linux/drivers/md/raid5.c
<<
>>
Prefs
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *         Copyright (C) 1999, 2000 Ingo Molnar
   5 *         Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/module.h>
  51#include <linux/async.h>
  52#include <linux/seq_file.h>
  53#include <linux/cpu.h>
  54#include <linux/slab.h>
  55#include <linux/ratelimit.h>
  56#include <linux/nodemask.h>
  57#include <linux/flex_array.h>
  58
  59#include <trace/events/block.h>
  60#include <linux/list_sort.h>
  61
  62#include "md.h"
  63#include "raid5.h"
  64#include "raid0.h"
  65#include "md-bitmap.h"
  66#include "raid5-log.h"
  67
  68#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
  69
  70#define cpu_to_group(cpu) cpu_to_node(cpu)
  71#define ANY_GROUP NUMA_NO_NODE
  72
  73static bool devices_handle_discard_safely = false;
  74module_param(devices_handle_discard_safely, bool, 0644);
  75MODULE_PARM_DESC(devices_handle_discard_safely,
  76                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  77static struct workqueue_struct *raid5_wq;
  78
  79static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  80{
  81        int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  82        return &conf->stripe_hashtbl[hash];
  83}
  84
  85static inline int stripe_hash_locks_hash(sector_t sect)
  86{
  87        return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  88}
  89
  90static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  91{
  92        spin_lock_irq(conf->hash_locks + hash);
  93        spin_lock(&conf->device_lock);
  94}
  95
  96static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  97{
  98        spin_unlock(&conf->device_lock);
  99        spin_unlock_irq(conf->hash_locks + hash);
 100}
 101
 102static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
 103{
 104        int i;
 105        spin_lock_irq(conf->hash_locks);
 106        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
 107                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
 108        spin_lock(&conf->device_lock);
 109}
 110
 111static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 112{
 113        int i;
 114        spin_unlock(&conf->device_lock);
 115        for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 116                spin_unlock(conf->hash_locks + i);
 117        spin_unlock_irq(conf->hash_locks);
 118}
 119
 120/* Find first data disk in a raid6 stripe */
 121static inline int raid6_d0(struct stripe_head *sh)
 122{
 123        if (sh->ddf_layout)
 124                /* ddf always start from first device */
 125                return 0;
 126        /* md starts just after Q block */
 127        if (sh->qd_idx == sh->disks - 1)
 128                return 0;
 129        else
 130                return sh->qd_idx + 1;
 131}
 132static inline int raid6_next_disk(int disk, int raid_disks)
 133{
 134        disk++;
 135        return (disk < raid_disks) ? disk : 0;
 136}
 137
 138/* When walking through the disks in a raid5, starting at raid6_d0,
 139 * We need to map each disk to a 'slot', where the data disks are slot
 140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 141 * is raid_disks-1.  This help does that mapping.
 142 */
 143static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 144                             int *count, int syndrome_disks)
 145{
 146        int slot = *count;
 147
 148        if (sh->ddf_layout)
 149                (*count)++;
 150        if (idx == sh->pd_idx)
 151                return syndrome_disks;
 152        if (idx == sh->qd_idx)
 153                return syndrome_disks + 1;
 154        if (!sh->ddf_layout)
 155                (*count)++;
 156        return slot;
 157}
 158
 159static void print_raid5_conf (struct r5conf *conf);
 160
 161static int stripe_operations_active(struct stripe_head *sh)
 162{
 163        return sh->check_state || sh->reconstruct_state ||
 164               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 165               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 166}
 167
 168static bool stripe_is_lowprio(struct stripe_head *sh)
 169{
 170        return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 171                test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 172               !test_bit(STRIPE_R5C_CACHING, &sh->state);
 173}
 174
 175static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 176{
 177        struct r5conf *conf = sh->raid_conf;
 178        struct r5worker_group *group;
 179        int thread_cnt;
 180        int i, cpu = sh->cpu;
 181
 182        if (!cpu_online(cpu)) {
 183                cpu = cpumask_any(cpu_online_mask);
 184                sh->cpu = cpu;
 185        }
 186
 187        if (list_empty(&sh->lru)) {
 188                struct r5worker_group *group;
 189                group = conf->worker_groups + cpu_to_group(cpu);
 190                if (stripe_is_lowprio(sh))
 191                        list_add_tail(&sh->lru, &group->loprio_list);
 192                else
 193                        list_add_tail(&sh->lru, &group->handle_list);
 194                group->stripes_cnt++;
 195                sh->group = group;
 196        }
 197
 198        if (conf->worker_cnt_per_group == 0) {
 199                md_wakeup_thread(conf->mddev->thread);
 200                return;
 201        }
 202
 203        group = conf->worker_groups + cpu_to_group(sh->cpu);
 204
 205        group->workers[0].working = true;
 206        /* at least one worker should run to avoid race */
 207        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 208
 209        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 210        /* wakeup more workers */
 211        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 212                if (group->workers[i].working == false) {
 213                        group->workers[i].working = true;
 214                        queue_work_on(sh->cpu, raid5_wq,
 215                                      &group->workers[i].work);
 216                        thread_cnt--;
 217                }
 218        }
 219}
 220
 221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 222                              struct list_head *temp_inactive_list)
 223{
 224        int i;
 225        int injournal = 0;      /* number of date pages with R5_InJournal */
 226
 227        BUG_ON(!list_empty(&sh->lru));
 228        BUG_ON(atomic_read(&conf->active_stripes)==0);
 229
 230        if (r5c_is_writeback(conf->log))
 231                for (i = sh->disks; i--; )
 232                        if (test_bit(R5_InJournal, &sh->dev[i].flags))
 233                                injournal++;
 234        /*
 235         * In the following cases, the stripe cannot be released to cached
 236         * lists. Therefore, we make the stripe write out and set
 237         * STRIPE_HANDLE:
 238         *   1. when quiesce in r5c write back;
 239         *   2. when resync is requested fot the stripe.
 240         */
 241        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 242            (conf->quiesce && r5c_is_writeback(conf->log) &&
 243             !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 244                if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 245                        r5c_make_stripe_write_out(sh);
 246                set_bit(STRIPE_HANDLE, &sh->state);
 247        }
 248
 249        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 250                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 251                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 252                        list_add_tail(&sh->lru, &conf->delayed_list);
 253                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 254                           sh->bm_seq - conf->seq_write > 0)
 255                        list_add_tail(&sh->lru, &conf->bitmap_list);
 256                else {
 257                        clear_bit(STRIPE_DELAYED, &sh->state);
 258                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 259                        if (conf->worker_cnt_per_group == 0) {
 260                                if (stripe_is_lowprio(sh))
 261                                        list_add_tail(&sh->lru,
 262                                                        &conf->loprio_list);
 263                                else
 264                                        list_add_tail(&sh->lru,
 265                                                        &conf->handle_list);
 266                        } else {
 267                                raid5_wakeup_stripe_thread(sh);
 268                                return;
 269                        }
 270                }
 271                md_wakeup_thread(conf->mddev->thread);
 272        } else {
 273                BUG_ON(stripe_operations_active(sh));
 274                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 275                        if (atomic_dec_return(&conf->preread_active_stripes)
 276                            < IO_THRESHOLD)
 277                                md_wakeup_thread(conf->mddev->thread);
 278                atomic_dec(&conf->active_stripes);
 279                if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 280                        if (!r5c_is_writeback(conf->log))
 281                                list_add_tail(&sh->lru, temp_inactive_list);
 282                        else {
 283                                WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 284                                if (injournal == 0)
 285                                        list_add_tail(&sh->lru, temp_inactive_list);
 286                                else if (injournal == conf->raid_disks - conf->max_degraded) {
 287                                        /* full stripe */
 288                                        if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 289                                                atomic_inc(&conf->r5c_cached_full_stripes);
 290                                        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 291                                                atomic_dec(&conf->r5c_cached_partial_stripes);
 292                                        list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 293                                        r5c_check_cached_full_stripe(conf);
 294                                } else
 295                                        /*
 296                                         * STRIPE_R5C_PARTIAL_STRIPE is set in
 297                                         * r5c_try_caching_write(). No need to
 298                                         * set it again.
 299                                         */
 300                                        list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 301                        }
 302                }
 303        }
 304}
 305
 306static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 307                             struct list_head *temp_inactive_list)
 308{
 309        if (atomic_dec_and_test(&sh->count))
 310                do_release_stripe(conf, sh, temp_inactive_list);
 311}
 312
 313/*
 314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 315 *
 316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 317 * given time. Adding stripes only takes device lock, while deleting stripes
 318 * only takes hash lock.
 319 */
 320static void release_inactive_stripe_list(struct r5conf *conf,
 321                                         struct list_head *temp_inactive_list,
 322                                         int hash)
 323{
 324        int size;
 325        bool do_wakeup = false;
 326        unsigned long flags;
 327
 328        if (hash == NR_STRIPE_HASH_LOCKS) {
 329                size = NR_STRIPE_HASH_LOCKS;
 330                hash = NR_STRIPE_HASH_LOCKS - 1;
 331        } else
 332                size = 1;
 333        while (size) {
 334                struct list_head *list = &temp_inactive_list[size - 1];
 335
 336                /*
 337                 * We don't hold any lock here yet, raid5_get_active_stripe() might
 338                 * remove stripes from the list
 339                 */
 340                if (!list_empty_careful(list)) {
 341                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 342                        if (list_empty(conf->inactive_list + hash) &&
 343                            !list_empty(list))
 344                                atomic_dec(&conf->empty_inactive_list_nr);
 345                        list_splice_tail_init(list, conf->inactive_list + hash);
 346                        do_wakeup = true;
 347                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 348                }
 349                size--;
 350                hash--;
 351        }
 352
 353        if (do_wakeup) {
 354                wake_up(&conf->wait_for_stripe);
 355                if (atomic_read(&conf->active_stripes) == 0)
 356                        wake_up(&conf->wait_for_quiescent);
 357                if (conf->retry_read_aligned)
 358                        md_wakeup_thread(conf->mddev->thread);
 359        }
 360}
 361
 362/* should hold conf->device_lock already */
 363static int release_stripe_list(struct r5conf *conf,
 364                               struct list_head *temp_inactive_list)
 365{
 366        struct stripe_head *sh, *t;
 367        int count = 0;
 368        struct llist_node *head;
 369
 370        head = llist_del_all(&conf->released_stripes);
 371        head = llist_reverse_order(head);
 372        llist_for_each_entry_safe(sh, t, head, release_list) {
 373                int hash;
 374
 375                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 376                smp_mb();
 377                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 378                /*
 379                 * Don't worry the bit is set here, because if the bit is set
 380                 * again, the count is always > 1. This is true for
 381                 * STRIPE_ON_UNPLUG_LIST bit too.
 382                 */
 383                hash = sh->hash_lock_index;
 384                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 385                count++;
 386        }
 387
 388        return count;
 389}
 390
 391void raid5_release_stripe(struct stripe_head *sh)
 392{
 393        struct r5conf *conf = sh->raid_conf;
 394        unsigned long flags;
 395        struct list_head list;
 396        int hash;
 397        bool wakeup;
 398
 399        /* Avoid release_list until the last reference.
 400         */
 401        if (atomic_add_unless(&sh->count, -1, 1))
 402                return;
 403
 404        if (unlikely(!conf->mddev->thread) ||
 405                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 406                goto slow_path;
 407        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 408        if (wakeup)
 409                md_wakeup_thread(conf->mddev->thread);
 410        return;
 411slow_path:
 412        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 413        if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
 414                INIT_LIST_HEAD(&list);
 415                hash = sh->hash_lock_index;
 416                do_release_stripe(conf, sh, &list);
 417                spin_unlock_irqrestore(&conf->device_lock, flags);
 418                release_inactive_stripe_list(conf, &list, hash);
 419        }
 420}
 421
 422static inline void remove_hash(struct stripe_head *sh)
 423{
 424        pr_debug("remove_hash(), stripe %llu\n",
 425                (unsigned long long)sh->sector);
 426
 427        hlist_del_init(&sh->hash);
 428}
 429
 430static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 431{
 432        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 433
 434        pr_debug("insert_hash(), stripe %llu\n",
 435                (unsigned long long)sh->sector);
 436
 437        hlist_add_head(&sh->hash, hp);
 438}
 439
 440/* find an idle stripe, make sure it is unhashed, and return it. */
 441static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 442{
 443        struct stripe_head *sh = NULL;
 444        struct list_head *first;
 445
 446        if (list_empty(conf->inactive_list + hash))
 447                goto out;
 448        first = (conf->inactive_list + hash)->next;
 449        sh = list_entry(first, struct stripe_head, lru);
 450        list_del_init(first);
 451        remove_hash(sh);
 452        atomic_inc(&conf->active_stripes);
 453        BUG_ON(hash != sh->hash_lock_index);
 454        if (list_empty(conf->inactive_list + hash))
 455                atomic_inc(&conf->empty_inactive_list_nr);
 456out:
 457        return sh;
 458}
 459
 460static void shrink_buffers(struct stripe_head *sh)
 461{
 462        struct page *p;
 463        int i;
 464        int num = sh->raid_conf->pool_size;
 465
 466        for (i = 0; i < num ; i++) {
 467                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 468                p = sh->dev[i].page;
 469                if (!p)
 470                        continue;
 471                sh->dev[i].page = NULL;
 472                put_page(p);
 473        }
 474}
 475
 476static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 477{
 478        int i;
 479        int num = sh->raid_conf->pool_size;
 480
 481        for (i = 0; i < num; i++) {
 482                struct page *page;
 483
 484                if (!(page = alloc_page(gfp))) {
 485                        return 1;
 486                }
 487                sh->dev[i].page = page;
 488                sh->dev[i].orig_page = page;
 489        }
 490
 491        return 0;
 492}
 493
 494static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 495                            struct stripe_head *sh);
 496
 497static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 498{
 499        struct r5conf *conf = sh->raid_conf;
 500        int i, seq;
 501
 502        BUG_ON(atomic_read(&sh->count) != 0);
 503        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 504        BUG_ON(stripe_operations_active(sh));
 505        BUG_ON(sh->batch_head);
 506
 507        pr_debug("init_stripe called, stripe %llu\n",
 508                (unsigned long long)sector);
 509retry:
 510        seq = read_seqcount_begin(&conf->gen_lock);
 511        sh->generation = conf->generation - previous;
 512        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 513        sh->sector = sector;
 514        stripe_set_idx(sector, conf, previous, sh);
 515        sh->state = 0;
 516
 517        for (i = sh->disks; i--; ) {
 518                struct r5dev *dev = &sh->dev[i];
 519
 520                if (dev->toread || dev->read || dev->towrite || dev->written ||
 521                    test_bit(R5_LOCKED, &dev->flags)) {
 522                        pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 523                               (unsigned long long)sh->sector, i, dev->toread,
 524                               dev->read, dev->towrite, dev->written,
 525                               test_bit(R5_LOCKED, &dev->flags));
 526                        WARN_ON(1);
 527                }
 528                dev->flags = 0;
 529                dev->sector = raid5_compute_blocknr(sh, i, previous);
 530        }
 531        if (read_seqcount_retry(&conf->gen_lock, seq))
 532                goto retry;
 533        sh->overwrite_disks = 0;
 534        insert_hash(conf, sh);
 535        sh->cpu = smp_processor_id();
 536        set_bit(STRIPE_BATCH_READY, &sh->state);
 537}
 538
 539static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 540                                         short generation)
 541{
 542        struct stripe_head *sh;
 543
 544        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 545        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 546                if (sh->sector == sector && sh->generation == generation)
 547                        return sh;
 548        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 549        return NULL;
 550}
 551
 552/*
 553 * Need to check if array has failed when deciding whether to:
 554 *  - start an array
 555 *  - remove non-faulty devices
 556 *  - add a spare
 557 *  - allow a reshape
 558 * This determination is simple when no reshape is happening.
 559 * However if there is a reshape, we need to carefully check
 560 * both the before and after sections.
 561 * This is because some failed devices may only affect one
 562 * of the two sections, and some non-in_sync devices may
 563 * be insync in the section most affected by failed devices.
 564 */
 565int raid5_calc_degraded(struct r5conf *conf)
 566{
 567        int degraded, degraded2;
 568        int i;
 569
 570        rcu_read_lock();
 571        degraded = 0;
 572        for (i = 0; i < conf->previous_raid_disks; i++) {
 573                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 574                if (rdev && test_bit(Faulty, &rdev->flags))
 575                        rdev = rcu_dereference(conf->disks[i].replacement);
 576                if (!rdev || test_bit(Faulty, &rdev->flags))
 577                        degraded++;
 578                else if (test_bit(In_sync, &rdev->flags))
 579                        ;
 580                else
 581                        /* not in-sync or faulty.
 582                         * If the reshape increases the number of devices,
 583                         * this is being recovered by the reshape, so
 584                         * this 'previous' section is not in_sync.
 585                         * If the number of devices is being reduced however,
 586                         * the device can only be part of the array if
 587                         * we are reverting a reshape, so this section will
 588                         * be in-sync.
 589                         */
 590                        if (conf->raid_disks >= conf->previous_raid_disks)
 591                                degraded++;
 592        }
 593        rcu_read_unlock();
 594        if (conf->raid_disks == conf->previous_raid_disks)
 595                return degraded;
 596        rcu_read_lock();
 597        degraded2 = 0;
 598        for (i = 0; i < conf->raid_disks; i++) {
 599                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 600                if (rdev && test_bit(Faulty, &rdev->flags))
 601                        rdev = rcu_dereference(conf->disks[i].replacement);
 602                if (!rdev || test_bit(Faulty, &rdev->flags))
 603                        degraded2++;
 604                else if (test_bit(In_sync, &rdev->flags))
 605                        ;
 606                else
 607                        /* not in-sync or faulty.
 608                         * If reshape increases the number of devices, this
 609                         * section has already been recovered, else it
 610                         * almost certainly hasn't.
 611                         */
 612                        if (conf->raid_disks <= conf->previous_raid_disks)
 613                                degraded2++;
 614        }
 615        rcu_read_unlock();
 616        if (degraded2 > degraded)
 617                return degraded2;
 618        return degraded;
 619}
 620
 621static int has_failed(struct r5conf *conf)
 622{
 623        int degraded;
 624
 625        if (conf->mddev->reshape_position == MaxSector)
 626                return conf->mddev->degraded > conf->max_degraded;
 627
 628        degraded = raid5_calc_degraded(conf);
 629        if (degraded > conf->max_degraded)
 630                return 1;
 631        return 0;
 632}
 633
 634struct stripe_head *
 635raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 636                        int previous, int noblock, int noquiesce)
 637{
 638        struct stripe_head *sh;
 639        int hash = stripe_hash_locks_hash(sector);
 640        int inc_empty_inactive_list_flag;
 641
 642        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 643
 644        spin_lock_irq(conf->hash_locks + hash);
 645
 646        do {
 647                wait_event_lock_irq(conf->wait_for_quiescent,
 648                                    conf->quiesce == 0 || noquiesce,
 649                                    *(conf->hash_locks + hash));
 650                sh = __find_stripe(conf, sector, conf->generation - previous);
 651                if (!sh) {
 652                        if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 653                                sh = get_free_stripe(conf, hash);
 654                                if (!sh && !test_bit(R5_DID_ALLOC,
 655                                                     &conf->cache_state))
 656                                        set_bit(R5_ALLOC_MORE,
 657                                                &conf->cache_state);
 658                        }
 659                        if (noblock && sh == NULL)
 660                                break;
 661
 662                        r5c_check_stripe_cache_usage(conf);
 663                        if (!sh) {
 664                                set_bit(R5_INACTIVE_BLOCKED,
 665                                        &conf->cache_state);
 666                                r5l_wake_reclaim(conf->log, 0);
 667                                wait_event_lock_irq(
 668                                        conf->wait_for_stripe,
 669                                        !list_empty(conf->inactive_list + hash) &&
 670                                        (atomic_read(&conf->active_stripes)
 671                                         < (conf->max_nr_stripes * 3 / 4)
 672                                         || !test_bit(R5_INACTIVE_BLOCKED,
 673                                                      &conf->cache_state)),
 674                                        *(conf->hash_locks + hash));
 675                                clear_bit(R5_INACTIVE_BLOCKED,
 676                                          &conf->cache_state);
 677                        } else {
 678                                init_stripe(sh, sector, previous);
 679                                atomic_inc(&sh->count);
 680                        }
 681                } else if (!atomic_inc_not_zero(&sh->count)) {
 682                        spin_lock(&conf->device_lock);
 683                        if (!atomic_read(&sh->count)) {
 684                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 685                                        atomic_inc(&conf->active_stripes);
 686                                BUG_ON(list_empty(&sh->lru) &&
 687                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 688                                inc_empty_inactive_list_flag = 0;
 689                                if (!list_empty(conf->inactive_list + hash))
 690                                        inc_empty_inactive_list_flag = 1;
 691                                list_del_init(&sh->lru);
 692                                if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 693                                        atomic_inc(&conf->empty_inactive_list_nr);
 694                                if (sh->group) {
 695                                        sh->group->stripes_cnt--;
 696                                        sh->group = NULL;
 697                                }
 698                        }
 699                        atomic_inc(&sh->count);
 700                        spin_unlock(&conf->device_lock);
 701                }
 702        } while (sh == NULL);
 703
 704        spin_unlock_irq(conf->hash_locks + hash);
 705        return sh;
 706}
 707
 708static bool is_full_stripe_write(struct stripe_head *sh)
 709{
 710        BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 711        return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 712}
 713
 714static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 715{
 716        if (sh1 > sh2) {
 717                spin_lock_irq(&sh2->stripe_lock);
 718                spin_lock_nested(&sh1->stripe_lock, 1);
 719        } else {
 720                spin_lock_irq(&sh1->stripe_lock);
 721                spin_lock_nested(&sh2->stripe_lock, 1);
 722        }
 723}
 724
 725static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 726{
 727        spin_unlock(&sh1->stripe_lock);
 728        spin_unlock_irq(&sh2->stripe_lock);
 729}
 730
 731/* Only freshly new full stripe normal write stripe can be added to a batch list */
 732static bool stripe_can_batch(struct stripe_head *sh)
 733{
 734        struct r5conf *conf = sh->raid_conf;
 735
 736        if (raid5_has_log(conf) || raid5_has_ppl(conf))
 737                return false;
 738        return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 739                !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 740                is_full_stripe_write(sh);
 741}
 742
 743/* we only do back search */
 744static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 745{
 746        struct stripe_head *head;
 747        sector_t head_sector, tmp_sec;
 748        int hash;
 749        int dd_idx;
 750        int inc_empty_inactive_list_flag;
 751
 752        /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 753        tmp_sec = sh->sector;
 754        if (!sector_div(tmp_sec, conf->chunk_sectors))
 755                return;
 756        head_sector = sh->sector - STRIPE_SECTORS;
 757
 758        hash = stripe_hash_locks_hash(head_sector);
 759        spin_lock_irq(conf->hash_locks + hash);
 760        head = __find_stripe(conf, head_sector, conf->generation);
 761        if (head && !atomic_inc_not_zero(&head->count)) {
 762                spin_lock(&conf->device_lock);
 763                if (!atomic_read(&head->count)) {
 764                        if (!test_bit(STRIPE_HANDLE, &head->state))
 765                                atomic_inc(&conf->active_stripes);
 766                        BUG_ON(list_empty(&head->lru) &&
 767                               !test_bit(STRIPE_EXPANDING, &head->state));
 768                        inc_empty_inactive_list_flag = 0;
 769                        if (!list_empty(conf->inactive_list + hash))
 770                                inc_empty_inactive_list_flag = 1;
 771                        list_del_init(&head->lru);
 772                        if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 773                                atomic_inc(&conf->empty_inactive_list_nr);
 774                        if (head->group) {
 775                                head->group->stripes_cnt--;
 776                                head->group = NULL;
 777                        }
 778                }
 779                atomic_inc(&head->count);
 780                spin_unlock(&conf->device_lock);
 781        }
 782        spin_unlock_irq(conf->hash_locks + hash);
 783
 784        if (!head)
 785                return;
 786        if (!stripe_can_batch(head))
 787                goto out;
 788
 789        lock_two_stripes(head, sh);
 790        /* clear_batch_ready clear the flag */
 791        if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 792                goto unlock_out;
 793
 794        if (sh->batch_head)
 795                goto unlock_out;
 796
 797        dd_idx = 0;
 798        while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 799                dd_idx++;
 800        if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 801            bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 802                goto unlock_out;
 803
 804        if (head->batch_head) {
 805                spin_lock(&head->batch_head->batch_lock);
 806                /* This batch list is already running */
 807                if (!stripe_can_batch(head)) {
 808                        spin_unlock(&head->batch_head->batch_lock);
 809                        goto unlock_out;
 810                }
 811                /*
 812                 * We must assign batch_head of this stripe within the
 813                 * batch_lock, otherwise clear_batch_ready of batch head
 814                 * stripe could clear BATCH_READY bit of this stripe and
 815                 * this stripe->batch_head doesn't get assigned, which
 816                 * could confuse clear_batch_ready for this stripe
 817                 */
 818                sh->batch_head = head->batch_head;
 819
 820                /*
 821                 * at this point, head's BATCH_READY could be cleared, but we
 822                 * can still add the stripe to batch list
 823                 */
 824                list_add(&sh->batch_list, &head->batch_list);
 825                spin_unlock(&head->batch_head->batch_lock);
 826        } else {
 827                head->batch_head = head;
 828                sh->batch_head = head->batch_head;
 829                spin_lock(&head->batch_lock);
 830                list_add_tail(&sh->batch_list, &head->batch_list);
 831                spin_unlock(&head->batch_lock);
 832        }
 833
 834        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 835                if (atomic_dec_return(&conf->preread_active_stripes)
 836                    < IO_THRESHOLD)
 837                        md_wakeup_thread(conf->mddev->thread);
 838
 839        if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 840                int seq = sh->bm_seq;
 841                if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 842                    sh->batch_head->bm_seq > seq)
 843                        seq = sh->batch_head->bm_seq;
 844                set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 845                sh->batch_head->bm_seq = seq;
 846        }
 847
 848        atomic_inc(&sh->count);
 849unlock_out:
 850        unlock_two_stripes(head, sh);
 851out:
 852        raid5_release_stripe(head);
 853}
 854
 855/* Determine if 'data_offset' or 'new_data_offset' should be used
 856 * in this stripe_head.
 857 */
 858static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 859{
 860        sector_t progress = conf->reshape_progress;
 861        /* Need a memory barrier to make sure we see the value
 862         * of conf->generation, or ->data_offset that was set before
 863         * reshape_progress was updated.
 864         */
 865        smp_rmb();
 866        if (progress == MaxSector)
 867                return 0;
 868        if (sh->generation == conf->generation - 1)
 869                return 0;
 870        /* We are in a reshape, and this is a new-generation stripe,
 871         * so use new_data_offset.
 872         */
 873        return 1;
 874}
 875
 876static void dispatch_bio_list(struct bio_list *tmp)
 877{
 878        struct bio *bio;
 879
 880        while ((bio = bio_list_pop(tmp)))
 881                generic_make_request(bio);
 882}
 883
 884static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
 885{
 886        const struct r5pending_data *da = list_entry(a,
 887                                struct r5pending_data, sibling);
 888        const struct r5pending_data *db = list_entry(b,
 889                                struct r5pending_data, sibling);
 890        if (da->sector > db->sector)
 891                return 1;
 892        if (da->sector < db->sector)
 893                return -1;
 894        return 0;
 895}
 896
 897static void dispatch_defer_bios(struct r5conf *conf, int target,
 898                                struct bio_list *list)
 899{
 900        struct r5pending_data *data;
 901        struct list_head *first, *next = NULL;
 902        int cnt = 0;
 903
 904        if (conf->pending_data_cnt == 0)
 905                return;
 906
 907        list_sort(NULL, &conf->pending_list, cmp_stripe);
 908
 909        first = conf->pending_list.next;
 910
 911        /* temporarily move the head */
 912        if (conf->next_pending_data)
 913                list_move_tail(&conf->pending_list,
 914                                &conf->next_pending_data->sibling);
 915
 916        while (!list_empty(&conf->pending_list)) {
 917                data = list_first_entry(&conf->pending_list,
 918                        struct r5pending_data, sibling);
 919                if (&data->sibling == first)
 920                        first = data->sibling.next;
 921                next = data->sibling.next;
 922
 923                bio_list_merge(list, &data->bios);
 924                list_move(&data->sibling, &conf->free_list);
 925                cnt++;
 926                if (cnt >= target)
 927                        break;
 928        }
 929        conf->pending_data_cnt -= cnt;
 930        BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
 931
 932        if (next != &conf->pending_list)
 933                conf->next_pending_data = list_entry(next,
 934                                struct r5pending_data, sibling);
 935        else
 936                conf->next_pending_data = NULL;
 937        /* list isn't empty */
 938        if (first != &conf->pending_list)
 939                list_move_tail(&conf->pending_list, first);
 940}
 941
 942static void flush_deferred_bios(struct r5conf *conf)
 943{
 944        struct bio_list tmp = BIO_EMPTY_LIST;
 945
 946        if (conf->pending_data_cnt == 0)
 947                return;
 948
 949        spin_lock(&conf->pending_bios_lock);
 950        dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
 951        BUG_ON(conf->pending_data_cnt != 0);
 952        spin_unlock(&conf->pending_bios_lock);
 953
 954        dispatch_bio_list(&tmp);
 955}
 956
 957static void defer_issue_bios(struct r5conf *conf, sector_t sector,
 958                                struct bio_list *bios)
 959{
 960        struct bio_list tmp = BIO_EMPTY_LIST;
 961        struct r5pending_data *ent;
 962
 963        spin_lock(&conf->pending_bios_lock);
 964        ent = list_first_entry(&conf->free_list, struct r5pending_data,
 965                                                        sibling);
 966        list_move_tail(&ent->sibling, &conf->pending_list);
 967        ent->sector = sector;
 968        bio_list_init(&ent->bios);
 969        bio_list_merge(&ent->bios, bios);
 970        conf->pending_data_cnt++;
 971        if (conf->pending_data_cnt >= PENDING_IO_MAX)
 972                dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
 973
 974        spin_unlock(&conf->pending_bios_lock);
 975
 976        dispatch_bio_list(&tmp);
 977}
 978
 979static void
 980raid5_end_read_request(struct bio *bi);
 981static void
 982raid5_end_write_request(struct bio *bi);
 983
 984static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 985{
 986        struct r5conf *conf = sh->raid_conf;
 987        int i, disks = sh->disks;
 988        struct stripe_head *head_sh = sh;
 989        struct bio_list pending_bios = BIO_EMPTY_LIST;
 990        bool should_defer;
 991
 992        might_sleep();
 993
 994        if (log_stripe(sh, s) == 0)
 995                return;
 996
 997        should_defer = conf->batch_bio_dispatch && conf->group_cnt;
 998
 999        for (i = disks; i--; ) {
1000                int op, op_flags = 0;
1001                int replace_only = 0;
1002                struct bio *bi, *rbi;
1003                struct md_rdev *rdev, *rrdev = NULL;
1004
1005                sh = head_sh;
1006                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1007                        op = REQ_OP_WRITE;
1008                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1009                                op_flags = REQ_FUA;
1010                        if (test_bit(R5_Discard, &sh->dev[i].flags))
1011                                op = REQ_OP_DISCARD;
1012                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1013                        op = REQ_OP_READ;
1014                else if (test_and_clear_bit(R5_WantReplace,
1015                                            &sh->dev[i].flags)) {
1016                        op = REQ_OP_WRITE;
1017                        replace_only = 1;
1018                } else
1019                        continue;
1020                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1021                        op_flags |= REQ_SYNC;
1022
1023again:
1024                bi = &sh->dev[i].req;
1025                rbi = &sh->dev[i].rreq; /* For writing to replacement */
1026
1027                rcu_read_lock();
1028                rrdev = rcu_dereference(conf->disks[i].replacement);
1029                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030                rdev = rcu_dereference(conf->disks[i].rdev);
1031                if (!rdev) {
1032                        rdev = rrdev;
1033                        rrdev = NULL;
1034                }
1035                if (op_is_write(op)) {
1036                        if (replace_only)
1037                                rdev = NULL;
1038                        if (rdev == rrdev)
1039                                /* We raced and saw duplicates */
1040                                rrdev = NULL;
1041                } else {
1042                        if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1043                                rdev = rrdev;
1044                        rrdev = NULL;
1045                }
1046
1047                if (rdev && test_bit(Faulty, &rdev->flags))
1048                        rdev = NULL;
1049                if (rdev)
1050                        atomic_inc(&rdev->nr_pending);
1051                if (rrdev && test_bit(Faulty, &rrdev->flags))
1052                        rrdev = NULL;
1053                if (rrdev)
1054                        atomic_inc(&rrdev->nr_pending);
1055                rcu_read_unlock();
1056
1057                /* We have already checked bad blocks for reads.  Now
1058                 * need to check for writes.  We never accept write errors
1059                 * on the replacement, so we don't to check rrdev.
1060                 */
1061                while (op_is_write(op) && rdev &&
1062                       test_bit(WriteErrorSeen, &rdev->flags)) {
1063                        sector_t first_bad;
1064                        int bad_sectors;
1065                        int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1066                                              &first_bad, &bad_sectors);
1067                        if (!bad)
1068                                break;
1069
1070                        if (bad < 0) {
1071                                set_bit(BlockedBadBlocks, &rdev->flags);
1072                                if (!conf->mddev->external &&
1073                                    conf->mddev->sb_flags) {
1074                                        /* It is very unlikely, but we might
1075                                         * still need to write out the
1076                                         * bad block log - better give it
1077                                         * a chance*/
1078                                        md_check_recovery(conf->mddev);
1079                                }
1080                                /*
1081                                 * Because md_wait_for_blocked_rdev
1082                                 * will dec nr_pending, we must
1083                                 * increment it first.
