linux/drivers/power/supply/cpcap-battery.c
<<
>>
Prefs
   1/*
   2 * Battery driver for CPCAP PMIC
   3 *
   4 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
   5 *
   6 * Some parts of the code based on earlie Motorola mapphone Linux kernel
   7 * drivers:
   8 *
   9 * Copyright (C) 2009-2010 Motorola, Inc.
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License version 2 as
  13 * published by the Free Software Foundation.
  14
  15 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  16 * kind, whether express or implied; without even the implied warranty
  17 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 */
  20
  21#include <linux/delay.h>
  22#include <linux/err.h>
  23#include <linux/interrupt.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/of_device.h>
  27#include <linux/platform_device.h>
  28#include <linux/power_supply.h>
  29#include <linux/reboot.h>
  30#include <linux/regmap.h>
  31
  32#include <linux/iio/consumer.h>
  33#include <linux/iio/types.h>
  34#include <linux/mfd/motorola-cpcap.h>
  35
  36#include <asm/div64.h>
  37
  38/*
  39 * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
  40 * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
  41 * to enable BATTDETEN, LOBAT and EOL features. We currently use
  42 * LOBAT interrupts instead of EOL.
  43 */
  44#define CPCAP_REG_BPEOL_BIT_EOL9        BIT(9)  /* Set for EOL irq */
  45#define CPCAP_REG_BPEOL_BIT_EOL8        BIT(8)  /* Set for EOL irq */
  46#define CPCAP_REG_BPEOL_BIT_UNKNOWN7    BIT(7)
  47#define CPCAP_REG_BPEOL_BIT_UNKNOWN6    BIT(6)
  48#define CPCAP_REG_BPEOL_BIT_UNKNOWN5    BIT(5)
  49#define CPCAP_REG_BPEOL_BIT_EOL_MULTI   BIT(4)  /* Set for multiple EOL irqs */
  50#define CPCAP_REG_BPEOL_BIT_UNKNOWN3    BIT(3)
  51#define CPCAP_REG_BPEOL_BIT_UNKNOWN2    BIT(2)
  52#define CPCAP_REG_BPEOL_BIT_BATTDETEN   BIT(1)  /* Enable battery detect */
  53#define CPCAP_REG_BPEOL_BIT_EOLSEL      BIT(0)  /* BPDET = 0, EOL = 1 */
  54
  55#define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS       250
  56
  57enum {
  58        CPCAP_BATTERY_IIO_BATTDET,
  59        CPCAP_BATTERY_IIO_VOLTAGE,
  60        CPCAP_BATTERY_IIO_CHRG_CURRENT,
  61        CPCAP_BATTERY_IIO_BATT_CURRENT,
  62        CPCAP_BATTERY_IIO_NR,
  63};
  64
  65enum cpcap_battery_irq_action {
  66        CPCAP_BATTERY_IRQ_ACTION_NONE,
  67        CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
  68        CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
  69};
  70
  71struct cpcap_interrupt_desc {
  72        const char *name;
  73        struct list_head node;
  74        int irq;
  75        enum cpcap_battery_irq_action action;
  76};
  77
  78struct cpcap_battery_config {
  79        int ccm;
  80        int cd_factor;
  81        struct power_supply_info info;
  82};
  83
  84struct cpcap_coulomb_counter_data {
  85        s32 sample;             /* 24-bits */
  86        s32 accumulator;
  87        s16 offset;             /* 10-bits */
  88};
  89
  90enum cpcap_battery_state {
  91        CPCAP_BATTERY_STATE_PREVIOUS,
  92        CPCAP_BATTERY_STATE_LATEST,
  93        CPCAP_BATTERY_STATE_NR,
  94};
  95
  96struct cpcap_battery_state_data {
  97        int voltage;
  98        int current_ua;
  99        int counter_uah;
 100        int temperature;
 101        ktime_t time;
 102        struct cpcap_coulomb_counter_data cc;
 103};
 104
 105struct cpcap_battery_ddata {
 106        struct device *dev;
 107        struct regmap *reg;
 108        struct list_head irq_list;
 109        struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
 110        struct power_supply *psy;
 111        struct cpcap_battery_config config;
 112        struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
 113        atomic_t active;
 114        int status;
 115        u16 vendor;
 116};
 117
 118#define CPCAP_NO_BATTERY        -400
 119
 120static struct cpcap_battery_state_data *
 121cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
 122                        enum cpcap_battery_state state)
 123{
 124        if (state >= CPCAP_BATTERY_STATE_NR)
 125                return NULL;
 126
 127        return &ddata->state[state];
 128}
 129
 130static struct cpcap_battery_state_data *
 131cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
 132{
 133        return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
 134}
 135
 136static struct cpcap_battery_state_data *
 137cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
 138{
 139        return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
 140}
 141
 142static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
 143                                             int *value)
 144{
 145        struct iio_channel *channel;
