linux/drivers/platform/x86/intel_ips.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2009-2010 Intel Corporation
   4 *
   5 * Authors:
   6 *      Jesse Barnes <jbarnes@virtuousgeek.org>
   7 */
   8
   9/*
  10 * Some Intel Ibex Peak based platforms support so-called "intelligent
  11 * power sharing", which allows the CPU and GPU to cooperate to maximize
  12 * performance within a given TDP (thermal design point).  This driver
  13 * performs the coordination between the CPU and GPU, monitors thermal and
  14 * power statistics in the platform, and initializes power monitoring
  15 * hardware.  It also provides a few tunables to control behavior.  Its
  16 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
  17 * by tracking power and thermal budget; secondarily it can boost turbo
  18 * performance by allocating more power or thermal budget to the CPU or GPU
  19 * based on available headroom and activity.
  20 *
  21 * The basic algorithm is driven by a 5s moving average of temperature.  If
  22 * thermal headroom is available, the CPU and/or GPU power clamps may be
  23 * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
  24 * we scale back the clamp.  Aside from trigger events (when we're critically
  25 * close or over our TDP) we don't adjust the clamps more than once every
  26 * five seconds.
  27 *
  28 * The thermal device (device 31, function 6) has a set of registers that
  29 * are updated by the ME firmware.  The ME should also take the clamp values
  30 * written to those registers and write them to the CPU, but we currently
  31 * bypass that functionality and write the CPU MSR directly.
  32 *
  33 * UNSUPPORTED:
  34 *   - dual MCP configs
  35 *
  36 * TODO:
  37 *   - handle CPU hotplug
  38 *   - provide turbo enable/disable api
  39 *
  40 * Related documents:
  41 *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
  42 *   - CDI 401376 - Ibex Peak EDS
  43 *   - ref 26037, 26641 - IPS BIOS spec
  44 *   - ref 26489 - Nehalem BIOS writer's guide
  45 *   - ref 26921 - Ibex Peak BIOS Specification
  46 */
  47
  48#include <linux/debugfs.h>
  49#include <linux/delay.h>
  50#include <linux/interrupt.h>
  51#include <linux/kernel.h>
  52#include <linux/kthread.h>
  53#include <linux/module.h>
  54#include <linux/pci.h>
  55#include <linux/sched.h>
  56#include <linux/sched/loadavg.h>
  57#include <linux/seq_file.h>
  58#include <linux/string.h>
  59#include <linux/tick.h>
  60#include <linux/timer.h>
  61#include <linux/dmi.h>
  62#include <drm/i915_drm.h>
  63#include <asm/msr.h>
  64#include <asm/processor.h>
  65#include "intel_ips.h"
  66
  67#include <linux/io-64-nonatomic-lo-hi.h>
  68
  69#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
  70
  71/*
  72 * Package level MSRs for monitor/control
  73 */
  74#define PLATFORM_INFO   0xce
  75#define   PLATFORM_TDP          (1<<29)
  76#define   PLATFORM_RATIO        (1<<28)
  77
  78#define IA32_MISC_ENABLE        0x1a0
  79#define   IA32_MISC_TURBO_EN    (1ULL<<38)
  80
  81#define TURBO_POWER_CURRENT_LIMIT       0x1ac
  82#define   TURBO_TDC_OVR_EN      (1UL<<31)
  83#define   TURBO_TDC_MASK        (0x000000007fff0000UL)
  84#define   TURBO_TDC_SHIFT       (16)
  85#define   TURBO_TDP_OVR_EN      (1UL<<15)
  86#define   TURBO_TDP_MASK        (0x0000000000003fffUL)
  87
  88/*
  89 * Core/thread MSRs for monitoring
  90 */
  91#define IA32_PERF_CTL           0x199
  92#define   IA32_PERF_TURBO_DIS   (1ULL<<32)
  93
  94/*
  95 * Thermal PCI device regs
  96 */
  97#define THM_CFG_TBAR    0x10
  98#define THM_CFG_TBAR_HI 0x14
  99
 100#define THM_TSIU        0x00
 101#define THM_TSE         0x01
 102#define   TSE_EN        0xb8
 103#define THM_TSS         0x02
 104#define THM_TSTR        0x03
 105#define THM_TSTTP       0x04
 106#define THM_TSCO        0x08
 107#define THM_TSES        0x0c
 108#define THM_TSGPEN      0x0d
 109#define   TSGPEN_HOT_LOHI       (1<<1)
 110#define   TSGPEN_CRIT_LOHI      (1<<2)
 111#define THM_TSPC        0x0e
 112#define THM_PPEC        0x10
 113#define THM_CTA         0x12
 114#define THM_PTA         0x14
 115#define   PTA_SLOPE_MASK        (0xff00)
 116#define   PTA_SLOPE_SHIFT       8
 117#define   PTA_OFFSET_MASK       (0x00ff)
 118#define THM_MGTA        0x16
 119#define   MGTA_SLOPE_MASK       (0xff00)
 120#define   MGTA_SLOPE_SHIFT      8
 121#define   MGTA_OFFSET_MASK      (0x00ff)
 122#define THM_TRC         0x1a
 123#define   TRC_CORE2_EN  (1<<15)
 124#define   TRC_THM_EN    (1<<12)
 125#define   TRC_C6_WAR    (1<<8)
 126#define   TRC_CORE1_EN  (1<<7)
 127#define   TRC_CORE_PWR  (1<<6)
 128#define   TRC_PCH_EN    (1<<5)
 129#define   TRC_MCH_EN    (1<<4)
 130#define   TRC_DIMM4     (1<<3)
 131#define   TRC_DIMM3     (1<<2)
 132#define   TRC_DIMM2     (1<<1)
 133#define   TRC_DIMM1     (1<<0)
 134#define THM_TES         0x20
 135#define THM_TEN         0x21
 136#define   TEN_UPDATE_EN 1
 137#define THM_PSC         0x24
 138#define   PSC_NTG       (1<<0) /* No GFX turbo support */
 139#define   PSC_NTPC      (1<<1) /* No CPU turbo support */
 140#define   PSC_PP_DEF    (0<<2) /* Perf policy up to driver */
 141#define   PSP_PP_PC     (1<<2) /* BIOS prefers CPU perf */
 142#define   PSP_PP_BAL    (2<<2) /* BIOS wants balanced perf */
 143#define   PSP_PP_GFX    (3<<2) /* BIOS prefers GFX perf */
 144#define   PSP_PBRT      (1<<4) /* BIOS run time support */
 145#define THM_CTV1        0x30
 146#define   CTV_TEMP_ERROR (1<<15)
 147#define   CTV_TEMP_MASK 0x3f
 148#define   CTV_
 149#define THM_CTV2        0x32
 150#define THM_CEC         0x34 /* undocumented power accumulator in joules */
 151#define THM_AE          0x3f
 152#define THM_HTS         0x50 /* 32 bits */
 153#define   HTS_PCPL_MASK (0x7fe00000)
 154#define   HTS_PCPL_SHIFT 21
 155#define   HTS_GPL_MASK  (0x001ff000)
 156#define   HTS_GPL_SHIFT 12
 157#define   HTS_PP_MASK   (0x00000c00)
 158#define   HTS_PP_SHIFT  10
 159#define   HTS_PP_DEF    0
 160#define   HTS_PP_PROC   1
 161#define   HTS_PP_BAL    2
 162#define   HTS_PP_GFX    3
 163#define   HTS_PCTD_DIS  (1<<9)
 164#define   HTS_GTD_DIS   (1<<8)
 165#define   HTS_PTL_MASK  (0x000000fe)
 166#define   HTS_PTL_SHIFT 1
 167#define   HTS_NVV       (1<<0)
