linux/drivers/crypto/stm32/stm32-cryp.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) STMicroelectronics SA 2017
   3 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   4 * License terms:  GNU General Public License (GPL), version 2
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/delay.h>
   9#include <linux/interrupt.h>
  10#include <linux/iopoll.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <crypto/aes.h>
  18#include <crypto/des.h>
  19#include <crypto/engine.h>
  20#include <crypto/scatterwalk.h>
  21#include <crypto/internal/aead.h>
  22
  23#define DRIVER_NAME             "stm32-cryp"
  24
  25/* Bit [0] encrypt / decrypt */
  26#define FLG_ENCRYPT             BIT(0)
  27/* Bit [8..1] algo & operation mode */
  28#define FLG_AES                 BIT(1)
  29#define FLG_DES                 BIT(2)
  30#define FLG_TDES                BIT(3)
  31#define FLG_ECB                 BIT(4)
  32#define FLG_CBC                 BIT(5)
  33#define FLG_CTR                 BIT(6)
  34#define FLG_GCM                 BIT(7)
  35#define FLG_CCM                 BIT(8)
  36/* Mode mask = bits [15..0] */
  37#define FLG_MODE_MASK           GENMASK(15, 0)
  38/* Bit [31..16] status  */
  39#define FLG_CCM_PADDED_WA       BIT(16)
  40
  41/* Registers */
  42#define CRYP_CR                 0x00000000
  43#define CRYP_SR                 0x00000004
  44#define CRYP_DIN                0x00000008
  45#define CRYP_DOUT               0x0000000C
  46#define CRYP_DMACR              0x00000010
  47#define CRYP_IMSCR              0x00000014
  48#define CRYP_RISR               0x00000018
  49#define CRYP_MISR               0x0000001C
  50#define CRYP_K0LR               0x00000020
  51#define CRYP_K0RR               0x00000024
  52#define CRYP_K1LR               0x00000028
  53#define CRYP_K1RR               0x0000002C
  54#define CRYP_K2LR               0x00000030
  55#define CRYP_K2RR               0x00000034
  56#define CRYP_K3LR               0x00000038
  57#define CRYP_K3RR               0x0000003C
  58#define CRYP_IV0LR              0x00000040
  59#define CRYP_IV0RR              0x00000044
  60#define CRYP_IV1LR              0x00000048
  61#define CRYP_IV1RR              0x0000004C
  62#define CRYP_CSGCMCCM0R         0x00000050
  63#define CRYP_CSGCM0R            0x00000070
  64
  65/* Registers values */
  66#define CR_DEC_NOT_ENC          0x00000004
  67#define CR_TDES_ECB             0x00000000
  68#define CR_TDES_CBC             0x00000008
  69#define CR_DES_ECB              0x00000010
  70#define CR_DES_CBC              0x00000018
  71#define CR_AES_ECB              0x00000020
  72#define CR_AES_CBC              0x00000028
  73#define CR_AES_CTR              0x00000030
  74#define CR_AES_KP               0x00000038
  75#define CR_AES_GCM              0x00080000
  76#define CR_AES_CCM              0x00080008
  77#define CR_AES_UNKNOWN          0xFFFFFFFF
  78#define CR_ALGO_MASK            0x00080038
  79#define CR_DATA32               0x00000000
  80#define CR_DATA16               0x00000040
  81#define CR_DATA8                0x00000080
  82#define CR_DATA1                0x000000C0
  83#define CR_KEY128               0x00000000
  84#define CR_KEY192               0x00000100
  85#define CR_KEY256               0x00000200
  86#define CR_FFLUSH               0x00004000
  87#define CR_CRYPEN               0x00008000
  88#define CR_PH_INIT              0x00000000
  89#define CR_PH_HEADER            0x00010000
  90#define CR_PH_PAYLOAD           0x00020000
  91#define CR_PH_FINAL             0x00030000
  92#define CR_PH_MASK              0x00030000
  93#define CR_NBPBL_SHIFT          20
  94
  95#define SR_BUSY                 0x00000010
  96#define SR_OFNE                 0x00000004
  97
  98#define IMSCR_IN                BIT(0)
  99#define IMSCR_OUT               BIT(1)
 100
 101#define MISR_IN                 BIT(0)
 102#define MISR_OUT                BIT(1)
 103
 104/* Misc */
 105#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 106#define GCM_CTR_INIT            2
 107#define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
 108#define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
 109#define CRYP_AUTOSUSPEND_DELAY  50
 110
 111struct stm32_cryp_caps {
 112        bool                    swap_final;
 113        bool                    padding_wa;
 114};
 115
 116struct stm32_cryp_ctx {
 117        struct crypto_engine_ctx enginectx;
 118        struct stm32_cryp       *cryp;
 119        int                     keylen;
 120        u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
 121        unsigned long           flags;
 122};
 123
 124struct stm32_cryp_reqctx {
 125        unsigned long mode;
 126};
 127
 128struct stm32_cryp {
 129        struct list_head        list;
 130        struct device           *dev;
 131        void __iomem            *regs;
 132        struct clk              *clk;
 133        unsigned long           flags;
 134        u32                     irq_status;
 135        const struct stm32_cryp_caps *caps;
 136        struct stm32_cryp_ctx   *ctx;
 137
 138        struct crypto_engine    *engine;
 139
 140        struct mutex            lock; /* protects req / areq */
 141        struct ablkcipher_request *req;
 142        struct aead_request     *areq;
 143
 144        size_t                  authsize;
 145        size_t                  hw_blocksize;
 146
 147        size_t                  total_in;
 148        size_t                  total_in_save;
 149        size_t                  total_out;
 150        size_t                  total_out_save;
 151
 152        struct scatterlist      *in_sg;
 153        struct scatterlist      *out_sg;
 154        struct scatterlist      *out_sg_save;
 155
 156        struct scatterlist      in_sgl;
 157        struct scatterlist      out_sgl;
 158        bool                    sgs_copied;
 159
 160        int                     in_sg_len;
 161        int                     out_sg_len;
 162
 163        struct scatter_walk     in_walk;
 164        struct scatter_walk     out_walk;
 165
 166        u32                     last_ctr[4];
 167        u32                     gcm_ctr;
 168};
 169
 170struct stm32_cryp_list {
 171        struct list_head        dev_list;
 172        spinlock_t              lock; /* protect dev_list */
 173};
 174
 175static struct stm32_cryp_list cryp_list = {
 176        .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 177        .lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 178};
 179
 180static inline bool is_aes(struct stm32_cryp *cryp)
 181{
 182        return cryp->flags & FLG_AES;
 183}
 184
 185static inline bool is_des(struct stm32_cryp *cryp)
 186{
 187        return cryp->flags & FLG_DES;
 188}
 189
 190static inline bool is_tdes(struct stm32_cryp *cryp)
 191{
 192        return cryp->flags & FLG_TDES;
 193}
 194
 195static inline bool is_ecb(struct stm32_cryp *cryp)
 196{
 197        return cryp->flags & FLG_ECB;
 198}
 199
 200static inline bool is_cbc(struct stm32_cryp *cryp)
 201{
 202        return cryp->flags & FLG_CBC;
 203}
 204
 205static inline bool is_ctr(struct stm32_cryp *cryp)
 206{
 207        return cryp->flags & FLG_CTR;
 208}
 209
 210static inline bool is_gcm(struct stm32_cryp *cryp)
 211{
 212        return cryp->flags & FLG_GCM;
 213}
 214
 215static inline bool is_ccm(struct stm32_cryp *cryp)
 216{
 217        return cryp->flags & FLG_CCM;
 218}
 219
 220static inline bool is_encrypt(struct stm32_cryp *cryp)
 221{
 222        return cryp->flags & FLG_ENCRYPT;
 223}
 224
 225static inline bool is_decrypt(struct stm32_cryp *cryp)
 226{
 227        return !is_encrypt(cryp);
 228}
 229
 230static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 231{
 232        return readl_relaxed(cryp->regs + ofst);
 233}
 234
 235static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 236{
 237        writel_relaxed(val, cryp->regs + ofst);
 238}
 239
 240static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 241{
 242        u32 status;
 243
 244        return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 245                        !(status & SR_BUSY), 10, 100000);
 246}
 247
 248static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 249{
 250        u32 status;
 251
 252        return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 253                        !(status & CR_CRYPEN), 10, 100000);
 254}
 255
 256static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 257{
 258        u32 status;
 259
 260        return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 261                        status & SR_OFNE, 10, 100000);
 262}
 263
 264static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 265
 266static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 267{
 268        struct stm32_cryp *tmp, *cryp = NULL;
 269
 270        spin_lock_bh(&cryp_list.lock);
 271        if (!ctx->cryp) {
 272                list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 273                        cryp = tmp;
 274                        break;
 275                }
 276                ctx->cryp = cryp;
 277        } else {
 278                cryp = ctx->cryp;
 279        }
 280
 281        spin_unlock_bh(&cryp_list.lock);
 282
 283        return cryp;
 284}
 285
 286static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
 287                                    size_t align)
 288{
 289        int len = 0;
 290
 291        if (!total)
 292                return 0;
 293
 294        if (!IS_ALIGNED(total, align))
 295                return -EINVAL;
 296
 297        while (sg) {
 298                if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 299                        return -EINVAL;
