linux/drivers/edac/skx_edac.c
<<
>>
Prefs
   1/*
   2 * EDAC driver for Intel(R) Xeon(R) Skylake processors
   3 * Copyright (c) 2016, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/acpi.h>
  18#include <linux/dmi.h>
  19#include <linux/pci.h>
  20#include <linux/pci_ids.h>
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/edac.h>
  24#include <linux/mmzone.h>
  25#include <linux/smp.h>
  26#include <linux/bitmap.h>
  27#include <linux/math64.h>
  28#include <linux/mod_devicetable.h>
  29#include <linux/adxl.h>
  30#include <acpi/nfit.h>
  31#include <asm/cpu_device_id.h>
  32#include <asm/intel-family.h>
  33#include <asm/processor.h>
  34#include <asm/mce.h>
  35
  36#include "edac_module.h"
  37
  38#define EDAC_MOD_STR    "skx_edac"
  39#define MSG_SIZE        1024
  40
  41/*
  42 * Debug macros
  43 */
  44#define skx_printk(level, fmt, arg...)                  \
  45        edac_printk(level, "skx", fmt, ##arg)
  46
  47#define skx_mc_printk(mci, level, fmt, arg...)          \
  48        edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
  49
  50/*
  51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  52 */
  53#define GET_BITFIELD(v, lo, hi) \
  54        (((v) & GENMASK_ULL((hi), (lo))) >> (lo))
  55
  56static LIST_HEAD(skx_edac_list);
  57
  58static u64 skx_tolm, skx_tohm;
  59static char *skx_msg;
  60static unsigned int nvdimm_count;
  61
  62enum {
  63        INDEX_SOCKET,
  64        INDEX_MEMCTRL,
  65        INDEX_CHANNEL,
  66        INDEX_DIMM,
  67        INDEX_MAX
  68};
  69
  70static const char * const component_names[] = {
  71        [INDEX_SOCKET]  = "ProcessorSocketId",
  72        [INDEX_MEMCTRL] = "MemoryControllerId",
  73        [INDEX_CHANNEL] = "ChannelId",
  74        [INDEX_DIMM]    = "DimmSlotId",
  75};
  76
  77static int component_indices[ARRAY_SIZE(component_names)];
  78static int adxl_component_count;
  79static const char * const *adxl_component_names;
  80static u64 *adxl_values;
  81static char *adxl_msg;
  82
  83#define NUM_IMC                 2       /* memory controllers per socket */
  84#define NUM_CHANNELS            3       /* channels per memory controller */
  85#define NUM_DIMMS               2       /* Max DIMMS per channel */
  86
  87#define MASK26  0x3FFFFFF               /* Mask for 2^26 */
  88#define MASK29  0x1FFFFFFF              /* Mask for 2^29 */
  89
  90/*
  91 * Each cpu socket contains some pci devices that provide global
  92 * information, and also some that are local to each of the two
  93 * memory controllers on the die.
  94 */
  95struct skx_dev {
  96        struct list_head        list;
  97        u8                      bus[4];
  98        int                     seg;
  99        struct pci_dev  *sad_all;
 100        struct pci_dev  *util_all;
 101        u32     mcroute;
 102        struct skx_imc {
 103                struct mem_ctl_info *mci;
 104                u8      mc;     /* system wide mc# */
 105                u8      lmc;    /* socket relative mc# */
 106                u8      src_id, node_id;
 107                struct skx_channel {
 108                        struct pci_dev *cdev;
 109                        struct skx_dimm {
 110                                u8      close_pg;
 111                                u8      bank_xor_enable;
 112                                u8      fine_grain_bank;
 113                                u8      rowbits;
 114                                u8      colbits;
 115                        } dimms[NUM_DIMMS];
 116                } chan[NUM_CHANNELS];
 117        } imc[NUM_IMC];
 118};
 119static int skx_num_sockets;
 120
 121struct skx_pvt {
 122        struct skx_imc  *imc;
 123};
 124
 125struct decoded_addr {
 126        struct skx_dev *dev;
 127        u64     addr;
 128        int     socket;
 129        int     imc;
 130        int     channel;
 131        u64     chan_addr;
 132        int     sktways;
 133        int     chanways;
 134        int     dimm;
 135        int     rank;
 136        int     channel_rank;
 137        u64     rank_address;
 138        int     row;
 139        int     column;
 140        int     bank_address;
 141        int     bank_group;
 142};
 143
 144static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
 145{
 146        struct skx_dev *d;
 147
 148        list_for_each_entry(d, &skx_edac_list, list) {
 149                if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
 150                        return d;
 151        }
 152
 153        return NULL;
 154}
 155
 156enum munittype {
 157        CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
 158};
 159
 160struct munit {
 161        u16     did;
 162        u16     devfn[NUM_IMC];
 163        u8      busidx;
 164        u8      per_socket;
 165        enum munittype mtype;
 166};
 167
 168/*
 169 * List of PCI device ids that we need together with some device
 170 * number and function numbers to tell which memory controller the
 171 * device belongs to.
