linux/virt/kvm/arm/vgic.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 ARM Ltd.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 */
  18
  19#include <linux/cpu.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_host.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/uaccess.h>
  28
  29#include <asm/kvm_emulate.h>
  30#include <asm/kvm_arm.h>
  31#include <asm/kvm_mmu.h>
  32#include <trace/events/kvm.h>
  33#include <asm/kvm.h>
  34#include <kvm/iodev.h>
  35
  36/*
  37 * How the whole thing works (courtesy of Christoffer Dall):
  38 *
  39 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
  40 *   something is pending on the CPU interface.
  41 * - Interrupts that are pending on the distributor are stored on the
  42 *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
  43 *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
  44 *   arch. timers).
  45 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
  46 *   recalculated
  47 * - To calculate the oracle, we need info for each cpu from
  48 *   compute_pending_for_cpu, which considers:
  49 *   - PPI: dist->irq_pending & dist->irq_enable
  50 *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
  51 *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
  52 *     registers, stored on each vcpu. We only keep one bit of
  53 *     information per interrupt, making sure that only one vcpu can
  54 *     accept the interrupt.
  55 * - If any of the above state changes, we must recalculate the oracle.
  56 * - The same is true when injecting an interrupt, except that we only
  57 *   consider a single interrupt at a time. The irq_spi_cpu array
  58 *   contains the target CPU for each SPI.
  59 *
  60 * The handling of level interrupts adds some extra complexity. We
  61 * need to track when the interrupt has been EOIed, so we can sample
  62 * the 'line' again. This is achieved as such:
  63 *
  64 * - When a level interrupt is moved onto a vcpu, the corresponding
  65 *   bit in irq_queued is set. As long as this bit is set, the line
  66 *   will be ignored for further interrupts. The interrupt is injected
  67 *   into the vcpu with the GICH_LR_EOI bit set (generate a
  68 *   maintenance interrupt on EOI).
  69 * - When the interrupt is EOIed, the maintenance interrupt fires,
  70 *   and clears the corresponding bit in irq_queued. This allows the
  71 *   interrupt line to be sampled again.
  72 * - Note that level-triggered interrupts can also be set to pending from
  73 *   writes to GICD_ISPENDRn and lowering the external input line does not
  74 *   cause the interrupt to become inactive in such a situation.
  75 *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
  76 *   inactive as long as the external input line is held high.
  77 */
  78
  79#include "vgic.h"
  80
  81static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
  82static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
  83static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
  84static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
  85
  86static const struct vgic_ops *vgic_ops;
  87static const struct vgic_params *vgic;
  88
  89static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
  90{
  91        vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
  92}
  93
  94static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
  95{
  96        return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
  97}
  98
  99int kvm_vgic_map_resources(struct kvm *kvm)
 100{
 101        return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
 102}
 103
 104/*
 105 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
 106 * extracts u32s out of them.
 107 *
 108 * This does not work on 64-bit BE systems, because the bitmap access
 109 * will store two consecutive 32-bit words with the higher-addressed
 110 * register's bits at the lower index and the lower-addressed register's
 111 * bits at the higher index.
 112 *
 113 * Therefore, swizzle the register index when accessing the 32-bit word
 114 * registers to access the right register's value.
 115 */
 116#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
 117#define REG_OFFSET_SWIZZLE      1
 118#else
 119#define REG_OFFSET_SWIZZLE      0
 120#endif
 121
 122static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
 123{
 124        int nr_longs;
 125
 126        nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
 127
 128        b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
 129        if (!b->private)
 130                return -ENOMEM;
 131
 132        b->shared = b->private + nr_cpus;
 133
 134        return 0;
 135}
 136
 137static void vgic_free_bitmap(struct vgic_bitmap *b)
 138{
 139        kfree(b->private);
 140        b->private = NULL;
 141        b->shared = NULL;
 142}
 143
 144/*
 145 * Call this function to convert a u64 value to an unsigned long * bitmask
 146 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
 147 *
 148 * Warning: Calling this function may modify *val.
 149 */
 150static unsigned long *u64_to_bitmask(u64 *val)
 151{
 152#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
 153        *val = (*val >> 32) | (*val << 32);
 154#endif
 155        return (unsigned long *)val;
 156}
 157
 158u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
 159{
 160        offset >>= 2;
 161        if (!offset)
 162                return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
 163        else
 164                return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
 165}
 166
 167static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
 168                                   int cpuid, int irq)
 169{
 170        if (irq < VGIC_NR_PRIVATE_IRQS)
 171                return test_bit(irq, x->private + cpuid);
 172
 173        return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
 174}
 175
 176void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
 177                             int irq, int val)
 178{
 179        unsigned long *reg;
 180
 181        if (irq < VGIC_NR_PRIVATE_IRQS) {
 182                reg = x->private + cpuid;
 183        } else {
 184                reg = x->shared;
 185                irq -= VGIC_NR_PRIVATE_IRQS;
 186        }
 187
 188        if (val)
 189                set_bit(irq, reg);
 190        else
 191                clear_bit(irq, reg);
 192}
 193
 194static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
 195{
 196        return x->private + cpuid;
 197}
 198
 199unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
 200{
 201        return x->shared;
 202}
 203
 204static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
 205{
 206        int size;
 207
 208        size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
 209        size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
 210
 211        x->private = kzalloc(size, GFP_KERNEL);
 212        if (!x->private)
 213                return -ENOMEM;
 214
 215        x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
 216        return 0;
 217}
 218
 219static void vgic_free_bytemap(struct vgic_bytemap *b)
 220{
 221        kfree(b->private);
 222        b->private = NULL;
 223        b->shared = NULL;
 224}
 225
 226u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
 227{
 228        u32 *reg;
 229
 230        if (offset < VGIC_NR_PRIVATE_IRQS) {
 231                reg = x->private;
 232                offset += cpuid * VGIC_NR_PRIVATE_IRQS;
 233        } else {
 234                reg = x->shared;
 235                offset -= VGIC_NR_PRIVATE_IRQS;
 236        }
 237
 238        return reg + (offset / sizeof(u32));
 239}
 240
 241#define VGIC_CFG_LEVEL  0
 242#define VGIC_CFG_EDGE   1
 243
 244static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
 245{
 246        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 247        int irq_val;
 248
 249        irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
 250        return irq_val == VGIC_CFG_EDGE;
 251}
 252
 253static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
 254{
 255        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 256
 257        return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
 258}
 259
 260static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
 261{
 262        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 263
 264        return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
 265}
 266
 267static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
 268{
 269        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 270
 271        return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
 272}
 273
 274static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
 275{
 276        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 277
 278        vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
 279}
 280
 281static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
 282{
 283        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 284
 285        vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
 286}
 287
 288static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
 289{
 290        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 291
 292        vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
 293}
 294
 295static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
 296{
 297        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 298
 299        vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
 300}
 301
 302static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
 303{
 304        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 305
 306        return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
 307}
 308
 309static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
 310{
 311        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 312
 313        vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
 314}
 315
 316static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
 317{
 318        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 319
 320        vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
 321}
 322
 323static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
 324{
 325        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 326
 327        return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
 328}
 329
 330static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
 331{
 332        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 333
 334        vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
 335}
 336
 337static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
 338{
 339        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 340
 341        return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
 342}
 343
 344void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
 345{
 346        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 347
 348        vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
 349}
 350
 351void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
 352{
 353        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 354
 355        vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
 356}
 357
 358static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
 359{
 360        if (irq < VGIC_NR_PRIVATE_IRQS)
 361                set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
 362        else
 363                set_bit(irq - VGIC_NR_PRIVATE_IRQS,
 364                        vcpu->arch.vgic_cpu.pending_shared);
 365}
 366
 367void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
 368{
 369        if (irq < VGIC_NR_PRIVATE_IRQS)
 370                clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
 371        else
 372                clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
 373                          vcpu->arch.vgic_cpu.pending_shared);
 374}
 375
 376static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
 377{
 378        return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
 379}
 380
 381/**
 382 * vgic_reg_access - access vgic register
 383 * @mmio:   pointer to the data describing the mmio access
 384 * @reg:    pointer to the virtual backing of vgic distributor data
 385 * @offset: least significant 2 bits used for word offset
 386 * @mode:   ACCESS_ mode (see defines above)
 387 *
 388 * Helper to make vgic register access easier using one of the access
 389 * modes defined for vgic register access
 390 * (read,raz,write-ignored,setbit,clearbit,write)
 391 */
 392void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
 393                     phys_addr_t offset, int mode)
 394{
 395        int word_offset = (offset & 3) * 8;
 396        u32 mask = (1UL << (mmio->len * 8)) - 1;
 397        u32 regval;
 398
 399        /*
 400         * Any alignment fault should have been delivered to the guest
 401         * directly (ARM ARM B3.12.7 "Prioritization of aborts").