 300
 301                if (!IS_ALIGNED(sg->length, align))
 302                        return -EINVAL;
 303
 304                len += sg->length;
 305                sg = sg_next(sg);
 306        }
 307
 308        if (len != total)
 309                return -EINVAL;
 310
 311        return 0;
 312}
 313
 314static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
 315{
 316        int ret;
 317
 318        ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
 319                                       cryp->hw_blocksize);
 320        if (ret)
 321                return ret;
 322
 323        ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
 324                                       cryp->hw_blocksize);
 325
 326        return ret;
 327}
 328
 329static void sg_copy_buf(void *buf, struct scatterlist *sg,
 330                        unsigned int start, unsigned int nbytes, int out)
 331{
 332        struct scatter_walk walk;
 333
 334        if (!nbytes)
 335                return;
 336
 337        scatterwalk_start(&walk, sg);
 338        scatterwalk_advance(&walk, start);
 339        scatterwalk_copychunks(buf, &walk, nbytes, out);
 340        scatterwalk_done(&walk, out, 0);
 341}
 342
 343static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
 344{
 345        void *buf_in, *buf_out;
 346        int pages, total_in, total_out;
 347
 348        if (!stm32_cryp_check_io_aligned(cryp)) {
 349                cryp->sgs_copied = 0;
 350                return 0;
 351        }
 352
 353        total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
 354        pages = total_in ? get_order(total_in) : 1;
 355        buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
 356
 357        total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
 358        pages = total_out ? get_order(total_out) : 1;
 359        buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
 360
 361        if (!buf_in || !buf_out) {
 362                dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
 363                cryp->sgs_copied = 0;
 364                return -EFAULT;
 365        }
 366
 367        sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
 368
 369        sg_init_one(&cryp->in_sgl, buf_in, total_in);
 370        cryp->in_sg = &cryp->in_sgl;
 371        cryp->in_sg_len = 1;
 372
 373        sg_init_one(&cryp->out_sgl, buf_out, total_out);
 374        cryp->out_sg_save = cryp->out_sg;
 375        cryp->out_sg = &cryp->out_sgl;
 376        cryp->out_sg_len = 1;
 377
 378        cryp->sgs_copied = 1;
 379
 380        return 0;
 381}
 382
 383static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
 384{
 385        if (!iv)
 386                return;
 387
 388        stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
 389        stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
 390
 391        if (is_aes(cryp)) {
 392                stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
 393                stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
 394        }
 395}
 396
 397static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 398{
 399        unsigned int i;
 400        int r_id;
 401
 402        if (is_des(c)) {
 403                stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
 404                stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
 405        } else {
 406                r_id = CRYP_K3RR;
 407                for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 408                        stm32_cryp_write(c, r_id,
 409                                         cpu_to_be32(c->ctx->key[i - 1]));
 410        }
 411}
 412
 413static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 414{
 415        if (is_aes(cryp) && is_ecb(cryp))
 416                return CR_AES_ECB;
 417
 418        if (is_aes(cryp) && is_cbc(cryp))
 419                return CR_AES_CBC;
 420
 421        if (is_aes(cryp) && is_ctr(cryp))
 422                return CR_AES_CTR;
 423
 424        if (is_aes(cryp) && is_gcm(cryp))
 425                return CR_AES_GCM;
 426
 427        if (is_aes(cryp) && is_ccm(cryp))
 428                return CR_AES_CCM;
 429
 430        if (is_des(cryp) && is_ecb(cryp))
 431                return CR_DES_ECB;
 432
 433        if (is_des(cryp) && is_cbc(cryp))
 434                return CR_DES_CBC;
 435
 436        if (is_tdes(cryp) && is_ecb(cryp))
 437                return CR_TDES_ECB;
 438
 439        if (is_tdes(cryp) && is_cbc(cryp))
 440                return CR_TDES_CBC;
 441
 442        dev_err(cryp->dev, "Unknown mode\n");
 443        return CR_AES_UNKNOWN;
 444}
 445
 446static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 447{
 448        return is_encrypt(cryp) ? cryp->areq->cryptlen :
 449                                  cryp->areq->cryptlen - cryp->authsize;
 450}
 451
 452static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 453{
 454        int ret;
 455        u32 iv[4];
 456
 457        /* Phase 1 : init */
 458        memcpy(iv, cryp->areq->iv, 12);
 459        iv[3] = cpu_to_be32(GCM_CTR_INIT);
 460        cryp->gcm_ctr = GCM_CTR_INIT;
 461        stm32_cryp_hw_write_iv(cryp, iv);
 462
 463        stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 464
 465        /* Wait for end of processing */
 466        ret = stm32_cryp_wait_enable(cryp);
 467        if (ret)
 468                dev_err(cryp->dev, "Timeout (gcm init)\n");
 469
 470        return ret;
 471}
 472
 473static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 474{
 475        int ret;
 476        u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
 477        u32 *d;
 478        unsigned int i, textlen;
 479
 480        /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 481        memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 482        memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 483        iv[AES_BLOCK_SIZE - 1] = 1;
 484        stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
 485
 486        /* Build B0 */
 487        memcpy(b0, iv, AES_BLOCK_SIZE);
 488
 489        b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 490
 491        if (cryp->areq->assoclen)
 492                b0[0] |= 0x40;
 493
 494        textlen = stm32_cryp_get_input_text_len(cryp);
 495
 496        b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 497        b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 498
 499        /* Enable HW */
 500        stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 501
 502        /* Write B0 */
 503        d = (u32 *)b0;
 504
 505        for (i = 0; i < AES_BLOCK_32; i++) {
 506                if (!cryp->caps->padding_wa)
 507                        *d = cpu_to_be32(*d);
 508                stm32_cryp_write(cryp, CRYP_DIN, *d++);
 509        }
 510
 511        /* Wait for end of processing */
 512        ret = stm32_cryp_wait_enable(cryp);
 513        if (ret)
 514                dev_err(cryp->dev, "Timeout (ccm init)\n");
 515
 516        return ret;
 517}
 518
 519static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 520{
 521        int ret;
 522        u32 cfg, hw_mode;
 523
 524        pm_runtime_get_sync(cryp->dev);
 525
 526        /* Disable interrupt */
 527        stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 528
 529        /* Set key */
 530        stm32_cryp_hw_write_key(cryp);
 531
 532        /* Set configuration */
 533        cfg = CR_DATA8 | CR_FFLUSH;
 534
 535        switch (cryp->ctx->keylen) {
 536        case AES_KEYSIZE_128:
 537                cfg |= CR_KEY128;
 538                break;
 539
 540        case AES_KEYSIZE_192:
 541                cfg |= CR_KEY192;
 542                break;
 543
 544        default:
 545        case AES_KEYSIZE_256:
 546                cfg |= CR_KEY256;
 547                break;
 548        }
 549
 550        hw_mode = stm32_cryp_get_hw_mode(cryp);
 551        if (hw_mode == CR_AES_UNKNOWN)
 552                return -EINVAL;
 553
 554        /* AES ECB/CBC decrypt: run key preparation first */
 555        if (is_decrypt(cryp) &&
 556            ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 557                stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
 558
 559                /* Wait for end of processing */
 560                ret = stm32_cryp_wait_busy(cryp);
 561                if (ret) {
 562                        dev_err(cryp->dev, "Timeout (key preparation)\n");
 563                        return ret;
 564                }
 565        }
 566
 567        cfg |= hw_mode;
 568
 569        if (is_decrypt(cryp))
 570                cfg |= CR_DEC_NOT_ENC;
 571
 572        /* Apply config and flush (valid when CRYPEN = 0) */
 573        stm32_cryp_write(cryp, CRYP_CR, cfg);
 574
 575        switch (hw_mode) {
 576        case CR_AES_GCM:
 577        case CR_AES_CCM:
 578                /* Phase 1 : init */
 579                if (hw_mode == CR_AES_CCM)
 580                        ret = stm32_cryp_ccm_init(cryp, cfg);
 581                else
 582                        ret = stm32_cryp_gcm_init(cryp, cfg);
 583
 584                if (ret)
 585                        return ret;
 586
 587                /* Phase 2 : header (authenticated data) */
 588                if (cryp->areq->assoclen) {
 589                        cfg |= CR_PH_HEADER;
 590                } else if (stm32_cryp_get_input_text_len(cryp)) {
 591                        cfg |= CR_PH_PAYLOAD;
 592                        stm32_cryp_write(cryp, CRYP_CR, cfg);
 593                } else {
 594                        cfg |= CR_PH_INIT;
 595                }
 596
 597                break;
 598
 599        case CR_DES_CBC:
