.nr > max_group_nr)
1526                                return -EFAULT;
1527                        sz = data->read.group.nr *
1528                             sizeof(struct sample_read_value);
1529                        OVERFLOW_CHECK(array, sz, max_size);
1530                        data->read.group.values =
1531                                        (struct sample_read_value *)array;
1532                        array = (void *)array + sz;
1533                } else {
1534                        OVERFLOW_CHECK_u64(array);
1535                        data->read.one.id = *array;
1536                        array++;
1537                }
1538        }
1539
1540        if (type & PERF_SAMPLE_CALLCHAIN) {
1541                const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1542
1543                OVERFLOW_CHECK_u64(array);
1544                data->callchain = (struct ip_callchain *)array++;
1545                if (data->callchain->nr > max_callchain_nr)
1546                        return -EFAULT;
1547                sz = data->callchain->nr * sizeof(u64);
1548                OVERFLOW_CHECK(array, sz, max_size);
1549                array = (void *)array + sz;
1550        }
1551
1552        if (type & PERF_SAMPLE_RAW) {
1553                OVERFLOW_CHECK_u64(array);
1554                u.val64 = *array;
1555                if (WARN_ONCE(swapped,
1556                              "Endianness of raw data not corrected!\n")) {
1557                        /* undo swap of u64, then swap on individual u32s */
1558                        u.val64 = bswap_64(u.val64);
1559                        u.val32[0] = bswap_32(u.val32[0]);
1560                        u.val32[1] = bswap_32(u.val32[1]);
1561                }
1562                data->raw_size = u.val32[0];
1563                array = (void *)array + sizeof(u32);
1564
1565                OVERFLOW_CHECK(array, data->raw_size, max_size);
1566                data->raw_data = (void *)array;
1567                array = (void *)array + data->raw_size;
1568        }
1569
1570        if (type & PERF_SAMPLE_BRANCH_STACK) {
1571                const u64 max_branch_nr = UINT64_MAX /
1572                                          sizeof(struct branch_entry);
1573
1574                OVERFLOW_CHECK_u64(array);
1575                data->branch_stack = (struct branch_stack *)array++;
1576
1577                if (data->branch_stack->nr > max_branch_nr)
1578                        return -EFAULT;
1579                sz = data->branch_stack->nr * sizeof(struct branch_entry);
1580                OVERFLOW_CHECK(array, sz, max_size);
1581                array = (void *)array + sz;
1582        }
1583
1584        if (type & PERF_SAMPLE_REGS_USER) {
1585                OVERFLOW_CHECK_u64(array);
1586                data->user_regs.abi = *array;
1587                array++;
1588
1589                if (data->user_regs.abi) {
1590                        u64 mask = evsel->attr.sample_regs_user;
1591
1592                        sz = hweight_long(mask) * sizeof(u64);
1593                        OVERFLOW_CHECK(array, sz, max_size);
1594                        data->user_regs.mask = mask;
1595                        data->user_regs.regs = (u64 *)array;
1596                        array = (void *)array + sz;
1597                }
1598        }
1599
1600        if (type & PERF_SAMPLE_STACK_USER) {
1601                OVERFLOW_CHECK_u64(array);
1602                sz = *array++;
1603
1604                data->user_stack.offset = ((char *)(array - 1)
1605                                          - (char *) event);
1606
1607                if (!sz) {
1608                        data->user_stack.size = 0;
1609                } else {
1610                        OVERFLOW_CHECK(array, sz, max_size);
1611                        data->user_stack.data = (char *)array;
1612                        array = (void *)array + sz;
1613                        OVERFLOW_CHECK_u64(array);
1614                        data->user_stack.size = *array++;
1615                        if (WARN_ONCE(data->user_stack.size > sz,
1616                                      "user stack dump failure\n"))
1617                                return -EFAULT;
1618                }
1619        }
1620
1621        data->weight = 0;
1622        if (type & PERF_SAMPLE_WEIGHT) {
1623                OVERFLOW_CHECK_u64(array);
1624                data->weight = *array;
1625                array++;
1626        }
1627
1628        data->data_src = PERF_MEM_DATA_SRC_NONE;
1629        if (type & PERF_SAMPLE_DATA_SRC) {
1630                OVERFLOW_CHECK_u64(array);
1631                data->data_src = *array;
1632                array++;
1633        }
1634
1635        data->transaction = 0;
1636        if (type & PERF_SAMPLE_TRANSACTION) {
1637                OVERFLOW_CHECK_u64(array);
1638                data->transaction = *array;
1639                array++;
1640        }
