linux/arch/arm/mach-s3c24xx/iotiming-s3c2410.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Copyright (c) 2006-2009 Simtec Electronics
   4//      http://armlinux.simtec.co.uk/
   5//      Ben Dooks <ben@simtec.co.uk>
   6//
   7// S3C24XX CPU Frequency scaling - IO timing for S3C2410/S3C2440/S3C2442
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/errno.h>
  12#include <linux/cpufreq.h>
  13#include <linux/seq_file.h>
  14#include <linux/io.h>
  15#include <linux/slab.h>
  16
  17#include <mach/map.h>
  18#include <mach/regs-clock.h>
  19
  20#include <plat/cpu-freq-core.h>
  21
  22#include "regs-mem.h"
  23
  24#define print_ns(x) ((x) / 10), ((x) % 10)
  25
  26/**
  27 * s3c2410_print_timing - print bank timing data for debug purposes
  28 * @pfx: The prefix to put on the output
  29 * @timings: The timing inforamtion to print.
  30*/
  31static void s3c2410_print_timing(const char *pfx,
  32                                 struct s3c_iotimings *timings)
  33{
  34        struct s3c2410_iobank_timing *bt;
  35        int bank;
  36
  37        for (bank = 0; bank < MAX_BANKS; bank++) {
  38                bt = timings->bank[bank].io_2410;
  39                if (!bt)
  40                        continue;
  41
  42                printk(KERN_DEBUG "%s %d: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, "
  43                       "Tcoh=%d.%d, Tcah=%d.%d\n", pfx, bank,
  44                       print_ns(bt->tacs),
  45                       print_ns(bt->tcos),
  46                       print_ns(bt->tacc),
  47                       print_ns(bt->tcoh),
  48                       print_ns(bt->tcah));
  49        }
  50}
  51
  52/**
  53 * bank_reg - convert bank number to pointer to the control register.
  54 * @bank: The IO bank number.
  55 */
  56static inline void __iomem *bank_reg(unsigned int bank)
  57{
  58        return S3C2410_BANKCON0 + (bank << 2);
  59}
  60
  61/**
  62 * bank_is_io - test whether bank is used for IO
  63 * @bankcon: The bank control register.
  64 *
  65 * This is a simplistic test to see if any BANKCON[x] is not an IO
  66 * bank. It currently does not take into account whether BWSCON has
  67 * an illegal width-setting in it, or if the pin connected to nCS[x]
  68 * is actually being handled as a chip-select.
  69 */
  70static inline int bank_is_io(unsigned long bankcon)
  71{
  72        return !(bankcon & S3C2410_BANKCON_SDRAM);
  73}
  74
  75/**
  76 * to_div - convert cycle time to divisor
  77 * @cyc: The cycle time, in 10ths of nanoseconds.
  78 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
  79 *
  80 * Convert the given cycle time into the divisor to use to obtain it from
  81 * HCLK.
  82*/
  83static inline unsigned int to_div(unsigned int cyc, unsigned int hclk_tns)
  84{
  85        if (cyc == 0)
  86                return 0;
  87
  88        return DIV_ROUND_UP(cyc, hclk_tns);
  89}
  90
  91/**
  92 * calc_0124 - calculate divisor control for divisors that do /0, /1. /2 and /4
  93 * @cyc: The cycle time, in 10ths of nanoseconds.
  94 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
  95 * @v: Pointer to register to alter.
  96 * @shift: The shift to get to the control bits.
  97 *
  98 * Calculate the divisor, and turn it into the correct control bits to
  99 * set in the result, @v.
 100 */
 101static unsigned int calc_0124(unsigned int cyc, unsigned long hclk_tns,
 102                              unsigned long *v, int shift)
 103{
 104        unsigned int div = to_div(cyc, hclk_tns);
 105        unsigned long val;
 106
 107        s3c_freq_iodbg("%s: cyc=%d, hclk=%lu, shift=%d => div %d\n",
 108                       __func__, cyc, hclk_tns, shift, div);
 109
 110        switch (div) {
 111        case 0:
 112                val = 0;
 113                break;
 114        case 1:
 115                val = 1;
 116                break;
 117        case 2:
 118                val = 2;
 119                break;
 120        case 3:
 121        case 4:
 122                val = 3;
 123                break;
 124        default:
 125                return -1;
 126        }
 127
 128        *v |= val << shift;
 129        return 0;
 130}
 131
 132int calc_tacp(unsigned int cyc, unsigned long hclk, unsigned long *v)
 133{
 134        /* Currently no support for Tacp calculations. */
 135        return 0;
 136}
 137
 138/**
 139 * calc_tacc - calculate divisor control for tacc.
