linux/drivers/md/dm-thin.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define DM_MSG_PREFIX   "thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38                "A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116        VIRTUAL,
 117        PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121                      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123        key->virtual = (ls == VIRTUAL);
 124        key->dev = dm_thin_dev_id(td);
 125        key->block_begin = b;
 126        key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130                           struct dm_cell_key *key)
 131{
 132        build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136                              struct dm_cell_key *key)
 137{
 138        build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146        struct rw_semaphore lock;
 147        unsigned long threshold;
 148        bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153        init_rwsem(&t->lock);
 154        t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159        t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164        if (!t->throttle_applied && jiffies > t->threshold) {
 165                down_write(&t->lock);
 166                t->throttle_applied = true;
 167        }
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172        if (t->throttle_applied) {
 173                t->throttle_applied = false;
 174                up_write(&t->lock);
 175        }
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180        down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185        up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201        PM_WRITE,               /* metadata may be changed */
 202        PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
 203
 204        /*
 205         * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 206         */
 207        PM_OUT_OF_METADATA_SPACE,
 208        PM_READ_ONLY,           /* metadata may not be changed */
 209
 210        PM_FAIL,                /* all I/O fails */
 211};
 212
 213struct pool_features {
 214        enum pool_mode mode;
 215
 216        bool zero_new_blocks:1;
 217        bool discard_enabled:1;
 218        bool discard_passdown:1;
 219        bool error_if_no_space:1;
 220};
 221
 222struct thin_c;
 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 226
 227#define CELL_SORT_ARRAY_SIZE 8192
 228
 229struct pool {
 230        struct list_head list;
 231        struct dm_target *ti;   /* Only set if a pool target is bound */
 232
 233        struct mapped_device *pool_md;
 234        struct block_device *md_dev;
 235        struct dm_pool_metadata *pmd;
 236
 237        dm_block_t low_water_blocks;
 238        uint32_t sectors_per_block;
 239        int sectors_per_block_shift;
 240
 241        struct pool_features pf;
 242        bool low_water_triggered:1;     /* A dm event has been sent */
 243        bool suspended:1;
 244        bool out_of_data_space:1;
 245
 246        struct dm_bio_prison *prison;
 247        struct dm_kcopyd_client *copier;
 248
 249        struct work_struct worker;
 250        struct workqueue_struct *wq;
 251        struct throttle throttle;
 252        struct delayed_work waker;
 253        struct delayed_work no_space_timeout;
 254
 255        unsigned long last_commit_jiffies;
 256        unsigned ref_count;
 257
 258        spinlock_t lock;
 259        struct bio_list deferred_flush_bios;
 260        struct list_head prepared_mappings;
 261        struct list_head prepared_discards;
 262        struct list_head prepared_discards_pt2;
 263        struct list_head active_thins;
 264
 265        struct dm_deferred_set *shared_read_ds;
 266        struct dm_deferred_set *all_io_ds;
 267
 268        struct dm_thin_new_mapping *next_mapping;
 269
 270        process_bio_fn process_bio;
 271        process_bio_fn process_discard;
 272
 273        process_cell_fn process_cell;
 274        process_cell_fn process_discard_cell;
 275
 276        process_mapping_fn process_prepared_mapping;
 277        process_mapping_fn process_prepared_discard;
 278        process_mapping_fn process_prepared_discard_pt2;
 279
 280        struct dm_bio_prison_cell **cell_sort_array;
 281
 282        mempool_t mapping_pool;
 283};
 284
 285static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 286
 287static enum pool_mode get_pool_mode(struct pool *pool)
 288{
 289        return pool->pf.mode;
 290}
 291
 292static void notify_of_pool_mode_change(struct pool *pool)
 293{
 294        const char *descs[] = {
 295                "write",
 296                "out-of-data-space",
 297                "read-only",
 298                "read-only",
 299                "fail"
 300        };
 301        const char *extra_desc = NULL;
 302        enum pool_mode mode = get_pool_mode(pool);
 303
 304        if (mode == PM_OUT_OF_DATA_SPACE) {
 305                if (!pool->pf.error_if_no_space)
 306                        extra_desc = " (queue IO)";
 307                else
 308                        extra_desc = " (error IO)";
 309        }
 310
 311        dm_table_event(pool->ti->table);
 312        DMINFO("%s: switching pool to %s%s mode",
 313               dm_device_name(pool->pool_md),
 314               descs[(int)mode], extra_desc ? : "");
 315}
 316
 317/*
 318 * Target context for a pool.
 319 */
 320struct pool_c {
 321        struct dm_target *ti;
 322        struct pool *pool;
 323        struct dm_dev *data_dev;
 324        struct dm_dev *metadata_dev;
 325        struct dm_target_callbacks callbacks;
 326
 327        dm_block_t low_water_blocks;
 328        struct pool_features requested_pf; /* Features requested during table load */
 329        struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 330};
 331
 332/*
 333 * Target context for a thin.
 334 */
 335struct thin_c {
 336        struct list_head list;
 337        struct dm_dev *pool_dev;
 338        struct dm_dev *origin_dev;
 339        sector_t origin_size;
 340        dm_thin_id dev_id;
 341
 342        struct pool *pool;
 343        struct dm_thin_device *td;
 344        struct mapped_device *thin_md;
 345
 346        bool requeue_mode:1;
 347        spinlock_t lock;
 348        struct list_head deferred_cells;
 349        struct bio_list deferred_bio_list;
 350        struct bio_list retry_on_resume_list;
 351        struct rb_root sort_bio_list; /* sorted list of deferred bios */
 352
 353        /*
 354         * Ensures the thin is not destroyed until the worker has finished
 355         * iterating the active_thins list.
 356         */
 357        refcount_t refcount;
 358        struct completion can_destroy;
 359};
 360
 361/*----------------------------------------------------------------*/
 362
 363static bool block_size_is_power_of_two(struct pool *pool)
 364{
 365        return pool->sectors_per_block_shift >= 0;
 366}
 367
 368static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 369{
 370        return block_size_is_power_of_two(pool) ?
 371                (b << pool->sectors_per_block_shift) :
 372                (b * pool->sectors_per_block);
 373}
 374
 375/*----------------------------------------------------------------*/
 376
 377struct discard_op {
 378        struct thin_c *tc;
 379        struct blk_plug plug;
 380        struct bio *parent_bio;
 381        struct bio *bio;
 382};
 383
 384static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 385{
 386        BUG_ON(!parent);
 387
 388        op->tc = tc;
 389        blk_start_plug(&op->plug);
 390        op->parent_bio = parent;
 391        op->bio = NULL;
 392}
 393
 394static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 395{
 396        struct thin_c *tc = op->tc;
 397        sector_t s = block_to_sectors(tc->pool, data_b);
 398        sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 399
 400        return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 401                                      GFP_NOWAIT, 0, &op->bio);
 402}
 403
 404static void end_discard(struct discard_op *op, int r)
 405{
 406        if (op->bio) {
 407                /*
 408                 * Even if one of the calls to issue_discard failed, we
 409                 * need to wait for the chain to complete.
 410                 */
 411                bio_chain(op->bio, op->parent_bio);
 412                bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 413                submit_bio(op->bio);
 414        }
 415
 416        blk_finish_plug(&op->plug);
 417
 418        /*
 419         * Even if r is set, there could be sub discards in flight that we
 420         * need to wait for.
 421         */
 422        if (r && !op->parent_bio->bi_status)
 423                op->parent_bio->bi_status = errno_to_blk_status(r);
 424        bio_endio(op->parent_bio);
 425}
 426
 427/*----------------------------------------------------------------*/
 428
 429/*
 430 * wake_worker() is used when new work is queued and when pool_resume is
 431 * ready to continue deferred IO processing.
 432 */
 433static void wake_worker(struct pool *pool)
 434{
 435        queue_work(pool->wq, &pool->worker);
 436}
 437
 438/*----------------------------------------------------------------*/
 439
 440static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 441                      struct dm_bio_prison_cell **cell_result)
 442{
 443        int r;
 444        struct dm_bio_prison_cell *cell_prealloc;
 445
 446        /*
 447         * Allocate a cell from the prison's mempool.
 448         * This might block but it can't fail.
 449         */
 450        cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 451
 452        r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 453        if (r)
 454                /*
 455                 * We reused an old cell; we can get rid of
 456                 * the new one.
 457                 */
 458                dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 459
 460        return r;
 461}
 462
 463static void cell_release(struct pool *pool,
 464                         struct dm_bio_prison_cell *cell,
 465                         struct bio_list *bios)
 466{
 467        dm_cell_release(pool->prison, cell, bios);
 468        dm_bio_prison_free_cell(pool->prison, cell);
 469}
 470
 471static void cell_visit_release(struct pool *pool,
 472                               void (*fn)(void *, struct dm_bio_prison_cell *),
 473                               void *context,
 474                               struct dm_bio_prison_cell *cell)
 475{
 476        dm_cell_visit_release(pool->prison, fn, context, cell);
 477        dm_bio_prison_free_cell(pool->prison, cell);
 478}
 479
 480static void cell_release_no_holder(struct pool *pool,
 481                                   struct dm_bio_prison_cell *cell,
 482                                   struct bio_list *bios)
 483{
 484        dm_cell_release_no_holder(pool->prison, cell, bios);
 485        dm_bio_prison_free_cell(pool->prison, cell);
 486}
 487
 488static void cell_error_with_code(struct pool *pool,
 489                struct dm_bio_prison_cell *cell, blk_status_t error_code)
 490{
 491        dm_cell_error(pool->prison, cell, error_code);
 492        dm_bio_prison_free_cell(pool->prison, cell);
 493}
 494
 495static blk_status_t get_pool_io_error_code(struct pool *pool)
 496{
 497        return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 498}
 499
 500static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 501{
 502        cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 503}
 504
 505static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 506{
 507        cell_error_with_code(pool, cell, 0);
 508}
 509
 510static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 511{
 512        cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 513}
 514
 515/*----------------------------------------------------------------*/
 516
 517/*
 518 * A global list of pools that uses a struct mapped_device as a key.
 519 */
 520static struct dm_thin_pool_table {
 521        struct mutex mutex;
 522        struct list_head pools;
 523} dm_thin_pool_table;
 524
 525static void pool_table_init(void)
 526{
 527        mutex_init(&dm_thin_pool_table.mutex);
 528        INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 529}
 530
 531static void pool_table_exit(void)
 532{
 533        mutex_destroy(&dm_thin_pool_table.mutex);
 534}
 535
 536static void __pool_table_insert(struct pool *pool)
 537{
 538        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 539        list_add(&pool->list, &dm_thin_pool_table.pools);
 540}
 541
 542static void __pool_table_remove(struct pool *pool)
 543{
 544        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 545        list_del(&pool->list);
 546}
 547
 548static struct pool *__pool_table_lookup(struct mapped_device *md)
 549{
 550        struct pool *pool = NULL, *tmp;
 551
 552        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 553
 554        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 555                if (tmp->pool_md == md) {
 556                        pool = tmp;
 557                        break;
 558                }
 559        }
 560
 561        return pool;
 562}
 563
 564static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 565{
 566        struct pool *pool = NULL, *tmp;
 567
 568        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 569
 570        list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 571                if (tmp->md_dev == md_dev) {
 572                        pool = tmp;
 573                        break;
 574                }
 575        }
 576
 577        return pool;
 578}
 579
 580/*----------------------------------------------------------------*/
 581
 582struct dm_thin_endio_hook {
 583        struct thin_c *tc;
 584        struct dm_deferred_entry *shared_read_entry;
 585        struct dm_deferred_entry *all_io_entry;
 586        struct dm_thin_new_mapping *overwrite_mapping;
 587        struct rb_node rb_node;
 588        struct dm_bio_prison_cell *cell;
 589};
 590
 591static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 592{
 593        bio_list_merge(bios, master);
 594        bio_list_init(master);
 595}
 596
 597static void error_bio_list(struct bio_list *bios, blk_status_t error)
 598{
 599        struct bio *bio;
 600
 601        while ((bio = bio_list_pop(bios))) {
 602                bio->bi_status = error;
 603                bio_endio(bio);
 604        }
 605}
 606
 607static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 608                blk_status_t error)
 609{
 610        struct bio_list bios;
 611        unsigned long flags;
 612
 613        bio_list_init(&bios);
 614
 615        spin_lock_irqsave(&tc->lock, flags);
 616        __merge_bio_list(&bios, master);
 617        spin_unlock_irqrestore(&tc->lock, flags);
 618
 619        error_bio_list(&bios, error);
 620}
 621
 622static void requeue_deferred_cells(struct thin_c *tc)
 623{
 624        struct pool *pool = tc->pool;
 625        unsigned long flags;
 626        struct list_head cells;
 627        struct dm_bio_prison_cell *cell, *tmp;
 628
 629        INIT_LIST_HEAD(&cells);
 630
 631        spin_lock_irqsave(&tc->lock, flags);
 632        list_splice_init(&tc->deferred_cells, &cells);
 633        spin_unlock_irqrestore(&tc->lock, flags);
 634
 635        list_for_each_entry_safe(cell, tmp, &cells, user_list)
 636                cell_requeue(pool, cell);
 637}
 638
 639static void requeue_io(struct thin_c *tc)
 640{
 641        struct bio_list bios;
 642        unsigned long flags;
 643
 644        bio_list_init(&bios);
 645
 646        spin_lock_irqsave(&tc->lock, flags);
 647        __merge_bio_list(&bios, &tc->deferred_bio_list);
 648        __merge_bio_list(&bios, &tc->retry_on_resume_list);
 649        spin_unlock_irqrestore(&tc->lock, flags);
 650
 651        error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 652        requeue_deferred_cells(tc);
 653}
 654
 655static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 656{
 657        struct thin_c *tc;
 658
 659        rcu_read_lock();
 660        list_for_each_entry_rcu(tc, &pool->active_thins, list)
 661                error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 662        rcu_read_unlock();
 663}
 664
 665static void error_retry_list(struct pool *pool)
 666{
 667        error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 668}
 669
 670/*
 671 * This section of code contains the logic for processing a thin device's IO.
 672 * Much of the code depends on pool object resources (lists, workqueues, etc)
 673 * but most is exclusively called from the thin target rather than the thin-pool
 674 * target.
 675 */
 676
 677static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 678{
 679        struct pool *pool = tc->pool;
 680        sector_t block_nr = bio->bi_iter.bi_sector;
 681
 682        if (block_size_is_power_of_two(pool))
 683                block_nr >>= pool->sectors_per_block_shift;
 684        else
 685                (void) sector_div(block_nr, pool->sectors_per_block);
 686
 687        return block_nr;
 688}
 689
 690/*
 691 * Returns the _complete_ blocks that this bio covers.