 168#define THM_HTSHI       0x54 /* 16 bits */
 169#define   HTS2_PPL_MASK         (0x03ff)
 170#define   HTS2_PRST_MASK        (0x3c00)
 171#define   HTS2_PRST_SHIFT       10
 172#define   HTS2_PRST_UNLOADED    0
 173#define   HTS2_PRST_RUNNING     1
 174#define   HTS2_PRST_TDISOP      2 /* turbo disabled due to power */
 175#define   HTS2_PRST_TDISHT      3 /* turbo disabled due to high temp */
 176#define   HTS2_PRST_TDISUSR     4 /* user disabled turbo */
 177#define   HTS2_PRST_TDISPLAT    5 /* platform disabled turbo */
 178#define   HTS2_PRST_TDISPM      6 /* power management disabled turbo */
 179#define   HTS2_PRST_TDISERR     7 /* some kind of error disabled turbo */
 180#define THM_PTL         0x56
 181#define THM_MGTV        0x58
 182#define   TV_MASK       0x000000000000ff00
 183#define   TV_SHIFT      8
 184#define THM_PTV         0x60
 185#define   PTV_MASK      0x00ff
 186#define THM_MMGPC       0x64
 187#define THM_MPPC        0x66
 188#define THM_MPCPC       0x68
 189#define THM_TSPIEN      0x82
 190#define   TSPIEN_AUX_LOHI       (1<<0)
 191#define   TSPIEN_HOT_LOHI       (1<<1)
 192#define   TSPIEN_CRIT_LOHI      (1<<2)
 193#define   TSPIEN_AUX2_LOHI      (1<<3)
 194#define THM_TSLOCK      0x83
 195#define THM_ATR         0x84
 196#define THM_TOF         0x87
 197#define THM_STS         0x98
 198#define   STS_PCPL_MASK         (0x7fe00000)
 199#define   STS_PCPL_SHIFT        21
 200#define   STS_GPL_MASK          (0x001ff000)
 201#define   STS_GPL_SHIFT         12
 202#define   STS_PP_MASK           (0x00000c00)
 203#define   STS_PP_SHIFT          10
 204#define   STS_PP_DEF            0
 205#define   STS_PP_PROC           1
 206#define   STS_PP_BAL            2
 207#define   STS_PP_GFX            3
 208#define   STS_PCTD_DIS          (1<<9)
 209#define   STS_GTD_DIS           (1<<8)
 210#define   STS_PTL_MASK          (0x000000fe)
 211#define   STS_PTL_SHIFT         1
 212#define   STS_NVV               (1<<0)
 213#define THM_SEC         0x9c
 214#define   SEC_ACK       (1<<0)
 215#define THM_TC3         0xa4
 216#define THM_TC1         0xa8
 217#define   STS_PPL_MASK          (0x0003ff00)
 218#define   STS_PPL_SHIFT         16
 219#define THM_TC2         0xac
 220#define THM_DTV         0xb0
 221#define THM_ITV         0xd8
 222#define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
 223#define   ITV_ME_SEQNO_SHIFT (16)
 224#define   ITV_MCH_TEMP_MASK 0x0000ff00
 225#define   ITV_MCH_TEMP_SHIFT (8)
 226#define   ITV_PCH_TEMP_MASK 0x000000ff
 227
 228#define thm_readb(off) readb(ips->regmap + (off))
 229#define thm_readw(off) readw(ips->regmap + (off))
 230#define thm_readl(off) readl(ips->regmap + (off))
 231#define thm_readq(off) readq(ips->regmap + (off))
 232
 233#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
 234#define thm_writew(off, val) writew((val), ips->regmap + (off))
 235#define thm_writel(off, val) writel((val), ips->regmap + (off))
 236
 237static const int IPS_ADJUST_PERIOD = 5000; /* ms */
 238static bool late_i915_load = false;
 239
 240/* For initial average collection */
 241static const int IPS_SAMPLE_PERIOD = 200; /* ms */
 242static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
 243#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
 244
 245/* Per-SKU limits */
 246struct ips_mcp_limits {
 247        int mcp_power_limit; /* mW units */
 248        int core_power_limit;
 249        int mch_power_limit;
 250        int core_temp_limit; /* degrees C */
 251        int mch_temp_limit;
 252};
 253
 254/* Max temps are -10 degrees C to avoid PROCHOT# */
 255
 256static struct ips_mcp_limits ips_sv_limits = {
 257        .mcp_power_limit = 35000,
 258        .core_power_limit = 29000,
 259        .mch_power_limit = 20000,
 260        .core_temp_limit = 95,
 261        .mch_temp_limit = 90
 262};
 263
 264static struct ips_mcp_limits ips_lv_limits = {
 265        .mcp_power_limit = 25000,
 266        .core_power_limit = 21000,
 267        .mch_power_limit = 13000,
 268        .core_temp_limit = 95,
 269        .mch_temp_limit = 90
 270};
 271
 272static struct ips_mcp_limits ips_ulv_limits = {
 273        .mcp_power_limit = 18000,
 274        .core_power_limit = 14000,
 275        .mch_power_limit = 11000,
 276        .core_temp_limit = 95,
 277        .mch_temp_limit = 90
 278};
 279
 280struct ips_driver {
 281        struct device *dev;
 282        void __iomem *regmap;
 283        int irq;
 284
 285        struct task_struct *monitor;
 286        struct task_struct *adjust;
 287        struct dentry *debug_root;
 288        struct timer_list timer;
 289
 290        /* Average CPU core temps (all averages in .01 degrees C for precision) */
 291        u16 ctv1_avg_temp;
 292        u16 ctv2_avg_temp;
 293        /* GMCH average */
 294        u16 mch_avg_temp;
 295        /* Average for the CPU (both cores?) */
 296        u16 mcp_avg_temp;
 297        /* Average power consumption (in mW) */
 298        u32 cpu_avg_power;
 299        u32 mch_avg_power;
 300
 301        /* Offset values */
 302        u16 cta_val;
 303        u16 pta_val;
 304        u16 mgta_val;
 305
 306        /* Maximums & prefs, protected by turbo status lock */
 307        spinlock_t turbo_status_lock;
 308        u16 mcp_temp_limit;
 309        u16 mcp_power_limit;
 310        u16 core_power_limit;
 311        u16 mch_power_limit;
 312        bool cpu_turbo_enabled;
 313        bool __cpu_turbo_on;
 314        bool gpu_turbo_enabled;
 315        bool __gpu_turbo_on;
 316        bool gpu_preferred;
 317        bool poll_turbo_status;
 318        bool second_cpu;
 319        bool turbo_toggle_allowed;
 320        struct ips_mcp_limits *limits;
 321
 322        /* Optional MCH interfaces for if i915 is in use */
 323        unsigned long (*read_mch_val)(void);
 324        bool (*gpu_raise)(void);
 325        bool (*gpu_lower)(void);
 326        bool (*gpu_busy)(void);
 327        bool (*gpu_turbo_disable)(void);
 328
 329        /* For restoration at unload */
 330        u64 orig_turbo_limit;
 331        u64 orig_turbo_ratios;
 332};
 333
 334static bool
 335ips_gpu_turbo_enabled(struct ips_driver *ips);
 336
 337/**
 338 * ips_cpu_busy - is CPU busy?
