1
2
3
4
5
6
7
8
9
10
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/i2c.h>
17#include <linux/mutex.h>
18
19#include <media/dvb_frontend.h>
20
21#include "dib7000m.h"
22
23static int debug;
24module_param(debug, int, 0644);
25MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
26
27#define dprintk(fmt, arg...) do { \
28 if (debug) \
29 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
30 __func__, ##arg); \
31} while (0)
32
33struct dib7000m_state {
34 struct dvb_frontend demod;
35 struct dib7000m_config cfg;
36
37 u8 i2c_addr;
38 struct i2c_adapter *i2c_adap;
39
40 struct dibx000_i2c_master i2c_master;
41
42
43 u8 reg_offs;
44
45 u16 wbd_ref;
46
47 u8 current_band;
48 u32 current_bandwidth;
49 struct dibx000_agc_config *current_agc;
50 u32 timf;
51 u32 timf_default;
52 u32 internal_clk;
53
54 u8 div_force_off : 1;
55 u8 div_state : 1;
56 u16 div_sync_wait;
57
58 u16 revision;
59
60 u8 agc_state;
61
62
63 struct i2c_msg msg[2];
64 u8 i2c_write_buffer[4];
65 u8 i2c_read_buffer[2];
66 struct mutex i2c_buffer_lock;
67};
68
69enum dib7000m_power_mode {
70 DIB7000M_POWER_ALL = 0,
71
72 DIB7000M_POWER_NO,
73 DIB7000M_POWER_INTERF_ANALOG_AGC,
74 DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD,
75 DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD,
76 DIB7000M_POWER_INTERFACE_ONLY,
77};
78
79static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg)
80{
81 u16 ret;
82
83 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
84 dprintk("could not acquire lock\n");
85 return 0;
86 }
87
88 state->i2c_write_buffer[0] = (reg >> 8) | 0x80;
89 state->i2c_write_buffer[1] = reg & 0xff;
90
91 memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
92 state->msg[0].addr = state->i2c_addr >> 1;
93 state->msg[0].flags = 0;
94 state->msg[0].buf = state->i2c_write_buffer;
95 state->msg[0].len = 2;
96 state->msg[1].addr = state->i2c_addr >> 1;
97 state->msg[1].flags = I2C_M_RD;
98 state->msg[1].buf = state->i2c_read_buffer;
99 state->msg[1].len = 2;
100
101 if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2)
102 dprintk("i2c read error on %d\n", reg);
103
104 ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
105 mutex_unlock(&state->i2c_buffer_lock);
106
107 return ret;
108}
109
110static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val)
111{
112 int ret;
113
114 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
115 dprintk("could not acquire lock\n");
116 return -EINVAL;
117 }
118
119 state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
120 state->i2c_write_buffer[1] = reg & 0xff;
121 state->i2c_write_buffer[2] = (val >> 8) & 0xff;
122 state->i2c_write_buffer[3] = val & 0xff;
123
124 memset(&state->msg[0], 0, sizeof(struct i2c_msg));
125 state->msg[0].addr = state->i2c_addr >> 1;
126 state->msg[0].flags = 0;
127 state->msg[0].buf = state->i2c_write_buffer;
128 state->msg[0].len = 4;
129
130 ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ?
131 -EREMOTEIO : 0);
132 mutex_unlock(&state->i2c_buffer_lock);
133 return ret;
134}
135static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf)
136{
137 u16 l = 0, r, *n;
138 n = buf;
139 l = *n++;
140 while (l) {
141 r = *n++;
142
143 if (state->reg_offs && (r >= 112 && r <= 331))
144 r++;
145
146 do {
147 dib7000m_write_word(state, r, *n++);
148 r++;
149 } while (--l);
150 l = *n++;
151 }
152}
153
154static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
155{
156 int ret = 0;
157 u16 outreg, fifo_threshold, smo_mode,
158 sram = 0x0005;
159
160 outreg = 0;
161 fifo_threshold = 1792;
162 smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1);
163
164 dprintk("setting output mode for demod %p to %d\n", &state->demod, mode);
165
166 switch (mode) {
167 case OUTMODE_MPEG2_PAR_GATED_CLK:
168 outreg = (1 << 10);
169 break;
170 case OUTMODE_MPEG2_PAR_CONT_CLK:
171 outreg = (1 << 10) | (1 << 6);
172 break;
173 case OUTMODE_MPEG2_SERIAL:
174 outreg = (1 << 10) | (2 << 6) | (0 << 1);
175 break;
176 case OUTMODE_DIVERSITY:
177 if (state->cfg.hostbus_diversity)
178 outreg = (1 << 10) | (4 << 6);
179 else
180 sram |= 0x0c00;
181 break;
182 case OUTMODE_MPEG2_FIFO:
183 smo_mode |= (3 << 1);
184 fifo_threshold = 512;
185 outreg = (1 << 10) | (5 << 6);
186 break;
187 case OUTMODE_HIGH_Z:
188 outreg = 0;
189 break;
190 default:
191 dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->demod);
192 break;
193 }
194
195 if (state->cfg.output_mpeg2_in_188_bytes)
196 smo_mode |= (1 << 5) ;
197
198 ret |= dib7000m_write_word(state, 294 + state->reg_offs, smo_mode);
199 ret |= dib7000m_write_word(state, 295 + state->reg_offs, fifo_threshold);
200 ret |= dib7000m_write_word(state, 1795, outreg);
201 ret |= dib7000m_write_word(state, 1805, sram);
202
203 if (state->revision == 0x4003) {