 600        case CR_TDES_CBC:
 601        case CR_AES_CBC:
 602        case CR_AES_CTR:
 603                stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
 604                break;
 605
 606        default:
 607                break;
 608        }
 609
 610        /* Enable now */
 611        cfg |= CR_CRYPEN;
 612
 613        stm32_cryp_write(cryp, CRYP_CR, cfg);
 614
 615        cryp->flags &= ~FLG_CCM_PADDED_WA;
 616
 617        return 0;
 618}
 619
 620static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 621{
 622        if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 623                /* Phase 4 : output tag */
 624                err = stm32_cryp_read_auth_tag(cryp);
 625
 626        if (cryp->sgs_copied) {
 627                void *buf_in, *buf_out;
 628                int pages, len;
 629
 630                buf_in = sg_virt(&cryp->in_sgl);
 631                buf_out = sg_virt(&cryp->out_sgl);
 632
 633                sg_copy_buf(buf_out, cryp->out_sg_save, 0,
 634                            cryp->total_out_save, 1);
 635
 636                len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
 637                pages = len ? get_order(len) : 1;
 638                free_pages((unsigned long)buf_in, pages);
 639
 640                len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
 641                pages = len ? get_order(len) : 1;
 642                free_pages((unsigned long)buf_out, pages);
 643        }
 644
 645        pm_runtime_mark_last_busy(cryp->dev);
 646        pm_runtime_put_autosuspend(cryp->dev);
 647
 648        if (is_gcm(cryp) || is_ccm(cryp)) {
 649                crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 650                cryp->areq = NULL;
 651        } else {
 652                crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
 653                                                   err);
 654                cryp->req = NULL;
 655        }
 656
 657        memset(cryp->ctx->key, 0, cryp->ctx->keylen);
 658
 659        mutex_unlock(&cryp->lock);
 660}
 661
 662static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 663{
 664        /* Enable interrupt and let the IRQ handler do everything */
 665        stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 666
 667        return 0;
 668}
 669
 670static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 671static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 672                                         void *areq);
 673
 674static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
 675{
 676        struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
 677
 678        tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
 679
 680        ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 681        ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 682        ctx->enginectx.op.unprepare_request = NULL;
 683        return 0;
 684}
 685
 686static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 687static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 688                                       void *areq);
 689
 690static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 691{
 692        struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 693
 694        tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 695
 696        ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 697        ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 698        ctx->enginectx.op.unprepare_request = NULL;
 699
 700        return 0;
 701}
 702
 703static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
 704{
 705        struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
 706                        crypto_ablkcipher_reqtfm(req));
 707        struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
 708        struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 709
 710        if (!cryp)
 711                return -ENODEV;
 712
 713        rctx->mode = mode;
 714
 715        return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
 716}
 717
 718static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 719{
 720        struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 721        struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 722        struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 723
 724        if (!cryp)
 725                return -ENODEV;
 726
 727        rctx->mode = mode;
 728
 729        return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 730}
 731
 732static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 733                             unsigned int keylen)
 734{
 735        struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
 736
 737        memcpy(ctx->key, key, keylen);
 738        ctx->keylen = keylen;
 739
 740        return 0;
 741}
 742
 743static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 744                                 unsigned int keylen)
 745{
 746        if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 747            keylen != AES_KEYSIZE_256)
 748                return -EINVAL;
 749        else
 750                return stm32_cryp_setkey(tfm, key, keylen);
 751}
 752
 753static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 754                                 unsigned int keylen)
 755{
 756        if (keylen != DES_KEY_SIZE)
 757                return -EINVAL;
 758        else
 759                return stm32_cryp_setkey(tfm, key, keylen);
 760}
 761
 762static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 763                                  unsigned int keylen)
 764{
 765        if (keylen != (3 * DES_KEY_SIZE))
 766                return -EINVAL;
 767        else
 768                return stm32_cryp_setkey(tfm, key, keylen);
 769}
 770
 771static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 772                                      unsigned int keylen)
 773{
 774        struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 775
 776        if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 777            keylen != AES_KEYSIZE_256)
 778                return -EINVAL;
 779
 780        memcpy(ctx->key, key, keylen);
 781        ctx->keylen = keylen;
 782
 783        return 0;
 784}
 785
 786static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 787                                          unsigned int authsize)
 788{
 789        return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
 790}
 791
 792static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 793                                          unsigned int authsize)
 794{
 795        switch (authsize) {
 796        case 4:
 797        case 6:
 798        case 8:
 799        case 10:
 800        case 12:
 801        case 14:
 802        case 16:
 803                break;
 804        default:
 805                return -EINVAL;
 806        }
 807
 808        return 0;
 809}
 810
 811static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
 812{
 813        return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 814}
 815
 816static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
 817{
 818        return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 819}
 820
 821static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
 822{
 823        return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 824}
 825
 826static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
 827{
 828        return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 829}
 830
 831static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
 832{
 833        return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 834}
 835
 836static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
 837{
 838        return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 839}
 840
 841static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 842{
 843        return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 844}
 845
 846static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 847{
 848        return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 849}
 850
 851static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 852{
 853        return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 854}
 855
 856static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 857{
 858        return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 859}
 860
 861static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
 862{
 863        return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 864}
 865
 866static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
 867{
 868        return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 869}
 870
 871static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
 872{
 873        return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 874}
 875
 876static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
 877{
 878        return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 879}
 880
 881static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
 882{
 883        return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 884}
 885
 886static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
 887{
 888        return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 889}
 890
 891static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
 892{
 893        return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 894}
 895
 896static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
 897{
 898        return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 899}
 900
 901static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