 339 * @ips: IPS driver struct
 340 *
 341 * Check CPU for load to see whether we should increase its thermal budget.
 342 *
 343 * RETURNS:
 344 * True if the CPU could use more power, false otherwise.
 345 */
 346static bool ips_cpu_busy(struct ips_driver *ips)
 347{
 348        if ((avenrun[0] >> FSHIFT) > 1)
 349                return true;
 350
 351        return false;
 352}
 353
 354/**
 355 * ips_cpu_raise - raise CPU power clamp
 356 * @ips: IPS driver struct
 357 *
 358 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
 359 * this platform.
 360 *
 361 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
 362 * long as we haven't hit the TDP limit for the SKU).
 363 */
 364static void ips_cpu_raise(struct ips_driver *ips)
 365{
 366        u64 turbo_override;
 367        u16 cur_tdp_limit, new_tdp_limit;
 368
 369        if (!ips->cpu_turbo_enabled)
 370                return;
 371
 372        rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 373
 374        cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
 375        new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
 376
 377        /* Clamp to SKU TDP limit */
 378        if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
 379                new_tdp_limit = cur_tdp_limit;
 380
 381        thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
 382
 383        turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
 384        wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 385
 386        turbo_override &= ~TURBO_TDP_MASK;
 387        turbo_override |= new_tdp_limit;
 388
 389        wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 390}
 391
 392/**
 393 * ips_cpu_lower - lower CPU power clamp
 394 * @ips: IPS driver struct
 395 *
 396 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
 397 *
 398 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
 399 * as low as the platform limits will allow (though we could go lower there
 400 * wouldn't be much point).
 401 */
 402static void ips_cpu_lower(struct ips_driver *ips)
 403{
 404        u64 turbo_override;
 405        u16 cur_limit, new_limit;
 406
 407        rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 408
 409        cur_limit = turbo_override & TURBO_TDP_MASK;
 410        new_limit = cur_limit - 8; /* 1W decrease */
 411
 412        /* Clamp to SKU TDP limit */
 413        if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
 414                new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
 415
 416        thm_writew(THM_MPCPC, (new_limit * 10) / 8);
 417
 418        turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
 419        wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 420
 421        turbo_override &= ~TURBO_TDP_MASK;
 422        turbo_override |= new_limit;
 423
 424        wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
 425}
 426
 427/**
 428 * do_enable_cpu_turbo - internal turbo enable function
 429 * @data: unused
 430 *
 431 * Internal function for actually updating MSRs.  When we enable/disable
 432 * turbo, we need to do it on each CPU; this function is the one called
 433 * by on_each_cpu() when needed.
 434 */
 435static void do_enable_cpu_turbo(void *data)
 436{
 437        u64 perf_ctl;
 438
 439        rdmsrl(IA32_PERF_CTL, perf_ctl);
 440        if (perf_ctl & IA32_PERF_TURBO_DIS) {
 441                perf_ctl &= ~IA32_PERF_TURBO_DIS;
 442                wrmsrl(IA32_PERF_CTL, perf_ctl);
 443        }
 444}
 445
 446/**
 447 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
 448 * @ips: IPS driver struct
 449 *
 450 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
 451 * all logical threads.
 452 */
 453static void ips_enable_cpu_turbo(struct ips_driver *ips)
 454{
 455        /* Already on, no need to mess with MSRs */
 456        if (ips->__cpu_turbo_on)
 457                return;
 458
 459        if (ips->turbo_toggle_allowed)
 460                on_each_cpu(do_enable_cpu_turbo, ips, 1);
 461
 462        ips->__cpu_turbo_on = true;
 463}
 464
 465/**
 466 * do_disable_cpu_turbo - internal turbo disable function
 467 * @data: unused
 468 *
 469 * Internal function for actually updating MSRs.  When we enable/disable
 470 * turbo, we need to do it on each CPU; this function is the one called
 471 * by on_each_cpu() when needed.
 472 */
 473static void do_disable_cpu_turbo(void *data)
 474{
 475        u64 perf_ctl;
 476
 477        rdmsrl(IA32_PERF_CTL, perf_ctl);
 478        if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
 479                perf_ctl |= IA32_PERF_TURBO_DIS;
 480                wrmsrl(IA32_PERF_CTL, perf_ctl);
 481        }
 482}
 483
 484/**
 485 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
 486 * @ips: IPS driver struct
 487 *
 488 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
 489 * all logical threads.
 490 */
 491static void ips_disable_cpu_turbo(struct ips_driver *ips)
 492{
 493        /* Already off, leave it */
 494        if (!ips->__cpu_turbo_on)
 495                return;
 496
 497        if (ips->turbo_toggle_allowed)
 498                on_each_cpu(do_disable_cpu_turbo, ips, 1);
 499
 500        ips->__cpu_turbo_on = false;
 501}
 502
 503/**
 504 * ips_gpu_busy - is GPU busy?
 505 * @ips: IPS driver struct
 506 *
 507 * Check GPU for load to see whether we should increase its thermal budget.
 508 * We need to call into the i915 driver in this case.
 509 *
 510 * RETURNS:
 511 * True if the GPU could use more power, false otherwise.
 512 */
 513static bool ips_gpu_busy(struct ips_driver *ips)
 514{
 515        if (!ips_gpu_turbo_enabled(ips))
 516                return false;
 517
 518        return ips->gpu_busy();
 519}
 520
 521/**
 522 * ips_gpu_raise - raise GPU power clamp
 523 * @ips: IPS driver struct
 524 *
 525 * Raise the GPU frequency/power if possible.  We need to call into the
 526 * i915 driver in this case.
 527 */
 528static void ips_gpu_raise(struct ips_driver *ips)
 529{
 530        if (!ips_gpu_turbo_enabled(ips))
 531                return;
 532
 533        if (!ips->gpu_raise())
 534                ips->gpu_turbo_enabled = false;
 535
 536        return;
 537}
 538
 539/**
 540 * ips_gpu_lower - lower GPU power clamp
 541 * @ips: IPS driver struct
 542 *
 543 * Lower GPU frequency/power if possible.  Need to call i915.
 544 */
 545static void ips_gpu_lower(struct ips_driver *ips)
 546{
 547        if (!ips_gpu_turbo_enabled(ips))
 548                return;
 549
 550        if (!ips->gpu_lower())
 551                ips->gpu_turbo_enabled = false;
 552
 553        return;
 554}
 555
 556/**
 557 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
 558 * @ips: IPS driver struct
 559 *
 560 * Call into the graphics driver indicating that it can safely use
 561 * turbo mode.