 402         */
 403
 404        if (reg) {
 405                regval = *reg;
 406        } else {
 407                BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
 408                regval = 0;
 409        }
 410
 411        if (mmio->is_write) {
 412                u32 data = mmio_data_read(mmio, mask) << word_offset;
 413                switch (ACCESS_WRITE_MASK(mode)) {
 414                case ACCESS_WRITE_IGNORED:
 415                        return;
 416
 417                case ACCESS_WRITE_SETBIT:
 418                        regval |= data;
 419                        break;
 420
 421                case ACCESS_WRITE_CLEARBIT:
 422                        regval &= ~data;
 423                        break;
 424
 425                case ACCESS_WRITE_VALUE:
 426                        regval = (regval & ~(mask << word_offset)) | data;
 427                        break;
 428                }
 429                *reg = regval;
 430        } else {
 431                switch (ACCESS_READ_MASK(mode)) {
 432                case ACCESS_READ_RAZ:
 433                        regval = 0;
 434                        /* fall through */
 435
 436                case ACCESS_READ_VALUE:
 437                        mmio_data_write(mmio, mask, regval >> word_offset);
 438                }
 439        }
 440}
 441
 442bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
 443                        phys_addr_t offset)
 444{
 445        vgic_reg_access(mmio, NULL, offset,
 446                        ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
 447        return false;
 448}
 449
 450bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
 451                            phys_addr_t offset, int vcpu_id, int access)
 452{
 453        u32 *reg;
 454        int mode = ACCESS_READ_VALUE | access;
 455        struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
 456
 457        reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
 458        vgic_reg_access(mmio, reg, offset, mode);
 459        if (mmio->is_write) {
 460                if (access & ACCESS_WRITE_CLEARBIT) {
 461                        if (offset < 4) /* Force SGI enabled */
 462                                *reg |= 0xffff;
 463                        vgic_retire_disabled_irqs(target_vcpu);
 464                }
 465                vgic_update_state(kvm);
 466                return true;
 467        }
 468
 469        return false;
 470}
 471
 472bool vgic_handle_set_pending_reg(struct kvm *kvm,
 473                                 struct kvm_exit_mmio *mmio,
 474                                 phys_addr_t offset, int vcpu_id)
 475{
 476        u32 *reg, orig;
 477        u32 level_mask;
 478        int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
 479        struct vgic_dist *dist = &kvm->arch.vgic;
 480
 481        reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
 482        level_mask = (~(*reg));
 483
 484        /* Mark both level and edge triggered irqs as pending */
 485        reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
 486        orig = *reg;
 487        vgic_reg_access(mmio, reg, offset, mode);
 488
 489        if (mmio->is_write) {
 490                /* Set the soft-pending flag only for level-triggered irqs */
 491                reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
 492                                          vcpu_id, offset);
 493                vgic_reg_access(mmio, reg, offset, mode);
 494                *reg &= level_mask;
 495
 496                /* Ignore writes to SGIs */
 497                if (offset < 2) {
 498                        *reg &= ~0xffff;
 499                        *reg |= orig & 0xffff;
 500                }
 501
 502                vgic_update_state(kvm);
 503                return true;
 504        }
 505
 506        return false;
 507}
 508
 509bool vgic_handle_clear_pending_reg(struct kvm *kvm,
 510                                   struct kvm_exit_mmio *mmio,
 511                                   phys_addr_t offset, int vcpu_id)
 512{
 513        u32 *level_active;
 514        u32 *reg, orig;
 515        int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
 516        struct vgic_dist *dist = &kvm->arch.vgic;
 517
 518        reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
 519        orig = *reg;
 520        vgic_reg_access(mmio, reg, offset, mode);
 521        if (mmio->is_write) {
 522                /* Re-set level triggered level-active interrupts */
 523                level_active = vgic_bitmap_get_reg(&dist->irq_level,
 524                                          vcpu_id, offset);
 525                reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
 526                *reg |= *level_active;
 527
 528                /* Ignore writes to SGIs */
 529                if (offset < 2) {
 530                        *reg &= ~0xffff;
 531                        *reg |= orig & 0xffff;
 532                }
 533
 534                /* Clear soft-pending flags */
 535                reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
 536                                          vcpu_id, offset);
 537                vgic_reg_access(mmio, reg, offset, mode);
 538
 539                vgic_update_state(kvm);
 540                return true;
 541        }
 542        return false;
 543}
 544
 545bool vgic_handle_set_active_reg(struct kvm *kvm,
 546                                struct kvm_exit_mmio *mmio,
 547                                phys_addr_t offset, int vcpu_id)
 548{
 549        u32 *reg;
 550        struct vgic_dist *dist = &kvm->arch.vgic;
 551
 552        reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
 553        vgic_reg_access(mmio, reg, offset,
 554                        ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
 555
 556        if (mmio->is_write) {
 557                vgic_update_state(kvm);
 558                return true;
 559        }
 560
 561        return false;
 562}
 563
 564bool vgic_handle_clear_active_reg(struct kvm *kvm,
 565                                  struct kvm_exit_mmio *mmio,
 566                                  phys_addr_t offset, int vcpu_id)
 567{
 568        u32 *reg;
 569        struct vgic_dist *dist = &kvm->arch.vgic;
 570
 571        reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
 572        vgic_reg_access(mmio, reg, offset,
 573                        ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
 574
 575        if (mmio->is_write) {
 576                vgic_update_state(kvm);
 577                return true;
 578        }
 579
 580        return false;
 581}
 582
 583static u32 vgic_cfg_expand(u16 val)
 584{
 585        u32 res = 0;
 586        int i;
 587
 588        /*
 589         * Turn a 16bit value like abcd...mnop into a 32bit word
 590         * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
 591         */
 592        for (i = 0; i < 16; i++)
 593                res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
 594
 595        return res;
 596}
 597
 598static u16 vgic_cfg_compress(u32 val)
 599{
 600        u16 res = 0;
 601        int i;
 602
 603        /*
 604         * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
 605         * abcd...mnop which is what we really care about.