 146        int error;
 147
 148        channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
 149        error = iio_read_channel_processed(channel, value);
 150        if (error < 0) {
 151                dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
 152                *value = CPCAP_NO_BATTERY;
 153
 154                return error;
 155        }
 156
 157        *value /= 100;
 158
 159        return 0;
 160}
 161
 162static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
 163{
 164        struct iio_channel *channel;
 165        int error, value = 0;
 166
 167        channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
 168        error = iio_read_channel_processed(channel, &value);
 169        if (error < 0) {
 170                dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
 171
 172                return 0;
 173        }
 174
 175        return value * 1000;
 176}
 177
 178static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
 179{
 180        struct iio_channel *channel;
 181        int error, value = 0;
 182
 183        channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
 184        error = iio_read_channel_processed(channel, &value);
 185        if (error < 0) {
 186                dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
 187
 188                return 0;
 189        }
 190
 191        return value * 1000;
 192}
 193
 194/**
 195 * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
 196 * @ddata: device driver data
 197 * @sample: coulomb counter sample value
 198 * @accumulator: coulomb counter integrator value
 199 * @offset: coulomb counter offset value
 200 * @divider: conversion divider
 201 *
 202 * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
 203 * function data_get_avg_curr_ua() and seem to be based on measured test
 204 * results. It also has the following comment:
 205 *
 206 * Adjustment factors are applied here as a temp solution per the test
 207 * results. Need to work out a formal solution for this adjustment.
 208 *
 209 * A coulomb counter for similar hardware seems to be documented in
 210 * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
 211 * "10 Calculating Accumulated Current". We however follow what the
 212 * Motorola mapphone Linux kernel is doing as there may be either a
 213 * TI or ST coulomb counter in the PMIC.
 214 */
 215static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
 216                                    u32 sample, s32 accumulator,
 217                                    s16 offset, u32 divider)
 218{
 219        s64 acc;
 220        u64 tmp;
 221        int avg_current;
 222        u32 cc_lsb;
 223
 224        sample &= 0xffffff;             /* 24-bits, unsigned */
 225        offset &= 0x7ff;                /* 10-bits, signed */
 226
 227        switch (ddata->vendor) {
 228        case CPCAP_VENDOR_ST:
 229                cc_lsb = 95374;         /* μAms per LSB */
 230                break;
 231        case CPCAP_VENDOR_TI:
 232                cc_lsb = 91501;         /* μAms per LSB */
 233                break;
 234        default:
 235                return -EINVAL;
 236        }
 237
 238        acc = accumulator;
 239        acc = acc - ((s64)sample * offset);
 240        cc_lsb = (cc_lsb * ddata->config.cd_factor) / 1000;
 241
 242        if (acc >=  0)
 243                tmp = acc;
 244        else
 245                tmp = acc * -1;
 246
 247        tmp = tmp * cc_lsb;
 248        do_div(tmp, divider);
 249        avg_current = tmp;
 250
 251        if (acc >= 0)
 252                return -avg_current;
 253        else
 254                return avg_current;
 255}
 256
 257/* 3600000μAms = 1μAh */
 258static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
 259                                   u32 sample, s32 accumulator,
 260                                   s16 offset)
 261{
 262        return cpcap_battery_cc_raw_div(ddata, sample,
 263                                        accumulator, offset,
 264                                        3600000);
 265}
 266
 267static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
 268                                  u32 sample, s32 accumulator,
 269                                  s16 offset)
 270{
 271        return cpcap_battery_cc_raw_div(ddata, sample,
 272                                        accumulator, offset,
 273                                        sample *
 274                                        CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
 275}
 276
 277/**
 278 * cpcap_battery_read_accumulated - reads cpcap coulomb counter
 279 * @ddata: device driver data
 280 * @regs: coulomb counter values
 281 *
 282 * Based on Motorola mapphone kernel function data_read_regs().