 902                                  struct aead_request *areq)
 903{
 904        struct stm32_cryp_ctx *ctx;
 905        struct stm32_cryp *cryp;
 906        struct stm32_cryp_reqctx *rctx;
 907        int ret;
 908
 909        if (!req && !areq)
 910                return -EINVAL;
 911
 912        ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
 913                    crypto_aead_ctx(crypto_aead_reqtfm(areq));
 914
 915        cryp = ctx->cryp;
 916
 917        if (!cryp)
 918                return -ENODEV;
 919
 920        mutex_lock(&cryp->lock);
 921
 922        rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
 923        rctx->mode &= FLG_MODE_MASK;
 924
 925        ctx->cryp = cryp;
 926
 927        cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 928        cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 929        cryp->ctx = ctx;
 930
 931        if (req) {
 932                cryp->req = req;
 933                cryp->total_in = req->nbytes;
 934                cryp->total_out = cryp->total_in;
 935        } else {
 936                /*
 937                 * Length of input and output data:
 938                 * Encryption case:
 939                 *  INPUT  =   AssocData  ||   PlainText
 940                 *          <- assoclen ->  <- cryptlen ->
 941                 *          <------- total_in ----------->
 942                 *
 943                 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
 944                 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
 945                 *          <---------------- total_out ----------------->
 946                 *
 947                 * Decryption case:
 948                 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
 949                 *          <- assoclen ->  <--------- cryptlen --------->
 950                 *                                          <- authsize ->
 951                 *          <---------------- total_in ------------------>
 952                 *
 953                 *  OUTPUT =   AssocData  ||   PlainText
 954                 *          <- assoclen ->  <- crypten - authsize ->
 955                 *          <---------- total_out ----------------->
 956                 */
 957                cryp->areq = areq;
 958                cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 959                cryp->total_in = areq->assoclen + areq->cryptlen;
 960                if (is_encrypt(cryp))
 961                        /* Append auth tag to output */
 962                        cryp->total_out = cryp->total_in + cryp->authsize;
 963                else
 964                        /* No auth tag in output */
 965                        cryp->total_out = cryp->total_in - cryp->authsize;
 966        }
 967
 968        cryp->total_in_save = cryp->total_in;
 969        cryp->total_out_save = cryp->total_out;
 970
 971        cryp->in_sg = req ? req->src : areq->src;
 972        cryp->out_sg = req ? req->dst : areq->dst;
 973        cryp->out_sg_save = cryp->out_sg;
 974
 975        cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
 976        if (cryp->in_sg_len < 0) {
 977                dev_err(cryp->dev, "Cannot get in_sg_len\n");
 978                ret = cryp->in_sg_len;
 979                goto out;
 980        }
 981
 982        cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
 983        if (cryp->out_sg_len < 0) {
 984                dev_err(cryp->dev, "Cannot get out_sg_len\n");
 985                ret = cryp->out_sg_len;
 986                goto out;
 987        }
 988
 989        ret = stm32_cryp_copy_sgs(cryp);
 990        if (ret)
 991                goto out;
 992
 993        scatterwalk_start(&cryp->in_walk, cryp->in_sg);
 994        scatterwalk_start(&cryp->out_walk, cryp->out_sg);
 995
 996        if (is_gcm(cryp) || is_ccm(cryp)) {
 997                /* In output, jump after assoc data */
 998                scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
 999                cryp->total_out -= cryp->areq->assoclen;
1000        }
1001
1002        ret = stm32_cryp_hw_init(cryp);
1003out:
1004        if (ret)
1005                mutex_unlock(&cryp->lock);
1006
1007        return ret;
1008}
1009
1010static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1011                                         void *areq)
1012{
1013        struct ablkcipher_request *req = container_of(areq,
1014                                                      struct ablkcipher_request,
1015                                                      base);
1016
1017        return stm32_cryp_prepare_req(req, NULL);
1018}
1019
1020static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1021{
1022        struct ablkcipher_request *req = container_of(areq,
1023                                                      struct ablkcipher_request,
1024                                                      base);
1025        struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1026                        crypto_ablkcipher_reqtfm(req));
1027        struct stm32_cryp *cryp = ctx->cryp;
1028
1029        if (!cryp)
1030                return -ENODEV;
1031
1032        return stm32_cryp_cpu_start(cryp);
1033}
1034
1035static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1036{
1037        struct aead_request *req = container_of(areq, struct aead_request,
1038                                                base);
1039
1040        return stm32_cryp_prepare_req(NULL, req);
1041}
1042
1043static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1044{
1045        struct aead_request *req = container_of(areq, struct aead_request,
1046                                                base);
1047        struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1048        struct stm32_cryp *cryp = ctx->cryp;
1049
1050        if (!cryp)
1051                return -ENODEV;
1052
1053        if (unlikely(!cryp->areq->assoclen &&
1054                     !stm32_cryp_get_input_text_len(cryp))) {
1055                /* No input data to process: get tag and finish */
1056                stm32_cryp_finish_req(cryp, 0);
1057                return 0;
1058        }
1059
1060        return stm32_cryp_cpu_start(cryp);
1061}
1062
1063static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1064                                unsigned int n)
1065{
1066        scatterwalk_advance(&cryp->out_walk, n);
1067
1068        if (unlikely(cryp->out_sg->length == _walked_out)) {
1069                cryp->out_sg = sg_next(cryp->out_sg);
1070                if (cryp->out_sg) {
1071                        scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1072                        return (sg_virt(cryp->out_sg) + _walked_out);
1073                }
1074        }
1075
1076        return (u32 *)((u8 *)dst + n);
1077}
1078
1079static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1080                               unsigned int n)
1081{
1082        scatterwalk_advance(&cryp->in_walk, n);
1083
1084        if (unlikely(cryp->in_sg->length == _walked_in)) {
1085                cryp->in_sg = sg_next(cryp->in_sg);
1086                if (cryp->in_sg) {
1087                        scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1088                        return (sg_virt(cryp->in_sg) + _walked_in);
1089                }
1090        }
1091
1092        return (u32 *)((u8 *)src + n);
1093}
1094
1095static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1096{
1097        u32 cfg, size_bit, *dst, d32;
1098        u8 *d8;
1099        unsigned int i, j;
1100        int ret = 0;
1101
1102        /* Update Config */
1103        cfg = stm32_cryp_read(cryp, CRYP_CR);
1104
1105        cfg &= ~CR_PH_MASK;
1106        cfg |= CR_PH_FINAL;
1107        cfg &= ~CR_DEC_NOT_ENC;
1108        cfg |= CR_CRYPEN;
1109
1110        stm32_cryp_write(cryp, CRYP_CR, cfg);
1111
1112        if (is_gcm(cryp)) {
1113                /* GCM: write aad and payload size (in bits) */
1114                size_bit = cryp->areq->assoclen * 8;
1115                if (cryp->caps->swap_final)
1116                        size_bit = cpu_to_be32(size_bit);
1117
1118                stm32_cryp_write(cryp, CRYP_DIN, 0);
1119                stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1120
1121                size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1122                                cryp->areq->cryptlen - AES_BLOCK_SIZE;
1123                size_bit *= 8;
1124                if (cryp->caps->swap_final)
1125                        size_bit = cpu_to_be32(size_bit);
1126
1127                stm32_cryp_write(cryp, CRYP_DIN, 0);
1128                stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1129        } else {
1130                /* CCM: write CTR0 */
1131                u8 iv[AES_BLOCK_SIZE];
1132                u32 *iv32 = (u32 *)iv;
1133
1134                memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1135                memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1136
1137                for (i = 0; i < AES_BLOCK_32; i++) {
1138                        if (!cryp->caps->padding_wa)
1139                                *iv32 = cpu_to_be32(*iv32);
1140                        stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1141                }
1142        }
1143
1144        /* Wait for output data */
1145        ret = stm32_cryp_wait_output(cryp);
1146        if (ret) {
1147                dev_err(cryp->dev, "Timeout (read tag)\n");
1148                return ret;
1149        }
1150
1151        if (is_encrypt(cryp)) {
1152                /* Get and write tag */
1153                dst = sg_virt(cryp->out_sg) + _walked_out;