1641
1642        data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1643        if (type & PERF_SAMPLE_REGS_INTR) {
1644                OVERFLOW_CHECK_u64(array);
1645                data->intr_regs.abi = *array;
1646                array++;
1647
1648                if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1649                        u64 mask = evsel->attr.sample_regs_intr;
1650
1651                        sz = hweight_long(mask) * sizeof(u64);
1652                        OVERFLOW_CHECK(array, sz, max_size);
1653                        data->intr_regs.mask = mask;
1654                        data->intr_regs.regs = (u64 *)array;
1655                        array = (void *)array + sz;
1656                }
1657        }
1658
1659        return 0;
1660}
1661
1662size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1663                                     u64 read_format)
1664{
1665        size_t sz, result = sizeof(struct sample_event);
1666
1667        if (type & PERF_SAMPLE_IDENTIFIER)
1668                result += sizeof(u64);
1669
1670        if (type & PERF_SAMPLE_IP)
1671                result += sizeof(u64);
1672
1673        if (type & PERF_SAMPLE_TID)
1674                result += sizeof(u64);
1675
1676        if (type & PERF_SAMPLE_TIME)
1677                result += sizeof(u64);
1678
1679        if (type & PERF_SAMPLE_ADDR)
1680                result += sizeof(u64);
1681
1682        if (type & PERF_SAMPLE_ID)
1683                result += sizeof(u64);
1684
1685        if (type & PERF_SAMPLE_STREAM_ID)
1686                result += sizeof(u64);
1687
1688        if (type & PERF_SAMPLE_CPU)
1689                result += sizeof(u64);
1690
1691        if (type & PERF_SAMPLE_PERIOD)
1692                result += sizeof(u64);
1693
1694        if (type & PERF_SAMPLE_READ) {
1695                result += sizeof(u64);
1696                if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1697                        result += sizeof(u64);
1698                if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1699                        result += sizeof(u64);
1700                /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1701                if (read_format & PERF_FORMAT_GROUP) {
1702                        sz = sample->read.group.nr *
1703                             sizeof(struct sample_read_value);
1704                        result += sz;
1705                } else {
1706                        result += sizeof(u64);
1707                }
1708        }
1709
1710        if (type & PERF_SAMPLE_CALLCHAIN) {
1711                sz = (sample->callchain->nr + 1) * sizeof(u64);
1712                result += sz;
1713        }
1714
1715        if (type & PERF_SAMPLE_RAW) {
1716                result += sizeof(u32);
1717                result += sample->raw_size;
1718        }
1719
1720        if (type & PERF_SAMPLE_BRANCH_STACK) {
1721                sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1722                sz += sizeof(u64);
1723                result += sz;
1724        }
1725
1726        if (type & PERF_SAMPLE_REGS_USER) {
1727                if (sample->user_regs.abi) {
1728                        result += sizeof(u64);
1729                        sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1730                        result += sz;
1731                } else {
1732                        result += sizeof(u64);
1733                }
1734        }
1735
1736        if (type & PERF_SAMPLE_STACK_USER) {
1737                sz = sample->user_stack.size;
1738                result += sizeof(u64);
1739                if (sz) {
1740                        result += sz;
1741                        result += sizeof(u64);
1742                }
1743        }
1744
1745        if (type & PERF_SAMPLE_WEIGHT)
1746                result += sizeof(u64);
1747
1748        if (type & PERF_SAMPLE_DATA_SRC)
1749                result += sizeof(u64);
1750
1751        if (type & PERF_SAMPLE_TRANSACTION)
1752                result += sizeof(u64);
1753
1754        if (type & PERF_SAMPLE_REGS_INTR) {
1755                if (sample->intr_regs.abi) {
1756                        result += sizeof(u64);
1757                        sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1758                        result += sz;
1759                } else {
1760                        result += sizeof(u64);
1761                }
1762        }
1763
1764        return result;
1765}
1766
1767int perf_event__synthesize_sample(union perf_event *event, u64 type,
1768                                  u64 read_format,
1769                                  const struct perf_sample *sample,
1770                                  bool swapped)
1771{
1772        u64 *array;
1773        size_t sz;
1774        /*
1775         * used for cross-endian analysis. See git commit 65014ab3
1776         * for why this goofiness is needed.