1084                                 */
1085                                atomic_inc(&rdev->nr_pending);
1086                                md_wait_for_blocked_rdev(rdev, conf->mddev);
1087                        } else {
1088                                /* Acknowledged bad block - skip the write */
1089                                rdev_dec_pending(rdev, conf->mddev);
1090                                rdev = NULL;
1091                        }
1092                }
1093
1094                if (rdev) {
1095                        if (s->syncing || s->expanding || s->expanded
1096                            || s->replacing)
1097                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1098
1099                        set_bit(STRIPE_IO_STARTED, &sh->state);
1100
1101                        bio_set_dev(bi, rdev->bdev);
1102                        bio_set_op_attrs(bi, op, op_flags);
1103                        bi->bi_end_io = op_is_write(op)
1104                                ? raid5_end_write_request
1105                                : raid5_end_read_request;
1106                        bi->bi_private = sh;
1107
1108                        pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109                                __func__, (unsigned long long)sh->sector,
1110                                bi->bi_opf, i);
1111                        atomic_inc(&sh->count);
1112                        if (sh != head_sh)
1113                                atomic_inc(&head_sh->count);
1114                        if (use_new_offset(conf, sh))
1115                                bi->bi_iter.bi_sector = (sh->sector
1116                                                 + rdev->new_data_offset);
1117                        else
1118                                bi->bi_iter.bi_sector = (sh->sector
1119                                                 + rdev->data_offset);
1120                        if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1121                                bi->bi_opf |= REQ_NOMERGE;
1122
1123                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1124                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1125
1126                        if (!op_is_write(op) &&
1127                            test_bit(R5_InJournal, &sh->dev[i].flags))
1128                                /*
1129                                 * issuing read for a page in journal, this
1130                                 * must be preparing for prexor in rmw; read
1131                                 * the data into orig_page
1132                                 */
1133                                sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1134                        else
1135                                sh->dev[i].vec.bv_page = sh->dev[i].page;
1136                        bi->bi_vcnt = 1;
1137                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1138                        bi->bi_io_vec[0].bv_offset = 0;
1139                        bi->bi_iter.bi_size = STRIPE_SIZE;
1140                        bi->bi_write_hint = sh->dev[i].write_hint;
1141                        if (!rrdev)
1142                                sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1143                        /*
1144                         * If this is discard request, set bi_vcnt 0. We don't
1145                         * want to confuse SCSI because SCSI will replace payload
1146                         */
1147                        if (op == REQ_OP_DISCARD)
1148                                bi->bi_vcnt = 0;
1149                        if (rrdev)
1150                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1151
1152                        if (conf->mddev->gendisk)
1153                                trace_block_bio_remap(bi->bi_disk->queue,
1154                                                      bi, disk_devt(conf->mddev->gendisk),
1155                                                      sh->dev[i].sector);
1156                        if (should_defer && op_is_write(op))
1157                                bio_list_add(&pending_bios, bi);
1158                        else
1159                                generic_make_request(bi);
1160                }
1161                if (rrdev) {
1162                        if (s->syncing || s->expanding || s->expanded
1163                            || s->replacing)
1164                                md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1165
1166                        set_bit(STRIPE_IO_STARTED, &sh->state);
1167
1168                        bio_set_dev(rbi, rrdev->bdev);
1169                        bio_set_op_attrs(rbi, op, op_flags);
1170                        BUG_ON(!op_is_write(op));
1171                        rbi->bi_end_io = raid5_end_write_request;
1172                        rbi->bi_private = sh;
1173
1174                        pr_debug("%s: for %llu schedule op %d on "
1175                                 "replacement disc %d\n",
1176                                __func__, (unsigned long long)sh->sector,
1177                                rbi->bi_opf, i);
1178                        atomic_inc(&sh->count);
1179                        if (sh != head_sh)
1180                                atomic_inc(&head_sh->count);
1181                        if (use_new_offset(conf, sh))
1182                                rbi->bi_iter.bi_sector = (sh->sector
1183                                                  + rrdev->new_data_offset);
1184                        else
1185                                rbi->bi_iter.bi_sector = (sh->sector
1186                                                  + rrdev->data_offset);
1187                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
1190                        rbi->bi_vcnt = 1;
1191                        rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192                        rbi->bi_io_vec[0].bv_offset = 0;
1193                        rbi->bi_iter.bi_size = STRIPE_SIZE;
1194                        rbi->bi_write_hint = sh->dev[i].write_hint;
1195                        sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1196                        /*
1197                         * If this is discard request, set bi_vcnt 0. We don't
1198                         * want to confuse SCSI because SCSI will replace payload
1199                         */
1200                        if (op == REQ_OP_DISCARD)
1201                                rbi->bi_vcnt = 0;
1202                        if (conf->mddev->gendisk)
1203                                trace_block_bio_remap(rbi->bi_disk->queue,
1204                                                      rbi, disk_devt(conf->mddev->gendisk),
1205                                                      sh->dev[i].sector);
1206                        if (should_defer && op_is_write(op))
1207                                bio_list_add(&pending_bios, rbi);
1208                        else
1209                                generic_make_request(rbi);
1210                }
1211                if (!rdev && !rrdev) {
1212                        if (op_is_write(op))
1213                                set_bit(STRIPE_DEGRADED, &sh->state);
1214                        pr_debug("skip op %d on disc %d for sector %llu\n",
1215                                bi->bi_opf, i, (unsigned long long)sh->sector);
1216                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217                        set_bit(STRIPE_HANDLE, &sh->state);
1218                }
1219
1220                if (!head_sh->batch_head)
1221                        continue;
1222                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1223                                      batch_list);
1224                if (sh != head_sh)
1225                        goto again;
1226        }
1227
1228        if (should_defer && !bio_list_empty(&pending_bios))
1229                defer_issue_bios(conf, head_sh->sector, &pending_bios);
1230}
1231
1232static struct dma_async_tx_descriptor *
1233async_copy_data(int frombio, struct bio *bio, struct page **page,
1234        sector_t sector, struct dma_async_tx_descriptor *tx,
1235        struct stripe_head *sh, int no_skipcopy)
1236{
1237        struct bio_vec bvl;
1238        struct bvec_iter iter;
1239        struct page *bio_page;
1240        int page_offset;
1241        struct async_submit_ctl submit;
1242        enum async_tx_flags flags = 0;
1243
1244        if (bio->bi_iter.bi_sector >= sector)
1245                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1246        else
1247                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1248
1249        if (frombio)
1250                flags |= ASYNC_TX_FENCE;
1251        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1252
1253        bio_for_each_segment(bvl, bio, iter) {
1254                int len = bvl.bv_len;
1255                int clen;
1256                int b_offset = 0;
1257
1258                if (page_offset < 0) {
1259                        b_offset = -page_offset;
1260                        page_offset += b_offset;
1261                        len -= b_offset;
1262                }
1263
1264                if (len > 0 && page_offset + len > STRIPE_SIZE)
1265                        clen = STRIPE_SIZE - page_offset;
1266                else
1267                        clen = len;
1268
1269                if (clen > 0) {
1270                        b_offset += bvl.bv_offset;
1271                        bio_page = bvl.bv_page;
1272                        if (frombio) {
1273                                if (sh->raid_conf->skip_copy &&
1274                                    b_offset == 0 && page_offset == 0 &&
1275                                    clen == STRIPE_SIZE &&
1276                                    !no_skipcopy)
1277                                        *page = bio_page;
1278                                else
1279                                        tx = async_memcpy(*page, bio_page, page_offset,
1280                                                  b_offset, clen, &submit);
1281                        } else
1282                                tx = async_memcpy(bio_page, *page, b_offset,
1283                                                  page_offset, clen, &submit);
1284                }
1285                /* chain the operations */
1286                submit.depend_tx = tx;
1287
1288                if (clen < len) /* hit end of page */
1289                        break;
1290                page_offset +=  len;
1291        }
1292
1293        return tx;
1294}
1295
1296static void ops_complete_biofill(void *stripe_head_ref)
1297{
1298        struct stripe_head *sh = stripe_head_ref;
1299        int i;
1300
1301        pr_debug("%s: stripe %llu\n", __func__,
1302                (unsigned long long)sh->sector);
1303
1304        /* clear completed biofills */
1305        for (i = sh->disks; i--; ) {
1306                struct r5dev *dev = &sh->dev[i];
1307
1308                /* acknowledge completion of a biofill operation */
1309                /* and check if we need to reply to a read request,
1310                 * new R5_Wantfill requests are held off until
1311                 * !STRIPE_BIOFILL_RUN
1312                 */
1313                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1314                        struct bio *rbi, *rbi2;
1315
1316                        BUG_ON(!dev->read);
1317                        rbi = dev->read;
1318                        dev->read = NULL;
1319                        while (rbi && rbi->bi_iter.bi_sector <
1320                                dev->sector + STRIPE_SECTORS) {
1321                                rbi2 = r5_next_bio(rbi, dev->sector);
1322                                bio_endio(rbi);
1323                                rbi = rbi2;
1324                        }
1325                }
1326        }
1327        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1328
1329        set_bit(STRIPE_HANDLE, &sh->state);
1330        raid5_release_stripe(sh);
1331}
1332
1333static void ops_run_biofill(struct stripe_head *sh)
1334{
1335        struct dma_async_tx_descriptor *tx = NULL;
1336        struct async_submit_ctl submit;
1337        int i;
1338
1339        BUG_ON(sh->batch_head);
1340        pr_debug("%s: stripe %llu\n", __func__,
1341                (unsigned long long)sh->sector);
1342
1343        for (i = sh->disks; i--; ) {
1344                struct r5dev *dev = &sh->dev[i];
1345                if (test_bit(R5_Wantfill, &dev->flags)) {
1346                        struct bio *rbi;
1347                        spin_lock_irq(&sh->stripe_lock);
1348                        dev->read = rbi = dev->toread;
1349                        dev->toread = NULL;
1350                        spin_unlock_irq(&sh->stripe_lock);
1351                        while (rbi && rbi->bi_iter.bi_sector <
1352                                dev->sector + STRIPE_SECTORS) {
1353                                tx = async_copy_data(0, rbi, &dev->page,
1354                                                     dev->sector, tx, sh, 0);
1355                                rbi = r5_next_bio(rbi, dev->sector);
1356                        }
1357                }
1358        }
1359
1360        atomic_inc(&sh->count);
1361        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1362        async_trigger_callback(&submit);
1363}
1364
1365static void mark_target_uptodate(struct stripe_head *sh, int target)
1366{
1367        struct r5dev *tgt;
1368
1369        if (target < 0)
1370                return;
1371
1372        tgt = &sh->dev[target];
1373        set_bit(R5_UPTODATE, &tgt->flags);
1374        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1375        clear_bit(R5_Wantcompute, &tgt->flags);
1376}
1377
1378static void ops_complete_compute(void *stripe_head_ref)
1379{
1380        struct stripe_head *sh = stripe_head_ref;
1381
1382        pr_debug("%s: stripe %llu\n", __func__,
1383                (unsigned long long)sh->sector);
1384
1385        /* mark the computed target(s) as uptodate */
1386        mark_target_uptodate(sh, sh->ops.target);
1387        mark_target_uptodate(sh, sh->ops.target2);
1388
1389        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1390        if (sh->check_state == check_state_compute_run)
1391                sh->check_state = check_state_compute_result;
1392        set_bit(STRIPE_HANDLE, &sh->state);
1393        raid5_release_stripe(sh);
1394}
1395
1396/* return a pointer to the address conversion region of the scribble buffer */
1397static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1398                                 struct raid5_percpu *percpu, int i)
1399{
1400        void *addr;
1401
1402        addr = flex_array_get(percpu->scribble, i);
1403        return addr + sizeof(struct page *) * (sh->disks + 2);
1404}
1405
1406/* return a pointer to the address conversion region of the scribble buffer */
1407static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1408{
1409        void *addr;
1410
1411        addr = flex_array_get(percpu->scribble, i);
1412        return addr;
1413}
1414
1415static struct dma_async_tx_descriptor *
1416ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1417{
1418        int disks = sh->disks;
1419        struct page **xor_srcs = to_addr_page(percpu, 0);
1420        int target = sh->ops.target;
1421        struct r5dev *tgt = &sh->dev[target];
1422        struct page *xor_dest = tgt->page;
1423        int count = 0;
1424        struct dma_async_tx_descriptor *tx;
1425        struct async_submit_ctl submit;
1426        int i;
1427
1428        BUG_ON(sh->batch_head);
1429
1430        pr_debug("%s: stripe %llu block: %d\n",
1431                __func__, (unsigned long long)sh->sector, target);
1432        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1433
1434        for (i = disks; i--; )
1435                if (i != target)
1436                        xor_srcs[count++] = sh->dev[i].page;
1437
1438        atomic_inc(&sh->count);
1439
1440        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1441                          ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1442        if (unlikely(count == 1))
1443                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1444        else
1445                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1446
1447        return tx;
1448}
1449
1450/* set_syndrome_sources - populate source buffers for gen_syndrome
1451 * @srcs - (struct page *) array of size sh->disks
1452 * @sh - stripe_head to parse
1453 *
1454 * Populates srcs in proper layout order for the stripe and returns the
1455 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1456 * destination buffer is recorded in srcs[count] and the Q destination
1457 * is recorded in srcs[count+1]].
1458 */
1459static int set_syndrome_sources(struct page **srcs,
1460                                struct stripe_head *sh,
1461                                int srctype)
1462{
1463        int disks = sh->disks;
1464        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1465        int d0_idx = raid6_d0(sh);
1466        int count;
1467        int i;
1468
1469        for (i = 0; i < disks; i++)
1470                srcs[i] = NULL;
1471
1472        count = 0;
1473        i = d0_idx;
1474        do {
1475                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1476                struct r5dev *dev = &sh->dev[i];
1477
1478                if (i == sh->qd_idx || i == sh->pd_idx ||
1479                    (srctype == SYNDROME_SRC_ALL) ||
1480                    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1481                     (test_bit(R5_Wantdrain, &dev->flags) ||
1482                      test_bit(R5_InJournal, &dev->flags))) ||
1483                    (srctype == SYNDROME_SRC_WRITTEN &&
1484                     (dev->written ||
1485                      test_bit(R5_InJournal, &dev->flags)))) {
1486                        if (test_bit(R5_InJournal, &dev->flags))
1487                                srcs[slot] = sh->dev[i].orig_page;
1488                        else
1489                                srcs[slot] = sh->dev[i].page;
1490                }
1491                i = raid6_next_disk(i, disks);
1492        } while (i != d0_idx);
1493
1494        return syndrome_disks;
1495}
1496
1497static struct dma_async_tx_descriptor *
1498ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1499{
1500        int disks = sh->disks;
1501        struct page **blocks = to_addr_page(percpu, 0);
1502        int target;
1503        int qd_idx = sh->qd_idx;
1504        struct dma_async_tx_descriptor *tx;
1505        struct async_submit_ctl submit;
1506        struct r5dev *tgt;
1507        struct page *dest;
1508        int i;
1509        int count;
1510
1511        BUG_ON(sh->batch_head);
1512        if (sh->ops.target < 0)
1513                target = sh->ops.target2;
1514        else if (sh->ops.target2 < 0)
1515                target = sh->ops.target;
1516        else
1517                /* we should only have one valid target */
1518                BUG();
1519        BUG_ON(target < 0);
1520        pr_debug("%s: stripe %llu block: %d\n",
1521                __func__, (unsigned long long)sh->sector, target);
1522
1523        tgt = &sh->dev[target];
1524        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1525        dest = tgt->page;
1526
1527        atomic_inc(&sh->count);
1528
1529        if (target == qd_idx) {
1530                count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1531                blocks[count] = NULL; /* regenerating p is not necessary */
1532                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1533                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1534                                  ops_complete_compute, sh,
1535                                  to_addr_conv(sh, percpu, 0));
1536                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1537        } else {
1538                /* Compute any data- or p-drive using XOR */
1539                count = 0;
1540                for (i = disks; i-- ; ) {
1541                        if (i == target || i == qd_idx)
1542                                continue;
1543                        blocks[count++] = sh->dev[i].page;
1544                }
1545
1546                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1547                                  NULL, ops_complete_compute, sh,
1548                                  to_addr_conv(sh, percpu, 0));
1549                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1550        }
1551
1552        return tx;
1553}
1554
1555static struct dma_async_tx_descriptor *
1556ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1557{
1558        int i, count, disks = sh->disks;
1559        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1560        int d0_idx = raid6_d0(sh);
1561        int faila = -1, failb = -1;
1562        int target = sh->ops.target;
1563        int target2 = sh->ops.target2;
1564        struct r5dev *tgt = &sh->dev[target];
1565        struct r5dev *tgt2 = &sh->dev[target2];
1566        struct dma_async_tx_descriptor *tx;
1567        struct page **blocks = to_addr_page(percpu, 0);
1568        struct async_submit_ctl submit;
1569
1570        BUG_ON(sh->batch_head);
1571        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572                 __func__, (unsigned long long)sh->sector, target, target2);
1573        BUG_ON(target < 0 || target2 < 0);
1574        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1576
1577        /* we need to open-code set_syndrome_sources to handle the
1578         * slot number conversion for 'faila' and 'failb'
1579         */
1580        for (i = 0; i < disks ; i++)
1581                blocks[i] = NULL;
1582        count = 0;
1583        i = d0_idx;
1584        do {
1585                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1586
1587                blocks[slot] = sh->dev[i].page;
1588
1589                if (i == target)
1590                        faila = slot;
1591                if (i == target2)
1592                        failb = slot;
1593                i = raid6_next_disk(i, disks);
1594        } while (i != d0_idx);
1595
1596        BUG_ON(faila == failb);
1597        if (failb < faila)
1598                swap(faila, failb);
1599        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600                 __func__, (unsigned long long)sh->sector, faila, failb);
1601
1602        atomic_inc(&sh->count);
1603
1604        if (failb == syndrome_disks+1) {
1605                /* Q disk is one of the missing disks */
1606                if (faila == syndrome_disks) {
1607                        /* Missing P+Q, just recompute */
1608                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1609                                          ops_complete_compute, sh,
1610                                          to_addr_conv(sh, percpu, 0));
1611                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1612                                                  STRIPE_SIZE, &submit);
1613                } else {
1614                        struct page *dest;
1615                        int data_target;
1616                        int qd_idx = sh->qd_idx;
1617
1618                        /* Missing D+Q: recompute D from P, then recompute Q */
1619                        if (target == qd_idx)
1620                                data_target = target2;
1621                        else
1622                                data_target = target;
1623
1624                        count = 0;
1625                        for (i = disks; i-- ; ) {
1626                                if (i == data_target || i == qd_idx)
1627                                        continue;
1628                                blocks[count++] = sh->dev[i].page;
1629                        }
1630                        dest = sh->dev[data_target].page;
1631                        init_async_submit(&submit,
1632                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1633                                          NULL, NULL, NULL,
1634                                          to_addr_conv(sh, percpu, 0));
1635                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1636                                       &submit);
1637
1638                        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1639                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1640                                          ops_complete_compute, sh,
1641                                          to_addr_conv(sh, percpu, 0));
1642                        return async_gen_syndrome(blocks, 0, count+2,
1643                                                  STRIPE_SIZE, &submit);
1644                }
1645        } else {
1646                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1647                                  ops_complete_compute, sh,
1648                                  to_addr_conv(sh, percpu, 0));
1649                if (failb == syndrome_disks) {
1650                        /* We're missing D+P. */
1651                        return async_raid6_datap_recov(syndrome_disks+2,
1652                                                       STRIPE_SIZE, faila,
1653                                                       blocks, &submit);
1654                } else {
1655                        /* We're missing D+D. */
1656                        return async_raid6_2data_recov(syndrome_disks+2,
1657                                                       STRIPE_SIZE, faila, failb,
1658                                                       blocks, &submit);
1659                }
1660        }
1661}
1662
1663static void ops_complete_prexor(void *stripe_head_ref)
1664{
1665        struct stripe_head *sh = stripe_head_ref;
1666
1667        pr_debug("%s: stripe %llu\n", __func__,
1668                (unsigned long long)sh->sector);
1669
1670        if (r5c_is_writeback(sh->raid_conf->log))
1671                /*
1672                 * raid5-cache write back uses orig_page during prexor.
1673                 * After prexor, it is time to free orig_page
1674                 */
1675                r5c_release_extra_page(sh);
1676}
1677
1678static struct dma_async_tx_descriptor *
1679ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1680                struct dma_async_tx_descriptor *tx)
1681{
1682        int disks = sh->disks;
1683        struct page **xor_srcs = to_addr_page(percpu, 0);
1684        int count = 0, pd_idx = sh->pd_idx, i;
1685        struct async_submit_ctl submit;
1686
1687        /* existing parity data subtracted */
1688        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1689
1690        BUG_ON(sh->batch_head);
1691        pr_debug("%s: stripe %llu\n", __func__,
1692                (unsigned long long)sh->sector);
1693
1694        for (i = disks; i--; ) {
1695                struct r5dev *dev = &sh->dev[i];
1696                /* Only process blocks that are known to be uptodate */
1697                if (test_bit(R5_InJournal, &dev->flags))
1698                        xor_srcs[count++] = dev->orig_page;
1699                else if (test_bit(R5_Wantdrain, &dev->flags))
1700                        xor_srcs[count++] = dev->page;
1701        }
1702
1703        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1704                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1705        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1706
1707        return tx;
1708}
1709
1710static struct dma_async_tx_descriptor *
1711ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1712                struct dma_async_tx_descriptor *tx)
1713{
1714        struct page **blocks = to_addr_page(percpu, 0);
1715        int count;
1716        struct async_submit_ctl submit;
1717
1718        pr_debug("%s: stripe %llu\n", __func__,
1719                (unsigned long long)sh->sector);
1720
1721        count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1722
1723        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1724                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1725        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1726
1727        return tx;
1728}
1729
1730static struct dma_async_tx_descriptor *
1731ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1732{
1733        struct r5conf *conf = sh->raid_conf;
1734        int disks = sh->disks;
1735        int i;
1736        struct stripe_head *head_sh = sh;
1737
1738        pr_debug("%s: stripe %llu\n", __func__,
1739                (unsigned long long)sh->sector);
1740
1741        for (i = disks; i--; ) {
1742                struct r5dev *dev;
1743                struct bio *chosen;
1744
1745                sh = head_sh;
1746                if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1747                        struct bio *wbi;
1748
1749again:
1750                        dev = &sh->dev[i];
1751                        /*
1752                         * clear R5_InJournal, so when rewriting a page in
1753                         * journal, it is not skipped by r5l_log_stripe()
1754                         */
1755                        clear_bit(R5_InJournal, &dev->flags);
1756                        spin_lock_irq(&sh->stripe_lock);
1757                        chosen = dev->towrite;
1758                        dev->towrite = NULL;
1759                        sh->overwrite_disks = 0;
1760                        BUG_ON(dev->written);
1761                        wbi = dev->written = chosen;
1762                        spin_unlock_irq(&sh->stripe_lock);
1763                        WARN_ON(dev->page != dev->orig_page);
1764
1765                        while (wbi && wbi->bi_iter.bi_sector <
1766                                dev->sector + STRIPE_SECTORS) {
1767                                if (wbi->bi_opf & REQ_FUA)
1768                                        set_bit(R5_WantFUA, &dev->flags);
1769                                if (wbi->bi_opf & REQ_SYNC)
1770                                        set_bit(R5_SyncIO, &dev->flags);
1771                                if (bio_op(wbi) == REQ_OP_DISCARD)
1772                                        set_bit(R5_Discard, &dev->flags);
1773                                else {
1774                                        tx = async_copy_data(1, wbi, &dev->page,
1775                                                             dev->sector, tx, sh,
1776                                                             r5c_is_writeback(conf->log));
1777                                        if (dev->page != dev->orig_page &&
1778                                            !r5c_is_writeback(conf->log)) {
1779                                                set_bit(R5_SkipCopy, &dev->flags);
1780                                                clear_bit(R5_UPTODATE, &dev->flags);
1781                                                clear_bit(R5_OVERWRITE, &dev->flags);
1782                                        }
1783                                }
1784                                wbi = r5_next_bio(wbi, dev->sector);
1785                        }
1786
1787                        if (head_sh->batch_head) {
1788                                sh = list_first_entry(&sh->batch_list,
1789                                                      struct stripe_head,
1790                                                      batch_list);
1791                                if (sh == head_sh)
1792                                        continue;
1793                                goto again;
1794                        }
1795                }
1796        }
1797
1798        return tx;
1799}
1800
1801static void ops_complete_reconstruct(void *stripe_head_ref)
1802{
1803        struct stripe_head *sh = stripe_head_ref;
1804        int disks = sh->disks;
1805        int pd_idx = sh->pd_idx;
1806        int qd_idx = sh->qd_idx;
1807        int i;
1808        bool fua = false, sync = false, discard = false;
1809
1810        pr_debug("%s: stripe %llu\n", __func__,
1811                (unsigned long long)sh->sector);
1812
1813        for (i = disks; i--; ) {
1814                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1815                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1816                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1817        }
1818
1819        for (i = disks; i--; ) {
1820                struct r5dev *dev = &sh->dev[i];
1821
1822                if (dev->written || i == pd_idx || i == qd_idx) {
1823                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1824                                set_bit(R5_UPTODATE, &dev->flags);
1825                                if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1826                                        set_bit(R5_Expanded, &dev->flags);
1827                        }
1828                        if (fua)
1829                                set_bit(R5_WantFUA, &dev->flags);
1830                        if (sync)
1831                                set_bit(R5_SyncIO, &dev->flags);
1832                }
1833        }
1834
1835        if (sh->reconstruct_state == reconstruct_state_drain_run)
1836                sh->reconstruct_state = reconstruct_state_drain_result;
1837        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839        else {
1840                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841                sh->reconstruct_state = reconstruct_state_result;
1842        }
1843
1844        set_bit(STRIPE_HANDLE, &sh->state);
1845        raid5_release_stripe(sh);
1846}
1847
1848static void
1849ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850                     struct dma_async_tx_descriptor *tx)
1851{
1852        int disks = sh->disks;
1853        struct page **xor_srcs;
1854        struct async_submit_ctl submit;
1855        int count, pd_idx = sh->pd_idx, i;
1856        struct page *xor_dest;
1857        int prexor = 0;
1858        unsigned long flags;
1859        int j = 0;
1860        struct stripe_head *head_sh = sh;
1861        int last_stripe;
1862
1863        pr_debug("%s: stripe %llu\n", __func__,
1864                (unsigned long long)sh->sector);
1865
1866        for (i = 0; i < sh->disks; i++) {
1867                if (pd_idx == i)
1868                        continue;
1869                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870                        break;
1871        }
1872        if (i >= sh->disks) {
1873                atomic_inc(&sh->count);
1874                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875                ops_complete_reconstruct(sh);
1876                return;
1877        }
1878again:
1879        count = 0;
1880        xor_srcs = to_addr_page(percpu, j);
1881        /* check if prexor is active which means only process blocks
1882         * that are part of a read-modify-write (written)
1883         */
1884        if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1885                prexor = 1;
1886                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887                for (i = disks; i--; ) {
1888                        struct r5dev *dev = &sh->dev[i];
1889                        if (head_sh->dev[i].written ||
1890                            test_bit(R5_InJournal, &head_sh->dev[i].flags))
1891                                xor_srcs[count++] = dev->page;
1892                }
1893        } else {
1894                xor_dest = sh->dev[pd_idx].page;
1895                for (i = disks; i--; ) {
1896                        struct r5dev *dev = &sh->dev[i];
1897                        if (i != pd_idx)
1898                                xor_srcs[count++] = dev->page;
1899                }
1900        }
1901
1902        /* 1/ if we prexor'd then the dest is reused as a source
1903         * 2/ if we did not prexor then we are redoing the parity
1904         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905         * for the synchronous xor case
1906         */
1907        last_stripe = !head_sh->batch_head ||
1908                list_first_entry(&sh->batch_list,
1909                                 struct stripe_head, batch_list) == head_sh;
1910        if (last_stripe) {
1911                flags = ASYNC_TX_ACK |
1912                        (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1913
1914                atomic_inc(&head_sh->count);
1915                init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916                                  to_addr_conv(sh, percpu, j));
1917        } else {
1918                flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919                init_async_submit(&submit, flags, tx, NULL, NULL,
1920                                  to_addr_conv(sh, percpu, j));
1921        }
1922
1923        if (unlikely(count == 1))
1924                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925        else
1926                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1927        if (!last_stripe) {
1928                j++;
1929                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930                                      batch_list);
1931                goto again;
1932        }
1933}
1934
1935static void
1936ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937                     struct dma_async_tx_descriptor *tx)
1938{
1939        struct async_submit_ctl submit;
1940        struct page **blocks;
1941        int count, i, j = 0;
1942        struct stripe_head *head_sh = sh;
1943        int last_stripe;
1944        int synflags;
1945        unsigned long txflags;
1946
1947        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1948
1949        for (i = 0; i < sh->disks; i++) {
1950                if (sh->pd_idx == i || sh->qd_idx == i)
1951                        continue;
1952                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953                        break;
1954        }
1955        if (i >= sh->disks) {
1956                atomic_inc(&sh->count);
1957                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959                ops_complete_reconstruct(sh);
1960                return;
1961        }
1962
1963again:
1964        blocks = to_addr_page(percpu, j);
1965
1966        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967                synflags = SYNDROME_SRC_WRITTEN;
1968                txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969        } else {
1970                synflags = SYNDROME_SRC_ALL;
1971                txflags = ASYNC_TX_ACK;
1972        }
1973
1974        count = set_syndrome_sources(blocks, sh, synflags);
1975        last_stripe = !head_sh->batch_head ||
1976                list_first_entry(&sh->batch_list,
1977                                 struct stripe_head, batch_list) == head_sh;
1978
1979        if (last_stripe) {
1980                atomic_inc(&head_sh->count);
1981                init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1982                                  head_sh, to_addr_conv(sh, percpu, j));
1983        } else
1984                init_async_submit(&submit, 0, tx, NULL, NULL,
1985                                  to_addr_conv(sh, percpu, j));
1986        tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1987        if (!last_stripe) {
1988                j++;
1989                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990                                      batch_list);
1991                goto again;
1992        }
1993}
1994
1995static void ops_complete_check(void *stripe_head_ref)
1996{
1997        struct stripe_head *sh = stripe_head_ref;
1998
1999        pr_debug("%s: stripe %llu\n", __func__,
2000                (unsigned long long)sh->sector);
2001
2002        sh->check_state = check_state_check_result;
2003        set_bit(STRIPE_HANDLE, &sh->state);
2004        raid5_release_stripe(sh);
2005}
2006
2007static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2008{
2009        int disks = sh->disks;
2010        int pd_idx = sh->pd_idx;
2011        int qd_idx = sh->qd_idx;
2012        struct page *xor_dest;
2013        struct page **xor_srcs = to_addr_page(percpu, 0);
2014        struct dma_async_tx_descriptor *tx;
2015        struct async_submit_ctl submit;
2016        int count;
2017        int i;
2018
2019        pr_debug("%s: stripe %llu\n", __func__,
2020                (unsigned long long)sh->sector);
2021
2022        BUG_ON(sh->batch_head);
2023        count = 0;
2024        xor_dest = sh->dev[pd_idx].page;
2025        xor_srcs[count++] = xor_dest;
2026        for (i = disks; i--; ) {
2027                if (i == pd_idx || i == qd_idx)
2028                        continue;
2029                xor_srcs[count++] = sh->dev[i].page;
2030        }
2031
2032        init_async_submit(&submit, 0, NULL, NULL, NULL,
2033                          to_addr_conv(sh, percpu, 0));
2034        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2035                           &sh->ops.zero_sum_result, &submit);
2036
2037        atomic_inc(&sh->count);
2038        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039        tx = async_trigger_callback(&submit);
2040}
2041
2042static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2043{
2044        struct page **srcs = to_addr_page(percpu, 0);
2045        struct async_submit_ctl submit;
2046        int count;
2047
2048        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049                (unsigned long long)sh->sector, checkp);
2050
2051        BUG_ON(sh->batch_head);
2052        count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053        if (!checkp)
2054                srcs[count] = NULL;
2055
2056        atomic_inc(&sh->count);
2057        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2058                          sh, to_addr_conv(sh, percpu, 0));
2059        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2061}
2062
2063static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2064{
2065        int overlap_clear = 0, i, disks = sh->disks;
2066        struct dma_async_tx_descriptor *tx = NULL;
2067        struct r5conf *conf = sh->raid_conf;
2068        int level = conf->level;
2069        struct raid5_percpu *percpu;
2070        unsigned long cpu;
2071
2072        cpu = get_cpu();
2073        percpu = per_cpu_ptr(conf->percpu, cpu);
2074        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2075                ops_run_biofill(sh);
2076                overlap_clear++;
2077        }
2078
2079        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2080                if (level < 6)
2081                        tx = ops_run_compute5(sh, percpu);
2082                else {
2083                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084                                tx = ops_run_compute6_1(sh, percpu);
2085                        else
2086                                tx = ops_run_compute6_2(sh, percpu);
2087                }
2088                /* terminate the chain if reconstruct is not set to be run */
2089                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090                        async_tx_ack(tx);
2091        }
2092
2093        if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2094                if (level < 6)
2095                        tx = ops_run_prexor5(sh, percpu, tx);
2096                else
2097                        tx = ops_run_prexor6(sh, percpu, tx);
2098        }
2099
2100        if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2101                tx = ops_run_partial_parity(sh, percpu, tx);
2102
2103        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2104                tx = ops_run_biodrain(sh, tx);
2105                overlap_clear++;
2106        }
2107
2108        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109                if (level < 6)
2110                        ops_run_reconstruct5(sh, percpu, tx);
2111                else
2112                        ops_run_reconstruct6(sh, percpu, tx);
2113        }
2114
2115        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116                if (sh->check_state == check_state_run)
2117                        ops_run_check_p(sh, percpu);
2118                else if (sh->check_state == check_state_run_q)
2119                        ops_run_check_pq(sh, percpu, 0);
2120                else if (sh->check_state == check_state_run_pq)
2121                        ops_run_check_pq(sh, percpu, 1);
2122                else
2123                        BUG();
2124        }
2125
2126        if (overlap_clear && !sh->batch_head)
2127                for (i = disks; i--; ) {
2128                        struct r5dev *dev = &sh->dev[i];
2129                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130                                wake_up(&sh->raid_conf->wait_for_overlap);
2131                }
2132        put_cpu();
2133}
2134
2135static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2136{
2137        if (sh->ppl_page)
2138                __free_page(sh->ppl_page);
2139        kmem_cache_free(sc, sh);
2140}
2141
2142static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2143        int disks, struct r5conf *conf)
2144{
2145        struct stripe_head *sh;
2146        int i;
2147
2148        sh = kmem_cache_zalloc(sc, gfp);
2149        if (sh) {
2150                spin_lock_init(&sh->stripe_lock);
2151                spin_lock_init(&sh->batch_lock);
2152                INIT_LIST_HEAD(&sh->batch_list);
2153                INIT_LIST_HEAD(&sh->lru);
2154                INIT_LIST_HEAD(&sh->r5c);
2155                INIT_LIST_HEAD(&sh->log_list);
2156                atomic_set(&sh->count, 1);
2157                sh->raid_conf = conf;
2158                sh->log_start = MaxSector;
2159                for (i = 0; i < disks; i++) {
2160                        struct r5dev *dev = &sh->dev[i];
2161
2162                        bio_init(&dev->req, &dev->vec, 1);
2163                        bio_init(&dev->rreq, &dev->rvec, 1);
2164                }
2165
2166                if (raid5_has_ppl(conf)) {
2167                        sh->ppl_page = alloc_page(gfp);
2168                        if (!sh->ppl_page) {
2169                                free_stripe(sc, sh);
2170                                sh = NULL;
2171                        }
2172                }
2173        }
2174        return sh;
2175}
2176static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2177{
2178        struct stripe_head *sh;
2179
2180        sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2181        if (!sh)
2182                return 0;
2183
2184        if (grow_buffers(sh, gfp)) {
2185                shrink_buffers(sh);
2186                free_stripe(conf->slab_cache, sh);
2187                return 0;
2188        }
2189        sh->hash_lock_index =
2190                conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2191        /* we just created an active stripe so... */
2192        atomic_inc(&conf->active_stripes);
2193
2194        raid5_release_stripe(sh);
2195        conf->max_nr_stripes++;
2196        return 1;
2197}
2198
2199static int grow_stripes(struct r5conf *conf, int num)
2200{
2201        struct kmem_cache *sc;
2202        size_t namelen = sizeof(conf->cache_name[0]);
2203        int devs = max(conf->raid_disks, conf->previous_raid_disks);
2204
2205        if (conf->mddev->gendisk)
2206                snprintf(conf->cache_name[0], namelen,
2207                        "raid%d-%s", conf->level, mdname(conf->mddev));
2208        else
2209                snprintf(conf->cache_name[0], namelen,
2210                        "raid%d-%p", conf->level, conf->mddev);
2211        snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2212
2213        conf->active_name = 0;
2214        sc = kmem_cache_create(conf->cache_name[conf->active_name],
2215                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2216                               0, 0, NULL);
2217        if (!sc)
2218                return 1;
2219        conf->slab_cache = sc;
2220        conf->pool_size = devs;
2221        while (num--)
2222                if (!grow_one_stripe(conf, GFP_KERNEL))
2223                        return 1;
2224
2225        return 0;
2226}
2227
2228/**
2229 * scribble_len - return the required size of the scribble region
2230 * @num - total number of disks in the array
2231 *
2232 * The size must be enough to contain:
2233 * 1/ a struct page pointer for each device in the array +2
2234 * 2/ room to convert each entry in (1) to its corresponding dma
2235 *    (dma_map_page()) or page (page_address()) address.
