linux/drivers/mtd/nand/raw/vf610_nfc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
   3 *
   4 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
   5 * Jason ported to M54418TWR and MVFA5 (VF610).
   6 * Authors: Stefan Agner <stefan.agner@toradex.com>
   7 *          Bill Pringlemeir <bpringlemeir@nbsps.com>
   8 *          Shaohui Xie <b21989@freescale.com>
   9 *          Jason Jin <Jason.jin@freescale.com>
  10 *
  11 * Based on original driver mpc5121_nfc.c.
  12 *
  13 * This is free software; you can redistribute it and/or modify it
  14 * under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * Limitations:
  19 * - Untested on MPC5125 and M54418.
  20 * - DMA and pipelining not used.
  21 * - 2K pages or less.
  22 * - HW ECC: Only 2K page with 64+ OOB.
  23 * - HW ECC: Only 24 and 32-bit error correction implemented.
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/bitops.h>
  28#include <linux/clk.h>
  29#include <linux/delay.h>
  30#include <linux/init.h>
  31#include <linux/interrupt.h>
  32#include <linux/io.h>
  33#include <linux/mtd/mtd.h>
  34#include <linux/mtd/rawnand.h>
  35#include <linux/mtd/partitions.h>
  36#include <linux/of_device.h>
  37#include <linux/platform_device.h>
  38#include <linux/slab.h>
  39#include <linux/swab.h>
  40
  41#define DRV_NAME                "vf610_nfc"
  42
  43/* Register Offsets */
  44#define NFC_FLASH_CMD1                  0x3F00
  45#define NFC_FLASH_CMD2                  0x3F04
  46#define NFC_COL_ADDR                    0x3F08
  47#define NFC_ROW_ADDR                    0x3F0c
  48#define NFC_ROW_ADDR_INC                0x3F14
  49#define NFC_FLASH_STATUS1               0x3F18
  50#define NFC_FLASH_STATUS2               0x3F1c
  51#define NFC_CACHE_SWAP                  0x3F28
  52#define NFC_SECTOR_SIZE                 0x3F2c
  53#define NFC_FLASH_CONFIG                0x3F30
  54#define NFC_IRQ_STATUS                  0x3F38
  55
  56/* Addresses for NFC MAIN RAM BUFFER areas */
  57#define NFC_MAIN_AREA(n)                ((n) *  0x1000)
  58
  59#define PAGE_2K                         0x0800
  60#define OOB_64                          0x0040
  61#define OOB_MAX                         0x0100
  62
  63/* NFC_CMD2[CODE] controller cycle bit masks */
  64#define COMMAND_CMD_BYTE1               BIT(14)
  65#define COMMAND_CAR_BYTE1               BIT(13)
  66#define COMMAND_CAR_BYTE2               BIT(12)
  67#define COMMAND_RAR_BYTE1               BIT(11)
  68#define COMMAND_RAR_BYTE2               BIT(10)
  69#define COMMAND_RAR_BYTE3               BIT(9)
  70#define COMMAND_NADDR_BYTES(x)          GENMASK(13, 13 - (x) + 1)
  71#define COMMAND_WRITE_DATA              BIT(8)
  72#define COMMAND_CMD_BYTE2               BIT(7)
  73#define COMMAND_RB_HANDSHAKE            BIT(6)
  74#define COMMAND_READ_DATA               BIT(5)
  75#define COMMAND_CMD_BYTE3               BIT(4)
  76#define COMMAND_READ_STATUS             BIT(3)
  77#define COMMAND_READ_ID                 BIT(2)
  78
  79/* NFC ECC mode define */
  80#define ECC_BYPASS                      0
  81#define ECC_45_BYTE                     6
  82#define ECC_60_BYTE                     7
  83
  84/*** Register Mask and bit definitions */
  85
  86/* NFC_FLASH_CMD1 Field */
  87#define CMD_BYTE2_MASK                          0xFF000000
  88#define CMD_BYTE2_SHIFT                         24