 606         */
 607        for (i = 0; i < 16; i++)
 608                res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
 609
 610        return res;
 611}
 612
 613/*
 614 * The distributor uses 2 bits per IRQ for the CFG register, but the
 615 * LSB is always 0. As such, we only keep the upper bit, and use the
 616 * two above functions to compress/expand the bits
 617 */
 618bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
 619                         phys_addr_t offset)
 620{
 621        u32 val;
 622
 623        if (offset & 4)
 624                val = *reg >> 16;
 625        else
 626                val = *reg & 0xffff;
 627
 628        val = vgic_cfg_expand(val);
 629        vgic_reg_access(mmio, &val, offset,
 630                        ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
 631        if (mmio->is_write) {
 632                if (offset < 8) {
 633                        *reg = ~0U; /* Force PPIs/SGIs to 1 */
 634                        return false;
 635                }
 636
 637                val = vgic_cfg_compress(val);
 638                if (offset & 4) {
 639                        *reg &= 0xffff;
 640                        *reg |= val << 16;
 641                } else {
 642                        *reg &= 0xffff << 16;
 643                        *reg |= val;
 644                }
 645        }
 646
 647        return false;
 648}
 649
 650/**
 651 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
 652 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 653 *
 654 * Move any IRQs that have already been assigned to LRs back to the
 655 * emulated distributor state so that the complete emulated state can be read
 656 * from the main emulation structures without investigating the LRs.
 657 */
 658void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
 659{
 660        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 661        int i;
 662
 663        for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
 664                struct vgic_lr lr = vgic_get_lr(vcpu, i);
 665
 666                /*
 667                 * There are three options for the state bits:
 668                 *
 669                 * 01: pending
 670                 * 10: active
 671                 * 11: pending and active
 672                 */
 673                BUG_ON(!(lr.state & LR_STATE_MASK));
 674
 675                /* Reestablish SGI source for pending and active IRQs */
 676                if (lr.irq < VGIC_NR_SGIS)
 677                        add_sgi_source(vcpu, lr.irq, lr.source);
 678
 679                /*
 680                 * If the LR holds an active (10) or a pending and active (11)
 681                 * interrupt then move the active state to the
 682                 * distributor tracking bit.
 683                 */
 684                if (lr.state & LR_STATE_ACTIVE) {
 685                        vgic_irq_set_active(vcpu, lr.irq);
 686                        lr.state &= ~LR_STATE_ACTIVE;
 687                }
 688
 689                /*
 690                 * Reestablish the pending state on the distributor and the
 691                 * CPU interface.  It may have already been pending, but that
 692                 * is fine, then we are only setting a few bits that were
 693                 * already set.
 694                 */
 695                if (lr.state & LR_STATE_PENDING) {
 696                        vgic_dist_irq_set_pending(vcpu, lr.irq);
 697                        lr.state &= ~LR_STATE_PENDING;
 698                }
 699
 700                vgic_set_lr(vcpu, i, lr);
 701
 702                /*
 703                 * Mark the LR as free for other use.
 704                 */
 705                BUG_ON(lr.state & LR_STATE_MASK);
 706                vgic_retire_lr(i, lr.irq, vcpu);
 707                vgic_irq_clear_queued(vcpu, lr.irq);
 708
 709                /* Finally update the VGIC state. */
 710                vgic_update_state(vcpu->kvm);
 711        }
 712}
 713
 714const
 715struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
 716                                      int len, gpa_t offset)
 717{
 718        while (ranges->len) {
 719                if (offset >= ranges->base &&
 720                    (offset + len) <= (ranges->base + ranges->len))
 721                        return ranges;
 722                ranges++;
 723        }
 724
 725        return NULL;
 726}
 727
 728static bool vgic_validate_access(const struct vgic_dist *dist,
 729                                 const struct vgic_io_range *range,
 730                                 unsigned long offset)
 731{
 732        int irq;
 733
 734        if (!range->bits_per_irq)
 735                return true;    /* Not an irq-based access */
 736
 737        irq = offset * 8 / range->bits_per_irq;
 738        if (irq >= dist->nr_irqs)
 739                return false;
 740
 741        return true;
 742}
 743
 744/*
 745 * Call the respective handler function for the given range.
 746 * We split up any 64 bit accesses into two consecutive 32 bit
 747 * handler calls and merge the result afterwards.
 748 * We do this in a little endian fashion regardless of the host's
 749 * or guest's endianness, because the GIC is always LE and the rest of
 750 * the code (vgic_reg_access) also puts it in a LE fashion already.
 751 * At this point we have already identified the handle function, so
 752 * range points to that one entry and offset is relative to this.
 753 */
 754static bool call_range_handler(struct kvm_vcpu *vcpu,
 755                               struct kvm_exit_mmio *mmio,
 756                               unsigned long offset,
 757                               const struct vgic_io_range *range)
 758{
 759        struct kvm_exit_mmio mmio32;
 760        bool ret;
 761
 762        if (likely(mmio->len <= 4))
 763                return range->handle_mmio(vcpu, mmio, offset);
 764
 765        /*
 766         * Any access bigger than 4 bytes (that we currently handle in KVM)
 767         * is actually 8 bytes long, caused by a 64-bit access
 768         */
 769
 770        mmio32.len = 4;
 771        mmio32.is_write = mmio->is_write;
 772        mmio32.private = mmio->private;
 773
 774        mmio32.phys_addr = mmio->phys_addr + 4;
 775        mmio32.data = &((u32 *)mmio->data)[1];
 776        ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
 777
 778        mmio32.phys_addr = mmio->phys_addr;
 779        mmio32.data = &((u32 *)mmio->data)[0];
 780        ret |= range->handle_mmio(vcpu, &mmio32, offset);
 781
 782        return ret;
 783}
 784
 785/**
 786 * vgic_handle_mmio_access - handle an in-kernel MMIO access
 787 * This is called by the read/write KVM IO device wrappers below.
 788 * @vcpu:       pointer to the vcpu performing the access
 789 * @this:       pointer to the KVM IO device in charge
 790 * @addr:       guest physical address of the access
 791 * @len:        size of the access
 792 * @val:        pointer to the data region
 793 * @is_write:   read or write access
 794 *
 795 * returns true if the MMIO access could be performed
 796 */
 797static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
 798                                   struct kvm_io_device *this, gpa_t addr,
 799                                   int len, void *val, bool is_write)
 800{
 801        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 802        struct vgic_io_device *iodev = container_of(this,
 803                                                    struct vgic_io_device, dev);
 804        struct kvm_run *run = vcpu->run;
 805        const struct vgic_io_range *range;
 806        struct kvm_exit_mmio mmio;
 807        bool updated_state;
 808        gpa_t offset;
 809
 810        offset = addr - iodev->addr;
 811        range = vgic_find_range(iodev->reg_ranges, len, offset);
 812        if (unlikely(!range || !range->handle_mmio)) {
 813                pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
 814                return -ENXIO;
 815        }
 816
 817        mmio.phys_addr = addr;
 818        mmio.len = len;
 819        mmio.is_write = is_write;
 820        mmio.data = val;
 821        mmio.private = iodev->redist_vcpu;
 822
 823        spin_lock(&dist->lock);
 824        offset -= range->base;
 825        if (vgic_validate_access(dist, range, offset)) {
 826                updated_state = call_range_handler(vcpu, &mmio, offset, range);
 827        } else {
 828                if (!is_write)
 829                        memset(val, 0, len);
 830                updated_state = false;
 831        }
 832        spin_unlock(&dist->lock);
 833        run->mmio.is_write      = is_write;
 834        run->mmio.len           = len;
 835        run->mmio.phys_addr     = addr;
 836        memcpy(run->mmio.data, val, len);
 837
 838        kvm_handle_mmio_return(vcpu, run);
 839
 840        if (updated_state)
 841                vgic_kick_vcpus(vcpu->kvm);
 842
 843        return 0;
 844}
 845
 846static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
 847                                 struct kvm_io_device *this,
 848                                 gpa_t addr, int len, void *val)
 849{
 850        return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
 851}
 852
 853static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
 854                                  struct kvm_io_device *this,
 855                                  gpa_t addr, int len, const void *val)
 856{
 857        return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
 858                                       true);
 859}
 860
 861struct kvm_io_device_ops vgic_io_ops = {
 862        .read   = vgic_handle_mmio_read,
 863        .write  = vgic_handle_mmio_write,
 864};
 865
 866/**
 867 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
 868 * @kvm:            The VM structure pointer
 869 * @base:           The (guest) base address for the register frame
 870 * @len:            Length of the register frame window
 871 * @ranges:         Describing the handler functions for each register
 872 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
 873 * @iodev:          Points to memory to be passed on to the handler
 874 *
 875 * @iodev stores the parameters of this function to be usable by the handler
 876 * respectively the dispatcher function (since the KVM I/O bus framework lacks
 877 * an opaque parameter). Initialization is done in this function, but the
 878 * reference should be valid and unique for the whole VGIC lifetime.