 692 */
 693static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 694                                dm_block_t *begin, dm_block_t *end)
 695{
 696        struct pool *pool = tc->pool;
 697        sector_t b = bio->bi_iter.bi_sector;
 698        sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 699
 700        b += pool->sectors_per_block - 1ull; /* so we round up */
 701
 702        if (block_size_is_power_of_two(pool)) {
 703                b >>= pool->sectors_per_block_shift;
 704                e >>= pool->sectors_per_block_shift;
 705        } else {
 706                (void) sector_div(b, pool->sectors_per_block);
 707                (void) sector_div(e, pool->sectors_per_block);
 708        }
 709
 710        if (e < b)
 711                /* Can happen if the bio is within a single block. */
 712                e = b;
 713
 714        *begin = b;
 715        *end = e;
 716}
 717
 718static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 719{
 720        struct pool *pool = tc->pool;
 721        sector_t bi_sector = bio->bi_iter.bi_sector;
 722
 723        bio_set_dev(bio, tc->pool_dev->bdev);
 724        if (block_size_is_power_of_two(pool))
 725                bio->bi_iter.bi_sector =
 726                        (block << pool->sectors_per_block_shift) |
 727                        (bi_sector & (pool->sectors_per_block - 1));
 728        else
 729                bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 730                                 sector_div(bi_sector, pool->sectors_per_block);
 731}
 732
 733static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 734{
 735        bio_set_dev(bio, tc->origin_dev->bdev);
 736}
 737
 738static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 739{
 740        return op_is_flush(bio->bi_opf) &&
 741                dm_thin_changed_this_transaction(tc->td);
 742}
 743
 744static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 745{
 746        struct dm_thin_endio_hook *h;
 747
 748        if (bio_op(bio) == REQ_OP_DISCARD)
 749                return;
 750
 751        h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 752        h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 753}
 754
 755static void issue(struct thin_c *tc, struct bio *bio)
 756{
 757        struct pool *pool = tc->pool;
 758        unsigned long flags;
 759
 760        if (!bio_triggers_commit(tc, bio)) {
 761                generic_make_request(bio);
 762                return;
 763        }
 764
 765        /*
 766         * Complete bio with an error if earlier I/O caused changes to
 767         * the metadata that can't be committed e.g, due to I/O errors
 768         * on the metadata device.
 769         */
 770        if (dm_thin_aborted_changes(tc->td)) {
 771                bio_io_error(bio);
 772                return;
 773        }
 774
 775        /*
 776         * Batch together any bios that trigger commits and then issue a
 777         * single commit for them in process_deferred_bios().
 778         */
 779        spin_lock_irqsave(&pool->lock, flags);
 780        bio_list_add(&pool->deferred_flush_bios, bio);
 781        spin_unlock_irqrestore(&pool->lock, flags);
 782}
 783
 784static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 785{
 786        remap_to_origin(tc, bio);
 787        issue(tc, bio);
 788}
 789
 790static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 791                            dm_block_t block)
 792{
 793        remap(tc, bio, block);
 794        issue(tc, bio);
 795}
 796
 797/*----------------------------------------------------------------*/
 798
 799/*
 800 * Bio endio functions.
 801 */
 802struct dm_thin_new_mapping {
 803        struct list_head list;
 804
 805        bool pass_discard:1;
 806        bool maybe_shared:1;
 807
 808        /*
 809         * Track quiescing, copying and zeroing preparation actions.  When this
 810         * counter hits zero the block is prepared and can be inserted into the
 811         * btree.
 812         */
 813        atomic_t prepare_actions;
 814
 815        blk_status_t status;
 816        struct thin_c *tc;
 817        dm_block_t virt_begin, virt_end;
 818        dm_block_t data_block;
 819        struct dm_bio_prison_cell *cell;
 820
 821        /*
 822         * If the bio covers the whole area of a block then we can avoid
 823         * zeroing or copying.  Instead this bio is hooked.  The bio will
 824         * still be in the cell, so care has to be taken to avoid issuing
 825         * the bio twice.
 826         */
 827        struct bio *bio;
 828        bio_end_io_t *saved_bi_end_io;
 829};
 830
 831static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 832{
 833        struct pool *pool = m->tc->pool;
 834
 835        if (atomic_dec_and_test(&m->prepare_actions)) {
 836                list_add_tail(&m->list, &pool->prepared_mappings);
 837                wake_worker(pool);
 838        }
 839}
 840
 841static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 842{
 843        unsigned long flags;
 844        struct pool *pool = m->tc->pool;
 845
 846        spin_lock_irqsave(&pool->lock, flags);
 847        __complete_mapping_preparation(m);
 848        spin_unlock_irqrestore(&pool->lock, flags);
 849}
 850
 851static void copy_complete(int read_err, unsigned long write_err, void *context)
 852{
 853        struct dm_thin_new_mapping *m = context;
 854
 855        m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 856        complete_mapping_preparation(m);
 857}
 858
 859static void overwrite_endio(struct bio *bio)
 860{
 861        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 862        struct dm_thin_new_mapping *m = h->overwrite_mapping;
 863
 864        bio->bi_end_io = m->saved_bi_end_io;
 865
 866        m->status = bio->bi_status;
 867        complete_mapping_preparation(m);
 868}
 869
 870/*----------------------------------------------------------------*/
 871
 872/*
 873 * Workqueue.
 874 */
 875
 876/*
 877 * Prepared mapping jobs.
 878 */
 879
 880/*
 881 * This sends the bios in the cell, except the original holder, back
 882 * to the deferred_bios list.
 883 */
 884static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 885{
 886        struct pool *pool = tc->pool;
 887        unsigned long flags;
 888
 889        spin_lock_irqsave(&tc->lock, flags);
 890        cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 891        spin_unlock_irqrestore(&tc->lock, flags);
 892
 893        wake_worker(pool);
 894}
 895
 896static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 897
 898struct remap_info {
 899        struct thin_c *tc;
 900        struct bio_list defer_bios;
 901        struct bio_list issue_bios;
 902};
 903
 904static void __inc_remap_and_issue_cell(void *context,
 905                                       struct dm_bio_prison_cell *cell)
 906{
 907        struct remap_info *info = context;
 908        struct bio *bio;
 909
 910        while ((bio = bio_list_pop(&cell->bios))) {
 911                if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 912                        bio_list_add(&info->defer_bios, bio);
 913                else {
 914                        inc_all_io_entry(info->tc->pool, bio);
 915
 916                        /*
 917                         * We can't issue the bios with the bio prison lock
 918                         * held, so we add them to a list to issue on
 919                         * return from this function.
 920                         */
 921                        bio_list_add(&info->issue_bios, bio);
 922                }
 923        }
 924}
 925
 926static void inc_remap_and_issue_cell(struct thin_c *tc,
 927                                     struct dm_bio_prison_cell *cell,
 928                                     dm_block_t block)
 929{
 930        struct bio *bio;
 931        struct remap_info info;
 932
 933        info.tc = tc;
 934        bio_list_init(&info.defer_bios);
 935        bio_list_init(&info.issue_bios);
 936
 937        /*
 938         * We have to be careful to inc any bios we're about to issue
 939         * before the cell is released, and avoid a race with new bios
 940         * being added to the cell.
 941         */
 942        cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 943                           &info, cell);
 944
 945        while ((bio = bio_list_pop(&info.defer_bios)))
 946                thin_defer_bio(tc, bio);
 947
 948        while ((bio = bio_list_pop(&info.issue_bios)))
 949                remap_and_issue(info.tc, bio, block);
 950}
 951
 952static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 953{
 954        cell_error(m->tc->pool, m->cell);
 955        list_del(&m->list);
 956        mempool_free(m, &m->tc->pool->mapping_pool);
 957}
 958
 959static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 960{
 961        struct thin_c *tc = m->tc;
 962        struct pool *pool = tc->pool;
 963        struct bio *bio = m->bio;
 964        int r;
 965
 966        if (m->status) {
 967                cell_error(pool, m->cell);
 968                goto out;
 969        }
 970
 971        /*
 972         * Commit the prepared block into the mapping btree.
 973         * Any I/O for this block arriving after this point will get
 974         * remapped to it directly.
 975         */
 976        r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 977        if (r) {
 978                metadata_operation_failed(pool, "dm_thin_insert_block", r);
 979                cell_error(pool, m->cell);
 980                goto out;
 981        }
 982
 983        /*
 984         * Release any bios held while the block was being provisioned.
 985         * If we are processing a write bio that completely covers the block,
 986         * we already processed it so can ignore it now when processing
 987         * the bios in the cell.
 988         */
 989        if (bio) {
 990                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 991                bio_endio(bio);
 992        } else {
 993                inc_all_io_entry(tc->pool, m->cell->holder);
 994                remap_and_issue(tc, m->cell->holder, m->data_block);
 995                inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 996        }
 997
 998out:
 999        list_del(&m->list);
1000        mempool_free(m, &pool->mapping_pool);
1001}
1002
1003/*----------------------------------------------------------------*/
1004
1005static void free_discard_mapping(struct dm_thin_new_mapping *m)
1006{
1007        struct thin_c *tc = m->tc;
1008        if (m->cell)
1009                cell_defer_no_holder(tc, m->cell);
1010        mempool_free(m, &tc->pool->mapping_pool);
1011}
1012
1013static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1014{
1015        bio_io_error(m->bio);
1016        free_discard_mapping(m);
1017}
1018
1019static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1020{
1021        bio_endio(m->bio);
1022        free_discard_mapping(m);
1023}
1024
1025static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1026{
1027        int r;
1028        struct thin_c *tc = m->tc;
1029
1030        r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1031        if (r) {
1032                metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1033                bio_io_error(m->bio);
1034        } else
1035                bio_endio(m->bio);
1036
1037        cell_defer_no_holder(tc, m->cell);
1038        mempool_free(m, &tc->pool->mapping_pool);
1039}
1040
1041/*----------------------------------------------------------------*/
1042
1043static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1044                                                   struct bio *discard_parent)
1045{
1046        /*
1047         * We've already unmapped this range of blocks, but before we
1048         * passdown we have to check that these blocks are now unused.
1049         */
1050        int r = 0;
1051        bool used = true;
1052        struct thin_c *tc = m->tc;
1053        struct pool *pool = tc->pool;
1054        dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1055        struct discard_op op;
1056
1057        begin_discard(&op, tc, discard_parent);
1058        while (b != end) {
1059                /* find start of unmapped run */
1060                for (; b < end; b++) {
1061                        r = dm_pool_block_is_used(pool->pmd, b, &used);
1062                        if (r)
1063                                goto out;
1064
1065                        if (!used)
1066                                break;
1067                }
1068
1069                if (b == end)
1070                        break;
1071
1072                /* find end of run */
1073                for (e = b + 1; e != end; e++) {
1074                        r = dm_pool_block_is_used(pool->pmd, e, &used);
1075                        if (r)
1076                                goto out;
1077
1078                        if (used)
1079                                break;
1080                }
1081
1082                r = issue_discard(&op, b, e);
1083                if (r)
1084                        goto out;
1085
1086                b = e;
1087        }
1088out:
1089        end_discard(&op, r);
1090}
1091
1092static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1093{
1094        unsigned long flags;
1095        struct pool *pool = m->tc->pool;
1096
1097        spin_lock_irqsave(&pool->lock, flags);
1098        list_add_tail(&m->list, &pool->prepared_discards_pt2);
1099        spin_unlock_irqrestore(&pool->lock, flags);
1100        wake_worker(pool);
1101}
1102
1103static void passdown_endio(struct bio *bio)
1104{
1105        /*
1106         * It doesn't matter if the passdown discard failed, we still want
1107         * to unmap (we ignore err).
1108         */
1109        queue_passdown_pt2(bio->bi_private);
1110        bio_put(bio);
1111}
1112
1113static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1114{
1115        int r;
1116        struct thin_c *tc = m->tc;
1117        struct pool *pool = tc->pool;
1118        struct bio *discard_parent;
1119        dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1120
1121        /*
1122         * Only this thread allocates blocks, so we can be sure that the
1123         * newly unmapped blocks will not be allocated before the end of
1124         * the function.
1125         */
1126        r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1127        if (r) {
1128                metadata_operation_failed(pool, "dm_thin_remove_range", r);
1129                bio_io_error(m->bio);
1130                cell_defer_no_holder(tc, m->cell);
1131                mempool_free(m, &pool->mapping_pool);
1132                return;
1133        }
1134
1135        /*
1136         * Increment the unmapped blocks.  This prevents a race between the
1137         * passdown io and reallocation of freed blocks.
1138         */
1139        r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1140        if (r) {
1141                metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1142                bio_io_error(m->bio);
1143                cell_defer_no_holder(tc, m->cell);
1144                mempool_free(m, &pool->mapping_pool);
1145                return;
1146        }
1147
1148        discard_parent = bio_alloc(GFP_NOIO, 1);
1149        if (!discard_parent) {
1150                DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1151                       dm_device_name(tc->pool->pool_md));
1152                queue_passdown_pt2(m);
1153
1154        } else {
1155                discard_parent->bi_end_io = passdown_endio;
1156                discard_parent->bi_private = m;
1157
1158                if (m->maybe_shared)
1159                        passdown_double_checking_shared_status(m, discard_parent);
1160                else {
1161                        struct discard_op op;
1162
1163                        begin_discard(&op, tc, discard_parent);
1164                        r = issue_discard(&op, m->data_block, data_end);
1165                        end_discard(&op, r);
1166                }
1167        }
1168}
1169
1170static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1171{
1172        int r;
1173        struct thin_c *tc = m->tc;
1174        struct pool *pool = tc->pool;
1175
1176        /*
1177         * The passdown has completed, so now we can decrement all those
1178         * unmapped blocks.
1179         */
1180        r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1181                                   m->data_block + (m->virt_end - m->virt_begin));
1182        if (r) {
1183                metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1184                bio_io_error(m->bio);
1185        } else
1186                bio_endio(m->bio);
1187
1188        cell_defer_no_holder(tc, m->cell);
1189        mempool_free(m, &pool->mapping_pool);
1190}
1191
1192static void process_prepared(struct pool *pool, struct list_head *head,
1193                             process_mapping_fn *fn)
1194{
1195        unsigned long flags;
1196        struct list_head maps;
1197        struct dm_thin_new_mapping *m, *tmp;
1198
1199        INIT_LIST_HEAD(&maps);
1200        spin_lock_irqsave(&pool->lock, flags);
1201        list_splice_init(head, &maps);
1202        spin_unlock_irqrestore(&pool->lock, flags);
1203
1204        list_for_each_entry_safe(m, tmp, &maps, list)
1205                (*fn)(m);
1206}
1207
1208/*
1209 * Deferred bio jobs.
1210 */
1211static int io_overlaps_block(struct pool *pool, struct bio *bio)
1212{
1213        return bio->bi_iter.bi_size ==
1214                (pool->sectors_per_block << SECTOR_SHIFT);
1215}
1216
1217static int io_overwrites_block(struct pool *pool, struct bio *bio)
1218{
1219        return (bio_data_dir(bio) == WRITE) &&
1220                io_overlaps_block(pool, bio);
1221}
1222
1223static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1224                               bio_end_io_t *fn)
1225{
1226        *save = bio->bi_end_io;
1227        bio->bi_end_io = fn;
1228}
1229
1230static int ensure_next_mapping(struct pool *pool)
1231{
1232        if (pool->next_mapping)
1233                return 0;
1234
1235        pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1236
1237        return pool->next_mapping ? 0 : -ENOMEM;
1238}
1239
1240static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1241{
1242        struct dm_thin_new_mapping *m = pool->next_mapping;
1243
1244        BUG_ON(!pool->next_mapping);
1245
1246        memset(m, 0, sizeof(struct dm_thin_new_mapping));
1247        INIT_LIST_HEAD(&m->list);
1248        m->bio = NULL;
1249
1250        pool->next_mapping = NULL;
1251
1252        return m;
1253}
1254
1255static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1256                    sector_t begin, sector_t end)
1257{
1258        struct dm_io_region to;
1259
1260        to.bdev = tc->pool_dev->bdev;
1261        to.sector = begin;
1262        to.count = end - begin;
1263
1264        dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1265}
1266
1267static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1268                                      dm_block_t data_begin,
1269                                      struct dm_thin_new_mapping *m)
1270{
1271        struct pool *pool = tc->pool;
1272        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1273
1274        h->overwrite_mapping = m;
1275        m->bio = bio;
1276        save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1277        inc_all_io_entry(pool, bio);
1278        remap_and_issue(tc, bio, data_begin);
1279}
1280
1281/*
1282 * A partial copy also needs to zero the uncopied region.