  89
  90/* NFC_FLASH_CM2 Field */
  91#define CMD_BYTE1_MASK                          0xFF000000
  92#define CMD_BYTE1_SHIFT                         24
  93#define CMD_CODE_MASK                           0x00FFFF00
  94#define CMD_CODE_SHIFT                          8
  95#define BUFNO_MASK                              0x00000006
  96#define BUFNO_SHIFT                             1
  97#define START_BIT                               BIT(0)
  98
  99/* NFC_COL_ADDR Field */
 100#define COL_ADDR_MASK                           0x0000FFFF
 101#define COL_ADDR_SHIFT                          0
 102#define COL_ADDR(pos, val)                      (((val) & 0xFF) << (8 * (pos)))
 103
 104/* NFC_ROW_ADDR Field */
 105#define ROW_ADDR_MASK                           0x00FFFFFF
 106#define ROW_ADDR_SHIFT                          0
 107#define ROW_ADDR(pos, val)                      (((val) & 0xFF) << (8 * (pos)))
 108
 109#define ROW_ADDR_CHIP_SEL_RB_MASK               0xF0000000
 110#define ROW_ADDR_CHIP_SEL_RB_SHIFT              28
 111#define ROW_ADDR_CHIP_SEL_MASK                  0x0F000000
 112#define ROW_ADDR_CHIP_SEL_SHIFT                 24
 113
 114/* NFC_FLASH_STATUS2 Field */
 115#define STATUS_BYTE1_MASK                       0x000000FF
 116
 117/* NFC_FLASH_CONFIG Field */
 118#define CONFIG_ECC_SRAM_ADDR_MASK               0x7FC00000
 119#define CONFIG_ECC_SRAM_ADDR_SHIFT              22
 120#define CONFIG_ECC_SRAM_REQ_BIT                 BIT(21)
 121#define CONFIG_DMA_REQ_BIT                      BIT(20)
 122#define CONFIG_ECC_MODE_MASK                    0x000E0000
 123#define CONFIG_ECC_MODE_SHIFT                   17
 124#define CONFIG_FAST_FLASH_BIT                   BIT(16)
 125#define CONFIG_16BIT                            BIT(7)
 126#define CONFIG_BOOT_MODE_BIT                    BIT(6)
 127#define CONFIG_ADDR_AUTO_INCR_BIT               BIT(5)
 128#define CONFIG_BUFNO_AUTO_INCR_BIT              BIT(4)
 129#define CONFIG_PAGE_CNT_MASK                    0xF
 130#define CONFIG_PAGE_CNT_SHIFT                   0
 131
 132/* NFC_IRQ_STATUS Field */
 133#define IDLE_IRQ_BIT                            BIT(29)
 134#define IDLE_EN_BIT                             BIT(20)
 135#define CMD_DONE_CLEAR_BIT                      BIT(18)
 136#define IDLE_CLEAR_BIT                          BIT(17)
 137
 138/*
 139 * ECC status - seems to consume 8 bytes (double word). The documented
 140 * status byte is located in the lowest byte of the second word (which is
 141 * the 4th or 7th byte depending on endianness).
 142 * Calculate an offset to store the ECC status at the end of the buffer.
 143 */
 144#define ECC_SRAM_ADDR           (PAGE_2K + OOB_MAX - 8)
 145
 146#define ECC_STATUS              0x4
 147#define ECC_STATUS_MASK         0x80
 148#define ECC_STATUS_ERR_COUNT    0x3F
 149
 150enum vf610_nfc_variant {
 151        NFC_VFC610 = 1,
 152};
 153
 154struct vf610_nfc {
 155        struct nand_chip chip;
 156        struct device *dev;
 157        void __iomem *regs;
 158        struct completion cmd_done;
 159        /* Status and ID are in alternate locations. */
 160        enum vf610_nfc_variant variant;
 161        struct clk *clk;
 162        /*
 163         * Indicate that user data is accessed (full page/oob). This is
 164         * useful to indicate the driver whether to swap byte endianness.