 140 * @cyc: The cycle time, in 10ths of nanoseconds.
 141 * @nwait_en: IS nWAIT enabled for this bank.
 142 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
 143 * @v: Pointer to register to alter.
 144 *
 145 * Calculate the divisor control for tACC, taking into account whether
 146 * the bank has nWAIT enabled. The result is used to modify the value
 147 * pointed to by @v.
 148*/
 149static int calc_tacc(unsigned int cyc, int nwait_en,
 150                     unsigned long hclk_tns, unsigned long *v)
 151{
 152        unsigned int div = to_div(cyc, hclk_tns);
 153        unsigned long val;
 154
 155        s3c_freq_iodbg("%s: cyc=%u, nwait=%d, hclk=%lu => div=%u\n",
 156                       __func__, cyc, nwait_en, hclk_tns, div);
 157
 158        /* if nWait enabled on an bank, Tacc must be at-least 4 cycles. */
 159        if (nwait_en && div < 4)
 160                div = 4;
 161
 162        switch (div) {
 163        case 0:
 164                val = 0;
 165                break;
 166
 167        case 1:
 168        case 2:
 169        case 3:
 170        case 4:
 171                val = div - 1;
 172                break;
 173
 174        case 5:
 175        case 6:
 176                val = 4;
 177                break;
 178
 179        case 7:
 180        case 8:
 181                val = 5;
 182                break;
 183
 184        case 9:
 185        case 10:
 186                val = 6;
 187                break;
 188
 189        case 11:
 190        case 12:
 191        case 13:
 192        case 14:
 193                val = 7;
 194                break;
 195
 196        default:
 197                return -1;
 198        }
 199
 200        *v |= val << 8;
 201        return 0;
 202}
 203
 204/**
 205 * s3c2410_calc_bank - calculate bank timing information
 206 * @cfg: The configuration we need to calculate for.
 207 * @bt: The bank timing information.
 208 *
 209 * Given the cycle timine for a bank @bt, calculate the new BANKCON
 210 * setting for the @cfg timing. This updates the timing information
 211 * ready for the cpu frequency change.
 212 */
 213static int s3c2410_calc_bank(struct s3c_cpufreq_config *cfg,
 214                             struct s3c2410_iobank_timing *bt)
 215{
 216        unsigned long hclk = cfg->freq.hclk_tns;
 217        unsigned long res;
 218        int ret;
 219
 220        res  = bt->bankcon;
 221        res &= (S3C2410_BANKCON_SDRAM | S3C2410_BANKCON_PMC16);
 222
 223        /* tacp: 2,3,4,5 */
 224        /* tcah: 0,1,2,4 */
 225        /* tcoh: 0,1,2,4 */
 226        /* tacc: 1,2,3,4,6,7,10,14 (>4 for nwait) */
 227        /* tcos: 0,1,2,4 */
 228        /* tacs: 0,1,2,4 */
 229
 230        ret  = calc_0124(bt->tacs, hclk, &res, S3C2410_BANKCON_Tacs_SHIFT);
 231        ret |= calc_0124(bt->tcos, hclk, &res, S3C2410_BANKCON_Tcos_SHIFT);
 232        ret |= calc_0124(bt->tcah, hclk, &res, S3C2410_BANKCON_Tcah_SHIFT);
 233        ret |= calc_0124(bt->tcoh, hclk, &res, S3C2410_BANKCON_Tcoh_SHIFT);
 234
 235        if (ret)
 236                return -EINVAL;
 237
 238        ret |= calc_tacp(bt->tacp, hclk, &res);
 239        ret |= calc_tacc(bt->tacc, bt->nwait_en, hclk, &res);
 240
 241        if (ret)
 242                return -EINVAL;
 243
 244        bt->bankcon = res;
 245        return 0;
 246}
 247
 248static const unsigned int tacc_tab[] = {
 249        [0]     = 1,
 250        [1]     = 2,
 251        [2]     = 3,
 252        [3]     = 4,
 253        [4]     = 6,
 254        [5]     = 9,
 255        [6]     = 10,
 256        [7]     = 14,
 257};
 258
 259/**
 260 * get_tacc - turn tACC value into cycle time
 261 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
 262 * @val: The bank timing register value, shifed down.