1154
1155                for (i = 0; i < AES_BLOCK_32; i++) {
1156                        if (cryp->total_out >= sizeof(u32)) {
1157                                /* Read a full u32 */
1158                                *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1159
1160                                dst = stm32_cryp_next_out(cryp, dst,
1161                                                          sizeof(u32));
1162                                cryp->total_out -= sizeof(u32);
1163                        } else if (!cryp->total_out) {
1164                                /* Empty fifo out (data from input padding) */
1165                                stm32_cryp_read(cryp, CRYP_DOUT);
1166                        } else {
1167                                /* Read less than an u32 */
1168                                d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1169                                d8 = (u8 *)&d32;
1170
1171                                for (j = 0; j < cryp->total_out; j++) {
1172                                        *((u8 *)dst) = *(d8++);
1173                                        dst = stm32_cryp_next_out(cryp, dst, 1);
1174                                }
1175                                cryp->total_out = 0;
1176                        }
1177                }
1178        } else {
1179                /* Get and check tag */
1180                u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1181
1182                scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1183                                         cryp->total_in_save - cryp->authsize,
1184                                         cryp->authsize, 0);
1185
1186                for (i = 0; i < AES_BLOCK_32; i++)
1187                        out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1188
1189                if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1190                        ret = -EBADMSG;
1191        }
1192
1193        /* Disable cryp */
1194        cfg &= ~CR_CRYPEN;
1195        stm32_cryp_write(cryp, CRYP_CR, cfg);
1196
1197        return ret;
1198}
1199
1200static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1201{
1202        u32 cr;
1203
1204        if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1205                cryp->last_ctr[3] = 0;
1206                cryp->last_ctr[2]++;
1207                if (!cryp->last_ctr[2]) {
1208                        cryp->last_ctr[1]++;
1209                        if (!cryp->last_ctr[1])
1210                                cryp->last_ctr[0]++;
1211                }
1212
1213                cr = stm32_cryp_read(cryp, CRYP_CR);
1214                stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1215
1216                stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1217
1218                stm32_cryp_write(cryp, CRYP_CR, cr);
1219        }
1220
1221        cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1222        cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1223        cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1224        cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1225}
1226
1227static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1228{
1229        unsigned int i, j;
1230        u32 d32, *dst;
1231        u8 *d8;
1232        size_t tag_size;
1233
1234        /* Do no read tag now (if any) */
1235        if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1236                tag_size = cryp->authsize;
1237        else
1238                tag_size = 0;
1239
1240        dst = sg_virt(cryp->out_sg) + _walked_out;
1241
1242        for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1243                if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1244                        /* Read a full u32 */
1245                        *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1246
1247                        dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1248                        cryp->total_out -= sizeof(u32);
1249                } else if (cryp->total_out == tag_size) {
1250                        /* Empty fifo out (data from input padding) */
1251                        d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1252                } else {
1253                        /* Read less than an u32 */
1254                        d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1255                        d8 = (u8 *)&d32;
1256
1257                        for (j = 0; j < cryp->total_out - tag_size; j++) {
1258                                *((u8 *)dst) = *(d8++);
1259                                dst = stm32_cryp_next_out(cryp, dst, 1);
1260                        }
1261                        cryp->total_out = tag_size;
1262                }
1263        }
1264
1265        return !(cryp->total_out - tag_size) || !cryp->total_in;
1266}
1267
1268static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1269{
1270        unsigned int i, j;
1271        u32 *src;
1272        u8 d8[4];
1273        size_t tag_size;
1274
1275        /* Do no write tag (if any) */
1276        if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1277                tag_size = cryp->authsize;
1278        else
1279                tag_size = 0;
1280
1281        src = sg_virt(cryp->in_sg) + _walked_in;
1282
1283        for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1284                if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1285                        /* Write a full u32 */
1286                        stm32_cryp_write(cryp, CRYP_DIN, *src);
1287
1288                        src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1289                        cryp->total_in -= sizeof(u32);
1290                } else if (cryp->total_in == tag_size) {
1291                        /* Write padding data */
1292                        stm32_cryp_write(cryp, CRYP_DIN, 0);
1293                } else {
1294                        /* Write less than an u32 */
1295                        memset(d8, 0, sizeof(u32));
1296                        for (j = 0; j < cryp->total_in - tag_size; j++) {
1297                                d8[j] = *((u8 *)src);
1298                                src = stm32_cryp_next_in(cryp, src, 1);
1299                        }
1300
1301                        stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1302                        cryp->total_in = tag_size;
1303                }
1304        }
1305}
1306
1307static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1308{
1309        int err;
1310        u32 cfg, tmp[AES_BLOCK_32];
1311        size_t total_in_ori = cryp->total_in;
1312        struct scatterlist *out_sg_ori = cryp->out_sg;
1313        unsigned int i;
1314
1315        /* 'Special workaround' procedure described in the datasheet */
1316
1317        /* a) disable ip */
1318        stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1319        cfg = stm32_cryp_read(cryp, CRYP_CR);
1320        cfg &= ~CR_CRYPEN;
1321        stm32_cryp_write(cryp, CRYP_CR, cfg);
1322
1323        /* b) Update IV1R */
1324        stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1325
1326        /* c) change mode to CTR */
1327        cfg &= ~CR_ALGO_MASK;
1328        cfg |= CR_AES_CTR;
1329        stm32_cryp_write(cryp, CRYP_CR, cfg);
1330
1331        /* a) enable IP */
1332        cfg |= CR_CRYPEN;
1333        stm32_cryp_write(cryp, CRYP_CR, cfg);
1334
1335        /* b) pad and write the last block */
1336        stm32_cryp_irq_write_block(cryp);
1337        cryp->total_in = total_in_ori;
1338        err = stm32_cryp_wait_output(cryp);
1339        if (err) {
1340                dev_err(cryp->dev, "Timeout (write gcm header)\n");
1341                return stm32_cryp_finish_req(cryp, err);
1342        }
1343
1344        /* c) get and store encrypted data */
1345        stm32_cryp_irq_read_data(cryp);
1346        scatterwalk_map_and_copy(tmp, out_sg_ori,
1347                                 cryp->total_in_save - total_in_ori,
1348                                 total_in_ori, 0);
1349
1350        /* d) change mode back to AES GCM */
1351        cfg &= ~CR_ALGO_MASK;
1352        cfg |= CR_AES_GCM;
1353        stm32_cryp_write(cryp, CRYP_CR, cfg);
1354
1355        /* e) change phase to Final */
1356        cfg &= ~CR_PH_MASK;
1357        cfg |= CR_PH_FINAL;
1358        stm32_cryp_write(cryp, CRYP_CR, cfg);
1359
1360        /* f) write padded data */
1361        for (i = 0; i < AES_BLOCK_32; i++) {
1362                if (cryp->total_in)
1363                        stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1364                else
1365                        stm32_cryp_write(cryp, CRYP_DIN, 0);
1366
1367                cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1368        }
1369
1370        /* g) Empty fifo out */
1371        err = stm32_cryp_wait_output(cryp);
1372        if (err) {
1373                dev_err(cryp->dev, "Timeout (write gcm header)\n");
1374                return stm32_cryp_finish_req(cryp, err);
1375        }
1376
1377        for (i = 0; i < AES_BLOCK_32; i++)
1378                stm32_cryp_read(cryp, CRYP_DOUT);
1379
1380        /* h) run the he normal Final phase */
1381        stm32_cryp_finish_req(cryp, 0);
1382}
1383
1384static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1385{
1386        u32 cfg, payload_bytes;
1387
1388        /* disable ip, set NPBLB and reneable ip */
1389        cfg = stm32_cryp_read(cryp, CRYP_CR);
1390        cfg &= ~CR_CRYPEN;
1391        stm32_cryp_write(cryp, CRYP_CR, cfg);
1392
1393        payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1394                                           cryp->total_in;