1283 */
1284static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1285                          struct dm_dev *origin, dm_block_t data_origin,
1286                          dm_block_t data_dest,
1287                          struct dm_bio_prison_cell *cell, struct bio *bio,
1288                          sector_t len)
1289{
1290        struct pool *pool = tc->pool;
1291        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1292
1293        m->tc = tc;
1294        m->virt_begin = virt_block;
1295        m->virt_end = virt_block + 1u;
1296        m->data_block = data_dest;
1297        m->cell = cell;
1298
1299        /*
1300         * quiesce action + copy action + an extra reference held for the
1301         * duration of this function (we may need to inc later for a
1302         * partial zero).
1303         */
1304        atomic_set(&m->prepare_actions, 3);
1305
1306        if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1307                complete_mapping_preparation(m); /* already quiesced */
1308
1309        /*
1310         * IO to pool_dev remaps to the pool target's data_dev.
1311         *
1312         * If the whole block of data is being overwritten, we can issue the
1313         * bio immediately. Otherwise we use kcopyd to clone the data first.
1314         */
1315        if (io_overwrites_block(pool, bio))
1316                remap_and_issue_overwrite(tc, bio, data_dest, m);
1317        else {
1318                struct dm_io_region from, to;
1319
1320                from.bdev = origin->bdev;
1321                from.sector = data_origin * pool->sectors_per_block;
1322                from.count = len;
1323
1324                to.bdev = tc->pool_dev->bdev;
1325                to.sector = data_dest * pool->sectors_per_block;
1326                to.count = len;
1327
1328                dm_kcopyd_copy(pool->copier, &from, 1, &to,
1329                               0, copy_complete, m);
1330
1331                /*
1332                 * Do we need to zero a tail region?
1333                 */
1334                if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1335                        atomic_inc(&m->prepare_actions);
1336                        ll_zero(tc, m,
1337                                data_dest * pool->sectors_per_block + len,
1338                                (data_dest + 1) * pool->sectors_per_block);
1339                }
1340        }
1341
1342        complete_mapping_preparation(m); /* drop our ref */
1343}
1344
1345static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1346                                   dm_block_t data_origin, dm_block_t data_dest,
1347                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1348{
1349        schedule_copy(tc, virt_block, tc->pool_dev,
1350                      data_origin, data_dest, cell, bio,
1351                      tc->pool->sectors_per_block);
1352}
1353
1354static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1355                          dm_block_t data_block, struct dm_bio_prison_cell *cell,
1356                          struct bio *bio)
1357{
1358        struct pool *pool = tc->pool;
1359        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1360
1361        atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1362        m->tc = tc;
1363        m->virt_begin = virt_block;
1364        m->virt_end = virt_block + 1u;
1365        m->data_block = data_block;
1366        m->cell = cell;
1367
1368        /*
1369         * If the whole block of data is being overwritten or we are not
1370         * zeroing pre-existing data, we can issue the bio immediately.
1371         * Otherwise we use kcopyd to zero the data first.
1372         */
1373        if (pool->pf.zero_new_blocks) {
1374                if (io_overwrites_block(pool, bio))
1375                        remap_and_issue_overwrite(tc, bio, data_block, m);
1376                else
1377                        ll_zero(tc, m, data_block * pool->sectors_per_block,
1378                                (data_block + 1) * pool->sectors_per_block);
1379        } else
1380                process_prepared_mapping(m);
1381}
1382
1383static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1384                                   dm_block_t data_dest,
1385                                   struct dm_bio_prison_cell *cell, struct bio *bio)
1386{
1387        struct pool *pool = tc->pool;
1388        sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1389        sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1390
1391        if (virt_block_end <= tc->origin_size)
1392                schedule_copy(tc, virt_block, tc->origin_dev,
1393                              virt_block, data_dest, cell, bio,
1394                              pool->sectors_per_block);
1395
1396        else if (virt_block_begin < tc->origin_size)
1397                schedule_copy(tc, virt_block, tc->origin_dev,
1398                              virt_block, data_dest, cell, bio,
1399                              tc->origin_size - virt_block_begin);
1400
1401        else
1402                schedule_zero(tc, virt_block, data_dest, cell, bio);
1403}
1404
1405static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1406
1407static void requeue_bios(struct pool *pool);
1408
1409static bool is_read_only_pool_mode(enum pool_mode mode)
1410{
1411        return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1412}
1413
1414static bool is_read_only(struct pool *pool)
1415{
1416        return is_read_only_pool_mode(get_pool_mode(pool));
1417}
1418
1419static void check_for_metadata_space(struct pool *pool)
1420{
1421        int r;
1422        const char *ooms_reason = NULL;
1423        dm_block_t nr_free;
1424
1425        r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1426        if (r)
1427                ooms_reason = "Could not get free metadata blocks";
1428        else if (!nr_free)
1429                ooms_reason = "No free metadata blocks";
1430
1431        if (ooms_reason && !is_read_only(pool)) {
1432                DMERR("%s", ooms_reason);
1433                set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1434        }
1435}
1436
1437static void check_for_data_space(struct pool *pool)
1438{
1439        int r;
1440        dm_block_t nr_free;
1441
1442        if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1443                return;
1444
1445        r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1446        if (r)
1447                return;
1448
1449        if (nr_free) {
1450                set_pool_mode(pool, PM_WRITE);
1451                requeue_bios(pool);
1452        }
1453}
1454
1455/*
1456 * A non-zero return indicates read_only or fail_io mode.
1457 * Many callers don't care about the return value.
1458 */
1459static int commit(struct pool *pool)
1460{
1461        int r;
1462
1463        if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1464                return -EINVAL;
1465
1466        r = dm_pool_commit_metadata(pool->pmd);
1467        if (r)
1468                metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1469        else {
1470                check_for_metadata_space(pool);
1471                check_for_data_space(pool);
1472        }
1473
1474        return r;
1475}
1476
1477static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1478{
1479        unsigned long flags;
1480
1481        if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1482                DMWARN("%s: reached low water mark for data device: sending event.",
1483                       dm_device_name(pool->pool_md));
1484                spin_lock_irqsave(&pool->lock, flags);
1485                pool->low_water_triggered = true;
1486                spin_unlock_irqrestore(&pool->lock, flags);
1487                dm_table_event(pool->ti->table);
1488        }
1489}
1490
1491static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1492{
1493        int r;
1494        dm_block_t free_blocks;
1495        struct pool *pool = tc->pool;
1496
1497        if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1498                return -EINVAL;
1499
1500        r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1501        if (r) {
1502                metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1503                return r;
1504        }
1505
1506        check_low_water_mark(pool, free_blocks);
1507
1508        if (!free_blocks) {
1509                /*
1510                 * Try to commit to see if that will free up some
1511                 * more space.
1512                 */
1513                r = commit(pool);
1514                if (r)
1515                        return r;
1516
1517                r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1518                if (r) {
1519                        metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1520                        return r;
1521                }
1522
1523                if (!free_blocks) {
1524                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1525                        return -ENOSPC;
1526                }
1527        }
1528
1529        r = dm_pool_alloc_data_block(pool->pmd, result);
1530        if (r) {
1531                if (r == -ENOSPC)
1532                        set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1533                else
1534                        metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1535                return r;
1536        }
1537
1538        r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1539        if (r) {
1540                metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1541                return r;
1542        }
1543
1544        if (!free_blocks) {
1545                /* Let's commit before we use up the metadata reserve. */
1546                r = commit(pool);
1547                if (r)
1548                        return r;
1549        }
1550
1551        return 0;
1552}
1553
1554/*
1555 * If we have run out of space, queue bios until the device is
1556 * resumed, presumably after having been reloaded with more space.
1557 */
1558static void retry_on_resume(struct bio *bio)
1559{
1560        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1561        struct thin_c *tc = h->tc;
1562        unsigned long flags;
1563
1564        spin_lock_irqsave(&tc->lock, flags);
1565        bio_list_add(&tc->retry_on_resume_list, bio);
1566        spin_unlock_irqrestore(&tc->lock, flags);
1567}
1568
1569static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1570{
1571        enum pool_mode m = get_pool_mode(pool);
1572
1573        switch (m) {
1574        case PM_WRITE:
1575                /* Shouldn't get here */
1576                DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1577                return BLK_STS_IOERR;
1578
1579        case PM_OUT_OF_DATA_SPACE:
1580                return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1581
1582        case PM_OUT_OF_METADATA_SPACE:
1583        case PM_READ_ONLY:
1584        case PM_FAIL:
1585                return BLK_STS_IOERR;
1586        default:
1587                /* Shouldn't get here */
1588                DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1589                return BLK_STS_IOERR;
1590        }
1591}
1592
1593static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1594{
1595        blk_status_t error = should_error_unserviceable_bio(pool);
1596
1597        if (error) {
1598                bio->bi_status = error;
1599                bio_endio(bio);
1600        } else
1601                retry_on_resume(bio);
1602}
1603
1604static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1605{
1606        struct bio *bio;
1607        struct bio_list bios;
1608        blk_status_t error;
1609
1610        error = should_error_unserviceable_bio(pool);
1611        if (error) {
1612                cell_error_with_code(pool, cell, error);
1613                return;
1614        }
1615
1616        bio_list_init(&bios);
1617        cell_release(pool, cell, &bios);
1618
1619        while ((bio = bio_list_pop(&bios)))
1620                retry_on_resume(bio);
1621}
1622
1623static void process_discard_cell_no_passdown(struct thin_c *tc,
1624                                             struct dm_bio_prison_cell *virt_cell)
1625{
1626        struct pool *pool = tc->pool;
1627        struct dm_thin_new_mapping *m = get_next_mapping(pool);
1628
1629        /*
1630         * We don't need to lock the data blocks, since there's no
1631         * passdown.  We only lock data blocks for allocation and breaking sharing.
1632         */
1633        m->tc = tc;
1634        m->virt_begin = virt_cell->key.block_begin;
1635        m->virt_end = virt_cell->key.block_end;
1636        m->cell = virt_cell;
1637        m->bio = virt_cell->holder;
1638
1639        if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1640                pool->process_prepared_discard(m);
1641}
1642
1643static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1644                                 struct bio *bio)
1645{
1646        struct pool *pool = tc->pool;
1647
1648        int r;
1649        bool maybe_shared;
1650        struct dm_cell_key data_key;
1651        struct dm_bio_prison_cell *data_cell;
1652        struct dm_thin_new_mapping *m;
1653        dm_block_t virt_begin, virt_end, data_begin;
1654
1655        while (begin != end) {
1656                r = ensure_next_mapping(pool);
1657                if (r)
1658                        /* we did our best */
1659                        return;
1660
1661                r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1662                                              &data_begin, &maybe_shared);
1663                if (r)
1664                        /*
1665                         * Silently fail, letting any mappings we've
1666                         * created complete.
1667                         */
1668                        break;
1669
1670                build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1671                if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1672                        /* contention, we'll give up with this range */
1673                        begin = virt_end;
1674                        continue;
1675                }
1676
1677                /*
1678                 * IO may still be going to the destination block.  We must
1679                 * quiesce before we can do the removal.
1680                 */
1681                m = get_next_mapping(pool);
1682                m->tc = tc;
1683                m->maybe_shared = maybe_shared;
1684                m->virt_begin = virt_begin;
1685                m->virt_end = virt_end;
1686                m->data_block = data_begin;
1687                m->cell = data_cell;
1688                m->bio = bio;
1689
1690                /*
1691                 * The parent bio must not complete before sub discard bios are
1692                 * chained to it (see end_discard's bio_chain)!
1693                 *
1694                 * This per-mapping bi_remaining increment is paired with
1695                 * the implicit decrement that occurs via bio_endio() in
1696                 * end_discard().
1697                 */
1698                bio_inc_remaining(bio);
1699                if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1700                        pool->process_prepared_discard(m);
1701
1702                begin = virt_end;
1703        }
1704}
1705
1706static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1707{
1708        struct bio *bio = virt_cell->holder;
1709        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1710
1711        /*
1712         * The virt_cell will only get freed once the origin bio completes.
1713         * This means it will remain locked while all the individual
1714         * passdown bios are in flight.
1715         */
1716        h->cell = virt_cell;
1717        break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1718
1719        /*
1720         * We complete the bio now, knowing that the bi_remaining field
1721         * will prevent completion until the sub range discards have
1722         * completed.
1723         */
1724        bio_endio(bio);
1725}
1726
1727static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1728{
1729        dm_block_t begin, end;
1730        struct dm_cell_key virt_key;
1731        struct dm_bio_prison_cell *virt_cell;
1732
1733        get_bio_block_range(tc, bio, &begin, &end);
1734        if (begin == end) {
1735                /*
1736                 * The discard covers less than a block.
1737                 */
1738                bio_endio(bio);
1739                return;
1740        }
1741
1742        build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1743        if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1744                /*
1745                 * Potential starvation issue: We're relying on the
1746                 * fs/application being well behaved, and not trying to
1747                 * send IO to a region at the same time as discarding it.
1748                 * If they do this persistently then it's possible this
1749                 * cell will never be granted.
1750                 */
1751                return;
1752
1753        tc->pool->process_discard_cell(tc, virt_cell);
1754}
1755
1756static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1757                          struct dm_cell_key *key,
1758                          struct dm_thin_lookup_result *lookup_result,
1759                          struct dm_bio_prison_cell *cell)
1760{
1761        int r;
1762        dm_block_t data_block;
1763        struct pool *pool = tc->pool;
1764
1765        r = alloc_data_block(tc, &data_block);
1766        switch (r) {
1767        case 0:
1768                schedule_internal_copy(tc, block, lookup_result->block,
1769                                       data_block, cell, bio);
1770                break;
1771
1772        case -ENOSPC:
1773                retry_bios_on_resume(pool, cell);
1774                break;
1775
1776        default:
1777                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1778                            __func__, r);
1779                cell_error(pool, cell);
1780                break;
1781        }
1782}
1783
1784static void __remap_and_issue_shared_cell(void *context,
1785                                          struct dm_bio_prison_cell *cell)
1786{
1787        struct remap_info *info = context;
1788        struct bio *bio;
1789
1790        while ((bio = bio_list_pop(&cell->bios))) {
1791                if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1792                    bio_op(bio) == REQ_OP_DISCARD)
1793                        bio_list_add(&info->defer_bios, bio);
1794                else {
1795                        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1796
1797                        h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1798                        inc_all_io_entry(info->tc->pool, bio);
1799                        bio_list_add(&info->issue_bios, bio);
1800                }
1801        }
1802}
1803
1804static void remap_and_issue_shared_cell(struct thin_c *tc,
1805                                        struct dm_bio_prison_cell *cell,
1806                                        dm_block_t block)
1807{
1808        struct bio *bio;
1809        struct remap_info info;
1810
1811        info.tc = tc;
1812        bio_list_init(&info.defer_bios);
1813        bio_list_init(&info.issue_bios);
1814
1815        cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1816                           &info, cell);
1817
1818        while ((bio = bio_list_pop(&info.defer_bios)))
1819                thin_defer_bio(tc, bio);
1820
1821        while ((bio = bio_list_pop(&info.issue_bios)))
1822                remap_and_issue(tc, bio, block);
1823}
1824
1825static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1826                               dm_block_t block,
1827                               struct dm_thin_lookup_result *lookup_result,
1828                               struct dm_bio_prison_cell *virt_cell)
1829{
1830        struct dm_bio_prison_cell *data_cell;
1831        struct pool *pool = tc->pool;
1832        struct dm_cell_key key;
1833
1834        /*
1835         * If cell is already occupied, then sharing is already in the process
1836         * of being broken so we have nothing further to do here.