 263 */
 264static unsigned int get_tacc(unsigned long hclk_tns,
 265                             unsigned long val)
 266{
 267        val &= 7;
 268        return hclk_tns * tacc_tab[val];
 269}
 270
 271/**
 272 * get_0124 - turn 0/1/2/4 divider into cycle time
 273 * @hclk_tns: The cycle time for HCLK, in 10ths of nanoseconds.
 274 * @val: The bank timing register value, shifed down.
 275 */
 276static unsigned int get_0124(unsigned long hclk_tns,
 277                             unsigned long val)
 278{
 279        val &= 3;
 280        return hclk_tns * ((val == 3) ? 4 : val);
 281}
 282
 283/**
 284 * s3c2410_iotiming_getbank - turn BANKCON into cycle time information
 285 * @cfg: The frequency configuration
 286 * @bt: The bank timing to fill in (uses cached BANKCON)
 287 *
 288 * Given the BANKCON setting in @bt and the current frequency settings
 289 * in @cfg, update the cycle timing information.
 290 */
 291void s3c2410_iotiming_getbank(struct s3c_cpufreq_config *cfg,
 292                              struct s3c2410_iobank_timing *bt)
 293{
 294        unsigned long bankcon = bt->bankcon;
 295        unsigned long hclk = cfg->freq.hclk_tns;
 296
 297        bt->tcah = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcah_SHIFT);
 298        bt->tcoh = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcoh_SHIFT);
 299        bt->tcos = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcos_SHIFT);
 300        bt->tacs = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tacs_SHIFT);
 301        bt->tacc = get_tacc(hclk, bankcon >> S3C2410_BANKCON_Tacc_SHIFT);
 302}
 303
 304/**
 305 * s3c2410_iotiming_debugfs - debugfs show io bank timing information
 306 * @seq: The seq_file to write output to using seq_printf().
 307 * @cfg: The current configuration.
 308 * @iob: The IO bank information to decode.
 309 */
 310void s3c2410_iotiming_debugfs(struct seq_file *seq,
 311                              struct s3c_cpufreq_config *cfg,
 312                              union s3c_iobank *iob)
 313{
 314        struct s3c2410_iobank_timing *bt = iob->io_2410;
 315        unsigned long bankcon = bt->bankcon;
 316        unsigned long hclk = cfg->freq.hclk_tns;
 317        unsigned int tacs;
 318        unsigned int tcos;
 319        unsigned int tacc;
 320        unsigned int tcoh;
 321        unsigned int tcah;
 322
 323        seq_printf(seq, "BANKCON=0x%08lx\n", bankcon);
 324
 325        tcah = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcah_SHIFT);
 326        tcoh = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcoh_SHIFT);
 327        tcos = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tcos_SHIFT);
 328        tacs = get_0124(hclk, bankcon >> S3C2410_BANKCON_Tacs_SHIFT);
 329        tacc = get_tacc(hclk, bankcon >> S3C2410_BANKCON_Tacc_SHIFT);
 330
 331        seq_printf(seq,
 332                   "\tRead: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, Tcoh=%d.%d, Tcah=%d.%d\n",
 333                   print_ns(bt->tacs),
 334                   print_ns(bt->tcos),
 335                   print_ns(bt->tacc),
 336                   print_ns(bt->tcoh),
 337                   print_ns(bt->tcah));
 338
 339        seq_printf(seq,
 340                   "\t Set: Tacs=%d.%d, Tcos=%d.%d, Tacc=%d.%d, Tcoh=%d.%d, Tcah=%d.%d\n",
 341                   print_ns(tacs),
 342                   print_ns(tcos),
 343                   print_ns(tacc),
 344                   print_ns(tcoh),
 345                   print_ns(tcah));
 346}
 347
 348/**
 349 * s3c2410_iotiming_calc - Calculate bank timing for frequency change.
 350 * @cfg: The frequency configuration
 351 * @iot: The IO timing information to fill out.