2236 *
2237 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238 * calculate over all devices (not just the data blocks), using zeros in place
2239 * of the P and Q blocks.
2240 */
2241static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2242{
2243        struct flex_array *ret;
2244        size_t len;
2245
2246        len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2247        ret = flex_array_alloc(len, cnt, flags);
2248        if (!ret)
2249                return NULL;
2250        /* always prealloc all elements, so no locking is required */
2251        if (flex_array_prealloc(ret, 0, cnt, flags)) {
2252                flex_array_free(ret);
2253                return NULL;
2254        }
2255        return ret;
2256}
2257
2258static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2259{
2260        unsigned long cpu;
2261        int err = 0;
2262
2263        /*
2264         * Never shrink. And mddev_suspend() could deadlock if this is called
2265         * from raid5d. In that case, scribble_disks and scribble_sectors
2266         * should equal to new_disks and new_sectors
2267         */
2268        if (conf->scribble_disks >= new_disks &&
2269            conf->scribble_sectors >= new_sectors)
2270                return 0;
2271        mddev_suspend(conf->mddev);
2272        get_online_cpus();
2273        for_each_present_cpu(cpu) {
2274                struct raid5_percpu *percpu;
2275                struct flex_array *scribble;
2276
2277                percpu = per_cpu_ptr(conf->percpu, cpu);
2278                scribble = scribble_alloc(new_disks,
2279                                          new_sectors / STRIPE_SECTORS,
2280                                          GFP_NOIO);
2281
2282                if (scribble) {
2283                        flex_array_free(percpu->scribble);
2284                        percpu->scribble = scribble;
2285                } else {
2286                        err = -ENOMEM;
2287                        break;
2288                }
2289        }
2290        put_online_cpus();
2291        mddev_resume(conf->mddev);
2292        if (!err) {
2293                conf->scribble_disks = new_disks;
2294                conf->scribble_sectors = new_sectors;
2295        }
2296        return err;
2297}
2298
2299static int resize_stripes(struct r5conf *conf, int newsize)
2300{
2301        /* Make all the stripes able to hold 'newsize' devices.
2302         * New slots in each stripe get 'page' set to a new page.
2303         *
2304         * This happens in stages:
2305         * 1/ create a new kmem_cache and allocate the required number of
2306         *    stripe_heads.
2307         * 2/ gather all the old stripe_heads and transfer the pages across
2308         *    to the new stripe_heads.  This will have the side effect of
2309         *    freezing the array as once all stripe_heads have been collected,
2310         *    no IO will be possible.  Old stripe heads are freed once their
2311         *    pages have been transferred over, and the old kmem_cache is
2312         *    freed when all stripes are done.
2313         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2314         *    we simple return a failure status - no need to clean anything up.
2315         * 4/ allocate new pages for the new slots in the new stripe_heads.
2316         *    If this fails, we don't bother trying the shrink the
2317         *    stripe_heads down again, we just leave them as they are.
2318         *    As each stripe_head is processed the new one is released into
2319         *    active service.
2320         *
2321         * Once step2 is started, we cannot afford to wait for a write,
2322         * so we use GFP_NOIO allocations.
2323         */
2324        struct stripe_head *osh, *nsh;
2325        LIST_HEAD(newstripes);
2326        struct disk_info *ndisks;
2327        int err = 0;
2328        struct kmem_cache *sc;
2329        int i;
2330        int hash, cnt;
2331
2332        md_allow_write(conf->mddev);
2333
2334        /* Step 1 */
2335        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2336                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2337                               0, 0, NULL);
2338        if (!sc)
2339                return -ENOMEM;
2340
2341        /* Need to ensure auto-resizing doesn't interfere */
2342        mutex_lock(&conf->cache_size_mutex);
2343
2344        for (i = conf->max_nr_stripes; i; i--) {
2345                nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2346                if (!nsh)
2347                        break;
2348
2349                list_add(&nsh->lru, &newstripes);
2350        }
2351        if (i) {
2352                /* didn't get enough, give up */
2353                while (!list_empty(&newstripes)) {
2354                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
2355                        list_del(&nsh->lru);
2356                        free_stripe(sc, nsh);
2357                }
2358                kmem_cache_destroy(sc);
2359                mutex_unlock(&conf->cache_size_mutex);
2360                return -ENOMEM;
2361        }
2362        /* Step 2 - Must use GFP_NOIO now.
2363         * OK, we have enough stripes, start collecting inactive
2364         * stripes and copying them over
2365         */
2366        hash = 0;
2367        cnt = 0;
2368        list_for_each_entry(nsh, &newstripes, lru) {
2369                lock_device_hash_lock(conf, hash);
2370                wait_event_cmd(conf->wait_for_stripe,
2371                                    !list_empty(conf->inactive_list + hash),
2372                                    unlock_device_hash_lock(conf, hash),
2373                                    lock_device_hash_lock(conf, hash));
2374                osh = get_free_stripe(conf, hash);
2375                unlock_device_hash_lock(conf, hash);
2376
2377                for(i=0; i<conf->pool_size; i++) {
2378                        nsh->dev[i].page = osh->dev[i].page;
2379                        nsh->dev[i].orig_page = osh->dev[i].page;
2380                }
2381                nsh->hash_lock_index = hash;
2382                free_stripe(conf->slab_cache, osh);
2383                cnt++;
2384                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2385                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2386                        hash++;
2387                        cnt = 0;
2388                }
2389        }
2390        kmem_cache_destroy(conf->slab_cache);
2391
2392        /* Step 3.
2393         * At this point, we are holding all the stripes so the array
2394         * is completely stalled, so now is a good time to resize
2395         * conf->disks and the scribble region
2396         */
2397        ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2398        if (ndisks) {
2399                for (i = 0; i < conf->pool_size; i++)
2400                        ndisks[i] = conf->disks[i];
2401
2402                for (i = conf->pool_size; i < newsize; i++) {
2403                        ndisks[i].extra_page = alloc_page(GFP_NOIO);
2404                        if (!ndisks[i].extra_page)
2405                                err = -ENOMEM;
2406                }
2407
2408                if (err) {
2409                        for (i = conf->pool_size; i < newsize; i++)
2410                                if (ndisks[i].extra_page)
2411                                        put_page(ndisks[i].extra_page);
2412                        kfree(ndisks);
2413                } else {
2414                        kfree(conf->disks);
2415                        conf->disks = ndisks;
2416                }
2417        } else
2418                err = -ENOMEM;
2419
2420        mutex_unlock(&conf->cache_size_mutex);
2421
2422        conf->slab_cache = sc;
2423        conf->active_name = 1-conf->active_name;
2424
2425        /* Step 4, return new stripes to service */
2426        while(!list_empty(&newstripes)) {
2427                nsh = list_entry(newstripes.next, struct stripe_head, lru);
2428                list_del_init(&nsh->lru);
2429
2430                for (i=conf->raid_disks; i < newsize; i++)
2431                        if (nsh->dev[i].page == NULL) {
2432                                struct page *p = alloc_page(GFP_NOIO);
2433                                nsh->dev[i].page = p;
2434                                nsh->dev[i].orig_page = p;
2435                                if (!p)
2436                                        err = -ENOMEM;
2437                        }
2438                raid5_release_stripe(nsh);
2439        }
2440        /* critical section pass, GFP_NOIO no longer needed */
2441
2442        if (!err)
2443                conf->pool_size = newsize;
2444        return err;
2445}
2446
2447static int drop_one_stripe(struct r5conf *conf)
2448{
2449        struct stripe_head *sh;
2450        int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2451
2452        spin_lock_irq(conf->hash_locks + hash);
2453        sh = get_free_stripe(conf, hash);
2454        spin_unlock_irq(conf->hash_locks + hash);
2455        if (!sh)
2456                return 0;
2457        BUG_ON(atomic_read(&sh->count));
2458        shrink_buffers(sh);
2459        free_stripe(conf->slab_cache, sh);
2460        atomic_dec(&conf->active_stripes);
2461        conf->max_nr_stripes--;
2462        return 1;
2463}
2464
2465static void shrink_stripes(struct r5conf *conf)
2466{
2467        while (conf->max_nr_stripes &&
2468               drop_one_stripe(conf))
2469                ;
2470
2471        kmem_cache_destroy(conf->slab_cache);
2472        conf->slab_cache = NULL;
2473}
2474
2475static void raid5_end_read_request(struct bio * bi)
2476{
2477        struct stripe_head *sh = bi->bi_private;
2478        struct r5conf *conf = sh->raid_conf;
2479        int disks = sh->disks, i;
2480        char b[BDEVNAME_SIZE];
2481        struct md_rdev *rdev = NULL;
2482        sector_t s;
2483
2484        for (i=0 ; i<disks; i++)
2485                if (bi == &sh->dev[i].req)
2486                        break;
2487
2488        pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2490                bi->bi_status);
2491        if (i == disks) {
2492                bio_reset(bi);
2493                BUG();
2494                return;
2495        }
2496        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2497                /* If replacement finished while this request was outstanding,
2498                 * 'replacement' might be NULL already.
2499                 * In that case it moved down to 'rdev'.
2500                 * rdev is not removed until all requests are finished.
2501                 */
2502                rdev = conf->disks[i].replacement;
2503        if (!rdev)
2504                rdev = conf->disks[i].rdev;
2505
2506        if (use_new_offset(conf, sh))
2507                s = sh->sector + rdev->new_data_offset;
2508        else
2509                s = sh->sector + rdev->data_offset;
2510        if (!bi->bi_status) {
2511                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2512                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2513                        /* Note that this cannot happen on a
2514                         * replacement device.  We just fail those on
2515                         * any error
2516                         */
2517                        pr_info_ratelimited(
2518                                "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519                                mdname(conf->mddev), STRIPE_SECTORS,
2520                                (unsigned long long)s,
2521                                bdevname(rdev->bdev, b));
2522                        atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2523                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2524                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2525                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2526                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2527
2528                if (test_bit(R5_InJournal, &sh->dev[i].flags))
2529                        /*
2530                         * end read for a page in journal, this
2531                         * must be preparing for prexor in rmw
2532                         */
2533                        set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2534
2535                if (atomic_read(&rdev->read_errors))
2536                        atomic_set(&rdev->read_errors, 0);
2537        } else {
2538                const char *bdn = bdevname(rdev->bdev, b);
2539                int retry = 0;
2540                int set_bad = 0;
2541
2542                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2543                atomic_inc(&rdev->read_errors);
2544                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2545                        pr_warn_ratelimited(
2546                                "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2547                                mdname(conf->mddev),
2548                                (unsigned long long)s,
2549                                bdn);
2550                else if (conf->mddev->degraded >= conf->max_degraded) {
2551                        set_bad = 1;
2552                        pr_warn_ratelimited(
2553                                "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2554                                mdname(conf->mddev),
2555                                (unsigned long long)s,
2556                                bdn);
2557                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2558                        /* Oh, no!!! */
2559                        set_bad = 1;
2560                        pr_warn_ratelimited(
2561                                "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2562                                mdname(conf->mddev),
2563                                (unsigned long long)s,
2564                                bdn);
2565                } else if (atomic_read(&rdev->read_errors)
2566                         > conf->max_nr_stripes)
2567                        pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2568                               mdname(conf->mddev), bdn);
2569                else
2570                        retry = 1;
2571                if (set_bad && test_bit(In_sync, &rdev->flags)
2572                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2573                        retry = 1;
2574                if (retry)
2575                        if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2576                                set_bit(R5_ReadError, &sh->dev[i].flags);
2577                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2578                        } else
2579                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580                else {
2581                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2582                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2583                        if (!(set_bad
2584                              && test_bit(In_sync, &rdev->flags)
2585                              && rdev_set_badblocks(
2586                                      rdev, sh->sector, STRIPE_SECTORS, 0)))
2587                                md_error(conf->mddev, rdev);
2588                }
2589        }
2590        rdev_dec_pending(rdev, conf->mddev);
2591        bio_reset(bi);
2592        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2593        set_bit(STRIPE_HANDLE, &sh->state);
2594        raid5_release_stripe(sh);
2595}
2596
2597static void raid5_end_write_request(struct bio *bi)
2598{
2599        struct stripe_head *sh = bi->bi_private;
2600        struct r5conf *conf = sh->raid_conf;
2601        int disks = sh->disks, i;
2602        struct md_rdev *uninitialized_var(rdev);
2603        sector_t first_bad;
2604        int bad_sectors;
2605        int replacement = 0;
2606
2607        for (i = 0 ; i < disks; i++) {
2608                if (bi == &sh->dev[i].req) {
2609                        rdev = conf->disks[i].rdev;
2610                        break;
2611                }
2612                if (bi == &sh->dev[i].rreq) {
2613                        rdev = conf->disks[i].replacement;
2614                        if (rdev)
2615                                replacement = 1;
2616                        else
2617                                /* rdev was removed and 'replacement'
2618                                 * replaced it.  rdev is not removed
2619                                 * until all requests are finished.
2620                                 */
2621                                rdev = conf->disks[i].rdev;
2622                        break;
2623                }
2624        }
2625        pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2626                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2627                bi->bi_status);
2628        if (i == disks) {
2629                bio_reset(bi);
2630                BUG();
2631                return;
2632        }
2633
2634        if (replacement) {
2635                if (bi->bi_status)
2636                        md_error(conf->mddev, rdev);
2637                else if (is_badblock(rdev, sh->sector,
2638                                     STRIPE_SECTORS,
2639                                     &first_bad, &bad_sectors))
2640                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2641        } else {
2642                if (bi->bi_status) {
2643                        set_bit(STRIPE_DEGRADED, &sh->state);
2644                        set_bit(WriteErrorSeen, &rdev->flags);
2645                        set_bit(R5_WriteError, &sh->dev[i].flags);
2646                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2647                                set_bit(MD_RECOVERY_NEEDED,
2648                                        &rdev->mddev->recovery);
2649                } else if (is_badblock(rdev, sh->sector,
2650                                       STRIPE_SECTORS,
2651                                       &first_bad, &bad_sectors)) {
2652                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2653                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2654                                /* That was a successful write so make
2655                                 * sure it looks like we already did
2656                                 * a re-write.
2657                                 */
2658                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2659                }
2660        }
2661        rdev_dec_pending(rdev, conf->mddev);
2662
2663        if (sh->batch_head && bi->bi_status && !replacement)
2664                set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2665
2666        bio_reset(bi);
2667        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2668                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2669        set_bit(STRIPE_HANDLE, &sh->state);
2670        raid5_release_stripe(sh);
2671
2672        if (sh->batch_head && sh != sh->batch_head)
2673                raid5_release_stripe(sh->batch_head);
2674}
2675
2676static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2677{
2678        char b[BDEVNAME_SIZE];
2679        struct r5conf *conf = mddev->private;
2680        unsigned long flags;
2681        pr_debug("raid456: error called\n");
2682
2683        spin_lock_irqsave(&conf->device_lock, flags);
2684
2685        if (test_bit(In_sync, &rdev->flags) &&
2686            mddev->degraded == conf->max_degraded) {
2687                /*
2688                 * Don't allow to achieve failed state
2689                 * Don't try to recover this device
2690                 */
2691                conf->recovery_disabled = mddev->recovery_disabled;
2692                spin_unlock_irqrestore(&conf->device_lock, flags);
2693                return;
2694        }
2695
2696        set_bit(Faulty, &rdev->flags);
2697        clear_bit(In_sync, &rdev->flags);
2698        mddev->degraded = raid5_calc_degraded(conf);
2699        spin_unlock_irqrestore(&conf->device_lock, flags);
2700        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2701
2702        set_bit(Blocked, &rdev->flags);
2703        set_mask_bits(&mddev->sb_flags, 0,
2704                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2705        pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2706                "md/raid:%s: Operation continuing on %d devices.\n",
2707                mdname(mddev),
2708                bdevname(rdev->bdev, b),
2709                mdname(mddev),
2710                conf->raid_disks - mddev->degraded);
2711        r5c_update_on_rdev_error(mddev, rdev);
2712}
2713
2714/*
2715 * Input: a 'big' sector number,
2716 * Output: index of the data and parity disk, and the sector # in them.
2717 */
2718sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2719                              int previous, int *dd_idx,
2720                              struct stripe_head *sh)
2721{
2722        sector_t stripe, stripe2;
2723        sector_t chunk_number;
2724        unsigned int chunk_offset;
2725        int pd_idx, qd_idx;
2726        int ddf_layout = 0;
2727        sector_t new_sector;
2728        int algorithm = previous ? conf->prev_algo
2729                                 : conf->algorithm;
2730        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2731                                         : conf->chunk_sectors;
2732        int raid_disks = previous ? conf->previous_raid_disks
2733                                  : conf->raid_disks;
2734        int data_disks = raid_disks - conf->max_degraded;
2735
2736        /* First compute the information on this sector */
2737
2738        /*
2739         * Compute the chunk number and the sector offset inside the chunk
2740         */
2741        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2742        chunk_number = r_sector;
2743
2744        /*
2745         * Compute the stripe number
2746         */
2747        stripe = chunk_number;
2748        *dd_idx = sector_div(stripe, data_disks);
2749        stripe2 = stripe;
2750        /*
2751         * Select the parity disk based on the user selected algorithm.
2752         */
2753        pd_idx = qd_idx = -1;
2754        switch(conf->level) {
2755        case 4:
2756                pd_idx = data_disks;
2757                break;
2758        case 5:
2759                switch (algorithm) {
2760                case ALGORITHM_LEFT_ASYMMETRIC:
2761                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2762                        if (*dd_idx >= pd_idx)
2763                                (*dd_idx)++;
2764                        break;
2765                case ALGORITHM_RIGHT_ASYMMETRIC:
2766                        pd_idx = sector_div(stripe2, raid_disks);
2767                        if (*dd_idx >= pd_idx)
2768                                (*dd_idx)++;
2769                        break;
2770                case ALGORITHM_LEFT_SYMMETRIC:
2771                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2772                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2773                        break;
2774                case ALGORITHM_RIGHT_SYMMETRIC:
2775                        pd_idx = sector_div(stripe2, raid_disks);
2776                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2777                        break;
2778                case ALGORITHM_PARITY_0:
2779                        pd_idx = 0;
2780                        (*dd_idx)++;
2781                        break;
2782                case ALGORITHM_PARITY_N:
2783                        pd_idx = data_disks;
2784                        break;
2785                default:
2786                        BUG();
2787                }
2788                break;
2789        case 6:
2790
2791                switch (algorithm) {
2792                case ALGORITHM_LEFT_ASYMMETRIC:
2793                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2794                        qd_idx = pd_idx + 1;
2795                        if (pd_idx == raid_disks-1) {
2796                                (*dd_idx)++;    /* Q D D D P */
2797                                qd_idx = 0;
2798                        } else if (*dd_idx >= pd_idx)
2799                                (*dd_idx) += 2; /* D D P Q D */
2800                        break;
2801                case ALGORITHM_RIGHT_ASYMMETRIC:
2802                        pd_idx = sector_div(stripe2, raid_disks);
2803                        qd_idx = pd_idx + 1;
2804                        if (pd_idx == raid_disks-1) {
2805                                (*dd_idx)++;    /* Q D D D P */
2806                                qd_idx = 0;
2807                        } else if (*dd_idx >= pd_idx)
2808                                (*dd_idx) += 2; /* D D P Q D */
2809                        break;
2810                case ALGORITHM_LEFT_SYMMETRIC:
2811                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2812                        qd_idx = (pd_idx + 1) % raid_disks;
2813                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2814                        break;
2815                case ALGORITHM_RIGHT_SYMMETRIC:
2816                        pd_idx = sector_div(stripe2, raid_disks);
2817                        qd_idx = (pd_idx + 1) % raid_disks;
2818                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2819                        break;
2820
2821                case ALGORITHM_PARITY_0:
2822                        pd_idx = 0;
2823                        qd_idx = 1;
2824                        (*dd_idx) += 2;
2825                        break;
2826                case ALGORITHM_PARITY_N:
2827                        pd_idx = data_disks;
2828                        qd_idx = data_disks + 1;
2829                        break;
2830
2831                case ALGORITHM_ROTATING_ZERO_RESTART:
2832                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
2833                         * of blocks for computing Q is different.
2834                         */
2835                        pd_idx = sector_div(stripe2, raid_disks);
2836                        qd_idx = pd_idx + 1;
2837                        if (pd_idx == raid_disks-1) {
2838                                (*dd_idx)++;    /* Q D D D P */
2839                                qd_idx = 0;
2840                        } else if (*dd_idx >= pd_idx)
2841                                (*dd_idx) += 2; /* D D P Q D */
2842                        ddf_layout = 1;
2843                        break;
2844
2845                case ALGORITHM_ROTATING_N_RESTART:
2846                        /* Same a left_asymmetric, by first stripe is
2847                         * D D D P Q  rather than
2848                         * Q D D D P
2849                         */
2850                        stripe2 += 1;
2851                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2852                        qd_idx = pd_idx + 1;
2853                        if (pd_idx == raid_disks-1) {
2854                                (*dd_idx)++;    /* Q D D D P */
2855                                qd_idx = 0;
2856                        } else if (*dd_idx >= pd_idx)
2857                                (*dd_idx) += 2; /* D D P Q D */
2858                        ddf_layout = 1;
2859                        break;
2860
2861                case ALGORITHM_ROTATING_N_CONTINUE:
2862                        /* Same as left_symmetric but Q is before P */
2863                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2864                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2865                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2866                        ddf_layout = 1;
2867                        break;
2868
2869                case ALGORITHM_LEFT_ASYMMETRIC_6:
2870                        /* RAID5 left_asymmetric, with Q on last device */
2871                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2872                        if (*dd_idx >= pd_idx)
2873                                (*dd_idx)++;
2874                        qd_idx = raid_disks - 1;
2875                        break;
2876
2877                case ALGORITHM_RIGHT_ASYMMETRIC_6:
2878                        pd_idx = sector_div(stripe2, raid_disks-1);
2879                        if (*dd_idx >= pd_idx)
2880                                (*dd_idx)++;
2881                        qd_idx = raid_disks - 1;
2882                        break;
2883
2884                case ALGORITHM_LEFT_SYMMETRIC_6:
2885                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2886                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2887                        qd_idx = raid_disks - 1;
2888                        break;
2889
2890                case ALGORITHM_RIGHT_SYMMETRIC_6:
2891                        pd_idx = sector_div(stripe2, raid_disks-1);
2892                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2893                        qd_idx = raid_disks - 1;
2894                        break;
2895
2896                case ALGORITHM_PARITY_0_6:
2897                        pd_idx = 0;
2898                        (*dd_idx)++;
2899                        qd_idx = raid_disks - 1;
2900                        break;
2901
2902                default:
2903                        BUG();
2904                }
2905                break;
2906        }
2907
2908        if (sh) {
2909                sh->pd_idx = pd_idx;
2910                sh->qd_idx = qd_idx;
2911                sh->ddf_layout = ddf_layout;
2912        }
2913        /*
2914         * Finally, compute the new sector number
2915         */
2916        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2917        return new_sector;
2918}
2919
2920sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2921{
2922        struct r5conf *conf = sh->raid_conf;
2923        int raid_disks = sh->disks;
2924        int data_disks = raid_disks - conf->max_degraded;
2925        sector_t new_sector = sh->sector, check;
2926        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2927                                         : conf->chunk_sectors;
2928        int algorithm = previous ? conf->prev_algo
2929                                 : conf->algorithm;
2930        sector_t stripe;
2931        int chunk_offset;
2932        sector_t chunk_number;
2933        int dummy1, dd_idx = i;
2934        sector_t r_sector;
2935        struct stripe_head sh2;
2936
2937        chunk_offset = sector_div(new_sector, sectors_per_chunk);
2938        stripe = new_sector;
2939
2940        if (i == sh->pd_idx)
2941                return 0;
2942        switch(conf->level) {
2943        case 4: break;
2944        case 5:
2945                switch (algorithm) {
2946                case ALGORITHM_LEFT_ASYMMETRIC:
2947                case ALGORITHM_RIGHT_ASYMMETRIC:
2948                        if (i > sh->pd_idx)
2949                                i--;
2950                        break;
2951                case ALGORITHM_LEFT_SYMMETRIC:
2952                case ALGORITHM_RIGHT_SYMMETRIC:
2953                        if (i < sh->pd_idx)
2954                                i += raid_disks;
2955                        i -= (sh->pd_idx + 1);
2956                        break;
2957                case ALGORITHM_PARITY_0:
2958                        i -= 1;
2959                        break;
2960                case ALGORITHM_PARITY_N:
2961                        break;
2962                default:
2963                        BUG();
2964                }
2965                break;
2966        case 6:
2967                if (i == sh->qd_idx)
2968                        return 0; /* It is the Q disk */
2969                switch (algorithm) {
2970                case ALGORITHM_LEFT_ASYMMETRIC:
2971                case ALGORITHM_RIGHT_ASYMMETRIC:
2972                case ALGORITHM_ROTATING_ZERO_RESTART:
2973                case ALGORITHM_ROTATING_N_RESTART:
2974                        if (sh->pd_idx == raid_disks-1)
2975                                i--;    /* Q D D D P */
2976                        else if (i > sh->pd_idx)
2977                                i -= 2; /* D D P Q D */
2978                        break;
2979                case ALGORITHM_LEFT_SYMMETRIC:
2980                case ALGORITHM_RIGHT_SYMMETRIC:
2981                        if (sh->pd_idx == raid_disks-1)
2982                                i--; /* Q D D D P */
2983                        else {
2984                                /* D D P Q D */
2985                                if (i < sh->pd_idx)
2986                                        i += raid_disks;
2987                                i -= (sh->pd_idx + 2);
2988                        }
2989                        break;
2990                case ALGORITHM_PARITY_0:
2991                        i -= 2;
2992                        break;
2993                case ALGORITHM_PARITY_N:
2994                        break;
2995                case ALGORITHM_ROTATING_N_CONTINUE:
2996                        /* Like left_symmetric, but P is before Q */
2997                        if (sh->pd_idx == 0)
2998                                i--;    /* P D D D Q */
2999                        else {
3000                                /* D D Q P D */
3001                                if (i < sh->pd_idx)
3002                                        i += raid_disks;
3003                                i -= (sh->pd_idx + 1);
3004                        }
3005                        break;
3006                case ALGORITHM_LEFT_ASYMMETRIC_6:
3007                case ALGORITHM_RIGHT_ASYMMETRIC_6:
3008                        if (i > sh->pd_idx)
3009                                i--;
3010                        break;
3011                case ALGORITHM_LEFT_SYMMETRIC_6:
3012                case ALGORITHM_RIGHT_SYMMETRIC_6:
3013                        if (i < sh->pd_idx)
3014                                i += data_disks + 1;
3015                        i -= (sh->pd_idx + 1);
3016                        break;
3017                case ALGORITHM_PARITY_0_6:
3018                        i -= 1;
3019                        break;
3020                default:
3021                        BUG();
3022                }
3023                break;
3024        }
3025
3026        chunk_number = stripe * data_disks + i;
3027        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3028
3029        check = raid5_compute_sector(conf, r_sector,
3030                                     previous, &dummy1, &sh2);
3031        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3032                || sh2.qd_idx != sh->qd_idx) {
3033                pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3034                        mdname(conf->mddev));
3035                return 0;
3036        }
3037        return r_sector;
3038}
3039
3040/*
3041 * There are cases where we want handle_stripe_dirtying() and
3042 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3043 *
3044 * This function checks whether we want to delay the towrite. Specifically,
3045 * we delay the towrite when:
3046 *
3047 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3048 *      stripe has data in journal (for other devices).
3049 *
3050 *      In this case, when reading data for the non-overwrite dev, it is
3051 *      necessary to handle complex rmw of write back cache (prexor with
3052 *      orig_page, and xor with page). To keep read path simple, we would
3053 *      like to flush data in journal to RAID disks first, so complex rmw
3054 *      is handled in the write patch (handle_stripe_dirtying).
3055 *
3056 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3057 *
3058 *      It is important to be able to flush all stripes in raid5-cache.
3059 *      Therefore, we need reserve some space on the journal device for
3060 *      these flushes. If flush operation includes pending writes to the
3061 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3062 *      for the flush out. If we exclude these pending writes from flush
3063 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3064 *      Therefore, excluding pending writes in these cases enables more
3065 *      efficient use of the journal device.
3066 *
3067 *      Note: To make sure the stripe makes progress, we only delay
3068 *      towrite for stripes with data already in journal (injournal > 0).
3069 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3070 *      no_space_stripes list.
3071 *
3072 *   3. during journal failure
3073 *      In journal failure, we try to flush all cached data to raid disks
3074 *      based on data in stripe cache. The array is read-only to upper
3075 *      layers, so we would skip all pending writes.
3076 *
3077 */
3078static inline bool delay_towrite(struct r5conf *conf,
3079                                 struct r5dev *dev,
3080                                 struct stripe_head_state *s)
3081{
3082        /* case 1 above */
3083        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3084            !test_bit(R5_Insync, &dev->flags) && s->injournal)
3085                return true;
3086        /* case 2 above */
3087        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3088            s->injournal > 0)
3089                return true;
3090        /* case 3 above */
3091        if (s->log_failed && s->injournal)
3092                return true;
3093        return false;
3094}
3095
3096static void
3097schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3098                         int rcw, int expand)
3099{
3100        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3101        struct r5conf *conf = sh->raid_conf;
3102        int level = conf->level;
3103
3104        if (rcw) {
3105                /*
3106                 * In some cases, handle_stripe_dirtying initially decided to
3107                 * run rmw and allocates extra page for prexor. However, rcw is
3108                 * cheaper later on. We need to free the extra page now,
3109                 * because we won't be able to do that in ops_complete_prexor().
3110                 */
3111                r5c_release_extra_page(sh);
3112
3113                for (i = disks; i--; ) {
3114                        struct r5dev *dev = &sh->dev[i];
3115
3116                        if (dev->towrite && !delay_towrite(conf, dev, s)) {
3117                                set_bit(R5_LOCKED, &dev->flags);
3118                                set_bit(R5_Wantdrain, &dev->flags);
3119                                if (!expand)
3120                                        clear_bit(R5_UPTODATE, &dev->flags);
3121                                s->locked++;
3122                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3123                                set_bit(R5_LOCKED, &dev->flags);
3124                                s->locked++;
3125                        }
3126                }
3127                /* if we are not expanding this is a proper write request, and
3128                 * there will be bios with new data to be drained into the
3129                 * stripe cache
3130                 */
3131                if (!expand) {
3132                        if (!s->locked)
3133                                /* False alarm, nothing to do */
3134                                return;
3135                        sh->reconstruct_state = reconstruct_state_drain_run;
3136                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3137                } else
3138                        sh->reconstruct_state = reconstruct_state_run;
3139
3140                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3141
3142                if (s->locked + conf->max_degraded == disks)
3143                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3144                                atomic_inc(&conf->pending_full_writes);
3145        } else {
3146                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3147                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3148                BUG_ON(level == 6 &&
3149                        (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3150                           test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3151
3152                for (i = disks; i--; ) {
3153                        struct r5dev *dev = &sh->dev[i];
3154                        if (i == pd_idx || i == qd_idx)
3155                                continue;
3156
3157                        if (dev->towrite &&
3158                            (test_bit(R5_UPTODATE, &dev->flags) ||
3159                             test_bit(R5_Wantcompute, &dev->flags))) {
3160                                set_bit(R5_Wantdrain, &dev->flags);
3161                                set_bit(R5_LOCKED, &dev->flags);
3162                                clear_bit(R5_UPTODATE, &dev->flags);
3163                                s->locked++;
3164                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3165                                set_bit(R5_LOCKED, &dev->flags);
3166                                s->locked++;
3167                        }
3168                }
3169                if (!s->locked)
3170                        /* False alarm - nothing to do */
3171                        return;
3172                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3173                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3174                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3175                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3176        }
3177
3178        /* keep the parity disk(s) locked while asynchronous operations
3179         * are in flight
3180         */
3181        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3182        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3183        s->locked++;
3184
3185        if (level == 6) {
3186                int qd_idx = sh->qd_idx;
3187                struct r5dev *dev = &sh->dev[qd_idx];
3188
3189                set_bit(R5_LOCKED, &dev->flags);
3190                clear_bit(R5_UPTODATE, &dev->flags);
3191                s->locked++;
3192        }
3193
3194        if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3195            test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3196            !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3197            test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3198                set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3199
3200        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3201                __func__, (unsigned long long)sh->sector,
3202                s->locked, s->ops_request);
3203}
3204
3205/*
3206 * Each stripe/dev can have one or more bion attached.
3207 * toread/towrite point to the first in a chain.
3208 * The bi_next chain must be in order.
3209 */
3210static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3211                          int forwrite, int previous)
3212{
3213        struct bio **bip;
3214        struct r5conf *conf = sh->raid_conf;
3215        int firstwrite=0;
3216
3217        pr_debug("adding bi b#%llu to stripe s#%llu\n",
3218                (unsigned long long)bi->bi_iter.bi_sector,
3219                (unsigned long long)sh->sector);
3220
3221        spin_lock_irq(&sh->stripe_lock);
3222        sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3223        /* Don't allow new IO added to stripes in batch list */
3224        if (sh->batch_head)
3225                goto overlap;
3226        if (forwrite) {
3227                bip = &sh->dev[dd_idx].towrite;
3228                if (*bip == NULL)
3229                        firstwrite = 1;
3230        } else
3231                bip = &sh->dev[dd_idx].toread;
3232        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3233                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3234                        goto overlap;
3235                bip = & (*bip)->bi_next;
3236        }
3237        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3238                goto overlap;
3239
3240        if (forwrite && raid5_has_ppl(conf)) {
3241                /*
3242                 * With PPL only writes to consecutive data chunks within a
3243                 * stripe are allowed because for a single stripe_head we can
3244                 * only have one PPL entry at a time, which describes one data
3245                 * range. Not really an overlap, but wait_for_overlap can be
3246                 * used to handle this.
3247                 */
3248                sector_t sector;
3249                sector_t first = 0;
3250                sector_t last = 0;
3251                int count = 0;
3252                int i;
3253
3254                for (i = 0; i < sh->disks; i++) {
3255                        if (i != sh->pd_idx &&
3256                            (i == dd_idx || sh->dev[i].towrite)) {
3257                                sector = sh->dev[i].sector;
3258                                if (count == 0 || sector < first)
3259                                        first = sector;
3260                                if (sector > last)
3261                                        last = sector;
3262                                count++;
3263                        }
3264                }
3265
3266                if (first + conf->chunk_sectors * (count - 1) != last)
3267                        goto overlap;
3268        }
3269
3270        if (!forwrite || previous)
3271                clear_bit(STRIPE_BATCH_READY, &sh->state);
3272
3273        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3274        if (*bip)
3275                bi->bi_next = *bip;
3276        *bip = bi;
3277        bio_inc_remaining(bi);
3278        md_write_inc(conf->mddev, bi);
3279
3280        if (forwrite) {
3281                /* check if page is covered */
3282                sector_t sector = sh->dev[dd_idx].sector;
3283                for (bi=sh->dev[dd_idx].towrite;
3284                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3285                             bi && bi->bi_iter.bi_sector <= sector;
3286                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3287                        if (bio_end_sector(bi) >= sector)
3288                                sector = bio_end_sector(bi);
3289                }
3290                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3291                        if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3292                                sh->overwrite_disks++;
3293        }
3294
3295        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3296                (unsigned long long)(*bip)->bi_iter.bi_sector,
3297                (unsigned long long)sh->sector, dd_idx);
3298
3299        if (conf->mddev->bitmap && firstwrite) {
3300                /* Cannot hold spinlock over bitmap_startwrite,
3301                 * but must ensure this isn't added to a batch until
3302                 * we have added to the bitmap and set bm_seq.
3303                 * So set STRIPE_BITMAP_PENDING to prevent
3304                 * batching.