 172 */
 173static const struct munit skx_all_munits[] = {
 174        { 0x2054, { }, 1, 1, SAD_ALL },
 175        { 0x2055, { }, 1, 1, UTIL_ALL },
 176        { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
 177        { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
 178        { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
 179        { 0x208e, { }, 1, 0, SAD },
 180        { }
 181};
 182
 183/*
 184 * We use the per-socket device 0x2016 to count how many sockets are present,
 185 * and to detemine which PCI buses are associated with each socket. Allocate
 186 * and build the full list of all the skx_dev structures that we need here.
 187 */
 188static int get_all_bus_mappings(void)
 189{
 190        struct pci_dev *pdev, *prev;
 191        struct skx_dev *d;
 192        u32 reg;
 193        int ndev = 0;
 194
 195        prev = NULL;
 196        for (;;) {
 197                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
 198                if (!pdev)
 199                        break;
 200                ndev++;
 201                d = kzalloc(sizeof(*d), GFP_KERNEL);
 202                if (!d) {
 203                        pci_dev_put(pdev);
 204                        return -ENOMEM;
 205                }
 206                d->seg = pci_domain_nr(pdev->bus);
 207                pci_read_config_dword(pdev, 0xCC, &reg);
 208                d->bus[0] =  GET_BITFIELD(reg, 0, 7);
 209                d->bus[1] =  GET_BITFIELD(reg, 8, 15);
 210                d->bus[2] =  GET_BITFIELD(reg, 16, 23);
 211                d->bus[3] =  GET_BITFIELD(reg, 24, 31);
 212                edac_dbg(2, "busses: %x, %x, %x, %x\n",
 213                         d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
 214                list_add_tail(&d->list, &skx_edac_list);
 215                skx_num_sockets++;
 216                prev = pdev;
 217        }
 218
 219        return ndev;
 220}
 221
 222static int get_all_munits(const struct munit *m)
 223{
 224        struct pci_dev *pdev, *prev;
 225        struct skx_dev *d;
 226        u32 reg;
 227        int i = 0, ndev = 0;
 228
 229        prev = NULL;
 230        for (;;) {
 231                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
 232                if (!pdev)
 233                        break;
 234                ndev++;
 235                if (m->per_socket == NUM_IMC) {
 236                        for (i = 0; i < NUM_IMC; i++)
 237                                if (m->devfn[i] == pdev->devfn)
 238                                        break;
 239                        if (i == NUM_IMC)
 240                                goto fail;
 241                }
 242                d = get_skx_dev(pdev->bus, m->busidx);
 243                if (!d)
 244                        goto fail;
 245
 246                /* Be sure that the device is enabled */
 247                if (unlikely(pci_enable_device(pdev) < 0)) {
 248                        skx_printk(KERN_ERR,
 249                                "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
 250                        goto fail;
 251                }
 252
 253                switch (m->mtype) {
 254                case CHAN0: case CHAN1: case CHAN2:
 255                        pci_dev_get(pdev);
 256                        d->imc[i].chan[m->mtype].cdev = pdev;
 257                        break;
 258                case SAD_ALL:
 259                        pci_dev_get(pdev);
 260                        d->sad_all = pdev;
 261                        break;
 262                case UTIL_ALL:
 263                        pci_dev_get(pdev);
 264                        d->util_all = pdev;
 265                        break;
 266                case SAD:
 267                        /*
 268                         * one of these devices per core, including cores
 269                         * that don't exist on this SKU. Ignore any that
 270                         * read a route table of zero, make sure all the
 271                         * non-zero values match.
 272                         */
 273                        pci_read_config_dword(pdev, 0xB4, &reg);
 274                        if (reg != 0) {
 275                                if (d->mcroute == 0)
 276                                        d->mcroute = reg;
 277                                else if (d->mcroute != reg) {
 278                                        skx_printk(KERN_ERR,
 279                                                "mcroute mismatch\n");
 280                                        goto fail;
 281                                }
 282                        }
 283                        ndev--;
 284                        break;
 285                }
 286
 287                prev = pdev;
 288        }
 289
 290        return ndev;
 291fail:
 292        pci_dev_put(pdev);
 293        return -ENODEV;
 294}
 295
 296static const struct x86_cpu_id skx_cpuids[] = {
 297        { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
 298        { }
 299};
 300MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
 301
 302static u8 get_src_id(struct skx_dev *d)
 303{
 304        u32 reg;
 305
 306        pci_read_config_dword(d->util_all, 0xF0, &reg);
 307
 308        return GET_BITFIELD(reg, 12, 14);
 309}
 310
 311static u8 skx_get_node_id(struct skx_dev *d)
 312{
 313        u32 reg;
 314
 315        pci_read_config_dword(d->util_all, 0xF4, &reg);
 316
 317        return GET_BITFIELD(reg, 0, 2);
 318}
 319
 320static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
 321                         int maxval, char *name)
 322{
 323        u32 val = GET_BITFIELD(reg, lobit, hibit);
 324
 325        if (val < minval || val > maxval) {
 326                edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
 327                return -EINVAL;
 328        }
 329        return val + add;
 330}
 331
 332#define IS_DIMM_PRESENT(mtr)            GET_BITFIELD((mtr), 15, 15)
 333#define IS_NVDIMM_PRESENT(mcddrtcfg, i) GET_BITFIELD((mcddrtcfg), (i), (i))
 334
 335#define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks")
 336#define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