 879 * If the register frame is not mapped for a specific VCPU, pass -1 to
 880 * @redist_vcpu_id.
 881 */
 882int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
 883                             const struct vgic_io_range *ranges,
 884                             int redist_vcpu_id,
 885                             struct vgic_io_device *iodev)
 886{
 887        struct kvm_vcpu *vcpu = NULL;
 888        int ret;
 889
 890        if (redist_vcpu_id >= 0)
 891                vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
 892
 893        iodev->addr             = base;
 894        iodev->len              = len;
 895        iodev->reg_ranges       = ranges;
 896        iodev->redist_vcpu      = vcpu;
 897
 898        kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
 899
 900        mutex_lock(&kvm->slots_lock);
 901
 902        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
 903                                      &iodev->dev);
 904        mutex_unlock(&kvm->slots_lock);
 905
 906        /* Mark the iodev as invalid if registration fails. */
 907        if (ret)
 908                iodev->dev.ops = NULL;
 909
 910        return ret;
 911}
 912
 913static int vgic_nr_shared_irqs(struct vgic_dist *dist)
 914{
 915        return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
 916}
 917
 918static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
 919{
 920        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 921        unsigned long *active, *enabled, *act_percpu, *act_shared;
 922        unsigned long active_private, active_shared;
 923        int nr_shared = vgic_nr_shared_irqs(dist);
 924        int vcpu_id;
 925
 926        vcpu_id = vcpu->vcpu_id;
 927        act_percpu = vcpu->arch.vgic_cpu.active_percpu;
 928        act_shared = vcpu->arch.vgic_cpu.active_shared;
 929
 930        active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
 931        enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
 932        bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
 933
 934        active = vgic_bitmap_get_shared_map(&dist->irq_active);
 935        enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
 936        bitmap_and(act_shared, active, enabled, nr_shared);
 937        bitmap_and(act_shared, act_shared,
 938                   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
 939                   nr_shared);
 940
 941        active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
 942        active_shared = find_first_bit(act_shared, nr_shared);
 943
 944        return (active_private < VGIC_NR_PRIVATE_IRQS ||
 945                active_shared < nr_shared);
 946}
 947
 948static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
 949{
 950        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 951        unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
 952        unsigned long pending_private, pending_shared;
 953        int nr_shared = vgic_nr_shared_irqs(dist);
 954        int vcpu_id;
 955
 956        vcpu_id = vcpu->vcpu_id;
 957        pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
 958        pend_shared = vcpu->arch.vgic_cpu.pending_shared;
 959
 960        pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
 961        enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
 962        bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
 963
 964        pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
 965        enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
 966        bitmap_and(pend_shared, pending, enabled, nr_shared);
 967        bitmap_and(pend_shared, pend_shared,
 968                   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
 969                   nr_shared);
 970
 971        pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
 972        pending_shared = find_first_bit(pend_shared, nr_shared);
 973        return (pending_private < VGIC_NR_PRIVATE_IRQS ||
 974                pending_shared < vgic_nr_shared_irqs(dist));
 975}
 976
 977/*
 978 * Update the interrupt state and determine which CPUs have pending
 979 * or active interrupts. Must be called with distributor lock held.
 980 */
 981void vgic_update_state(struct kvm *kvm)
 982{
 983        struct vgic_dist *dist = &kvm->arch.vgic;
 984        struct kvm_vcpu *vcpu;
 985        int c;
 986
 987        if (!dist->enabled) {
 988                set_bit(0, dist->irq_pending_on_cpu);
 989                return;
 990        }
 991
 992        kvm_for_each_vcpu(c, vcpu, kvm) {
 993                if (compute_pending_for_cpu(vcpu))
 994                        set_bit(c, dist->irq_pending_on_cpu);
 995
 996                if (compute_active_for_cpu(vcpu))
 997                        set_bit(c, dist->irq_active_on_cpu);
 998                else
 999                        clear_bit(c, dist->irq_active_on_cpu);
1000        }
1001}
1002
1003static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1004{
1005        return vgic_ops->get_lr(vcpu, lr);
1006}
1007
1008static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1009                               struct vgic_lr vlr)
1010{
1011        vgic_ops->set_lr(vcpu, lr, vlr);
1012}
1013
1014static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1015                               struct vgic_lr vlr)
1016{
1017        vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1018}
1019
1020static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1021{
1022        return vgic_ops->get_elrsr(vcpu);
1023}
1024
1025static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1026{
1027        return vgic_ops->get_eisr(vcpu);
1028}
1029
1030static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1031{
1032        vgic_ops->clear_eisr(vcpu);
1033}
1034
1035static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1036{
1037        return vgic_ops->get_interrupt_status(vcpu);
1038}
1039
1040static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1041{
1042        vgic_ops->enable_underflow(vcpu);
1043}
1044
1045static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1046{
1047        vgic_ops->disable_underflow(vcpu);
1048}
1049
1050void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1051{
1052        vgic_ops->get_vmcr(vcpu, vmcr);
1053}
1054
1055void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1056{
1057        vgic_ops->set_vmcr(vcpu, vmcr);
1058}
1059
1060static inline void vgic_enable(struct kvm_vcpu *vcpu)
1061{
1062        vgic_ops->enable(vcpu);
1063}
1064
1065static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1066{
1067        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1068        struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1069
1070        vlr.state = 0;
1071        vgic_set_lr(vcpu, lr_nr, vlr);
1072        clear_bit(lr_nr, vgic_cpu->lr_used);
1073        vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1074        vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1075}
1076
1077/*
1078 * An interrupt may have been disabled after being made pending on the
1079 * CPU interface (the classic case is a timer running while we're
1080 * rebooting the guest - the interrupt would kick as soon as the CPU
1081 * interface gets enabled, with deadly consequences).
1082 *
1083 * The solution is to examine already active LRs, and check the
1084 * interrupt is still enabled. If not, just retire it.
1085 */
1086static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1087{
1088        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1089        int lr;
1090
1091        for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1092                struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1093
1094                if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1095                        vgic_retire_lr(lr, vlr.irq, vcpu);
1096                        if (vgic_irq_is_queued(vcpu, vlr.irq))
1097                                vgic_irq_clear_queued(vcpu, vlr.irq);
1098                }
1099        }
1100}
1101
1102static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1103                                 int lr_nr, struct vgic_lr vlr)
1104{
1105        if (vgic_irq_is_active(vcpu, irq)) {
1106                vlr.state |= LR_STATE_ACTIVE;
1107                kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1108                vgic_irq_clear_active(vcpu, irq);
1109                vgic_update_state(vcpu->kvm);
1110        } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
1111                vlr.state |= LR_STATE_PENDING;
1112                kvm_debug("Set pending: 0x%x\n", vlr.state);
1113        }
1114
1115        if (!vgic_irq_is_edge(vcpu, irq))
1116                vlr.state |= LR_EOI_INT;
1117
1118        vgic_set_lr(vcpu, lr_nr, vlr);
1119        vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1120}
1121
1122/*
1123 * Queue an interrupt to a CPU virtual interface. Return true on success,
1124 * or false if it wasn't possible to queue it.