 562 */
 563static void ips_enable_gpu_turbo(struct ips_driver *ips)
 564{
 565        if (ips->__gpu_turbo_on)
 566                return;
 567        ips->__gpu_turbo_on = true;
 568}
 569
 570/**
 571 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
 572 * @ips: IPS driver struct
 573 *
 574 * Request that the graphics driver disable turbo mode.
 575 */
 576static void ips_disable_gpu_turbo(struct ips_driver *ips)
 577{
 578        /* Avoid calling i915 if turbo is already disabled */
 579        if (!ips->__gpu_turbo_on)
 580                return;
 581
 582        if (!ips->gpu_turbo_disable())
 583                dev_err(ips->dev, "failed to disable graphics turbo\n");
 584        else
 585                ips->__gpu_turbo_on = false;
 586}
 587
 588/**
 589 * mcp_exceeded - check whether we're outside our thermal & power limits
 590 * @ips: IPS driver struct
 591 *
 592 * Check whether the MCP is over its thermal or power budget.
 593 */
 594static bool mcp_exceeded(struct ips_driver *ips)
 595{
 596        unsigned long flags;
 597        bool ret = false;
 598        u32 temp_limit;
 599        u32 avg_power;
 600
 601        spin_lock_irqsave(&ips->turbo_status_lock, flags);
 602
 603        temp_limit = ips->mcp_temp_limit * 100;
 604        if (ips->mcp_avg_temp > temp_limit)
 605                ret = true;
 606
 607        avg_power = ips->cpu_avg_power + ips->mch_avg_power;
 608        if (avg_power > ips->mcp_power_limit)
 609                ret = true;
 610
 611        spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 612
 613        return ret;
 614}
 615
 616/**
 617 * cpu_exceeded - check whether a CPU core is outside its limits
 618 * @ips: IPS driver struct
 619 * @cpu: CPU number to check
 620 *
 621 * Check a given CPU's average temp or power is over its limit.
 622 */
 623static bool cpu_exceeded(struct ips_driver *ips, int cpu)
 624{
 625        unsigned long flags;
 626        int avg;
 627        bool ret = false;
 628
 629        spin_lock_irqsave(&ips->turbo_status_lock, flags);
 630        avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
 631        if (avg > (ips->limits->core_temp_limit * 100))
 632                ret = true;
 633        if (ips->cpu_avg_power > ips->core_power_limit * 100)
 634                ret = true;
 635        spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 636
 637        if (ret)
 638                dev_info(ips->dev, "CPU power or thermal limit exceeded\n");
 639
 640        return ret;
 641}
 642
 643/**
 644 * mch_exceeded - check whether the GPU is over budget
 645 * @ips: IPS driver struct
 646 *
 647 * Check the MCH temp & power against their maximums.
 648 */
 649static bool mch_exceeded(struct ips_driver *ips)
 650{
 651        unsigned long flags;
 652        bool ret = false;
 653
 654        spin_lock_irqsave(&ips->turbo_status_lock, flags);
 655        if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
 656                ret = true;
 657        if (ips->mch_avg_power > ips->mch_power_limit)
 658                ret = true;
 659        spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 660
 661        return ret;
 662}
 663
 664/**
 665 * verify_limits - verify BIOS provided limits
 666 * @ips: IPS structure
 667 *
 668 * BIOS can optionally provide non-default limits for power and temp.  Check
 669 * them here and use the defaults if the BIOS values are not provided or
 670 * are otherwise unusable.
 671 */
 672static void verify_limits(struct ips_driver *ips)
 673{
 674        if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
 675            ips->mcp_power_limit > 35000)
 676                ips->mcp_power_limit = ips->limits->mcp_power_limit;
 677
 678        if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
 679            ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
 680            ips->mcp_temp_limit > 150)
 681                ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
 682                                          ips->limits->mch_temp_limit);
 683}
 684
 685/**
 686 * update_turbo_limits - get various limits & settings from regs
 687 * @ips: IPS driver struct
 688 *
 689 * Update the IPS power & temp limits, along with turbo enable flags,
 690 * based on latest register contents.
 691 *
 692 * Used at init time and for runtime BIOS support, which requires polling
 693 * the regs for updates (as a result of AC->DC transition for example).
 694 *
 695 * LOCKING:
 696 * Caller must hold turbo_status_lock (outside of init)
 697 */
 698static void update_turbo_limits(struct ips_driver *ips)
 699{
 700        u32 hts = thm_readl(THM_HTS);
 701
 702        ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
 703        /* 
 704         * Disable turbo for now, until we can figure out why the power figures
 705         * are wrong
 706         */
 707        ips->cpu_turbo_enabled = false;
 708
 709        if (ips->gpu_busy)
 710                ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
 711
 712        ips->core_power_limit = thm_readw(THM_MPCPC);
 713        ips->mch_power_limit = thm_readw(THM_MMGPC);
 714        ips->mcp_temp_limit = thm_readw(THM_PTL);
 715        ips->mcp_power_limit = thm_readw(THM_MPPC);
 716
 717        verify_limits(ips);
 718        /* Ignore BIOS CPU vs GPU pref */
 719}
 720
 721/**
 722 * ips_adjust - adjust power clamp based on thermal state
 723 * @data: ips driver structure
 724 *
 725 * Wake up every 5s or so and check whether we should adjust the power clamp.
 726 * Check CPU and GPU load to determine which needs adjustment.  There are
 727 * several things to consider here:
 728 *   - do we need to adjust up or down?
 729 *   - is CPU busy?
 730 *   - is GPU busy?
 731 *   - is CPU in turbo?
 732 *   - is GPU in turbo?
 733 *   - is CPU or GPU preferred? (CPU is default)
 734 *
 735 * So, given the above, we do the following:
 736 *   - up (TDP available)
 737 *     - CPU not busy, GPU not busy - nothing
 738 *     - CPU busy, GPU not busy - adjust CPU up
 739 *     - CPU not busy, GPU busy - adjust GPU up
 740 *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
 741 *       non-preferred unit if necessary
 742 *   - down (at TDP limit)
 743 *     - adjust both CPU and GPU down if possible
 744 *
 745                cpu+ gpu+       cpu+gpu-        cpu-gpu+        cpu-gpu-
 746cpu < gpu <     cpu+gpu+        cpu+            gpu+            nothing
 747cpu < gpu >=    cpu+gpu-(mcp<)  cpu+gpu-(mcp<)  gpu-            gpu-
 748cpu >= gpu <    cpu-gpu+(mcp<)  cpu-            cpu-gpu+(mcp<)  cpu-
 749cpu >= gpu >=   cpu-gpu-        cpu-gpu-        cpu-gpu-        cpu-gpu-
 750 *
 751 */
 752static int ips_adjust(void *data)
 753{
 754        struct ips_driver *ips = data;
 755        unsigned long flags;
 756
 757        dev_dbg(ips->dev, "starting ips-adjust thread\n");
 758
 759        /*
 760         * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
 761         * often isn't recommended due to ME interaction.