1837         */
1838        build_data_key(tc->td, lookup_result->block, &key);
1839        if (bio_detain(pool, &key, bio, &data_cell)) {
1840                cell_defer_no_holder(tc, virt_cell);
1841                return;
1842        }
1843
1844        if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1845                break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1846                cell_defer_no_holder(tc, virt_cell);
1847        } else {
1848                struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1849
1850                h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1851                inc_all_io_entry(pool, bio);
1852                remap_and_issue(tc, bio, lookup_result->block);
1853
1854                remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1855                remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1856        }
1857}
1858
1859static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1860                            struct dm_bio_prison_cell *cell)
1861{
1862        int r;
1863        dm_block_t data_block;
1864        struct pool *pool = tc->pool;
1865
1866        /*
1867         * Remap empty bios (flushes) immediately, without provisioning.
1868         */
1869        if (!bio->bi_iter.bi_size) {
1870                inc_all_io_entry(pool, bio);
1871                cell_defer_no_holder(tc, cell);
1872
1873                remap_and_issue(tc, bio, 0);
1874                return;
1875        }
1876
1877        /*
1878         * Fill read bios with zeroes and complete them immediately.
1879         */
1880        if (bio_data_dir(bio) == READ) {
1881                zero_fill_bio(bio);
1882                cell_defer_no_holder(tc, cell);
1883                bio_endio(bio);
1884                return;
1885        }
1886
1887        r = alloc_data_block(tc, &data_block);
1888        switch (r) {
1889        case 0:
1890                if (tc->origin_dev)
1891                        schedule_external_copy(tc, block, data_block, cell, bio);
1892                else
1893                        schedule_zero(tc, block, data_block, cell, bio);
1894                break;
1895
1896        case -ENOSPC:
1897                retry_bios_on_resume(pool, cell);
1898                break;
1899
1900        default:
1901                DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1902                            __func__, r);
1903                cell_error(pool, cell);
1904                break;
1905        }
1906}
1907
1908static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1909{
1910        int r;
1911        struct pool *pool = tc->pool;
1912        struct bio *bio = cell->holder;
1913        dm_block_t block = get_bio_block(tc, bio);
1914        struct dm_thin_lookup_result lookup_result;
1915
1916        if (tc->requeue_mode) {
1917                cell_requeue(pool, cell);
1918                return;
1919        }
1920
1921        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1922        switch (r) {
1923        case 0:
1924                if (lookup_result.shared)
1925                        process_shared_bio(tc, bio, block, &lookup_result, cell);
1926                else {
1927                        inc_all_io_entry(pool, bio);
1928                        remap_and_issue(tc, bio, lookup_result.block);
1929                        inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1930                }
1931                break;
1932
1933        case -ENODATA:
1934                if (bio_data_dir(bio) == READ && tc->origin_dev) {
1935                        inc_all_io_entry(pool, bio);
1936                        cell_defer_no_holder(tc, cell);
1937
1938                        if (bio_end_sector(bio) <= tc->origin_size)
1939                                remap_to_origin_and_issue(tc, bio);
1940
1941                        else if (bio->bi_iter.bi_sector < tc->origin_size) {
1942                                zero_fill_bio(bio);
1943                                bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1944                                remap_to_origin_and_issue(tc, bio);
1945
1946                        } else {
1947                                zero_fill_bio(bio);
1948                                bio_endio(bio);
1949                        }
1950                } else
1951                        provision_block(tc, bio, block, cell);
1952                break;
1953
1954        default:
1955                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1956                            __func__, r);
1957                cell_defer_no_holder(tc, cell);
1958                bio_io_error(bio);
1959                break;
1960        }
1961}
1962
1963static void process_bio(struct thin_c *tc, struct bio *bio)
1964{
1965        struct pool *pool = tc->pool;
1966        dm_block_t block = get_bio_block(tc, bio);
1967        struct dm_bio_prison_cell *cell;
1968        struct dm_cell_key key;
1969
1970        /*
1971         * If cell is already occupied, then the block is already
1972         * being provisioned so we have nothing further to do here.
1973         */
1974        build_virtual_key(tc->td, block, &key);
1975        if (bio_detain(pool, &key, bio, &cell))
1976                return;
1977
1978        process_cell(tc, cell);
1979}
1980
1981static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1982                                    struct dm_bio_prison_cell *cell)
1983{
1984        int r;
1985        int rw = bio_data_dir(bio);
1986        dm_block_t block = get_bio_block(tc, bio);
1987        struct dm_thin_lookup_result lookup_result;
1988
1989        r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1990        switch (r) {
1991        case 0:
1992                if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1993                        handle_unserviceable_bio(tc->pool, bio);
1994                        if (cell)
1995                                cell_defer_no_holder(tc, cell);
1996                } else {
1997                        inc_all_io_entry(tc->pool, bio);
1998                        remap_and_issue(tc, bio, lookup_result.block);
1999                        if (cell)
2000                                inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2001                }
2002                break;
2003
2004        case -ENODATA:
2005                if (cell)
2006                        cell_defer_no_holder(tc, cell);
2007                if (rw != READ) {
2008                        handle_unserviceable_bio(tc->pool, bio);
2009                        break;
2010                }
2011
2012                if (tc->origin_dev) {
2013                        inc_all_io_entry(tc->pool, bio);
2014                        remap_to_origin_and_issue(tc, bio);
2015                        break;
2016                }
2017
2018                zero_fill_bio(bio);
2019                bio_endio(bio);
2020                break;
2021
2022        default:
2023                DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2024                            __func__, r);
2025                if (cell)
2026                        cell_defer_no_holder(tc, cell);
2027                bio_io_error(bio);
2028                break;
2029        }
2030}
2031
2032static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2033{
2034        __process_bio_read_only(tc, bio, NULL);
2035}
2036
2037static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2038{
2039        __process_bio_read_only(tc, cell->holder, cell);
2040}
2041
2042static void process_bio_success(struct thin_c *tc, struct bio *bio)
2043{
2044        bio_endio(bio);
2045}
2046
2047static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2048{
2049        bio_io_error(bio);
2050}
2051
2052static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2053{
2054        cell_success(tc->pool, cell);
2055}
2056
2057static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2058{
2059        cell_error(tc->pool, cell);
2060}
2061
2062/*
2063 * FIXME: should we also commit due to size of transaction, measured in
2064 * metadata blocks?
2065 */
2066static int need_commit_due_to_time(struct pool *pool)
2067{
2068        return !time_in_range(jiffies, pool->last_commit_jiffies,
2069                              pool->last_commit_jiffies + COMMIT_PERIOD);
2070}
2071
2072#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2073#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2074
2075static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2076{
2077        struct rb_node **rbp, *parent;
2078        struct dm_thin_endio_hook *pbd;
2079        sector_t bi_sector = bio->bi_iter.bi_sector;
2080
2081        rbp = &tc->sort_bio_list.rb_node;
2082        parent = NULL;
2083        while (*rbp) {
2084                parent = *rbp;
2085                pbd = thin_pbd(parent);
2086
2087                if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2088                        rbp = &(*rbp)->rb_left;
2089                else
2090                        rbp = &(*rbp)->rb_right;
2091        }
2092
2093        pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2094        rb_link_node(&pbd->rb_node, parent, rbp);
2095        rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2096}
2097
2098static void __extract_sorted_bios(struct thin_c *tc)
2099{
2100        struct rb_node *node;
2101        struct dm_thin_endio_hook *pbd;
2102        struct bio *bio;
2103
2104        for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2105                pbd = thin_pbd(node);
2106                bio = thin_bio(pbd);
2107
2108                bio_list_add(&tc->deferred_bio_list, bio);
2109                rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2110        }
2111
2112        WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2113}
2114
2115static void __sort_thin_deferred_bios(struct thin_c *tc)
2116{
2117        struct bio *bio;
2118        struct bio_list bios;
2119
2120        bio_list_init(&bios);
2121        bio_list_merge(&bios, &tc->deferred_bio_list);
2122        bio_list_init(&tc->deferred_bio_list);
2123
2124        /* Sort deferred_bio_list using rb-tree */
2125        while ((bio = bio_list_pop(&bios)))
2126                __thin_bio_rb_add(tc, bio);
2127
2128        /*
2129         * Transfer the sorted bios in sort_bio_list back to
2130         * deferred_bio_list to allow lockless submission of
2131         * all bios.
2132         */
2133        __extract_sorted_bios(tc);
2134}
2135
2136static void process_thin_deferred_bios(struct thin_c *tc)
2137{
2138        struct pool *pool = tc->pool;
2139        unsigned long flags;
2140        struct bio *bio;
2141        struct bio_list bios;
2142        struct blk_plug plug;
2143        unsigned count = 0;
2144
2145        if (tc->requeue_mode) {
2146                error_thin_bio_list(tc, &tc->deferred_bio_list,
2147                                BLK_STS_DM_REQUEUE);
2148                return;
2149        }
2150
2151        bio_list_init(&bios);
2152
2153        spin_lock_irqsave(&tc->lock, flags);
2154
2155        if (bio_list_empty(&tc->deferred_bio_list)) {
2156                spin_unlock_irqrestore(&tc->lock, flags);
2157                return;
2158        }
2159
2160        __sort_thin_deferred_bios(tc);
2161
2162        bio_list_merge(&bios, &tc->deferred_bio_list);
2163        bio_list_init(&tc->deferred_bio_list);
2164
2165        spin_unlock_irqrestore(&tc->lock, flags);
2166
2167        blk_start_plug(&plug);
2168        while ((bio = bio_list_pop(&bios))) {
2169                /*
2170                 * If we've got no free new_mapping structs, and processing
2171                 * this bio might require one, we pause until there are some
2172                 * prepared mappings to process.
2173                 */
2174                if (ensure_next_mapping(pool)) {
2175                        spin_lock_irqsave(&tc->lock, flags);
2176                        bio_list_add(&tc->deferred_bio_list, bio);
2177                        bio_list_merge(&tc->deferred_bio_list, &bios);
2178                        spin_unlock_irqrestore(&tc->lock, flags);
2179                        break;
2180                }
2181
2182                if (bio_op(bio) == REQ_OP_DISCARD)
2183                        pool->process_discard(tc, bio);
2184                else
2185                        pool->process_bio(tc, bio);
2186
2187                if ((count++ & 127) == 0) {
2188                        throttle_work_update(&pool->throttle);
2189                        dm_pool_issue_prefetches(pool->pmd);
2190                }
2191        }
2192        blk_finish_plug(&plug);
2193}
2194
2195static int cmp_cells(const void *lhs, const void *rhs)
2196{
2197        struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2198        struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2199
2200        BUG_ON(!lhs_cell->holder);
2201        BUG_ON(!rhs_cell->holder);
2202
2203        if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2204                return -1;
2205
2206        if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2207                return 1;
2208
2209        return 0;
2210}
2211
2212static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2213{
2214        unsigned count = 0;
2215        struct dm_bio_prison_cell *cell, *tmp;
2216
2217        list_for_each_entry_safe(cell, tmp, cells, user_list) {
2218                if (count >= CELL_SORT_ARRAY_SIZE)
2219                        break;
2220
2221                pool->cell_sort_array[count++] = cell;
2222                list_del(&cell->user_list);
2223        }
2224
2225        sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2226
2227        return count;
2228}
2229
2230static void process_thin_deferred_cells(struct thin_c *tc)
2231{
2232        struct pool *pool = tc->pool;
2233        unsigned long flags;
2234        struct list_head cells;
2235        struct dm_bio_prison_cell *cell;
2236        unsigned i, j, count;
2237
2238        INIT_LIST_HEAD(&cells);
2239
2240        spin_lock_irqsave(&tc->lock, flags);
2241        list_splice_init(&tc->deferred_cells, &cells);
2242        spin_unlock_irqrestore(&tc->lock, flags);
2243
2244        if (list_empty(&cells))
2245                return;
2246
2247        do {
2248                count = sort_cells(tc->pool, &cells);
2249
2250                for (i = 0; i < count; i++) {
2251                        cell = pool->cell_sort_array[i];
2252                        BUG_ON(!cell->holder);
2253
2254                        /*
2255                         * If we've got no free new_mapping structs, and processing
2256                         * this bio might require one, we pause until there are some
2257                         * prepared mappings to process.
2258                         */
2259                        if (ensure_next_mapping(pool)) {
2260                                for (j = i; j < count; j++)
2261                                        list_add(&pool->cell_sort_array[j]->user_list, &cells);
2262
2263                                spin_lock_irqsave(&tc->lock, flags);
2264                                list_splice(&cells, &tc->deferred_cells);
2265                                spin_unlock_irqrestore(&tc->lock, flags);
2266                                return;
2267                        }
2268
2269                        if (bio_op(cell->holder) == REQ_OP_DISCARD)
2270                                pool->process_discard_cell(tc, cell);
2271                        else
2272                                pool->process_cell(tc, cell);
2273                }
2274        } while (!list_empty(&cells));
2275}
2276
2277static void thin_get(struct thin_c *tc);
2278static void thin_put(struct thin_c *tc);
2279
2280/*
2281 * We can't hold rcu_read_lock() around code that can block.  So we
2282 * find a thin with the rcu lock held; bump a refcount; then drop
2283 * the lock.
2284 */
2285static struct thin_c *get_first_thin(struct pool *pool)
2286{
2287        struct thin_c *tc = NULL;
2288
2289        rcu_read_lock();
2290        if (!list_empty(&pool->active_thins)) {
2291                tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2292                thin_get(tc);
2293        }
2294        rcu_read_unlock();
2295
2296        return tc;
2297}
2298
2299static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2300{
2301        struct thin_c *old_tc = tc;
2302
2303        rcu_read_lock();
2304        list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2305                thin_get(tc);
2306                thin_put(old_tc);
2307                rcu_read_unlock();
2308                return tc;
2309        }
2310        thin_put(old_tc);
2311        rcu_read_unlock();
2312
2313        return NULL;
2314}
2315
2316static void process_deferred_bios(struct pool *pool)
2317{
2318        unsigned long flags;
2319        struct bio *bio;
2320        struct bio_list bios;
2321        struct thin_c *tc;
2322
2323        tc = get_first_thin(pool);
2324        while (tc) {
2325                process_thin_deferred_cells(tc);
2326                process_thin_deferred_bios(tc);
2327                tc = get_next_thin(pool, tc);
2328        }
2329
2330        /*
2331         * If there are any deferred flush bios, we must commit
2332         * the metadata before issuing them.
2333         */
2334        bio_list_init(&bios);
2335        spin_lock_irqsave(&pool->lock, flags);
2336        bio_list_merge(&bios, &pool->deferred_flush_bios);
2337        bio_list_init(&pool->deferred_flush_bios);
2338        spin_unlock_irqrestore(&pool->lock, flags);
2339
2340        if (bio_list_empty(&bios) &&
2341            !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2342                return;
2343
2344        if (commit(pool)) {
2345                while ((bio = bio_list_pop(&bios)))
2346                        bio_io_error(bio);
2347                return;
2348        }
2349        pool->last_commit_jiffies = jiffies;
2350
2351        while ((bio = bio_list_pop(&bios)))
2352                generic_make_request(bio);
2353}
2354
2355static void do_worker(struct work_struct *ws)
2356{
2357        struct pool *pool = container_of(ws, struct pool, worker);
2358
2359        throttle_work_start(&pool->throttle);
2360        dm_pool_issue_prefetches(pool->pmd);
2361        throttle_work_update(&pool->throttle);
2362        process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2363        throttle_work_update(&pool->throttle);
2364        process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2365        throttle_work_update(&pool->throttle);
2366        process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2367        throttle_work_update(&pool->throttle);
2368        process_deferred_bios(pool);
2369        throttle_work_complete(&pool->throttle);
2370}
2371
2372/*
2373 * We want to commit periodically so that not too much
2374 * unwritten data builds up.