 337#define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
 338
 339static int get_width(u32 mtr)
 340{
 341        switch (GET_BITFIELD(mtr, 8, 9)) {
 342        case 0:
 343                return DEV_X4;
 344        case 1:
 345                return DEV_X8;
 346        case 2:
 347                return DEV_X16;
 348        }
 349        return DEV_UNKNOWN;
 350}
 351
 352static int skx_get_hi_lo(void)
 353{
 354        struct pci_dev *pdev;
 355        u32 reg;
 356
 357        pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
 358        if (!pdev) {
 359                edac_dbg(0, "Can't get tolm/tohm\n");
 360                return -ENODEV;
 361        }
 362
 363        pci_read_config_dword(pdev, 0xD0, &reg);
 364        skx_tolm = reg;
 365        pci_read_config_dword(pdev, 0xD4, &reg);
 366        skx_tohm = reg;
 367        pci_read_config_dword(pdev, 0xD8, &reg);
 368        skx_tohm |= (u64)reg << 32;
 369
 370        pci_dev_put(pdev);
 371        edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
 372
 373        return 0;
 374}
 375
 376static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
 377                         struct skx_imc *imc, int chan, int dimmno)
 378{
 379        int  banks = 16, ranks, rows, cols, npages;
 380        u64 size;
 381
 382        ranks = numrank(mtr);
 383        rows = numrow(mtr);
 384        cols = numcol(mtr);
 385
 386        /*
 387         * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
 388         */
 389        size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
 390        npages = MiB_TO_PAGES(size);
 391
 392        edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
 393                 imc->mc, chan, dimmno, size, npages,
 394                 banks, 1 << ranks, rows, cols);
 395
 396        imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
 397        imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
 398        imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
 399        imc->chan[chan].dimms[dimmno].rowbits = rows;
 400        imc->chan[chan].dimms[dimmno].colbits = cols;
 401
 402        dimm->nr_pages = npages;
 403        dimm->grain = 32;
 404        dimm->dtype = get_width(mtr);
 405        dimm->mtype = MEM_DDR4;
 406        dimm->edac_mode = EDAC_SECDED; /* likely better than this */
 407        snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
 408                 imc->src_id, imc->lmc, chan, dimmno);
 409
 410        return 1;
 411}
 412
 413static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
 414                           int chan, int dimmno)
 415{
 416        int smbios_handle;
 417        u32 dev_handle;
 418        u16 flags;
 419        u64 size = 0;
 420
 421        nvdimm_count++;
 422
 423        dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
 424                                                   imc->src_id, 0);
 425
 426        smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
 427        if (smbios_handle == -EOPNOTSUPP) {
 428                pr_warn_once(EDAC_MOD_STR ": Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n");
 429                goto unknown_size;
 430        }
 431
 432        if (smbios_handle < 0) {
 433                skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=%x\n", dev_handle);
 434                goto unknown_size;
 435        }
 436
 437        if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
 438                skx_printk(KERN_ERR, "NVDIMM ADR=%x is not mapped\n", dev_handle);
 439                goto unknown_size;
 440        }
 441
 442        size = dmi_memdev_size(smbios_handle);
 443        if (size == ~0ull)
 444                skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=%x/SMBIOS=%x\n",
 445                           dev_handle, smbios_handle);
 446
 447unknown_size:
 448        dimm->nr_pages = size >> PAGE_SHIFT;
 449        dimm->grain = 32;
 450        dimm->dtype = DEV_UNKNOWN;
 451        dimm->mtype = MEM_NVDIMM;
 452        dimm->edac_mode = EDAC_SECDED; /* likely better than this */
 453
 454        edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
 455                 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
 456
 457        snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
 458                 imc->src_id, imc->lmc, chan, dimmno);
 459
 460        return (size == 0 || size == ~0ull) ? 0 : 1;
 461}
 462
 463#define SKX_GET_MTMTR(dev, reg) \
 464        pci_read_config_dword((dev), 0x87c, &reg)
 465
 466static bool skx_check_ecc(struct pci_dev *pdev)
 467{
 468        u32 mtmtr;
 469
 470        SKX_GET_MTMTR(pdev, mtmtr);
 471
 472        return !!GET_BITFIELD(mtmtr, 2, 2);
 473}
 474
 475static int skx_get_dimm_config(struct mem_ctl_info *mci)
 476{
 477        struct skx_pvt *pvt = mci->pvt_info;
 478        struct skx_imc *imc = pvt->imc;
 479        u32 mtr, amap, mcddrtcfg;
 480        struct dimm_info *dimm;
 481        int i, j;
 482        int ndimms;
 483
 484        for (i = 0; i < NUM_CHANNELS; i++) {
 485                ndimms = 0;
 486                pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
 487                pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
 488                for (j = 0; j < NUM_DIMMS; j++) {
 489                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
 490                                             mci->n_layers, i, j, 0);
 491                        pci_read_config_dword(imc->chan[i].cdev,
 492                                        0x80 + 4*j, &mtr);
 493                        if (IS_DIMM_PRESENT(mtr))
 494                                ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
 495                        else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
 496                                ndimms += get_nvdimm_info(dimm, imc, i, j);
 497                }
 498                if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
 499                        skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
 500                        return -ENODEV;
 501                }
 502        }
 503
 504        return 0;
 505}
 506
 507static void skx_unregister_mci(struct skx_imc *imc)