 762         */
 763        do {
 764                bool cpu_busy = ips_cpu_busy(ips);
 765                bool gpu_busy = ips_gpu_busy(ips);
 766
 767                spin_lock_irqsave(&ips->turbo_status_lock, flags);
 768                if (ips->poll_turbo_status)
 769                        update_turbo_limits(ips);
 770                spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
 771
 772                /* Update turbo status if necessary */
 773                if (ips->cpu_turbo_enabled)
 774                        ips_enable_cpu_turbo(ips);
 775                else
 776                        ips_disable_cpu_turbo(ips);
 777
 778                if (ips->gpu_turbo_enabled)
 779                        ips_enable_gpu_turbo(ips);
 780                else
 781                        ips_disable_gpu_turbo(ips);
 782
 783                /* We're outside our comfort zone, crank them down */
 784                if (mcp_exceeded(ips)) {
 785                        ips_cpu_lower(ips);
 786                        ips_gpu_lower(ips);
 787                        goto sleep;
 788                }
 789
 790                if (!cpu_exceeded(ips, 0) && cpu_busy)
 791                        ips_cpu_raise(ips);
 792                else
 793                        ips_cpu_lower(ips);
 794
 795                if (!mch_exceeded(ips) && gpu_busy)
 796                        ips_gpu_raise(ips);
 797                else
 798                        ips_gpu_lower(ips);
 799
 800sleep:
 801                schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
 802        } while (!kthread_should_stop());
 803
 804        dev_dbg(ips->dev, "ips-adjust thread stopped\n");
 805
 806        return 0;
 807}
 808
 809/*
 810 * Helpers for reading out temp/power values and calculating their
 811 * averages for the decision making and monitoring functions.
 812 */
 813
 814static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
 815{
 816        u64 total = 0;
 817        int i;
 818        u16 avg;
 819
 820        for (i = 0; i < IPS_SAMPLE_COUNT; i++)
 821                total += (u64)(array[i] * 100);
 822
 823        do_div(total, IPS_SAMPLE_COUNT);
 824
 825        avg = (u16)total;
 826
 827        return avg;
 828}
 829
 830static u16 read_mgtv(struct ips_driver *ips)
 831{
 832        u16 ret;
 833        u64 slope, offset;
 834        u64 val;
 835
 836        val = thm_readq(THM_MGTV);
 837        val = (val & TV_MASK) >> TV_SHIFT;
 838
 839        slope = offset = thm_readw(THM_MGTA);
 840        slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
 841        offset = offset & MGTA_OFFSET_MASK;
 842
 843        ret = ((val * slope + 0x40) >> 7) + offset;
 844
 845        return 0; /* MCH temp reporting buggy */
 846}
 847
 848static u16 read_ptv(struct ips_driver *ips)
 849{
 850        u16 val;
 851
 852        val = thm_readw(THM_PTV) & PTV_MASK;
 853
 854        return val;
 855}
 856
 857static u16 read_ctv(struct ips_driver *ips, int cpu)
 858{
 859        int reg = cpu ? THM_CTV2 : THM_CTV1;
 860        u16 val;
 861
 862        val = thm_readw(reg);
 863        if (!(val & CTV_TEMP_ERROR))
 864                val = (val) >> 6; /* discard fractional component */
 865        else
 866                val = 0;
 867
 868        return val;
 869}
 870
 871static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
 872{
 873        u32 val;
 874        u32 ret;
 875
 876        /*
 877         * CEC is in joules/65535.  Take difference over time to
 878         * get watts.
 879         */
 880        val = thm_readl(THM_CEC);
 881
 882        /* period is in ms and we want mW */
 883        ret = (((val - *last) * 1000) / period);
 884        ret = (ret * 1000) / 65535;
 885        *last = val;
 886
 887        return 0;
 888}
 889
 890static const u16 temp_decay_factor = 2;
 891static u16 update_average_temp(u16 avg, u16 val)
 892{
 893        u16 ret;
 894
 895        /* Multiply by 100 for extra precision */
 896        ret = (val * 100 / temp_decay_factor) +
 897                (((temp_decay_factor - 1) * avg) / temp_decay_factor);
 898        return ret;
 899}
 900
 901static const u16 power_decay_factor = 2;
 902static u16 update_average_power(u32 avg, u32 val)
 903{
 904        u32 ret;
 905
 906        ret = (val / power_decay_factor) +
 907                (((power_decay_factor - 1) * avg) / power_decay_factor);
 908
 909        return ret;
 910}
 911
 912static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
 913{
 914        u64 total = 0;
 915        u32 avg;
 916        int i;
 917
 918        for (i = 0; i < IPS_SAMPLE_COUNT; i++)
 919                total += array[i];
 920
 921        do_div(total, IPS_SAMPLE_COUNT);
 922        avg = (u32)total;
 923
 924        return avg;
 925}
 926
 927static void monitor_timeout(struct timer_list *t)
 928{
 929        struct ips_driver *ips = from_timer(ips, t, timer);
 930        wake_up_process(ips->monitor);
 931}
 932
 933/**
 934 * ips_monitor - temp/power monitoring thread
 935 * @data: ips driver structure
 936 *
 937 * This is the main function for the IPS driver.  It monitors power and
 938 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
 939 *
 940 * We keep a 5s moving average of power consumption and tempurature.  Using
 941 * that data, along with CPU vs GPU preference, we adjust the power clamps
 942 * up or down.
 943 */
 944static int ips_monitor(void *data)
 945{
 946        struct ips_driver *ips = data;
 947        unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
 948        int i;
 949        u32 *cpu_samples, *mchp_samples, old_cpu_power;
 950        u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
 951        u8 cur_seqno, last_seqno;
 952
 953        mcp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
 954        ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
 955        ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
 956        mch_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
 957        cpu_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
 958        mchp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
 959        if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
 960                        !cpu_samples || !mchp_samples) {
 961                dev_err(ips->dev,
 962                        "failed to allocate sample array, ips disabled\n");
 963                kfree(mcp_samples);
 964                kfree(ctv1_samples);
 965                kfree(ctv2_samples);
 966                kfree(mch_samples);
 967                kfree(cpu_samples);
 968                kfree(mchp_samples);
 969                return -ENOMEM;
 970        }
 971
 972        last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
 973                ITV_ME_SEQNO_SHIFT;
 974        seqno_timestamp = get_jiffies_64();
 975
 976        old_cpu_power = thm_readl(THM_CEC);
 977        schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
 978
 979        /* Collect an initial average */
 980        for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
 981                u32 mchp, cpu_power;
 982                u16 val;
 983
 984                mcp_samples[i] = read_ptv(ips);
 985
 986                val = read_ctv(ips, 0);
 987                ctv1_samples[i] = val;
 988
 989                val = read_ctv(ips, 1);
 990                ctv2_samples[i] = val;
 991
 992                val = read_mgtv(ips);
 993                mch_samples[i] = val;
 994
 995                cpu_power = get_cpu_power(ips, &old_cpu_power,
 996                                          IPS_SAMPLE_PERIOD);
 997                cpu_samples[i] = cpu_power;
 998
 999                if (ips->read_mch_val) {
1000                        mchp = ips->read_mch_val();
1001                        mchp_samples[i] = mchp;
1002                }
1003
1004                schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1005                if (kthread_should_stop())
1006                        break;
1007        }
1008
1009        ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1010        ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1011        ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1012        ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1013        ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1014        ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1015        kfree(mcp_samples);
1016        kfree(ctv1_samples);
1017        kfree(ctv2_samples);
1018        kfree(mch_samples);
1019        kfree(cpu_samples);
1020        kfree(mchp_samples);
1021
1022        /* Start the adjustment thread now that we have data */
1023        wake_up_process(ips->adjust);
1024
1025        /*
1026         * Ok, now we have an initial avg.  From here on out, we track the
1027         * running avg using a decaying average calculation.  This allows
1028         * us to reduce the sample frequency if the CPU and GPU are idle.