204 u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd;
205 if (mode == OUTMODE_DIVERSITY)
206 clk_cfg1 |= (1 << 1);
207 dib7000m_write_word(state, 909, clk_cfg1);
208 }
209 return ret;
210}
211
212static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode)
213{
214
215 u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff;
216 u8 offset = 0;
217
218
219 switch (mode) {
220
221 case DIB7000M_POWER_ALL:
222 reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000;
223 break;
224
225
226 case DIB7000M_POWER_INTERFACE_ONLY:
227 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2));
228 break;
229
230 case DIB7000M_POWER_INTERF_ANALOG_AGC:
231 reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10));
232 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2));
233 reg_906 &= ~((1 << 0));
234 break;
235
236 case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD:
237 reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000;
238 break;
239
240 case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD:
241 reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000;
242 break;
243 case DIB7000M_POWER_NO:
244 break;
245 }
246
247
248 if (!state->cfg.mobile_mode)
249 reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
250
251
252 if (state->revision != 0x4000)
253 reg_906 <<= 1;
254
255 if (state->revision == 0x4003)
256 offset = 1;
257
258 dib7000m_write_word(state, 903 + offset, reg_903);
259 dib7000m_write_word(state, 904 + offset, reg_904);
260 dib7000m_write_word(state, 905 + offset, reg_905);
261 dib7000m_write_word(state, 906 + offset, reg_906);
262}
263
264static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no)
265{
266 int ret = 0;
267 u16 reg_913 = dib7000m_read_word(state, 913),
268 reg_914 = dib7000m_read_word(state, 914);
269
270 switch (no) {
271 case DIBX000_SLOW_ADC_ON:
272 reg_914 |= (1 << 1) | (1 << 0);
273 ret |= dib7000m_write_word(state, 914, reg_914);
274 reg_914 &= ~(1 << 1);
275 break;
276
277 case DIBX000_SLOW_ADC_OFF:
278 reg_914 |= (1 << 1) | (1 << 0);
279 break;
280
281 case DIBX000_ADC_ON:
282 if (state->revision == 0x4000) {
283
284 dib7000m_write_word(state, 913, 0);
285 dib7000m_write_word(state, 914, reg_914 & 0x3);
286
287 dib7000m_write_word(state, 913, (1 << 15));
288 dib7000m_write_word(state, 914, reg_914 & 0x3);
289 }
290
291 reg_913 &= 0x0fff;
292 reg_914 &= 0x0003;
293 break;
294
295 case DIBX000_ADC_OFF:
296 reg_913 |= (1 << 14) | (1 << 13) | (1 << 12);
297 reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
298 break;
299
300 case DIBX000_VBG_ENABLE:
301 reg_913 &= ~(1 << 15);
302 break;
303
304 case DIBX000_VBG_DISABLE:
305 reg_913 |= (1 << 15);
306 break;
307
308 default:
309 break;
310 }
311
312
313 ret |= dib7000m_write_word(state, 913, reg_913);
314 ret |= dib7000m_write_word(state, 914, reg_914);
315
316 return ret;
317}
318
319static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw)
320{
321 u32 timf;
322
323 if (!bw)
324 bw = 8000;
325
326
327 state->current_bandwidth = bw;
328
329 if (state->timf == 0) {
330 dprintk("using default timf\n");
331 timf = state->timf_default;
332 } else {
333 dprintk("using updated timf\n");
334 timf = state->timf;
335 }
336
337 timf = timf * (bw / 50) / 160;
338
339 dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
340 dib7000m_write_word(state, 24, (u16) ((timf ) & 0xffff));
341
342 return 0;
343}
344
345static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff)
346{
347 struct dib7000m_state *state = demod->demodulator_priv;
348
349 if (state->div_force_off) {
350 dprintk("diversity combination deactivated - forced by COFDM parameters\n");
351 onoff = 0;
352 }
353 state->div_state = (u8)onoff;
354
355 if (onoff) {
356 dib7000m_write_word(state, 263 + state->reg_offs, 6);
357 dib7000m_write_word(state, 264 + state->reg_offs, 6);
358 dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
359 } else {
360 dib7000m_write_word(state, 263 + state->reg_offs, 1);
361 dib7000m_write_word(state, 264 + state->reg_offs, 0);
362 dib7000m_write_word(state, 266 + state->reg_offs, 0);
363 }
364
365 return 0;
366}
367
368static int dib7000m_sad_calib(struct dib7000m_state *state)
369{
370
371
372
373 dib7000m_write_word(state, 929, (0 << 1) | (0 << 0));
374 dib7000m_write_word(state, 930, 776);
375
376
377 dib7000m_write_word(state, 929, (1 << 0));
378 dib7000m_write_word(state, 929, (0 << 0));
379
380 msleep(1);
381
382 return 0;
383}
384
385static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw)
386{
387 dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff));
388 dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000) & 0xffff));
389 dib7000m_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff));
390 dib7000m_write_word(state, 22, (u16) ( bw->ifreq & 0xffff));
391