2375 */
2376static void do_waker(struct work_struct *ws)
2377{
2378        struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2379        wake_worker(pool);
2380        queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2381}
2382
2383/*
2384 * We're holding onto IO to allow userland time to react.  After the
2385 * timeout either the pool will have been resized (and thus back in
2386 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2387 */
2388static void do_no_space_timeout(struct work_struct *ws)
2389{
2390        struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2391                                         no_space_timeout);
2392
2393        if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2394                pool->pf.error_if_no_space = true;
2395                notify_of_pool_mode_change(pool);
2396                error_retry_list_with_code(pool, BLK_STS_NOSPC);
2397        }
2398}
2399
2400/*----------------------------------------------------------------*/
2401
2402struct pool_work {
2403        struct work_struct worker;
2404        struct completion complete;
2405};
2406
2407static struct pool_work *to_pool_work(struct work_struct *ws)
2408{
2409        return container_of(ws, struct pool_work, worker);
2410}
2411
2412static void pool_work_complete(struct pool_work *pw)
2413{
2414        complete(&pw->complete);
2415}
2416
2417static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2418                           void (*fn)(struct work_struct *))
2419{
2420        INIT_WORK_ONSTACK(&pw->worker, fn);
2421        init_completion(&pw->complete);
2422        queue_work(pool->wq, &pw->worker);
2423        wait_for_completion(&pw->complete);
2424}
2425
2426/*----------------------------------------------------------------*/
2427
2428struct noflush_work {
2429        struct pool_work pw;
2430        struct thin_c *tc;
2431};
2432
2433static struct noflush_work *to_noflush(struct work_struct *ws)
2434{
2435        return container_of(to_pool_work(ws), struct noflush_work, pw);
2436}
2437
2438static void do_noflush_start(struct work_struct *ws)
2439{
2440        struct noflush_work *w = to_noflush(ws);
2441        w->tc->requeue_mode = true;
2442        requeue_io(w->tc);
2443        pool_work_complete(&w->pw);
2444}
2445
2446static void do_noflush_stop(struct work_struct *ws)
2447{
2448        struct noflush_work *w = to_noflush(ws);
2449        w->tc->requeue_mode = false;
2450        pool_work_complete(&w->pw);
2451}
2452
2453static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2454{
2455        struct noflush_work w;
2456
2457        w.tc = tc;
2458        pool_work_wait(&w.pw, tc->pool, fn);
2459}
2460
2461/*----------------------------------------------------------------*/
2462
2463static bool passdown_enabled(struct pool_c *pt)
2464{
2465        return pt->adjusted_pf.discard_passdown;
2466}
2467
2468static void set_discard_callbacks(struct pool *pool)
2469{
2470        struct pool_c *pt = pool->ti->private;
2471
2472        if (passdown_enabled(pt)) {
2473                pool->process_discard_cell = process_discard_cell_passdown;
2474                pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2475                pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2476        } else {
2477                pool->process_discard_cell = process_discard_cell_no_passdown;
2478                pool->process_prepared_discard = process_prepared_discard_no_passdown;
2479        }
2480}
2481
2482static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2483{
2484        struct pool_c *pt = pool->ti->private;
2485        bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2486        enum pool_mode old_mode = get_pool_mode(pool);
2487        unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2488
2489        /*
2490         * Never allow the pool to transition to PM_WRITE mode if user
2491         * intervention is required to verify metadata and data consistency.
2492         */
2493        if (new_mode == PM_WRITE && needs_check) {
2494                DMERR("%s: unable to switch pool to write mode until repaired.",
2495                      dm_device_name(pool->pool_md));
2496                if (old_mode != new_mode)
2497                        new_mode = old_mode;
2498                else
2499                        new_mode = PM_READ_ONLY;
2500        }
2501        /*
2502         * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2503         * not going to recover without a thin_repair.  So we never let the
2504         * pool move out of the old mode.
2505         */
2506        if (old_mode == PM_FAIL)
2507                new_mode = old_mode;
2508
2509        switch (new_mode) {
2510        case PM_FAIL:
2511                dm_pool_metadata_read_only(pool->pmd);
2512                pool->process_bio = process_bio_fail;
2513                pool->process_discard = process_bio_fail;
2514                pool->process_cell = process_cell_fail;
2515                pool->process_discard_cell = process_cell_fail;
2516                pool->process_prepared_mapping = process_prepared_mapping_fail;
2517                pool->process_prepared_discard = process_prepared_discard_fail;
2518
2519                error_retry_list(pool);
2520                break;
2521
2522        case PM_OUT_OF_METADATA_SPACE:
2523        case PM_READ_ONLY:
2524                dm_pool_metadata_read_only(pool->pmd);
2525                pool->process_bio = process_bio_read_only;
2526                pool->process_discard = process_bio_success;
2527                pool->process_cell = process_cell_read_only;
2528                pool->process_discard_cell = process_cell_success;
2529                pool->process_prepared_mapping = process_prepared_mapping_fail;
2530                pool->process_prepared_discard = process_prepared_discard_success;
2531
2532                error_retry_list(pool);
2533                break;
2534
2535        case PM_OUT_OF_DATA_SPACE:
2536                /*
2537                 * Ideally we'd never hit this state; the low water mark
2538                 * would trigger userland to extend the pool before we
2539                 * completely run out of data space.  However, many small
2540                 * IOs to unprovisioned space can consume data space at an
2541                 * alarming rate.  Adjust your low water mark if you're
2542                 * frequently seeing this mode.
2543                 */
2544                pool->out_of_data_space = true;
2545                pool->process_bio = process_bio_read_only;
2546                pool->process_discard = process_discard_bio;
2547                pool->process_cell = process_cell_read_only;
2548                pool->process_prepared_mapping = process_prepared_mapping;
2549                set_discard_callbacks(pool);
2550
2551                if (!pool->pf.error_if_no_space && no_space_timeout)
2552                        queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2553                break;
2554
2555        case PM_WRITE:
2556                if (old_mode == PM_OUT_OF_DATA_SPACE)
2557                        cancel_delayed_work_sync(&pool->no_space_timeout);
2558                pool->out_of_data_space = false;
2559                pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2560                dm_pool_metadata_read_write(pool->pmd);
2561                pool->process_bio = process_bio;
2562                pool->process_discard = process_discard_bio;
2563                pool->process_cell = process_cell;
2564                pool->process_prepared_mapping = process_prepared_mapping;
2565                set_discard_callbacks(pool);
2566                break;
2567        }
2568
2569        pool->pf.mode = new_mode;
2570        /*
2571         * The pool mode may have changed, sync it so bind_control_target()
2572         * doesn't cause an unexpected mode transition on resume.
2573         */
2574        pt->adjusted_pf.mode = new_mode;
2575
2576        if (old_mode != new_mode)
2577                notify_of_pool_mode_change(pool);
2578}
2579
2580static void abort_transaction(struct pool *pool)
2581{
2582        const char *dev_name = dm_device_name(pool->pool_md);
2583
2584        DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2585        if (dm_pool_abort_metadata(pool->pmd)) {
2586                DMERR("%s: failed to abort metadata transaction", dev_name);
2587                set_pool_mode(pool, PM_FAIL);
2588        }
2589
2590        if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2591                DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2592                set_pool_mode(pool, PM_FAIL);
2593        }
2594}
2595
2596static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2597{
2598        DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2599                    dm_device_name(pool->pool_md), op, r);
2600
2601        abort_transaction(pool);
2602        set_pool_mode(pool, PM_READ_ONLY);
2603}
2604
2605/*----------------------------------------------------------------*/
2606
2607/*
2608 * Mapping functions.
2609 */
2610
2611/*
2612 * Called only while mapping a thin bio to hand it over to the workqueue.
2613 */
2614static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2615{
2616        unsigned long flags;
2617        struct pool *pool = tc->pool;
2618
2619        spin_lock_irqsave(&tc->lock, flags);
2620        bio_list_add(&tc->deferred_bio_list, bio);
2621        spin_unlock_irqrestore(&tc->lock, flags);
2622
2623        wake_worker(pool);
2624}
2625
2626static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2627{
2628        struct pool *pool = tc->pool;
2629
2630        throttle_lock(&pool->throttle);
2631        thin_defer_bio(tc, bio);
2632        throttle_unlock(&pool->throttle);
2633}
2634
2635static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2636{
2637        unsigned long flags;
2638        struct pool *pool = tc->pool;
2639
2640        throttle_lock(&pool->throttle);
2641        spin_lock_irqsave(&tc->lock, flags);
2642        list_add_tail(&cell->user_list, &tc->deferred_cells);
2643        spin_unlock_irqrestore(&tc->lock, flags);
2644        throttle_unlock(&pool->throttle);
2645
2646        wake_worker(pool);
2647}
2648
2649static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2650{
2651        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2652
2653        h->tc = tc;
2654        h->shared_read_entry = NULL;
2655        h->all_io_entry = NULL;
2656        h->overwrite_mapping = NULL;
2657        h->cell = NULL;
2658}
2659
2660/*
2661 * Non-blocking function called from the thin target's map function.
2662 */
2663static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2664{
2665        int r;
2666        struct thin_c *tc = ti->private;
2667        dm_block_t block = get_bio_block(tc, bio);
2668        struct dm_thin_device *td = tc->td;
2669        struct dm_thin_lookup_result result;
2670        struct dm_bio_prison_cell *virt_cell, *data_cell;
2671        struct dm_cell_key key;
2672
2673        thin_hook_bio(tc, bio);
2674
2675        if (tc->requeue_mode) {
2676                bio->bi_status = BLK_STS_DM_REQUEUE;
2677                bio_endio(bio);
2678                return DM_MAPIO_SUBMITTED;
2679        }
2680
2681        if (get_pool_mode(tc->pool) == PM_FAIL) {
2682                bio_io_error(bio);
2683                return DM_MAPIO_SUBMITTED;
2684        }
2685
2686        if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2687                thin_defer_bio_with_throttle(tc, bio);
2688                return DM_MAPIO_SUBMITTED;
2689        }
2690
2691        /*
2692         * We must hold the virtual cell before doing the lookup, otherwise
2693         * there's a race with discard.
2694         */
2695        build_virtual_key(tc->td, block, &key);
2696        if (bio_detain(tc->pool, &key, bio, &virt_cell))
2697                return DM_MAPIO_SUBMITTED;
2698
2699        r = dm_thin_find_block(td, block, 0, &result);
2700
2701        /*
2702         * Note that we defer readahead too.
2703         */
2704        switch (r) {
2705        case 0:
2706                if (unlikely(result.shared)) {
2707                        /*
2708                         * We have a race condition here between the
2709                         * result.shared value returned by the lookup and
2710                         * snapshot creation, which may cause new
2711                         * sharing.
2712                         *
2713                         * To avoid this always quiesce the origin before
2714                         * taking the snap.  You want to do this anyway to
2715                         * ensure a consistent application view
2716                         * (i.e. lockfs).
2717                         *
2718                         * More distant ancestors are irrelevant. The
2719                         * shared flag will be set in their case.
2720                         */
2721                        thin_defer_cell(tc, virt_cell);
2722                        return DM_MAPIO_SUBMITTED;
2723                }
2724
2725                build_data_key(tc->td, result.block, &key);
2726                if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2727                        cell_defer_no_holder(tc, virt_cell);
2728                        return DM_MAPIO_SUBMITTED;
2729                }
2730
2731                inc_all_io_entry(tc->pool, bio);
2732                cell_defer_no_holder(tc, data_cell);
2733                cell_defer_no_holder(tc, virt_cell);
2734
2735                remap(tc, bio, result.block);
2736                return DM_MAPIO_REMAPPED;
2737
2738        case -ENODATA:
2739        case -EWOULDBLOCK:
2740                thin_defer_cell(tc, virt_cell);
2741                return DM_MAPIO_SUBMITTED;
2742
2743        default:
2744                /*
2745                 * Must always call bio_io_error on failure.
2746                 * dm_thin_find_block can fail with -EINVAL if the
2747                 * pool is switched to fail-io mode.
2748                 */
2749                bio_io_error(bio);
2750                cell_defer_no_holder(tc, virt_cell);
2751                return DM_MAPIO_SUBMITTED;
2752        }
2753}
2754
2755static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2756{
2757        struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2758        struct request_queue *q;
2759
2760        if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2761                return 1;
2762
2763        q = bdev_get_queue(pt->data_dev->bdev);
2764        return bdi_congested(q->backing_dev_info, bdi_bits);
2765}
2766
2767static void requeue_bios(struct pool *pool)
2768{
2769        unsigned long flags;
2770        struct thin_c *tc;
2771
2772        rcu_read_lock();
2773        list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2774                spin_lock_irqsave(&tc->lock, flags);
2775                bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2776                bio_list_init(&tc->retry_on_resume_list);
2777                spin_unlock_irqrestore(&tc->lock, flags);
2778        }
2779        rcu_read_unlock();
2780}
2781
2782/*----------------------------------------------------------------
2783 * Binding of control targets to a pool object
2784 *--------------------------------------------------------------*/
2785static bool data_dev_supports_discard(struct pool_c *pt)
2786{
2787        struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2788
2789        return q && blk_queue_discard(q);
2790}
2791
2792static bool is_factor(sector_t block_size, uint32_t n)
2793{
2794        return !sector_div(block_size, n);
2795}
2796
2797/*
2798 * If discard_passdown was enabled verify that the data device
2799 * supports discards.  Disable discard_passdown if not.
2800 */
2801static void disable_passdown_if_not_supported(struct pool_c *pt)
2802{
2803        struct pool *pool = pt->pool;
2804        struct block_device *data_bdev = pt->data_dev->bdev;
2805        struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2806        const char *reason = NULL;
2807        char buf[BDEVNAME_SIZE];
2808
2809        if (!pt->adjusted_pf.discard_passdown)
2810                return;
2811
2812        if (!data_dev_supports_discard(pt))
2813                reason = "discard unsupported";
2814
2815        else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2816                reason = "max discard sectors smaller than a block";
2817
2818        if (reason) {
2819                DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2820                pt->adjusted_pf.discard_passdown = false;
2821        }
2822}
2823
2824static int bind_control_target(struct pool *pool, struct dm_target *ti)
2825{
2826        struct pool_c *pt = ti->private;
2827
2828        /*
2829         * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2830         */
2831        enum pool_mode old_mode = get_pool_mode(pool);
2832        enum pool_mode new_mode = pt->adjusted_pf.mode;
2833
2834        /*
2835         * Don't change the pool's mode until set_pool_mode() below.
2836         * Otherwise the pool's process_* function pointers may
2837         * not match the desired pool mode.