1125 * sgi_source must be zero for any non-SGI interrupts.
1126 */
1127bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1128{
1129        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1130        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1131        struct vgic_lr vlr;
1132        int lr;
1133
1134        /* Sanitize the input... */
1135        BUG_ON(sgi_source_id & ~7);
1136        BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1137        BUG_ON(irq >= dist->nr_irqs);
1138
1139        kvm_debug("Queue IRQ%d\n", irq);
1140
1141        lr = vgic_cpu->vgic_irq_lr_map[irq];
1142
1143        /* Do we have an active interrupt for the same CPUID? */
1144        if (lr != LR_EMPTY) {
1145                vlr = vgic_get_lr(vcpu, lr);
1146                if (vlr.source == sgi_source_id) {
1147                        kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1148                        BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1149                        vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1150                        return true;
1151                }
1152        }
1153
1154        /* Try to use another LR for this interrupt */
1155        lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1156                               vgic->nr_lr);
1157        if (lr >= vgic->nr_lr)
1158                return false;
1159
1160        kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1161        vgic_cpu->vgic_irq_lr_map[irq] = lr;
1162        set_bit(lr, vgic_cpu->lr_used);
1163
1164        vlr.irq = irq;
1165        vlr.source = sgi_source_id;
1166        vlr.state = 0;
1167        vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1168
1169        return true;
1170}
1171
1172static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1173{
1174        if (!vgic_can_sample_irq(vcpu, irq))
1175                return true; /* level interrupt, already queued */
1176
1177        if (vgic_queue_irq(vcpu, 0, irq)) {
1178                if (vgic_irq_is_edge(vcpu, irq)) {
1179                        vgic_dist_irq_clear_pending(vcpu, irq);
1180                        vgic_cpu_irq_clear(vcpu, irq);
1181                } else {
1182                        vgic_irq_set_queued(vcpu, irq);
1183                }
1184
1185                return true;
1186        }
1187
1188        return false;
1189}
1190
1191/*
1192 * Fill the list registers with pending interrupts before running the
1193 * guest.
1194 */
1195static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1196{
1197        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1198        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1199        unsigned long *pa_percpu, *pa_shared;
1200        int i, vcpu_id;
1201        int overflow = 0;
1202        int nr_shared = vgic_nr_shared_irqs(dist);
1203
1204        vcpu_id = vcpu->vcpu_id;
1205
1206        pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1207        pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1208
1209        bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1210                  VGIC_NR_PRIVATE_IRQS);
1211        bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1212                  nr_shared);
1213        /*
1214         * We may not have any pending interrupt, or the interrupts
1215         * may have been serviced from another vcpu. In all cases,
1216         * move along.
1217         */
1218        if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1219                goto epilog;
1220
1221        /* SGIs */
1222        for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1223                if (!queue_sgi(vcpu, i))
1224                        overflow = 1;
1225        }
1226
1227        /* PPIs */
1228        for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1229                if (!vgic_queue_hwirq(vcpu, i))
1230                        overflow = 1;
1231        }
1232
1233        /* SPIs */
1234        for_each_set_bit(i, pa_shared, nr_shared) {
1235                if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1236                        overflow = 1;
1237        }
1238
1239
1240
1241
1242epilog:
1243        if (overflow) {
1244                vgic_enable_underflow(vcpu);
1245        } else {
1246                vgic_disable_underflow(vcpu);
1247                /*
1248                 * We're about to run this VCPU, and we've consumed
1249                 * everything the distributor had in store for
1250                 * us. Claim we don't have anything pending. We'll
1251                 * adjust that if needed while exiting.
1252                 */
1253                clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1254        }
1255}
1256
1257static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1258{
1259        u32 status = vgic_get_interrupt_status(vcpu);
1260        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1261        bool level_pending = false;
1262        struct kvm *kvm = vcpu->kvm;
1263
1264        kvm_debug("STATUS = %08x\n", status);
1265
1266        if (status & INT_STATUS_EOI) {
1267                /*
1268                 * Some level interrupts have been EOIed. Clear their
1269                 * active bit.
1270                 */
1271                u64 eisr = vgic_get_eisr(vcpu);
1272                unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1273                int lr;
1274
1275                for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1276                        struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1277                        WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1278
1279                        spin_lock(&dist->lock);
1280                        vgic_irq_clear_queued(vcpu, vlr.irq);
1281                        WARN_ON(vlr.state & LR_STATE_MASK);
1282                        vlr.state = 0;
1283                        vgic_set_lr(vcpu, lr, vlr);
1284
1285                        /*
1286                         * If the IRQ was EOIed it was also ACKed and we we
1287                         * therefore assume we can clear the soft pending
1288                         * state (should it had been set) for this interrupt.
1289                         *
1290                         * Note: if the IRQ soft pending state was set after
1291                         * the IRQ was acked, it actually shouldn't be
1292                         * cleared, but we have no way of knowing that unless
1293                         * we start trapping ACKs when the soft-pending state
1294                         * is set.
1295                         */
1296                        vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1297
1298                        /*
1299                         * kvm_notify_acked_irq calls kvm_set_irq()
1300                         * to reset the IRQ level. Need to release the
1301                         * lock for kvm_set_irq to grab it.
1302                         */
1303                        spin_unlock(&dist->lock);
1304
1305                        kvm_notify_acked_irq(kvm, 0,
1306                                             vlr.irq - VGIC_NR_PRIVATE_IRQS);
1307                        spin_lock(&dist->lock);
1308
1309                        /* Any additional pending interrupt? */
1310                        if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1311                                vgic_cpu_irq_set(vcpu, vlr.irq);
1312                                level_pending = true;
1313                        } else {
1314                                vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1315                                vgic_cpu_irq_clear(vcpu, vlr.irq);
1316                        }
1317
1318                        spin_unlock(&dist->lock);
1319
1320                        /*
1321                         * Despite being EOIed, the LR may not have
1322                         * been marked as empty.
1323                         */
1324                        vgic_sync_lr_elrsr(vcpu, lr, vlr);
1325                }
1326        }
1327
1328        if (status & INT_STATUS_UNDERFLOW)
1329                vgic_disable_underflow(vcpu);
1330
1331        /*
1332         * In the next iterations of the vcpu loop, if we sync the vgic state
1333         * after flushing it, but before entering the guest (this happens for
1334         * pending signals and vmid rollovers), then make sure we don't pick
1335         * up any old maintenance interrupts here.