1029         */
1030        old_cpu_power = thm_readl(THM_CEC);
1031        schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1032        last_sample_period = IPS_SAMPLE_PERIOD;
1033
1034        timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
1035        do {
1036                u32 cpu_val, mch_val;
1037                u16 val;
1038
1039                /* MCP itself */
1040                val = read_ptv(ips);
1041                ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1042
1043                /* Processor 0 */
1044                val = read_ctv(ips, 0);
1045                ips->ctv1_avg_temp =
1046                        update_average_temp(ips->ctv1_avg_temp, val);
1047                /* Power */
1048                cpu_val = get_cpu_power(ips, &old_cpu_power,
1049                                        last_sample_period);
1050                ips->cpu_avg_power =
1051                        update_average_power(ips->cpu_avg_power, cpu_val);
1052
1053                if (ips->second_cpu) {
1054                        /* Processor 1 */
1055                        val = read_ctv(ips, 1);
1056                        ips->ctv2_avg_temp =
1057                                update_average_temp(ips->ctv2_avg_temp, val);
1058                }
1059
1060                /* MCH */
1061                val = read_mgtv(ips);
1062                ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1063                /* Power */
1064                if (ips->read_mch_val) {
1065                        mch_val = ips->read_mch_val();
1066                        ips->mch_avg_power =
1067                                update_average_power(ips->mch_avg_power,
1068                                                     mch_val);
1069                }
1070
1071                /*
1072                 * Make sure ME is updating thermal regs.
1073                 * Note:
1074                 * If it's been more than a second since the last update,
1075                 * the ME is probably hung.
1076                 */
1077                cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1078                        ITV_ME_SEQNO_SHIFT;
1079                if (cur_seqno == last_seqno &&
1080                    time_after(jiffies, seqno_timestamp + HZ)) {
1081                        dev_warn(ips->dev,
1082                                 "ME failed to update for more than 1s, likely hung\n");
1083                } else {
1084                        seqno_timestamp = get_jiffies_64();
1085                        last_seqno = cur_seqno;
1086                }
1087
1088                last_msecs = jiffies_to_msecs(jiffies);
1089                expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1090
1091                __set_current_state(TASK_INTERRUPTIBLE);
1092                mod_timer(&ips->timer, expire);
1093                schedule();
1094
1095                /* Calculate actual sample period for power averaging */
1096                last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1097                if (!last_sample_period)
1098                        last_sample_period = 1;
1099        } while (!kthread_should_stop());
1100
1101        del_timer_sync(&ips->timer);
1102
1103        dev_dbg(ips->dev, "ips-monitor thread stopped\n");
1104
1105        return 0;
1106}
1107
1108#if 0
1109#define THM_DUMPW(reg) \
1110        { \
1111        u16 val = thm_readw(reg); \
1112        dev_dbg(ips->dev, #reg ": 0x%04x\n", val); \
1113        }
1114#define THM_DUMPL(reg) \
1115        { \
1116        u32 val = thm_readl(reg); \
1117        dev_dbg(ips->dev, #reg ": 0x%08x\n", val); \
1118        }
1119#define THM_DUMPQ(reg) \
1120        { \
1121        u64 val = thm_readq(reg); \
1122        dev_dbg(ips->dev, #reg ": 0x%016x\n", val); \
1123        }
1124
1125static void dump_thermal_info(struct ips_driver *ips)
1126{
1127        u16 ptl;
1128
1129        ptl = thm_readw(THM_PTL);
1130        dev_dbg(ips->dev, "Processor temp limit: %d\n", ptl);
1131
1132        THM_DUMPW(THM_CTA);
1133        THM_DUMPW(THM_TRC);
1134        THM_DUMPW(THM_CTV1);
1135        THM_DUMPL(THM_STS);
1136        THM_DUMPW(THM_PTV);
1137        THM_DUMPQ(THM_MGTV);
1138}
1139#endif
1140
1141/**
1142 * ips_irq_handler - handle temperature triggers and other IPS events
1143 * @irq: irq number
1144 * @arg: unused
1145 *
1146 * Handle temperature limit trigger events, generally by lowering the clamps.
1147 * If we're at a critical limit, we clamp back to the lowest possible value
1148 * to prevent emergency shutdown.
1149 */
1150static irqreturn_t ips_irq_handler(int irq, void *arg)
1151{
1152        struct ips_driver *ips = arg;
1153        u8 tses = thm_readb(THM_TSES);
1154        u8 tes = thm_readb(THM_TES);
1155
1156        if (!tses && !tes)
1157                return IRQ_NONE;
1158
1159        dev_info(ips->dev, "TSES: 0x%02x\n", tses);
1160        dev_info(ips->dev, "TES: 0x%02x\n", tes);
1161
1162        /* STS update from EC? */
1163        if (tes & 1) {
1164                u32 sts, tc1;
1165
1166                sts = thm_readl(THM_STS);
1167                tc1 = thm_readl(THM_TC1);
1168
1169                if (sts & STS_NVV) {
1170                        spin_lock(&ips->turbo_status_lock);
1171                        ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1172                                STS_PCPL_SHIFT;
1173                        ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1174                                STS_GPL_SHIFT;
1175                        /* ignore EC CPU vs GPU pref */
1176                        ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1177                        /* 
1178                         * Disable turbo for now, until we can figure
1179                         * out why the power figures are wrong
1180                         */
1181                        ips->cpu_turbo_enabled = false;
1182                        if (ips->gpu_busy)
1183                                ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1184                        ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1185                                STS_PTL_SHIFT;
1186                        ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1187                                STS_PPL_SHIFT;
1188                        verify_limits(ips);
1189                        spin_unlock(&ips->turbo_status_lock);
1190
1191                        thm_writeb(THM_SEC, SEC_ACK);
1192                }
1193                thm_writeb(THM_TES, tes);
1194        }
1195
1196        /* Thermal trip */
1197        if (tses) {
1198                dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n",
1199                         tses);
1200                thm_writeb(THM_TSES, tses);
1201        }
1202
1203        return IRQ_HANDLED;
1204}
1205
1206#ifndef CONFIG_DEBUG_FS
1207static void ips_debugfs_init(struct ips_driver *ips) { return; }
1208static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1209#else
1210
1211/* Expose current state and limits in debugfs if possible */
1212
1213struct ips_debugfs_node {
1214        struct ips_driver *ips;
1215        char *name;
1216        int (*show)(struct seq_file *m, void *data);
1217};
1218
1219static int show_cpu_temp(struct seq_file *m, void *data)
1220{
1221        struct ips_driver *ips = m->private;
1222
1223        seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1224                   ips->ctv1_avg_temp % 100);
1225
1226        return 0;
1227}
1228
1229static int show_cpu_power(struct seq_file *m, void *data)