 508{
 509        struct mem_ctl_info *mci = imc->mci;
 510
 511        if (!mci)
 512                return;
 513
 514        edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
 515
 516        /* Remove MC sysfs nodes */
 517        edac_mc_del_mc(mci->pdev);
 518
 519        edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
 520        kfree(mci->ctl_name);
 521        edac_mc_free(mci);
 522}
 523
 524static int skx_register_mci(struct skx_imc *imc)
 525{
 526        struct mem_ctl_info *mci;
 527        struct edac_mc_layer layers[2];
 528        struct pci_dev *pdev = imc->chan[0].cdev;
 529        struct skx_pvt *pvt;
 530        int rc;
 531
 532        /* allocate a new MC control structure */
 533        layers[0].type = EDAC_MC_LAYER_CHANNEL;
 534        layers[0].size = NUM_CHANNELS;
 535        layers[0].is_virt_csrow = false;
 536        layers[1].type = EDAC_MC_LAYER_SLOT;
 537        layers[1].size = NUM_DIMMS;
 538        layers[1].is_virt_csrow = true;
 539        mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
 540                            sizeof(struct skx_pvt));
 541
 542        if (unlikely(!mci))
 543                return -ENOMEM;
 544
 545        edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
 546
 547        /* Associate skx_dev and mci for future usage */
 548        imc->mci = mci;
 549        pvt = mci->pvt_info;
 550        pvt->imc = imc;
 551
 552        mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
 553                                  imc->node_id, imc->lmc);
 554        if (!mci->ctl_name) {
 555                rc = -ENOMEM;
 556                goto fail0;
 557        }
 558
 559        mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
 560        mci->edac_ctl_cap = EDAC_FLAG_NONE;
 561        mci->edac_cap = EDAC_FLAG_NONE;
 562        mci->mod_name = EDAC_MOD_STR;
 563        mci->dev_name = pci_name(imc->chan[0].cdev);
 564        mci->ctl_page_to_phys = NULL;
 565
 566        rc = skx_get_dimm_config(mci);
 567        if (rc < 0)
 568                goto fail;
 569
 570        /* record ptr to the generic device */
 571        mci->pdev = &pdev->dev;
 572
 573        /* add this new MC control structure to EDAC's list of MCs */
 574        if (unlikely(edac_mc_add_mc(mci))) {
 575                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
 576                rc = -EINVAL;
 577                goto fail;
 578        }
 579
 580        return 0;
 581
 582fail:
 583        kfree(mci->ctl_name);
 584fail0:
 585        edac_mc_free(mci);
 586        imc->mci = NULL;
 587        return rc;
 588}
 589
 590#define SKX_MAX_SAD 24
 591
 592#define SKX_GET_SAD(d, i, reg)  \
 593        pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
 594#define SKX_GET_ILV(d, i, reg)  \
 595        pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
 596
 597#define SKX_SAD_MOD3MODE(sad)   GET_BITFIELD((sad), 30, 31)
 598#define SKX_SAD_MOD3(sad)       GET_BITFIELD((sad), 27, 27)
 599#define SKX_SAD_LIMIT(sad)      (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
 600#define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
 601#define SKX_SAD_ATTR(sad)       GET_BITFIELD((sad), 3, 4)
 602#define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
 603#define SKX_SAD_ENABLE(sad)     GET_BITFIELD((sad), 0, 0)
 604
 605#define SKX_ILV_REMOTE(tgt)     (((tgt) & 8) == 0)
 606#define SKX_ILV_TARGET(tgt)     ((tgt) & 7)
 607
 608static bool skx_sad_decode(struct decoded_addr *res)
 609{
 610        struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
 611        u64 addr = res->addr;
 612        int i, idx, tgt, lchan, shift;
 613        u32 sad, ilv;
 614        u64 limit, prev_limit;
 615        int remote = 0;
 616
 617        /* Simple sanity check for I/O space or out of range */
 618        if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
 619                edac_dbg(0, "Address %llx out of range\n", addr);
 620                return false;
 621        }
 622
 623restart:
 624        prev_limit = 0;
 625        for (i = 0; i < SKX_MAX_SAD; i++) {
 626                SKX_GET_SAD(d, i, sad);
 627                limit = SKX_SAD_LIMIT(sad);
 628                if (SKX_SAD_ENABLE(sad)) {
 629                        if (addr >= prev_limit && addr <= limit)
 630                                goto sad_found;
 631                }
 632                prev_limit = limit + 1;
 633        }
 634        edac_dbg(0, "No SAD entry for %llx\n", addr);
 635        return false;
 636
 637sad_found:
 638        SKX_GET_ILV(d, i, ilv);
 639
 640        switch (SKX_SAD_INTERLEAVE(sad)) {
 641        case 0:
 642                idx = GET_BITFIELD(addr, 6, 8);
 643                break;
 644        case 1:
 645                idx = GET_BITFIELD(addr, 8, 10);
 646                break;
 647        case 2:
 648                idx = GET_BITFIELD(addr, 12, 14);
 649                break;
 650        case 3:
 651                idx = GET_BITFIELD(addr, 30, 32);
 652                break;
 653        }
 654
 655        tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
 656
 657        /* If point to another node, find it and start over */
 658        if (SKX_ILV_REMOTE(tgt)) {
 659                if (remote) {
 660                        edac_dbg(0, "Double remote!\n");
 661                        return false;
 662                }
 663                remote = 1;
 664                list_for_each_entry(d, &skx_edac_list, list) {
 665                        if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
 666                                goto restart;
 667                }
 668                edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
 669                return false;
 670        }
 671
 672        if (SKX_SAD_MOD3(sad) == 0)
 673                lchan = SKX_ILV_TARGET(tgt);
 674        else {
 675                switch (SKX_SAD_MOD3MODE(sad)) {
 676                case 0:
 677                        shift = 6;
 678                        break;
 679                case 1:
 680                        shift = 8;
 681                        break;
 682                case 2:
 683                        shift = 12;