1336         */
1337        vgic_clear_eisr(vcpu);
1338
1339        return level_pending;
1340}
1341
1342/* Sync back the VGIC state after a guest run */
1343static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1344{
1345        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1346        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1347        u64 elrsr;
1348        unsigned long *elrsr_ptr;
1349        int lr, pending;
1350        bool level_pending;
1351
1352        level_pending = vgic_process_maintenance(vcpu);
1353        elrsr = vgic_get_elrsr(vcpu);
1354        elrsr_ptr = u64_to_bitmask(&elrsr);
1355
1356        /* Clear mappings for empty LRs */
1357        for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1358                struct vgic_lr vlr;
1359
1360                if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1361                        continue;
1362
1363                vlr = vgic_get_lr(vcpu, lr);
1364
1365                BUG_ON(vlr.irq >= dist->nr_irqs);
1366                vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1367        }
1368
1369        /* Check if we still have something up our sleeve... */
1370        pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1371        if (level_pending || pending < vgic->nr_lr)
1372                set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1373}
1374
1375void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1376{
1377        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1378
1379        if (!irqchip_in_kernel(vcpu->kvm))
1380                return;
1381
1382        spin_lock(&dist->lock);
1383        __kvm_vgic_flush_hwstate(vcpu);
1384        spin_unlock(&dist->lock);
1385}
1386
1387void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1388{
1389        if (!irqchip_in_kernel(vcpu->kvm))
1390                return;
1391
1392        __kvm_vgic_sync_hwstate(vcpu);
1393}
1394
1395int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1396{
1397        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1398
1399        if (!irqchip_in_kernel(vcpu->kvm))
1400                return 0;
1401
1402        return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1403}
1404
1405int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1406{
1407        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1408
1409        if (!irqchip_in_kernel(vcpu->kvm))
1410                return 0;
1411
1412        return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1413}
1414
1415
1416void vgic_kick_vcpus(struct kvm *kvm)
1417{
1418        struct kvm_vcpu *vcpu;
1419        int c;
1420
1421        /*
1422         * We've injected an interrupt, time to find out who deserves
1423         * a good kick...
1424         */
1425        kvm_for_each_vcpu(c, vcpu, kvm) {
1426                if (kvm_vgic_vcpu_pending_irq(vcpu))
1427                        kvm_vcpu_kick(vcpu);
1428        }
1429}
1430
1431static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1432{
1433        int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1434
1435        /*
1436         * Only inject an interrupt if:
1437         * - edge triggered and we have a rising edge
1438         * - level triggered and we change level
1439         */
1440        if (edge_triggered) {
1441                int state = vgic_dist_irq_is_pending(vcpu, irq);
1442                return level > state;
1443        } else {
1444                int state = vgic_dist_irq_get_level(vcpu, irq);
1445                return level != state;
1446        }
1447}
1448
1449static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1450                                  unsigned int irq_num, bool level)
1451{
1452        struct vgic_dist *dist = &kvm->arch.vgic;
1453        struct kvm_vcpu *vcpu;
1454        int edge_triggered, level_triggered;
1455        int enabled;
1456        bool ret = true, can_inject = true;
1457
1458        spin_lock(&dist->lock);
1459
1460        vcpu = kvm_get_vcpu(kvm, cpuid);
1461        edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1462        level_triggered = !edge_triggered;
1463
1464        if (!vgic_validate_injection(vcpu, irq_num, level)) {
1465                ret = false;
1466                goto out;
1467        }
1468
1469        if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1470                cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1471                if (cpuid == VCPU_NOT_ALLOCATED) {
1472                        /* Pretend we use CPU0, and prevent injection */
1473                        cpuid = 0;
1474                        can_inject = false;
1475                }
1476                vcpu = kvm_get_vcpu(kvm, cpuid);
1477        }
1478
1479        kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1480
1481        if (level) {
1482                if (level_triggered)
1483                        vgic_dist_irq_set_level(vcpu, irq_num);
1484                vgic_dist_irq_set_pending(vcpu, irq_num);
1485        } else {
1486                if (level_triggered) {
1487                        vgic_dist_irq_clear_level(vcpu, irq_num);
1488                        if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1489                                vgic_dist_irq_clear_pending(vcpu, irq_num);
1490                }
1491
1492                ret = false;
1493                goto out;
1494        }
1495
1496        enabled = vgic_irq_is_enabled(vcpu, irq_num);
1497
1498        if (!enabled || !can_inject) {
1499                ret = false;
1500                goto out;
1501        }
1502
1503        if (!vgic_can_sample_irq(vcpu, irq_num)) {
1504                /*
1505                 * Level interrupt in progress, will be picked up
1506                 * when EOId.
1507                 */
1508                ret = false;
1509                goto out;
1510        }
1511
1512        if (level) {
1513                vgic_cpu_irq_set(vcpu, irq_num);
1514                set_bit(cpuid, dist->irq_pending_on_cpu);
1515        }
1516
1517out:
1518        spin_unlock(&dist->lock);
1519
1520        return ret ? cpuid : -EINVAL;
1521}
1522
1523/**
1524 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1525 * @kvm:     The VM structure pointer
1526 * @cpuid:   The CPU for PPIs
1527 * @irq_num: The IRQ number that is assigned to the device
1528 * @level:   Edge-triggered:  true:  to trigger the interrupt
1529 *                            false: to ignore the call
1530 *           Level-sensitive  true:  activates an interrupt
1531 *                            false: deactivates an interrupt
1532 *
1533 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1534 * level-sensitive interrupts.  You can think of the level parameter as 1
1535 * being HIGH and 0 being LOW and all devices being active-HIGH.
1536 */
1537int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1538                        bool level)
1539{
1540        int ret = 0;
1541        int vcpu_id;
1542
1543        if (unlikely(!vgic_initialized(kvm))) {
1544                /*
1545                 * We only provide the automatic initialization of the VGIC
1546                 * for the legacy case of a GICv2. Any other type must
1547                 * be explicitly initialized once setup with the respective
1548                 * KVM device call.
1549                 */
1550                if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1551                        ret = -EBUSY;
1552                        goto out;
1553                }
1554                mutex_lock(&kvm->lock);
1555                ret = vgic_init(kvm);
1556                mutex_unlock(&kvm->lock);
1557
1558                if (ret)
1559                        goto out;
1560        }
1561
1562        if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1563                return -EINVAL;
1564
1565        vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1566        if (vcpu_id >= 0) {
1567                /* kick the specified vcpu */
1568                kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1569        }
1570
1571out:
1572        return ret;
1573}
1574
1575static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1576{
1577        /*
1578         * We cannot rely on the vgic maintenance interrupt to be
1579         * delivered synchronously. This means we can only use it to
1580         * exit the VM, and we perform the handling of EOIed
1581         * interrupts on the exit path (see vgic_process_maintenance).
1582         */
1583        return IRQ_HANDLED;
1584}
1585
1586void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1587{
1588        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1589
1590        kfree(vgic_cpu->pending_shared);
1591        kfree(vgic_cpu->active_shared);
1592        kfree(vgic_cpu->pend_act_shared);
1593        kfree(vgic_cpu->vgic_irq_lr_map);
1594        vgic_cpu->pending_shared = NULL;
1595        vgic_cpu->active_shared = NULL;
1596        vgic_cpu->pend_act_shared = NULL;
1597        vgic_cpu->vgic_irq_lr_map = NULL;
1598}
1599
1600static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1601{
1602        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1603
1604        int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1605        vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1606        vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1607        vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1608        vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1609
1610        if (!vgic_cpu->pending_shared
1611                || !vgic_cpu->active_shared
1612                || !vgic_cpu->pend_act_shared
1613                || !vgic_cpu->vgic_irq_lr_map) {
1614                kvm_vgic_vcpu_destroy(vcpu);
1615                return -ENOMEM;
1616        }
1617
1618        memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1619
1620        /*
1621         * Store the number of LRs per vcpu, so we don't have to go
1622         * all the way to the distributor structure to find out. Only
1623         * assembly code should use this one.
1624         */
1625        vgic_cpu->nr_lr = vgic->nr_lr;
1626
1627        return 0;
1628}
1629
1630/**
1631 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1632 *
1633 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1634 * can use.