 165         * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
 166         */
 167        bool data_access;
 168        u32 ecc_mode;
 169};
 170
 171static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
 172{
 173        return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
 174}
 175
 176static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
 177{
 178        return container_of(chip, struct vf610_nfc, chip);
 179}
 180
 181static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
 182{
 183        return readl(nfc->regs + reg);
 184}
 185
 186static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
 187{
 188        writel(val, nfc->regs + reg);
 189}
 190
 191static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
 192{
 193        vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
 194}
 195
 196static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
 197{
 198        vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
 199}
 200
 201static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
 202                                       u32 mask, u32 shift, u32 val)
 203{
 204        vf610_nfc_write(nfc, reg,
 205                        (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
 206}
 207
 208static inline bool vf610_nfc_kernel_is_little_endian(void)
 209{
 210#ifdef __LITTLE_ENDIAN
 211        return true;
 212#else
 213        return false;
 214#endif
 215}
 216
 217/**
 218 * Read accessor for internal SRAM buffer
 219 * @dst: destination address in regular memory
 220 * @src: source address in SRAM buffer
 221 * @len: bytes to copy
 222 * @fix_endian: Fix endianness if required
 223 *
 224 * Use this accessor for the internal SRAM buffers. On the ARM
 225 * Freescale Vybrid SoC it's known that the driver can treat
 226 * the SRAM buffer as if it's memory. Other platform might need
 227 * to treat the buffers differently.
 228 *
 229 * The controller stores bytes from the NAND chip internally in big
 230 * endianness. On little endian platforms such as Vybrid this leads
 231 * to reversed byte order.
 232 * For performance reason (and earlier probably due to unawareness)
 233 * the driver avoids correcting endianness where it has control over
 234 * write and read side (e.g. page wise data access).
 235 */
 236static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
 237                                          size_t len, bool fix_endian)
 238{
 239        if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
 240                unsigned int i;
 241
 242                for (i = 0; i < len; i += 4) {
 243                        u32 val = swab32(__raw_readl(src + i));
 244
 245                        memcpy(dst + i, &val, min(sizeof(val), len - i));
 246                }
 247        } else {
 248                memcpy_fromio(dst, src, len);
 249        }
 250}
 251
 252/**
 253 * Write accessor for internal SRAM buffer
 254 * @dst: destination address in SRAM buffer
 255 * @src: source address in regular memory
 256 * @len: bytes to copy
 257 * @fix_endian: Fix endianness if required
 258 *
 259 * Use this accessor for the internal SRAM buffers. On the ARM
 260 * Freescale Vybrid SoC it's known that the driver can treat
 261 * the SRAM buffer as if it's memory. Other platform might need
 262 * to treat the buffers differently.
 263 *
 264 * The controller stores bytes from the NAND chip internally in big
 265 * endianness. On little endian platforms such as Vybrid this leads
 266 * to reversed byte order.
 267 * For performance reason (and earlier probably due to unawareness)
 268 * the driver avoids correcting endianness where it has control over
 269 * write and read side (e.g. page wise data access).
 270 */
 271static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
 272                                        size_t len, bool fix_endian)
 273{
 274        if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
 275                unsigned int i;
 276
 277                for (i = 0; i < len; i += 4) {
 278                        u32 val;
 279
 280                        memcpy(&val, src + i, min(sizeof(val), len - i));
 281                        __raw_writel(swab32(val), dst + i);
 282                }
 283        } else {
 284                memcpy_toio(dst, src, len);
 285        }
 286}
 287
 288/* Clear flags for upcoming command */
 289static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
 290{
 291        u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
 292
 293        tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
 294        vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
 295}
 296
 297static void vf610_nfc_done(struct vf610_nfc *nfc)
 298{
 299        unsigned long timeout = msecs_to_jiffies(100);
 300
 301        /*
 302         * Barrier is needed after this write. This write need
 303         * to be done before reading the next register the first
 304         * time.