 684                        break;
 685                default:
 686                        edac_dbg(0, "illegal mod3mode\n");
 687                        return false;
 688                }
 689                switch (SKX_SAD_MOD3ASMOD2(sad)) {
 690                case 0:
 691                        lchan = (addr >> shift) % 3;
 692                        break;
 693                case 1:
 694                        lchan = (addr >> shift) % 2;
 695                        break;
 696                case 2:
 697                        lchan = (addr >> shift) % 2;
 698                        lchan = (lchan << 1) | !lchan;
 699                        break;
 700                case 3:
 701                        lchan = ((addr >> shift) % 2) << 1;
 702                        break;
 703                }
 704                lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
 705        }
 706
 707        res->dev = d;
 708        res->socket = d->imc[0].src_id;
 709        res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
 710        res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
 711
 712        edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
 713                 res->addr, res->socket, res->imc, res->channel);
 714        return true;
 715}
 716
 717#define SKX_MAX_TAD 8
 718
 719#define SKX_GET_TADBASE(d, mc, i, reg)                  \
 720        pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
 721#define SKX_GET_TADWAYNESS(d, mc, i, reg)               \
 722        pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
 723#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)      \
 724        pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
 725
 726#define SKX_TAD_BASE(b)         ((u64)GET_BITFIELD((b), 12, 31) << 26)
 727#define SKX_TAD_SKT_GRAN(b)     GET_BITFIELD((b), 4, 5)
 728#define SKX_TAD_CHN_GRAN(b)     GET_BITFIELD((b), 6, 7)
 729#define SKX_TAD_LIMIT(b)        (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
 730#define SKX_TAD_OFFSET(b)       ((u64)GET_BITFIELD((b), 4, 23) << 26)
 731#define SKX_TAD_SKTWAYS(b)      (1 << GET_BITFIELD((b), 10, 11))
 732#define SKX_TAD_CHNWAYS(b)      (GET_BITFIELD((b), 8, 9) + 1)
 733
 734/* which bit used for both socket and channel interleave */
 735static int skx_granularity[] = { 6, 8, 12, 30 };
 736
 737static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
 738{
 739        addr >>= shift;
 740        addr /= ways;
 741        addr <<= shift;
 742
 743        return addr | (lowbits & ((1ull << shift) - 1));
 744}
 745
 746static bool skx_tad_decode(struct decoded_addr *res)
 747{
 748        int i;
 749        u32 base, wayness, chnilvoffset;
 750        int skt_interleave_bit, chn_interleave_bit;
 751        u64 channel_addr;
 752
 753        for (i = 0; i < SKX_MAX_TAD; i++) {
 754                SKX_GET_TADBASE(res->dev, res->imc, i, base);
 755                SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
 756                if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
 757                        goto tad_found;
 758        }
 759        edac_dbg(0, "No TAD entry for %llx\n", res->addr);
 760        return false;
 761
 762tad_found:
 763        res->sktways = SKX_TAD_SKTWAYS(wayness);
 764        res->chanways = SKX_TAD_CHNWAYS(wayness);
 765        skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
 766        chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
 767
 768        SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
 769        channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
 770
 771        if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
 772                /* Must handle channel first, then socket */
 773                channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
 774                                                 res->chanways, channel_addr);
 775                channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
 776                                                 res->sktways, channel_addr);
 777        } else {
 778                /* Handle socket then channel. Preserve low bits from original address */
 779                channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
 780                                                 res->sktways, res->addr);
 781                channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
 782                                                 res->chanways, res->addr);
 783        }
 784
 785        res->chan_addr = channel_addr;
 786
 787        edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
 788                 res->addr, res->chan_addr, res->sktways, res->chanways);
 789        return true;
 790}
 791
 792#define SKX_MAX_RIR 4
 793
 794#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)           \
 795        pci_read_config_dword((d)->imc[mc].chan[ch].cdev,       \
 796                              0x108 + 4 * (i), &reg)
 797#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)          \
 798        pci_read_config_dword((d)->imc[mc].chan[ch].cdev,       \
 799                              0x120 + 16 * idx + 4 * (i), &reg)
 800
 801#define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
 802#define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
 803#define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
 804#define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
 805#define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
 806
 807static bool skx_rir_decode(struct decoded_addr *res)
 808{
 809        int i, idx, chan_rank;
 810        int shift;
 811        u32 rirway, rirlv;
 812        u64 rank_addr, prev_limit = 0, limit;
 813
 814        if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
 815                shift = 6;
 816        else
 817                shift = 13;
 818
 819        for (i = 0; i < SKX_MAX_RIR; i++) {
 820                SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
 821                limit = SKX_RIR_LIMIT(rirway);
 822                if (SKX_RIR_VALID(rirway)) {
 823                        if (prev_limit <= res->chan_addr &&
 824                            res->chan_addr <= limit)