3305                 * If multiple add_stripe_bio() calls race here they
3306                 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3307                 * to complete "bitmap_startwrite" gets to set
3308                 * STRIPE_BIT_DELAY.  This is important as once a stripe
3309                 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3310                 * any more.
3311                 */
3312                set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3313                spin_unlock_irq(&sh->stripe_lock);
3314                md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3315                                     STRIPE_SECTORS, 0);
3316                spin_lock_irq(&sh->stripe_lock);
3317                clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3318                if (!sh->batch_head) {
3319                        sh->bm_seq = conf->seq_flush+1;
3320                        set_bit(STRIPE_BIT_DELAY, &sh->state);
3321                }
3322        }
3323        spin_unlock_irq(&sh->stripe_lock);
3324
3325        if (stripe_can_batch(sh))
3326                stripe_add_to_batch_list(conf, sh);
3327        return 1;
3328
3329 overlap:
3330        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3331        spin_unlock_irq(&sh->stripe_lock);
3332        return 0;
3333}
3334
3335static void end_reshape(struct r5conf *conf);
3336
3337static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3338                            struct stripe_head *sh)
3339{
3340        int sectors_per_chunk =
3341                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3342        int dd_idx;
3343        int chunk_offset = sector_div(stripe, sectors_per_chunk);
3344        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3345
3346        raid5_compute_sector(conf,
3347                             stripe * (disks - conf->max_degraded)
3348                             *sectors_per_chunk + chunk_offset,
3349                             previous,
3350                             &dd_idx, sh);
3351}
3352
3353static void
3354handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3355                     struct stripe_head_state *s, int disks)
3356{
3357        int i;
3358        BUG_ON(sh->batch_head);
3359        for (i = disks; i--; ) {
3360                struct bio *bi;
3361                int bitmap_end = 0;
3362
3363                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3364                        struct md_rdev *rdev;
3365                        rcu_read_lock();
3366                        rdev = rcu_dereference(conf->disks[i].rdev);
3367                        if (rdev && test_bit(In_sync, &rdev->flags) &&
3368                            !test_bit(Faulty, &rdev->flags))
3369                                atomic_inc(&rdev->nr_pending);
3370                        else
3371                                rdev = NULL;
3372                        rcu_read_unlock();
3373                        if (rdev) {
3374                                if (!rdev_set_badblocks(
3375                                            rdev,
3376                                            sh->sector,
3377                                            STRIPE_SECTORS, 0))
3378                                        md_error(conf->mddev, rdev);
3379                                rdev_dec_pending(rdev, conf->mddev);
3380                        }
3381                }
3382                spin_lock_irq(&sh->stripe_lock);
3383                /* fail all writes first */
3384                bi = sh->dev[i].towrite;
3385                sh->dev[i].towrite = NULL;
3386                sh->overwrite_disks = 0;
3387                spin_unlock_irq(&sh->stripe_lock);
3388                if (bi)
3389                        bitmap_end = 1;
3390
3391                log_stripe_write_finished(sh);
3392
3393                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3394                        wake_up(&conf->wait_for_overlap);
3395
3396                while (bi && bi->bi_iter.bi_sector <
3397                        sh->dev[i].sector + STRIPE_SECTORS) {
3398                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3399
3400                        md_write_end(conf->mddev);
3401                        bio_io_error(bi);
3402                        bi = nextbi;
3403                }
3404                if (bitmap_end)
3405                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3406                                           STRIPE_SECTORS, 0, 0);
3407                bitmap_end = 0;
3408                /* and fail all 'written' */
3409                bi = sh->dev[i].written;
3410                sh->dev[i].written = NULL;
3411                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3412                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3413                        sh->dev[i].page = sh->dev[i].orig_page;
3414                }
3415
3416                if (bi) bitmap_end = 1;
3417                while (bi && bi->bi_iter.bi_sector <
3418                       sh->dev[i].sector + STRIPE_SECTORS) {
3419                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3420
3421                        md_write_end(conf->mddev);
3422                        bio_io_error(bi);
3423                        bi = bi2;
3424                }
3425
3426                /* fail any reads if this device is non-operational and
3427                 * the data has not reached the cache yet.
3428                 */
3429                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3430                    s->failed > conf->max_degraded &&
3431                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3432                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3433                        spin_lock_irq(&sh->stripe_lock);
3434                        bi = sh->dev[i].toread;
3435                        sh->dev[i].toread = NULL;
3436                        spin_unlock_irq(&sh->stripe_lock);
3437                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3438                                wake_up(&conf->wait_for_overlap);
3439                        if (bi)
3440                                s->to_read--;
3441                        while (bi && bi->bi_iter.bi_sector <
3442                               sh->dev[i].sector + STRIPE_SECTORS) {
3443                                struct bio *nextbi =
3444                                        r5_next_bio(bi, sh->dev[i].sector);
3445
3446                                bio_io_error(bi);
3447                                bi = nextbi;
3448                        }
3449                }
3450                if (bitmap_end)
3451                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3452                                           STRIPE_SECTORS, 0, 0);
3453                /* If we were in the middle of a write the parity block might
3454                 * still be locked - so just clear all R5_LOCKED flags
3455                 */
3456                clear_bit(R5_LOCKED, &sh->dev[i].flags);
3457        }
3458        s->to_write = 0;
3459        s->written = 0;
3460
3461        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3462                if (atomic_dec_and_test(&conf->pending_full_writes))
3463                        md_wakeup_thread(conf->mddev->thread);
3464}
3465
3466static void
3467handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3468                   struct stripe_head_state *s)
3469{
3470        int abort = 0;
3471        int i;
3472
3473        BUG_ON(sh->batch_head);
3474        clear_bit(STRIPE_SYNCING, &sh->state);
3475        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3476                wake_up(&conf->wait_for_overlap);
3477        s->syncing = 0;
3478        s->replacing = 0;
3479        /* There is nothing more to do for sync/check/repair.
3480         * Don't even need to abort as that is handled elsewhere
3481         * if needed, and not always wanted e.g. if there is a known
3482         * bad block here.
3483         * For recover/replace we need to record a bad block on all
3484         * non-sync devices, or abort the recovery
3485         */
3486        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3487                /* During recovery devices cannot be removed, so
3488                 * locking and refcounting of rdevs is not needed
3489                 */
3490                rcu_read_lock();
3491                for (i = 0; i < conf->raid_disks; i++) {
3492                        struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3493                        if (rdev
3494                            && !test_bit(Faulty, &rdev->flags)
3495                            && !test_bit(In_sync, &rdev->flags)
3496                            && !rdev_set_badblocks(rdev, sh->sector,
3497                                                   STRIPE_SECTORS, 0))
3498                                abort = 1;
3499                        rdev = rcu_dereference(conf->disks[i].replacement);
3500                        if (rdev
3501                            && !test_bit(Faulty, &rdev->flags)
3502                            && !test_bit(In_sync, &rdev->flags)
3503                            && !rdev_set_badblocks(rdev, sh->sector,
3504                                                   STRIPE_SECTORS, 0))
3505                                abort = 1;
3506                }
3507                rcu_read_unlock();
3508                if (abort)
3509                        conf->recovery_disabled =
3510                                conf->mddev->recovery_disabled;
3511        }
3512        md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3513}
3514
3515static int want_replace(struct stripe_head *sh, int disk_idx)
3516{
3517        struct md_rdev *rdev;
3518        int rv = 0;
3519
3520        rcu_read_lock();
3521        rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3522        if (rdev
3523            && !test_bit(Faulty, &rdev->flags)
3524            && !test_bit(In_sync, &rdev->flags)
3525            && (rdev->recovery_offset <= sh->sector
3526                || rdev->mddev->recovery_cp <= sh->sector))
3527                rv = 1;
3528        rcu_read_unlock();
3529        return rv;
3530}
3531
3532static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3533                           int disk_idx, int disks)
3534{
3535        struct r5dev *dev = &sh->dev[disk_idx];
3536        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3537                                  &sh->dev[s->failed_num[1]] };
3538        int i;
3539
3540
3541        if (test_bit(R5_LOCKED, &dev->flags) ||
3542            test_bit(R5_UPTODATE, &dev->flags))
3543                /* No point reading this as we already have it or have
3544                 * decided to get it.
3545                 */
3546                return 0;
3547
3548        if (dev->toread ||
3549            (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3550                /* We need this block to directly satisfy a request */
3551                return 1;
3552
3553        if (s->syncing || s->expanding ||
3554            (s->replacing && want_replace(sh, disk_idx)))
3555                /* When syncing, or expanding we read everything.
3556                 * When replacing, we need the replaced block.
3557                 */
3558                return 1;
3559
3560        if ((s->failed >= 1 && fdev[0]->toread) ||
3561            (s->failed >= 2 && fdev[1]->toread))
3562                /* If we want to read from a failed device, then
3563                 * we need to actually read every other device.
3564                 */
3565                return 1;
3566
3567        /* Sometimes neither read-modify-write nor reconstruct-write
3568         * cycles can work.  In those cases we read every block we
3569         * can.  Then the parity-update is certain to have enough to
3570         * work with.
3571         * This can only be a problem when we need to write something,
3572         * and some device has failed.  If either of those tests
3573         * fail we need look no further.
3574         */
3575        if (!s->failed || !s->to_write)
3576                return 0;
3577
3578        if (test_bit(R5_Insync, &dev->flags) &&
3579            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3580                /* Pre-reads at not permitted until after short delay
3581                 * to gather multiple requests.  However if this
3582                 * device is no Insync, the block could only be computed
3583                 * and there is no need to delay that.
3584                 */
3585                return 0;
3586
3587        for (i = 0; i < s->failed && i < 2; i++) {
3588                if (fdev[i]->towrite &&
3589                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3590                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3591                        /* If we have a partial write to a failed
3592                         * device, then we will need to reconstruct
3593                         * the content of that device, so all other
3594                         * devices must be read.
3595                         */
3596                        return 1;
3597        }
3598
3599        /* If we are forced to do a reconstruct-write, either because
3600         * the current RAID6 implementation only supports that, or
3601         * because parity cannot be trusted and we are currently
3602         * recovering it, there is extra need to be careful.
3603         * If one of the devices that we would need to read, because
3604         * it is not being overwritten (and maybe not written at all)
3605         * is missing/faulty, then we need to read everything we can.
3606         */
3607        if (sh->raid_conf->level != 6 &&
3608            sh->sector < sh->raid_conf->mddev->recovery_cp)
3609                /* reconstruct-write isn't being forced */
3610                return 0;
3611        for (i = 0; i < s->failed && i < 2; i++) {
3612                if (s->failed_num[i] != sh->pd_idx &&
3613                    s->failed_num[i] != sh->qd_idx &&
3614                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3615                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3616                        return 1;
3617        }
3618
3619        return 0;
3620}
3621
3622/* fetch_block - checks the given member device to see if its data needs
3623 * to be read or computed to satisfy a request.
3624 *
3625 * Returns 1 when no more member devices need to be checked, otherwise returns
3626 * 0 to tell the loop in handle_stripe_fill to continue
3627 */
3628static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3629                       int disk_idx, int disks)
3630{
3631        struct r5dev *dev = &sh->dev[disk_idx];
3632
3633        /* is the data in this block needed, and can we get it? */
3634        if (need_this_block(sh, s, disk_idx, disks)) {
3635                /* we would like to get this block, possibly by computing it,
3636                 * otherwise read it if the backing disk is insync
3637                 */
3638                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3639                BUG_ON(test_bit(R5_Wantread, &dev->flags));
3640                BUG_ON(sh->batch_head);
3641
3642                /*
3643                 * In the raid6 case if the only non-uptodate disk is P
3644                 * then we already trusted P to compute the other failed
3645                 * drives. It is safe to compute rather than re-read P.
3646                 * In other cases we only compute blocks from failed
3647                 * devices, otherwise check/repair might fail to detect
3648                 * a real inconsistency.
3649                 */
3650
3651                if ((s->uptodate == disks - 1) &&
3652                    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3653                    (s->failed && (disk_idx == s->failed_num[0] ||
3654                                   disk_idx == s->failed_num[1])))) {
3655                        /* have disk failed, and we're requested to fetch it;
3656                         * do compute it
3657                         */
3658                        pr_debug("Computing stripe %llu block %d\n",
3659                               (unsigned long long)sh->sector, disk_idx);
3660                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3661                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3662                        set_bit(R5_Wantcompute, &dev->flags);
3663                        sh->ops.target = disk_idx;
3664                        sh->ops.target2 = -1; /* no 2nd target */
3665                        s->req_compute = 1;
3666                        /* Careful: from this point on 'uptodate' is in the eye
3667                         * of raid_run_ops which services 'compute' operations
3668                         * before writes. R5_Wantcompute flags a block that will
3669                         * be R5_UPTODATE by the time it is needed for a
3670                         * subsequent operation.
3671                         */
3672                        s->uptodate++;
3673                        return 1;
3674                } else if (s->uptodate == disks-2 && s->failed >= 2) {
3675                        /* Computing 2-failure is *very* expensive; only
3676                         * do it if failed >= 2
3677                         */
3678                        int other;
3679                        for (other = disks; other--; ) {
3680                                if (other == disk_idx)
3681                                        continue;
3682                                if (!test_bit(R5_UPTODATE,
3683                                      &sh->dev[other].flags))
3684                                        break;
3685                        }
3686                        BUG_ON(other < 0);
3687                        pr_debug("Computing stripe %llu blocks %d,%d\n",
3688                               (unsigned long long)sh->sector,
3689                               disk_idx, other);
3690                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3691                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3692                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3693                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
3694                        sh->ops.target = disk_idx;
3695                        sh->ops.target2 = other;
3696                        s->uptodate += 2;
3697                        s->req_compute = 1;
3698                        return 1;
3699                } else if (test_bit(R5_Insync, &dev->flags)) {
3700                        set_bit(R5_LOCKED, &dev->flags);
3701                        set_bit(R5_Wantread, &dev->flags);
3702                        s->locked++;
3703                        pr_debug("Reading block %d (sync=%d)\n",
3704                                disk_idx, s->syncing);
3705                }
3706        }
3707
3708        return 0;
3709}
3710
3711/**
3712 * handle_stripe_fill - read or compute data to satisfy pending requests.
3713 */
3714static void handle_stripe_fill(struct stripe_head *sh,
3715                               struct stripe_head_state *s,
3716                               int disks)
3717{
3718        int i;
3719
3720        /* look for blocks to read/compute, skip this if a compute
3721         * is already in flight, or if the stripe contents are in the
3722         * midst of changing due to a write
3723         */
3724        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3725            !sh->reconstruct_state) {
3726
3727                /*
3728                 * For degraded stripe with data in journal, do not handle
3729                 * read requests yet, instead, flush the stripe to raid
3730                 * disks first, this avoids handling complex rmw of write
3731                 * back cache (prexor with orig_page, and then xor with
3732                 * page) in the read path
3733                 */
3734                if (s->injournal && s->failed) {
3735                        if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3736                                r5c_make_stripe_write_out(sh);
3737                        goto out;
3738                }
3739
3740                for (i = disks; i--; )
3741                        if (fetch_block(sh, s, i, disks))
3742                                break;
3743        }
3744out:
3745        set_bit(STRIPE_HANDLE, &sh->state);
3746}
3747
3748static void break_stripe_batch_list(struct stripe_head *head_sh,
3749                                    unsigned long handle_flags);
3750/* handle_stripe_clean_event
3751 * any written block on an uptodate or failed drive can be returned.
3752 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3753 * never LOCKED, so we don't need to test 'failed' directly.
3754 */
3755static void handle_stripe_clean_event(struct r5conf *conf,
3756        struct stripe_head *sh, int disks)
3757{
3758        int i;
3759        struct r5dev *dev;
3760        int discard_pending = 0;
3761        struct stripe_head *head_sh = sh;
3762        bool do_endio = false;
3763
3764        for (i = disks; i--; )
3765                if (sh->dev[i].written) {
3766                        dev = &sh->dev[i];
3767                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3768                            (test_bit(R5_UPTODATE, &dev->flags) ||
3769                             test_bit(R5_Discard, &dev->flags) ||
3770                             test_bit(R5_SkipCopy, &dev->flags))) {
3771                                /* We can return any write requests */
3772                                struct bio *wbi, *wbi2;
3773                                pr_debug("Return write for disc %d\n", i);
3774                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3775                                        clear_bit(R5_UPTODATE, &dev->flags);
3776                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3777                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3778                                }
3779                                do_endio = true;
3780
3781returnbi:
3782                                dev->page = dev->orig_page;
3783                                wbi = dev->written;
3784                                dev->written = NULL;
3785                                while (wbi && wbi->bi_iter.bi_sector <
3786                                        dev->sector + STRIPE_SECTORS) {
3787                                        wbi2 = r5_next_bio(wbi, dev->sector);
3788                                        md_write_end(conf->mddev);
3789                                        bio_endio(wbi);
3790                                        wbi = wbi2;
3791                                }
3792                                md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3793                                                   STRIPE_SECTORS,
3794                                                   !test_bit(STRIPE_DEGRADED, &sh->state),
3795                                                   0);
3796                                if (head_sh->batch_head) {
3797                                        sh = list_first_entry(&sh->batch_list,
3798                                                              struct stripe_head,
3799                                                              batch_list);
3800                                        if (sh != head_sh) {
3801                                                dev = &sh->dev[i];
3802                                                goto returnbi;
3803                                        }
3804                                }
3805                                sh = head_sh;
3806                                dev = &sh->dev[i];
3807                        } else if (test_bit(R5_Discard, &dev->flags))
3808                                discard_pending = 1;
3809                }
3810
3811        log_stripe_write_finished(sh);
3812
3813        if (!discard_pending &&
3814            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3815                int hash;
3816                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3817                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3818                if (sh->qd_idx >= 0) {
3819                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3820                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3821                }
3822                /* now that discard is done we can proceed with any sync */
3823                clear_bit(STRIPE_DISCARD, &sh->state);
3824                /*
3825                 * SCSI discard will change some bio fields and the stripe has
3826                 * no updated data, so remove it from hash list and the stripe
3827                 * will be reinitialized
3828                 */
3829unhash:
3830                hash = sh->hash_lock_index;
3831                spin_lock_irq(conf->hash_locks + hash);
3832                remove_hash(sh);
3833                spin_unlock_irq(conf->hash_locks + hash);
3834                if (head_sh->batch_head) {
3835                        sh = list_first_entry(&sh->batch_list,
3836                                              struct stripe_head, batch_list);
3837                        if (sh != head_sh)
3838                                        goto unhash;
3839                }
3840                sh = head_sh;
3841
3842                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3843                        set_bit(STRIPE_HANDLE, &sh->state);
3844
3845        }
3846
3847        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3848                if (atomic_dec_and_test(&conf->pending_full_writes))
3849                        md_wakeup_thread(conf->mddev->thread);
3850
3851        if (head_sh->batch_head && do_endio)
3852                break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3853}
3854
3855/*
3856 * For RMW in write back cache, we need extra page in prexor to store the
3857 * old data. This page is stored in dev->orig_page.
3858 *
3859 * This function checks whether we have data for prexor. The exact logic
3860 * is:
3861 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3862 */
3863static inline bool uptodate_for_rmw(struct r5dev *dev)
3864{
3865        return (test_bit(R5_UPTODATE, &dev->flags)) &&
3866                (!test_bit(R5_InJournal, &dev->flags) ||
3867                 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3868}
3869
3870static int handle_stripe_dirtying(struct r5conf *conf,
3871                                  struct stripe_head *sh,
3872                                  struct stripe_head_state *s,
3873                                  int disks)
3874{
3875        int rmw = 0, rcw = 0, i;
3876        sector_t recovery_cp = conf->mddev->recovery_cp;
3877
3878        /* Check whether resync is now happening or should start.
3879         * If yes, then the array is dirty (after unclean shutdown or
3880         * initial creation), so parity in some stripes might be inconsistent.
3881         * In this case, we need to always do reconstruct-write, to ensure
3882         * that in case of drive failure or read-error correction, we
3883         * generate correct data from the parity.
3884         */
3885        if (conf->rmw_level == PARITY_DISABLE_RMW ||
3886            (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3887             s->failed == 0)) {
3888                /* Calculate the real rcw later - for now make it
3889                 * look like rcw is cheaper
3890                 */
3891                rcw = 1; rmw = 2;
3892                pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3893                         conf->rmw_level, (unsigned long long)recovery_cp,
3894                         (unsigned long long)sh->sector);
3895        } else for (i = disks; i--; ) {
3896                /* would I have to read this buffer for read_modify_write */
3897                struct r5dev *dev = &sh->dev[i];
3898                if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3899                     i == sh->pd_idx || i == sh->qd_idx ||
3900                     test_bit(R5_InJournal, &dev->flags)) &&
3901                    !test_bit(R5_LOCKED, &dev->flags) &&
3902                    !(uptodate_for_rmw(dev) ||
3903                      test_bit(R5_Wantcompute, &dev->flags))) {
3904                        if (test_bit(R5_Insync, &dev->flags))
3905                                rmw++;
3906                        else
3907                                rmw += 2*disks;  /* cannot read it */
3908                }
3909                /* Would I have to read this buffer for reconstruct_write */
3910                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3911                    i != sh->pd_idx && i != sh->qd_idx &&
3912                    !test_bit(R5_LOCKED, &dev->flags) &&
3913                    !(test_bit(R5_UPTODATE, &dev->flags) ||
3914                      test_bit(R5_Wantcompute, &dev->flags))) {
3915                        if (test_bit(R5_Insync, &dev->flags))
3916                                rcw++;
3917                        else
3918                                rcw += 2*disks;
3919                }
3920        }
3921
3922        pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3923                 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3924        set_bit(STRIPE_HANDLE, &sh->state);
3925        if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3926                /* prefer read-modify-write, but need to get some data */
3927                if (conf->mddev->queue)
3928                        blk_add_trace_msg(conf->mddev->queue,
3929                                          "raid5 rmw %llu %d",
3930                                          (unsigned long long)sh->sector, rmw);
3931                for (i = disks; i--; ) {
3932                        struct r5dev *dev = &sh->dev[i];
3933                        if (test_bit(R5_InJournal, &dev->flags) &&
3934                            dev->page == dev->orig_page &&
3935                            !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3936                                /* alloc page for prexor */
3937                                struct page *p = alloc_page(GFP_NOIO);
3938
3939                                if (p) {
3940                                        dev->orig_page = p;
3941                                        continue;
3942                                }
3943
3944                                /*
3945                                 * alloc_page() failed, try use
3946                                 * disk_info->extra_page
3947                                 */
3948                                if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3949                                                      &conf->cache_state)) {
3950                                        r5c_use_extra_page(sh);
3951                                        break;
3952                                }
3953
3954                                /* extra_page in use, add to delayed_list */
3955                                set_bit(STRIPE_DELAYED, &sh->state);
3956                                s->waiting_extra_page = 1;
3957                                return -EAGAIN;
3958                        }
3959                }
3960
3961                for (i = disks; i--; ) {
3962                        struct r5dev *dev = &sh->dev[i];
3963                        if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3964                             i == sh->pd_idx || i == sh->qd_idx ||
3965                             test_bit(R5_InJournal, &dev->flags)) &&
3966                            !test_bit(R5_LOCKED, &dev->flags) &&
3967                            !(uptodate_for_rmw(dev) ||
3968                              test_bit(R5_Wantcompute, &dev->flags)) &&
3969                            test_bit(R5_Insync, &dev->flags)) {
3970                                if (test_bit(STRIPE_PREREAD_ACTIVE,
3971                                             &sh->state)) {
3972                                        pr_debug("Read_old block %d for r-m-w\n",
3973                                                 i);
3974                                        set_bit(R5_LOCKED, &dev->flags);
3975                                        set_bit(R5_Wantread, &dev->flags);
3976                                        s->locked++;
3977                                } else {
3978                                        set_bit(STRIPE_DELAYED, &sh->state);
3979                                        set_bit(STRIPE_HANDLE, &sh->state);
3980                                }
3981                        }
3982                }
3983        }
3984        if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3985                /* want reconstruct write, but need to get some data */
3986                int qread =0;
3987                rcw = 0;
3988                for (i = disks; i--; ) {
3989                        struct r5dev *dev = &sh->dev[i];
3990                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3991                            i != sh->pd_idx && i != sh->qd_idx &&
3992                            !test_bit(R5_LOCKED, &dev->flags) &&
3993                            !(test_bit(R5_UPTODATE, &dev->flags) ||
3994                              test_bit(R5_Wantcompute, &dev->flags))) {
3995                                rcw++;
3996                                if (test_bit(R5_Insync, &dev->flags) &&
3997                                    test_bit(STRIPE_PREREAD_ACTIVE,
3998                                             &sh->state)) {
3999                                        pr_debug("Read_old block "
4000                                                "%d for Reconstruct\n", i);
4001                                        set_bit(R5_LOCKED, &dev->flags);
4002                                        set_bit(R5_Wantread, &dev->flags);
4003                                        s->locked++;
4004                                        qread++;
4005                                } else {
4006                                        set_bit(STRIPE_DELAYED, &sh->state);
4007                                        set_bit(STRIPE_HANDLE, &sh->state);
4008                                }
4009                        }
4010                }
4011                if (rcw && conf->mddev->queue)
4012                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4013                                          (unsigned long long)sh->sector,
4014                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4015        }
4016
4017        if (rcw > disks && rmw > disks &&
4018            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4019                set_bit(STRIPE_DELAYED, &sh->state);
4020
4021        /* now if nothing is locked, and if we have enough data,
4022         * we can start a write request
4023         */
4024        /* since handle_stripe can be called at any time we need to handle the
4025         * case where a compute block operation has been submitted and then a
4026         * subsequent call wants to start a write request.  raid_run_ops only
4027         * handles the case where compute block and reconstruct are requested
4028         * simultaneously.  If this is not the case then new writes need to be
4029         * held off until the compute completes.
4030         */
4031        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4032            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4033             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4034                schedule_reconstruction(sh, s, rcw == 0, 0);
4035        return 0;
4036}
4037
4038static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4039                                struct stripe_head_state *s, int disks)
4040{
4041        struct r5dev *dev = NULL;
4042
4043        BUG_ON(sh->batch_head);
4044        set_bit(STRIPE_HANDLE, &sh->state);
4045
4046        switch (sh->check_state) {
4047        case check_state_idle:
4048                /* start a new check operation if there are no failures */
4049                if (s->failed == 0) {
4050                        BUG_ON(s->uptodate != disks);
4051                        sh->check_state = check_state_run;
4052                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4053                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4054                        s->uptodate--;
4055                        break;
4056                }
4057                dev = &sh->dev[s->failed_num[0]];
4058                /* fall through */
4059        case check_state_compute_result:
4060                sh->check_state = check_state_idle;
4061                if (!dev)
4062                        dev = &sh->dev[sh->pd_idx];
4063
4064                /* check that a write has not made the stripe insync */
4065                if (test_bit(STRIPE_INSYNC, &sh->state))
4066                        break;
4067
4068                /* either failed parity check, or recovery is happening */
4069                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4070                BUG_ON(s->uptodate != disks);
4071
4072                set_bit(R5_LOCKED, &dev->flags);
4073                s->locked++;
4074                set_bit(R5_Wantwrite, &dev->flags);
4075
4076                clear_bit(STRIPE_DEGRADED, &sh->state);
4077                set_bit(STRIPE_INSYNC, &sh->state);
4078                break;
4079        case check_state_run:
4080                break; /* we will be called again upon completion */
4081        case check_state_check_result:
4082                sh->check_state = check_state_idle;
4083
4084                /* if a failure occurred during the check operation, leave
4085                 * STRIPE_INSYNC not set and let the stripe be handled again
4086                 */
4087                if (s->failed)
4088                        break;
4089
4090                /* handle a successful check operation, if parity is correct
4091                 * we are done.  Otherwise update the mismatch count and repair
4092                 * parity if !MD_RECOVERY_CHECK
4093                 */
4094                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4095                        /* parity is correct (on disc,
4096                         * not in buffer any more)
4097                         */
4098                        set_bit(STRIPE_INSYNC, &sh->state);
4099                else {
4100                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4101                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4102                                /* don't try to repair!! */
4103                                set_bit(STRIPE_INSYNC, &sh->state);
4104                                pr_warn_ratelimited("%s: mismatch sector in range "
4105                                                    "%llu-%llu\n", mdname(conf->mddev),
4106                                                    (unsigned long long) sh->sector,
4107                                                    (unsigned long long) sh->sector +
4108                                                    STRIPE_SECTORS);
4109                        } else {
4110                                sh->check_state = check_state_compute_run;
4111                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4112                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4113                                set_bit(R5_Wantcompute,
4114                                        &sh->dev[sh->pd_idx].flags);
4115                                sh->ops.target = sh->pd_idx;
4116                                sh->ops.target2 = -1;
4117                                s->uptodate++;
4118                        }
4119                }
4120                break;
4121        case check_state_compute_run:
4122                break;
4123        default:
4124                pr_err("%s: unknown check_state: %d sector: %llu\n",
4125                       __func__, sh->check_state,
4126                       (unsigned long long) sh->sector);
4127                BUG();
4128        }
4129}
4130
4131static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4132                                  struct stripe_head_state *s,
4133                                  int disks)
4134{
4135        int pd_idx = sh->pd_idx;
4136        int qd_idx = sh->qd_idx;
4137        struct r5dev *dev;
4138
4139        BUG_ON(sh->batch_head);
4140        set_bit(STRIPE_HANDLE, &sh->state);
4141
4142        BUG_ON(s->failed > 2);
4143
4144        /* Want to check and possibly repair P and Q.
4145         * However there could be one 'failed' device, in which
4146         * case we can only check one of them, possibly using the
4147         * other to generate missing data
4148         */
4149
4150        switch (sh->check_state) {
4151        case check_state_idle:
4152                /* start a new check operation if there are < 2 failures */
4153                if (s->failed == s->q_failed) {
4154                        /* The only possible failed device holds Q, so it
4155                         * makes sense to check P (If anything else were failed,
4156                         * we would have used P to recreate it).
4157                         */
4158                        sh->check_state = check_state_run;
4159                }
4160                if (!s->q_failed && s->failed < 2) {
4161                        /* Q is not failed, and we didn't use it to generate
4162                         * anything, so it makes sense to check it
4163                         */
4164                        if (sh->check_state == check_state_run)
4165                                sh->check_state = check_state_run_pq;
4166                        else
4167                                sh->check_state = check_state_run_q;
4168                }
4169
4170                /* discard potentially stale zero_sum_result */
4171                sh->ops.zero_sum_result = 0;
4172
4173                if (sh->check_state == check_state_run) {
4174                        /* async_xor_zero_sum destroys the contents of P */
4175                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4176                        s->uptodate--;
4177                }
4178                if (sh->check_state >= check_state_run &&
4179                    sh->check_state <= check_state_run_pq) {
4180                        /* async_syndrome_zero_sum preserves P and Q, so
4181                         * no need to mark them !uptodate here
4182                         */
4183                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4184                        break;
4185                }
4186
4187                /* we have 2-disk failure */
4188                BUG_ON(s->failed != 2);
4189                /* fall through */
4190        case check_state_compute_result:
4191                sh->check_state = check_state_idle;
4192
4193                /* check that a write has not made the stripe insync */
4194                if (test_bit(STRIPE_INSYNC, &sh->state))
4195                        break;
4196
4197                /* now write out any block on a failed drive,
4198                 * or P or Q if they were recomputed
4199                 */
4200                BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4201                if (s->failed == 2) {
4202                        dev = &sh->dev[s->failed_num[1]];
4203                        s->locked++;
4204                        set_bit(R5_LOCKED, &dev->flags);
4205                        set_bit(R5_Wantwrite, &dev->flags);
4206                }
4207                if (s->failed >= 1) {
4208                        dev = &sh->dev[s->failed_num[0]];
4209                        s->locked++;
4210                        set_bit(R5_LOCKED, &dev->flags);
4211                        set_bit(R5_Wantwrite, &dev->flags);
4212                }
4213                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4214                        dev = &sh->dev[pd_idx];
4215                        s->locked++;
4216                        set_bit(R5_LOCKED, &dev->flags);
4217                        set_bit(R5_Wantwrite, &dev->flags);
4218                }
4219                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4220                        dev = &sh->dev[qd_idx];
4221                        s->locked++;
4222                        set_bit(R5_LOCKED, &dev->flags);
4223                        set_bit(R5_Wantwrite, &dev->flags);
4224                }
4225                clear_bit(STRIPE_DEGRADED, &sh->state);
4226
4227                set_bit(STRIPE_INSYNC, &sh->state);
4228                break;
4229        case check_state_run:
4230        case check_state_run_q:
4231        case check_state_run_pq:
4232                break; /* we will be called again upon completion */
4233        case check_state_check_result:
4234                sh->check_state = check_state_idle;
4235
4236                /* handle a successful check operation, if parity is correct
4237                 * we are done.  Otherwise update the mismatch count and repair
4238                 * parity if !MD_RECOVERY_CHECK
4239                 */
4240                if (sh->ops.zero_sum_result == 0) {
4241                        /* both parities are correct */
4242                        if (!s->failed)
4243                                set_bit(STRIPE_INSYNC, &sh->state);
4244                        else {
4245                                /* in contrast to the raid5 case we can validate
4246                                 * parity, but still have a failure to write
4247                                 * back
4248                                 */
4249                                sh->check_state = check_state_compute_result;
4250                                /* Returning at this point means that we may go
4251                                 * off and bring p and/or q uptodate again so
4252                                 * we make sure to check zero_sum_result again
4253                                 * to verify if p or q need writeback
4254                                 */
4255                        }
4256                } else {
4257                        atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4258                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4259                                /* don't try to repair!! */
4260                                set_bit(STRIPE_INSYNC, &sh->state);
4261                                pr_warn_ratelimited("%s: mismatch sector in range "
4262                                                    "%llu-%llu\n", mdname(conf->mddev),
4263                                                    (unsigned long long) sh->sector,
4264                                                    (unsigned long long) sh->sector +
4265                                                    STRIPE_SECTORS);
4266                        } else {
4267                                int *target = &sh->ops.target;
4268
4269                                sh->ops.target = -1;
4270                                sh->ops.target2 = -1;
4271                                sh->check_state = check_state_compute_run;
4272                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4273                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4274                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4275                                        set_bit(R5_Wantcompute,
4276                                                &sh->dev[pd_idx].flags);
4277                                        *target = pd_idx;
4278                                        target = &sh->ops.target2;
4279                                        s->uptodate++;
4280                                }
4281                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4282                                        set_bit(R5_Wantcompute,
4283                                                &sh->dev[qd_idx].flags);
4284                                        *target = qd_idx;
4285                                        s->uptodate++;
4286                                }
4287                        }
4288                }
4289                break;
4290        case check_state_compute_run:
4291                break;
4292        default:
4293                pr_warn("%s: unknown check_state: %d sector: %llu\n",
4294                        __func__, sh->check_state,
4295                        (unsigned long long) sh->sector);
4296                BUG();
4297        }
4298}
4299
4300static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4301{
4302        int i;
4303
4304        /* We have read all the blocks in this stripe and now we need to
4305         * copy some of them into a target stripe for expand.