1395        cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1396        cfg |= CR_CRYPEN;
1397        stm32_cryp_write(cryp, CRYP_CR, cfg);
1398}
1399
1400static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1401{
1402        int err = 0;
1403        u32 cfg, iv1tmp;
1404        u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1405        size_t last_total_out, total_in_ori = cryp->total_in;
1406        struct scatterlist *out_sg_ori = cryp->out_sg;
1407        unsigned int i;
1408
1409        /* 'Special workaround' procedure described in the datasheet */
1410        cryp->flags |= FLG_CCM_PADDED_WA;
1411
1412        /* a) disable ip */
1413        stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1414
1415        cfg = stm32_cryp_read(cryp, CRYP_CR);
1416        cfg &= ~CR_CRYPEN;
1417        stm32_cryp_write(cryp, CRYP_CR, cfg);
1418
1419        /* b) get IV1 from CRYP_CSGCMCCM7 */
1420        iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1421
1422        /* c) Load CRYP_CSGCMCCMxR */
1423        for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1424                cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1425
1426        /* d) Write IV1R */
1427        stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1428
1429        /* e) change mode to CTR */
1430        cfg &= ~CR_ALGO_MASK;
1431        cfg |= CR_AES_CTR;
1432        stm32_cryp_write(cryp, CRYP_CR, cfg);
1433
1434        /* a) enable IP */
1435        cfg |= CR_CRYPEN;
1436        stm32_cryp_write(cryp, CRYP_CR, cfg);
1437
1438        /* b) pad and write the last block */
1439        stm32_cryp_irq_write_block(cryp);
1440        cryp->total_in = total_in_ori;
1441        err = stm32_cryp_wait_output(cryp);
1442        if (err) {
1443                dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1444                return stm32_cryp_finish_req(cryp, err);
1445        }
1446
1447        /* c) get and store decrypted data */
1448        last_total_out = cryp->total_out;
1449        stm32_cryp_irq_read_data(cryp);
1450
1451        memset(tmp, 0, sizeof(tmp));
1452        scatterwalk_map_and_copy(tmp, out_sg_ori,
1453                                 cryp->total_out_save - last_total_out,
1454                                 last_total_out, 0);
1455
1456        /* d) Load again CRYP_CSGCMCCMxR */
1457        for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1458                cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1459
1460        /* e) change mode back to AES CCM */
1461        cfg &= ~CR_ALGO_MASK;
1462        cfg |= CR_AES_CCM;
1463        stm32_cryp_write(cryp, CRYP_CR, cfg);
1464
1465        /* f) change phase to header */
1466        cfg &= ~CR_PH_MASK;
1467        cfg |= CR_PH_HEADER;
1468        stm32_cryp_write(cryp, CRYP_CR, cfg);
1469
1470        /* g) XOR and write padded data */
1471        for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1472                tmp[i] ^= cstmp1[i];
1473                tmp[i] ^= cstmp2[i];
1474                stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1475        }
1476
1477        /* h) wait for completion */
1478        err = stm32_cryp_wait_busy(cryp);
1479        if (err)
1480                dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1481
1482        /* i) run the he normal Final phase */
1483        stm32_cryp_finish_req(cryp, err);
1484}
1485
1486static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1487{
1488        if (unlikely(!cryp->total_in)) {
1489                dev_warn(cryp->dev, "No more data to process\n");
1490                return;
1491        }
1492
1493        if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1494                     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1495                     is_encrypt(cryp))) {
1496                /* Padding for AES GCM encryption */
1497                if (cryp->caps->padding_wa)
1498                        /* Special case 1 */
1499                        return stm32_cryp_irq_write_gcm_padded_data(cryp);
1500
1501                /* Setting padding bytes (NBBLB) */
1502                stm32_cryp_irq_set_npblb(cryp);
1503        }
1504
1505        if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1506                     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1507                     is_decrypt(cryp))) {
1508                /* Padding for AES CCM decryption */
1509                if (cryp->caps->padding_wa)
1510                        /* Special case 2 */
1511                        return stm32_cryp_irq_write_ccm_padded_data(cryp);
1512
1513                /* Setting padding bytes (NBBLB) */
1514                stm32_cryp_irq_set_npblb(cryp);
1515        }
1516
1517        if (is_aes(cryp) && is_ctr(cryp))
1518                stm32_cryp_check_ctr_counter(cryp);
1519
1520        stm32_cryp_irq_write_block(cryp);
1521}
1522
1523static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1524{
1525        int err;
1526        unsigned int i, j;
1527        u32 cfg, *src;
1528
1529        src = sg_virt(cryp->in_sg) + _walked_in;
1530
1531        for (i = 0; i < AES_BLOCK_32; i++) {
1532                stm32_cryp_write(cryp, CRYP_DIN, *src);
1533
1534                src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1535                cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1536
1537                /* Check if whole header written */
1538                if ((cryp->total_in_save - cryp->total_in) ==
1539                                cryp->areq->assoclen) {
1540                        /* Write padding if needed */
1541                        for (j = i + 1; j < AES_BLOCK_32; j++)
1542                                stm32_cryp_write(cryp, CRYP_DIN, 0);
1543
1544                        /* Wait for completion */
1545                        err = stm32_cryp_wait_busy(cryp);
1546                        if (err) {
1547                                dev_err(cryp->dev, "Timeout (gcm header)\n");
1548                                return stm32_cryp_finish_req(cryp, err);
1549                        }
1550
1551                        if (stm32_cryp_get_input_text_len(cryp)) {
1552                                /* Phase 3 : payload */
1553                                cfg = stm32_cryp_read(cryp, CRYP_CR);
1554                                cfg &= ~CR_CRYPEN;
1555                                stm32_cryp_write(cryp, CRYP_CR, cfg);
1556
1557                                cfg &= ~CR_PH_MASK;
1558                                cfg |= CR_PH_PAYLOAD;
1559                                cfg |= CR_CRYPEN;
1560                                stm32_cryp_write(cryp, CRYP_CR, cfg);
1561                        } else {
1562                                /* Phase 4 : tag */
1563                                stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1564                                stm32_cryp_finish_req(cryp, 0);
1565                        }
1566
1567                        break;
1568                }
1569
1570                if (!cryp->total_in)
1571                        break;
1572        }
1573}
1574
1575static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1576{
1577        int err;
1578        unsigned int i = 0, j, k;
1579        u32 alen, cfg, *src;
1580        u8 d8[4];
1581
1582        src = sg_virt(cryp->in_sg) + _walked_in;
1583        alen = cryp->areq->assoclen;
1584
1585        if (!_walked_in) {
1586                if (cryp->areq->assoclen <= 65280) {
1587                        /* Write first u32 of B1 */
1588                        d8[0] = (alen >> 8) & 0xFF;
1589                        d8[1] = alen & 0xFF;
1590                        d8[2] = *((u8 *)src);
1591                        src = stm32_cryp_next_in(cryp, src, 1);
1592                        d8[3] = *((u8 *)src);
1593                        src = stm32_cryp_next_in(cryp, src, 1);
1594
1595                        stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1596                        i++;
1597
1598                        cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1599                } else {
1600                        /* Build the two first u32 of B1 */
1601                        d8[0] = 0xFF;
1602                        d8[1] = 0xFE;
1603                        d8[2] = alen & 0xFF000000;
1604                        d8[3] = alen & 0x00FF0000;
1605
1606                        stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1607                        i++;
1608
1609                        d8[0] = alen & 0x0000FF00;
1610                        d8[1] = alen & 0x000000FF;
1611                        d8[2] = *((u8 *)src);
1612                        src = stm32_cryp_next_in(cryp, src, 1);
1613                        d8[3] = *((u8 *)src);
1614                        src = stm32_cryp_next_in(cryp, src, 1);
1615
1616                        stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1617                        i++;
1618
1619                        cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1620                }
1621        }
1622
1623        /* Write next u32 */
1624        for (; i < AES_BLOCK_32; i++) {
1625                /* Build an u32 */
1626                memset(d8, 0, sizeof(u32));
1627                for (k = 0; k < sizeof(u32); k++) {
1628                        d8[k] = *((u8 *)src);
1629                        src = stm32_cryp_next_in(cryp, src, 1);
1630
1631                        cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1632                        if ((cryp->total_in_save - cryp->total_in) == alen)
1633                                break;
