linux/drivers/vfio/pci/vfio_pci_config.c
<<
>>
Prefs
   1/*
   2 * VFIO PCI config space virtualization
   3 *
   4 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
   5 *     Author: Alex Williamson <alex.williamson@redhat.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * Derived from original vfio:
  12 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
  13 * Author: Tom Lyon, pugs@cisco.com
  14 */
  15
  16/*
  17 * This code handles reading and writing of PCI configuration registers.
  18 * This is hairy because we want to allow a lot of flexibility to the
  19 * user driver, but cannot trust it with all of the config fields.
  20 * Tables determine which fields can be read and written, as well as
  21 * which fields are 'virtualized' - special actions and translations to
  22 * make it appear to the user that he has control, when in fact things
  23 * must be negotiated with the underlying OS.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/pci.h>
  28#include <linux/uaccess.h>
  29#include <linux/vfio.h>
  30#include <linux/slab.h>
  31
  32#include "vfio_pci_private.h"
  33
  34/* Fake capability ID for standard config space */
  35#define PCI_CAP_ID_BASIC        0
  36
  37#define is_bar(offset)  \
  38        ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
  39         (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
  40
  41/*
  42 * Lengths of PCI Config Capabilities
  43 *   0: Removed from the user visible capability list
  44 *   FF: Variable length
  45 */
  46static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
  47        [PCI_CAP_ID_BASIC]      = PCI_STD_HEADER_SIZEOF, /* pci config header */
  48        [PCI_CAP_ID_PM]         = PCI_PM_SIZEOF,
  49        [PCI_CAP_ID_AGP]        = PCI_AGP_SIZEOF,
  50        [PCI_CAP_ID_VPD]        = PCI_CAP_VPD_SIZEOF,
  51        [PCI_CAP_ID_SLOTID]     = 0,            /* bridge - don't care */
  52        [PCI_CAP_ID_MSI]        = 0xFF,         /* 10, 14, 20, or 24 */
  53        [PCI_CAP_ID_CHSWP]      = 0,            /* cpci - not yet */
  54        [PCI_CAP_ID_PCIX]       = 0xFF,         /* 8 or 24 */
  55        [PCI_CAP_ID_HT]         = 0xFF,         /* hypertransport */
  56        [PCI_CAP_ID_VNDR]       = 0xFF,         /* variable */
  57        [PCI_CAP_ID_DBG]        = 0,            /* debug - don't care */
  58        [PCI_CAP_ID_CCRC]       = 0,            /* cpci - not yet */
  59        [PCI_CAP_ID_SHPC]       = 0,            /* hotswap - not yet */
  60        [PCI_CAP_ID_SSVID]      = 0,            /* bridge - don't care */
  61        [PCI_CAP_ID_AGP3]       = 0,            /* AGP8x - not yet */
  62        [PCI_CAP_ID_SECDEV]     = 0,            /* secure device not yet */
  63        [PCI_CAP_ID_EXP]        = 0xFF,         /* 20 or 44 */
  64        [PCI_CAP_ID_MSIX]       = PCI_CAP_MSIX_SIZEOF,
  65        [PCI_CAP_ID_SATA]       = 0xFF,
  66        [PCI_CAP_ID_AF]         = PCI_CAP_AF_SIZEOF,
  67};
  68
  69/*
  70 * Lengths of PCIe/PCI-X Extended Config Capabilities
  71 *   0: Removed or masked from the user visible capability list
  72 *   FF: Variable length
  73 */
  74static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
  75        [PCI_EXT_CAP_ID_ERR]    =       PCI_ERR_ROOT_COMMAND,
  76        [PCI_EXT_CAP_ID_VC]     =       0xFF,
  77        [PCI_EXT_CAP_ID_DSN]    =       PCI_EXT_CAP_DSN_SIZEOF,
  78        [PCI_EXT_CAP_ID_PWR]    =       PCI_EXT_CAP_PWR_SIZEOF,
  79        [PCI_EXT_CAP_ID_RCLD]   =       0,      /* root only - don't care */
  80        [PCI_EXT_CAP_ID_RCILC]  =       0,      /* root only - don't care */
  81        [PCI_EXT_CAP_ID_RCEC]   =       0,      /* root only - don't care */
  82        [PCI_EXT_CAP_ID_MFVC]   =       0xFF,
  83        [PCI_EXT_CAP_ID_VC9]    =       0xFF,   /* same as CAP_ID_VC */
  84        [PCI_EXT_CAP_ID_RCRB]   =       0,      /* root only - don't care */
  85        [PCI_EXT_CAP_ID_VNDR]   =       0xFF,
  86        [PCI_EXT_CAP_ID_CAC]    =       0,      /* obsolete */
  87        [PCI_EXT_CAP_ID_ACS]    =       0xFF,
  88        [PCI_EXT_CAP_ID_ARI]    =       PCI_EXT_CAP_ARI_SIZEOF,
  89        [PCI_EXT_CAP_ID_ATS]    =       PCI_EXT_CAP_ATS_SIZEOF,
  90        [PCI_EXT_CAP_ID_SRIOV]  =       PCI_EXT_CAP_SRIOV_SIZEOF,
  91        [PCI_EXT_CAP_ID_MRIOV]  =       0,      /* not yet */