 825                                goto rir_found;
 826                }
 827                prev_limit = limit;
 828        }
 829        edac_dbg(0, "No RIR entry for %llx\n", res->addr);
 830        return false;
 831
 832rir_found:
 833        rank_addr = res->chan_addr >> shift;
 834        rank_addr /= SKX_RIR_WAYS(rirway);
 835        rank_addr <<= shift;
 836        rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
 837
 838        res->rank_address = rank_addr;
 839        idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
 840
 841        SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
 842        res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
 843        chan_rank = SKX_RIR_CHAN_RANK(rirlv);
 844        res->channel_rank = chan_rank;
 845        res->dimm = chan_rank / 4;
 846        res->rank = chan_rank % 4;
 847
 848        edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
 849                 res->addr, res->dimm, res->rank,
 850                 res->channel_rank, res->rank_address);
 851        return true;
 852}
 853
 854static u8 skx_close_row[] = {
 855        15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
 856};
 857static u8 skx_close_column[] = {
 858        3, 4, 5, 14, 19, 23, 24, 25, 26, 27
 859};
 860static u8 skx_open_row[] = {
 861        14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
 862};
 863static u8 skx_open_column[] = {
 864        3, 4, 5, 6, 7, 8, 9, 10, 11, 12
 865};
 866static u8 skx_open_fine_column[] = {
 867        3, 4, 5, 7, 8, 9, 10, 11, 12, 13
 868};
 869
 870static int skx_bits(u64 addr, int nbits, u8 *bits)
 871{
 872        int i, res = 0;
 873
 874        for (i = 0; i < nbits; i++)
 875                res |= ((addr >> bits[i]) & 1) << i;
 876        return res;
 877}
 878
 879static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
 880{
 881        int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
 882
 883        if (do_xor)
 884                ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
 885
 886        return ret;
 887}
 888
 889static bool skx_mad_decode(struct decoded_addr *r)
 890{
 891        struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
 892        int bg0 = dimm->fine_grain_bank ? 6 : 13;
 893
 894        if (dimm->close_pg) {
 895                r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
 896                r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
 897                r->column |= 0x400; /* C10 is autoprecharge, always set */
 898                r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
 899                r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
 900        } else {
 901                r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
 902                if (dimm->fine_grain_bank)
 903                        r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
 904                else
 905                        r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
 906                r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
 907                r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
 908        }
 909        r->row &= (1u << dimm->rowbits) - 1;
 910
 911        edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
 912                 r->addr, r->row, r->column, r->bank_address,
 913                 r->bank_group);
 914        return true;
 915}
 916
 917static bool skx_decode(struct decoded_addr *res)
 918{
 919
 920        return skx_sad_decode(res) && skx_tad_decode(res) &&
 921                skx_rir_decode(res) && skx_mad_decode(res);
 922}
 923
 924#ifdef CONFIG_EDAC_DEBUG
 925/*
 926 * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
 927 * Write an address to this file to exercise the address decode
 928 * logic in this driver.
 929 */
 930static struct dentry *skx_test;
 931static u64 skx_fake_addr;
 932
 933static int debugfs_u64_set(void *data, u64 val)
 934{
 935        struct decoded_addr res;
 936
 937        res.addr = val;
 938        skx_decode(&res);
 939
 940        return 0;
 941}
 942
 943DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
 944
 945static struct dentry *mydebugfs_create(const char *name, umode_t mode,
 946                                       struct dentry *parent, u64 *value)
 947{
 948        return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
 949}
 950
 951static void setup_skx_debug(void)
 952{
 953        skx_test = debugfs_create_dir("skx_edac_test", NULL);
 954        mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
 955}
 956
 957static void teardown_skx_debug(void)
 958{
 959        debugfs_remove_recursive(skx_test);
 960}
 961#else
 962static void setup_skx_debug(void)
 963{
 964}
 965
 966static void teardown_skx_debug(void)
 967{
 968}
 969#endif /*CONFIG_EDAC_DEBUG*/
 970
 971static bool skx_adxl_decode(struct decoded_addr *res)
 972
 973{
 974        int i, len = 0;
 975
 976        if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
 977                                      res->addr < BIT_ULL(32))) {
 978                edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
 979                return false;
 980        }
 981
 982        if (adxl_decode(res->addr, adxl_values)) {
 983                edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
 984                return false;
 985        }
 986
 987        res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
 988        res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
 989        res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
 990        res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
 991
 992        for (i = 0; i < adxl_component_count; i++) {
 993                if (adxl_values[i] == ~0x0ull)
 994                        continue;
 995
 996                len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
 997                                adxl_component_names[i], adxl_values[i]);
 998                if (MSG_SIZE - len <= 0)
 999                        break;
1000        }
1001
1002        return true;
1003}
1004
1005static void skx_mce_output_error(struct mem_ctl_info *mci,
1006                                 const struct mce *m,