392 dib7000m_write_word(state, 928, bw->sad_cfg);
393}
394
395static void dib7000m_reset_pll(struct dib7000m_state *state)
396{
397 const struct dibx000_bandwidth_config *bw = state->cfg.bw;
398 u16 reg_907,reg_910;
399
400
401 reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) |
402 (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) |
403 (bw->enable_refdiv << 1) | (0 << 0);
404 reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset;
405
406
407
408 if (!state->cfg.quartz_direct) {
409 reg_910 |= (1 << 5);
410
411
412 if(state->cfg.input_clk_is_div_2)
413 reg_907 |= (16 << 9);
414 else
415 reg_907 |= (8 << 9);
416 } else {
417 reg_907 |= (bw->pll_ratio & 0x3f) << 9;
418 reg_910 |= (bw->pll_prediv << 5);
419 }
420
421 dib7000m_write_word(state, 910, reg_910);
422 dib7000m_write_word(state, 907, reg_907);
423 dib7000m_write_word(state, 908, 0x0006);
424
425 dib7000m_reset_pll_common(state, bw);
426}
427
428static void dib7000mc_reset_pll(struct dib7000m_state *state)
429{
430 const struct dibx000_bandwidth_config *bw = state->cfg.bw;
431 u16 clk_cfg1;
432
433
434 dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0));
435
436
437
438 clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) |
439 (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) |
440 (1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0);
441 dib7000m_write_word(state, 908, clk_cfg1);
442 clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3);
443 dib7000m_write_word(state, 908, clk_cfg1);
444
445
446 dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7));
447
448 dib7000m_reset_pll_common(state, bw);
449}
450
451static int dib7000m_reset_gpio(struct dib7000m_state *st)
452{
453
454 dib7000m_write_word(st, 773, st->cfg.gpio_dir);
455 dib7000m_write_word(st, 774, st->cfg.gpio_val);
456
457
458
459 dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos);
460
461 dib7000m_write_word(st, 780, st->cfg.pwm_freq_div);
462 return 0;
463}
464
465static u16 dib7000m_defaults_common[] =
466
467{
468
469 3, 2,
470 0x0004,
471 0x1000,
472 0x0814,
473
474 12, 6,
475 0x001b,
476 0x7740,
477 0x005b,
478 0x8d80,
479 0x01c9,
480 0xc380,
481 0x0000,
482 0x0080,
483 0x0000,
484 0x0090,
485 0x0001,
486 0xd4c0,
487
488 1, 26,
489 0x6680,
490
491 1, 170,
492 0x0410,
493
494 8, 173,
495 0,
496 0,
497 0,
498 0,
499 0,
500 0,
501 0,
502 0,
503
504 1, 182,
505 8192,
506
507 2, 195,
508 0x0ccd,
509 0,
510
511 1, 205,
512 0x200f,
513
514 5, 214,
515 0x023d,
516 0x00a4,
517 0x00a4,
518 0x7ff0,
519 0x3ccc,
520
521 1, 226,
522 0,
523
524 1, 255,
525 0x800,
526
527 1, 263,
528 0x0001,
529
530 1, 281,
531 0x0010,
532
533 1, 294,
534 0x0062,
535
536 0
537};
538
539static u16 dib7000m_defaults[] =
540
541{
542
543 11, 76,
544 (1 << 13) - 825 - 117,
545 (1 << 13) - 837 - 117,
546 (1 << 13) - 811 - 117,
547 (1 << 13) - 766 - 117,
548 (1 << 13) - 737 - 117,
549 (1 << 13) - 693 - 117,
550 (1 << 13) - 648 - 117,
551 (1 << 13) - 619 - 117,
552 (1 << 13) - 575 - 117,
553 (1 << 13) - 531 - 117,
554 (1 << 13) - 501 - 117,
555
556
557 1, 912,
558 0x2c8a,
559
560 1, 1817,
561 1,
562
563 0,
564};
565
566static int dib7000m_demod_reset(struct dib7000m_state *state)
567{
568 dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
569
570
571 dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE);
572
573
574 dib7000m_write_word(state, 898, 0xffff);
575 dib7000m_write_word(state, 899, 0xffff);
576 dib7000m_write_word(state, 900, 0xff0f);
577 dib7000m_write_word(state, 901, 0xfffc);
578
579 dib7000m_write_word(state, 898, 0);
580 dib7000m_write_word(state, 899, 0);
581 dib7000m_write_word(state, 900, 0);
582 dib7000m_write_word(state, 901, 0);
583
584 if (state->revision == 0x4000)
585 dib7000m_reset_pll(state);
586 else
587 dib7000mc_reset_pll(state);
588
589 if (dib7000m_reset_gpio(state) != 0)
590 dprintk("GPIO reset was not successful.\n");
591
592 if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
593 dprintk("OUTPUT_MODE could not be reset.\n");
594
595
596 dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) );
597
598 dib7000m_set_bandwidth(state, 8000);
599
600 dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON);
601 dib7000m_sad_calib(state);
602 dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
603
604 if (state->cfg.dvbt_mode)
605 dib7000m_write_word(state, 1796, 0x0);
606
607 if (state->cfg.mobile_mode)
608 dib7000m_write_word(state, 261 + state->reg_offs, 2);
609 else
610 dib7000m_write_word(state, 224 + state->reg_offs, 1);
611
612
613 if(state->cfg.tuner_is_baseband)
614 dib7000m_write_word(state, 36, 0x0755);
615 else
616 dib7000m_write_word(state, 36, 0x1f55);
617
618
619 if (state->revision == 0x4000)
620 dib7000m_write_word(state, 909, (3 << 10) | (1 << 6));
621 else