  92        [PCI_EXT_CAP_ID_MCAST]  =       PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
  93        [PCI_EXT_CAP_ID_PRI]    =       PCI_EXT_CAP_PRI_SIZEOF,
  94        [PCI_EXT_CAP_ID_AMD_XXX] =      0,      /* not yet */
  95        [PCI_EXT_CAP_ID_REBAR]  =       0xFF,
  96        [PCI_EXT_CAP_ID_DPA]    =       0xFF,
  97        [PCI_EXT_CAP_ID_TPH]    =       0xFF,
  98        [PCI_EXT_CAP_ID_LTR]    =       PCI_EXT_CAP_LTR_SIZEOF,
  99        [PCI_EXT_CAP_ID_SECPCI] =       0,      /* not yet */
 100        [PCI_EXT_CAP_ID_PMUX]   =       0,      /* not yet */
 101        [PCI_EXT_CAP_ID_PASID]  =       0,      /* not yet */
 102};
 103
 104/*
 105 * Read/Write Permission Bits - one bit for each bit in capability
 106 * Any field can be read if it exists, but what is read depends on
 107 * whether the field is 'virtualized', or just pass thru to the
 108 * hardware.  Any virtualized field is also virtualized for writes.
 109 * Writes are only permitted if they have a 1 bit here.
 110 */
 111struct perm_bits {
 112        u8      *virt;          /* read/write virtual data, not hw */
 113        u8      *write;         /* writeable bits */
 114        int     (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
 115                          struct perm_bits *perm, int offset, __le32 *val);
 116        int     (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
 117                           struct perm_bits *perm, int offset, __le32 val);
 118};
 119
 120#define NO_VIRT         0
 121#define ALL_VIRT        0xFFFFFFFFU
 122#define NO_WRITE        0
 123#define ALL_WRITE       0xFFFFFFFFU
 124
 125static int vfio_user_config_read(struct pci_dev *pdev, int offset,
 126                                 __le32 *val, int count)
 127{
 128        int ret = -EINVAL;
 129        u32 tmp_val = 0;
 130
 131        switch (count) {
 132        case 1:
 133        {
 134                u8 tmp;
 135                ret = pci_user_read_config_byte(pdev, offset, &tmp);
 136                tmp_val = tmp;
 137                break;
 138        }
 139        case 2:
 140        {
 141                u16 tmp;
 142                ret = pci_user_read_config_word(pdev, offset, &tmp);
 143                tmp_val = tmp;
 144                break;
 145        }
 146        case 4:
 147                ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
 148                break;
 149        }
 150
 151        *val = cpu_to_le32(tmp_val);
 152
 153        return ret;
 154}
 155
 156static int vfio_user_config_write(struct pci_dev *pdev, int offset,
 157                                  __le32 val, int count)
 158{
 159        int ret = -EINVAL;
 160        u32 tmp_val = le32_to_cpu(val);
 161
 162        switch (count) {
 163        case 1:
 164                ret = pci_user_write_config_byte(pdev, offset, tmp_val);
 165                break;
 166        case 2:
 167                ret = pci_user_write_config_word(pdev, offset, tmp_val);
 168                break;
 169        case 4:
 170                ret = pci_user_write_config_dword(pdev, offset, tmp_val);
 171                break;
 172        }
 173
 174        return ret;
 175}
 176
 177static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
 178                                    int count, struct perm_bits *perm,
 179                                    int offset, __le32 *val)
 180{
 181        __le32 virt = 0;
 182
 183        memcpy(val, vdev->vconfig + pos, count);
 184
 185        memcpy(&virt, perm->virt + offset, count);
 186
 187        /* Any non-virtualized bits? */
 188        if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
 189                struct pci_dev *pdev = vdev->pdev;
 190                __le32 phys_val = 0;
 191                int ret;
 192
 193                ret = vfio_user_config_read(pdev, pos, &phys_val, count);
 194                if (ret)
 195                        return ret;
 196
 197                *val = (phys_val & ~virt) | (*val & virt);
 198        }
 199
 200        return count;
 201}
 202
 203static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
 204                                     int count, struct perm_bits *perm,
 205                                     int offset, __le32 val)
 206{
 207        __le32 virt = 0, write = 0;
 208
 209        memcpy(&write, perm->write + offset, count);
 210
 211        if (!write)