 305         * vf610_nfc_set implicates such a barrier by using writel
 306         * to write to the register.
 307         */
 308        vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
 309        vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
 310
 311        if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
 312                dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
 313
 314        vf610_nfc_clear_status(nfc);
 315}
 316
 317static irqreturn_t vf610_nfc_irq(int irq, void *data)
 318{
 319        struct mtd_info *mtd = data;
 320        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 321
 322        vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
 323        complete(&nfc->cmd_done);
 324
 325        return IRQ_HANDLED;
 326}
 327
 328static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
 329{
 330        vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
 331                            CONFIG_ECC_MODE_MASK,
 332                            CONFIG_ECC_MODE_SHIFT, ecc_mode);
 333}
 334
 335static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
 336{
 337        vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
 338}
 339
 340static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
 341                                 u32 cmd1, u32 cmd2, u32 trfr_sz)
 342{
 343        vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
 344                            COL_ADDR_SHIFT, col);
 345
 346        vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
 347                            ROW_ADDR_SHIFT, row);
 348
 349        vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
 350        vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
 351        vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
 352
 353        dev_dbg(nfc->dev,
 354                "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
 355                col, row, cmd1, cmd2, trfr_sz);
 356
 357        vf610_nfc_done(nfc);
 358}
 359
 360static inline const struct nand_op_instr *
 361vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
 362{
 363        if (*op_id + 1 >= subop->ninstrs)
 364                return NULL;
 365
 366        (*op_id)++;
 367
 368        return &subop->instrs[*op_id];
 369}
 370
 371static int vf610_nfc_cmd(struct nand_chip *chip,
 372                         const struct nand_subop *subop)
 373{
 374        const struct nand_op_instr *instr;
 375        struct vf610_nfc *nfc = chip_to_nfc(chip);
 376        int op_id = -1, trfr_sz = 0, offset;
 377        u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 378        bool force8bit = false;
 379
 380        /*
 381         * Some ops are optional, but the hardware requires the operations
 382         * to be in this exact order.
 383         * The op parser enforces the order and makes sure that there isn't
 384         * a read and write element in a single operation.
 385         */
 386        instr = vf610_get_next_instr(subop, &op_id);
 387        if (!instr)
 388                return -EINVAL;
 389
 390        if (instr && instr->type == NAND_OP_CMD_INSTR) {
 391                cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
 392                code |= COMMAND_CMD_BYTE1;
 393
 394                instr = vf610_get_next_instr(subop, &op_id);
 395        }
 396
 397        if (instr && instr->type == NAND_OP_ADDR_INSTR) {
 398                int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
 399                int i = nand_subop_get_addr_start_off(subop, op_id);
 400
 401                for (; i < naddrs; i++) {
 402                        u8 val = instr->ctx.addr.addrs[i];
 403
 404                        if (i < 2)
 405                                col |= COL_ADDR(i, val);
 406                        else
 407                                row |= ROW_ADDR(i - 2, val);
 408                }
 409                code |= COMMAND_NADDR_BYTES(naddrs);
 410
 411                instr = vf610_get_next_instr(subop, &op_id);
 412        }
 413
 414        if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
 415                trfr_sz = nand_subop_get_data_len(subop, op_id);
 416                offset = nand_subop_get_data_start_off(subop, op_id);
 417                force8bit = instr->ctx.data.force_8bit;
 418
 419                /*
 420                 * Don't fix endianness on page access for historical reasons.