622 dib7000m_write_word(state, 909, (3 << 4) | 1);
623
624 dib7000m_write_tab(state, dib7000m_defaults_common);
625 dib7000m_write_tab(state, dib7000m_defaults);
626
627 dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY);
628
629 state->internal_clk = state->cfg.bw->internal;
630
631 return 0;
632}
633
634static void dib7000m_restart_agc(struct dib7000m_state *state)
635{
636
637 dib7000m_write_word(state, 898, 0x0c00);
638 dib7000m_write_word(state, 898, 0x0000);
639}
640
641static int dib7000m_agc_soft_split(struct dib7000m_state *state)
642{
643 u16 agc,split_offset;
644
645 if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
646 return 0;
647
648
649 agc = dib7000m_read_word(state, 390);
650
651 if (agc > state->current_agc->split.min_thres)
652 split_offset = state->current_agc->split.min;
653 else if (agc < state->current_agc->split.max_thres)
654 split_offset = state->current_agc->split.max;
655 else
656 split_offset = state->current_agc->split.max *
657 (agc - state->current_agc->split.min_thres) /
658 (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
659
660 dprintk("AGC split_offset: %d\n", split_offset);
661
662
663 return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset);
664}
665
666static int dib7000m_update_lna(struct dib7000m_state *state)
667{
668 u16 dyn_gain;
669
670 if (state->cfg.update_lna) {
671
672 dyn_gain = dib7000m_read_word(state, 390);
673
674 if (state->cfg.update_lna(&state->demod,dyn_gain)) {
675 dib7000m_restart_agc(state);
676 return 1;
677 }
678 }
679 return 0;
680}
681
682static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
683{
684 struct dibx000_agc_config *agc = NULL;
685 int i;
686 if (state->current_band == band && state->current_agc != NULL)
687 return 0;
688 state->current_band = band;
689
690 for (i = 0; i < state->cfg.agc_config_count; i++)
691 if (state->cfg.agc[i].band_caps & band) {
692 agc = &state->cfg.agc[i];
693 break;
694 }
695
696 if (agc == NULL) {
697 dprintk("no valid AGC configuration found for band 0x%02x\n", band);
698 return -EINVAL;
699 }
700
701 state->current_agc = agc;
702
703
704 dib7000m_write_word(state, 72 , agc->setup);
705 dib7000m_write_word(state, 73 , agc->inv_gain);
706 dib7000m_write_word(state, 74 , agc->time_stabiliz);
707 dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock);
708
709
710 dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp);
711 dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp);
712
713 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
714 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
715
716
717 if (state->wbd_ref != 0)
718 dib7000m_write_word(state, 102, state->wbd_ref);
719 else
720 dib7000m_write_word(state, 102, agc->wbd_ref);
721
722 dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) );
723 dib7000m_write_word(state, 104, agc->agc1_max);
724 dib7000m_write_word(state, 105, agc->agc1_min);
725 dib7000m_write_word(state, 106, agc->agc2_max);
726 dib7000m_write_word(state, 107, agc->agc2_min);
727 dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 );
728 dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
729 dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
730 dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
731
732 if (state->revision > 0x4000) {
733 dib7000m_write_word(state, 71, agc->agc1_pt3);
734
735
736 dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2));
737 } else {
738
739 u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 };
740 for (i = 0; i < 9; i++)
741 dib7000m_write_word(state, 88 + i, b[i]);
742 }
743 return 0;
744}
745
746static void dib7000m_update_timf(struct dib7000m_state *state)
747{
748 u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437);
749 state->timf = timf * 160 / (state->current_bandwidth / 50);
750 dib7000m_write_word(state, 23, (u16) (timf >> 16));
751 dib7000m_write_word(state, 24, (u16) (timf & 0xffff));
752 dprintk("updated timf_frequency: %d (default: %d)\n", state->timf, state->timf_default);
753}
754
755static int dib7000m_agc_startup(struct dvb_frontend *demod)
756{
757 struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
758 struct dib7000m_state *state = demod->demodulator_priv;
759 u16 cfg_72 = dib7000m_read_word(state, 72);
760 int ret = -1;
761 u8 *agc_state = &state->agc_state;
762 u8 agc_split;
763
764 switch (state->agc_state) {
765 case 0:
766
767 dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC);
768 dib7000m_set_adc_state(state, DIBX000_ADC_ON);
769
770 if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0)
771 return -1;
772
773 ret = 7;
774 (*agc_state)++;
775 break;
776
777 case 1:
778
779 if (state->cfg.agc_control)
780 state->cfg.agc_control(&state->demod, 1);
781
782 dib7000m_write_word(state, 75, 32768);