1635 */
1636int kvm_vgic_get_max_vcpus(void)
1637{
1638        return vgic->max_gic_vcpus;
1639}
1640
1641void kvm_vgic_destroy(struct kvm *kvm)
1642{
1643        struct vgic_dist *dist = &kvm->arch.vgic;
1644        struct kvm_vcpu *vcpu;
1645        int i;
1646
1647        kvm_for_each_vcpu(i, vcpu, kvm)
1648                kvm_vgic_vcpu_destroy(vcpu);
1649
1650        vgic_free_bitmap(&dist->irq_enabled);
1651        vgic_free_bitmap(&dist->irq_level);
1652        vgic_free_bitmap(&dist->irq_pending);
1653        vgic_free_bitmap(&dist->irq_soft_pend);
1654        vgic_free_bitmap(&dist->irq_queued);
1655        vgic_free_bitmap(&dist->irq_cfg);
1656        vgic_free_bytemap(&dist->irq_priority);
1657        if (dist->irq_spi_target) {
1658                for (i = 0; i < dist->nr_cpus; i++)
1659                        vgic_free_bitmap(&dist->irq_spi_target[i]);
1660        }
1661        kfree(dist->irq_sgi_sources);
1662        kfree(dist->irq_spi_cpu);
1663        kfree(dist->irq_spi_mpidr);
1664        kfree(dist->irq_spi_target);
1665        kfree(dist->irq_pending_on_cpu);
1666        kfree(dist->irq_active_on_cpu);
1667        dist->irq_sgi_sources = NULL;
1668        dist->irq_spi_cpu = NULL;
1669        dist->irq_spi_target = NULL;
1670        dist->irq_pending_on_cpu = NULL;
1671        dist->irq_active_on_cpu = NULL;
1672        dist->nr_cpus = 0;
1673}
1674
1675/*
1676 * Allocate and initialize the various data structures. Must be called
1677 * with kvm->lock held!
1678 */
1679int vgic_init(struct kvm *kvm)
1680{
1681        struct vgic_dist *dist = &kvm->arch.vgic;
1682        struct kvm_vcpu *vcpu;
1683        int nr_cpus, nr_irqs;
1684        int ret, i, vcpu_id;
1685
1686        if (vgic_initialized(kvm))
1687                return 0;
1688
1689        nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1690        if (!nr_cpus)           /* No vcpus? Can't be good... */
1691                return -ENODEV;
1692
1693        /*
1694         * If nobody configured the number of interrupts, use the
1695         * legacy one.
1696         */
1697        if (!dist->nr_irqs)
1698                dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1699
1700        nr_irqs = dist->nr_irqs;
1701
1702        ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1703        ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1704        ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1705        ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1706        ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1707        ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1708        ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1709        ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1710
1711        if (ret)
1712                goto out;
1713
1714        dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1715        dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1716        dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1717                                       GFP_KERNEL);
1718        dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1719                                           GFP_KERNEL);
1720        dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1721                                           GFP_KERNEL);
1722        if (!dist->irq_sgi_sources ||
1723            !dist->irq_spi_cpu ||
1724            !dist->irq_spi_target ||
1725            !dist->irq_pending_on_cpu ||
1726            !dist->irq_active_on_cpu) {
1727                ret = -ENOMEM;
1728                goto out;
1729        }
1730
1731        for (i = 0; i < nr_cpus; i++)
1732                ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1733                                        nr_cpus, nr_irqs);
1734
1735        if (ret)
1736                goto out;
1737
1738        ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1739        if (ret)
1740                goto out;
1741
1742        kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1743                ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1744                if (ret) {
1745                        kvm_err("VGIC: Failed to allocate vcpu memory\n");
1746                        break;
1747                }
1748
1749                for (i = 0; i < dist->nr_irqs; i++) {
1750                        if (i < VGIC_NR_PPIS)
1751                                vgic_bitmap_set_irq_val(&dist->irq_enabled,
1752                                                        vcpu->vcpu_id, i, 1);
1753                        if (i < VGIC_NR_PRIVATE_IRQS)
1754                                vgic_bitmap_set_irq_val(&dist->irq_cfg,
1755                                                        vcpu->vcpu_id, i,
1756                                                        VGIC_CFG_EDGE);
1757                }
1758
1759                vgic_enable(vcpu);
1760        }
1761
1762out:
1763        if (ret)
1764                kvm_vgic_destroy(kvm);
1765
1766        return ret;
1767}
1768
1769static int init_vgic_model(struct kvm *kvm, int type)
1770{
1771        switch (type) {
1772        case KVM_DEV_TYPE_ARM_VGIC_V2:
1773                vgic_v2_init_emulation(kvm);
1774                break;
1775#ifdef CONFIG_ARM_GIC_V3
1776        case KVM_DEV_TYPE_ARM_VGIC_V3:
1777                vgic_v3_init_emulation(kvm);
1778                break;
1779#endif
1780        default:
1781                return -ENODEV;
1782        }
1783
1784        if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1785                return -E2BIG;
1786
1787        return 0;
1788}
1789
1790int kvm_vgic_create(struct kvm *kvm, u32 type)
1791{
1792        int i, vcpu_lock_idx = -1, ret;
1793        struct kvm_vcpu *vcpu;
1794
1795        mutex_lock(&kvm->lock);
1796
1797        if (irqchip_in_kernel(kvm)) {
1798                ret = -EEXIST;
1799                goto out;
1800        }
1801
1802        /*
1803         * This function is also called by the KVM_CREATE_IRQCHIP handler,
1804         * which had no chance yet to check the availability of the GICv2
1805         * emulation. So check this here again. KVM_CREATE_DEVICE does
1806         * the proper checks already.
1807         */
1808        if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
1809                ret = -ENODEV;
1810                goto out;
1811        }
1812
1813        /*
1814         * Any time a vcpu is run, vcpu_load is called which tries to grab the
1815         * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1816         * that no other VCPUs are run while we create the vgic.
1817         */
1818        ret = -EBUSY;
1819        kvm_for_each_vcpu(i, vcpu, kvm) {
1820                if (!mutex_trylock(&vcpu->mutex))
1821                        goto out_unlock;
1822                vcpu_lock_idx = i;
1823        }
1824
1825        kvm_for_each_vcpu(i, vcpu, kvm) {
1826                if (vcpu->arch.has_run_once)
1827                        goto out_unlock;
1828        }
1829        ret = 0;
1830
1831        ret = init_vgic_model(kvm, type);
1832        if (ret)
1833                goto out_unlock;
1834
1835        spin_lock_init(&kvm->arch.vgic.lock);
1836        kvm->arch.vgic.in_kernel = true;
1837        kvm->arch.vgic.vgic_model = type;
1838        kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1839        kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1840        kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1841        kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1842
1843out_unlock:
1844        for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1845                vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1846                mutex_unlock(&vcpu->mutex);
1847        }
1848
1849out:
1850        mutex_unlock(&kvm->lock);
1851        return ret;
1852}
1853
1854static int vgic_ioaddr_overlap(struct kvm *kvm)
1855{
1856        phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1857        phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1858
1859        if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1860                return 0;
1861        if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1862            (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1863                return -EBUSY;
1864        return 0;
1865}
1866
1867static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1868                              phys_addr_t addr, phys_addr_t size)
1869{
1870        int ret;
1871
1872        if (addr & ~KVM_PHYS_MASK)
1873                return -E2BIG;
1874
1875        if (addr & (SZ_4K - 1))
1876                return -EINVAL;
1877
1878        if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1879                return -EEXIST;
1880        if (addr + size < addr)
1881                return -EINVAL;
1882
1883        *ioaddr = addr;
1884        ret = vgic_ioaddr_overlap(kvm);
1885        if (ret)
1886                *ioaddr = VGIC_ADDR_UNDEF;
1887
1888        return ret;
1889}
1890
1891/**
1892 * kvm_vgic_addr - set or get vgic VM base addresses
1893 * @kvm:   pointer to the vm struct
1894 * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
1895 * @addr:  pointer to address value
1896 * @write: if true set the address in the VM address space, if false read the
1897 *          address
1898 *
1899 * Set or get the vgic base addresses for the distributor and the virtual CPU
1900 * interface in the VM physical address space.  These addresses are properties
1901 * of the emulated core/SoC and therefore user space initially knows this
1902 * information.