 212                return count; /* drop, no writable bits */
 213
 214        memcpy(&virt, perm->virt + offset, count);
 215
 216        /* Virtualized and writable bits go to vconfig */
 217        if (write & virt) {
 218                __le32 virt_val = 0;
 219
 220                memcpy(&virt_val, vdev->vconfig + pos, count);
 221
 222                virt_val &= ~(write & virt);
 223                virt_val |= (val & (write & virt));
 224
 225                memcpy(vdev->vconfig + pos, &virt_val, count);
 226        }
 227
 228        /* Non-virtualzed and writable bits go to hardware */
 229        if (write & ~virt) {
 230                struct pci_dev *pdev = vdev->pdev;
 231                __le32 phys_val = 0;
 232                int ret;
 233
 234                ret = vfio_user_config_read(pdev, pos, &phys_val, count);
 235                if (ret)
 236                        return ret;
 237
 238                phys_val &= ~(write & ~virt);
 239                phys_val |= (val & (write & ~virt));
 240
 241                ret = vfio_user_config_write(pdev, pos, phys_val, count);
 242                if (ret)
 243                        return ret;
 244        }
 245
 246        return count;
 247}
 248
 249/* Allow direct read from hardware, except for capability next pointer */
 250static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
 251                                   int count, struct perm_bits *perm,
 252                                   int offset, __le32 *val)
 253{
 254        int ret;
 255
 256        ret = vfio_user_config_read(vdev->pdev, pos, val, count);
 257        if (ret)
 258                return ret;
 259
 260        if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
 261                if (offset < 4)
 262                        memcpy(val, vdev->vconfig + pos, count);
 263        } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
 264                if (offset == PCI_CAP_LIST_ID && count > 1)
 265                        memcpy(val, vdev->vconfig + pos,
 266                               min(PCI_CAP_FLAGS, count));
 267                else if (offset == PCI_CAP_LIST_NEXT)
 268                        memcpy(val, vdev->vconfig + pos, 1);
 269        }
 270
 271        return count;
 272}
 273
 274/* Raw access skips any kind of virtualization */
 275static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
 276                                 int count, struct perm_bits *perm,
 277                                 int offset, __le32 val)
 278{
 279        int ret;
 280
 281        ret = vfio_user_config_write(vdev->pdev, pos, val, count);
 282        if (ret)
 283                return ret;
 284
 285        return count;
 286}
 287
 288static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
 289                                int count, struct perm_bits *perm,
 290                                int offset, __le32 *val)
 291{
 292        int ret;
 293
 294        ret = vfio_user_config_read(vdev->pdev, pos, val, count);
 295        if (ret)
 296                return ret;
 297
 298        return count;
 299}
 300
 301/* Virt access uses only virtualization */
 302static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
 303                                  int count, struct perm_bits *perm,
 304                                  int offset, __le32 val)
 305{
 306        memcpy(vdev->vconfig + pos, &val, count);
 307        return count;
 308}
 309
 310static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
 311                                 int count, struct perm_bits *perm,
 312                                 int offset, __le32 *val)
 313{
 314        memcpy(val, vdev->vconfig + pos, count);
 315        return count;
 316}
 317
 318/* Default capability regions to read-only, no-virtualization */
 319static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
 320        [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
 321};
 322static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
 323        [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
 324};
 325/*
 326 * Default unassigned regions to raw read-write access.  Some devices
 327 * require this to function as they hide registers between the gaps in
 328 * config space (be2net).  Like MMIO and I/O port registers, we have
 329 * to trust the hardware isolation.