1230{
1231        struct ips_driver *ips = m->private;
1232
1233        seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1234
1235        return 0;
1236}
1237
1238static int show_cpu_clamp(struct seq_file *m, void *data)
1239{
1240        u64 turbo_override;
1241        int tdp, tdc;
1242
1243        rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1244
1245        tdp = (int)(turbo_override & TURBO_TDP_MASK);
1246        tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1247
1248        /* Convert to .1W/A units */
1249        tdp = tdp * 10 / 8;
1250        tdc = tdc * 10 / 8;
1251
1252        /* Watts Amperes */
1253        seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1254                   tdc / 10, tdc % 10);
1255
1256        return 0;
1257}
1258
1259static int show_mch_temp(struct seq_file *m, void *data)
1260{
1261        struct ips_driver *ips = m->private;
1262
1263        seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1264                   ips->mch_avg_temp % 100);
1265
1266        return 0;
1267}
1268
1269static int show_mch_power(struct seq_file *m, void *data)
1270{
1271        struct ips_driver *ips = m->private;
1272
1273        seq_printf(m, "%dmW\n", ips->mch_avg_power);
1274
1275        return 0;
1276}
1277
1278static struct ips_debugfs_node ips_debug_files[] = {
1279        { NULL, "cpu_temp", show_cpu_temp },
1280        { NULL, "cpu_power", show_cpu_power },
1281        { NULL, "cpu_clamp", show_cpu_clamp },
1282        { NULL, "mch_temp", show_mch_temp },
1283        { NULL, "mch_power", show_mch_power },
1284};
1285
1286static int ips_debugfs_open(struct inode *inode, struct file *file)
1287{
1288        struct ips_debugfs_node *node = inode->i_private;
1289
1290        return single_open(file, node->show, node->ips);
1291}
1292
1293static const struct file_operations ips_debugfs_ops = {
1294        .owner = THIS_MODULE,
1295        .open = ips_debugfs_open,
1296        .read = seq_read,
1297        .llseek = seq_lseek,
1298        .release = single_release,
1299};
1300
1301static void ips_debugfs_cleanup(struct ips_driver *ips)
1302{
1303        if (ips->debug_root)
1304                debugfs_remove_recursive(ips->debug_root);
1305        return;
1306}
1307
1308static void ips_debugfs_init(struct ips_driver *ips)
1309{
1310        int i;
1311
1312        ips->debug_root = debugfs_create_dir("ips", NULL);
1313        if (!ips->debug_root) {
1314                dev_err(ips->dev, "failed to create debugfs entries: %ld\n",
1315                        PTR_ERR(ips->debug_root));
1316                return;
1317        }
1318
1319        for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1320                struct dentry *ent;
1321                struct ips_debugfs_node *node = &ips_debug_files[i];
1322
1323                node->ips = ips;
1324                ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1325                                          ips->debug_root, node,
1326                                          &ips_debugfs_ops);
1327                if (!ent) {
1328                        dev_err(ips->dev, "failed to create debug file: %ld\n",
1329                                PTR_ERR(ent));
1330                        goto err_cleanup;
1331                }
1332        }
1333
1334        return;
1335
1336err_cleanup:
1337        ips_debugfs_cleanup(ips);
1338        return;
1339}
1340#endif /* CONFIG_DEBUG_FS */
1341
1342/**
1343 * ips_detect_cpu - detect whether CPU supports IPS
1344 *
1345 * Walk our list and see if we're on a supported CPU.  If we find one,
1346 * return the limits for it.
1347 */
1348static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1349{
1350        u64 turbo_power, misc_en;
1351        struct ips_mcp_limits *limits = NULL;
1352        u16 tdp;
1353
1354        if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1355                dev_info(ips->dev, "Non-IPS CPU detected.\n");
1356                return NULL;
1357        }
1358
1359        rdmsrl(IA32_MISC_ENABLE, misc_en);
1360        /*
1361         * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1362         * turbo manually or we'll get an illegal MSR access, even though
1363         * turbo will still be available.
1364         */
1365        if (misc_en & IA32_MISC_TURBO_EN)
1366                ips->turbo_toggle_allowed = true;
1367        else
1368                ips->turbo_toggle_allowed = false;
1369
1370        if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1371                limits = &ips_sv_limits;
1372        else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1373                limits = &ips_lv_limits;
1374        else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1375                limits = &ips_ulv_limits;
1376        else {
1377                dev_info(ips->dev, "No CPUID match found.\n");
1378                return NULL;
1379        }
1380
1381        rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1382        tdp = turbo_power & TURBO_TDP_MASK;
1383
1384        /* Sanity check TDP against CPU */
1385        if (limits->core_power_limit != (tdp / 8) * 1000) {
1386                dev_info(ips->dev,
1387                         "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1388                         tdp / 8, limits->core_power_limit / 1000);
1389                limits->core_power_limit = (tdp / 8) * 1000;
1390        }
1391
1392        return limits;
1393}
1394
1395/**
1396 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1397 * @ips: IPS driver
1398 *
1399 * The i915 driver exports several interfaces to allow the IPS driver to
1400 * monitor and control graphics turbo mode.  If we can find them, we can
1401 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1402 * thermal and power limits in the MCP.
1403 */
1404static bool ips_get_i915_syms(struct ips_driver *ips)
1405{
1406        ips->read_mch_val = symbol_get(i915_read_mch_val);
1407        if (!ips->read_mch_val)
1408                goto out_err;
1409        ips->gpu_raise = symbol_get(i915_gpu_raise);
1410        if (!ips->gpu_raise)
1411                goto out_put_mch;
1412        ips->gpu_lower = symbol_get(i915_gpu_lower);
1413        if (!ips->gpu_lower)
1414                goto out_put_raise;
1415        ips->gpu_busy = symbol_get(i915_gpu_busy);
1416        if (!ips->gpu_busy)
1417                goto out_put_lower;
1418        ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1419        if (!ips->gpu_turbo_disable)
1420                goto out_put_busy;
1421
1422        return true;
1423
1424out_put_busy:
1425        symbol_put(i915_gpu_busy);
1426out_put_lower:
1427        symbol_put(i915_gpu_lower);
1428out_put_raise:
1429        symbol_put(i915_gpu_raise);
1430out_put_mch:
1431        symbol_put(i915_read_mch_val);
1432out_err:
1433        return false;
1434}
1435
1436static bool
1437ips_gpu_turbo_enabled(struct ips_driver *ips)
1438{
1439        if (!ips->gpu_busy && late_i915_load) {
1440                if (ips_get_i915_syms(ips)) {
1441                        dev_info(ips->dev,
1442                                 "i915 driver attached, reenabling gpu turbo\n");
1443                        ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1444                }
1445        }
1446
1447        return ips->gpu_turbo_enabled;
1448}
1449
1450void
1451ips_link_to_i915_driver(void)
1452{
1453        /* We can't cleanly get at the various ips_driver structs from
1454         * this caller (the i915 driver), so just set a flag saying
1455         * that it's time to try getting the symbols again.