1903 */
1904int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1905{
1906        int r = 0;
1907        struct vgic_dist *vgic = &kvm->arch.vgic;
1908        int type_needed;
1909        phys_addr_t *addr_ptr, block_size;
1910        phys_addr_t alignment;
1911
1912        mutex_lock(&kvm->lock);
1913        switch (type) {
1914        case KVM_VGIC_V2_ADDR_TYPE_DIST:
1915                type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1916                addr_ptr = &vgic->vgic_dist_base;
1917                block_size = KVM_VGIC_V2_DIST_SIZE;
1918                alignment = SZ_4K;
1919                break;
1920        case KVM_VGIC_V2_ADDR_TYPE_CPU:
1921                type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1922                addr_ptr = &vgic->vgic_cpu_base;
1923                block_size = KVM_VGIC_V2_CPU_SIZE;
1924                alignment = SZ_4K;
1925                break;
1926#ifdef CONFIG_ARM_GIC_V3
1927        case KVM_VGIC_V3_ADDR_TYPE_DIST:
1928                type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1929                addr_ptr = &vgic->vgic_dist_base;
1930                block_size = KVM_VGIC_V3_DIST_SIZE;
1931                alignment = SZ_64K;
1932                break;
1933        case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1934                type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1935                addr_ptr = &vgic->vgic_redist_base;
1936                block_size = KVM_VGIC_V3_REDIST_SIZE;
1937                alignment = SZ_64K;
1938                break;
1939#endif
1940        default:
1941                r = -ENODEV;
1942                goto out;
1943        }
1944
1945        if (vgic->vgic_model != type_needed) {
1946                r = -ENODEV;
1947                goto out;
1948        }
1949
1950        if (write) {
1951                if (!IS_ALIGNED(*addr, alignment))
1952                        r = -EINVAL;
1953                else
1954                        r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1955                                               block_size);
1956        } else {
1957                *addr = *addr_ptr;
1958        }
1959
1960out:
1961        mutex_unlock(&kvm->lock);
1962        return r;
1963}
1964
1965int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1966{
1967        int r;
1968
1969        switch (attr->group) {
1970        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1971                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1972                u64 addr;
1973                unsigned long type = (unsigned long)attr->attr;
1974
1975                if (copy_from_user(&addr, uaddr, sizeof(addr)))
1976                        return -EFAULT;
1977
1978                r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1979                return (r == -ENODEV) ? -ENXIO : r;
1980        }
1981        case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1982                u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1983                u32 val;
1984                int ret = 0;
1985
1986                if (get_user(val, uaddr))
1987                        return -EFAULT;
1988
1989                /*
1990                 * We require:
1991                 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1992                 * - at most 1024 interrupts
1993                 * - a multiple of 32 interrupts
1994                 */
1995                if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1996                    val > VGIC_MAX_IRQS ||
1997                    (val & 31))
1998                        return -EINVAL;
1999
2000                mutex_lock(&dev->kvm->lock);
2001
2002                if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2003                        ret = -EBUSY;
2004                else
2005                        dev->kvm->arch.vgic.nr_irqs = val;
2006
2007                mutex_unlock(&dev->kvm->lock);
2008
2009                return ret;
2010        }
2011        case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2012                switch (attr->attr) {
2013                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2014                        r = vgic_init(dev->kvm);
2015                        return r;
2016                }
2017                break;
2018        }
2019        }
2020
2021        return -ENXIO;
2022}
2023
2024int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2025{
2026        int r = -ENXIO;
2027
2028        switch (attr->group) {
2029        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2030                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2031                u64 addr;
2032                unsigned long type = (unsigned long)attr->attr;
2033
2034                r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2035                if (r)
2036                        return (r == -ENODEV) ? -ENXIO : r;
2037
2038                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2039                        return -EFAULT;
2040                break;
2041        }
2042        case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2043                u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2044
2045                r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2046                break;
2047        }
2048
2049        }
2050
2051        return r;
2052}
2053
2054int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2055{
2056        if (vgic_find_range(ranges, 4, offset))
2057                return 0;
2058        else
2059                return -ENXIO;
2060}
2061
2062static void vgic_init_maintenance_interrupt(void *info)
2063{
2064        enable_percpu_irq(vgic->maint_irq, 0);
2065}
2066
2067static int vgic_cpu_notify(struct notifier_block *self,
2068                           unsigned long action, void *cpu)
2069{
2070        switch (action) {
2071        case CPU_STARTING:
2072        case CPU_STARTING_FROZEN:
2073                vgic_init_maintenance_interrupt(NULL);
2074                break;
2075        case CPU_DYING:
2076        case CPU_DYING_FROZEN:
2077                disable_percpu_irq(vgic->maint_irq);
2078                break;
2079        }
2080
2081        return NOTIFY_OK;
2082}
2083
2084static struct notifier_block vgic_cpu_nb = {
2085        .notifier_call = vgic_cpu_notify,
2086};
2087
2088static const struct of_device_id vgic_ids[] = {
2089        { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2090        { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2091        { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2092        { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2093        {},
2094};
2095
2096int kvm_vgic_hyp_init(void)
2097{
2098        const struct of_device_id *matched_id;
2099        const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2100                                const struct vgic_params **);
2101        struct device_node *vgic_node;
2102        int ret;
2103
2104        vgic_node = of_find_matching_node_and_match(NULL,
2105                                                    vgic_ids, &matched_id);
2106        if (!vgic_node) {
2107                kvm_err("error: no compatible GIC node found\n");
2108                return -ENODEV;
2109        }
2110
2111        vgic_probe = matched_id->data;
2112        ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2113        if (ret)
2114                return ret;
2115
2116        ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2117                                 "vgic", kvm_get_running_vcpus());
2118        if (ret) {
2119                kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2120                return ret;
2121        }
2122
2123        ret = __register_cpu_notifier(&vgic_cpu_nb);
2124        if (ret) {
2125                kvm_err("Cannot register vgic CPU notifier\n");
2126                goto out_free_irq;
2127        }
2128
2129        on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2130
2131        return 0;
2132
2133out_free_irq:
2134        free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2135        return ret;
2136}
2137
2138int kvm_irq_map_gsi(struct kvm *kvm,
2139                    struct kvm_kernel_irq_routing_entry *entries,
2140                    int gsi)
2141{
2142        return 0;
2143}
2144
2145int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2146{
2147        return pin;
2148}
2149
2150int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2151                u32 irq, int level, bool line_status)
2152{
2153        unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2154
2155        trace_kvm_set_irq(irq, level, irq_source_id);
2156
2157        BUG_ON(!vgic_initialized(kvm));
2158
2159        return kvm_vgic_inject_irq(kvm, 0, spi, level);
2160}
2161
2162/* MSI not implemented yet */
2163int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2164                struct kvm *kvm, int irq_source_id,
2165                int level, bool line_status)
2166{
2167        return 0;
2168}
2169