2838         */
2839        pt->adjusted_pf.mode = old_mode;
2840
2841        pool->ti = ti;
2842        pool->pf = pt->adjusted_pf;
2843        pool->low_water_blocks = pt->low_water_blocks;
2844
2845        set_pool_mode(pool, new_mode);
2846
2847        return 0;
2848}
2849
2850static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2851{
2852        if (pool->ti == ti)
2853                pool->ti = NULL;
2854}
2855
2856/*----------------------------------------------------------------
2857 * Pool creation
2858 *--------------------------------------------------------------*/
2859/* Initialize pool features. */
2860static void pool_features_init(struct pool_features *pf)
2861{
2862        pf->mode = PM_WRITE;
2863        pf->zero_new_blocks = true;
2864        pf->discard_enabled = true;
2865        pf->discard_passdown = true;
2866        pf->error_if_no_space = false;
2867}
2868
2869static void __pool_destroy(struct pool *pool)
2870{
2871        __pool_table_remove(pool);
2872
2873        vfree(pool->cell_sort_array);
2874        if (dm_pool_metadata_close(pool->pmd) < 0)
2875                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2876
2877        dm_bio_prison_destroy(pool->prison);
2878        dm_kcopyd_client_destroy(pool->copier);
2879
2880        if (pool->wq)
2881                destroy_workqueue(pool->wq);
2882
2883        if (pool->next_mapping)
2884                mempool_free(pool->next_mapping, &pool->mapping_pool);
2885        mempool_exit(&pool->mapping_pool);
2886        dm_deferred_set_destroy(pool->shared_read_ds);
2887        dm_deferred_set_destroy(pool->all_io_ds);
2888        kfree(pool);
2889}
2890
2891static struct kmem_cache *_new_mapping_cache;
2892
2893static struct pool *pool_create(struct mapped_device *pool_md,
2894                                struct block_device *metadata_dev,
2895                                unsigned long block_size,
2896                                int read_only, char **error)
2897{
2898        int r;
2899        void *err_p;
2900        struct pool *pool;
2901        struct dm_pool_metadata *pmd;
2902        bool format_device = read_only ? false : true;
2903
2904        pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2905        if (IS_ERR(pmd)) {
2906                *error = "Error creating metadata object";
2907                return (struct pool *)pmd;
2908        }
2909
2910        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2911        if (!pool) {
2912                *error = "Error allocating memory for pool";
2913                err_p = ERR_PTR(-ENOMEM);
2914                goto bad_pool;
2915        }
2916
2917        pool->pmd = pmd;
2918        pool->sectors_per_block = block_size;
2919        if (block_size & (block_size - 1))
2920                pool->sectors_per_block_shift = -1;
2921        else
2922                pool->sectors_per_block_shift = __ffs(block_size);
2923        pool->low_water_blocks = 0;
2924        pool_features_init(&pool->pf);
2925        pool->prison = dm_bio_prison_create();
2926        if (!pool->prison) {
2927                *error = "Error creating pool's bio prison";
2928                err_p = ERR_PTR(-ENOMEM);
2929                goto bad_prison;
2930        }
2931
2932        pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2933        if (IS_ERR(pool->copier)) {
2934                r = PTR_ERR(pool->copier);
2935                *error = "Error creating pool's kcopyd client";
2936                err_p = ERR_PTR(r);
2937                goto bad_kcopyd_client;
2938        }
2939
2940        /*
2941         * Create singlethreaded workqueue that will service all devices
2942         * that use this metadata.
2943         */
2944        pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2945        if (!pool->wq) {
2946                *error = "Error creating pool's workqueue";
2947                err_p = ERR_PTR(-ENOMEM);
2948                goto bad_wq;
2949        }
2950
2951        throttle_init(&pool->throttle);
2952        INIT_WORK(&pool->worker, do_worker);
2953        INIT_DELAYED_WORK(&pool->waker, do_waker);
2954        INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2955        spin_lock_init(&pool->lock);
2956        bio_list_init(&pool->deferred_flush_bios);
2957        INIT_LIST_HEAD(&pool->prepared_mappings);
2958        INIT_LIST_HEAD(&pool->prepared_discards);
2959        INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2960        INIT_LIST_HEAD(&pool->active_thins);
2961        pool->low_water_triggered = false;
2962        pool->suspended = true;
2963        pool->out_of_data_space = false;
2964
2965        pool->shared_read_ds = dm_deferred_set_create();
2966        if (!pool->shared_read_ds) {
2967                *error = "Error creating pool's shared read deferred set";
2968                err_p = ERR_PTR(-ENOMEM);
2969                goto bad_shared_read_ds;
2970        }
2971
2972        pool->all_io_ds = dm_deferred_set_create();
2973        if (!pool->all_io_ds) {
2974                *error = "Error creating pool's all io deferred set";
2975                err_p = ERR_PTR(-ENOMEM);
2976                goto bad_all_io_ds;
2977        }
2978
2979        pool->next_mapping = NULL;
2980        r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2981                                   _new_mapping_cache);
2982        if (r) {
2983                *error = "Error creating pool's mapping mempool";
2984                err_p = ERR_PTR(r);
2985                goto bad_mapping_pool;
2986        }
2987
2988        pool->cell_sort_array =
2989                vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2990                                   sizeof(*pool->cell_sort_array)));
2991        if (!pool->cell_sort_array) {
2992                *error = "Error allocating cell sort array";
2993                err_p = ERR_PTR(-ENOMEM);
2994                goto bad_sort_array;
2995        }
2996
2997        pool->ref_count = 1;
2998        pool->last_commit_jiffies = jiffies;
2999        pool->pool_md = pool_md;
3000        pool->md_dev = metadata_dev;
3001        __pool_table_insert(pool);
3002
3003        return pool;
3004
3005bad_sort_array:
3006        mempool_exit(&pool->mapping_pool);
3007bad_mapping_pool:
3008        dm_deferred_set_destroy(pool->all_io_ds);
3009bad_all_io_ds:
3010        dm_deferred_set_destroy(pool->shared_read_ds);
3011bad_shared_read_ds:
3012        destroy_workqueue(pool->wq);
3013bad_wq:
3014        dm_kcopyd_client_destroy(pool->copier);
3015bad_kcopyd_client:
3016        dm_bio_prison_destroy(pool->prison);
3017bad_prison:
3018        kfree(pool);
3019bad_pool:
3020        if (dm_pool_metadata_close(pmd))
3021                DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3022
3023        return err_p;
3024}
3025
3026static void __pool_inc(struct pool *pool)
3027{
3028        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3029        pool->ref_count++;
3030}
3031
3032static void __pool_dec(struct pool *pool)
3033{
3034        BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3035        BUG_ON(!pool->ref_count);
3036        if (!--pool->ref_count)
3037                __pool_destroy(pool);
3038}
3039
3040static struct pool *__pool_find(struct mapped_device *pool_md,
3041                                struct block_device *metadata_dev,
3042                                unsigned long block_size, int read_only,
3043                                char **error, int *created)
3044{
3045        struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3046
3047        if (pool) {
3048                if (pool->pool_md != pool_md) {
3049                        *error = "metadata device already in use by a pool";
3050                        return ERR_PTR(-EBUSY);
3051                }
3052                __pool_inc(pool);
3053
3054        } else {
3055                pool = __pool_table_lookup(pool_md);
3056                if (pool) {
3057                        if (pool->md_dev != metadata_dev) {
3058                                *error = "different pool cannot replace a pool";
3059                                return ERR_PTR(-EINVAL);
3060                        }
3061                        __pool_inc(pool);
3062
3063                } else {
3064                        pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3065                        *created = 1;
3066                }
3067        }
3068
3069        return pool;
3070}
3071
3072/*----------------------------------------------------------------
3073 * Pool target methods
3074 *--------------------------------------------------------------*/
3075static void pool_dtr(struct dm_target *ti)
3076{
3077        struct pool_c *pt = ti->private;
3078
3079        mutex_lock(&dm_thin_pool_table.mutex);
3080
3081        unbind_control_target(pt->pool, ti);
3082        __pool_dec(pt->pool);
3083        dm_put_device(ti, pt->metadata_dev);
3084        dm_put_device(ti, pt->data_dev);
3085        kfree(pt);
3086
3087        mutex_unlock(&dm_thin_pool_table.mutex);
3088}
3089
3090static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3091                               struct dm_target *ti)
3092{
3093        int r;
3094        unsigned argc;
3095        const char *arg_name;
3096
3097        static const struct dm_arg _args[] = {
3098                {0, 4, "Invalid number of pool feature arguments"},
3099        };
3100
3101        /*
3102         * No feature arguments supplied.
3103         */
3104        if (!as->argc)
3105                return 0;
3106
3107        r = dm_read_arg_group(_args, as, &argc, &ti->error);
3108        if (r)
3109                return -EINVAL;
3110
3111        while (argc && !r) {
3112                arg_name = dm_shift_arg(as);
3113                argc--;
3114
3115                if (!strcasecmp(arg_name, "skip_block_zeroing"))
3116                        pf->zero_new_blocks = false;
3117
3118                else if (!strcasecmp(arg_name, "ignore_discard"))
3119                        pf->discard_enabled = false;
3120
3121                else if (!strcasecmp(arg_name, "no_discard_passdown"))
3122                        pf->discard_passdown = false;
3123
3124                else if (!strcasecmp(arg_name, "read_only"))
3125                        pf->mode = PM_READ_ONLY;
3126
3127                else if (!strcasecmp(arg_name, "error_if_no_space"))
3128                        pf->error_if_no_space = true;
3129
3130                else {
3131                        ti->error = "Unrecognised pool feature requested";
3132                        r = -EINVAL;
3133                        break;
3134                }
3135        }
3136
3137        return r;
3138}
3139
3140static void metadata_low_callback(void *context)
3141{
3142        struct pool *pool = context;
3143
3144        DMWARN("%s: reached low water mark for metadata device: sending event.",
3145               dm_device_name(pool->pool_md));
3146
3147        dm_table_event(pool->ti->table);
3148}
3149
3150static sector_t get_dev_size(struct block_device *bdev)
3151{
3152        return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3153}
3154
3155static void warn_if_metadata_device_too_big(struct block_device *bdev)
3156{
3157        sector_t metadata_dev_size = get_dev_size(bdev);
3158        char buffer[BDEVNAME_SIZE];
3159
3160        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3161                DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3162                       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3163}
3164
3165static sector_t get_metadata_dev_size(struct block_device *bdev)
3166{
3167        sector_t metadata_dev_size = get_dev_size(bdev);
3168
3169        if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3170                metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3171
3172        return metadata_dev_size;
3173}
3174
3175static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3176{
3177        sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3178
3179        sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3180
3181        return metadata_dev_size;
3182}
3183
3184/*
3185 * When a metadata threshold is crossed a dm event is triggered, and
3186 * userland should respond by growing the metadata device.  We could let
3187 * userland set the threshold, like we do with the data threshold, but I'm
3188 * not sure they know enough to do this well.
3189 */
3190static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3191{
3192        /*
3193         * 4M is ample for all ops with the possible exception of thin
3194         * device deletion which is harmless if it fails (just retry the
3195         * delete after you've grown the device).
3196         */
3197        dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3198        return min((dm_block_t)1024ULL /* 4M */, quarter);
3199}
3200
3201/*
3202 * thin-pool <metadata dev> <data dev>
3203 *           <data block size (sectors)>
3204 *           <low water mark (blocks)>
3205 *           [<#feature args> [<arg>]*]
3206 *
3207 * Optional feature arguments are:
3208 *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3209 *           ignore_discard: disable discard
3210 *           no_discard_passdown: don't pass discards down to the data device
3211 *           read_only: Don't allow any changes to be made to the pool metadata.
3212 *           error_if_no_space: error IOs, instead of queueing, if no space.
3213 */
3214static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3215{
3216        int r, pool_created = 0;
3217        struct pool_c *pt;
3218        struct pool *pool;
3219        struct pool_features pf;
3220        struct dm_arg_set as;
3221        struct dm_dev *data_dev;
3222        unsigned long block_size;
3223        dm_block_t low_water_blocks;
3224        struct dm_dev *metadata_dev;
3225        fmode_t metadata_mode;
3226
3227        /*
3228         * FIXME Remove validation from scope of lock.
3229         */
3230        mutex_lock(&dm_thin_pool_table.mutex);
3231
3232        if (argc < 4) {
3233                ti->error = "Invalid argument count";
3234                r = -EINVAL;
3235                goto out_unlock;
3236        }
3237
3238        as.argc = argc;
3239        as.argv = argv;
3240
3241        /*
3242         * Set default pool features.
3243         */
3244        pool_features_init(&pf);
3245
3246        dm_consume_args(&as, 4);
3247        r = parse_pool_features(&as, &pf, ti);
3248        if (r)
3249                goto out_unlock;
3250
3251        metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3252        r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3253        if (r) {
3254                ti->error = "Error opening metadata block device";
3255                goto out_unlock;
3256        }
3257        warn_if_metadata_device_too_big(metadata_dev->bdev);
3258
3259        r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3260        if (r) {
3261                ti->error = "Error getting data device";
3262                goto out_metadata;
3263        }
3264
3265        if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3266            block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3267            block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3268            block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3269                ti->error = "Invalid block size";
3270                r = -EINVAL;
3271                goto out;
3272        }
3273
3274        if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3275                ti->error = "Invalid low water mark";
3276                r = -EINVAL;
3277                goto out;
3278        }
3279
3280        pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3281        if (!pt) {
3282                r = -ENOMEM;
3283                goto out;
3284        }
3285
3286        pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3287                           block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3288        if (IS_ERR(pool)) {
3289                r = PTR_ERR(pool);
3290                goto out_free_pt;
3291        }
3292
3293        /*
3294         * 'pool_created' reflects whether this is the first table load.
3295         * Top level discard support is not allowed to be changed after
3296         * initial load.  This would require a pool reload to trigger thin
3297         * device changes.
3298         */
3299        if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3300                ti->error = "Discard support cannot be disabled once enabled";
3301                r = -EINVAL;
3302                goto out_flags_changed;
3303        }
3304
3305        pt->pool = pool;
3306        pt->ti = ti;
3307        pt->metadata_dev = metadata_dev;
3308        pt->data_dev = data_dev;
3309        pt->low_water_blocks = low_water_blocks;
3310        pt->adjusted_pf = pt->requested_pf = pf;
3311        ti->num_flush_bios = 1;
3312
3313        /*
3314         * Only need to enable discards if the pool should pass
3315         * them down to the data device.  The thin device's discard
3316         * processing will cause mappings to be removed from the btree.
3317         */
3318        if (pf.discard_enabled && pf.discard_passdown) {
3319                ti->num_discard_bios = 1;
3320
3321                /*
3322                 * Setting 'discards_supported' circumvents the normal
3323                 * stacking of discard limits (this keeps the pool and
3324                 * thin devices' discard limits consistent).
3325                 */
3326                ti->discards_supported = true;
3327        }
3328        ti->private = pt;
3329
3330        r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3331                                                calc_metadata_threshold(pt),
3332                                                metadata_low_callback,
3333                                                pool);
3334        if (r)
3335                goto out_flags_changed;
3336
3337        pt->callbacks.congested_fn = pool_is_congested;
3338        dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3339
3340        mutex_unlock(&dm_thin_pool_table.mutex);
3341
3342        return 0;
3343
3344out_flags_changed:
3345        __pool_dec(pool);
3346out_free_pt:
3347        kfree(pt);
3348out:
3349        dm_put_device(ti, data_dev);
3350out_metadata:
3351        dm_put_device(ti, metadata_dev);
3352out_unlock:
3353        mutex_unlock(&dm_thin_pool_table.mutex);
3354
3355        return r;
3356}
3357
3358static int pool_map(struct dm_target *ti, struct bio *bio)
3359{
3360        int r;
3361        struct pool_c *pt = ti->private;
3362        struct pool *pool = pt->pool;
3363        unsigned long flags;
3364
3365        /*
3366         * As this is a singleton target, ti->begin is always zero.