 283 * Looking at the registers, the coulomb counter seems similar to
 284 * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
 285 * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
 286 *
 287 * Note that swca095a.pdf instructs to stop the coulomb counter
 288 * before reading to avoid values changing. Motorola mapphone
 289 * Linux kernel does not do it, so let's assume they've verified
 290 * the data produced is correct.
 291 */
 292static int
 293cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
 294                               struct cpcap_coulomb_counter_data *ccd)
 295{
 296        u16 buf[7];     /* CPCAP_REG_CC1 to CCI */
 297        int error;
 298
 299        ccd->sample = 0;
 300        ccd->accumulator = 0;
 301        ccd->offset = 0;
 302
 303        /* Read coulomb counter register range */
 304        error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
 305                                 buf, ARRAY_SIZE(buf));
 306        if (error)
 307                return 0;
 308
 309        /* Sample value CPCAP_REG_CCS1 & 2 */
 310        ccd->sample = (buf[1] & 0x0fff) << 16;
 311        ccd->sample |= buf[0];
 312
 313        /* Accumulator value CPCAP_REG_CCA1 & 2 */
 314        ccd->accumulator = ((s16)buf[3]) << 16;
 315        ccd->accumulator |= buf[2];
 316
 317        /* Offset value CPCAP_REG_CCO */
 318        ccd->offset = buf[5];
 319
 320        /* Adjust offset based on mode value CPCAP_REG_CCM? */
 321        if (buf[4] >= 0x200)
 322                ccd->offset |= 0xfc00;
 323
 324        return cpcap_battery_cc_to_uah(ddata,
 325                                       ccd->sample,
 326                                       ccd->accumulator,
 327                                       ccd->offset);
 328}
 329
 330/**
 331 * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
 332 * @ddata: cpcap battery driver device data
 333 */
 334static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
 335{
 336        int value, acc, error;
 337        s32 sample = 1;
 338        s16 offset;
 339
 340        if (ddata->vendor == CPCAP_VENDOR_ST)
 341                sample = 4;
 342
 343        /* Coulomb counter integrator */
 344        error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
 345        if (error)
 346                return error;
 347
 348        if ((ddata->vendor == CPCAP_VENDOR_TI) && (value > 0x2000))
 349                value = value | 0xc000;
 350
 351        acc = (s16)value;
 352
 353        /* Coulomb counter sample time */
 354        error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
 355        if (error)
 356                return error;
 357
 358        if (value < 0x200)
 359                offset = value;
 360        else
 361                offset = value | 0xfc00;
 362
 363        return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
 364}
 365
 366static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
 367{
 368        struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
 369
 370        /* Basically anything that measures above 4347000 is full */
 371        if (state->voltage >= (ddata->config.info.voltage_max_design - 4000))
 372                return true;
 373
 374        return false;
 375}
 376
 377static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
 378{
 379        struct cpcap_battery_state_data state, *latest, *previous;
 380        ktime_t now;
 381        int error;
 382
 383        memset(&state, 0, sizeof(state));
 384        now = ktime_get();
 385
 386        latest = cpcap_battery_latest(ddata);
 387        if (latest) {
 388                s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
 389
 390                if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
 391                        return delta_ms;
 392        }
 393
 394        state.time = now;
 395        state.voltage = cpcap_battery_get_voltage(ddata);
 396        state.current_ua = cpcap_battery_get_current(ddata);
 397        state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
 398
 399        error = cpcap_charger_battery_temperature(ddata,
 400                                                  &state.temperature);
 401        if (error)
 402                return error;
 403
 404        previous = cpcap_battery_previous(ddata);
 405        memcpy(previous, latest, sizeof(*previous));
 406        memcpy(latest, &state, sizeof(*latest));
 407
 408        return 0;
 409}
 410
 411static enum power_supply_property cpcap_battery_props[] = {
 412        POWER_SUPPLY_PROP_STATUS,
 413        POWER_SUPPLY_PROP_PRESENT,
 414        POWER_SUPPLY_PROP_TECHNOLOGY,
 415        POWER_SUPPLY_PROP_VOLTAGE_NOW,
 416        POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
 417        POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
 418        POWER_SUPPLY_PROP_CURRENT_AVG,
 419        POWER_SUPPLY_PROP_CURRENT_NOW,
 420        POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
 421        POWER_SUPPLY_PROP_CHARGE_COUNTER,
 422        POWER_SUPPLY_PROP_POWER_NOW,
 423        POWER_SUPPLY_PROP_POWER_AVG,
 424        POWER_SUPPLY_PROP_CAPACITY_LEVEL,
 425        POWER_SUPPLY_PROP_SCOPE,
 426        POWER_SUPPLY_PROP_TEMP,