783 if (!state->current_agc->perform_agc_softsplit) {
784
785 dib7000m_write_word(state, 103, 1 << 8);
786 (*agc_state)++;
787 ret = 5;
788 } else {
789
790 (*agc_state) = 4;
791
792 ret = 7;
793 }
794
795 dib7000m_restart_agc(state);
796 break;
797
798 case 2:
799 dib7000m_write_word(state, 72, cfg_72 | (1 << 4));
800 dib7000m_write_word(state, 103, 2 << 9);
801 (*agc_state)++;
802 ret = 14;
803 break;
804
805 case 3:
806 agc_split = (u8)dib7000m_read_word(state, 392);
807 dib7000m_write_word(state, 75, dib7000m_read_word(state, 390));
808
809 dib7000m_write_word(state, 72, cfg_72 & ~(1 << 4));
810 dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split);
811
812 dib7000m_restart_agc(state);
813
814 dprintk("SPLIT %p: %hd\n", demod, agc_split);
815
816 (*agc_state)++;
817 ret = 5;
818 break;
819
820 case 4:
821
822 ret = 7;
823
824 if (dib7000m_update_lna(state))
825
826 ret = 5;
827 else
828 (*agc_state)++;
829 break;
830
831 case 5:
832 dib7000m_agc_soft_split(state);
833
834 if (state->cfg.agc_control)
835 state->cfg.agc_control(&state->demod, 0);
836
837 (*agc_state)++;
838 break;
839
840 default:
841 break;
842 }
843 return ret;
844}
845
846static void dib7000m_set_channel(struct dib7000m_state *state, struct dtv_frontend_properties *ch,
847 u8 seq)
848{
849 u16 value, est[4];
850
851 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
852
853
854 value = 0;
855 switch (ch->transmission_mode) {
856 case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
857 case TRANSMISSION_MODE_4K: value |= (2 << 7); break;
858 default:
859 case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
860 }
861 switch (ch->guard_interval) {
862 case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
863 case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
864 case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
865 default:
866 case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
867 }
868 switch (ch->modulation) {
869 case QPSK: value |= (0 << 3); break;
870 case QAM_16: value |= (1 << 3); break;
871 default:
872 case QAM_64: value |= (2 << 3); break;
873 }
874 switch (HIERARCHY_1) {
875 case HIERARCHY_2: value |= 2; break;
876 case HIERARCHY_4: value |= 4; break;
877 default:
878 case HIERARCHY_1: value |= 1; break;
879 }
880 dib7000m_write_word(state, 0, value);
881 dib7000m_write_word(state, 5, (seq << 4));
882
883
884 value = 0;
885 if (1 != 0)
886 value |= (1 << 6);
887 if (ch->hierarchy == 1)
888 value |= (1 << 4);
889 if (1 == 1)
890 value |= 1;
891 switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
892 case FEC_2_3: value |= (2 << 1); break;
893 case FEC_3_4: value |= (3 << 1); break;
894 case FEC_5_6: value |= (5 << 1); break;
895 case FEC_7_8: value |= (7 << 1); break;
896 default:
897 case FEC_1_2: value |= (1 << 1); break;
898 }
899 dib7000m_write_word(state, 267 + state->reg_offs, value);
900
901
902
903
904 dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80);
905
906
907 dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3));
908
909
910 dib7000m_write_word(state, 32, (0 << 4) | 0x3);
911
912
913 dib7000m_write_word(state, 33, (0 << 4) | 0x5);
914
915
916 switch (ch->transmission_mode) {
917 case TRANSMISSION_MODE_8K: value = 256; break;
918 case TRANSMISSION_MODE_4K: value = 128; break;
919 case TRANSMISSION_MODE_2K:
920 default: value = 64; break;
921 }
922 switch (ch->guard_interval) {
923 case GUARD_INTERVAL_1_16: value *= 2; break;
924 case GUARD_INTERVAL_1_8: value *= 4; break;
925 case GUARD_INTERVAL_1_4: value *= 8; break;
926 default:
927 case GUARD_INTERVAL_1_32: value *= 1; break;
928 }
929 state->div_sync_wait = (value * 3) / 2 + 32;
930
931
932
933 if (1 == 1 || state->revision > 0x4000)
934 state->div_force_off = 0;
935 else
936 state->div_force_off = 1;
937 dib7000m_set_diversity_in(&state->demod, state->div_state);
938
939
940 switch (ch->modulation) {
941 case QAM_64:
942 est[0] = 0x0148;
943 est[1] = 0xfff0;
944 est[2] = 0x00a4;
945 est[3] = 0xfff8;
946 break;
947 case QAM_16:
948 est[0] = 0x023d;
949 est[1] = 0xffdf;
950 est[2] = 0x00a4;
951 est[3] = 0xfff0;
952 break;
953 default:
954 est[0] = 0x099a;
955 est[1] = 0xffae;
956 est[2] = 0x0333;
957 est[3] = 0xfff8;
958 break;
959 }
960 for (value = 0; value < 4; value++)
961 dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]);
962
963
964 dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD);
965}
966
967static int dib7000m_autosearch_start(struct dvb_frontend *demod)
968{
969 struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
970 struct dib7000m_state *state = demod->demodulator_priv;
971 struct dtv_frontend_properties schan;
972 int ret = 0;
973 u32 value, factor;
974
975 schan = *ch;
976
977 schan.modulation = QAM_64;
978 schan.guard_interval = GUARD_INTERVAL_1_32;