4306         */
4307        struct dma_async_tx_descriptor *tx = NULL;
4308        BUG_ON(sh->batch_head);
4309        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4310        for (i = 0; i < sh->disks; i++)
4311                if (i != sh->pd_idx && i != sh->qd_idx) {
4312                        int dd_idx, j;
4313                        struct stripe_head *sh2;
4314                        struct async_submit_ctl submit;
4315
4316                        sector_t bn = raid5_compute_blocknr(sh, i, 1);
4317                        sector_t s = raid5_compute_sector(conf, bn, 0,
4318                                                          &dd_idx, NULL);
4319                        sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4320                        if (sh2 == NULL)
4321                                /* so far only the early blocks of this stripe
4322                                 * have been requested.  When later blocks
4323                                 * get requested, we will try again
4324                                 */
4325                                continue;
4326                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4327                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4328                                /* must have already done this block */
4329                                raid5_release_stripe(sh2);
4330                                continue;
4331                        }
4332
4333                        /* place all the copies on one channel */
4334                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4335                        tx = async_memcpy(sh2->dev[dd_idx].page,
4336                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
4337                                          &submit);
4338
4339                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4340                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4341                        for (j = 0; j < conf->raid_disks; j++)
4342                                if (j != sh2->pd_idx &&
4343                                    j != sh2->qd_idx &&
4344                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4345                                        break;
4346                        if (j == conf->raid_disks) {
4347                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
4348                                set_bit(STRIPE_HANDLE, &sh2->state);
4349                        }
4350                        raid5_release_stripe(sh2);
4351
4352                }
4353        /* done submitting copies, wait for them to complete */
4354        async_tx_quiesce(&tx);
4355}
4356
4357/*
4358 * handle_stripe - do things to a stripe.
4359 *
4360 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4361 * state of various bits to see what needs to be done.
4362 * Possible results:
4363 *    return some read requests which now have data
4364 *    return some write requests which are safely on storage
4365 *    schedule a read on some buffers
4366 *    schedule a write of some buffers
4367 *    return confirmation of parity correctness
4368 *
4369 */
4370
4371static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4372{
4373        struct r5conf *conf = sh->raid_conf;
4374        int disks = sh->disks;
4375        struct r5dev *dev;
4376        int i;
4377        int do_recovery = 0;
4378
4379        memset(s, 0, sizeof(*s));
4380
4381        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4382        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4383        s->failed_num[0] = -1;
4384        s->failed_num[1] = -1;
4385        s->log_failed = r5l_log_disk_error(conf);
4386
4387        /* Now to look around and see what can be done */
4388        rcu_read_lock();
4389        for (i=disks; i--; ) {
4390                struct md_rdev *rdev;
4391                sector_t first_bad;
4392                int bad_sectors;
4393                int is_bad = 0;
4394
4395                dev = &sh->dev[i];
4396
4397                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4398                         i, dev->flags,
4399                         dev->toread, dev->towrite, dev->written);
4400                /* maybe we can reply to a read
4401                 *
4402                 * new wantfill requests are only permitted while
4403                 * ops_complete_biofill is guaranteed to be inactive
4404                 */
4405                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4406                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4407                        set_bit(R5_Wantfill, &dev->flags);
4408
4409                /* now count some things */
4410                if (test_bit(R5_LOCKED, &dev->flags))
4411                        s->locked++;
4412                if (test_bit(R5_UPTODATE, &dev->flags))
4413                        s->uptodate++;
4414                if (test_bit(R5_Wantcompute, &dev->flags)) {
4415                        s->compute++;
4416                        BUG_ON(s->compute > 2);
4417                }
4418
4419                if (test_bit(R5_Wantfill, &dev->flags))
4420                        s->to_fill++;
4421                else if (dev->toread)
4422                        s->to_read++;
4423                if (dev->towrite) {
4424                        s->to_write++;
4425                        if (!test_bit(R5_OVERWRITE, &dev->flags))
4426                                s->non_overwrite++;
4427                }
4428                if (dev->written)
4429                        s->written++;
4430                /* Prefer to use the replacement for reads, but only
4431                 * if it is recovered enough and has no bad blocks.
4432                 */
4433                rdev = rcu_dereference(conf->disks[i].replacement);
4434                if (rdev && !test_bit(Faulty, &rdev->flags) &&
4435                    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4436                    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4437                                 &first_bad, &bad_sectors))
4438                        set_bit(R5_ReadRepl, &dev->flags);
4439                else {
4440                        if (rdev && !test_bit(Faulty, &rdev->flags))
4441                                set_bit(R5_NeedReplace, &dev->flags);
4442                        else
4443                                clear_bit(R5_NeedReplace, &dev->flags);
4444                        rdev = rcu_dereference(conf->disks[i].rdev);
4445                        clear_bit(R5_ReadRepl, &dev->flags);
4446                }
4447                if (rdev && test_bit(Faulty, &rdev->flags))
4448                        rdev = NULL;
4449                if (rdev) {
4450                        is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4451                                             &first_bad, &bad_sectors);
4452                        if (s->blocked_rdev == NULL
4453                            && (test_bit(Blocked, &rdev->flags)
4454                                || is_bad < 0)) {
4455                                if (is_bad < 0)
4456                                        set_bit(BlockedBadBlocks,
4457                                                &rdev->flags);
4458                                s->blocked_rdev = rdev;
4459                                atomic_inc(&rdev->nr_pending);
4460                        }
4461                }
4462                clear_bit(R5_Insync, &dev->flags);
4463                if (!rdev)
4464                        /* Not in-sync */;
4465                else if (is_bad) {
4466                        /* also not in-sync */
4467                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4468                            test_bit(R5_UPTODATE, &dev->flags)) {
4469                                /* treat as in-sync, but with a read error
4470                                 * which we can now try to correct
4471                                 */
4472                                set_bit(R5_Insync, &dev->flags);
4473                                set_bit(R5_ReadError, &dev->flags);
4474                        }
4475                } else if (test_bit(In_sync, &rdev->flags))
4476                        set_bit(R5_Insync, &dev->flags);
4477                else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4478                        /* in sync if before recovery_offset */
4479                        set_bit(R5_Insync, &dev->flags);
4480                else if (test_bit(R5_UPTODATE, &dev->flags) &&
4481                         test_bit(R5_Expanded, &dev->flags))
4482                        /* If we've reshaped into here, we assume it is Insync.
4483                         * We will shortly update recovery_offset to make
4484                         * it official.
4485                         */
4486                        set_bit(R5_Insync, &dev->flags);
4487
4488                if (test_bit(R5_WriteError, &dev->flags)) {
4489                        /* This flag does not apply to '.replacement'
4490                         * only to .rdev, so make sure to check that*/
4491                        struct md_rdev *rdev2 = rcu_dereference(
4492                                conf->disks[i].rdev);
4493                        if (rdev2 == rdev)
4494                                clear_bit(R5_Insync, &dev->flags);
4495                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4496                                s->handle_bad_blocks = 1;
4497                                atomic_inc(&rdev2->nr_pending);
4498                        } else
4499                                clear_bit(R5_WriteError, &dev->flags);
4500                }
4501                if (test_bit(R5_MadeGood, &dev->flags)) {
4502                        /* This flag does not apply to '.replacement'
4503                         * only to .rdev, so make sure to check that*/
4504                        struct md_rdev *rdev2 = rcu_dereference(
4505                                conf->disks[i].rdev);
4506                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4507                                s->handle_bad_blocks = 1;
4508                                atomic_inc(&rdev2->nr_pending);
4509                        } else
4510                                clear_bit(R5_MadeGood, &dev->flags);
4511                }
4512                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4513                        struct md_rdev *rdev2 = rcu_dereference(
4514                                conf->disks[i].replacement);
4515                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4516                                s->handle_bad_blocks = 1;
4517                                atomic_inc(&rdev2->nr_pending);
4518                        } else
4519                                clear_bit(R5_MadeGoodRepl, &dev->flags);
4520                }
4521                if (!test_bit(R5_Insync, &dev->flags)) {
4522                        /* The ReadError flag will just be confusing now */
4523                        clear_bit(R5_ReadError, &dev->flags);
4524                        clear_bit(R5_ReWrite, &dev->flags);
4525                }
4526                if (test_bit(R5_ReadError, &dev->flags))
4527                        clear_bit(R5_Insync, &dev->flags);
4528                if (!test_bit(R5_Insync, &dev->flags)) {
4529                        if (s->failed < 2)
4530                                s->failed_num[s->failed] = i;
4531                        s->failed++;
4532                        if (rdev && !test_bit(Faulty, &rdev->flags))
4533                                do_recovery = 1;
4534                        else if (!rdev) {
4535                                rdev = rcu_dereference(
4536                                    conf->disks[i].replacement);
4537                                if (rdev && !test_bit(Faulty, &rdev->flags))
4538                                        do_recovery = 1;
4539                        }
4540                }
4541
4542                if (test_bit(R5_InJournal, &dev->flags))
4543                        s->injournal++;
4544                if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4545                        s->just_cached++;
4546        }
4547        if (test_bit(STRIPE_SYNCING, &sh->state)) {
4548                /* If there is a failed device being replaced,
4549                 *     we must be recovering.
4550                 * else if we are after recovery_cp, we must be syncing
4551                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4552                 * else we can only be replacing
4553                 * sync and recovery both need to read all devices, and so
4554                 * use the same flag.
4555                 */
4556                if (do_recovery ||
4557                    sh->sector >= conf->mddev->recovery_cp ||
4558                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4559                        s->syncing = 1;
4560                else
4561                        s->replacing = 1;
4562        }
4563        rcu_read_unlock();
4564}
4565
4566static int clear_batch_ready(struct stripe_head *sh)
4567{
4568        /* Return '1' if this is a member of batch, or
4569         * '0' if it is a lone stripe or a head which can now be
4570         * handled.
4571         */
4572        struct stripe_head *tmp;
4573        if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4574                return (sh->batch_head && sh->batch_head != sh);
4575        spin_lock(&sh->stripe_lock);
4576        if (!sh->batch_head) {
4577                spin_unlock(&sh->stripe_lock);
4578                return 0;
4579        }
4580
4581        /*
4582         * this stripe could be added to a batch list before we check
4583         * BATCH_READY, skips it
4584         */
4585        if (sh->batch_head != sh) {
4586                spin_unlock(&sh->stripe_lock);
4587                return 1;
4588        }
4589        spin_lock(&sh->batch_lock);
4590        list_for_each_entry(tmp, &sh->batch_list, batch_list)
4591                clear_bit(STRIPE_BATCH_READY, &tmp->state);
4592        spin_unlock(&sh->batch_lock);
4593        spin_unlock(&sh->stripe_lock);
4594
4595        /*
4596         * BATCH_READY is cleared, no new stripes can be added.
4597         * batch_list can be accessed without lock
4598         */
4599        return 0;
4600}
4601
4602static void break_stripe_batch_list(struct stripe_head *head_sh,
4603                                    unsigned long handle_flags)
4604{
4605        struct stripe_head *sh, *next;
4606        int i;
4607        int do_wakeup = 0;
4608
4609        list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4610
4611                list_del_init(&sh->batch_list);
4612
4613                WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4614                                          (1 << STRIPE_SYNCING) |
4615                                          (1 << STRIPE_REPLACED) |
4616                                          (1 << STRIPE_DELAYED) |
4617                                          (1 << STRIPE_BIT_DELAY) |
4618                                          (1 << STRIPE_FULL_WRITE) |
4619                                          (1 << STRIPE_BIOFILL_RUN) |
4620                                          (1 << STRIPE_COMPUTE_RUN)  |
4621                                          (1 << STRIPE_OPS_REQ_PENDING) |
4622                                          (1 << STRIPE_DISCARD) |
4623                                          (1 << STRIPE_BATCH_READY) |
4624                                          (1 << STRIPE_BATCH_ERR) |
4625                                          (1 << STRIPE_BITMAP_PENDING)),
4626                        "stripe state: %lx\n", sh->state);
4627                WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4628                                              (1 << STRIPE_REPLACED)),
4629                        "head stripe state: %lx\n", head_sh->state);
4630
4631                set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4632                                            (1 << STRIPE_PREREAD_ACTIVE) |
4633                                            (1 << STRIPE_DEGRADED) |
4634                                            (1 << STRIPE_ON_UNPLUG_LIST)),
4635                              head_sh->state & (1 << STRIPE_INSYNC));
4636
4637                sh->check_state = head_sh->check_state;
4638                sh->reconstruct_state = head_sh->reconstruct_state;
4639                spin_lock_irq(&sh->stripe_lock);
4640                sh->batch_head = NULL;
4641                spin_unlock_irq(&sh->stripe_lock);
4642                for (i = 0; i < sh->disks; i++) {
4643                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4644                                do_wakeup = 1;
4645                        sh->dev[i].flags = head_sh->dev[i].flags &
4646                                (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4647                }
4648                if (handle_flags == 0 ||
4649                    sh->state & handle_flags)
4650                        set_bit(STRIPE_HANDLE, &sh->state);
4651                raid5_release_stripe(sh);
4652        }
4653        spin_lock_irq(&head_sh->stripe_lock);
4654        head_sh->batch_head = NULL;
4655        spin_unlock_irq(&head_sh->stripe_lock);
4656        for (i = 0; i < head_sh->disks; i++)
4657                if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4658                        do_wakeup = 1;
4659        if (head_sh->state & handle_flags)
4660                set_bit(STRIPE_HANDLE, &head_sh->state);
4661
4662        if (do_wakeup)
4663                wake_up(&head_sh->raid_conf->wait_for_overlap);
4664}
4665
4666static void handle_stripe(struct stripe_head *sh)
4667{
4668        struct stripe_head_state s;
4669        struct r5conf *conf = sh->raid_conf;
4670        int i;
4671        int prexor;
4672        int disks = sh->disks;
4673        struct r5dev *pdev, *qdev;
4674
4675        clear_bit(STRIPE_HANDLE, &sh->state);
4676        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4677                /* already being handled, ensure it gets handled
4678                 * again when current action finishes */
4679                set_bit(STRIPE_HANDLE, &sh->state);
4680                return;
4681        }
4682
4683        if (clear_batch_ready(sh) ) {
4684                clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4685                return;
4686        }
4687
4688        if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4689                break_stripe_batch_list(sh, 0);
4690
4691        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4692                spin_lock(&sh->stripe_lock);
4693                /*
4694                 * Cannot process 'sync' concurrently with 'discard'.
4695                 * Flush data in r5cache before 'sync'.
4696                 */
4697                if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4698                    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4699                    !test_bit(STRIPE_DISCARD, &sh->state) &&
4700                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4701                        set_bit(STRIPE_SYNCING, &sh->state);
4702                        clear_bit(STRIPE_INSYNC, &sh->state);
4703                        clear_bit(STRIPE_REPLACED, &sh->state);
4704                }
4705                spin_unlock(&sh->stripe_lock);
4706        }
4707        clear_bit(STRIPE_DELAYED, &sh->state);
4708
4709        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4710                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4711               (unsigned long long)sh->sector, sh->state,
4712               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4713               sh->check_state, sh->reconstruct_state);
4714
4715        analyse_stripe(sh, &s);
4716
4717        if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4718                goto finish;
4719
4720        if (s.handle_bad_blocks ||
4721            test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4722                set_bit(STRIPE_HANDLE, &sh->state);
4723                goto finish;
4724        }
4725
4726        if (unlikely(s.blocked_rdev)) {
4727                if (s.syncing || s.expanding || s.expanded ||
4728                    s.replacing || s.to_write || s.written) {
4729                        set_bit(STRIPE_HANDLE, &sh->state);
4730                        goto finish;
4731                }
4732                /* There is nothing for the blocked_rdev to block */
4733                rdev_dec_pending(s.blocked_rdev, conf->mddev);
4734                s.blocked_rdev = NULL;
4735        }
4736
4737        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4738                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4739                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4740        }
4741
4742        pr_debug("locked=%d uptodate=%d to_read=%d"
4743               " to_write=%d failed=%d failed_num=%d,%d\n",
4744               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4745               s.failed_num[0], s.failed_num[1]);
4746        /*
4747         * check if the array has lost more than max_degraded devices and,
4748         * if so, some requests might need to be failed.
4749         *
4750         * When journal device failed (log_failed), we will only process
4751         * the stripe if there is data need write to raid disks
4752         */
4753        if (s.failed > conf->max_degraded ||
4754            (s.log_failed && s.injournal == 0)) {
4755                sh->check_state = 0;
4756                sh->reconstruct_state = 0;
4757                break_stripe_batch_list(sh, 0);
4758                if (s.to_read+s.to_write+s.written)
4759                        handle_failed_stripe(conf, sh, &s, disks);
4760                if (s.syncing + s.replacing)
4761                        handle_failed_sync(conf, sh, &s);
4762        }
4763
4764        /* Now we check to see if any write operations have recently
4765         * completed
4766         */
4767        prexor = 0;
4768        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4769                prexor = 1;
4770        if (sh->reconstruct_state == reconstruct_state_drain_result ||
4771            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4772                sh->reconstruct_state = reconstruct_state_idle;
4773
4774                /* All the 'written' buffers and the parity block are ready to
4775                 * be written back to disk
4776                 */
4777                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4778                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4779                BUG_ON(sh->qd_idx >= 0 &&
4780                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4781                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4782                for (i = disks; i--; ) {
4783                        struct r5dev *dev = &sh->dev[i];
4784                        if (test_bit(R5_LOCKED, &dev->flags) &&
4785                                (i == sh->pd_idx || i == sh->qd_idx ||
4786                                 dev->written || test_bit(R5_InJournal,
4787                                                          &dev->flags))) {
4788                                pr_debug("Writing block %d\n", i);
4789                                set_bit(R5_Wantwrite, &dev->flags);
4790                                if (prexor)
4791                                        continue;
4792                                if (s.failed > 1)
4793                                        continue;
4794                                if (!test_bit(R5_Insync, &dev->flags) ||
4795                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4796                                     s.failed == 0))
4797                                        set_bit(STRIPE_INSYNC, &sh->state);
4798                        }
4799                }
4800                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4801                        s.dec_preread_active = 1;
4802        }
4803
4804        /*
4805         * might be able to return some write requests if the parity blocks
4806         * are safe, or on a failed drive
4807         */
4808        pdev = &sh->dev[sh->pd_idx];
4809        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4810                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4811        qdev = &sh->dev[sh->qd_idx];
4812        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4813                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4814                || conf->level < 6;
4815
4816        if (s.written &&
4817            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4818                             && !test_bit(R5_LOCKED, &pdev->flags)
4819                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
4820                                 test_bit(R5_Discard, &pdev->flags))))) &&
4821            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4822                             && !test_bit(R5_LOCKED, &qdev->flags)
4823                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
4824                                 test_bit(R5_Discard, &qdev->flags))))))
4825                handle_stripe_clean_event(conf, sh, disks);
4826
4827        if (s.just_cached)
4828                r5c_handle_cached_data_endio(conf, sh, disks);
4829        log_stripe_write_finished(sh);
4830
4831        /* Now we might consider reading some blocks, either to check/generate
4832         * parity, or to satisfy requests
4833         * or to load a block that is being partially written.
4834         */
4835        if (s.to_read || s.non_overwrite
4836            || (conf->level == 6 && s.to_write && s.failed)
4837            || (s.syncing && (s.uptodate + s.compute < disks))
4838            || s.replacing
4839            || s.expanding)
4840                handle_stripe_fill(sh, &s, disks);
4841
4842        /*
4843         * When the stripe finishes full journal write cycle (write to journal
4844         * and raid disk), this is the clean up procedure so it is ready for
4845         * next operation.
4846         */
4847        r5c_finish_stripe_write_out(conf, sh, &s);
4848
4849        /*
4850         * Now to consider new write requests, cache write back and what else,
4851         * if anything should be read.  We do not handle new writes when:
4852         * 1/ A 'write' operation (copy+xor) is already in flight.
4853         * 2/ A 'check' operation is in flight, as it may clobber the parity
4854         *    block.
4855         * 3/ A r5c cache log write is in flight.
4856         */
4857
4858        if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4859                if (!r5c_is_writeback(conf->log)) {
4860                        if (s.to_write)
4861                                handle_stripe_dirtying(conf, sh, &s, disks);
4862                } else { /* write back cache */
4863                        int ret = 0;
4864
4865                        /* First, try handle writes in caching phase */
4866                        if (s.to_write)
4867                                ret = r5c_try_caching_write(conf, sh, &s,
4868                                                            disks);
4869                        /*
4870                         * If caching phase failed: ret == -EAGAIN
4871                         *    OR
4872                         * stripe under reclaim: !caching && injournal
4873                         *
4874                         * fall back to handle_stripe_dirtying()
4875                         */
4876                        if (ret == -EAGAIN ||
4877                            /* stripe under reclaim: !caching && injournal */
4878                            (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4879                             s.injournal > 0)) {
4880                                ret = handle_stripe_dirtying(conf, sh, &s,
4881                                                             disks);
4882                                if (ret == -EAGAIN)
4883                                        goto finish;
4884                        }
4885                }
4886        }
4887
4888        /* maybe we need to check and possibly fix the parity for this stripe
4889         * Any reads will already have been scheduled, so we just see if enough
4890         * data is available.  The parity check is held off while parity
4891         * dependent operations are in flight.
4892         */
4893        if (sh->check_state ||
4894            (s.syncing && s.locked == 0 &&
4895             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4896             !test_bit(STRIPE_INSYNC, &sh->state))) {
4897                if (conf->level == 6)
4898                        handle_parity_checks6(conf, sh, &s, disks);
4899                else
4900                        handle_parity_checks5(conf, sh, &s, disks);
4901        }
4902
4903        if ((s.replacing || s.syncing) && s.locked == 0
4904            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4905            && !test_bit(STRIPE_REPLACED, &sh->state)) {
4906                /* Write out to replacement devices where possible */
4907                for (i = 0; i < conf->raid_disks; i++)
4908                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4909                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4910                                set_bit(R5_WantReplace, &sh->dev[i].flags);
4911                                set_bit(R5_LOCKED, &sh->dev[i].flags);
4912                                s.locked++;
4913                        }
4914                if (s.replacing)
4915                        set_bit(STRIPE_INSYNC, &sh->state);
4916                set_bit(STRIPE_REPLACED, &sh->state);
4917        }
4918        if ((s.syncing || s.replacing) && s.locked == 0 &&
4919            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4920            test_bit(STRIPE_INSYNC, &sh->state)) {
4921                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4922                clear_bit(STRIPE_SYNCING, &sh->state);
4923                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4924                        wake_up(&conf->wait_for_overlap);
4925        }
4926
4927        /* If the failed drives are just a ReadError, then we might need
4928         * to progress the repair/check process
4929         */
4930        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4931                for (i = 0; i < s.failed; i++) {
4932                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
4933                        if (test_bit(R5_ReadError, &dev->flags)
4934                            && !test_bit(R5_LOCKED, &dev->flags)
4935                            && test_bit(R5_UPTODATE, &dev->flags)
4936                                ) {
4937                                if (!test_bit(R5_ReWrite, &dev->flags)) {
4938                                        set_bit(R5_Wantwrite, &dev->flags);
4939                                        set_bit(R5_ReWrite, &dev->flags);
4940                                        set_bit(R5_LOCKED, &dev->flags);
4941                                        s.locked++;
4942                                } else {
4943                                        /* let's read it back */
4944                                        set_bit(R5_Wantread, &dev->flags);
4945                                        set_bit(R5_LOCKED, &dev->flags);
4946                                        s.locked++;
4947                                }
4948                        }
4949                }
4950
4951        /* Finish reconstruct operations initiated by the expansion process */
4952        if (sh->reconstruct_state == reconstruct_state_result) {
4953                struct stripe_head *sh_src
4954                        = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4955                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4956                        /* sh cannot be written until sh_src has been read.
4957                         * so arrange for sh to be delayed a little
4958                         */
4959                        set_bit(STRIPE_DELAYED, &sh->state);
4960                        set_bit(STRIPE_HANDLE, &sh->state);
4961                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4962                                              &sh_src->state))
4963                                atomic_inc(&conf->preread_active_stripes);
4964                        raid5_release_stripe(sh_src);
4965                        goto finish;
4966                }
4967                if (sh_src)
4968                        raid5_release_stripe(sh_src);
4969
4970                sh->reconstruct_state = reconstruct_state_idle;
4971                clear_bit(STRIPE_EXPANDING, &sh->state);
4972                for (i = conf->raid_disks; i--; ) {
4973                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
4974                        set_bit(R5_LOCKED, &sh->dev[i].flags);
4975                        s.locked++;
4976                }
4977        }
4978
4979        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4980            !sh->reconstruct_state) {
4981                /* Need to write out all blocks after computing parity */
4982                sh->disks = conf->raid_disks;
4983                stripe_set_idx(sh->sector, conf, 0, sh);
4984                schedule_reconstruction(sh, &s, 1, 1);
4985        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4986                clear_bit(STRIPE_EXPAND_READY, &sh->state);
4987                atomic_dec(&conf->reshape_stripes);
4988                wake_up(&conf->wait_for_overlap);
4989                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4990        }
4991
4992        if (s.expanding && s.locked == 0 &&
4993            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4994                handle_stripe_expansion(conf, sh);
4995
4996finish:
4997        /* wait for this device to become unblocked */
4998        if (unlikely(s.blocked_rdev)) {
4999                if (conf->mddev->external)
5000                        md_wait_for_blocked_rdev(s.blocked_rdev,
5001                                                 conf->mddev);
5002                else
5003                        /* Internal metadata will immediately
5004                         * be written by raid5d, so we don't
5005                         * need to wait here.
5006                         */
5007                        rdev_dec_pending(s.blocked_rdev,
5008                                         conf->mddev);
5009        }
5010
5011        if (s.handle_bad_blocks)
5012                for (i = disks; i--; ) {
5013                        struct md_rdev *rdev;
5014                        struct r5dev *dev = &sh->dev[i];
5015                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5016                                /* We own a safe reference to the rdev */
5017                                rdev = conf->disks[i].rdev;
5018                                if (!rdev_set_badblocks(rdev, sh->sector,
5019                                                        STRIPE_SECTORS, 0))
5020                                        md_error(conf->mddev, rdev);
5021                                rdev_dec_pending(rdev, conf->mddev);
5022                        }
5023                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5024                                rdev = conf->disks[i].rdev;
5025                                rdev_clear_badblocks(rdev, sh->sector,
5026                                                     STRIPE_SECTORS, 0);
5027                                rdev_dec_pending(rdev, conf->mddev);
5028                        }
5029                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5030                                rdev = conf->disks[i].replacement;
5031                                if (!rdev)
5032                                        /* rdev have been moved down */
5033                                        rdev = conf->disks[i].rdev;
5034                                rdev_clear_badblocks(rdev, sh->sector,
5035                                                     STRIPE_SECTORS, 0);
5036                                rdev_dec_pending(rdev, conf->mddev);
5037                        }
5038                }
5039
5040        if (s.ops_request)
5041                raid_run_ops(sh, s.ops_request);
5042
5043        ops_run_io(sh, &s);
5044
5045        if (s.dec_preread_active) {
5046                /* We delay this until after ops_run_io so that if make_request
5047                 * is waiting on a flush, it won't continue until the writes
5048                 * have actually been submitted.
5049                 */
5050                atomic_dec(&conf->preread_active_stripes);
5051                if (atomic_read(&conf->preread_active_stripes) <
5052                    IO_THRESHOLD)
5053                        md_wakeup_thread(conf->mddev->thread);
5054        }
5055
5056        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5057}
5058
5059static void raid5_activate_delayed(struct r5conf *conf)
5060{
5061        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5062                while (!list_empty(&conf->delayed_list)) {
5063                        struct list_head *l = conf->delayed_list.next;
5064                        struct stripe_head *sh;
5065                        sh = list_entry(l, struct stripe_head, lru);
5066                        list_del_init(l);
5067                        clear_bit(STRIPE_DELAYED, &sh->state);
5068                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5069                                atomic_inc(&conf->preread_active_stripes);
5070                        list_add_tail(&sh->lru, &conf->hold_list);
5071                        raid5_wakeup_stripe_thread(sh);
5072                }
5073        }
5074}
5075
5076static void activate_bit_delay(struct r5conf *conf,
5077        struct list_head *temp_inactive_list)
5078{
5079        /* device_lock is held */
5080        struct list_head head;
5081        list_add(&head, &conf->bitmap_list);
5082        list_del_init(&conf->bitmap_list);
5083        while (!list_empty(&head)) {
5084                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5085                int hash;
5086                list_del_init(&sh->lru);
5087                atomic_inc(&sh->count);
5088                hash = sh->hash_lock_index;
5089                __release_stripe(conf, sh, &temp_inactive_list[hash]);
5090        }
5091}
5092
5093static int raid5_congested(struct mddev *mddev, int bits)
5094{
5095        struct r5conf *conf = mddev->private;
5096
5097        /* No difference between reads and writes.  Just check
5098         * how busy the stripe_cache is
5099         */
5100
5101        if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5102                return 1;
5103
5104        /* Also checks whether there is pressure on r5cache log space */
5105        if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5106                return 1;
5107        if (conf->quiesce)
5108                return 1;
5109        if (atomic_read(&conf->empty_inactive_list_nr))
5110                return 1;
5111
5112        return 0;
5113}
5114
5115static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5116{
5117        struct r5conf *conf = mddev->private;
5118        sector_t sector = bio->bi_iter.bi_sector;
5119        unsigned int chunk_sectors;
5120        unsigned int bio_sectors = bio_sectors(bio);
5121
5122        WARN_ON_ONCE(bio->bi_partno);
5123
5124        chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5125        return  chunk_sectors >=
5126                ((sector & (chunk_sectors - 1)) + bio_sectors);
5127}
5128
5129/*
5130 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5131 *  later sampled by raid5d.
5132 */
5133static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5134{
5135        unsigned long flags;
5136
5137        spin_lock_irqsave(&conf->device_lock, flags);
5138
5139        bi->bi_next = conf->retry_read_aligned_list;
5140        conf->retry_read_aligned_list = bi;
5141
5142        spin_unlock_irqrestore(&conf->device_lock, flags);
5143        md_wakeup_thread(conf->mddev->thread);
5144}
5145
5146static struct bio *remove_bio_from_retry(struct r5conf *conf,
5147                                         unsigned int *offset)
5148{
5149        struct bio *bi;
5150
5151        bi = conf->retry_read_aligned;
5152        if (bi) {
5153                *offset = conf->retry_read_offset;
5154                conf->retry_read_aligned = NULL;
5155                return bi;
5156        }
5157        bi = conf->retry_read_aligned_list;
5158        if(bi) {
5159                conf->retry_read_aligned_list = bi->bi_next;
5160                bi->bi_next = NULL;
5161                *offset = 0;
5162        }
5163
5164        return bi;
5165}
5166
5167/*
5168 *  The "raid5_align_endio" should check if the read succeeded and if it
5169 *  did, call bio_endio on the original bio (having bio_put the new bio
5170 *  first).
5171 *  If the read failed..
5172 */
5173static void raid5_align_endio(struct bio *bi)
5174{
5175        struct bio* raid_bi  = bi->bi_private;
5176        struct mddev *mddev;
5177        struct r5conf *conf;
5178        struct md_rdev *rdev;
5179        blk_status_t error = bi->bi_status;
5180
5181        bio_put(bi);
5182
5183        rdev = (void*)raid_bi->bi_next;
5184        raid_bi->bi_next = NULL;
5185        mddev = rdev->mddev;
5186        conf = mddev->private;
5187
5188        rdev_dec_pending(rdev, conf->mddev);
5189
5190        if (!error) {
5191                bio_endio(raid_bi);
5192                if (atomic_dec_and_test(&conf->active_aligned_reads))
5193                        wake_up(&conf->wait_for_quiescent);
5194                return;
5195        }
5196
5197        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5198
5199        add_bio_to_retry(raid_bi, conf);
5200}
5201
5202static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5203{
5204        struct r5conf *conf = mddev->private;
5205        int dd_idx;
5206        struct bio* align_bi;
5207        struct md_rdev *rdev;
5208        sector_t end_sector;
5209
5210        if (!in_chunk_boundary(mddev, raid_bio)) {
5211                pr_debug("%s: non aligned\n", __func__);
5212                return 0;
5213        }
5214        /*
5215         * use bio_clone_fast to make a copy of the bio
5216         */
5217        align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5218        if (!align_bi)
5219                return 0;
5220        /*
5221         *   set bi_end_io to a new function, and set bi_private to the
5222         *     original bio.
5223         */
5224        align_bi->bi_end_io  = raid5_align_endio;
5225        align_bi->bi_private = raid_bio;
5226        /*
5227         *      compute position
5228         */
5229        align_bi->bi_iter.bi_sector =
5230                raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5231                                     0, &dd_idx, NULL);
5232
5233        end_sector = bio_end_sector(align_bi);
5234        rcu_read_lock();
5235        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5236        if (!rdev || test_bit(Faulty, &rdev->flags) ||
5237            rdev->recovery_offset < end_sector) {
5238                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5239                if (rdev &&
5240                    (test_bit(Faulty, &rdev->flags) ||
5241                    !(test_bit(In_sync, &rdev->flags) ||
5242                      rdev->recovery_offset >= end_sector)))
5243                        rdev = NULL;
5244        }
5245
5246        if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5247                rcu_read_unlock();
5248                bio_put(align_bi);
5249                return 0;
5250        }
5251
5252        if (rdev) {
5253                sector_t first_bad;
5254                int bad_sectors;
5255
5256                atomic_inc(&rdev->nr_pending);
5257                rcu_read_unlock();
5258                raid_bio->bi_next = (void*)rdev;
5259                bio_set_dev(align_bi, rdev->bdev);
5260                bio_clear_flag(align_bi, BIO_SEG_VALID);
5261
5262                if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5263                                bio_sectors(align_bi),
5264                                &first_bad, &bad_sectors)) {
5265                        bio_put(align_bi);
5266                        rdev_dec_pending(rdev, mddev);
5267                        return 0;
5268                }
5269
5270                /* No reshape active, so we can trust rdev->data_offset */
5271                align_bi->bi_iter.bi_sector += rdev->data_offset;
5272
5273                spin_lock_irq(&conf->device_lock);
5274                wait_event_lock_irq(conf->wait_for_quiescent,
5275                                    conf->quiesce == 0,
5276                                    conf->device_lock);
5277                atomic_inc(&conf->active_aligned_reads);
5278                spin_unlock_irq(&conf->device_lock);
5279
5280                if (mddev->gendisk)
5281                        trace_block_bio_remap(align_bi->bi_disk->queue,
5282                                              align_bi, disk_devt(mddev->gendisk),
5283                                              raid_bio->bi_iter.bi_sector);
5284                generic_make_request(align_bi);
5285                return 1;
5286        } else {
5287                rcu_read_unlock();
5288                bio_put(align_bi);
5289                return 0;
5290        }
5291}
5292
5293static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5294{
5295        struct bio *split;
5296        sector_t sector = raid_bio->bi_iter.bi_sector;
5297        unsigned chunk_sects = mddev->chunk_sectors;
5298        unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5299
5300        if (sectors < bio_sectors(raid_bio)) {
5301                struct r5conf *conf = mddev->private;
5302                split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5303                bio_chain(split, raid_bio);
5304                generic_make_request(raid_bio);
5305                raid_bio = split;
5306        }
5307
5308        if (!raid5_read_one_chunk(mddev, raid_bio))
5309                return raid_bio;
5310
5311        return NULL;
5312}
5313
5314/* __get_priority_stripe - get the next stripe to process
5315 *
5316 * Full stripe writes are allowed to pass preread active stripes up until
5317 * the bypass_threshold is exceeded.  In general the bypass_count
5318 * increments when the handle_list is handled before the hold_list; however, it
5319 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5320 * stripe with in flight i/o.  The bypass_count will be reset when the
5321 * head of the hold_list has changed, i.e. the head was promoted to the
5322 * handle_list.