 427};
 428
 429static int cpcap_battery_get_property(struct power_supply *psy,
 430                                      enum power_supply_property psp,
 431                                      union power_supply_propval *val)
 432{
 433        struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
 434        struct cpcap_battery_state_data *latest, *previous;
 435        u32 sample;
 436        s32 accumulator;
 437        int cached;
 438        s64 tmp;
 439
 440        cached = cpcap_battery_update_status(ddata);
 441        if (cached < 0)
 442                return cached;
 443
 444        latest = cpcap_battery_latest(ddata);
 445        previous = cpcap_battery_previous(ddata);
 446
 447        switch (psp) {
 448        case POWER_SUPPLY_PROP_PRESENT:
 449                if (latest->temperature > CPCAP_NO_BATTERY)
 450                        val->intval = 1;
 451                else
 452                        val->intval = 0;
 453                break;
 454        case POWER_SUPPLY_PROP_STATUS:
 455                if (cpcap_battery_full(ddata)) {
 456                        val->intval = POWER_SUPPLY_STATUS_FULL;
 457                        break;
 458                }
 459                if (cpcap_battery_cc_get_avg_current(ddata) < 0)
 460                        val->intval = POWER_SUPPLY_STATUS_CHARGING;
 461                else
 462                        val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
 463                break;
 464        case POWER_SUPPLY_PROP_TECHNOLOGY:
 465                val->intval = ddata->config.info.technology;
 466                break;
 467        case POWER_SUPPLY_PROP_VOLTAGE_NOW:
 468                val->intval = cpcap_battery_get_voltage(ddata);
 469                break;
 470        case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
 471                val->intval = ddata->config.info.voltage_max_design;
 472                break;
 473        case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
 474                val->intval = ddata->config.info.voltage_min_design;
 475                break;
 476        case POWER_SUPPLY_PROP_CURRENT_AVG:
 477                if (cached) {
 478                        val->intval = cpcap_battery_cc_get_avg_current(ddata);
 479                        break;
 480                }
 481                sample = latest->cc.sample - previous->cc.sample;
 482                accumulator = latest->cc.accumulator - previous->cc.accumulator;
 483                val->intval = cpcap_battery_cc_to_ua(ddata, sample,
 484                                                     accumulator,
 485                                                     latest->cc.offset);
 486                break;
 487        case POWER_SUPPLY_PROP_CURRENT_NOW:
 488                val->intval = latest->current_ua;
 489                break;
 490        case POWER_SUPPLY_PROP_CHARGE_COUNTER:
 491                val->intval = latest->counter_uah;
 492                break;
 493        case POWER_SUPPLY_PROP_POWER_NOW:
 494                tmp = (latest->voltage / 10000) * latest->current_ua;
 495                val->intval = div64_s64(tmp, 100);
 496                break;
 497        case POWER_SUPPLY_PROP_POWER_AVG:
 498                if (cached) {
 499                        tmp = cpcap_battery_cc_get_avg_current(ddata);
 500                        tmp *= (latest->voltage / 10000);
 501                        val->intval = div64_s64(tmp, 100);
 502                        break;
 503                }
 504                sample = latest->cc.sample - previous->cc.sample;
 505                accumulator = latest->cc.accumulator - previous->cc.accumulator;
 506                tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
 507                                             latest->cc.offset);
 508                tmp *= ((latest->voltage + previous->voltage) / 20000);
 509                val->intval = div64_s64(tmp, 100);
 510                break;
 511        case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
 512                if (cpcap_battery_full(ddata))
 513                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
 514                else if (latest->voltage >= 3750000)
 515                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
 516                else if (latest->voltage >= 3300000)
 517                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
 518                else if (latest->voltage > 3100000)
 519                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
 520                else if (latest->voltage <= 3100000)
 521                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
 522                else
 523                        val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
 524                break;
 525        case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
 526                val->intval = ddata->config.info.charge_full_design;
 527                break;
 528        case POWER_SUPPLY_PROP_SCOPE:
 529                val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
 530                break;
 531        case POWER_SUPPLY_PROP_TEMP:
 532                val->intval = latest->temperature;
 533                break;
 534        default:
 535                return -EINVAL;
 536        }
 537
 538        return 0;
 539}
 540
 541static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
 542{
 543        struct cpcap_battery_ddata *ddata = data;
 544        struct cpcap_battery_state_data *latest;
 545        struct cpcap_interrupt_desc *d;
 546
 547        if (!atomic_read(&ddata->active))
 548                return IRQ_NONE;
 549
 550        list_for_each_entry(d, &ddata->irq_list, node) {
 551                if (irq == d->irq)
 552                        break;
 553        }
 554
 555        if (!d)
 556                return IRQ_NONE;
 557
 558        latest = cpcap_battery_latest(ddata);
 559
 560        switch (d->action) {
 561        case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
 562                if (latest->counter_uah >= 0)
 563                        dev_warn(ddata->dev, "Battery low at 3.3V!\n");
 564                break;
 565        case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
 566                if (latest->counter_uah >= 0) {
 567                        dev_emerg(ddata->dev,
 568                                  "Battery empty at 3.1V, powering off\n");
 569                        orderly_poweroff(true);
 570                }
 571                break;
 572        default:
 573                break;
 574        }
 575
 576        power_supply_changed(ddata->psy);
 577
 578        return IRQ_HANDLED;
 579}
 580
 581static int cpcap_battery_init_irq(struct platform_device *pdev,
 582                                  struct cpcap_battery_ddata *ddata,
 583                                  const char *name)
 584{
 585        struct cpcap_interrupt_desc *d;
 586        int irq, error;
 587
 588        irq = platform_get_irq_byname(pdev, name);
 589        if (irq < 0)
 590                return irq;
 591
 592        error = devm_request_threaded_irq(ddata->dev, irq, NULL,
 593                                          cpcap_battery_irq_thread,
 594                                          IRQF_SHARED,
 595                                          name, ddata);
 596        if (error) {
 597                dev_err(ddata->dev, "could not get irq %s: %i\n",
 598                        name, error);
 599
 600                return error;
 601        }
 602
 603        d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
 604        if (!d)
 605                return -ENOMEM;
 606
 607        d->name = name;
 608        d->irq = irq;
 609
 610        if (!strncmp(name, "lowbph", 6))
 611                d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
 612        else if (!strncmp(name, "lowbpl", 6))
 613                d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
 614
 615        list_add(&d->node, &ddata->irq_list);
 616
 617        return 0;
 618}
 619
 620static int cpcap_battery_init_interrupts(struct platform_device *pdev,
 621                                         struct cpcap_battery_ddata *ddata)
 622{
 623        const char * const cpcap_battery_irqs[] = {
 624                "eol", "lowbph", "lowbpl",
 625                "chrgcurr1", "battdetb"
 626        };
 627        int i, error;
 628
 629        for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
 630                error = cpcap_battery_init_irq(pdev, ddata,
 631                                               cpcap_battery_irqs[i]);
 632                if (error)
 633                        return error;
 634        }
 635
 636        /* Enable low battery interrupts for 3.3V high and 3.1V low */
 637        error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
 638                                   0xffff,
 639                                   CPCAP_REG_BPEOL_BIT_BATTDETEN);
 640        if (error)
 641                return error;
 642
 643        return 0;
 644}
 645
 646static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
 647{
 648        const char * const names[CPCAP_BATTERY_IIO_NR] = {
 649                "battdetb", "battp", "chg_isense", "batti",
 650        };
 651        int error, i;
 652
 653        for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
 654                ddata->channels[i] = devm_iio_channel_get(ddata->dev,
 655                                                          names[i]);
 656                if (IS_ERR(ddata->channels[i])) {
 657                        error = PTR_ERR(ddata->channels[i]);
 658                        goto out_err;
 659                }
 660
 661                if (!ddata->channels[i]->indio_dev) {
 662                        error = -ENXIO;
 663                        goto out_err;
 664                }
 665        }
 666
 667        return 0;
 668
 669out_err:
 670        dev_err(ddata->dev, "could not initialize VBUS or ID IIO: %i\n",
 671                error);
 672
 673        return error;
 674}
 675
 676/*
 677 * Based on the values from Motorola mapphone Linux kernel. In the
 678 * the Motorola mapphone Linux kernel tree the value for pm_cd_factor
 679 * is passed to the kernel via device tree. If it turns out to be
 680 * something device specific we can consider that too later.