979 schan.transmission_mode = TRANSMISSION_MODE_8K;
980 schan.code_rate_HP = FEC_2_3;
981 schan.code_rate_LP = FEC_3_4;
982 schan.hierarchy = 0;
983
984 dib7000m_set_channel(state, &schan, 7);
985
986 factor = BANDWIDTH_TO_KHZ(schan.bandwidth_hz);
987 if (factor >= 5000)
988 factor = 1;
989 else
990 factor = 6;
991
992
993 value = 30 * state->internal_clk * factor;
994 ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
995 ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff));
996 value = 100 * state->internal_clk * factor;
997 ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
998 ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff));
999 value = 500 * state->internal_clk * factor;
1000 ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
1001 ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff));
1002
1003
1004 value = dib7000m_read_word(state, 0);
1005 ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9)));
1006
1007
1008 if (state->revision == 0x4000)
1009 dib7000m_write_word(state, 1793, 0);
1010 else
1011 dib7000m_read_word(state, 537);
1012
1013 ret |= dib7000m_write_word(state, 0, (u16) value);
1014
1015 return ret;
1016}
1017
1018static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg)
1019{
1020 u16 irq_pending = dib7000m_read_word(state, reg);
1021
1022 if (irq_pending & 0x1) {
1023 dprintk("autosearch failed\n");
1024 return 1;
1025 }
1026
1027 if (irq_pending & 0x2) {
1028 dprintk("autosearch succeeded\n");
1029 return 2;
1030 }
1031 return 0;
1032}
1033
1034static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod)
1035{
1036 struct dib7000m_state *state = demod->demodulator_priv;
1037 if (state->revision == 0x4000)
1038 return dib7000m_autosearch_irq(state, 1793);
1039 else
1040 return dib7000m_autosearch_irq(state, 537);
1041}
1042
1043static int dib7000m_tune(struct dvb_frontend *demod)
1044{
1045 struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
1046 struct dib7000m_state *state = demod->demodulator_priv;
1047 int ret = 0;
1048 u16 value;
1049
1050
1051 dib7000m_set_channel(state, ch, 0);
1052
1053
1054 ret |= dib7000m_write_word(state, 898, 0x4000);
1055 ret |= dib7000m_write_word(state, 898, 0x0000);
1056 msleep(45);
1057
1058 dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD);
1059
1060 ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3));
1061
1062
1063 if (state->timf == 0)
1064 msleep(200);
1065
1066
1067
1068 value = (6 << 8) | 0x80;
1069 switch (ch->transmission_mode) {
1070 case TRANSMISSION_MODE_2K: value |= (7 << 12); break;
1071 case TRANSMISSION_MODE_4K: value |= (8 << 12); break;
1072 default:
1073 case TRANSMISSION_MODE_8K: value |= (9 << 12); break;
1074 }
1075 ret |= dib7000m_write_word(state, 26, value);
1076
1077
1078 value = (0 << 4);
1079 switch (ch->transmission_mode) {
1080 case TRANSMISSION_MODE_2K: value |= 0x6; break;
1081 case TRANSMISSION_MODE_4K: value |= 0x7; break;
1082 default:
1083 case TRANSMISSION_MODE_8K: value |= 0x8; break;
1084 }
1085 ret |= dib7000m_write_word(state, 32, value);
1086
1087
1088 value = (0 << 4);
1089 switch (ch->transmission_mode) {
1090 case TRANSMISSION_MODE_2K: value |= 0x6; break;
1091 case TRANSMISSION_MODE_4K: value |= 0x7; break;
1092 default:
1093 case TRANSMISSION_MODE_8K: value |= 0x8; break;
1094 }
1095 ret |= dib7000m_write_word(state, 33, value);
1096
1097
1098 if ((dib7000m_read_word(state, 535) >> 6) & 0x1)
1099 dib7000m_update_timf(state);
1100
1101 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
1102 return ret;
1103}
1104
1105static int dib7000m_wakeup(struct dvb_frontend *demod)
1106{
1107 struct dib7000m_state *state = demod->demodulator_priv;
1108
1109 dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
1110
1111 if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
1112 dprintk("could not start Slow ADC\n");
1113
1114 return 0;
1115}
1116
1117static int dib7000m_sleep(struct dvb_frontend *demod)
1118{
1119 struct dib7000m_state *st = demod->demodulator_priv;
1120 dib7000m_set_output_mode(st, OUTMODE_HIGH_Z);
1121 dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY);
1122 return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) |
1123 dib7000m_set_adc_state(st, DIBX000_ADC_OFF);
1124}
1125
1126static int dib7000m_identify(struct dib7000m_state *state)
1127{
1128 u16 value;
1129
1130 if ((value = dib7000m_read_word(state, 896)) != 0x01b3) {
1131 dprintk("wrong Vendor ID (0x%x)\n", value);
1132 return -EREMOTEIO;
1133 }
1134
1135 state->revision = dib7000m_read_word(state, 897);
1136 if (state->revision != 0x4000 &&
1137 state->revision != 0x4001 &&
1138 state->revision != 0x4002 &&
1139 state->revision != 0x4003) {
1140 dprintk("wrong Device ID (0x%x)\n", value);
1141 return -EREMOTEIO;
1142 }
1143
1144