1634                }
1635
1636                stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1637
1638                if ((cryp->total_in_save - cryp->total_in) == alen) {
1639                        /* Write padding if needed */
1640                        for (j = i + 1; j < AES_BLOCK_32; j++)
1641                                stm32_cryp_write(cryp, CRYP_DIN, 0);
1642
1643                        /* Wait for completion */
1644                        err = stm32_cryp_wait_busy(cryp);
1645                        if (err) {
1646                                dev_err(cryp->dev, "Timeout (ccm header)\n");
1647                                return stm32_cryp_finish_req(cryp, err);
1648                        }
1649
1650                        if (stm32_cryp_get_input_text_len(cryp)) {
1651                                /* Phase 3 : payload */
1652                                cfg = stm32_cryp_read(cryp, CRYP_CR);
1653                                cfg &= ~CR_CRYPEN;
1654                                stm32_cryp_write(cryp, CRYP_CR, cfg);
1655
1656                                cfg &= ~CR_PH_MASK;
1657                                cfg |= CR_PH_PAYLOAD;
1658                                cfg |= CR_CRYPEN;
1659                                stm32_cryp_write(cryp, CRYP_CR, cfg);
1660                        } else {
1661                                /* Phase 4 : tag */
1662                                stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1663                                stm32_cryp_finish_req(cryp, 0);
1664                        }
1665
1666                        break;
1667                }
1668        }
1669}
1670
1671static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1672{
1673        struct stm32_cryp *cryp = arg;
1674        u32 ph;
1675
1676        if (cryp->irq_status & MISR_OUT)
1677                /* Output FIFO IRQ: read data */
1678                if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1679                        /* All bytes processed, finish */
1680                        stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1681                        stm32_cryp_finish_req(cryp, 0);
1682                        return IRQ_HANDLED;
1683                }
1684
1685        if (cryp->irq_status & MISR_IN) {
1686                if (is_gcm(cryp)) {
1687                        ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1688                        if (unlikely(ph == CR_PH_HEADER))
1689                                /* Write Header */
1690                                stm32_cryp_irq_write_gcm_header(cryp);
1691                        else
1692                                /* Input FIFO IRQ: write data */
1693                                stm32_cryp_irq_write_data(cryp);
1694                        cryp->gcm_ctr++;
1695                } else if (is_ccm(cryp)) {
1696                        ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1697                        if (unlikely(ph == CR_PH_HEADER))
1698                                /* Write Header */
1699                                stm32_cryp_irq_write_ccm_header(cryp);
1700                        else
1701                                /* Input FIFO IRQ: write data */
1702                                stm32_cryp_irq_write_data(cryp);
1703                } else {
1704                        /* Input FIFO IRQ: write data */
1705                        stm32_cryp_irq_write_data(cryp);
1706                }
1707        }
1708
1709        return IRQ_HANDLED;
1710}
1711
1712static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1713{
1714        struct stm32_cryp *cryp = arg;
1715
1716        cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1717
1718        return IRQ_WAKE_THREAD;
1719}
1720
1721static struct crypto_alg crypto_algs[] = {
1722{
1723        .cra_name               = "ecb(aes)",
1724        .cra_driver_name        = "stm32-ecb-aes",
1725        .cra_priority           = 200,
1726        .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1727                                  CRYPTO_ALG_ASYNC,
1728        .cra_blocksize          = AES_BLOCK_SIZE,
1729        .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1730        .cra_alignmask          = 0xf,
1731        .cra_type               = &crypto_ablkcipher_type,
1732        .cra_module             = THIS_MODULE,
1733        .cra_init               = stm32_cryp_cra_init,
1734        .cra_ablkcipher = {
1735                .min_keysize    = AES_MIN_KEY_SIZE,
1736                .max_keysize    = AES_MAX_KEY_SIZE,
1737                .setkey         = stm32_cryp_aes_setkey,
1738                .encrypt        = stm32_cryp_aes_ecb_encrypt,
1739                .decrypt        = stm32_cryp_aes_ecb_decrypt,
1740        }
1741},
1742{
1743        .cra_name               = "cbc(aes)",
1744        .cra_driver_name        = "stm32-cbc-aes",
1745        .cra_priority           = 200,
1746        .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1747                                  CRYPTO_ALG_ASYNC,
1748        .cra_blocksize          = AES_BLOCK_SIZE,
1749        .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1750        .cra_alignmask          = 0xf,
1751        .cra_type               = &crypto_ablkcipher_type,
1752        .cra_module             = THIS_MODULE,
1753        .cra_init               = stm32_cryp_cra_init,
1754        .cra_ablkcipher = {
1755                .min_keysize    = AES_MIN_KEY_SIZE,
1756                .max_keysize    = AES_MAX_KEY_SIZE,
1757                .ivsize         = AES_BLOCK_SIZE,
1758                .setkey         = stm32_cryp_aes_setkey,
1759                .encrypt        = stm32_cryp_aes_cbc_encrypt,
1760                .decrypt        = stm32_cryp_aes_cbc_decrypt,
1761        }
1762},
1763{
1764        .cra_name               = "ctr(aes)",
1765        .cra_driver_name        = "stm32-ctr-aes",
1766        .cra_priority           = 200,
1767        .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1768                                  CRYPTO_ALG_ASYNC,
1769        .cra_blocksize          = 1,
1770        .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1771        .cra_alignmask          = 0xf,
1772        .cra_type               = &crypto_ablkcipher_type,
1773        .cra_module             = THIS_MODULE,
1774        .cra_init               = stm32_cryp_cra_init,
1775        .cra_ablkcipher = {
1776                .min_keysize    = AES_MIN_KEY_SIZE,
1777                .max_keysize    = AES_MAX_KEY_SIZE,
1778                .ivsize         = AES_BLOCK_SIZE,
1779                .setkey         = stm32_cryp_aes_setkey,
1780                .encrypt        = stm32_cryp_aes_ctr_encrypt,
1781                .decrypt        = stm32_cryp_aes_ctr_decrypt,
1782        }
1783},
1784{
1785        .cra_name               = "ecb(des)",
1786        .cra_driver_name        = "stm32-ecb-des",
1787        .cra_priority           = 200,
1788        .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1789                                  CRYPTO_ALG_ASYNC,
1790        .cra_blocksize          = DES_BLOCK_SIZE,
1791        .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1792        .cra_alignmask          = 0xf,
1793        .cra_type               = &crypto_ablkcipher_type,
1794        .cra_module             = THIS_MODULE,
1795        .cra_init               = stm32_cryp_cra_init,
1796        .cra_ablkcipher = {
1797                .min_keysize    = DES_BLOCK_SIZE,
1798                .max_keysize    = DES_BLOCK_SIZE,
1799                .setkey         = stm32_cryp_des_setkey,
1800                .encrypt        = stm32_cryp_des_ecb_encrypt,
1801                .decrypt        = stm32_cryp_des_ecb_decrypt,
1802        }
1803},
1804{
1805        .cra_name               = "cbc(des)",
1806        .cra_driver_name        = "stm32-cbc-des",
1807        .cra_priority           = 200,
1808        .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1809                                  CRYPTO_ALG_ASYNC,
1810        .cra_blocksize          = DES_BLOCK_SIZE,
1811        .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1812        .cra_alignmask          = 0xf,
1813        .cra_type               = &crypto_ablkcipher_type,
1814        .cra_module             = THIS_MODULE,
1815        .cra_init               = stm32_cryp_cra_init,
1816        .cra_ablkcipher = {
1817                .min_keysize    = DES_BLOCK_SIZE,
1818                .max_keysize    = DES_BLOCK_SIZE,
1819                .ivsize         = DES_BLOCK_SIZE,
1820                .setkey         = stm32_cryp_des_setkey,
1821                .encrypt        = stm32_cryp_des_cbc_encrypt,
1822                .decrypt        = stm32_cryp_des_cbc_decrypt,
1823        }
1824},
1825{
1826        .cra_name               = "ecb(des3_ede)",
1827        .cra_driver_name        = "stm32-ecb-des3",
1828        .cra_priority           = 200,
1829        .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1830                                  CRYPTO_ALG_ASYNC,
1831        .cra_blocksize          = DES_BLOCK_SIZE,
1832        .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1833        .cra_alignmask          = 0xf,
1834        .cra_type               = &crypto_ablkcipher_type,
1835        .cra_module             = THIS_MODULE,
1836        .cra_init               = stm32_cryp_cra_init,
1837        .cra_ablkcipher = {
1838                .min_keysize    = 3 * DES_BLOCK_SIZE,
1839                .max_keysize    = 3 * DES_BLOCK_SIZE,
1840                .setkey         = stm32_cryp_tdes_setkey,
1841                .encrypt        = stm32_cryp_tdes_ecb_encrypt,