1777         */
1778        union u64_swap u;
1779
1780        array = event->sample.array;
1781
1782        if (type & PERF_SAMPLE_IDENTIFIER) {
1783                *array = sample->id;
1784                array++;
1785        }
1786
1787        if (type & PERF_SAMPLE_IP) {
1788                *array = sample->ip;
1789                array++;
1790        }
1791
1792        if (type & PERF_SAMPLE_TID) {
1793                u.val32[0] = sample->pid;
1794                u.val32[1] = sample->tid;
1795                if (swapped) {
1796                        /*
1797                         * Inverse of what is done in perf_evsel__parse_sample
1798                         */
1799                        u.val32[0] = bswap_32(u.val32[0]);
1800                        u.val32[1] = bswap_32(u.val32[1]);
1801                        u.val64 = bswap_64(u.val64);
1802                }
1803
1804                *array = u.val64;
1805                array++;
1806        }
1807
1808        if (type & PERF_SAMPLE_TIME) {
1809                *array = sample->time;
1810                array++;
1811        }
1812
1813        if (type & PERF_SAMPLE_ADDR) {
1814                *array = sample->addr;
1815                array++;
1816        }
1817
1818        if (type & PERF_SAMPLE_ID) {
1819                *array = sample->id;
1820                array++;
1821        }
1822
1823        if (type & PERF_SAMPLE_STREAM_ID) {
1824                *array = sample->stream_id;
1825                array++;
1826        }
1827
1828        if (type & PERF_SAMPLE_CPU) {
1829                u.val32[0] = sample->cpu;
1830                if (swapped) {
1831                        /*
1832                         * Inverse of what is done in perf_evsel__parse_sample
1833                         */
1834                        u.val32[0] = bswap_32(u.val32[0]);
1835                        u.val64 = bswap_64(u.val64);
1836                }
1837                *array = u.val64;
1838                array++;
1839        }
1840
1841        if (type & PERF_SAMPLE_PERIOD) {
1842                *array = sample->period;
1843                array++;
1844        }
1845
1846        if (type & PERF_SAMPLE_READ) {
1847                if (read_format & PERF_FORMAT_GROUP)
1848                        *array = sample->read.group.nr;
1849                else
1850                        *array = sample->read.one.value;
1851                array++;
1852
1853                if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1854                        *array = sample->read.time_enabled;
1855                        array++;
1856                }
1857
1858                if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1859                        *array = sample->read.time_running;
1860                        array++;
1861                }
1862
1863                /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1864                if (read_format & PERF_FORMAT_GROUP) {
1865                        sz = sample->read.group.nr *
1866                             sizeof(struct sample_read_value);
1867                        memcpy(array, sample->read.group.values, sz);
1868                        array = (void *)array + sz;
1869                } else {
1870                        *array = sample->read.one.id;
1871                        array++;
1872                }
1873        }
1874
1875        if (type & PERF_SAMPLE_CALLCHAIN) {
1876                sz = (sample->callchain->nr + 1) * sizeof(u64);
1877                memcpy(array, sample->callchain, sz);
1878                array = (void *)array + sz;
1879        }
1880
1881        if (type & PERF_SAMPLE_RAW) {
1882                u.val32[0] = sample->raw_size;
1883                if (WARN_ONCE(swapped,
1884                              "Endianness of raw data not corrected!\n")) {
1885                        /*
1886                         * Inverse of what is done in perf_evsel__parse_sample
1887                         */
1888                        u.val32[0] = bswap_32(u.val32[0]);
1889                        u.val32[1] = bswap_32(u.val32[1]);
1890                        u.val64 = bswap_64(u.val64);
1891                }
1892                *array = u.val64;
1893                array = (void *)array + sizeof(u32);
1894
1895                memcpy(array, sample->raw_data, sample->raw_size);
1896                array = (void *)array + sample->raw_size;
1897        }
1898
1899        if (type & PERF_SAMPLE_BRANCH_STACK) {
1900                sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1901                sz += sizeof(u64);
1902                memcpy(array, sample->branch_stack, sz);
1903                array = (void *)array + sz;
1904        }
1905
1906        if (type & PERF_SAMPLE_REGS_USER) {
1907                if (sample->user_regs.abi) {
1908                        *array++ = sample->user_regs.abi;