5323 */
5324static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5325{
5326        struct stripe_head *sh, *tmp;
5327        struct list_head *handle_list = NULL;
5328        struct r5worker_group *wg;
5329        bool second_try = !r5c_is_writeback(conf->log) &&
5330                !r5l_log_disk_error(conf);
5331        bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5332                r5l_log_disk_error(conf);
5333
5334again:
5335        wg = NULL;
5336        sh = NULL;
5337        if (conf->worker_cnt_per_group == 0) {
5338                handle_list = try_loprio ? &conf->loprio_list :
5339                                        &conf->handle_list;
5340        } else if (group != ANY_GROUP) {
5341                handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5342                                &conf->worker_groups[group].handle_list;
5343                wg = &conf->worker_groups[group];
5344        } else {
5345                int i;
5346                for (i = 0; i < conf->group_cnt; i++) {
5347                        handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5348                                &conf->worker_groups[i].handle_list;
5349                        wg = &conf->worker_groups[i];
5350                        if (!list_empty(handle_list))
5351                                break;
5352                }
5353        }
5354
5355        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5356                  __func__,
5357                  list_empty(handle_list) ? "empty" : "busy",
5358                  list_empty(&conf->hold_list) ? "empty" : "busy",
5359                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5360
5361        if (!list_empty(handle_list)) {
5362                sh = list_entry(handle_list->next, typeof(*sh), lru);
5363
5364                if (list_empty(&conf->hold_list))
5365                        conf->bypass_count = 0;
5366                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5367                        if (conf->hold_list.next == conf->last_hold)
5368                                conf->bypass_count++;
5369                        else {
5370                                conf->last_hold = conf->hold_list.next;
5371                                conf->bypass_count -= conf->bypass_threshold;
5372                                if (conf->bypass_count < 0)
5373                                        conf->bypass_count = 0;
5374                        }
5375                }
5376        } else if (!list_empty(&conf->hold_list) &&
5377                   ((conf->bypass_threshold &&
5378                     conf->bypass_count > conf->bypass_threshold) ||
5379                    atomic_read(&conf->pending_full_writes) == 0)) {
5380
5381                list_for_each_entry(tmp, &conf->hold_list,  lru) {
5382                        if (conf->worker_cnt_per_group == 0 ||
5383                            group == ANY_GROUP ||
5384                            !cpu_online(tmp->cpu) ||
5385                            cpu_to_group(tmp->cpu) == group) {
5386                                sh = tmp;
5387                                break;
5388                        }
5389                }
5390
5391                if (sh) {
5392                        conf->bypass_count -= conf->bypass_threshold;
5393                        if (conf->bypass_count < 0)
5394                                conf->bypass_count = 0;
5395                }
5396                wg = NULL;
5397        }
5398
5399        if (!sh) {
5400                if (second_try)
5401                        return NULL;
5402                second_try = true;
5403                try_loprio = !try_loprio;
5404                goto again;
5405        }
5406
5407        if (wg) {
5408                wg->stripes_cnt--;
5409                sh->group = NULL;
5410        }
5411        list_del_init(&sh->lru);
5412        BUG_ON(atomic_inc_return(&sh->count) != 1);
5413        return sh;
5414}
5415
5416struct raid5_plug_cb {
5417        struct blk_plug_cb      cb;
5418        struct list_head        list;
5419        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5420};
5421
5422static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5423{
5424        struct raid5_plug_cb *cb = container_of(
5425                blk_cb, struct raid5_plug_cb, cb);
5426        struct stripe_head *sh;
5427        struct mddev *mddev = cb->cb.data;
5428        struct r5conf *conf = mddev->private;
5429        int cnt = 0;
5430        int hash;
5431
5432        if (cb->list.next && !list_empty(&cb->list)) {
5433                spin_lock_irq(&conf->device_lock);
5434                while (!list_empty(&cb->list)) {
5435                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
5436                        list_del_init(&sh->lru);
5437                        /*
5438                         * avoid race release_stripe_plug() sees
5439                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
5440                         * is still in our list
5441                         */
5442                        smp_mb__before_atomic();
5443                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5444                        /*
5445                         * STRIPE_ON_RELEASE_LIST could be set here. In that
5446                         * case, the count is always > 1 here
5447                         */
5448                        hash = sh->hash_lock_index;
5449                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5450                        cnt++;
5451                }
5452                spin_unlock_irq(&conf->device_lock);
5453        }
5454        release_inactive_stripe_list(conf, cb->temp_inactive_list,
5455                                     NR_STRIPE_HASH_LOCKS);
5456        if (mddev->queue)
5457                trace_block_unplug(mddev->queue, cnt, !from_schedule);
5458        kfree(cb);
5459}
5460
5461static void release_stripe_plug(struct mddev *mddev,
5462                                struct stripe_head *sh)
5463{
5464        struct blk_plug_cb *blk_cb = blk_check_plugged(
5465                raid5_unplug, mddev,
5466                sizeof(struct raid5_plug_cb));
5467        struct raid5_plug_cb *cb;
5468
5469        if (!blk_cb) {
5470                raid5_release_stripe(sh);
5471                return;
5472        }
5473
5474        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5475
5476        if (cb->list.next == NULL) {
5477                int i;
5478                INIT_LIST_HEAD(&cb->list);
5479                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5480                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
5481        }
5482
5483        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5484                list_add_tail(&sh->lru, &cb->list);
5485        else
5486                raid5_release_stripe(sh);
5487}
5488
5489static void make_discard_request(struct mddev *mddev, struct bio *bi)
5490{
5491        struct r5conf *conf = mddev->private;
5492        sector_t logical_sector, last_sector;
5493        struct stripe_head *sh;
5494        int stripe_sectors;
5495
5496        if (mddev->reshape_position != MaxSector)
5497                /* Skip discard while reshape is happening */
5498                return;
5499
5500        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5501        last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5502
5503        bi->bi_next = NULL;
5504
5505        stripe_sectors = conf->chunk_sectors *
5506                (conf->raid_disks - conf->max_degraded);
5507        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5508                                               stripe_sectors);
5509        sector_div(last_sector, stripe_sectors);
5510
5511        logical_sector *= conf->chunk_sectors;
5512        last_sector *= conf->chunk_sectors;
5513
5514        for (; logical_sector < last_sector;
5515             logical_sector += STRIPE_SECTORS) {
5516                DEFINE_WAIT(w);
5517                int d;
5518        again:
5519                sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5520                prepare_to_wait(&conf->wait_for_overlap, &w,
5521                                TASK_UNINTERRUPTIBLE);
5522                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5523                if (test_bit(STRIPE_SYNCING, &sh->state)) {
5524                        raid5_release_stripe(sh);
5525                        schedule();
5526                        goto again;
5527                }
5528                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5529                spin_lock_irq(&sh->stripe_lock);
5530                for (d = 0; d < conf->raid_disks; d++) {
5531                        if (d == sh->pd_idx || d == sh->qd_idx)
5532                                continue;
5533                        if (sh->dev[d].towrite || sh->dev[d].toread) {
5534                                set_bit(R5_Overlap, &sh->dev[d].flags);
5535                                spin_unlock_irq(&sh->stripe_lock);
5536                                raid5_release_stripe(sh);
5537                                schedule();
5538                                goto again;
5539                        }
5540                }
5541                set_bit(STRIPE_DISCARD, &sh->state);
5542                finish_wait(&conf->wait_for_overlap, &w);
5543                sh->overwrite_disks = 0;
5544                for (d = 0; d < conf->raid_disks; d++) {
5545                        if (d == sh->pd_idx || d == sh->qd_idx)
5546                                continue;
5547                        sh->dev[d].towrite = bi;
5548                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5549                        bio_inc_remaining(bi);
5550                        md_write_inc(mddev, bi);
5551                        sh->overwrite_disks++;
5552                }
5553                spin_unlock_irq(&sh->stripe_lock);
5554                if (conf->mddev->bitmap) {
5555                        for (d = 0;
5556                             d < conf->raid_disks - conf->max_degraded;
5557                             d++)
5558                                md_bitmap_startwrite(mddev->bitmap,
5559                                                     sh->sector,
5560                                                     STRIPE_SECTORS,
5561                                                     0);
5562                        sh->bm_seq = conf->seq_flush + 1;
5563                        set_bit(STRIPE_BIT_DELAY, &sh->state);
5564                }
5565
5566                set_bit(STRIPE_HANDLE, &sh->state);
5567                clear_bit(STRIPE_DELAYED, &sh->state);
5568                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5569                        atomic_inc(&conf->preread_active_stripes);
5570                release_stripe_plug(mddev, sh);
5571        }
5572
5573        bio_endio(bi);
5574}
5575
5576static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5577{
5578        struct r5conf *conf = mddev->private;
5579        int dd_idx;
5580        sector_t new_sector;
5581        sector_t logical_sector, last_sector;
5582        struct stripe_head *sh;
5583        const int rw = bio_data_dir(bi);
5584        DEFINE_WAIT(w);
5585        bool do_prepare;
5586        bool do_flush = false;
5587
5588        if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5589                int ret = log_handle_flush_request(conf, bi);
5590
5591                if (ret == 0)
5592                        return true;
5593                if (ret == -ENODEV) {
5594                        md_flush_request(mddev, bi);
5595                        return true;
5596                }
5597                /* ret == -EAGAIN, fallback */
5598                /*
5599                 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5600                 * we need to flush journal device
5601                 */
5602                do_flush = bi->bi_opf & REQ_PREFLUSH;
5603        }
5604
5605        if (!md_write_start(mddev, bi))
5606                return false;
5607        /*
5608         * If array is degraded, better not do chunk aligned read because
5609         * later we might have to read it again in order to reconstruct
5610         * data on failed drives.
5611         */
5612        if (rw == READ && mddev->degraded == 0 &&
5613            mddev->reshape_position == MaxSector) {
5614                bi = chunk_aligned_read(mddev, bi);
5615                if (!bi)
5616                        return true;
5617        }
5618
5619        if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5620                make_discard_request(mddev, bi);
5621                md_write_end(mddev);
5622                return true;
5623        }
5624
5625        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5626        last_sector = bio_end_sector(bi);
5627        bi->bi_next = NULL;
5628
5629        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5630        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5631                int previous;
5632                int seq;
5633
5634                do_prepare = false;
5635        retry:
5636                seq = read_seqcount_begin(&conf->gen_lock);
5637                previous = 0;
5638                if (do_prepare)
5639                        prepare_to_wait(&conf->wait_for_overlap, &w,
5640                                TASK_UNINTERRUPTIBLE);
5641                if (unlikely(conf->reshape_progress != MaxSector)) {
5642                        /* spinlock is needed as reshape_progress may be
5643                         * 64bit on a 32bit platform, and so it might be
5644                         * possible to see a half-updated value
5645                         * Of course reshape_progress could change after
5646                         * the lock is dropped, so once we get a reference
5647                         * to the stripe that we think it is, we will have
5648                         * to check again.
5649                         */
5650                        spin_lock_irq(&conf->device_lock);
5651                        if (mddev->reshape_backwards
5652                            ? logical_sector < conf->reshape_progress
5653                            : logical_sector >= conf->reshape_progress) {
5654                                previous = 1;
5655                        } else {
5656                                if (mddev->reshape_backwards
5657                                    ? logical_sector < conf->reshape_safe
5658                                    : logical_sector >= conf->reshape_safe) {
5659                                        spin_unlock_irq(&conf->device_lock);
5660                                        schedule();
5661                                        do_prepare = true;
5662                                        goto retry;
5663                                }
5664                        }
5665                        spin_unlock_irq(&conf->device_lock);
5666                }
5667
5668                new_sector = raid5_compute_sector(conf, logical_sector,
5669                                                  previous,
5670                                                  &dd_idx, NULL);
5671                pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5672                        (unsigned long long)new_sector,
5673                        (unsigned long long)logical_sector);
5674
5675                sh = raid5_get_active_stripe(conf, new_sector, previous,
5676                                       (bi->bi_opf & REQ_RAHEAD), 0);
5677                if (sh) {
5678                        if (unlikely(previous)) {
5679                                /* expansion might have moved on while waiting for a
5680                                 * stripe, so we must do the range check again.
5681                                 * Expansion could still move past after this
5682                                 * test, but as we are holding a reference to
5683                                 * 'sh', we know that if that happens,
5684                                 *  STRIPE_EXPANDING will get set and the expansion
5685                                 * won't proceed until we finish with the stripe.
5686                                 */
5687                                int must_retry = 0;
5688                                spin_lock_irq(&conf->device_lock);
5689                                if (mddev->reshape_backwards
5690                                    ? logical_sector >= conf->reshape_progress
5691                                    : logical_sector < conf->reshape_progress)
5692                                        /* mismatch, need to try again */
5693                                        must_retry = 1;
5694                                spin_unlock_irq(&conf->device_lock);
5695                                if (must_retry) {
5696                                        raid5_release_stripe(sh);
5697                                        schedule();
5698                                        do_prepare = true;
5699                                        goto retry;
5700                                }
5701                        }
5702                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
5703                                /* Might have got the wrong stripe_head
5704                                 * by accident
5705                                 */
5706                                raid5_release_stripe(sh);
5707                                goto retry;
5708                        }
5709
5710                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5711                            !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5712                                /* Stripe is busy expanding or
5713                                 * add failed due to overlap.  Flush everything
5714                                 * and wait a while
5715                                 */
5716                                md_wakeup_thread(mddev->thread);
5717                                raid5_release_stripe(sh);
5718                                schedule();
5719                                do_prepare = true;
5720                                goto retry;
5721                        }
5722                        if (do_flush) {
5723                                set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5724                                /* we only need flush for one stripe */
5725                                do_flush = false;
5726                        }
5727
5728                        set_bit(STRIPE_HANDLE, &sh->state);
5729                        clear_bit(STRIPE_DELAYED, &sh->state);
5730                        if ((!sh->batch_head || sh == sh->batch_head) &&
5731                            (bi->bi_opf & REQ_SYNC) &&
5732                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5733                                atomic_inc(&conf->preread_active_stripes);
5734                        release_stripe_plug(mddev, sh);
5735                } else {
5736                        /* cannot get stripe for read-ahead, just give-up */
5737                        bi->bi_status = BLK_STS_IOERR;
5738                        break;
5739                }
5740        }
5741        finish_wait(&conf->wait_for_overlap, &w);
5742
5743        if (rw == WRITE)
5744                md_write_end(mddev);
5745        bio_endio(bi);
5746        return true;
5747}
5748
5749static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5750
5751static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5752{
5753        /* reshaping is quite different to recovery/resync so it is
5754         * handled quite separately ... here.
5755         *
5756         * On each call to sync_request, we gather one chunk worth of
5757         * destination stripes and flag them as expanding.
5758         * Then we find all the source stripes and request reads.
5759         * As the reads complete, handle_stripe will copy the data
5760         * into the destination stripe and release that stripe.
5761         */
5762        struct r5conf *conf = mddev->private;
5763        struct stripe_head *sh;
5764        struct md_rdev *rdev;
5765        sector_t first_sector, last_sector;
5766        int raid_disks = conf->previous_raid_disks;
5767        int data_disks = raid_disks - conf->max_degraded;
5768        int new_data_disks = conf->raid_disks - conf->max_degraded;
5769        int i;
5770        int dd_idx;
5771        sector_t writepos, readpos, safepos;
5772        sector_t stripe_addr;
5773        int reshape_sectors;
5774        struct list_head stripes;
5775        sector_t retn;
5776
5777        if (sector_nr == 0) {
5778                /* If restarting in the middle, skip the initial sectors */
5779                if (mddev->reshape_backwards &&
5780                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5781                        sector_nr = raid5_size(mddev, 0, 0)
5782                                - conf->reshape_progress;
5783                } else if (mddev->reshape_backwards &&
5784                           conf->reshape_progress == MaxSector) {
5785                        /* shouldn't happen, but just in case, finish up.*/
5786                        sector_nr = MaxSector;
5787                } else if (!mddev->reshape_backwards &&
5788                           conf->reshape_progress > 0)
5789                        sector_nr = conf->reshape_progress;
5790                sector_div(sector_nr, new_data_disks);
5791                if (sector_nr) {
5792                        mddev->curr_resync_completed = sector_nr;
5793                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5794                        *skipped = 1;
5795                        retn = sector_nr;
5796                        goto finish;
5797                }
5798        }
5799
5800        /* We need to process a full chunk at a time.
5801         * If old and new chunk sizes differ, we need to process the
5802         * largest of these
5803         */
5804
5805        reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5806
5807        /* We update the metadata at least every 10 seconds, or when
5808         * the data about to be copied would over-write the source of
5809         * the data at the front of the range.  i.e. one new_stripe
5810         * along from reshape_progress new_maps to after where
5811         * reshape_safe old_maps to
5812         */
5813        writepos = conf->reshape_progress;
5814        sector_div(writepos, new_data_disks);
5815        readpos = conf->reshape_progress;
5816        sector_div(readpos, data_disks);
5817        safepos = conf->reshape_safe;
5818        sector_div(safepos, data_disks);
5819        if (mddev->reshape_backwards) {
5820                BUG_ON(writepos < reshape_sectors);
5821                writepos -= reshape_sectors;
5822                readpos += reshape_sectors;
5823                safepos += reshape_sectors;
5824        } else {
5825                writepos += reshape_sectors;
5826                /* readpos and safepos are worst-case calculations.
5827                 * A negative number is overly pessimistic, and causes
5828                 * obvious problems for unsigned storage.  So clip to 0.
5829                 */
5830                readpos -= min_t(sector_t, reshape_sectors, readpos);
5831                safepos -= min_t(sector_t, reshape_sectors, safepos);
5832        }
5833
5834        /* Having calculated the 'writepos' possibly use it
5835         * to set 'stripe_addr' which is where we will write to.
5836         */
5837        if (mddev->reshape_backwards) {
5838                BUG_ON(conf->reshape_progress == 0);
5839                stripe_addr = writepos;
5840                BUG_ON((mddev->dev_sectors &
5841                        ~((sector_t)reshape_sectors - 1))
5842                       - reshape_sectors - stripe_addr
5843                       != sector_nr);
5844        } else {
5845                BUG_ON(writepos != sector_nr + reshape_sectors);
5846                stripe_addr = sector_nr;
5847        }
5848
5849        /* 'writepos' is the most advanced device address we might write.
5850         * 'readpos' is the least advanced device address we might read.
5851         * 'safepos' is the least address recorded in the metadata as having
5852         *     been reshaped.
5853         * If there is a min_offset_diff, these are adjusted either by
5854         * increasing the safepos/readpos if diff is negative, or
5855         * increasing writepos if diff is positive.
5856         * If 'readpos' is then behind 'writepos', there is no way that we can
5857         * ensure safety in the face of a crash - that must be done by userspace
5858         * making a backup of the data.  So in that case there is no particular
5859         * rush to update metadata.
5860         * Otherwise if 'safepos' is behind 'writepos', then we really need to
5861         * update the metadata to advance 'safepos' to match 'readpos' so that
5862         * we can be safe in the event of a crash.
5863         * So we insist on updating metadata if safepos is behind writepos and
5864         * readpos is beyond writepos.
5865         * In any case, update the metadata every 10 seconds.
5866         * Maybe that number should be configurable, but I'm not sure it is
5867         * worth it.... maybe it could be a multiple of safemode_delay???
5868         */
5869        if (conf->min_offset_diff < 0) {
5870                safepos += -conf->min_offset_diff;
5871                readpos += -conf->min_offset_diff;
5872        } else
5873                writepos += conf->min_offset_diff;
5874
5875        if ((mddev->reshape_backwards
5876             ? (safepos > writepos && readpos < writepos)
5877             : (safepos < writepos && readpos > writepos)) ||
5878            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5879                /* Cannot proceed until we've updated the superblock... */
5880                wait_event(conf->wait_for_overlap,
5881                           atomic_read(&conf->reshape_stripes)==0
5882                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5883                if (atomic_read(&conf->reshape_stripes) != 0)
5884                        return 0;
5885                mddev->reshape_position = conf->reshape_progress;
5886                mddev->curr_resync_completed = sector_nr;
5887                if (!mddev->reshape_backwards)
5888                        /* Can update recovery_offset */
5889                        rdev_for_each(rdev, mddev)
5890                                if (rdev->raid_disk >= 0 &&
5891                                    !test_bit(Journal, &rdev->flags) &&
5892                                    !test_bit(In_sync, &rdev->flags) &&
5893                                    rdev->recovery_offset < sector_nr)
5894                                        rdev->recovery_offset = sector_nr;
5895
5896                conf->reshape_checkpoint = jiffies;
5897                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5898                md_wakeup_thread(mddev->thread);
5899                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5900                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5901                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5902                        return 0;
5903                spin_lock_irq(&conf->device_lock);
5904                conf->reshape_safe = mddev->reshape_position;
5905                spin_unlock_irq(&conf->device_lock);
5906                wake_up(&conf->wait_for_overlap);
5907                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5908        }
5909
5910        INIT_LIST_HEAD(&stripes);
5911        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5912                int j;
5913                int skipped_disk = 0;
5914                sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5915                set_bit(STRIPE_EXPANDING, &sh->state);
5916                atomic_inc(&conf->reshape_stripes);
5917                /* If any of this stripe is beyond the end of the old
5918                 * array, then we need to zero those blocks
5919                 */
5920                for (j=sh->disks; j--;) {
5921                        sector_t s;
5922                        if (j == sh->pd_idx)
5923                                continue;
5924                        if (conf->level == 6 &&
5925                            j == sh->qd_idx)
5926                                continue;
5927                        s = raid5_compute_blocknr(sh, j, 0);
5928                        if (s < raid5_size(mddev, 0, 0)) {
5929                                skipped_disk = 1;
5930                                continue;
5931                        }
5932                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5933                        set_bit(R5_Expanded, &sh->dev[j].flags);
5934                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
5935                }
5936                if (!skipped_disk) {
5937                        set_bit(STRIPE_EXPAND_READY, &sh->state);
5938                        set_bit(STRIPE_HANDLE, &sh->state);
5939                }
5940                list_add(&sh->lru, &stripes);
5941        }
5942        spin_lock_irq(&conf->device_lock);
5943        if (mddev->reshape_backwards)
5944                conf->reshape_progress -= reshape_sectors * new_data_disks;
5945        else
5946                conf->reshape_progress += reshape_sectors * new_data_disks;
5947        spin_unlock_irq(&conf->device_lock);
5948        /* Ok, those stripe are ready. We can start scheduling
5949         * reads on the source stripes.
5950         * The source stripes are determined by mapping the first and last
5951         * block on the destination stripes.
5952         */
5953        first_sector =
5954                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5955                                     1, &dd_idx, NULL);
5956        last_sector =
5957                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5958                                            * new_data_disks - 1),
5959                                     1, &dd_idx, NULL);
5960        if (last_sector >= mddev->dev_sectors)
5961                last_sector = mddev->dev_sectors - 1;
5962        while (first_sector <= last_sector) {
5963                sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5964                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5965                set_bit(STRIPE_HANDLE, &sh->state);
5966                raid5_release_stripe(sh);
5967                first_sector += STRIPE_SECTORS;
5968        }
5969        /* Now that the sources are clearly marked, we can release
5970         * the destination stripes
5971         */
5972        while (!list_empty(&stripes)) {
5973                sh = list_entry(stripes.next, struct stripe_head, lru);
5974                list_del_init(&sh->lru);
5975                raid5_release_stripe(sh);
5976        }
5977        /* If this takes us to the resync_max point where we have to pause,
5978         * then we need to write out the superblock.
5979         */
5980        sector_nr += reshape_sectors;
5981        retn = reshape_sectors;
5982finish:
5983        if (mddev->curr_resync_completed > mddev->resync_max ||
5984            (sector_nr - mddev->curr_resync_completed) * 2
5985            >= mddev->resync_max - mddev->curr_resync_completed) {
5986                /* Cannot proceed until we've updated the superblock... */
5987                wait_event(conf->wait_for_overlap,
5988                           atomic_read(&conf->reshape_stripes) == 0
5989                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5990                if (atomic_read(&conf->reshape_stripes) != 0)
5991                        goto ret;
5992                mddev->reshape_position = conf->reshape_progress;
5993                mddev->curr_resync_completed = sector_nr;
5994                if (!mddev->reshape_backwards)
5995                        /* Can update recovery_offset */
5996                        rdev_for_each(rdev, mddev)
5997                                if (rdev->raid_disk >= 0 &&
5998                                    !test_bit(Journal, &rdev->flags) &&
5999                                    !test_bit(In_sync, &rdev->flags) &&
6000                                    rdev->recovery_offset < sector_nr)
6001                                        rdev->recovery_offset = sector_nr;
6002                conf->reshape_checkpoint = jiffies;
6003                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6004                md_wakeup_thread(mddev->thread);
6005                wait_event(mddev->sb_wait,
6006                           !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6007                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6008                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6009                        goto ret;
6010                spin_lock_irq(&conf->device_lock);
6011                conf->reshape_safe = mddev->reshape_position;
6012                spin_unlock_irq(&conf->device_lock);
6013                wake_up(&conf->wait_for_overlap);
6014                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6015        }
6016ret:
6017        return retn;
6018}
6019
6020static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6021                                          int *skipped)
6022{
6023        struct r5conf *conf = mddev->private;
6024        struct stripe_head *sh;
6025        sector_t max_sector = mddev->dev_sectors;
6026        sector_t sync_blocks;
6027        int still_degraded = 0;
6028        int i;
6029
6030        if (sector_nr >= max_sector) {
6031                /* just being told to finish up .. nothing much to do */
6032
6033                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6034                        end_reshape(conf);
6035                        return 0;
6036                }
6037
6038                if (mddev->curr_resync < max_sector) /* aborted */
6039                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6040                                           &sync_blocks, 1);
6041                else /* completed sync */
6042                        conf->fullsync = 0;
6043                md_bitmap_close_sync(mddev->bitmap);
6044
6045                return 0;
6046        }
6047
6048        /* Allow raid5_quiesce to complete */
6049        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6050
6051        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6052                return reshape_request(mddev, sector_nr, skipped);
6053
6054        /* No need to check resync_max as we never do more than one
6055         * stripe, and as resync_max will always be on a chunk boundary,
6056         * if the check in md_do_sync didn't fire, there is no chance
6057         * of overstepping resync_max here
6058         */
6059
6060        /* if there is too many failed drives and we are trying
6061         * to resync, then assert that we are finished, because there is
6062         * nothing we can do.
6063         */
6064        if (mddev->degraded >= conf->max_degraded &&
6065            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6066                sector_t rv = mddev->dev_sectors - sector_nr;
6067                *skipped = 1;
6068                return rv;
6069        }
6070        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6071            !conf->fullsync &&
6072            !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6073            sync_blocks >= STRIPE_SECTORS) {
6074                /* we can skip this block, and probably more */
6075                sync_blocks /= STRIPE_SECTORS;
6076                *skipped = 1;
6077                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6078        }
6079
6080        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6081
6082        sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6083        if (sh == NULL) {
6084                sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6085                /* make sure we don't swamp the stripe cache if someone else
6086                 * is trying to get access
6087                 */
6088                schedule_timeout_uninterruptible(1);
6089        }
6090        /* Need to check if array will still be degraded after recovery/resync
6091         * Note in case of > 1 drive failures it's possible we're rebuilding
6092         * one drive while leaving another faulty drive in array.
6093         */
6094        rcu_read_lock();
6095        for (i = 0; i < conf->raid_disks; i++) {
6096                struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6097
6098                if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6099                        still_degraded = 1;
6100        }
6101        rcu_read_unlock();
6102
6103        md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6104
6105        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6106        set_bit(STRIPE_HANDLE, &sh->state);
6107
6108        raid5_release_stripe(sh);
6109
6110        return STRIPE_SECTORS;
6111}
6112
6113static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6114                               unsigned int offset)
6115{
6116        /* We may not be able to submit a whole bio at once as there
6117         * may not be enough stripe_heads available.
6118         * We cannot pre-allocate enough stripe_heads as we may need
6119         * more than exist in the cache (if we allow ever large chunks).
6120         * So we do one stripe head at a time and record in
6121         * ->bi_hw_segments how many have been done.
6122         *
6123         * We *know* that this entire raid_bio is in one chunk, so
6124         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6125         */
6126        struct stripe_head *sh;
6127        int dd_idx;
6128        sector_t sector, logical_sector, last_sector;
6129        int scnt = 0;
6130        int handled = 0;
6131
6132        logical_sector = raid_bio->bi_iter.bi_sector &
6133                ~((sector_t)STRIPE_SECTORS-1);
6134        sector = raid5_compute_sector(conf, logical_sector,
6135                                      0, &dd_idx, NULL);
6136        last_sector = bio_end_sector(raid_bio);
6137
6138        for (; logical_sector < last_sector;
6139             logical_sector += STRIPE_SECTORS,
6140                     sector += STRIPE_SECTORS,
6141                     scnt++) {
6142
6143                if (scnt < offset)
6144                        /* already done this stripe */
6145                        continue;
6146
6147                sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6148
6149                if (!sh) {
6150                        /* failed to get a stripe - must wait */
6151                        conf->retry_read_aligned = raid_bio;
6152                        conf->retry_read_offset = scnt;
6153                        return handled;
6154                }
6155
6156                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6157                        raid5_release_stripe(sh);
6158                        conf->retry_read_aligned = raid_bio;
6159                        conf->retry_read_offset = scnt;
6160                        return handled;
6161                }
6162
6163                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6164                handle_stripe(sh);
6165                raid5_release_stripe(sh);
6166                handled++;
6167        }
6168
6169        bio_endio(raid_bio);
6170
6171        if (atomic_dec_and_test(&conf->active_aligned_reads))
6172                wake_up(&conf->wait_for_quiescent);
6173        return handled;
6174}
6175
6176static int handle_active_stripes(struct r5conf *conf, int group,
6177                                 struct r5worker *worker,
6178                                 struct list_head *temp_inactive_list)
6179{
6180        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6181        int i, batch_size = 0, hash;
6182        bool release_inactive = false;
6183
6184        while (batch_size < MAX_STRIPE_BATCH &&
6185                        (sh = __get_priority_stripe(conf, group)) != NULL)
6186                batch[batch_size++] = sh;
6187
6188        if (batch_size == 0) {
6189                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6190                        if (!list_empty(temp_inactive_list + i))
6191                                break;
6192                if (i == NR_STRIPE_HASH_LOCKS) {
6193                        spin_unlock_irq(&conf->device_lock);
6194                        log_flush_stripe_to_raid(conf);
6195                        spin_lock_irq(&conf->device_lock);
6196                        return batch_size;
6197                }
6198                release_inactive = true;
6199        }
6200        spin_unlock_irq(&conf->device_lock);
6201
6202        release_inactive_stripe_list(conf, temp_inactive_list,
6203                                     NR_STRIPE_HASH_LOCKS);
6204
6205        r5l_flush_stripe_to_raid(conf->log);
6206        if (release_inactive) {
6207                spin_lock_irq(&conf->device_lock);
6208                return 0;
6209        }
6210
6211        for (i = 0; i < batch_size; i++)
6212                handle_stripe(batch[i]);
6213        log_write_stripe_run(conf);
6214
6215        cond_resched();
6216
6217        spin_lock_irq(&conf->device_lock);
6218        for (i = 0; i < batch_size; i++) {
6219                hash = batch[i]->hash_lock_index;
6220                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6221        }
6222        return batch_size;
6223}
6224
6225static void raid5_do_work(struct work_struct *work)
6226{
6227        struct r5worker *worker = container_of(work, struct r5worker, work);
6228        struct r5worker_group *group = worker->group;
6229        struct r5conf *conf = group->conf;
6230        struct mddev *mddev = conf->mddev;
6231        int group_id = group - conf->worker_groups;
6232        int handled;
6233        struct blk_plug plug;
6234
6235        pr_debug("+++ raid5worker active\n");
6236
6237        blk_start_plug(&plug);
6238        handled = 0;
6239        spin_lock_irq(&conf->device_lock);
6240        while (1) {
6241                int batch_size, released;
6242
6243                released = release_stripe_list(conf, worker->temp_inactive_list);
6244
6245                batch_size = handle_active_stripes(conf, group_id, worker,
6246                                                   worker->temp_inactive_list);
6247                worker->working = false;
6248                if (!batch_size && !released)
6249                        break;
6250                handled += batch_size;
6251                wait_event_lock_irq(mddev->sb_wait,
6252                        !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6253                        conf->device_lock);
6254        }
6255        pr_debug("%d stripes handled\n", handled);
6256
6257        spin_unlock_irq(&conf->device_lock);
6258
6259        flush_deferred_bios(conf);
6260
6261        r5l_flush_stripe_to_raid(conf->log);
6262
6263        async_tx_issue_pending_all();
6264        blk_finish_plug(&plug);
6265
6266        pr_debug("--- raid5worker inactive\n");
6267}
6268
6269/*
6270 * This is our raid5 kernel thread.
6271 *
6272 * We scan the hash table for stripes which can be handled now.
6273 * During the scan, completed stripes are saved for us by the interrupt
6274 * handler, so that they will not have to wait for our next wakeup.