 352 *
 353 * Calculate the new values for the banks in @iot based on the new
 354 * frequency information in @cfg. This is then used by s3c2410_iotiming_set()
 355 * to update the timing when necessary.
 356 */
 357int s3c2410_iotiming_calc(struct s3c_cpufreq_config *cfg,
 358                          struct s3c_iotimings *iot)
 359{
 360        struct s3c2410_iobank_timing *bt;
 361        unsigned long bankcon;
 362        int bank;
 363        int ret;
 364
 365        for (bank = 0; bank < MAX_BANKS; bank++) {
 366                bankcon = __raw_readl(bank_reg(bank));
 367                bt = iot->bank[bank].io_2410;
 368
 369                if (!bt)
 370                        continue;
 371
 372                bt->bankcon = bankcon;
 373
 374                ret = s3c2410_calc_bank(cfg, bt);
 375                if (ret) {
 376                        printk(KERN_ERR "%s: cannot calculate bank %d io\n",
 377                               __func__, bank);
 378                        goto err;
 379                }
 380
 381                s3c_freq_iodbg("%s: bank %d: con=%08lx\n",
 382                               __func__, bank, bt->bankcon);
 383        }
 384
 385        return 0;
 386 err:
 387        return ret;
 388}
 389
 390/**
 391 * s3c2410_iotiming_set - set the IO timings from the given setup.
 392 * @cfg: The frequency configuration
 393 * @iot: The IO timing information to use.
 394 *
 395 * Set all the currently used IO bank timing information generated
 396 * by s3c2410_iotiming_calc() once the core has validated that all
 397 * the new values are within permitted bounds.
 398 */
 399void s3c2410_iotiming_set(struct s3c_cpufreq_config *cfg,
 400                          struct s3c_iotimings *iot)
 401{
 402        struct s3c2410_iobank_timing *bt;
 403        int bank;
 404
 405        /* set the io timings from the specifier */
 406
 407        for (bank = 0; bank < MAX_BANKS; bank++) {
 408                bt = iot->bank[bank].io_2410;
 409                if (!bt)
 410                        continue;
 411
 412                __raw_writel(bt->bankcon, bank_reg(bank));
 413        }
 414}
 415
 416/**
 417 * s3c2410_iotiming_get - Get the timing information from current registers.
 418 * @cfg: The frequency configuration
 419 * @timings: The IO timing information to fill out.
 420 *
 421 * Calculate the @timings timing information from the current frequency
 422 * information in @cfg, and the new frequency configuration
 423 * through all the IO banks, reading the state and then updating @iot
 424 * as necessary.
 425 *
 426 * This is used at the moment on initialisation to get the current
 427 * configuration so that boards do not have to carry their own setup
 428 * if the timings are correct on initialisation.
 429 */
 430
 431int s3c2410_iotiming_get(struct s3c_cpufreq_config *cfg,
 432                         struct s3c_iotimings *timings)
 433{
 434        struct s3c2410_iobank_timing *bt;
 435        unsigned long bankcon;
 436        unsigned long bwscon;
 437        int bank;
 438
 439        bwscon = __raw_readl(S3C2410_BWSCON);
 440
 441        /* look through all banks to see what is currently set. */
 442
 443        for (bank = 0; bank < MAX_BANKS; bank++) {
 444                bankcon = __raw_readl(bank_reg(bank));
 445
 446                if (!bank_is_io(bankcon))
 447                        continue;
 448
 449                s3c_freq_iodbg("%s: bank %d: con %08lx\n",
 450                               __func__, bank, bankcon);
 451
 452                bt = kzalloc(sizeof(*bt), GFP_KERNEL);
 453                if (!bt)
 454                        return -ENOMEM;
 455
 456                /* find out in nWait is enabled for bank. */
 457
 458                if (bank != 0) {
 459                        unsigned long tmp  = S3C2410_BWSCON_GET(bwscon, bank);
 460                        if (tmp & S3C2410_BWSCON_WS)
 461                                bt->nwait_en = 1;
 462                }
 463
 464                timings->bank[bank].io_2410 = bt;
 465                bt->bankcon = bankcon;
 466
 467                s3c2410_iotiming_getbank(cfg, bt);
 468        }
 469
 470        s3c2410_print_timing("get", timings);
 471        return 0;
 472}
 473