1909                        sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1910                        memcpy(array, sample->user_regs.regs, sz);
1911                        array = (void *)array + sz;
1912                } else {
1913                        *array++ = 0;
1914                }
1915        }
1916
1917        if (type & PERF_SAMPLE_STACK_USER) {
1918                sz = sample->user_stack.size;
1919                *array++ = sz;
1920                if (sz) {
1921                        memcpy(array, sample->user_stack.data, sz);
1922                        array = (void *)array + sz;
1923                        *array++ = sz;
1924                }
1925        }
1926
1927        if (type & PERF_SAMPLE_WEIGHT) {
1928                *array = sample->weight;
1929                array++;
1930        }
1931
1932        if (type & PERF_SAMPLE_DATA_SRC) {
1933                *array = sample->data_src;
1934                array++;
1935        }
1936
1937        if (type & PERF_SAMPLE_TRANSACTION) {
1938                *array = sample->transaction;
1939                array++;
1940        }
1941
1942        if (type & PERF_SAMPLE_REGS_INTR) {
1943                if (sample->intr_regs.abi) {
1944                        *array++ = sample->intr_regs.abi;
1945                        sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1946                        memcpy(array, sample->intr_regs.regs, sz);
1947                        array = (void *)array + sz;
1948                } else {
1949                        *array++ = 0;
1950                }
1951        }
1952
1953        return 0;
1954}
1955
1956struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1957{
1958        return pevent_find_field(evsel->tp_format, name);
1959}
1960
1961void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1962                         const char *name)
1963{
1964        struct format_field *field = perf_evsel__field(evsel, name);
1965        int offset;
1966
1967        if (!field)
1968                return NULL;
1969
1970        offset = field->offset;
1971
1972        if (field->flags & FIELD_IS_DYNAMIC) {
1973                offset = *(int *)(sample->raw_data + field->offset);
1974                offset &= 0xffff;
1975        }
1976
1977        return sample->raw_data + offset;
1978}
1979
1980u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1981                       const char *name)
1982{
1983        struct format_field *field = perf_evsel__field(evsel, name);
1984        void *ptr;
1985        u64 value;
1986
1987        if (!field)
1988                return 0;
1989
1990        ptr = sample->raw_data + field->offset;
1991
1992        switch (field->size) {
1993        case 1:
1994                return *(u8 *)ptr;
1995        case 2:
1996                value = *(u16 *)ptr;
1997                break;
1998        case 4:
1999                value = *(u32 *)ptr;
2000                break;
2001        case 8:
2002                memcpy(&value, ptr, sizeof(u64));
2003                break;
2004        default:
2005                return 0;
2006        }
2007
2008        if (!evsel->needs_swap)
2009                return value;
2010
2011        switch (field->size) {
2012        case 2:
2013                return bswap_16(value);
2014        case 4:
2015                return bswap_32(value);
2016        case 8:
2017                return bswap_64(value);
2018        default:
2019                return 0;
2020        }
2021
2022        return 0;
2023}
2024
2025static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2026{
2027        va_list args;
2028        int ret = 0;
2029
2030        if (!*first) {
2031                ret += fprintf(fp, ",");
2032        } else {
2033                ret += fprintf(fp, ":");
2034                *first = false;
2035        }
2036
2037        va_start(args, fmt);
2038        ret += vfprintf(fp, fmt, args);
2039        va_end(args);
2040        return ret;
2041}
2042
2043static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2044{
2045        return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2046}
2047
2048int perf_evsel__fprintf(struct perf_evsel *evsel,
2049                        struct perf_attr_details *details, FILE *fp)
2050{
2051        bool first = true;
2052        int printed = 0;
2053
2054        if (details->event_group) {
2055                struct perf_evsel *pos;
2056
2057                if (!perf_evsel__is_group_leader(evsel))
2058                        return 0;
2059
2060                if (evsel->nr_members > 1)
2061                        printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2062
2063                printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2064                for_each_group_member(pos, evsel)
2065                        printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2066
2067                if (evsel->nr_members > 1)
2068                        printed += fprintf(fp, "}");