6275 */
6276static void raid5d(struct md_thread *thread)
6277{
6278        struct mddev *mddev = thread->mddev;
6279        struct r5conf *conf = mddev->private;
6280        int handled;
6281        struct blk_plug plug;
6282
6283        pr_debug("+++ raid5d active\n");
6284
6285        md_check_recovery(mddev);
6286
6287        blk_start_plug(&plug);
6288        handled = 0;
6289        spin_lock_irq(&conf->device_lock);
6290        while (1) {
6291                struct bio *bio;
6292                int batch_size, released;
6293                unsigned int offset;
6294
6295                released = release_stripe_list(conf, conf->temp_inactive_list);
6296                if (released)
6297                        clear_bit(R5_DID_ALLOC, &conf->cache_state);
6298
6299                if (
6300                    !list_empty(&conf->bitmap_list)) {
6301                        /* Now is a good time to flush some bitmap updates */
6302                        conf->seq_flush++;
6303                        spin_unlock_irq(&conf->device_lock);
6304                        md_bitmap_unplug(mddev->bitmap);
6305                        spin_lock_irq(&conf->device_lock);
6306                        conf->seq_write = conf->seq_flush;
6307                        activate_bit_delay(conf, conf->temp_inactive_list);
6308                }
6309                raid5_activate_delayed(conf);
6310
6311                while ((bio = remove_bio_from_retry(conf, &offset))) {
6312                        int ok;
6313                        spin_unlock_irq(&conf->device_lock);
6314                        ok = retry_aligned_read(conf, bio, offset);
6315                        spin_lock_irq(&conf->device_lock);
6316                        if (!ok)
6317                                break;
6318                        handled++;
6319                }
6320
6321                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6322                                                   conf->temp_inactive_list);
6323                if (!batch_size && !released)
6324                        break;
6325                handled += batch_size;
6326
6327                if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6328                        spin_unlock_irq(&conf->device_lock);
6329                        md_check_recovery(mddev);
6330                        spin_lock_irq(&conf->device_lock);
6331                }
6332        }
6333        pr_debug("%d stripes handled\n", handled);
6334
6335        spin_unlock_irq(&conf->device_lock);
6336        if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6337            mutex_trylock(&conf->cache_size_mutex)) {
6338                grow_one_stripe(conf, __GFP_NOWARN);
6339                /* Set flag even if allocation failed.  This helps
6340                 * slow down allocation requests when mem is short
6341                 */
6342                set_bit(R5_DID_ALLOC, &conf->cache_state);
6343                mutex_unlock(&conf->cache_size_mutex);
6344        }
6345
6346        flush_deferred_bios(conf);
6347
6348        r5l_flush_stripe_to_raid(conf->log);
6349
6350        async_tx_issue_pending_all();
6351        blk_finish_plug(&plug);
6352
6353        pr_debug("--- raid5d inactive\n");
6354}
6355
6356static ssize_t
6357raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6358{
6359        struct r5conf *conf;
6360        int ret = 0;
6361        spin_lock(&mddev->lock);
6362        conf = mddev->private;
6363        if (conf)
6364                ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6365        spin_unlock(&mddev->lock);
6366        return ret;
6367}
6368
6369int
6370raid5_set_cache_size(struct mddev *mddev, int size)
6371{
6372        struct r5conf *conf = mddev->private;
6373
6374        if (size <= 16 || size > 32768)
6375                return -EINVAL;
6376
6377        conf->min_nr_stripes = size;
6378        mutex_lock(&conf->cache_size_mutex);
6379        while (size < conf->max_nr_stripes &&
6380               drop_one_stripe(conf))
6381                ;
6382        mutex_unlock(&conf->cache_size_mutex);
6383
6384        md_allow_write(mddev);
6385
6386        mutex_lock(&conf->cache_size_mutex);
6387        while (size > conf->max_nr_stripes)
6388                if (!grow_one_stripe(conf, GFP_KERNEL))
6389                        break;
6390        mutex_unlock(&conf->cache_size_mutex);
6391
6392        return 0;
6393}
6394EXPORT_SYMBOL(raid5_set_cache_size);
6395
6396static ssize_t
6397raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6398{
6399        struct r5conf *conf;
6400        unsigned long new;
6401        int err;
6402
6403        if (len >= PAGE_SIZE)
6404                return -EINVAL;
6405        if (kstrtoul(page, 10, &new))
6406                return -EINVAL;
6407        err = mddev_lock(mddev);
6408        if (err)
6409                return err;
6410        conf = mddev->private;
6411        if (!conf)
6412                err = -ENODEV;
6413        else
6414                err = raid5_set_cache_size(mddev, new);
6415        mddev_unlock(mddev);
6416
6417        return err ?: len;
6418}
6419
6420static struct md_sysfs_entry
6421raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6422                                raid5_show_stripe_cache_size,
6423                                raid5_store_stripe_cache_size);
6424
6425static ssize_t
6426raid5_show_rmw_level(struct mddev  *mddev, char *page)
6427{
6428        struct r5conf *conf = mddev->private;
6429        if (conf)
6430                return sprintf(page, "%d\n", conf->rmw_level);
6431        else
6432                return 0;
6433}
6434
6435static ssize_t
6436raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6437{
6438        struct r5conf *conf = mddev->private;
6439        unsigned long new;
6440
6441        if (!conf)
6442                return -ENODEV;
6443
6444        if (len >= PAGE_SIZE)
6445                return -EINVAL;
6446
6447        if (kstrtoul(page, 10, &new))
6448                return -EINVAL;
6449
6450        if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6451                return -EINVAL;
6452
6453        if (new != PARITY_DISABLE_RMW &&
6454            new != PARITY_ENABLE_RMW &&
6455            new != PARITY_PREFER_RMW)
6456                return -EINVAL;
6457
6458        conf->rmw_level = new;
6459        return len;
6460}
6461
6462static struct md_sysfs_entry
6463raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6464                         raid5_show_rmw_level,
6465                         raid5_store_rmw_level);
6466
6467
6468static ssize_t
6469raid5_show_preread_threshold(struct mddev *mddev, char *page)
6470{
6471        struct r5conf *conf;
6472        int ret = 0;
6473        spin_lock(&mddev->lock);
6474        conf = mddev->private;
6475        if (conf)
6476                ret = sprintf(page, "%d\n", conf->bypass_threshold);
6477        spin_unlock(&mddev->lock);
6478        return ret;
6479}
6480
6481static ssize_t
6482raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6483{
6484        struct r5conf *conf;
6485        unsigned long new;
6486        int err;
6487
6488        if (len >= PAGE_SIZE)
6489                return -EINVAL;
6490        if (kstrtoul(page, 10, &new))
6491                return -EINVAL;
6492
6493        err = mddev_lock(mddev);
6494        if (err)
6495                return err;
6496        conf = mddev->private;
6497        if (!conf)
6498                err = -ENODEV;
6499        else if (new > conf->min_nr_stripes)
6500                err = -EINVAL;
6501        else
6502                conf->bypass_threshold = new;
6503        mddev_unlock(mddev);
6504        return err ?: len;
6505}
6506
6507static struct md_sysfs_entry
6508raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6509                                        S_IRUGO | S_IWUSR,
6510                                        raid5_show_preread_threshold,
6511                                        raid5_store_preread_threshold);
6512
6513static ssize_t
6514raid5_show_skip_copy(struct mddev *mddev, char *page)
6515{
6516        struct r5conf *conf;
6517        int ret = 0;
6518        spin_lock(&mddev->lock);
6519        conf = mddev->private;
6520        if (conf)
6521                ret = sprintf(page, "%d\n", conf->skip_copy);
6522        spin_unlock(&mddev->lock);
6523        return ret;
6524}
6525
6526static ssize_t
6527raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6528{
6529        struct r5conf *conf;
6530        unsigned long new;
6531        int err;
6532
6533        if (len >= PAGE_SIZE)
6534                return -EINVAL;
6535        if (kstrtoul(page, 10, &new))
6536                return -EINVAL;
6537        new = !!new;
6538
6539        err = mddev_lock(mddev);
6540        if (err)
6541                return err;
6542        conf = mddev->private;
6543        if (!conf)
6544                err = -ENODEV;
6545        else if (new != conf->skip_copy) {
6546                mddev_suspend(mddev);
6547                conf->skip_copy = new;
6548                if (new)
6549                        mddev->queue->backing_dev_info->capabilities |=
6550                                BDI_CAP_STABLE_WRITES;
6551                else
6552                        mddev->queue->backing_dev_info->capabilities &=
6553                                ~BDI_CAP_STABLE_WRITES;
6554                mddev_resume(mddev);
6555        }
6556        mddev_unlock(mddev);
6557        return err ?: len;
6558}
6559
6560static struct md_sysfs_entry
6561raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6562                                        raid5_show_skip_copy,
6563                                        raid5_store_skip_copy);
6564
6565static ssize_t
6566stripe_cache_active_show(struct mddev *mddev, char *page)
6567{
6568        struct r5conf *conf = mddev->private;
6569        if (conf)
6570                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6571        else
6572                return 0;
6573}
6574
6575static struct md_sysfs_entry
6576raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6577
6578static ssize_t
6579raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6580{
6581        struct r5conf *conf;
6582        int ret = 0;
6583        spin_lock(&mddev->lock);
6584        conf = mddev->private;
6585        if (conf)
6586                ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6587        spin_unlock(&mddev->lock);
6588        return ret;
6589}
6590
6591static int alloc_thread_groups(struct r5conf *conf, int cnt,
6592                               int *group_cnt,
6593                               int *worker_cnt_per_group,
6594                               struct r5worker_group **worker_groups);
6595static ssize_t
6596raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6597{
6598        struct r5conf *conf;
6599        unsigned int new;
6600        int err;
6601        struct r5worker_group *new_groups, *old_groups;
6602        int group_cnt, worker_cnt_per_group;
6603
6604        if (len >= PAGE_SIZE)
6605                return -EINVAL;
6606        if (kstrtouint(page, 10, &new))
6607                return -EINVAL;
6608        /* 8192 should be big enough */
6609        if (new > 8192)
6610                return -EINVAL;
6611
6612        err = mddev_lock(mddev);
6613        if (err)
6614                return err;
6615        conf = mddev->private;
6616        if (!conf)
6617                err = -ENODEV;
6618        else if (new != conf->worker_cnt_per_group) {
6619                mddev_suspend(mddev);
6620
6621                old_groups = conf->worker_groups;
6622                if (old_groups)
6623                        flush_workqueue(raid5_wq);
6624
6625                err = alloc_thread_groups(conf, new,
6626                                          &group_cnt, &worker_cnt_per_group,
6627                                          &new_groups);
6628                if (!err) {
6629                        spin_lock_irq(&conf->device_lock);
6630                        conf->group_cnt = group_cnt;
6631                        conf->worker_cnt_per_group = worker_cnt_per_group;
6632                        conf->worker_groups = new_groups;
6633                        spin_unlock_irq(&conf->device_lock);
6634
6635                        if (old_groups)
6636                                kfree(old_groups[0].workers);
6637                        kfree(old_groups);
6638                }
6639                mddev_resume(mddev);
6640        }
6641        mddev_unlock(mddev);
6642
6643        return err ?: len;
6644}
6645
6646static struct md_sysfs_entry
6647raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6648                                raid5_show_group_thread_cnt,
6649                                raid5_store_group_thread_cnt);
6650
6651static struct attribute *raid5_attrs[] =  {
6652        &raid5_stripecache_size.attr,
6653        &raid5_stripecache_active.attr,
6654        &raid5_preread_bypass_threshold.attr,
6655        &raid5_group_thread_cnt.attr,
6656        &raid5_skip_copy.attr,
6657        &raid5_rmw_level.attr,
6658        &r5c_journal_mode.attr,
6659        NULL,
6660};
6661static struct attribute_group raid5_attrs_group = {
6662        .name = NULL,
6663        .attrs = raid5_attrs,
6664};
6665
6666static int alloc_thread_groups(struct r5conf *conf, int cnt,
6667                               int *group_cnt,
6668                               int *worker_cnt_per_group,
6669                               struct r5worker_group **worker_groups)
6670{
6671        int i, j, k;
6672        ssize_t size;
6673        struct r5worker *workers;
6674
6675        *worker_cnt_per_group = cnt;
6676        if (cnt == 0) {
6677                *group_cnt = 0;
6678                *worker_groups = NULL;
6679                return 0;
6680        }
6681        *group_cnt = num_possible_nodes();
6682        size = sizeof(struct r5worker) * cnt;
6683        workers = kcalloc(size, *group_cnt, GFP_NOIO);
6684        *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6685                                 GFP_NOIO);
6686        if (!*worker_groups || !workers) {
6687                kfree(workers);
6688                kfree(*worker_groups);
6689                return -ENOMEM;
6690        }
6691
6692        for (i = 0; i < *group_cnt; i++) {
6693                struct r5worker_group *group;
6694
6695                group = &(*worker_groups)[i];
6696                INIT_LIST_HEAD(&group->handle_list);
6697                INIT_LIST_HEAD(&group->loprio_list);
6698                group->conf = conf;
6699                group->workers = workers + i * cnt;
6700
6701                for (j = 0; j < cnt; j++) {
6702                        struct r5worker *worker = group->workers + j;
6703                        worker->group = group;
6704                        INIT_WORK(&worker->work, raid5_do_work);
6705
6706                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6707                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
6708                }
6709        }
6710
6711        return 0;
6712}
6713
6714static void free_thread_groups(struct r5conf *conf)
6715{
6716        if (conf->worker_groups)
6717                kfree(conf->worker_groups[0].workers);
6718        kfree(conf->worker_groups);
6719        conf->worker_groups = NULL;
6720}
6721
6722static sector_t
6723raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6724{
6725        struct r5conf *conf = mddev->private;
6726
6727        if (!sectors)
6728                sectors = mddev->dev_sectors;
6729        if (!raid_disks)
6730                /* size is defined by the smallest of previous and new size */
6731                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6732
6733        sectors &= ~((sector_t)conf->chunk_sectors - 1);
6734        sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6735        return sectors * (raid_disks - conf->max_degraded);
6736}
6737
6738static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6739{
6740        safe_put_page(percpu->spare_page);
6741        if (percpu->scribble)
6742                flex_array_free(percpu->scribble);
6743        percpu->spare_page = NULL;
6744        percpu->scribble = NULL;
6745}
6746
6747static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6748{
6749        if (conf->level == 6 && !percpu->spare_page)
6750                percpu->spare_page = alloc_page(GFP_KERNEL);
6751        if (!percpu->scribble)
6752                percpu->scribble = scribble_alloc(max(conf->raid_disks,
6753                                                      conf->previous_raid_disks),
6754                                                  max(conf->chunk_sectors,
6755                                                      conf->prev_chunk_sectors)
6756                                                   / STRIPE_SECTORS,
6757                                                  GFP_KERNEL);
6758
6759        if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6760                free_scratch_buffer(conf, percpu);
6761                return -ENOMEM;
6762        }
6763
6764        return 0;
6765}
6766
6767static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6768{
6769        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6770
6771        free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6772        return 0;
6773}
6774
6775static void raid5_free_percpu(struct r5conf *conf)
6776{
6777        if (!conf->percpu)
6778                return;
6779
6780        cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6781        free_percpu(conf->percpu);
6782}
6783
6784static void free_conf(struct r5conf *conf)
6785{
6786        int i;
6787
6788        log_exit(conf);
6789
6790        unregister_shrinker(&conf->shrinker);
6791        free_thread_groups(conf);
6792        shrink_stripes(conf);
6793        raid5_free_percpu(conf);
6794        for (i = 0; i < conf->pool_size; i++)
6795                if (conf->disks[i].extra_page)
6796                        put_page(conf->disks[i].extra_page);
6797        kfree(conf->disks);
6798        bioset_exit(&conf->bio_split);
6799        kfree(conf->stripe_hashtbl);
6800        kfree(conf->pending_data);
6801        kfree(conf);
6802}
6803
6804static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6805{
6806        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6807        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6808
6809        if (alloc_scratch_buffer(conf, percpu)) {
6810                pr_warn("%s: failed memory allocation for cpu%u\n",
6811                        __func__, cpu);
6812                return -ENOMEM;
6813        }
6814        return 0;
6815}
6816
6817static int raid5_alloc_percpu(struct r5conf *conf)
6818{
6819        int err = 0;
6820
6821        conf->percpu = alloc_percpu(struct raid5_percpu);
6822        if (!conf->percpu)
6823                return -ENOMEM;
6824
6825        err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6826        if (!err) {
6827                conf->scribble_disks = max(conf->raid_disks,
6828                        conf->previous_raid_disks);
6829                conf->scribble_sectors = max(conf->chunk_sectors,
6830                        conf->prev_chunk_sectors);
6831        }
6832        return err;
6833}
6834
6835static unsigned long raid5_cache_scan(struct shrinker *shrink,
6836                                      struct shrink_control *sc)
6837{
6838        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6839        unsigned long ret = SHRINK_STOP;
6840
6841        if (mutex_trylock(&conf->cache_size_mutex)) {
6842                ret= 0;
6843                while (ret < sc->nr_to_scan &&
6844                       conf->max_nr_stripes > conf->min_nr_stripes) {
6845                        if (drop_one_stripe(conf) == 0) {
6846                                ret = SHRINK_STOP;
6847                                break;
6848                        }
6849                        ret++;
6850                }
6851                mutex_unlock(&conf->cache_size_mutex);
6852        }
6853        return ret;
6854}
6855
6856static unsigned long raid5_cache_count(struct shrinker *shrink,
6857                                       struct shrink_control *sc)
6858{
6859        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6860
6861        if (conf->max_nr_stripes < conf->min_nr_stripes)
6862                /* unlikely, but not impossible */
6863                return 0;
6864        return conf->max_nr_stripes - conf->min_nr_stripes;
6865}
6866
6867static struct r5conf *setup_conf(struct mddev *mddev)
6868{
6869        struct r5conf *conf;
6870        int raid_disk, memory, max_disks;
6871        struct md_rdev *rdev;
6872        struct disk_info *disk;
6873        char pers_name[6];
6874        int i;
6875        int group_cnt, worker_cnt_per_group;
6876        struct r5worker_group *new_group;
6877        int ret;
6878
6879        if (mddev->new_level != 5
6880            && mddev->new_level != 4
6881            && mddev->new_level != 6) {
6882                pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6883                        mdname(mddev), mddev->new_level);
6884                return ERR_PTR(-EIO);
6885        }
6886        if ((mddev->new_level == 5
6887             && !algorithm_valid_raid5(mddev->new_layout)) ||
6888            (mddev->new_level == 6
6889             && !algorithm_valid_raid6(mddev->new_layout))) {
6890                pr_warn("md/raid:%s: layout %d not supported\n",
6891                        mdname(mddev), mddev->new_layout);
6892                return ERR_PTR(-EIO);
6893        }
6894        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6895                pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6896                        mdname(mddev), mddev->raid_disks);
6897                return ERR_PTR(-EINVAL);
6898        }
6899
6900        if (!mddev->new_chunk_sectors ||
6901            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6902            !is_power_of_2(mddev->new_chunk_sectors)) {
6903                pr_warn("md/raid:%s: invalid chunk size %d\n",
6904                        mdname(mddev), mddev->new_chunk_sectors << 9);
6905                return ERR_PTR(-EINVAL);
6906        }
6907
6908        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6909        if (conf == NULL)
6910                goto abort;
6911        INIT_LIST_HEAD(&conf->free_list);
6912        INIT_LIST_HEAD(&conf->pending_list);
6913        conf->pending_data = kcalloc(PENDING_IO_MAX,
6914                                     sizeof(struct r5pending_data),
6915                                     GFP_KERNEL);
6916        if (!conf->pending_data)
6917                goto abort;
6918        for (i = 0; i < PENDING_IO_MAX; i++)
6919                list_add(&conf->pending_data[i].sibling, &conf->free_list);
6920        /* Don't enable multi-threading by default*/
6921        if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6922                                 &new_group)) {
6923                conf->group_cnt = group_cnt;
6924                conf->worker_cnt_per_group = worker_cnt_per_group;
6925                conf->worker_groups = new_group;
6926        } else
6927                goto abort;
6928        spin_lock_init(&conf->device_lock);
6929        seqcount_init(&conf->gen_lock);
6930        mutex_init(&conf->cache_size_mutex);
6931        init_waitqueue_head(&conf->wait_for_quiescent);
6932        init_waitqueue_head(&conf->wait_for_stripe);
6933        init_waitqueue_head(&conf->wait_for_overlap);
6934        INIT_LIST_HEAD(&conf->handle_list);
6935        INIT_LIST_HEAD(&conf->loprio_list);
6936        INIT_LIST_HEAD(&conf->hold_list);
6937        INIT_LIST_HEAD(&conf->delayed_list);
6938        INIT_LIST_HEAD(&conf->bitmap_list);
6939        init_llist_head(&conf->released_stripes);
6940        atomic_set(&conf->active_stripes, 0);
6941        atomic_set(&conf->preread_active_stripes, 0);
6942        atomic_set(&conf->active_aligned_reads, 0);
6943        spin_lock_init(&conf->pending_bios_lock);
6944        conf->batch_bio_dispatch = true;
6945        rdev_for_each(rdev, mddev) {
6946                if (test_bit(Journal, &rdev->flags))
6947                        continue;
6948                if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6949                        conf->batch_bio_dispatch = false;
6950                        break;
6951                }
6952        }
6953
6954        conf->bypass_threshold = BYPASS_THRESHOLD;
6955        conf->recovery_disabled = mddev->recovery_disabled - 1;
6956
6957        conf->raid_disks = mddev->raid_disks;
6958        if (mddev->reshape_position == MaxSector)
6959                conf->previous_raid_disks = mddev->raid_disks;
6960        else
6961                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6962        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6963
6964        conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6965                              GFP_KERNEL);
6966
6967        if (!conf->disks)
6968                goto abort;
6969
6970        for (i = 0; i < max_disks; i++) {
6971                conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6972                if (!conf->disks[i].extra_page)
6973                        goto abort;
6974        }
6975
6976        ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6977        if (ret)
6978                goto abort;
6979        conf->mddev = mddev;
6980
6981        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6982                goto abort;
6983
6984        /* We init hash_locks[0] separately to that it can be used
6985         * as the reference lock in the spin_lock_nest_lock() call
6986         * in lock_all_device_hash_locks_irq in order to convince
6987         * lockdep that we know what we are doing.
6988         */
6989        spin_lock_init(conf->hash_locks);
6990        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6991                spin_lock_init(conf->hash_locks + i);
6992
6993        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6994                INIT_LIST_HEAD(conf->inactive_list + i);
6995
6996        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6997                INIT_LIST_HEAD(conf->temp_inactive_list + i);
6998
6999        atomic_set(&conf->r5c_cached_full_stripes, 0);
7000        INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7001        atomic_set(&conf->r5c_cached_partial_stripes, 0);
7002        INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7003        atomic_set(&conf->r5c_flushing_full_stripes, 0);
7004        atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7005
7006        conf->level = mddev->new_level;
7007        conf->chunk_sectors = mddev->new_chunk_sectors;
7008        if (raid5_alloc_percpu(conf) != 0)
7009                goto abort;
7010
7011        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7012
7013        rdev_for_each(rdev, mddev) {
7014                raid_disk = rdev->raid_disk;
7015                if (raid_disk >= max_disks
7016                    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7017                        continue;
7018                disk = conf->disks + raid_disk;
7019
7020                if (test_bit(Replacement, &rdev->flags)) {
7021                        if (disk->replacement)
7022                                goto abort;
7023                        disk->replacement = rdev;
7024                } else {
7025                        if (disk->rdev)
7026                                goto abort;
7027                        disk->rdev = rdev;
7028                }
7029
7030                if (test_bit(In_sync, &rdev->flags)) {
7031                        char b[BDEVNAME_SIZE];
7032                        pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7033                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7034                } else if (rdev->saved_raid_disk != raid_disk)
7035                        /* Cannot rely on bitmap to complete recovery */
7036                        conf->fullsync = 1;
7037        }
7038
7039        conf->level = mddev->new_level;
7040        if (conf->level == 6) {
7041                conf->max_degraded = 2;
7042                if (raid6_call.xor_syndrome)
7043                        conf->rmw_level = PARITY_ENABLE_RMW;
7044                else
7045                        conf->rmw_level = PARITY_DISABLE_RMW;
7046        } else {
7047                conf->max_degraded = 1;
7048                conf->rmw_level = PARITY_ENABLE_RMW;
7049        }
7050        conf->algorithm = mddev->new_layout;
7051        conf->reshape_progress = mddev->reshape_position;
7052        if (conf->reshape_progress != MaxSector) {
7053                conf->prev_chunk_sectors = mddev->chunk_sectors;
7054                conf->prev_algo = mddev->layout;
7055        } else {
7056                conf->prev_chunk_sectors = conf->chunk_sectors;
7057                conf->prev_algo = conf->algorithm;
7058        }
7059
7060        conf->min_nr_stripes = NR_STRIPES;
7061        if (mddev->reshape_position != MaxSector) {
7062                int stripes = max_t(int,
7063                        ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7064                        ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7065                conf->min_nr_stripes = max(NR_STRIPES, stripes);
7066                if (conf->min_nr_stripes != NR_STRIPES)
7067                        pr_info("md/raid:%s: force stripe size %d for reshape\n",
7068                                mdname(mddev), conf->min_nr_stripes);
7069        }
7070        memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7071                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7072        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7073        if (grow_stripes(conf, conf->min_nr_stripes)) {
7074                pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7075                        mdname(mddev), memory);
7076                goto abort;
7077        } else
7078                pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7079        /*
7080         * Losing a stripe head costs more than the time to refill it,
7081         * it reduces the queue depth and so can hurt throughput.
7082         * So set it rather large, scaled by number of devices.
7083         */
7084        conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7085        conf->shrinker.scan_objects = raid5_cache_scan;
7086        conf->shrinker.count_objects = raid5_cache_count;
7087        conf->shrinker.batch = 128;
7088        conf->shrinker.flags = 0;
7089        if (register_shrinker(&conf->shrinker)) {
7090                pr_warn("md/raid:%s: couldn't register shrinker.\n",
7091                        mdname(mddev));
7092                goto abort;
7093        }
7094
7095        sprintf(pers_name, "raid%d", mddev->new_level);
7096        conf->thread = md_register_thread(raid5d, mddev, pers_name);
7097        if (!conf->thread) {
7098                pr_warn("md/raid:%s: couldn't allocate thread.\n",
7099                        mdname(mddev));
7100                goto abort;
7101        }
7102
7103        return conf;
7104
7105 abort:
7106        if (conf) {
7107                free_conf(conf);
7108                return ERR_PTR(-EIO);
7109        } else
7110                return ERR_PTR(-ENOMEM);
7111}
7112
7113static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7114{
7115        switch (algo) {
7116        case ALGORITHM_PARITY_0:
7117                if (raid_disk < max_degraded)
7118                        return 1;
7119                break;
7120        case ALGORITHM_PARITY_N:
7121                if (raid_disk >= raid_disks - max_degraded)
7122                        return 1;
7123                break;
7124        case ALGORITHM_PARITY_0_6:
7125                if (raid_disk == 0 ||
7126                    raid_disk == raid_disks - 1)
7127                        return 1;
7128                break;
7129        case ALGORITHM_LEFT_ASYMMETRIC_6:
7130        case ALGORITHM_RIGHT_ASYMMETRIC_6:
7131        case ALGORITHM_LEFT_SYMMETRIC_6:
7132        case ALGORITHM_RIGHT_SYMMETRIC_6:
7133                if (raid_disk == raid_disks - 1)
7134                        return 1;
7135        }
7136        return 0;
7137}
7138
7139static int raid5_run(struct mddev *mddev)
7140{
7141        struct r5conf *conf;
7142        int working_disks = 0;
7143        int dirty_parity_disks = 0;
7144        struct md_rdev *rdev;
7145        struct md_rdev *journal_dev = NULL;
7146        sector_t reshape_offset = 0;
7147        int i;
7148        long long min_offset_diff = 0;
7149        int first = 1;
7150
7151        if (mddev_init_writes_pending(mddev) < 0)
7152                return -ENOMEM;
7153
7154        if (mddev->recovery_cp != MaxSector)
7155                pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7156                          mdname(mddev));
7157
7158        rdev_for_each(rdev, mddev) {
7159                long long diff;
7160
7161                if (test_bit(Journal, &rdev->flags)) {
7162                        journal_dev = rdev;
7163                        continue;
7164                }
7165                if (rdev->raid_disk < 0)
7166                        continue;
7167                diff = (rdev->new_data_offset - rdev->data_offset);
7168                if (first) {
7169                        min_offset_diff = diff;
7170                        first = 0;
7171                } else if (mddev->reshape_backwards &&
7172                         diff < min_offset_diff)
7173                        min_offset_diff = diff;
7174                else if (!mddev->reshape_backwards &&
7175                         diff > min_offset_diff)
7176                        min_offset_diff = diff;
7177        }
7178
7179        if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7180            (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7181                pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7182                          mdname(mddev));
7183                return -EINVAL;
7184        }
7185
7186        if (mddev->reshape_position != MaxSector) {
7187                /* Check that we can continue the reshape.
7188                 * Difficulties arise if the stripe we would write to
7189                 * next is at or after the stripe we would read from next.
7190                 * For a reshape that changes the number of devices, this
7191                 * is only possible for a very short time, and mdadm makes
7192                 * sure that time appears to have past before assembling
7193                 * the array.  So we fail if that time hasn't passed.
7194                 * For a reshape that keeps the number of devices the same
7195                 * mdadm must be monitoring the reshape can keeping the
7196                 * critical areas read-only and backed up.  It will start
7197                 * the array in read-only mode, so we check for that.
7198                 */
7199                sector_t here_new, here_old;
7200                int old_disks;
7201                int max_degraded = (mddev->level == 6 ? 2 : 1);
7202                int chunk_sectors;
7203                int new_data_disks;
7204
7205                if (journal_dev) {
7206                        pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7207                                mdname(mddev));
7208                        return -EINVAL;
7209                }
7210
7211                if (mddev->new_level != mddev->level) {
7212                        pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7213                                mdname(mddev));
7214                        return -EINVAL;
7215                }
7216                old_disks = mddev->raid_disks - mddev->delta_disks;
7217                /* reshape_position must be on a new-stripe boundary, and one
7218                 * further up in new geometry must map after here in old
7219                 * geometry.
7220                 * If the chunk sizes are different, then as we perform reshape
7221                 * in units of the largest of the two, reshape_position needs
7222                 * be a multiple of the largest chunk size times new data disks.
7223                 */
7224                here_new = mddev->reshape_position;
7225                chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7226                new_data_disks = mddev->raid_disks - max_degraded;
7227                if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7228                        pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7229                                mdname(mddev));
7230                        return -EINVAL;
7231                }
7232                reshape_offset = here_new * chunk_sectors;
7233                /* here_new is the stripe we will write to */
7234                here_old = mddev->reshape_position;
7235                sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7236                /* here_old is the first stripe that we might need to read
7237                 * from */
7238                if (mddev->delta_disks == 0) {
7239                        /* We cannot be sure it is safe to start an in-place
7240                         * reshape.  It is only safe if user-space is monitoring
7241                         * and taking constant backups.
7242                         * mdadm always starts a situation like this in
7243                         * readonly mode so it can take control before
7244                         * allowing any writes.  So just check for that.
7245                         */
7246                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7247                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
7248                                /* not really in-place - so OK */;
7249                        else if (mddev->ro == 0) {
7250                                pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7251                                        mdname(mddev));
7252                                return -EINVAL;
7253                        }
7254                } else if (mddev->reshape_backwards
7255                    ? (here_new * chunk_sectors + min_offset_diff <=
7256                       here_old * chunk_sectors)
7257                    : (here_new * chunk_sectors >=
7258                       here_old * chunk_sectors + (-min_offset_diff))) {
7259                        /* Reading from the same stripe as writing to - bad */
7260                        pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7261                                mdname(mddev));
7262                        return -EINVAL;
7263                }
7264                pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7265                /* OK, we should be able to continue; */
7266        } else {
7267                BUG_ON(mddev->level != mddev->new_level);
7268                BUG_ON(mddev->layout != mddev->new_layout);
7269                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7270                BUG_ON(mddev->delta_disks != 0);
7271        }
7272
7273        if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7274            test_bit(MD_HAS_PPL, &mddev->flags)) {
7275                pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7276                        mdname(mddev));
7277                clear_bit(MD_HAS_PPL, &mddev->flags);
7278                clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7279        }
7280
7281        if (mddev->private == NULL)
7282                conf = setup_conf(mddev);
7283        else
7284                conf = mddev->private;
7285
7286        if (IS_ERR(conf))
7287                return PTR_ERR(conf);
7288
7289        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7290                if (!journal_dev) {
7291                        pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7292                                mdname(mddev));
7293                        mddev->ro = 1;
7294                        set_disk_ro(mddev->gendisk, 1);
7295                } else if (mddev->recovery_cp == MaxSector)
7296                        set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7297        }
7298
7299        conf->min_offset_diff = min_offset_diff;
7300        mddev->thread = conf->thread;
7301        conf->thread = NULL;
7302        mddev->private = conf;
7303
7304        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7305             i++) {
7306                rdev = conf->disks[i].rdev;
7307                if (!rdev && conf->disks[i].replacement) {
7308                        /* The replacement is all we have yet */
7309                        rdev = conf->disks[i].replacement;
7310                        conf->disks[i].replacement = NULL;
7311                        clear_bit(Replacement, &rdev->flags);
7312                        conf->disks[i].rdev = rdev;
7313                }
7314                if (!rdev)
7315                        continue;
7316                if (conf->disks[i].replacement &&
7317                    conf->reshape_progress != MaxSector) {
7318                        /* replacements and reshape simply do not mix. */
7319                        pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7320                        goto abort;
7321                }
7322                if (test_bit(In_sync, &rdev->flags)) {
7323                        working_disks++;
7324                        continue;
7325                }
7326                /* This disc is not fully in-sync.  However if it
7327                 * just stored parity (beyond the recovery_offset),
7328                 * when we don't need to be concerned about the
7329                 * array being dirty.
7330                 * When reshape goes 'backwards', we never have
7331                 * partially completed devices, so we only need
7332                 * to worry about reshape going forwards.
7333                 */
7334                /* Hack because v0.91 doesn't store recovery_offset properly. */
7335                if (mddev->major_version == 0 &&
7336                    mddev->minor_version > 90)
7337                        rdev->recovery_offset = reshape_offset;
7338
7339                if (rdev->recovery_offset < reshape_offset) {
7340                        /* We need to check old and new layout */
7341                        if (!only_parity(rdev->raid_disk,
7342                                         conf->algorithm,
7343                                         conf->raid_disks,
7344                                         conf->max_degraded))
7345                                continue;
7346                }
7347                if (!only_parity(rdev->raid_disk,
7348                                 conf->prev_algo,
7349                                 conf->previous_raid_disks,
7350                                 conf->max_degraded))
7351                        continue;
7352                dirty_parity_disks++;
7353        }
7354
7355        /*
7356         * 0 for a fully functional array, 1 or 2 for a degraded array.
7357         */
7358        mddev->degraded = raid5_calc_degraded(conf);
7359
7360        if (has_failed(conf)) {
7361                pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7362                        mdname(mddev), mddev->degraded, conf->raid_disks);
7363                goto abort;
7364        }
7365
7366        /* device size must be a multiple of chunk size */
7367        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7368        mddev->resync_max_sectors = mddev->dev_sectors;
7369
7370        if (mddev->degraded > dirty_parity_disks &&
7371            mddev->recovery_cp != MaxSector) {
7372                if (test_bit(MD_HAS_PPL, &mddev->flags))
7373                        pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7374                                mdname(mddev));
7375                else if (mddev->ok_start_degraded)
7376                        pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7377                                mdname(mddev));
7378                else {
7379                        pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7380                                mdname(mddev));
7381                        goto abort;
7382                }
7383        }
7384
7385        pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7386                mdname(mddev), conf->level,
7387                mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7388                mddev->new_layout);
7389
7390        print_raid5_conf(conf);
7391
7392        if (conf->reshape_progress != MaxSector) {
7393                conf->reshape_safe = conf->reshape_progress;
7394                atomic_set(&conf->reshape_stripes, 0);
7395                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7396                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7397                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7398                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7399                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7400                                                        "reshape");
7401        }
7402
7403        /* Ok, everything is just fine now */
7404        if (mddev->to_remove == &raid5_attrs_group)
7405                mddev->to_remove = NULL;
7406        else if (mddev->kobj.sd &&
7407            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7408                pr_warn("raid5: failed to create sysfs attributes for %s\n",
7409                        mdname(mddev));
7410        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7411
7412        if (mddev->queue) {
7413                int chunk_size;
7414                /* read-ahead size must cover two whole stripes, which
7415                 * is 2 * (datadisks) * chunksize where 'n' is the
7416                 * number of raid devices
7417                 */
7418                int data_disks = conf->previous_raid_disks - conf->max_degraded;
7419                int stripe = data_disks *
7420                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7421                if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7422                        mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7423
7424                chunk_size = mddev->chunk_sectors << 9;
7425                blk_queue_io_min(mddev->queue, chunk_size);
7426                blk_queue_io_opt(mddev->queue, chunk_size *
7427                                 (conf->raid_disks - conf->max_degraded));
7428                mddev->queue->limits.raid_partial_stripes_expensive = 1;
7429                /*
7430                 * We can only discard a whole stripe. It doesn't make sense to
7431                 * discard data disk but write parity disk
7432                 */
7433                stripe = stripe * PAGE_SIZE;
7434                /* Round up to power of 2, as discard handling
7435                 * currently assumes that */
7436                while ((stripe-1) & stripe)
7437                        stripe = (stripe | (stripe-1)) + 1;
7438                mddev->queue->limits.discard_alignment = stripe;
7439                mddev->queue->limits.discard_granularity = stripe;
7440
7441                blk_queue_max_write_same_sectors(mddev->queue, 0);
7442                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7443
7444                rdev_for_each(rdev, mddev) {
7445                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7446                                          rdev->data_offset << 9);
7447                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7448                                          rdev->new_data_offset << 9);
7449                }
7450
7451                /*
7452                 * zeroing is required, otherwise data
7453                 * could be lost. Consider a scenario: discard a stripe
7454                 * (the stripe could be inconsistent if
7455                 * discard_zeroes_data is 0); write one disk of the
7456                 * stripe (the stripe could be inconsistent again
7457                 * depending on which disks are used to calculate
7458                 * parity); the disk is broken; The stripe data of this
7459                 * disk is lost.
7460                 *
7461                 * We only allow DISCARD if the sysadmin has confirmed that
7462                 * only safe devices are in use by setting a module parameter.
7463                 * A better idea might be to turn DISCARD into WRITE_ZEROES
7464                 * requests, as that is required to be safe.