 421                 * See comment in vf610_nfc_wr_to_sram
 422                 */
 423                vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
 424                                     instr->ctx.data.buf.out + offset,
 425                                     trfr_sz, !nfc->data_access);
 426                code |= COMMAND_WRITE_DATA;
 427
 428                instr = vf610_get_next_instr(subop, &op_id);
 429        }
 430
 431        if (instr && instr->type == NAND_OP_CMD_INSTR) {
 432                cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
 433                code |= COMMAND_CMD_BYTE2;
 434
 435                instr = vf610_get_next_instr(subop, &op_id);
 436        }
 437
 438        if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
 439                code |= COMMAND_RB_HANDSHAKE;
 440
 441                instr = vf610_get_next_instr(subop, &op_id);
 442        }
 443
 444        if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
 445                trfr_sz = nand_subop_get_data_len(subop, op_id);
 446                offset = nand_subop_get_data_start_off(subop, op_id);
 447                force8bit = instr->ctx.data.force_8bit;
 448
 449                code |= COMMAND_READ_DATA;
 450        }
 451
 452        if (force8bit && (chip->options & NAND_BUSWIDTH_16))
 453                vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 454
 455        cmd2 |= code << CMD_CODE_SHIFT;
 456
 457        vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
 458
 459        if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
 460                /*
 461                 * Don't fix endianness on page access for historical reasons.
 462                 * See comment in vf610_nfc_rd_from_sram
 463                 */
 464                vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
 465                                       nfc->regs + NFC_MAIN_AREA(0) + offset,
 466                                       trfr_sz, !nfc->data_access);
 467        }
 468
 469        if (force8bit && (chip->options & NAND_BUSWIDTH_16))
 470                vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 471
 472        return 0;
 473}
 474
 475static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
 476        NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
 477                NAND_OP_PARSER_PAT_CMD_ELEM(true),
 478                NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
 479                NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
 480                NAND_OP_PARSER_PAT_CMD_ELEM(true),
 481                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
 482        NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
 483                NAND_OP_PARSER_PAT_CMD_ELEM(true),
 484                NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
 485                NAND_OP_PARSER_PAT_CMD_ELEM(true),
 486                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
 487                NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
 488        );
 489
 490static int vf610_nfc_exec_op(struct nand_chip *chip,
 491                             const struct nand_operation *op,
 492                             bool check_only)
 493{
 494        return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
 495                                      check_only);
 496}
 497
 498/*
 499 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
 500 */
 501static void vf610_nfc_select_chip(struct nand_chip *chip, int cs)
 502{
 503        struct vf610_nfc *nfc = mtd_to_nfc(nand_to_mtd(chip));
 504        u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
 505
 506        /* Vybrid only (MPC5125 would have full RB and four CS) */
 507        if (nfc->variant != NFC_VFC610)
 508                return;
 509
 510        tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
 511
 512        if (cs >= 0) {
 513                tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
 514                tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
 515        }
 516
 517        vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
 518}
 519
 520static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
 521                                         uint8_t *oob, int page)
 522{
 523        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 524        u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
 525        u8 ecc_status;
 526        u8 ecc_count;
 527        int flips_threshold = nfc->chip.ecc.strength / 2;
 528
 529        ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
 530        ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
 531
 532        if (!(ecc_status & ECC_STATUS_MASK))
 533                return ecc_count;
 534
 535        nfc->data_access = true;
 536        nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
 537        nfc->data_access = false;
 538
 539        /*
 540         * On an erased page, bit count (including OOB) should be zero or
 541         * at least less then half of the ECC strength.
 542         */
 543        return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
 544                                           mtd->oobsize, NULL, 0,
 545                                           flips_threshold);
 546}
 547
 548static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
 549                               u32 *row)
 550{
 551        *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
 552        *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
 553
 554        if (chip->options & NAND_ROW_ADDR_3) {
 555                *row |= ROW_ADDR(2, page >> 16);
 556                *code |= COMMAND_RAR_BYTE3;
 557        }
 558}
 559
 560static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
 561                               int oob_required, int page)
 562{
 563        struct mtd_info *mtd = nand_to_mtd(chip);
 564        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 565        int trfr_sz = mtd->writesize + mtd->oobsize;
 566        u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 567        int stat;
 568
 569        cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
 570        code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
 571
 572        vf610_nfc_fill_row(chip, page, &code, &row);
 573
 574        cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
 575        code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
 576
 577        cmd2 |= code << CMD_CODE_SHIFT;
 578
 579        vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
 580        vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
 581        vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
 582
 583        /*
 584         * Don't fix endianness on page access for historical reasons.