2069                goto out;
2070        }
2071
2072        printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2073
2074        if (details->verbose) {
2075                printed += perf_event_attr__fprintf(fp, &evsel->attr,
2076                                                    __print_attr__fprintf, &first);
2077        } else if (details->freq) {
2078                printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2079                                         (u64)evsel->attr.sample_freq);
2080        }
2081out:
2082        fputc('\n', fp);
2083        return ++printed;
2084}
2085
2086bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2087                          char *msg, size_t msgsize)
2088{
2089        if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2090            evsel->attr.type   == PERF_TYPE_HARDWARE &&
2091            evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2092                /*
2093                 * If it's cycles then fall back to hrtimer based
2094                 * cpu-clock-tick sw counter, which is always available even if
2095                 * no PMU support.
2096                 *
2097                 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2098                 * b0a873e).
2099                 */
2100                scnprintf(msg, msgsize, "%s",
2101"The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2102
2103                evsel->attr.type   = PERF_TYPE_SOFTWARE;
2104                evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2105
2106                zfree(&evsel->name);
2107                return true;
2108        }
2109
2110        return false;
2111}
2112
2113int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2114                              int err, char *msg, size_t size)
2115{
2116        char sbuf[STRERR_BUFSIZE];
2117
2118        switch (err) {
2119        case EPERM:
2120        case EACCES:
2121                return scnprintf(msg, size,
2122                 "You may not have permission to collect %sstats.\n"
2123                 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2124                 " -1 - Not paranoid at all\n"
2125                 "  0 - Disallow raw tracepoint access for unpriv\n"
2126                 "  1 - Disallow cpu events for unpriv\n"
2127                 "  2 - Disallow kernel profiling for unpriv",
2128                                 target->system_wide ? "system-wide " : "");
2129        case ENOENT:
2130                return scnprintf(msg, size, "The %s event is not supported.",
2131                                 perf_evsel__name(evsel));
2132        case EMFILE:
2133                return scnprintf(msg, size, "%s",
2134                         "Too many events are opened.\n"
2135                         "Probably the maximum number of open file descriptors has been reached.\n"
2136                         "Hint: Try again after reducing the number of events.\n"
2137                         "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2138        case ENODEV:
2139                if (target->cpu_list)
2140                        return scnprintf(msg, size, "%s",
2141         "No such device - did you specify an out-of-range profile CPU?\n");
2142                break;
2143        case EOPNOTSUPP:
2144                if (evsel->attr.precise_ip)
2145                        return scnprintf(msg, size, "%s",
2146        "\'precise\' request may not be supported. Try removing 'p' modifier.");
2147#if defined(__i386__) || defined(__x86_64__)
2148                if (evsel->attr.type == PERF_TYPE_HARDWARE)
2149                        return scnprintf(msg, size, "%s",
2150        "No hardware sampling interrupt available.\n"
2151        "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2152#endif
2153                break;
2154        case EBUSY:
2155                if (find_process("oprofiled"))
2156                        return scnprintf(msg, size,
2157        "The PMU counters are busy/taken by another profiler.\n"
2158        "We found oprofile daemon running, please stop it and try again.");
2159                break;
2160        case EINVAL:
2161                if (perf_missing_features.clockid)
2162                        return scnprintf(msg, size, "clockid feature not supported.");
2163                if (perf_missing_features.clockid_wrong)
2164                        return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2165                break;
2166        default:
2167                break;
2168        }
2169
2170        return scnprintf(msg, size,
2171        "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2172        "/bin/dmesg may provide additional information.\n"
2173        "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2174                         err, strerror_r(err, sbuf, sizeof(sbuf)),
2175                         perf_evsel__name(evsel));
2176}
2177