3367         */
3368        spin_lock_irqsave(&pool->lock, flags);
3369        bio_set_dev(bio, pt->data_dev->bdev);
3370        r = DM_MAPIO_REMAPPED;
3371        spin_unlock_irqrestore(&pool->lock, flags);
3372
3373        return r;
3374}
3375
3376static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3377{
3378        int r;
3379        struct pool_c *pt = ti->private;
3380        struct pool *pool = pt->pool;
3381        sector_t data_size = ti->len;
3382        dm_block_t sb_data_size;
3383
3384        *need_commit = false;
3385
3386        (void) sector_div(data_size, pool->sectors_per_block);
3387
3388        r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3389        if (r) {
3390                DMERR("%s: failed to retrieve data device size",
3391                      dm_device_name(pool->pool_md));
3392                return r;
3393        }
3394
3395        if (data_size < sb_data_size) {
3396                DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3397                      dm_device_name(pool->pool_md),
3398                      (unsigned long long)data_size, sb_data_size);
3399                return -EINVAL;
3400
3401        } else if (data_size > sb_data_size) {
3402                if (dm_pool_metadata_needs_check(pool->pmd)) {
3403                        DMERR("%s: unable to grow the data device until repaired.",
3404                              dm_device_name(pool->pool_md));
3405                        return 0;
3406                }
3407
3408                if (sb_data_size)
3409                        DMINFO("%s: growing the data device from %llu to %llu blocks",
3410                               dm_device_name(pool->pool_md),
3411                               sb_data_size, (unsigned long long)data_size);
3412                r = dm_pool_resize_data_dev(pool->pmd, data_size);
3413                if (r) {
3414                        metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3415                        return r;
3416                }
3417
3418                *need_commit = true;
3419        }
3420
3421        return 0;
3422}
3423
3424static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3425{
3426        int r;
3427        struct pool_c *pt = ti->private;
3428        struct pool *pool = pt->pool;
3429        dm_block_t metadata_dev_size, sb_metadata_dev_size;
3430
3431        *need_commit = false;
3432
3433        metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3434
3435        r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3436        if (r) {
3437                DMERR("%s: failed to retrieve metadata device size",
3438                      dm_device_name(pool->pool_md));
3439                return r;
3440        }
3441
3442        if (metadata_dev_size < sb_metadata_dev_size) {
3443                DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3444                      dm_device_name(pool->pool_md),
3445                      metadata_dev_size, sb_metadata_dev_size);
3446                return -EINVAL;
3447
3448        } else if (metadata_dev_size > sb_metadata_dev_size) {
3449                if (dm_pool_metadata_needs_check(pool->pmd)) {
3450                        DMERR("%s: unable to grow the metadata device until repaired.",
3451                              dm_device_name(pool->pool_md));
3452                        return 0;
3453                }
3454
3455                warn_if_metadata_device_too_big(pool->md_dev);
3456                DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3457                       dm_device_name(pool->pool_md),
3458                       sb_metadata_dev_size, metadata_dev_size);
3459
3460                if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3461                        set_pool_mode(pool, PM_WRITE);
3462
3463                r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3464                if (r) {
3465                        metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3466                        return r;
3467                }
3468
3469                *need_commit = true;
3470        }
3471
3472        return 0;
3473}
3474
3475/*
3476 * Retrieves the number of blocks of the data device from
3477 * the superblock and compares it to the actual device size,
3478 * thus resizing the data device in case it has grown.
3479 *
3480 * This both copes with opening preallocated data devices in the ctr
3481 * being followed by a resume
3482 * -and-
3483 * calling the resume method individually after userspace has
3484 * grown the data device in reaction to a table event.
3485 */
3486static int pool_preresume(struct dm_target *ti)
3487{
3488        int r;
3489        bool need_commit1, need_commit2;
3490        struct pool_c *pt = ti->private;
3491        struct pool *pool = pt->pool;
3492
3493        /*
3494         * Take control of the pool object.
3495         */
3496        r = bind_control_target(pool, ti);
3497        if (r)
3498                return r;
3499
3500        r = maybe_resize_data_dev(ti, &need_commit1);
3501        if (r)
3502                return r;
3503
3504        r = maybe_resize_metadata_dev(ti, &need_commit2);
3505        if (r)
3506                return r;
3507
3508        if (need_commit1 || need_commit2)
3509                (void) commit(pool);
3510
3511        return 0;
3512}
3513
3514static void pool_suspend_active_thins(struct pool *pool)
3515{
3516        struct thin_c *tc;
3517
3518        /* Suspend all active thin devices */
3519        tc = get_first_thin(pool);
3520        while (tc) {
3521                dm_internal_suspend_noflush(tc->thin_md);
3522                tc = get_next_thin(pool, tc);
3523        }
3524}
3525
3526static void pool_resume_active_thins(struct pool *pool)
3527{
3528        struct thin_c *tc;
3529
3530        /* Resume all active thin devices */
3531        tc = get_first_thin(pool);
3532        while (tc) {
3533                dm_internal_resume(tc->thin_md);
3534                tc = get_next_thin(pool, tc);
3535        }
3536}
3537
3538static void pool_resume(struct dm_target *ti)
3539{
3540        struct pool_c *pt = ti->private;
3541        struct pool *pool = pt->pool;
3542        unsigned long flags;
3543
3544        /*
3545         * Must requeue active_thins' bios and then resume
3546         * active_thins _before_ clearing 'suspend' flag.
3547         */
3548        requeue_bios(pool);
3549        pool_resume_active_thins(pool);
3550
3551        spin_lock_irqsave(&pool->lock, flags);
3552        pool->low_water_triggered = false;
3553        pool->suspended = false;
3554        spin_unlock_irqrestore(&pool->lock, flags);
3555
3556        do_waker(&pool->waker.work);
3557}
3558
3559static void pool_presuspend(struct dm_target *ti)
3560{
3561        struct pool_c *pt = ti->private;
3562        struct pool *pool = pt->pool;
3563        unsigned long flags;
3564
3565        spin_lock_irqsave(&pool->lock, flags);
3566        pool->suspended = true;
3567        spin_unlock_irqrestore(&pool->lock, flags);
3568
3569        pool_suspend_active_thins(pool);
3570}
3571
3572static void pool_presuspend_undo(struct dm_target *ti)
3573{
3574        struct pool_c *pt = ti->private;
3575        struct pool *pool = pt->pool;
3576        unsigned long flags;
3577
3578        pool_resume_active_thins(pool);
3579
3580        spin_lock_irqsave(&pool->lock, flags);
3581        pool->suspended = false;
3582        spin_unlock_irqrestore(&pool->lock, flags);
3583}
3584
3585static void pool_postsuspend(struct dm_target *ti)
3586{
3587        struct pool_c *pt = ti->private;
3588        struct pool *pool = pt->pool;
3589
3590        cancel_delayed_work_sync(&pool->waker);
3591        cancel_delayed_work_sync(&pool->no_space_timeout);
3592        flush_workqueue(pool->wq);
3593        (void) commit(pool);
3594}
3595
3596static int check_arg_count(unsigned argc, unsigned args_required)
3597{
3598        if (argc != args_required) {
3599                DMWARN("Message received with %u arguments instead of %u.",
3600                       argc, args_required);
3601                return -EINVAL;
3602        }
3603
3604        return 0;
3605}
3606
3607static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3608{
3609        if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3610            *dev_id <= MAX_DEV_ID)
3611                return 0;
3612
3613        if (warning)
3614                DMWARN("Message received with invalid device id: %s", arg);
3615
3616        return -EINVAL;
3617}
3618
3619static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3620{
3621        dm_thin_id dev_id;
3622        int r;
3623
3624        r = check_arg_count(argc, 2);
3625        if (r)
3626                return r;
3627
3628        r = read_dev_id(argv[1], &dev_id, 1);
3629        if (r)
3630                return r;
3631
3632        r = dm_pool_create_thin(pool->pmd, dev_id);
3633        if (r) {
3634                DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3635                       argv[1]);
3636                return r;
3637        }
3638
3639        return 0;
3640}
3641
3642static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3643{
3644        dm_thin_id dev_id;
3645        dm_thin_id origin_dev_id;
3646        int r;
3647
3648        r = check_arg_count(argc, 3);
3649        if (r)
3650                return r;
3651
3652        r = read_dev_id(argv[1], &dev_id, 1);
3653        if (r)
3654                return r;
3655
3656        r = read_dev_id(argv[2], &origin_dev_id, 1);
3657        if (r)
3658                return r;
3659
3660        r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3661        if (r) {
3662                DMWARN("Creation of new snapshot %s of device %s failed.",
3663                       argv[1], argv[2]);
3664                return r;
3665        }
3666
3667        return 0;
3668}
3669
3670static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3671{
3672        dm_thin_id dev_id;
3673        int r;
3674
3675        r = check_arg_count(argc, 2);
3676        if (r)
3677                return r;
3678
3679        r = read_dev_id(argv[1], &dev_id, 1);
3680        if (r)
3681                return r;
3682
3683        r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3684        if (r)
3685                DMWARN("Deletion of thin device %s failed.", argv[1]);
3686
3687        return r;
3688}
3689
3690static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3691{
3692        dm_thin_id old_id, new_id;
3693        int r;
3694
3695        r = check_arg_count(argc, 3);
3696        if (r)
3697                return r;
3698
3699        if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3700                DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3701                return -EINVAL;
3702        }
3703
3704        if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3705                DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3706                return -EINVAL;
3707        }
3708
3709        r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3710        if (r) {
3711                DMWARN("Failed to change transaction id from %s to %s.",
3712                       argv[1], argv[2]);
3713                return r;
3714        }
3715
3716        return 0;
3717}
3718
3719static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3720{
3721        int r;
3722
3723        r = check_arg_count(argc, 1);
3724        if (r)
3725                return r;
3726
3727        (void) commit(pool);
3728
3729        r = dm_pool_reserve_metadata_snap(pool->pmd);
3730        if (r)
3731                DMWARN("reserve_metadata_snap message failed.");
3732
3733        return r;
3734}
3735
3736static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3737{
3738        int r;
3739
3740        r = check_arg_count(argc, 1);
3741        if (r)
3742                return r;
3743
3744        r = dm_pool_release_metadata_snap(pool->pmd);
3745        if (r)
3746                DMWARN("release_metadata_snap message failed.");
3747
3748        return r;
3749}
3750
3751/*
3752 * Messages supported:
3753 *   create_thin        <dev_id>
3754 *   create_snap        <dev_id> <origin_id>
3755 *   delete             <dev_id>
3756 *   set_transaction_id <current_trans_id> <new_trans_id>
3757 *   reserve_metadata_snap
3758 *   release_metadata_snap
3759 */
3760static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3761                        char *result, unsigned maxlen)
3762{
3763        int r = -EINVAL;
3764        struct pool_c *pt = ti->private;
3765        struct pool *pool = pt->pool;
3766
3767        if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3768                DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3769                      dm_device_name(pool->pool_md));
3770                return -EOPNOTSUPP;
3771        }
3772
3773        if (!strcasecmp(argv[0], "create_thin"))
3774                r = process_create_thin_mesg(argc, argv, pool);
3775
3776        else if (!strcasecmp(argv[0], "create_snap"))
3777                r = process_create_snap_mesg(argc, argv, pool);
3778
3779        else if (!strcasecmp(argv[0], "delete"))
3780                r = process_delete_mesg(argc, argv, pool);
3781
3782        else if (!strcasecmp(argv[0], "set_transaction_id"))
3783                r = process_set_transaction_id_mesg(argc, argv, pool);
3784
3785        else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3786                r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3787
3788        else if (!strcasecmp(argv[0], "release_metadata_snap"))
3789                r = process_release_metadata_snap_mesg(argc, argv, pool);
3790
3791        else
3792                DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3793
3794        if (!r)
3795                (void) commit(pool);
3796
3797        return r;
3798}
3799
3800static void emit_flags(struct pool_features *pf, char *result,
3801                       unsigned sz, unsigned maxlen)
3802{
3803        unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3804                !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3805                pf->error_if_no_space;
3806        DMEMIT("%u ", count);
3807
3808        if (!pf->zero_new_blocks)
3809                DMEMIT("skip_block_zeroing ");
3810
3811        if (!pf->discard_enabled)
3812                DMEMIT("ignore_discard ");
3813
3814        if (!pf->discard_passdown)
3815                DMEMIT("no_discard_passdown ");
3816
3817        if (pf->mode == PM_READ_ONLY)
3818                DMEMIT("read_only ");
3819
3820        if (pf->error_if_no_space)
3821                DMEMIT("error_if_no_space ");
3822}
3823
3824/*
3825 * Status line is:
3826 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3827 *    <used data sectors>/<total data sectors> <held metadata root>
3828 *    <pool mode> <discard config> <no space config> <needs_check>
3829 */
3830static void pool_status(struct dm_target *ti, status_type_t type,
3831                        unsigned status_flags, char *result, unsigned maxlen)
3832{
3833        int r;
3834        unsigned sz = 0;
3835        uint64_t transaction_id;
3836        dm_block_t nr_free_blocks_data;
3837        dm_block_t nr_free_blocks_metadata;
3838        dm_block_t nr_blocks_data;
3839        dm_block_t nr_blocks_metadata;
3840        dm_block_t held_root;
3841        enum pool_mode mode;
3842        char buf[BDEVNAME_SIZE];
3843        char buf2[BDEVNAME_SIZE];
3844        struct pool_c *pt = ti->private;
3845        struct pool *pool = pt->pool;
3846
3847        switch (type) {
3848        case STATUSTYPE_INFO:
3849                if (get_pool_mode(pool) == PM_FAIL) {
3850                        DMEMIT("Fail");
3851                        break;
3852                }
3853
3854                /* Commit to ensure statistics aren't out-of-date */
3855                if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3856                        (void) commit(pool);
3857
3858                r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3859                if (r) {
3860                        DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3861                              dm_device_name(pool->pool_md), r);
3862                        goto err;
3863                }
3864
3865                r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3866                if (r) {
3867                        DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3868                              dm_device_name(pool->pool_md), r);
3869                        goto err;
3870                }
3871
3872                r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3873                if (r) {
3874                        DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3875                              dm_device_name(pool->pool_md), r);
3876                        goto err;
3877                }
3878
3879                r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3880                if (r) {
3881                        DMERR("%s: dm_pool_get_free_block_count returned %d",
3882                              dm_device_name(pool->pool_md), r);
3883                        goto err;
3884                }
3885
3886                r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3887                if (r) {
3888                        DMERR("%s: dm_pool_get_data_dev_size returned %d",
3889                              dm_device_name(pool->pool_md), r);
3890                        goto err;
3891                }
3892
3893                r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3894                if (r) {
3895                        DMERR("%s: dm_pool_get_metadata_snap returned %d",
3896                              dm_device_name(pool->pool_md), r);
3897                        goto err;
3898                }
3899
3900                DMEMIT("%llu %llu/%llu %llu/%llu ",
3901                       (unsigned long long)transaction_id,
3902                       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3903                       (unsigned long long)nr_blocks_metadata,
3904                       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3905                       (unsigned long long)nr_blocks_data);
3906
3907                if (held_root)
3908                        DMEMIT("%llu ", held_root);
3909                else
3910                        DMEMIT("- ");
3911
3912                mode = get_pool_mode(pool);
3913                if (mode == PM_OUT_OF_DATA_SPACE)
3914                        DMEMIT("out_of_data_space ");
3915                else if (is_read_only_pool_mode(mode))
3916                        DMEMIT("ro ");
3917                else
3918                        DMEMIT("rw ");
3919
3920                if (!pool->pf.discard_enabled)
3921                        DMEMIT("ignore_discard ");
3922                else if (pool->pf.discard_passdown)
3923                        DMEMIT("discard_passdown ");
3924                else
3925                        DMEMIT("no_discard_passdown ");
3926
3927                if (pool->pf.error_if_no_space)
3928                        DMEMIT("error_if_no_space ");
3929                else
3930                        DMEMIT("queue_if_no_space ");
3931
3932                if (dm_pool_metadata_needs_check(pool->pmd))
3933                        DMEMIT("needs_check ");
3934                else
3935                        DMEMIT("- ");
3936
3937                DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3938
3939                break;
3940
3941        case STATUSTYPE_TABLE:
3942                DMEMIT("%s %s %lu %llu ",
3943                       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3944                       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3945                       (unsigned long)pool->sectors_per_block,
3946                       (unsigned long long)pt->low_water_blocks);
3947                emit_flags(&pt->requested_pf, result, sz, maxlen);
3948                break;
3949        }
3950        return;
3951
3952err:
3953        DMEMIT("Error");
3954}
3955
3956static int pool_iterate_devices(struct dm_target *ti,
3957                                iterate_devices_callout_fn fn, void *data)
3958{
3959        struct pool_c *pt = ti->private;
3960
3961        return fn(ti, pt->data_dev, 0, ti->len, data);
3962}
3963
3964static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3965{
3966        struct pool_c *pt = ti->private;
3967        struct pool *pool = pt->pool;
3968        sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3969
3970        /*
3971         * If max_sectors is smaller than pool->sectors_per_block adjust it
3972         * to the highest possible power-of-2 factor of pool->sectors_per_block.