1456         */
1457        late_i915_load = true;
1458}
1459EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1460
1461static const struct pci_device_id ips_id_table[] = {
1462        { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1463        { 0, }
1464};
1465
1466MODULE_DEVICE_TABLE(pci, ips_id_table);
1467
1468static int ips_blacklist_callback(const struct dmi_system_id *id)
1469{
1470        pr_info("Blacklisted intel_ips for %s\n", id->ident);
1471        return 1;
1472}
1473
1474static const struct dmi_system_id ips_blacklist[] = {
1475        {
1476                .callback = ips_blacklist_callback,
1477                .ident = "HP ProBook",
1478                .matches = {
1479                        DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1480                        DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1481                },
1482        },
1483        { }     /* terminating entry */
1484};
1485
1486static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1487{
1488        u64 platform_info;
1489        struct ips_driver *ips;
1490        u32 hts;
1491        int ret = 0;
1492        u16 htshi, trc, trc_required_mask;
1493        u8 tse;
1494
1495        if (dmi_check_system(ips_blacklist))
1496                return -ENODEV;
1497
1498        ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL);
1499        if (!ips)
1500                return -ENOMEM;
1501
1502        spin_lock_init(&ips->turbo_status_lock);
1503        ips->dev = &dev->dev;
1504
1505        ips->limits = ips_detect_cpu(ips);
1506        if (!ips->limits) {
1507                dev_info(&dev->dev, "IPS not supported on this CPU\n");
1508                return -ENXIO;
1509        }
1510
1511        ret = pcim_enable_device(dev);
1512        if (ret) {
1513                dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1514                return ret;
1515        }
1516
1517        ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev));
1518        if (ret) {
1519                dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1520                return ret;
1521        }
1522        ips->regmap = pcim_iomap_table(dev)[0];
1523
1524        pci_set_drvdata(dev, ips);
1525
1526        tse = thm_readb(THM_TSE);
1527        if (tse != TSE_EN) {
1528                dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1529                return -ENXIO;
1530        }
1531
1532        trc = thm_readw(THM_TRC);
1533        trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1534        if ((trc & trc_required_mask) != trc_required_mask) {
1535                dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1536                return -ENXIO;
1537        }
1538
1539        if (trc & TRC_CORE2_EN)
1540                ips->second_cpu = true;
1541
1542        update_turbo_limits(ips);
1543        dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1544                ips->mcp_power_limit / 10);
1545        dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1546                ips->core_power_limit / 10);
1547        /* BIOS may update limits at runtime */
1548        if (thm_readl(THM_PSC) & PSP_PBRT)
1549                ips->poll_turbo_status = true;
1550
1551        if (!ips_get_i915_syms(ips)) {
1552                dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1553                ips->gpu_turbo_enabled = false;
1554        } else {
1555                dev_dbg(&dev->dev, "graphics turbo enabled\n");
1556                ips->gpu_turbo_enabled = true;
1557        }
1558
1559        /*
1560         * Check PLATFORM_INFO MSR to make sure this chip is
1561         * turbo capable.
1562         */
1563        rdmsrl(PLATFORM_INFO, platform_info);
1564        if (!(platform_info & PLATFORM_TDP)) {
1565                dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1566                return -ENODEV;
1567        }
1568
1569        /*
1570         * IRQ handler for ME interaction
1571         * Note: don't use MSI here as the PCH has bugs.
1572         */
1573        ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_LEGACY);
1574        if (ret < 0)
1575                return ret;
1576
1577        ips->irq = pci_irq_vector(dev, 0);
1578
1579        ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips);
1580        if (ret) {
1581                dev_err(&dev->dev, "request irq failed, aborting\n");
1582                return ret;
1583        }
1584
1585        /* Enable aux, hot & critical interrupts */
1586        thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1587                   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1588        thm_writeb(THM_TEN, TEN_UPDATE_EN);
1589
1590        /* Collect adjustment values */
1591        ips->cta_val = thm_readw(THM_CTA);
1592        ips->pta_val = thm_readw(THM_PTA);
1593        ips->mgta_val = thm_readw(THM_MGTA);
1594
1595        /* Save turbo limits & ratios */
1596        rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1597
1598        ips_disable_cpu_turbo(ips);
1599        ips->cpu_turbo_enabled = false;
1600
1601        /* Create thermal adjust thread */
1602        ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1603        if (IS_ERR(ips->adjust)) {
1604                dev_err(&dev->dev,
1605                        "failed to create thermal adjust thread, aborting\n");
1606                ret = -ENOMEM;
1607                goto error_free_irq;
1608
1609        }
1610
1611        /*
1612         * Set up the work queue and monitor thread. The monitor thread
1613         * will wake up ips_adjust thread.
1614         */
1615        ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1616        if (IS_ERR(ips->monitor)) {
1617                dev_err(&dev->dev,
1618                        "failed to create thermal monitor thread, aborting\n");
1619                ret = -ENOMEM;
1620                goto error_thread_cleanup;
1621        }
1622
1623        hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1624                (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1625        htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1626
1627        thm_writew(THM_HTSHI, htshi);
1628        thm_writel(THM_HTS, hts);
1629
1630        ips_debugfs_init(ips);
1631
1632        dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1633                 ips->mcp_temp_limit);
1634        return ret;
1635
1636error_thread_cleanup:
1637        kthread_stop(ips->adjust);
1638error_free_irq:
1639        free_irq(ips->irq, ips);
1640        pci_free_irq_vectors(dev);
1641        return ret;
1642}
1643
1644static void ips_remove(struct pci_dev *dev)
1645{
1646        struct ips_driver *ips = pci_get_drvdata(dev);
1647        u64 turbo_override;
1648
1649        if (!ips)
1650                return;
1651
1652        ips_debugfs_cleanup(ips);
1653
1654        /* Release i915 driver */
1655        if (ips->read_mch_val)
1656                symbol_put(i915_read_mch_val);
1657        if (ips->gpu_raise)
1658                symbol_put(i915_gpu_raise);
1659        if (ips->gpu_lower)
1660                symbol_put(i915_gpu_lower);
1661        if (ips->gpu_busy)
1662                symbol_put(i915_gpu_busy);
1663        if (ips->gpu_turbo_disable)
1664                symbol_put(i915_gpu_turbo_disable);
1665
1666        rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1667        turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1668        wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1669        wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1670
1671        free_irq(ips->irq, ips);
1672        pci_free_irq_vectors(dev);
1673        if (ips->adjust)
1674                kthread_stop(ips->adjust);
1675        if (ips->monitor)
1676                kthread_stop(ips->monitor);
1677        dev_dbg(&dev->dev, "IPS driver removed\n");
1678}
1679
1680static struct pci_driver ips_pci_driver = {
1681        .name = "intel ips",
1682        .id_table = ips_id_table,
1683        .probe = ips_probe,
1684        .remove = ips_remove,
1685};
1686
1687module_pci_driver(ips_pci_driver);
1688
1689MODULE_LICENSE("GPL v2");
1690MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1691MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1692