1842                .decrypt        = stm32_cryp_tdes_ecb_decrypt,
1843        }
1844},
1845{
1846        .cra_name               = "cbc(des3_ede)",
1847        .cra_driver_name        = "stm32-cbc-des3",
1848        .cra_priority           = 200,
1849        .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
1850                                  CRYPTO_ALG_ASYNC,
1851        .cra_blocksize          = DES_BLOCK_SIZE,
1852        .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1853        .cra_alignmask          = 0xf,
1854        .cra_type               = &crypto_ablkcipher_type,
1855        .cra_module             = THIS_MODULE,
1856        .cra_init               = stm32_cryp_cra_init,
1857        .cra_ablkcipher = {
1858                .min_keysize    = 3 * DES_BLOCK_SIZE,
1859                .max_keysize    = 3 * DES_BLOCK_SIZE,
1860                .ivsize         = DES_BLOCK_SIZE,
1861                .setkey         = stm32_cryp_tdes_setkey,
1862                .encrypt        = stm32_cryp_tdes_cbc_encrypt,
1863                .decrypt        = stm32_cryp_tdes_cbc_decrypt,
1864        }
1865},
1866};
1867
1868static struct aead_alg aead_algs[] = {
1869{
1870        .setkey         = stm32_cryp_aes_aead_setkey,
1871        .setauthsize    = stm32_cryp_aes_gcm_setauthsize,
1872        .encrypt        = stm32_cryp_aes_gcm_encrypt,
1873        .decrypt        = stm32_cryp_aes_gcm_decrypt,
1874        .init           = stm32_cryp_aes_aead_init,
1875        .ivsize         = 12,
1876        .maxauthsize    = AES_BLOCK_SIZE,
1877
1878        .base = {
1879                .cra_name               = "gcm(aes)",
1880                .cra_driver_name        = "stm32-gcm-aes",
1881                .cra_priority           = 200,
1882                .cra_flags              = CRYPTO_ALG_ASYNC,
1883                .cra_blocksize          = 1,
1884                .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1885                .cra_alignmask          = 0xf,
1886                .cra_module             = THIS_MODULE,
1887        },
1888},
1889{
1890        .setkey         = stm32_cryp_aes_aead_setkey,
1891        .setauthsize    = stm32_cryp_aes_ccm_setauthsize,
1892        .encrypt        = stm32_cryp_aes_ccm_encrypt,
1893        .decrypt        = stm32_cryp_aes_ccm_decrypt,
1894        .init           = stm32_cryp_aes_aead_init,
1895        .ivsize         = AES_BLOCK_SIZE,
1896        .maxauthsize    = AES_BLOCK_SIZE,
1897
1898        .base = {
1899                .cra_name               = "ccm(aes)",
1900                .cra_driver_name        = "stm32-ccm-aes",
1901                .cra_priority           = 200,
1902                .cra_flags              = CRYPTO_ALG_ASYNC,
1903                .cra_blocksize          = 1,
1904                .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1905                .cra_alignmask          = 0xf,
1906                .cra_module             = THIS_MODULE,
1907        },
1908},
1909};
1910
1911static const struct stm32_cryp_caps f7_data = {
1912        .swap_final = true,
1913        .padding_wa = true,
1914};
1915
1916static const struct stm32_cryp_caps mp1_data = {
1917        .swap_final = false,
1918        .padding_wa = false,
1919};
1920
1921static const struct of_device_id stm32_dt_ids[] = {
1922        { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1923        { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1924        {},
1925};
1926MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1927
1928static int stm32_cryp_probe(struct platform_device *pdev)
1929{
1930        struct device *dev = &pdev->dev;
1931        struct stm32_cryp *cryp;
1932        struct resource *res;
1933        struct reset_control *rst;
1934        int irq, ret;
1935
1936        cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1937        if (!cryp)
1938                return -ENOMEM;
1939
1940        cryp->caps = of_device_get_match_data(dev);
1941        if (!cryp->caps)
1942                return -ENODEV;
1943
1944        cryp->dev = dev;
1945
1946        mutex_init(&cryp->lock);
1947
1948        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1949        cryp->regs = devm_ioremap_resource(dev, res);
1950        if (IS_ERR(cryp->regs))
1951                return PTR_ERR(cryp->regs);
1952
1953        irq = platform_get_irq(pdev, 0);
1954        if (irq < 0) {
1955                dev_err(dev, "Cannot get IRQ resource\n");
1956                return irq;
1957        }
1958
1959        ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1960                                        stm32_cryp_irq_thread, IRQF_ONESHOT,
1961                                        dev_name(dev), cryp);
1962        if (ret) {
1963                dev_err(dev, "Cannot grab IRQ\n");
1964                return ret;
1965        }
1966
1967        cryp->clk = devm_clk_get(dev, NULL);
1968        if (IS_ERR(cryp->clk)) {
1969                dev_err(dev, "Could not get clock\n");
1970                return PTR_ERR(cryp->clk);
1971        }
1972
1973        ret = clk_prepare_enable(cryp->clk);
1974        if (ret) {
1975                dev_err(cryp->dev, "Failed to enable clock\n");
1976                return ret;
1977        }
1978
1979        pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1980        pm_runtime_use_autosuspend(dev);
1981
1982        pm_runtime_get_noresume(dev);
1983        pm_runtime_set_active(dev);
1984        pm_runtime_enable(dev);
1985
1986        rst = devm_reset_control_get(dev, NULL);
1987        if (!IS_ERR(rst)) {
1988                reset_control_assert(rst);
1989                udelay(2);
1990                reset_control_deassert(rst);
1991        }
1992
1993        platform_set_drvdata(pdev, cryp);
1994
1995        spin_lock(&cryp_list.lock);
1996        list_add(&cryp->list, &cryp_list.dev_list);
1997        spin_unlock(&cryp_list.lock);
1998
1999        /* Initialize crypto engine */
2000        cryp->engine = crypto_engine_alloc_init(dev, 1);
2001        if (!cryp->engine) {
2002                dev_err(dev, "Could not init crypto engine\n");
2003                ret = -ENOMEM;
2004                goto err_engine1;
2005        }
2006
2007        ret = crypto_engine_start(cryp->engine);
2008        if (ret) {
2009                dev_err(dev, "Could not start crypto engine\n");
2010                goto err_engine2;
2011        }
2012
2013        ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2014        if (ret) {
2015                dev_err(dev, "Could not register algs\n");
2016                goto err_algs;
2017        }
2018
2019        ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2020        if (ret)
2021                goto err_aead_algs;
2022
2023        dev_info(dev, "Initialized\n");
2024
2025        pm_runtime_put_sync(dev);
2026
2027        return 0;
2028
2029err_aead_algs:
2030        crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2031err_algs:
2032err_engine2:
2033        crypto_engine_exit(cryp->engine);
2034err_engine1:
2035        spin_lock(&cryp_list.lock);
2036        list_del(&cryp->list);
2037        spin_unlock(&cryp_list.lock);
2038
2039        pm_runtime_disable(dev);
2040        pm_runtime_put_noidle(dev);
2041        pm_runtime_disable(dev);
2042        pm_runtime_put_noidle(dev);
2043
2044        clk_disable_unprepare(cryp->clk);
2045
2046        return ret;
2047}
2048
2049static int stm32_cryp_remove(struct platform_device *pdev)
2050{
2051        struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2052        int ret;
2053
2054        if (!cryp)
2055                return -ENODEV;
2056
2057        ret = pm_runtime_get_sync(cryp->dev);
2058        if (ret < 0)
2059                return ret;
2060
2061        crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062        crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2063
2064        crypto_engine_exit(cryp->engine);
2065
2066        spin_lock(&cryp_list.lock);
2067        list_del(&cryp->list);
2068        spin_unlock(&cryp_list.lock);
2069
2070        pm_runtime_disable(cryp->dev);
2071        pm_runtime_put_noidle(cryp->dev);
2072
2073        clk_disable_unprepare(cryp->clk);
2074
2075        return 0;
2076}
2077
2078#ifdef CONFIG_PM
2079static int stm32_cryp_runtime_suspend(struct device *dev)
2080{
2081        struct stm32_cryp *cryp = dev_get_drvdata(dev);
2082
2083        clk_disable_unprepare(cryp->clk);
2084
2085        return 0;
2086}
2087
2088static int stm32_cryp_runtime_resume(struct device *dev)
2089{
2090        struct stm32_cryp *cryp = dev_get_drvdata(dev);
2091        int ret;
2092
2093        ret = clk_prepare_enable(cryp->clk);
2094        if (ret) {
2095                dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2096                return ret;
2097        }
2098
2099        return 0;
2100}
2101#endif
2102
2103static const struct dev_pm_ops stm32_cryp_pm_ops = {
2104        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2105                                pm_runtime_force_resume)
2106        SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2107                           stm32_cryp_runtime_resume, NULL)
2108};
2109
2110static struct platform_driver stm32_cryp_driver = {
2111        .probe  = stm32_cryp_probe,
2112        .remove = stm32_cryp_remove,
2113        .driver = {
2114                .name           = DRIVER_NAME,
2115                .pm             = &stm32_cryp_pm_ops,
2116                .of_match_table = stm32_dt_ids,
2117        },
2118};
2119
2120module_platform_driver(stm32_cryp_driver);
2121
2122MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2123MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2124MODULE_LICENSE("GPL");
2125