1145 if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) {
1146 dprintk("this driver does not work with DiB7000PC\n");
1147 return -EREMOTEIO;
1148 }
1149
1150 switch (state->revision) {
1151 case 0x4000: dprintk("found DiB7000MA/PA/MB/PB\n"); break;
1152 case 0x4001: state->reg_offs = 1; dprintk("found DiB7000HC\n"); break;
1153 case 0x4002: state->reg_offs = 1; dprintk("found DiB7000MC\n"); break;
1154 case 0x4003: state->reg_offs = 1; dprintk("found DiB9000\n"); break;
1155 }
1156
1157 return 0;
1158}
1159
1160
1161static int dib7000m_get_frontend(struct dvb_frontend* fe,
1162 struct dtv_frontend_properties *fep)
1163{
1164 struct dib7000m_state *state = fe->demodulator_priv;
1165 u16 tps = dib7000m_read_word(state,480);
1166
1167 fep->inversion = INVERSION_AUTO;
1168
1169 fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth);
1170
1171 switch ((tps >> 8) & 0x3) {
1172 case 0: fep->transmission_mode = TRANSMISSION_MODE_2K; break;
1173 case 1: fep->transmission_mode = TRANSMISSION_MODE_8K; break;
1174
1175 }
1176
1177 switch (tps & 0x3) {
1178 case 0: fep->guard_interval = GUARD_INTERVAL_1_32; break;
1179 case 1: fep->guard_interval = GUARD_INTERVAL_1_16; break;
1180 case 2: fep->guard_interval = GUARD_INTERVAL_1_8; break;
1181 case 3: fep->guard_interval = GUARD_INTERVAL_1_4; break;
1182 }
1183
1184 switch ((tps >> 14) & 0x3) {
1185 case 0: fep->modulation = QPSK; break;
1186 case 1: fep->modulation = QAM_16; break;
1187 case 2:
1188 default: fep->modulation = QAM_64; break;
1189 }
1190
1191
1192
1193
1194 fep->hierarchy = HIERARCHY_NONE;
1195 switch ((tps >> 5) & 0x7) {
1196 case 1: fep->code_rate_HP = FEC_1_2; break;
1197 case 2: fep->code_rate_HP = FEC_2_3; break;
1198 case 3: fep->code_rate_HP = FEC_3_4; break;
1199 case 5: fep->code_rate_HP = FEC_5_6; break;
1200 case 7:
1201 default: fep->code_rate_HP = FEC_7_8; break;
1202
1203 }
1204
1205 switch ((tps >> 2) & 0x7) {
1206 case 1: fep->code_rate_LP = FEC_1_2; break;
1207 case 2: fep->code_rate_LP = FEC_2_3; break;
1208 case 3: fep->code_rate_LP = FEC_3_4; break;
1209 case 5: fep->code_rate_LP = FEC_5_6; break;
1210 case 7:
1211 default: fep->code_rate_LP = FEC_7_8; break;
1212 }
1213
1214
1215
1216 return 0;
1217}
1218
1219static int dib7000m_set_frontend(struct dvb_frontend *fe)
1220{
1221 struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
1222 struct dib7000m_state *state = fe->demodulator_priv;
1223 int time, ret;
1224
1225 dib7000m_set_output_mode(state, OUTMODE_HIGH_Z);
1226
1227 dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->bandwidth_hz));
1228
1229 if (fe->ops.tuner_ops.set_params)
1230 fe->ops.tuner_ops.set_params(fe);
1231
1232
1233 state->agc_state = 0;
1234 do {
1235 time = dib7000m_agc_startup(fe);
1236 if (time != -1)
1237 msleep(time);
1238 } while (time != -1);
1239
1240 if (fep->transmission_mode == TRANSMISSION_MODE_AUTO ||
1241 fep->guard_interval == GUARD_INTERVAL_AUTO ||
1242 fep->modulation == QAM_AUTO ||
1243 fep->code_rate_HP == FEC_AUTO) {
1244 int i = 800, found;
1245
1246 dib7000m_autosearch_start(fe);
1247 do {
1248 msleep(1);
1249 found = dib7000m_autosearch_is_irq(fe);
1250 } while (found == 0 && i--);
1251
1252 dprintk("autosearch returns: %d\n", found);
1253 if (found == 0 || found == 1)
1254 return 0;
1255
1256 dib7000m_get_frontend(fe, fep);
1257 }
1258
1259 ret = dib7000m_tune(fe);
1260
1261
1262 dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO);
1263 return ret;
1264}
1265
1266static int dib7000m_read_status(struct dvb_frontend *fe, enum fe_status *stat)
1267{
1268 struct dib7000m_state *state = fe->demodulator_priv;
1269 u16 lock = dib7000m_read_word(state, 535);
1270
1271 *stat = 0;
1272
1273 if (lock & 0x8000)
1274 *stat |= FE_HAS_SIGNAL;
1275 if (lock & 0x3000)
1276 *stat |= FE_HAS_CARRIER;
1277 if (lock & 0x0100)
1278 *stat |= FE_HAS_VITERBI;
1279 if (lock & 0x0010)
1280 *stat |= FE_HAS_SYNC;
1281 if (lock & 0x0008)
1282 *stat |= FE_HAS_LOCK;
1283
1284 return 0;
1285}
1286
1287static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber)
1288{
1289 struct dib7000m_state *state = fe->demodulator_priv;
1290 *ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527);
1291 return 0;
1292}
1293
1294static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
1295{
1296 struct dib7000m_state *state = fe->demodulator_priv;
1297 *unc = dib7000m_read_word(state, 534);
1298 return 0;
1299}
1300
1301static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1302{
1303 struct dib7000m_state *state = fe->demodulator_priv;
1304 u16 val = dib7000m_read_word(state, 390);
1305 *strength = 65535 - val;
1306 return 0;
1307}
1308
1309static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr)
1310{
1311 *snr = 0x0000;
1312 return 0;
1313}
1314