7465                 */
7466                if (devices_handle_discard_safely &&
7467                    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7468                    mddev->queue->limits.discard_granularity >= stripe)
7469                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7470                                                mddev->queue);
7471                else
7472                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7473                                                mddev->queue);
7474
7475                blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7476        }
7477
7478        if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7479                goto abort;
7480
7481        return 0;
7482abort:
7483        md_unregister_thread(&mddev->thread);
7484        print_raid5_conf(conf);
7485        free_conf(conf);
7486        mddev->private = NULL;
7487        pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7488        return -EIO;
7489}
7490
7491static void raid5_free(struct mddev *mddev, void *priv)
7492{
7493        struct r5conf *conf = priv;
7494
7495        free_conf(conf);
7496        mddev->to_remove = &raid5_attrs_group;
7497}
7498
7499static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7500{
7501        struct r5conf *conf = mddev->private;
7502        int i;
7503
7504        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7505                conf->chunk_sectors / 2, mddev->layout);
7506        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7507        rcu_read_lock();
7508        for (i = 0; i < conf->raid_disks; i++) {
7509                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7510                seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7511        }
7512        rcu_read_unlock();
7513        seq_printf (seq, "]");
7514}
7515
7516static void print_raid5_conf (struct r5conf *conf)
7517{
7518        int i;
7519        struct disk_info *tmp;
7520
7521        pr_debug("RAID conf printout:\n");
7522        if (!conf) {
7523                pr_debug("(conf==NULL)\n");
7524                return;
7525        }
7526        pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7527               conf->raid_disks,
7528               conf->raid_disks - conf->mddev->degraded);
7529
7530        for (i = 0; i < conf->raid_disks; i++) {
7531                char b[BDEVNAME_SIZE];
7532                tmp = conf->disks + i;
7533                if (tmp->rdev)
7534                        pr_debug(" disk %d, o:%d, dev:%s\n",
7535                               i, !test_bit(Faulty, &tmp->rdev->flags),
7536                               bdevname(tmp->rdev->bdev, b));
7537        }
7538}
7539
7540static int raid5_spare_active(struct mddev *mddev)
7541{
7542        int i;
7543        struct r5conf *conf = mddev->private;
7544        struct disk_info *tmp;
7545        int count = 0;
7546        unsigned long flags;
7547
7548        for (i = 0; i < conf->raid_disks; i++) {
7549                tmp = conf->disks + i;
7550                if (tmp->replacement
7551                    && tmp->replacement->recovery_offset == MaxSector
7552                    && !test_bit(Faulty, &tmp->replacement->flags)
7553                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7554                        /* Replacement has just become active. */
7555                        if (!tmp->rdev
7556                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7557                                count++;
7558                        if (tmp->rdev) {
7559                                /* Replaced device not technically faulty,
7560                                 * but we need to be sure it gets removed
7561                                 * and never re-added.
7562                                 */
7563                                set_bit(Faulty, &tmp->rdev->flags);
7564                                sysfs_notify_dirent_safe(
7565                                        tmp->rdev->sysfs_state);
7566                        }
7567                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7568                } else if (tmp->rdev
7569                    && tmp->rdev->recovery_offset == MaxSector
7570                    && !test_bit(Faulty, &tmp->rdev->flags)
7571                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7572                        count++;
7573                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7574                }
7575        }
7576        spin_lock_irqsave(&conf->device_lock, flags);
7577        mddev->degraded = raid5_calc_degraded(conf);
7578        spin_unlock_irqrestore(&conf->device_lock, flags);
7579        print_raid5_conf(conf);
7580        return count;
7581}
7582
7583static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7584{
7585        struct r5conf *conf = mddev->private;
7586        int err = 0;
7587        int number = rdev->raid_disk;
7588        struct md_rdev **rdevp;
7589        struct disk_info *p = conf->disks + number;
7590
7591        print_raid5_conf(conf);
7592        if (test_bit(Journal, &rdev->flags) && conf->log) {
7593                /*
7594                 * we can't wait pending write here, as this is called in
7595                 * raid5d, wait will deadlock.
7596                 * neilb: there is no locking about new writes here,
7597                 * so this cannot be safe.
7598                 */
7599                if (atomic_read(&conf->active_stripes) ||
7600                    atomic_read(&conf->r5c_cached_full_stripes) ||
7601                    atomic_read(&conf->r5c_cached_partial_stripes)) {
7602                        return -EBUSY;
7603                }
7604                log_exit(conf);
7605                return 0;
7606        }
7607        if (rdev == p->rdev)
7608                rdevp = &p->rdev;
7609        else if (rdev == p->replacement)
7610                rdevp = &p->replacement;
7611        else
7612                return 0;
7613
7614        if (number >= conf->raid_disks &&
7615            conf->reshape_progress == MaxSector)
7616                clear_bit(In_sync, &rdev->flags);
7617
7618        if (test_bit(In_sync, &rdev->flags) ||
7619            atomic_read(&rdev->nr_pending)) {
7620                err = -EBUSY;
7621                goto abort;
7622        }
7623        /* Only remove non-faulty devices if recovery
7624         * isn't possible.
7625         */
7626        if (!test_bit(Faulty, &rdev->flags) &&
7627            mddev->recovery_disabled != conf->recovery_disabled &&
7628            !has_failed(conf) &&
7629            (!p->replacement || p->replacement == rdev) &&
7630            number < conf->raid_disks) {
7631                err = -EBUSY;
7632                goto abort;
7633        }
7634        *rdevp = NULL;
7635        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7636                synchronize_rcu();
7637                if (atomic_read(&rdev->nr_pending)) {
7638                        /* lost the race, try later */
7639                        err = -EBUSY;
7640                        *rdevp = rdev;
7641                }
7642        }
7643        if (!err) {
7644                err = log_modify(conf, rdev, false);
7645                if (err)
7646                        goto abort;
7647        }
7648        if (p->replacement) {
7649                /* We must have just cleared 'rdev' */
7650                p->rdev = p->replacement;
7651                clear_bit(Replacement, &p->replacement->flags);
7652                smp_mb(); /* Make sure other CPUs may see both as identical
7653                           * but will never see neither - if they are careful
7654                           */
7655                p->replacement = NULL;
7656
7657                if (!err)
7658                        err = log_modify(conf, p->rdev, true);
7659        }
7660
7661        clear_bit(WantReplacement, &rdev->flags);
7662abort:
7663
7664        print_raid5_conf(conf);
7665        return err;
7666}
7667
7668static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7669{
7670        struct r5conf *conf = mddev->private;
7671        int err = -EEXIST;
7672        int disk;
7673        struct disk_info *p;
7674        int first = 0;
7675        int last = conf->raid_disks - 1;
7676
7677        if (test_bit(Journal, &rdev->flags)) {
7678                if (conf->log)
7679                        return -EBUSY;
7680
7681                rdev->raid_disk = 0;
7682                /*
7683                 * The array is in readonly mode if journal is missing, so no
7684                 * write requests running. We should be safe
7685                 */
7686                log_init(conf, rdev, false);
7687                return 0;
7688        }
7689        if (mddev->recovery_disabled == conf->recovery_disabled)
7690                return -EBUSY;
7691
7692        if (rdev->saved_raid_disk < 0 && has_failed(conf))
7693                /* no point adding a device */
7694                return -EINVAL;
7695
7696        if (rdev->raid_disk >= 0)
7697                first = last = rdev->raid_disk;
7698
7699        /*
7700         * find the disk ... but prefer rdev->saved_raid_disk
7701         * if possible.
7702         */
7703        if (rdev->saved_raid_disk >= 0 &&
7704            rdev->saved_raid_disk >= first &&
7705            conf->disks[rdev->saved_raid_disk].rdev == NULL)
7706                first = rdev->saved_raid_disk;
7707
7708        for (disk = first; disk <= last; disk++) {
7709                p = conf->disks + disk;
7710                if (p->rdev == NULL) {
7711                        clear_bit(In_sync, &rdev->flags);
7712                        rdev->raid_disk = disk;
7713                        if (rdev->saved_raid_disk != disk)
7714                                conf->fullsync = 1;
7715                        rcu_assign_pointer(p->rdev, rdev);
7716
7717                        err = log_modify(conf, rdev, true);
7718
7719                        goto out;
7720                }
7721        }
7722        for (disk = first; disk <= last; disk++) {
7723                p = conf->disks + disk;
7724                if (test_bit(WantReplacement, &p->rdev->flags) &&
7725                    p->replacement == NULL) {
7726                        clear_bit(In_sync, &rdev->flags);
7727                        set_bit(Replacement, &rdev->flags);
7728                        rdev->raid_disk = disk;
7729                        err = 0;
7730                        conf->fullsync = 1;
7731                        rcu_assign_pointer(p->replacement, rdev);
7732                        break;
7733                }
7734        }
7735out:
7736        print_raid5_conf(conf);
7737        return err;
7738}
7739
7740static int raid5_resize(struct mddev *mddev, sector_t sectors)
7741{
7742        /* no resync is happening, and there is enough space
7743         * on all devices, so we can resize.
7744         * We need to make sure resync covers any new space.
7745         * If the array is shrinking we should possibly wait until
7746         * any io in the removed space completes, but it hardly seems
7747         * worth it.
7748         */
7749        sector_t newsize;
7750        struct r5conf *conf = mddev->private;
7751
7752        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7753                return -EINVAL;
7754        sectors &= ~((sector_t)conf->chunk_sectors - 1);
7755        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7756        if (mddev->external_size &&
7757            mddev->array_sectors > newsize)
7758                return -EINVAL;
7759        if (mddev->bitmap) {
7760                int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7761                if (ret)
7762                        return ret;
7763        }
7764        md_set_array_sectors(mddev, newsize);
7765        if (sectors > mddev->dev_sectors &&
7766            mddev->recovery_cp > mddev->dev_sectors) {
7767                mddev->recovery_cp = mddev->dev_sectors;
7768                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7769        }
7770        mddev->dev_sectors = sectors;
7771        mddev->resync_max_sectors = sectors;
7772        return 0;
7773}
7774
7775static int check_stripe_cache(struct mddev *mddev)
7776{
7777        /* Can only proceed if there are plenty of stripe_heads.
7778         * We need a minimum of one full stripe,, and for sensible progress
7779         * it is best to have about 4 times that.
7780         * If we require 4 times, then the default 256 4K stripe_heads will
7781         * allow for chunk sizes up to 256K, which is probably OK.
7782         * If the chunk size is greater, user-space should request more
7783         * stripe_heads first.
7784         */
7785        struct r5conf *conf = mddev->private;
7786        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7787            > conf->min_nr_stripes ||
7788            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7789            > conf->min_nr_stripes) {
7790                pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7791                        mdname(mddev),
7792                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7793                         / STRIPE_SIZE)*4);
7794                return 0;
7795        }
7796        return 1;
7797}
7798
7799static int check_reshape(struct mddev *mddev)
7800{
7801        struct r5conf *conf = mddev->private;
7802
7803        if (raid5_has_log(conf) || raid5_has_ppl(conf))
7804                return -EINVAL;
7805        if (mddev->delta_disks == 0 &&
7806            mddev->new_layout == mddev->layout &&
7807            mddev->new_chunk_sectors == mddev->chunk_sectors)
7808                return 0; /* nothing to do */
7809        if (has_failed(conf))
7810                return -EINVAL;
7811        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7812                /* We might be able to shrink, but the devices must
7813                 * be made bigger first.
7814                 * For raid6, 4 is the minimum size.
7815                 * Otherwise 2 is the minimum
7816                 */
7817                int min = 2;
7818                if (mddev->level == 6)
7819                        min = 4;
7820                if (mddev->raid_disks + mddev->delta_disks < min)
7821                        return -EINVAL;
7822        }
7823
7824        if (!check_stripe_cache(mddev))
7825                return -ENOSPC;
7826
7827        if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7828            mddev->delta_disks > 0)
7829                if (resize_chunks(conf,
7830                                  conf->previous_raid_disks
7831                                  + max(0, mddev->delta_disks),
7832                                  max(mddev->new_chunk_sectors,
7833                                      mddev->chunk_sectors)
7834                            ) < 0)
7835                        return -ENOMEM;
7836
7837        if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7838                return 0; /* never bother to shrink */
7839        return resize_stripes(conf, (conf->previous_raid_disks
7840                                     + mddev->delta_disks));
7841}
7842
7843static int raid5_start_reshape(struct mddev *mddev)
7844{
7845        struct r5conf *conf = mddev->private;
7846        struct md_rdev *rdev;
7847        int spares = 0;
7848        unsigned long flags;
7849
7850        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7851                return -EBUSY;
7852
7853        if (!check_stripe_cache(mddev))
7854                return -ENOSPC;
7855
7856        if (has_failed(conf))
7857                return -EINVAL;
7858
7859        rdev_for_each(rdev, mddev) {
7860                if (!test_bit(In_sync, &rdev->flags)
7861                    && !test_bit(Faulty, &rdev->flags))
7862                        spares++;
7863        }
7864
7865        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7866                /* Not enough devices even to make a degraded array
7867                 * of that size
7868                 */
7869                return -EINVAL;
7870
7871        /* Refuse to reduce size of the array.  Any reductions in
7872         * array size must be through explicit setting of array_size
7873         * attribute.
7874         */
7875        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7876            < mddev->array_sectors) {
7877                pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7878                        mdname(mddev));
7879                return -EINVAL;
7880        }
7881
7882        atomic_set(&conf->reshape_stripes, 0);
7883        spin_lock_irq(&conf->device_lock);
7884        write_seqcount_begin(&conf->gen_lock);
7885        conf->previous_raid_disks = conf->raid_disks;
7886        conf->raid_disks += mddev->delta_disks;
7887        conf->prev_chunk_sectors = conf->chunk_sectors;
7888        conf->chunk_sectors = mddev->new_chunk_sectors;
7889        conf->prev_algo = conf->algorithm;
7890        conf->algorithm = mddev->new_layout;
7891        conf->generation++;
7892        /* Code that selects data_offset needs to see the generation update
7893         * if reshape_progress has been set - so a memory barrier needed.
7894         */
7895        smp_mb();
7896        if (mddev->reshape_backwards)
7897                conf->reshape_progress = raid5_size(mddev, 0, 0);
7898        else
7899                conf->reshape_progress = 0;
7900        conf->reshape_safe = conf->reshape_progress;
7901        write_seqcount_end(&conf->gen_lock);
7902        spin_unlock_irq(&conf->device_lock);
7903
7904        /* Now make sure any requests that proceeded on the assumption
7905         * the reshape wasn't running - like Discard or Read - have
7906         * completed.
7907         */
7908        mddev_suspend(mddev);
7909        mddev_resume(mddev);
7910
7911        /* Add some new drives, as many as will fit.
7912         * We know there are enough to make the newly sized array work.
7913         * Don't add devices if we are reducing the number of
7914         * devices in the array.  This is because it is not possible
7915         * to correctly record the "partially reconstructed" state of
7916         * such devices during the reshape and confusion could result.
7917         */
7918        if (mddev->delta_disks >= 0) {
7919                rdev_for_each(rdev, mddev)
7920                        if (rdev->raid_disk < 0 &&
7921                            !test_bit(Faulty, &rdev->flags)) {
7922                                if (raid5_add_disk(mddev, rdev) == 0) {
7923                                        if (rdev->raid_disk
7924                                            >= conf->previous_raid_disks)
7925                                                set_bit(In_sync, &rdev->flags);
7926                                        else
7927                                                rdev->recovery_offset = 0;
7928
7929                                        if (sysfs_link_rdev(mddev, rdev))
7930                                                /* Failure here is OK */;
7931                                }
7932                        } else if (rdev->raid_disk >= conf->previous_raid_disks
7933                                   && !test_bit(Faulty, &rdev->flags)) {
7934                                /* This is a spare that was manually added */
7935                                set_bit(In_sync, &rdev->flags);
7936                        }
7937
7938                /* When a reshape changes the number of devices,
7939                 * ->degraded is measured against the larger of the
7940                 * pre and post number of devices.
7941                 */
7942                spin_lock_irqsave(&conf->device_lock, flags);
7943                mddev->degraded = raid5_calc_degraded(conf);
7944                spin_unlock_irqrestore(&conf->device_lock, flags);
7945        }
7946        mddev->raid_disks = conf->raid_disks;
7947        mddev->reshape_position = conf->reshape_progress;
7948        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7949
7950        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7951        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7952        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7953        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7954        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7955        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7956                                                "reshape");
7957        if (!mddev->sync_thread) {
7958                mddev->recovery = 0;
7959                spin_lock_irq(&conf->device_lock);
7960                write_seqcount_begin(&conf->gen_lock);
7961                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7962                mddev->new_chunk_sectors =
7963                        conf->chunk_sectors = conf->prev_chunk_sectors;
7964                mddev->new_layout = conf->algorithm = conf->prev_algo;
7965                rdev_for_each(rdev, mddev)
7966                        rdev->new_data_offset = rdev->data_offset;
7967                smp_wmb();
7968                conf->generation --;
7969                conf->reshape_progress = MaxSector;
7970                mddev->reshape_position = MaxSector;
7971                write_seqcount_end(&conf->gen_lock);
7972                spin_unlock_irq(&conf->device_lock);
7973                return -EAGAIN;
7974        }
7975        conf->reshape_checkpoint = jiffies;
7976        md_wakeup_thread(mddev->sync_thread);
7977        md_new_event(mddev);
7978        return 0;
7979}
7980
7981/* This is called from the reshape thread and should make any
7982 * changes needed in 'conf'
7983 */
7984static void end_reshape(struct r5conf *conf)
7985{
7986
7987        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7988                struct md_rdev *rdev;
7989
7990                spin_lock_irq(&conf->device_lock);
7991                conf->previous_raid_disks = conf->raid_disks;
7992                md_finish_reshape(conf->mddev);
7993                smp_wmb();
7994                conf->reshape_progress = MaxSector;
7995                conf->mddev->reshape_position = MaxSector;
7996                rdev_for_each(rdev, conf->mddev)
7997                        if (rdev->raid_disk >= 0 &&
7998                            !test_bit(Journal, &rdev->flags) &&
7999                            !test_bit(In_sync, &rdev->flags))
8000                                rdev->recovery_offset = MaxSector;
8001                spin_unlock_irq(&conf->device_lock);
8002                wake_up(&conf->wait_for_overlap);
8003
8004                /* read-ahead size must cover two whole stripes, which is
8005                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8006                 */
8007                if (conf->mddev->queue) {
8008                        int data_disks = conf->raid_disks - conf->max_degraded;
8009                        int stripe = data_disks * ((conf->chunk_sectors << 9)
8010                                                   / PAGE_SIZE);
8011                        if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8012                                conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8013                }
8014        }
8015}
8016
8017/* This is called from the raid5d thread with mddev_lock held.
8018 * It makes config changes to the device.
8019 */
8020static void raid5_finish_reshape(struct mddev *mddev)
8021{
8022        struct r5conf *conf = mddev->private;
8023
8024        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8025
8026                if (mddev->delta_disks <= 0) {
8027                        int d;
8028                        spin_lock_irq(&conf->device_lock);
8029                        mddev->degraded = raid5_calc_degraded(conf);
8030                        spin_unlock_irq(&conf->device_lock);
8031                        for (d = conf->raid_disks ;
8032                             d < conf->raid_disks - mddev->delta_disks;
8033                             d++) {
8034                                struct md_rdev *rdev = conf->disks[d].rdev;
8035                                if (rdev)
8036                                        clear_bit(In_sync, &rdev->flags);
8037                                rdev = conf->disks[d].replacement;
8038                                if (rdev)
8039                                        clear_bit(In_sync, &rdev->flags);
8040                        }
8041                }
8042                mddev->layout = conf->algorithm;
8043                mddev->chunk_sectors = conf->chunk_sectors;
8044                mddev->reshape_position = MaxSector;
8045                mddev->delta_disks = 0;
8046                mddev->reshape_backwards = 0;
8047        }
8048}
8049
8050static void raid5_quiesce(struct mddev *mddev, int quiesce)
8051{
8052        struct r5conf *conf = mddev->private;
8053
8054        if (quiesce) {
8055                /* stop all writes */
8056                lock_all_device_hash_locks_irq(conf);
8057                /* '2' tells resync/reshape to pause so that all
8058                 * active stripes can drain
8059                 */
8060                r5c_flush_cache(conf, INT_MAX);
8061                conf->quiesce = 2;
8062                wait_event_cmd(conf->wait_for_quiescent,
8063                                    atomic_read(&conf->active_stripes) == 0 &&
8064                                    atomic_read(&conf->active_aligned_reads) == 0,
8065                                    unlock_all_device_hash_locks_irq(conf),
8066                                    lock_all_device_hash_locks_irq(conf));
8067                conf->quiesce = 1;
8068                unlock_all_device_hash_locks_irq(conf);
8069                /* allow reshape to continue */
8070                wake_up(&conf->wait_for_overlap);
8071        } else {
8072                /* re-enable writes */
8073                lock_all_device_hash_locks_irq(conf);
8074                conf->quiesce = 0;
8075                wake_up(&conf->wait_for_quiescent);
8076                wake_up(&conf->wait_for_overlap);
8077                unlock_all_device_hash_locks_irq(conf);
8078        }
8079        log_quiesce(conf, quiesce);
8080}
8081
8082static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8083{
8084        struct r0conf *raid0_conf = mddev->private;
8085        sector_t sectors;
8086
8087        /* for raid0 takeover only one zone is supported */
8088        if (raid0_conf->nr_strip_zones > 1) {
8089                pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8090                        mdname(mddev));
8091                return ERR_PTR(-EINVAL);
8092        }
8093
8094        sectors = raid0_conf->strip_zone[0].zone_end;
8095        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8096        mddev->dev_sectors = sectors;
8097        mddev->new_level = level;
8098        mddev->new_layout = ALGORITHM_PARITY_N;
8099        mddev->new_chunk_sectors = mddev->chunk_sectors;
8100        mddev->raid_disks += 1;
8101        mddev->delta_disks = 1;
8102        /* make sure it will be not marked as dirty */
8103        mddev->recovery_cp = MaxSector;
8104
8105        return setup_conf(mddev);
8106}
8107
8108static void *raid5_takeover_raid1(struct mddev *mddev)
8109{
8110        int chunksect;
8111        void *ret;
8112
8113        if (mddev->raid_disks != 2 ||
8114            mddev->degraded > 1)
8115                return ERR_PTR(-EINVAL);
8116
8117        /* Should check if there are write-behind devices? */
8118
8119        chunksect = 64*2; /* 64K by default */
8120
8121        /* The array must be an exact multiple of chunksize */
8122        while (chunksect && (mddev->array_sectors & (chunksect-1)))
8123                chunksect >>= 1;
8124
8125        if ((chunksect<<9) < STRIPE_SIZE)
8126                /* array size does not allow a suitable chunk size */
8127                return ERR_PTR(-EINVAL);
8128
8129        mddev->new_level = 5;
8130        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8131        mddev->new_chunk_sectors = chunksect;
8132
8133        ret = setup_conf(mddev);
8134        if (!IS_ERR(ret))
8135                mddev_clear_unsupported_flags(mddev,
8136                        UNSUPPORTED_MDDEV_FLAGS);
8137        return ret;
8138}
8139
8140static void *raid5_takeover_raid6(struct mddev *mddev)
8141{
8142        int new_layout;
8143
8144        switch (mddev->layout) {
8145        case ALGORITHM_LEFT_ASYMMETRIC_6:
8146                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8147                break;
8148        case ALGORITHM_RIGHT_ASYMMETRIC_6:
8149                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8150                break;
8151        case ALGORITHM_LEFT_SYMMETRIC_6:
8152                new_layout = ALGORITHM_LEFT_SYMMETRIC;
8153                break;
8154        case ALGORITHM_RIGHT_SYMMETRIC_6:
8155                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8156                break;
8157        case ALGORITHM_PARITY_0_6:
8158                new_layout = ALGORITHM_PARITY_0;
8159                break;
8160        case ALGORITHM_PARITY_N:
8161                new_layout = ALGORITHM_PARITY_N;
8162                break;
8163        default:
8164                return ERR_PTR(-EINVAL);
8165        }
8166        mddev->new_level = 5;
8167        mddev->new_layout = new_layout;
8168        mddev->delta_disks = -1;
8169        mddev->raid_disks -= 1;
8170        return setup_conf(mddev);
8171}
8172
8173static int raid5_check_reshape(struct mddev *mddev)
8174{
8175        /* For a 2-drive array, the layout and chunk size can be changed
8176         * immediately as not restriping is needed.
8177         * For larger arrays we record the new value - after validation
8178         * to be used by a reshape pass.
8179         */
8180        struct r5conf *conf = mddev->private;
8181        int new_chunk = mddev->new_chunk_sectors;
8182
8183        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8184                return -EINVAL;
8185        if (new_chunk > 0) {
8186                if (!is_power_of_2(new_chunk))
8187                        return -EINVAL;
8188                if (new_chunk < (PAGE_SIZE>>9))
8189                        return -EINVAL;
8190                if (mddev->array_sectors & (new_chunk-1))
8191                        /* not factor of array size */
8192                        return -EINVAL;
8193        }
8194
8195        /* They look valid */
8196
8197        if (mddev->raid_disks == 2) {
8198                /* can make the change immediately */
8199                if (mddev->new_layout >= 0) {
8200                        conf->algorithm = mddev->new_layout;
8201                        mddev->layout = mddev->new_layout;
8202                }
8203                if (new_chunk > 0) {
8204                        conf->chunk_sectors = new_chunk ;
8205                        mddev->chunk_sectors = new_chunk;
8206                }
8207                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8208                md_wakeup_thread(mddev->thread);
8209        }
8210        return check_reshape(mddev);
8211}
8212
8213static int raid6_check_reshape(struct mddev *mddev)
8214{
8215        int new_chunk = mddev->new_chunk_sectors;
8216
8217        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8218                return -EINVAL;
8219        if (new_chunk > 0) {
8220                if (!is_power_of_2(new_chunk))
8221                        return -EINVAL;
8222                if (new_chunk < (PAGE_SIZE >> 9))
8223                        return -EINVAL;
8224                if (mddev->array_sectors & (new_chunk-1))
8225                        /* not factor of array size */
8226                        return -EINVAL;
8227        }
8228
8229        /* They look valid */
8230        return check_reshape(mddev);
8231}
8232
8233static void *raid5_takeover(struct mddev *mddev)
8234{
8235        /* raid5 can take over:
8236         *  raid0 - if there is only one strip zone - make it a raid4 layout
8237         *  raid1 - if there are two drives.  We need to know the chunk size
8238         *  raid4 - trivial - just use a raid4 layout.
8239         *  raid6 - Providing it is a *_6 layout
8240         */
8241        if (mddev->level == 0)
8242                return raid45_takeover_raid0(mddev, 5);
8243        if (mddev->level == 1)
8244                return raid5_takeover_raid1(mddev);
8245        if (mddev->level == 4) {
8246                mddev->new_layout = ALGORITHM_PARITY_N;
8247                mddev->new_level = 5;
8248                return setup_conf(mddev);
8249        }
8250        if (mddev->level == 6)
8251                return raid5_takeover_raid6(mddev);
8252
8253        return ERR_PTR(-EINVAL);
8254}
8255
8256static void *raid4_takeover(struct mddev *mddev)
8257{
8258        /* raid4 can take over:
8259         *  raid0 - if there is only one strip zone
8260         *  raid5 - if layout is right
8261         */
8262        if (mddev->level == 0)
8263                return raid45_takeover_raid0(mddev, 4);
8264        if (mddev->level == 5 &&
8265            mddev->layout == ALGORITHM_PARITY_N) {
8266                mddev->new_layout = 0;
8267                mddev->new_level = 4;
8268                return setup_conf(mddev);
8269        }
8270        return ERR_PTR(-EINVAL);
8271}
8272
8273static struct md_personality raid5_personality;
8274
8275static void *raid6_takeover(struct mddev *mddev)
8276{
8277        /* Currently can only take over a raid5.  We map the
8278         * personality to an equivalent raid6 personality
8279         * with the Q block at the end.
8280         */
8281        int new_layout;
8282
8283        if (mddev->pers != &raid5_personality)
8284                return ERR_PTR(-EINVAL);
8285        if (mddev->degraded > 1)
8286                return ERR_PTR(-EINVAL);
8287        if (mddev->raid_disks > 253)
8288                return ERR_PTR(-EINVAL);
8289        if (mddev->raid_disks < 3)
8290                return ERR_PTR(-EINVAL);
8291
8292        switch (mddev->layout) {
8293        case ALGORITHM_LEFT_ASYMMETRIC:
8294                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8295                break;
8296        case ALGORITHM_RIGHT_ASYMMETRIC:
8297                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8298                break;
8299        case ALGORITHM_LEFT_SYMMETRIC:
8300                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8301                break;
8302        case ALGORITHM_RIGHT_SYMMETRIC:
8303                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8304                break;
8305        case ALGORITHM_PARITY_0:
8306                new_layout = ALGORITHM_PARITY_0_6;
8307                break;
8308        case ALGORITHM_PARITY_N:
8309                new_layout = ALGORITHM_PARITY_N;
8310                break;
8311        default:
8312                return ERR_PTR(-EINVAL);
8313        }
8314        mddev->new_level = 6;
8315        mddev->new_layout = new_layout;
8316        mddev->delta_disks = 1;
8317        mddev->raid_disks += 1;
8318        return setup_conf(mddev);
8319}
8320
8321static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8322{
8323        struct r5conf *conf;
8324        int err;
8325
8326        err = mddev_lock(mddev);
8327        if (err)
8328                return err;
8329        conf = mddev->private;
8330        if (!conf) {
8331                mddev_unlock(mddev);
8332                return -ENODEV;
8333        }
8334
8335        if (strncmp(buf, "ppl", 3) == 0) {
8336                /* ppl only works with RAID 5 */
8337                if (!raid5_has_ppl(conf) && conf->level == 5) {
8338                        err = log_init(conf, NULL, true);
8339                        if (!err) {
8340                                err = resize_stripes(conf, conf->pool_size);
8341                                if (err)
8342                                        log_exit(conf);
8343                        }
8344                } else
8345                        err = -EINVAL;
8346        } else if (strncmp(buf, "resync", 6) == 0) {
8347                if (raid5_has_ppl(conf)) {
8348                        mddev_suspend(mddev);
8349                        log_exit(conf);
8350                        mddev_resume(mddev);
8351                        err = resize_stripes(conf, conf->pool_size);
8352                } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8353                           r5l_log_disk_error(conf)) {
8354                        bool journal_dev_exists = false;
8355                        struct md_rdev *rdev;
8356
8357                        rdev_for_each(rdev, mddev)
8358                                if (test_bit(Journal, &rdev->flags)) {
8359                                        journal_dev_exists = true;
8360                                        break;
8361                                }
8362
8363                        if (!journal_dev_exists) {
8364                                mddev_suspend(mddev);
8365                                clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8366                                mddev_resume(mddev);
8367                        } else  /* need remove journal device first */
8368                                err = -EBUSY;
8369                } else
8370                        err = -EINVAL;
8371        } else {
8372                err = -EINVAL;
8373        }
8374
8375        if (!err)
8376                md_update_sb(mddev, 1);
8377
8378        mddev_unlock(mddev);
8379
8380        return err;
8381}
8382
8383static int raid5_start(struct mddev *mddev)
8384{
8385        struct r5conf *conf = mddev->private;
8386
8387        return r5l_start(conf->log);
8388}
8389
8390static struct md_personality raid6_personality =
8391{
8392        .name           = "raid6",
8393        .level          = 6,
8394        .owner          = THIS_MODULE,
8395        .make_request   = raid5_make_request,
8396        .run            = raid5_run,
8397        .start          = raid5_start,
8398        .free           = raid5_free,
8399        .status         = raid5_status,
8400        .error_handler  = raid5_error,
8401        .hot_add_disk   = raid5_add_disk,
8402        .hot_remove_disk= raid5_remove_disk,
8403        .spare_active   = raid5_spare_active,
8404        .sync_request   = raid5_sync_request,
8405        .resize         = raid5_resize,
8406        .size           = raid5_size,
8407        .check_reshape  = raid6_check_reshape,
8408        .start_reshape  = raid5_start_reshape,
8409        .finish_reshape = raid5_finish_reshape,
8410        .quiesce        = raid5_quiesce,
8411        .takeover       = raid6_takeover,
8412        .congested      = raid5_congested,
8413        .change_consistency_policy = raid5_change_consistency_policy,
8414};
8415static struct md_personality raid5_personality =
8416{
8417        .name           = "raid5",
8418        .level          = 5,
8419        .owner          = THIS_MODULE,
8420        .make_request   = raid5_make_request,
8421        .run            = raid5_run,
8422        .start          = raid5_start,
8423        .free           = raid5_free,
8424        .status         = raid5_status,
8425        .error_handler  = raid5_error,
8426        .hot_add_disk   = raid5_add_disk,
8427        .hot_remove_disk= raid5_remove_disk,
8428        .spare_active   = raid5_spare_active,
8429        .sync_request   = raid5_sync_request,
8430        .resize         = raid5_resize,
8431        .size           = raid5_size,
8432        .check_reshape  = raid5_check_reshape,
8433        .start_reshape  = raid5_start_reshape,
8434        .finish_reshape = raid5_finish_reshape,
8435        .quiesce        = raid5_quiesce,
8436        .takeover       = raid5_takeover,
8437        .congested      = raid5_congested,
8438        .change_consistency_policy = raid5_change_consistency_policy,
8439};
8440
8441static struct md_personality raid4_personality =
8442{
8443        .name           = "raid4",
8444        .level          = 4,
8445        .owner          = THIS_MODULE,
8446        .make_request   = raid5_make_request,
8447        .run            = raid5_run,
8448        .start          = raid5_start,
8449        .free           = raid5_free,
8450        .status         = raid5_status,
8451        .error_handler  = raid5_error,
8452        .hot_add_disk   = raid5_add_disk,
8453        .hot_remove_disk= raid5_remove_disk,
8454        .spare_active   = raid5_spare_active,
8455        .sync_request   = raid5_sync_request,
8456        .resize         = raid5_resize,
8457        .size           = raid5_size,
8458        .check_reshape  = raid5_check_reshape,
8459        .start_reshape  = raid5_start_reshape,
8460        .finish_reshape = raid5_finish_reshape,
8461        .quiesce        = raid5_quiesce,
8462        .takeover       = raid4_takeover,
8463        .congested      = raid5_congested,
8464        .change_consistency_policy = raid5_change_consistency_policy,
8465};
8466
8467static int __init raid5_init(void)
8468{
8469        int ret;
8470
8471        raid5_wq = alloc_workqueue("raid5wq",
8472                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8473        if (!raid5_wq)
8474                return -ENOMEM;
8475
8476        ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8477                                      "md/raid5:prepare",
8478                                      raid456_cpu_up_prepare,
8479                                      raid456_cpu_dead);
8480        if (ret) {
8481                destroy_workqueue(raid5_wq);
8482                return ret;
8483        }
8484        register_md_personality(&raid6_personality);
8485        register_md_personality(&raid5_personality);
8486        register_md_personality(&raid4_personality);
8487        return 0;
8488}
8489
8490static void raid5_exit(void)
8491{
8492        unregister_md_personality(&raid6_personality);
8493        unregister_md_personality(&raid5_personality);
8494        unregister_md_personality(&raid4_personality);
8495        cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8496        destroy_workqueue(raid5_wq);
8497}
8498
8499module_init(raid5_init);
8500module_exit(raid5_exit);
8501MODULE_LICENSE("GPL");
8502MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8503MODULE_ALIAS("md-personality-4"); /* RAID5 */
8504MODULE_ALIAS("md-raid5");
8505MODULE_ALIAS("md-raid4");
8506MODULE_ALIAS("md-level-5");
8507MODULE_ALIAS("md-level-4");
8508MODULE_ALIAS("md-personality-8"); /* RAID6 */
8509MODULE_ALIAS("md-raid6");
8510MODULE_ALIAS("md-level-6");
8511
8512/* This used to be two separate modules, they were: */
8513MODULE_ALIAS("raid5");
8514MODULE_ALIAS("raid6");
8515