3973         * This is especially beneficial when the pool's data device is a RAID
3974         * device that has a full stripe width that matches pool->sectors_per_block
3975         * -- because even though partial RAID stripe-sized IOs will be issued to a
3976         *    single RAID stripe; when aggregated they will end on a full RAID stripe
3977         *    boundary.. which avoids additional partial RAID stripe writes cascading
3978         */
3979        if (limits->max_sectors < pool->sectors_per_block) {
3980                while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3981                        if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3982                                limits->max_sectors--;
3983                        limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3984                }
3985        }
3986
3987        /*
3988         * If the system-determined stacked limits are compatible with the
3989         * pool's blocksize (io_opt is a factor) do not override them.
3990         */
3991        if (io_opt_sectors < pool->sectors_per_block ||
3992            !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3993                if (is_factor(pool->sectors_per_block, limits->max_sectors))
3994                        blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3995                else
3996                        blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3997                blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3998        }
3999
4000        /*
4001         * pt->adjusted_pf is a staging area for the actual features to use.
4002         * They get transferred to the live pool in bind_control_target()
4003         * called from pool_preresume().
4004         */
4005        if (!pt->adjusted_pf.discard_enabled) {
4006                /*
4007                 * Must explicitly disallow stacking discard limits otherwise the
4008                 * block layer will stack them if pool's data device has support.
4009                 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4010                 * user to see that, so make sure to set all discard limits to 0.
4011                 */
4012                limits->discard_granularity = 0;
4013                return;
4014        }
4015
4016        disable_passdown_if_not_supported(pt);
4017
4018        /*
4019         * The pool uses the same discard limits as the underlying data
4020         * device.  DM core has already set this up.
4021         */
4022}
4023
4024static struct target_type pool_target = {
4025        .name = "thin-pool",
4026        .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4027                    DM_TARGET_IMMUTABLE,
4028        .version = {1, 21, 0},
4029        .module = THIS_MODULE,
4030        .ctr = pool_ctr,
4031        .dtr = pool_dtr,
4032        .map = pool_map,
4033        .presuspend = pool_presuspend,
4034        .presuspend_undo = pool_presuspend_undo,
4035        .postsuspend = pool_postsuspend,
4036        .preresume = pool_preresume,
4037        .resume = pool_resume,
4038        .message = pool_message,
4039        .status = pool_status,
4040        .iterate_devices = pool_iterate_devices,
4041        .io_hints = pool_io_hints,
4042};
4043
4044/*----------------------------------------------------------------
4045 * Thin target methods
4046 *--------------------------------------------------------------*/
4047static void thin_get(struct thin_c *tc)
4048{
4049        refcount_inc(&tc->refcount);
4050}
4051
4052static void thin_put(struct thin_c *tc)
4053{
4054        if (refcount_dec_and_test(&tc->refcount))
4055                complete(&tc->can_destroy);
4056}
4057
4058static void thin_dtr(struct dm_target *ti)
4059{
4060        struct thin_c *tc = ti->private;
4061        unsigned long flags;
4062
4063        spin_lock_irqsave(&tc->pool->lock, flags);
4064        list_del_rcu(&tc->list);
4065        spin_unlock_irqrestore(&tc->pool->lock, flags);
4066        synchronize_rcu();
4067
4068        thin_put(tc);
4069        wait_for_completion(&tc->can_destroy);
4070
4071        mutex_lock(&dm_thin_pool_table.mutex);
4072
4073        __pool_dec(tc->pool);
4074        dm_pool_close_thin_device(tc->td);
4075        dm_put_device(ti, tc->pool_dev);
4076        if (tc->origin_dev)
4077                dm_put_device(ti, tc->origin_dev);
4078        kfree(tc);
4079
4080        mutex_unlock(&dm_thin_pool_table.mutex);
4081}
4082
4083/*
4084 * Thin target parameters:
4085 *
4086 * <pool_dev> <dev_id> [origin_dev]
4087 *
4088 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4089 * dev_id: the internal device identifier
4090 * origin_dev: a device external to the pool that should act as the origin
4091 *
4092 * If the pool device has discards disabled, they get disabled for the thin
4093 * device as well.
4094 */
4095static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4096{
4097        int r;
4098        struct thin_c *tc;
4099        struct dm_dev *pool_dev, *origin_dev;
4100        struct mapped_device *pool_md;
4101        unsigned long flags;
4102
4103        mutex_lock(&dm_thin_pool_table.mutex);
4104
4105        if (argc != 2 && argc != 3) {
4106                ti->error = "Invalid argument count";
4107                r = -EINVAL;
4108                goto out_unlock;
4109        }
4110
4111        tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4112        if (!tc) {
4113                ti->error = "Out of memory";
4114                r = -ENOMEM;
4115                goto out_unlock;
4116        }
4117        tc->thin_md = dm_table_get_md(ti->table);
4118        spin_lock_init(&tc->lock);
4119        INIT_LIST_HEAD(&tc->deferred_cells);
4120        bio_list_init(&tc->deferred_bio_list);
4121        bio_list_init(&tc->retry_on_resume_list);
4122        tc->sort_bio_list = RB_ROOT;
4123
4124        if (argc == 3) {
4125                r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4126                if (r) {
4127                        ti->error = "Error opening origin device";
4128                        goto bad_origin_dev;
4129                }
4130                tc->origin_dev = origin_dev;
4131        }
4132
4133        r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4134        if (r) {
4135                ti->error = "Error opening pool device";
4136                goto bad_pool_dev;
4137        }
4138        tc->pool_dev = pool_dev;
4139
4140        if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4141                ti->error = "Invalid device id";
4142                r = -EINVAL;
4143                goto bad_common;
4144        }
4145
4146        pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4147        if (!pool_md) {
4148                ti->error = "Couldn't get pool mapped device";
4149                r = -EINVAL;
4150                goto bad_common;
4151        }
4152
4153        tc->pool = __pool_table_lookup(pool_md);
4154        if (!tc->pool) {
4155                ti->error = "Couldn't find pool object";
4156                r = -EINVAL;
4157                goto bad_pool_lookup;
4158        }
4159        __pool_inc(tc->pool);
4160
4161        if (get_pool_mode(tc->pool) == PM_FAIL) {
4162                ti->error = "Couldn't open thin device, Pool is in fail mode";
4163                r = -EINVAL;
4164                goto bad_pool;
4165        }
4166
4167        r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4168        if (r) {
4169                ti->error = "Couldn't open thin internal device";
4170                goto bad_pool;
4171        }
4172
4173        r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4174        if (r)
4175                goto bad;
4176
4177        ti->num_flush_bios = 1;
4178        ti->flush_supported = true;
4179        ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4180
4181        /* In case the pool supports discards, pass them on. */
4182        if (tc->pool->pf.discard_enabled) {
4183                ti->discards_supported = true;
4184                ti->num_discard_bios = 1;
4185                ti->split_discard_bios = false;
4186        }
4187
4188        mutex_unlock(&dm_thin_pool_table.mutex);
4189
4190        spin_lock_irqsave(&tc->pool->lock, flags);
4191        if (tc->pool->suspended) {
4192                spin_unlock_irqrestore(&tc->pool->lock, flags);
4193                mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4194                ti->error = "Unable to activate thin device while pool is suspended";
4195                r = -EINVAL;
4196                goto bad;
4197        }
4198        refcount_set(&tc->refcount, 1);
4199        init_completion(&tc->can_destroy);
4200        list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4201        spin_unlock_irqrestore(&tc->pool->lock, flags);
4202        /*
4203         * This synchronize_rcu() call is needed here otherwise we risk a
4204         * wake_worker() call finding no bios to process (because the newly
4205         * added tc isn't yet visible).  So this reduces latency since we
4206         * aren't then dependent on the periodic commit to wake_worker().
4207         */
4208        synchronize_rcu();
4209
4210        dm_put(pool_md);
4211
4212        return 0;
4213
4214bad:
4215        dm_pool_close_thin_device(tc->td);
4216bad_pool:
4217        __pool_dec(tc->pool);
4218bad_pool_lookup:
4219        dm_put(pool_md);
4220bad_common:
4221        dm_put_device(ti, tc->pool_dev);
4222bad_pool_dev:
4223        if (tc->origin_dev)
4224                dm_put_device(ti, tc->origin_dev);
4225bad_origin_dev:
4226        kfree(tc);
4227out_unlock:
4228        mutex_unlock(&dm_thin_pool_table.mutex);
4229
4230        return r;
4231}
4232
4233static int thin_map(struct dm_target *ti, struct bio *bio)
4234{
4235        bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4236
4237        return thin_bio_map(ti, bio);
4238}
4239
4240static int thin_endio(struct dm_target *ti, struct bio *bio,
4241                blk_status_t *err)
4242{
4243        unsigned long flags;
4244        struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4245        struct list_head work;
4246        struct dm_thin_new_mapping *m, *tmp;
4247        struct pool *pool = h->tc->pool;
4248
4249        if (h->shared_read_entry) {
4250                INIT_LIST_HEAD(&work);
4251                dm_deferred_entry_dec(h->shared_read_entry, &work);
4252
4253                spin_lock_irqsave(&pool->lock, flags);
4254                list_for_each_entry_safe(m, tmp, &work, list) {
4255                        list_del(&m->list);
4256                        __complete_mapping_preparation(m);
4257                }
4258                spin_unlock_irqrestore(&pool->lock, flags);
4259        }
4260
4261        if (h->all_io_entry) {
4262                INIT_LIST_HEAD(&work);
4263                dm_deferred_entry_dec(h->all_io_entry, &work);
4264                if (!list_empty(&work)) {
4265                        spin_lock_irqsave(&pool->lock, flags);
4266                        list_for_each_entry_safe(m, tmp, &work, list)
4267                                list_add_tail(&m->list, &pool->prepared_discards);
4268                        spin_unlock_irqrestore(&pool->lock, flags);
4269                        wake_worker(pool);
4270                }
4271        }
4272
4273        if (h->cell)
4274                cell_defer_no_holder(h->tc, h->cell);
4275
4276        return DM_ENDIO_DONE;
4277}
4278
4279static void thin_presuspend(struct dm_target *ti)
4280{
4281        struct thin_c *tc = ti->private;
4282
4283        if (dm_noflush_suspending(ti))
4284                noflush_work(tc, do_noflush_start);
4285}
4286
4287static void thin_postsuspend(struct dm_target *ti)
4288{
4289        struct thin_c *tc = ti->private;
4290
4291        /*
4292         * The dm_noflush_suspending flag has been cleared by now, so
4293         * unfortunately we must always run this.
4294         */
4295        noflush_work(tc, do_noflush_stop);
4296}
4297
4298static int thin_preresume(struct dm_target *ti)
4299{
4300        struct thin_c *tc = ti->private;
4301
4302        if (tc->origin_dev)
4303                tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4304
4305        return 0;
4306}
4307
4308/*
4309 * <nr mapped sectors> <highest mapped sector>
4310 */
4311static void thin_status(struct dm_target *ti, status_type_t type,
4312                        unsigned status_flags, char *result, unsigned maxlen)
4313{
4314        int r;
4315        ssize_t sz = 0;
4316        dm_block_t mapped, highest;
4317        char buf[BDEVNAME_SIZE];
4318        struct thin_c *tc = ti->private;
4319
4320        if (get_pool_mode(tc->pool) == PM_FAIL) {
4321                DMEMIT("Fail");
4322                return;
4323        }
4324
4325        if (!tc->td)
4326                DMEMIT("-");
4327        else {
4328                switch (type) {
4329                case STATUSTYPE_INFO:
4330                        r = dm_thin_get_mapped_count(tc->td, &mapped);
4331                        if (r) {
4332                                DMERR("dm_thin_get_mapped_count returned %d", r);
4333                                goto err;
4334                        }
4335
4336                        r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4337                        if (r < 0) {
4338                                DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4339                                goto err;
4340                        }
4341
4342                        DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4343                        if (r)
4344                                DMEMIT("%llu", ((highest + 1) *
4345                                                tc->pool->sectors_per_block) - 1);
4346                        else
4347                                DMEMIT("-");
4348                        break;
4349
4350                case STATUSTYPE_TABLE:
4351                        DMEMIT("%s %lu",
4352                               format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4353                               (unsigned long) tc->dev_id);
4354                        if (tc->origin_dev)
4355                                DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4356                        break;
4357                }
4358        }
4359
4360        return;
4361
4362err:
4363        DMEMIT("Error");
4364}
4365
4366static int thin_iterate_devices(struct dm_target *ti,
4367                                iterate_devices_callout_fn fn, void *data)
4368{
4369        sector_t blocks;
4370        struct thin_c *tc = ti->private;
4371        struct pool *pool = tc->pool;
4372
4373        /*
4374         * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4375         * we follow a more convoluted path through to the pool's target.
4376         */
4377        if (!pool->ti)
4378                return 0;       /* nothing is bound */
4379
4380        blocks = pool->ti->len;
4381        (void) sector_div(blocks, pool->sectors_per_block);
4382        if (blocks)
4383                return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4384
4385        return 0;
4386}
4387
4388static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4389{
4390        struct thin_c *tc = ti->private;
4391        struct pool *pool = tc->pool;
4392
4393        if (!pool->pf.discard_enabled)
4394                return;
4395
4396        limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4397        limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4398}
4399
4400static struct target_type thin_target = {
4401        .name = "thin",
4402        .version = {1, 21, 0},
4403        .module = THIS_MODULE,
4404        .ctr = thin_ctr,
4405        .dtr = thin_dtr,
4406        .map = thin_map,
4407        .end_io = thin_endio,
4408        .preresume = thin_preresume,
4409        .presuspend = thin_presuspend,
4410        .postsuspend = thin_postsuspend,
4411        .status = thin_status,
4412        .iterate_devices = thin_iterate_devices,
4413        .io_hints = thin_io_hints,
4414};
4415
4416/*----------------------------------------------------------------*/
4417
4418static int __init dm_thin_init(void)
4419{
4420        int r = -ENOMEM;
4421
4422        pool_table_init();
4423
4424        _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4425        if (!_new_mapping_cache)
4426                return r;
4427
4428        r = dm_register_target(&thin_target);
4429        if (r)
4430                goto bad_new_mapping_cache;
4431
4432        r = dm_register_target(&pool_target);
4433        if (r)
4434                goto bad_thin_target;
4435
4436        return 0;
4437
4438bad_thin_target:
4439        dm_unregister_target(&thin_target);
4440bad_new_mapping_cache:
4441        kmem_cache_destroy(_new_mapping_cache);
4442
4443        return r;
4444}
4445
4446static void dm_thin_exit(void)
4447{
4448        dm_unregister_target(&thin_target);
4449        dm_unregister_target(&pool_target);
4450
4451        kmem_cache_destroy(_new_mapping_cache);
4452
4453        pool_table_exit();
4454}
4455
4456module_init(dm_thin_init);
4457module_exit(dm_thin_exit);
4458
4459module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4460MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4461
4462MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4463MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4464MODULE_LICENSE("GPL");
4465