1007                                 struct decoded_addr *res)
1008{
1009        enum hw_event_mc_err_type tp_event;
1010        char *type, *optype;
1011        bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1012        bool overflow = GET_BITFIELD(m->status, 62, 62);
1013        bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1014        bool recoverable;
1015        u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1016        u32 mscod = GET_BITFIELD(m->status, 16, 31);
1017        u32 errcode = GET_BITFIELD(m->status, 0, 15);
1018        u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1019
1020        recoverable = GET_BITFIELD(m->status, 56, 56);
1021
1022        if (uncorrected_error) {
1023                core_err_cnt = 1;
1024                if (ripv) {
1025                        type = "FATAL";
1026                        tp_event = HW_EVENT_ERR_FATAL;
1027                } else {
1028                        type = "NON_FATAL";
1029                        tp_event = HW_EVENT_ERR_UNCORRECTED;
1030                }
1031        } else {
1032                type = "CORRECTED";
1033                tp_event = HW_EVENT_ERR_CORRECTED;
1034        }
1035
1036        /*
1037         * According with Table 15-9 of the Intel Architecture spec vol 3A,
1038         * memory errors should fit in this mask:
1039         *      000f 0000 1mmm cccc (binary)
1040         * where:
1041         *      f = Correction Report Filtering Bit. If 1, subsequent errors
1042         *          won't be shown
1043         *      mmm = error type
1044         *      cccc = channel
1045         * If the mask doesn't match, report an error to the parsing logic
1046         */
1047        if (!((errcode & 0xef80) == 0x80)) {
1048                optype = "Can't parse: it is not a mem";
1049        } else {
1050                switch (optypenum) {
1051                case 0:
1052                        optype = "generic undef request error";
1053                        break;
1054                case 1:
1055                        optype = "memory read error";
1056                        break;
1057                case 2:
1058                        optype = "memory write error";
1059                        break;
1060                case 3:
1061                        optype = "addr/cmd error";
1062                        break;
1063                case 4:
1064                        optype = "memory scrubbing error";
1065                        break;
1066                default:
1067                        optype = "reserved";
1068                        break;
1069                }
1070        }
1071        if (adxl_component_count) {
1072                snprintf(skx_msg, MSG_SIZE, "%s%s err_code:%04x:%04x %s",
1073                         overflow ? " OVERFLOW" : "",
1074                         (uncorrected_error && recoverable) ? " recoverable" : "",
1075                         mscod, errcode, adxl_msg);
1076        } else {
1077                snprintf(skx_msg, MSG_SIZE,
1078                         "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
1079                         overflow ? " OVERFLOW" : "",
1080                         (uncorrected_error && recoverable) ? " recoverable" : "",
1081                         mscod, errcode,
1082                         res->socket, res->imc, res->rank,
1083                         res->bank_group, res->bank_address, res->row, res->column);
1084        }
1085
1086        edac_dbg(0, "%s\n", skx_msg);
1087
1088        /* Call the helper to output message */
1089        edac_mc_handle_error(tp_event, mci, core_err_cnt,
1090                             m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1091                             res->channel, res->dimm, -1,
1092                             optype, skx_msg);
1093}
1094
1095static struct mem_ctl_info *get_mci(int src_id, int lmc)
1096{
1097        struct skx_dev *d;
1098
1099        if (lmc > NUM_IMC - 1) {
1100                skx_printk(KERN_ERR, "Bad lmc %d\n", lmc);
1101                return NULL;
1102        }
1103
1104        list_for_each_entry(d, &skx_edac_list, list) {
1105                if (d->imc[0].src_id == src_id)
1106                        return d->imc[lmc].mci;
1107        }
1108
1109        skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc);
1110
1111        return NULL;
1112}
1113
1114static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
1115                               void *data)
1116{
1117        struct mce *mce = (struct mce *)data;
1118        struct decoded_addr res;
1119        struct mem_ctl_info *mci;
1120        char *type;
1121
1122        if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
1123                return NOTIFY_DONE;
1124
1125        /* ignore unless this is memory related with an address */
1126        if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
1127                return NOTIFY_DONE;
1128
1129        memset(&res, 0, sizeof(res));
1130        res.addr = mce->addr;
1131
1132        if (adxl_component_count) {
1133                if (!skx_adxl_decode(&res))
1134                        return NOTIFY_DONE;
1135
1136                mci = get_mci(res.socket, res.imc);
1137        } else {
1138                if (!skx_decode(&res))
1139                        return NOTIFY_DONE;
1140
1141                mci = res.dev->imc[res.imc].mci;
1142        }
1143
1144        if (!mci)
1145                return NOTIFY_DONE;
1146
1147        if (mce->mcgstatus & MCG_STATUS_MCIP)
1148                type = "Exception";
1149        else
1150                type = "Event";
1151
1152        skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
1153
1154        skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
1155                          "Bank %d: %016Lx\n", mce->extcpu, type,
1156                          mce->mcgstatus, mce->bank, mce->status);
1157        skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
1158        skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
1159        skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
1160
1161        skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