 585         * See comment in vf610_nfc_rd_from_sram
 586         */
 587        vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
 588                               mtd->writesize, false);
 589        if (oob_required)
 590                vf610_nfc_rd_from_sram(chip->oob_poi,
 591                                       nfc->regs + NFC_MAIN_AREA(0) +
 592                                                   mtd->writesize,
 593                                       mtd->oobsize, false);
 594
 595        stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
 596
 597        if (stat < 0) {
 598                mtd->ecc_stats.failed++;
 599                return 0;
 600        } else {
 601                mtd->ecc_stats.corrected += stat;
 602                return stat;
 603        }
 604}
 605
 606static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
 607                                int oob_required, int page)
 608{
 609        struct mtd_info *mtd = nand_to_mtd(chip);
 610        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 611        int trfr_sz = mtd->writesize + mtd->oobsize;
 612        u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 613        u8 status;
 614        int ret;
 615
 616        cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
 617        code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
 618
 619        vf610_nfc_fill_row(chip, page, &code, &row);
 620
 621        cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
 622        code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
 623
 624        /*
 625         * Don't fix endianness on page access for historical reasons.
 626         * See comment in vf610_nfc_wr_to_sram
 627         */
 628        vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
 629                             mtd->writesize, false);
 630
 631        code |= COMMAND_RB_HANDSHAKE;
 632        cmd2 |= code << CMD_CODE_SHIFT;
 633
 634        vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
 635        vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
 636        vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
 637
 638        ret = nand_status_op(chip, &status);
 639        if (ret)
 640                return ret;
 641
 642        if (status & NAND_STATUS_FAIL)
 643                return -EIO;
 644
 645        return 0;
 646}
 647
 648static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
 649                                   int oob_required, int page)
 650{
 651        struct mtd_info *mtd = nand_to_mtd(chip);
 652        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 653        int ret;
 654
 655        nfc->data_access = true;
 656        ret = nand_read_page_raw(chip, buf, oob_required, page);
 657        nfc->data_access = false;
 658
 659        return ret;
 660}
 661
 662static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
 663                                    int oob_required, int page)
 664{
 665        struct mtd_info *mtd = nand_to_mtd(chip);
 666        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 667        int ret;
 668
 669        nfc->data_access = true;
 670        ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 671        if (!ret && oob_required)
 672                ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
 673                                         false);
 674        nfc->data_access = false;
 675
 676        if (ret)
 677                return ret;
 678
 679        return nand_prog_page_end_op(chip);
 680}
 681
 682static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
 683{
 684        struct vf610_nfc *nfc = mtd_to_nfc(nand_to_mtd(chip));
 685        int ret;
 686
 687        nfc->data_access = true;
 688        ret = nand_read_oob_std(chip, page);
 689        nfc->data_access = false;
 690
 691        return ret;
 692}
 693
 694static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
 695{
 696        struct mtd_info *mtd = nand_to_mtd(chip);
 697        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 698        int ret;
 699
 700        nfc->data_access = true;
 701        ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
 702                                      chip->oob_poi, mtd->oobsize);
 703        nfc->data_access = false;
 704
 705        if (ret)
 706                return ret;
 707
 708        return nand_prog_page_end_op(chip);
 709}
 710
 711static const struct of_device_id vf610_nfc_dt_ids[] = {
 712        { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