1315static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
1316{
1317 tune->min_delay_ms = 1000;
1318 return 0;
1319}
1320
1321static void dib7000m_release(struct dvb_frontend *demod)
1322{
1323 struct dib7000m_state *st = demod->demodulator_priv;
1324 dibx000_exit_i2c_master(&st->i2c_master);
1325 kfree(st);
1326}
1327
1328struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
1329{
1330 struct dib7000m_state *st = demod->demodulator_priv;
1331 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
1332}
1333EXPORT_SYMBOL(dib7000m_get_i2c_master);
1334
1335int dib7000m_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
1336{
1337 struct dib7000m_state *state = fe->demodulator_priv;
1338 u16 val = dib7000m_read_word(state, 294 + state->reg_offs) & 0xffef;
1339 val |= (onoff & 0x1) << 4;
1340 dprintk("PID filter enabled %d\n", onoff);
1341 return dib7000m_write_word(state, 294 + state->reg_offs, val);
1342}
1343EXPORT_SYMBOL(dib7000m_pid_filter_ctrl);
1344
1345int dib7000m_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
1346{
1347 struct dib7000m_state *state = fe->demodulator_priv;
1348 dprintk("PID filter: index %x, PID %d, OnOff %d\n", id, pid, onoff);
1349 return dib7000m_write_word(state, 300 + state->reg_offs + id,
1350 onoff ? (1 << 13) | pid : 0);
1351}
1352EXPORT_SYMBOL(dib7000m_pid_filter);
1353
1354#if 0
1355
1356int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods,
1357 u8 default_addr, struct dib7000m_config cfg[])
1358{
1359 struct dib7000m_state st = { .i2c_adap = i2c };
1360 int k = 0;
1361 u8 new_addr = 0;
1362
1363 for (k = no_of_demods-1; k >= 0; k--) {
1364 st.cfg = cfg[k];
1365
1366
1367 new_addr = (0x40 + k) << 1;
1368 st.i2c_addr = new_addr;
1369 if (dib7000m_identify(&st) != 0) {
1370 st.i2c_addr = default_addr;
1371 if (dib7000m_identify(&st) != 0) {
1372 dprintk("DiB7000M #%d: not identified\n", k);
1373 return -EIO;
1374 }
1375 }
1376
1377
1378 dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY);
1379
1380 dib7000m_write_word(&st, 1796, 0x0);
1381
1382
1383 dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2);
1384
1385 dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
1386 }
1387
1388 for (k = 0; k < no_of_demods; k++) {
1389 st.cfg = cfg[k];
1390 st.i2c_addr = (0x40 + k) << 1;
1391
1392
1393 dib7000m_write_word(&st,1794, st.i2c_addr << 2);
1394
1395
1396 dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z);
1397 }
1398
1399 return 0;
1400}
1401EXPORT_SYMBOL(dib7000m_i2c_enumeration);
1402#endif
1403
1404static const struct dvb_frontend_ops dib7000m_ops;
1405struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg)
1406{
1407 struct dvb_frontend *demod;
1408 struct dib7000m_state *st;
1409 st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL);
1410 if (st == NULL)
1411 return NULL;
1412
1413 memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config));
1414 st->i2c_adap = i2c_adap;
1415 st->i2c_addr = i2c_addr;
1416
1417 demod = &st->demod;
1418 demod->demodulator_priv = st;
1419 memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops));
1420 mutex_init(&st->i2c_buffer_lock);
1421
1422 st->timf_default = cfg->bw->timf;
1423
1424 if (dib7000m_identify(st) != 0)
1425 goto error;
1426
1427 if (st->revision == 0x4000)
1428 dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr);
1429 else
1430 dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr);
1431
1432 dib7000m_demod_reset(st);
1433
1434 return demod;
1435
1436error:
1437 kfree(st);
1438 return NULL;
1439}
1440EXPORT_SYMBOL(dib7000m_attach);
1441
1442static const struct dvb_frontend_ops dib7000m_ops = {
1443 .delsys = { SYS_DVBT },
1444 .info = {
1445 .name = "DiBcom 7000MA/MB/PA/PB/MC",
1446 .frequency_min_hz = 44250 * kHz,
1447 .frequency_max_hz = 867250 * kHz,
1448 .frequency_stepsize_hz = 62500,
1449 .caps = FE_CAN_INVERSION_AUTO |
1450 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1451 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1452 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1453 FE_CAN_TRANSMISSION_MODE_AUTO |
1454 FE_CAN_GUARD_INTERVAL_AUTO |
1455 FE_CAN_RECOVER |
1456 FE_CAN_HIERARCHY_AUTO,
1457 },
1458
1459 .release = dib7000m_release,
1460
1461 .init = dib7000m_wakeup,
1462 .sleep = dib7000m_sleep,
1463
1464 .set_frontend = dib7000m_set_frontend,
1465 .get_tune_settings = dib7000m_fe_get_tune_settings,
1466 .get_frontend = dib7000m_get_frontend,
1467
1468 .read_status = dib7000m_read_status,
1469 .read_ber = dib7000m_read_ber,
1470 .read_signal_strength = dib7000m_read_signal_strength,
1471 .read_snr = dib7000m_read_snr,
1472 .read_ucblocks = dib7000m_read_unc_blocks,
1473};
1474
1475MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
1476MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator");
1477MODULE_LICENSE("GPL");
1478