1162                          "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
1163                          mce->time, mce->socketid, mce->apicid);
1164
1165        skx_mce_output_error(mci, mce, &res);
1166
1167        return NOTIFY_DONE;
1168}
1169
1170static struct notifier_block skx_mce_dec = {
1171        .notifier_call  = skx_mce_check_error,
1172        .priority       = MCE_PRIO_EDAC,
1173};
1174
1175static void skx_remove(void)
1176{
1177        int i, j;
1178        struct skx_dev *d, *tmp;
1179
1180        edac_dbg(0, "\n");
1181
1182        list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
1183                list_del(&d->list);
1184                for (i = 0; i < NUM_IMC; i++) {
1185                        skx_unregister_mci(&d->imc[i]);
1186                        for (j = 0; j < NUM_CHANNELS; j++)
1187                                pci_dev_put(d->imc[i].chan[j].cdev);
1188                }
1189                pci_dev_put(d->util_all);
1190                pci_dev_put(d->sad_all);
1191
1192                kfree(d);
1193        }
1194}
1195
1196static void __init skx_adxl_get(void)
1197{
1198        const char * const *names;
1199        int i, j;
1200
1201        names = adxl_get_component_names();
1202        if (!names) {
1203                skx_printk(KERN_NOTICE, "No firmware support for address translation.");
1204                skx_printk(KERN_CONT, " Only decoding DDR4 address!\n");
1205                return;
1206        }
1207
1208        for (i = 0; i < INDEX_MAX; i++) {
1209                for (j = 0; names[j]; j++) {
1210                        if (!strcmp(component_names[i], names[j])) {
1211                                component_indices[i] = j;
1212                                break;
1213                        }
1214                }
1215
1216                if (!names[j])
1217                        goto err;
1218        }
1219
1220        adxl_component_names = names;
1221        while (*names++)
1222                adxl_component_count++;
1223
1224        adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
1225                              GFP_KERNEL);
1226        if (!adxl_values) {
1227                adxl_component_count = 0;
1228                return;
1229        }
1230
1231        adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
1232        if (!adxl_msg) {
1233                adxl_component_count = 0;
1234                kfree(adxl_values);
1235        }
1236
1237        return;
1238err:
1239        skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
1240                   component_names[i]);
1241        for (j = 0; names[j]; j++)
1242                skx_printk(KERN_CONT, "%s ", names[j]);
1243        skx_printk(KERN_CONT, "\n");
1244}
1245
1246static void __exit skx_adxl_put(void)
1247{
1248        kfree(adxl_values);
1249        kfree(adxl_msg);
1250}
1251
1252/*
1253 * skx_init:
1254 *      make sure we are running on the correct cpu model
1255 *      search for all the devices we need
1256 *      check which DIMMs are present.
1257 */
1258static int __init skx_init(void)
1259{
1260        const struct x86_cpu_id *id;
1261        const struct munit *m;
1262        const char *owner;
1263        int rc = 0, i;
1264        u8 mc = 0, src_id, node_id;
1265        struct skx_dev *d;
1266
1267        edac_dbg(2, "\n");
1268
1269        owner = edac_get_owner();
1270        if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1271                return -EBUSY;
1272
1273        id = x86_match_cpu(skx_cpuids);
1274        if (!id)
1275                return -ENODEV;
1276
1277        rc = skx_get_hi_lo();
1278        if (rc)
1279                return rc;
1280
1281        rc = get_all_bus_mappings();
1282        if (rc < 0)
1283                goto fail;
1284        if (rc == 0) {
1285                edac_dbg(2, "No memory controllers found\n");
1286                return -ENODEV;
1287        }
1288
1289        for (m = skx_all_munits; m->did; m++) {
1290                rc = get_all_munits(m);
1291                if (rc < 0)
1292                        goto fail;
1293                if (rc != m->per_socket * skx_num_sockets) {
1294                        edac_dbg(2, "Expected %d, got %d of %x\n",
1295                                 m->per_socket * skx_num_sockets, rc, m->did);
1296                        rc = -ENODEV;
1297                        goto fail;
1298                }
1299        }
1300
1301        list_for_each_entry(d, &skx_edac_list, list) {
1302                src_id = get_src_id(d);
1303                node_id = skx_get_node_id(d);
1304                edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
1305                for (i = 0; i < NUM_IMC; i++) {
1306                        d->imc[i].mc = mc++;
1307                        d->imc[i].lmc = i;
1308                        d->imc[i].src_id = src_id;
1309                        d->imc[i].node_id = node_id;
1310                        rc = skx_register_mci(&d->imc[i]);
1311                        if (rc < 0)
1312                                goto fail;
1313                }
1314        }
1315
1316        skx_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
1317        if (!skx_msg) {
1318                rc = -ENOMEM;
1319                goto fail;
1320        }
1321
1322        if (nvdimm_count)
1323                skx_adxl_get();
1324
1325        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1326        opstate_init();
1327
1328        setup_skx_debug();
1329
1330        mce_register_decode_chain(&skx_mce_dec);
1331
1332        return 0;
1333fail:
1334        skx_remove();
1335        return rc;
1336}
1337
1338static void __exit skx_exit(void)
1339{
1340        edac_dbg(2, "\n");
1341        mce_unregister_decode_chain(&skx_mce_dec);
1342        skx_remove();
1343        if (nvdimm_count)
1344                skx_adxl_put();
1345        kfree(skx_msg);
1346        teardown_skx_debug();
1347}
1348
1349module_init(skx_init);
1350module_exit(skx_exit);
1351
1352module_param(edac_op_state, int, 0444);
1353MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1354
1355MODULE_LICENSE("GPL v2");
1356MODULE_AUTHOR("Tony Luck");
1357MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
1358