 713        { /* sentinel */ }
 714};
 715MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
 716
 717static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
 718{
 719        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 720        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
 721        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
 722        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
 723        vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
 724        vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
 725        vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
 726
 727        /* Disable virtual pages, only one elementary transfer unit */
 728        vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
 729                            CONFIG_PAGE_CNT_SHIFT, 1);
 730}
 731
 732static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
 733{
 734        if (nfc->chip.options & NAND_BUSWIDTH_16)
 735                vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 736        else
 737                vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
 738
 739        if (nfc->chip.ecc.mode == NAND_ECC_HW) {
 740                /* Set ECC status offset in SRAM */
 741                vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
 742                                    CONFIG_ECC_SRAM_ADDR_MASK,
 743                                    CONFIG_ECC_SRAM_ADDR_SHIFT,
 744                                    ECC_SRAM_ADDR >> 3);
 745
 746                /* Enable ECC status in SRAM */
 747                vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
 748        }
 749}
 750
 751static int vf610_nfc_attach_chip(struct nand_chip *chip)
 752{
 753        struct mtd_info *mtd = nand_to_mtd(chip);
 754        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 755
 756        vf610_nfc_init_controller(nfc);
 757
 758        /* Bad block options. */
 759        if (chip->bbt_options & NAND_BBT_USE_FLASH)
 760                chip->bbt_options |= NAND_BBT_NO_OOB;
 761
 762        /* Single buffer only, max 256 OOB minus ECC status */
 763        if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
 764                dev_err(nfc->dev, "Unsupported flash page size\n");
 765                return -ENXIO;
 766        }
 767
 768        if (chip->ecc.mode != NAND_ECC_HW)
 769                return 0;
 770
 771        if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
 772                dev_err(nfc->dev, "Unsupported flash with hwecc\n");
 773                return -ENXIO;
 774        }
 775
 776        if (chip->ecc.size != mtd->writesize) {
 777                dev_err(nfc->dev, "Step size needs to be page size\n");
 778                return -ENXIO;
 779        }
 780
 781        /* Only 64 byte ECC layouts known */
 782        if (mtd->oobsize > 64)
 783                mtd->oobsize = 64;
 784
 785        /* Use default large page ECC layout defined in NAND core */
 786        mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
 787        if (chip->ecc.strength == 32) {
 788                nfc->ecc_mode = ECC_60_BYTE;
 789                chip->ecc.bytes = 60;
 790        } else if (chip->ecc.strength == 24) {
 791                nfc->ecc_mode = ECC_45_BYTE;
 792                chip->ecc.bytes = 45;
 793        } else {
 794                dev_err(nfc->dev, "Unsupported ECC strength\n");
 795                return -ENXIO;
 796        }
 797
 798        chip->ecc.read_page = vf610_nfc_read_page;
 799        chip->ecc.write_page = vf610_nfc_write_page;
 800        chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
 801        chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
 802        chip->ecc.read_oob = vf610_nfc_read_oob;
 803        chip->ecc.write_oob = vf610_nfc_write_oob;
 804
 805        chip->ecc.size = PAGE_2K;
 806
 807        return 0;
 808}
 809
 810static const struct nand_controller_ops vf610_nfc_controller_ops = {
 811        .attach_chip = vf610_nfc_attach_chip,
 812};
 813
 814static int vf610_nfc_probe(struct platform_device *pdev)
 815{
 816        struct vf610_nfc *nfc;
 817        struct resource *res;
 818        struct mtd_info *mtd;
 819        struct nand_chip *chip;
 820        struct device_node *child;
 821        const struct of_device_id *of_id;
 822        int err;
 823        int irq;
 824
 825        nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
 826        if (!nfc)
 827                return -ENOMEM;
 828
 829        nfc->dev = &pdev->dev;