 681 *
 682 * And looking at the battery full and shutdown values for the stock
 683 * kernel on droid 4, full is 4351000 and software initiates shutdown
 684 * at 3078000. The device will die around 2743000.
 685 */
 686static const struct cpcap_battery_config cpcap_battery_default_data = {
 687        .ccm = 0x3ff,
 688        .cd_factor = 0x3cc,
 689        .info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
 690        .info.voltage_max_design = 4351000,
 691        .info.voltage_min_design = 3100000,
 692        .info.charge_full_design = 1740000,
 693};
 694
 695#ifdef CONFIG_OF
 696static const struct of_device_id cpcap_battery_id_table[] = {
 697        {
 698                .compatible = "motorola,cpcap-battery",
 699                .data = &cpcap_battery_default_data,
 700        },
 701        {},
 702};
 703MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
 704#endif
 705
 706static int cpcap_battery_probe(struct platform_device *pdev)
 707{
 708        struct power_supply_desc *psy_desc;
 709        struct cpcap_battery_ddata *ddata;
 710        const struct of_device_id *match;
 711        struct power_supply_config psy_cfg = {};
 712        int error;
 713
 714        match = of_match_device(of_match_ptr(cpcap_battery_id_table),
 715                                &pdev->dev);
 716        if (!match)
 717                return -EINVAL;
 718
 719        if (!match->data) {
 720                dev_err(&pdev->dev, "no configuration data found\n");
 721
 722                return -ENODEV;
 723        }
 724
 725        ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
 726        if (!ddata)
 727                return -ENOMEM;
 728
 729        INIT_LIST_HEAD(&ddata->irq_list);
 730        ddata->dev = &pdev->dev;
 731        memcpy(&ddata->config, match->data, sizeof(ddata->config));
 732
 733        ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
 734        if (!ddata->reg)
 735                return -ENODEV;
 736
 737        error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
 738        if (error)
 739                return error;
 740
 741        platform_set_drvdata(pdev, ddata);
 742
 743        error = regmap_update_bits(ddata->reg, CPCAP_REG_CCM,
 744                                   0xffff, ddata->config.ccm);
 745        if (error)
 746                return error;
 747
 748        error = cpcap_battery_init_interrupts(pdev, ddata);
 749        if (error)
 750                return error;
 751
 752        error = cpcap_battery_init_iio(ddata);
 753        if (error)
 754                return error;
 755
 756        psy_desc = devm_kzalloc(ddata->dev, sizeof(*psy_desc), GFP_KERNEL);
 757        if (!psy_desc)
 758                return -ENOMEM;
 759
 760        psy_desc->name = "battery",
 761        psy_desc->type = POWER_SUPPLY_TYPE_BATTERY,
 762        psy_desc->properties = cpcap_battery_props,
 763        psy_desc->num_properties = ARRAY_SIZE(cpcap_battery_props),
 764        psy_desc->get_property = cpcap_battery_get_property,
 765
 766        psy_cfg.of_node = pdev->dev.of_node;
 767        psy_cfg.drv_data = ddata;
 768
 769        ddata->psy = devm_power_supply_register(ddata->dev, psy_desc,
 770                                                &psy_cfg);
 771        error = PTR_ERR_OR_ZERO(ddata->psy);
 772        if (error) {
 773                dev_err(ddata->dev, "failed to register power supply\n");
 774                return error;
 775        }
 776
 777        atomic_set(&ddata->active, 1);
 778
 779        return 0;
 780}
 781
 782static int cpcap_battery_remove(struct platform_device *pdev)
 783{
 784        struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
 785        int error;
 786
 787        atomic_set(&ddata->active, 0);
 788        error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
 789                                   0xffff, 0);
 790        if (error)
 791                dev_err(&pdev->dev, "could not disable: %i\n", error);
 792
 793        return 0;
 794}
 795
 796static struct platform_driver cpcap_battery_driver = {
 797        .driver = {
 798                .name           = "cpcap_battery",
 799                .of_match_table = of_match_ptr(cpcap_battery_id_table),
 800        },
 801        .probe  = cpcap_battery_probe,
 802        .remove = cpcap_battery_remove,
 803};
 804module_platform_driver(cpcap_battery_driver);
 805
 806MODULE_LICENSE("GPL v2");
 807MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
 808MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");
 809