 830        chip = &nfc->chip;
 831        mtd = nand_to_mtd(chip);
 832
 833        mtd->owner = THIS_MODULE;
 834        mtd->dev.parent = nfc->dev;
 835        mtd->name = DRV_NAME;
 836
 837        irq = platform_get_irq(pdev, 0);
 838        if (irq <= 0)
 839                return -EINVAL;
 840
 841        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 842        nfc->regs = devm_ioremap_resource(nfc->dev, res);
 843        if (IS_ERR(nfc->regs))
 844                return PTR_ERR(nfc->regs);
 845
 846        nfc->clk = devm_clk_get(&pdev->dev, NULL);
 847        if (IS_ERR(nfc->clk))
 848                return PTR_ERR(nfc->clk);
 849
 850        err = clk_prepare_enable(nfc->clk);
 851        if (err) {
 852                dev_err(nfc->dev, "Unable to enable clock!\n");
 853                return err;
 854        }
 855
 856        of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
 857        nfc->variant = (enum vf610_nfc_variant)of_id->data;
 858
 859        for_each_available_child_of_node(nfc->dev->of_node, child) {
 860                if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
 861
 862                        if (nand_get_flash_node(chip)) {
 863                                dev_err(nfc->dev,
 864                                        "Only one NAND chip supported!\n");
 865                                err = -EINVAL;
 866                                goto err_disable_clk;
 867                        }
 868
 869                        nand_set_flash_node(chip, child);
 870                }
 871        }
 872
 873        if (!nand_get_flash_node(chip)) {
 874                dev_err(nfc->dev, "NAND chip sub-node missing!\n");
 875                err = -ENODEV;
 876                goto err_disable_clk;
 877        }
 878
 879        chip->exec_op = vf610_nfc_exec_op;
 880        chip->select_chip = vf610_nfc_select_chip;
 881
 882        chip->options |= NAND_NO_SUBPAGE_WRITE;
 883
 884        init_completion(&nfc->cmd_done);
 885
 886        err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
 887        if (err) {
 888                dev_err(nfc->dev, "Error requesting IRQ!\n");
 889                goto err_disable_clk;
 890        }
 891
 892        vf610_nfc_preinit_controller(nfc);
 893
 894        /* Scan the NAND chip */
 895        chip->dummy_controller.ops = &vf610_nfc_controller_ops;
 896        err = nand_scan(chip, 1);
 897        if (err)
 898                goto err_disable_clk;
 899
 900        platform_set_drvdata(pdev, mtd);
 901
 902        /* Register device in MTD */
 903        err = mtd_device_register(mtd, NULL, 0);
 904        if (err)
 905                goto err_cleanup_nand;
 906        return 0;
 907
 908err_cleanup_nand:
 909        nand_cleanup(chip);
 910err_disable_clk:
 911        clk_disable_unprepare(nfc->clk);
 912        return err;
 913}
 914
 915static int vf610_nfc_remove(struct platform_device *pdev)
 916{
 917        struct mtd_info *mtd = platform_get_drvdata(pdev);
 918        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 919
 920        nand_release(mtd_to_nand(mtd));
 921        clk_disable_unprepare(nfc->clk);
 922        return 0;
 923}
 924
 925#ifdef CONFIG_PM_SLEEP
 926static int vf610_nfc_suspend(struct device *dev)
 927{
 928        struct mtd_info *mtd = dev_get_drvdata(dev);
 929        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 930
 931        clk_disable_unprepare(nfc->clk);
 932        return 0;
 933}
 934
 935static int vf610_nfc_resume(struct device *dev)
 936{
 937        int err;
 938
 939        struct mtd_info *mtd = dev_get_drvdata(dev);
 940        struct vf610_nfc *nfc = mtd_to_nfc(mtd);
 941
 942        err = clk_prepare_enable(nfc->clk);
 943        if (err)
 944                return err;
 945
 946        vf610_nfc_preinit_controller(nfc);
 947        vf610_nfc_init_controller(nfc);
 948        return 0;
 949}
 950#endif
 951
 952static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
 953
 954static struct platform_driver vf610_nfc_driver = {
 955        .driver         = {
 956                .name   = DRV_NAME,
 957                .of_match_table = vf610_nfc_dt_ids,
 958                .pm     = &vf610_nfc_pm_ops,
 959        },
 960        .probe          = vf610_nfc_probe,
 961        .remove         = vf610_nfc_remove,
 962};
 963
 964module_platform_driver(vf610_nfc_driver);
 965
 966MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
 967MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
 968MODULE_LICENSE("GPL");
 969