 330 */
 331static struct perm_bits unassigned_perms = {
 332        .readfn = vfio_raw_config_read,
 333        .writefn = vfio_raw_config_write
 334};
 335
 336static struct perm_bits virt_perms = {
 337        .readfn = vfio_virt_config_read,
 338        .writefn = vfio_virt_config_write
 339};
 340
 341static void free_perm_bits(struct perm_bits *perm)
 342{
 343        kfree(perm->virt);
 344        kfree(perm->write);
 345        perm->virt = NULL;
 346        perm->write = NULL;
 347}
 348
 349static int alloc_perm_bits(struct perm_bits *perm, int size)
 350{
 351        /*
 352         * Round up all permission bits to the next dword, this lets us
 353         * ignore whether a read/write exceeds the defined capability
 354         * structure.  We can do this because:
 355         *  - Standard config space is already dword aligned
 356         *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
 357         *  - Express capabilities defined as dword aligned
 358         */
 359        size = round_up(size, 4);
 360
 361        /*
 362         * Zero state is
 363         * - All Readable, None Writeable, None Virtualized
 364         */
 365        perm->virt = kzalloc(size, GFP_KERNEL);
 366        perm->write = kzalloc(size, GFP_KERNEL);
 367        if (!perm->virt || !perm->write) {
 368                free_perm_bits(perm);
 369                return -ENOMEM;
 370        }
 371
 372        perm->readfn = vfio_default_config_read;
 373        perm->writefn = vfio_default_config_write;
 374
 375        return 0;
 376}
 377
 378/*
 379 * Helper functions for filling in permission tables
 380 */
 381static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
 382{
 383        p->virt[off] = virt;
 384        p->write[off] = write;
 385}
 386
 387/* Handle endian-ness - pci and tables are little-endian */
 388static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
 389{
 390        *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
 391        *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
 392}
 393
 394/* Handle endian-ness - pci and tables are little-endian */
 395static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
 396{
 397        *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
 398        *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
 399}
 400
 401/*
 402 * Restore the *real* BARs after we detect a FLR or backdoor reset.
 403 * (backdoor = some device specific technique that we didn't catch)
 404 */
 405static void vfio_bar_restore(struct vfio_pci_device *vdev)
 406{
 407        struct pci_dev *pdev = vdev->pdev;
 408        u32 *rbar = vdev->rbar;
 409        u16 cmd;
 410        int i;
 411
 412        if (pdev->is_virtfn)
 413                return;
 414
 415        pr_info("%s: %s reset recovery - restoring bars\n",
 416                __func__, dev_name(&pdev->dev));
 417
 418        for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
 419                pci_user_write_config_dword(pdev, i, *rbar);
 420
 421        pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
 422
 423        if (vdev->nointx) {
 424                pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
 425                cmd |= PCI_COMMAND_INTX_DISABLE;
 426                pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
 427        }
 428}
 429
 430static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
 431{
 432        unsigned long flags = pci_resource_flags(pdev, bar);
 433        u32 val;
 434
 435        if (flags & IORESOURCE_IO)
 436                return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
 437
 438        val = PCI_BASE_ADDRESS_SPACE_MEMORY;
 439
 440        if (flags & IORESOURCE_PREFETCH)
 441                val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
 442
 443        if (flags & IORESOURCE_MEM_64)
 444                val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
 445
 446        return cpu_to_le32(val);
 447}
 448
 449/*
 450 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
 451 * to reflect the hardware capabilities.  This implements BAR sizing.
 452 */
 453static void vfio_bar_fixup(struct vfio_pci_device *vdev)
 454{
 455        struct pci_dev *pdev = vdev->pdev;
 456        int i;
 457        __le32 *bar;
 458        u64 mask;
 459
 460        bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
 461
 462        for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
 463                if (!pci_resource_start(pdev, i)) {
 464                        *bar = 0; /* Unmapped by host = unimplemented to user */
 465                        continue;
 466                }
 467
 468                mask = ~(pci_resource_len(pdev, i) - 1);
 469
 470                *bar &= cpu_to_le32((u32)mask);
 471                *bar |= vfio_generate_bar_flags(pdev, i);
 472
 473                if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
 474                        bar++;
 475                        *bar &= cpu_to_le32((u32)(mask >> 32));
 476                        i++;
 477                }
 478        }
 479
 480        bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
 481
 482        /*
 483         * NB. REGION_INFO will have reported zero size if we weren't able
 484         * to read the ROM, but we still return the actual BAR size here if
 485         * it exists (or the shadow ROM space).
 486         */
 487        if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
 488                mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
 489                mask |= PCI_ROM_ADDRESS_ENABLE;
 490                *bar &= cpu_to_le32((u32)mask);
 491        } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
 492                                        IORESOURCE_ROM_SHADOW) {
 493                mask = ~(0x20000 - 1);
 494                mask |= PCI_ROM_ADDRESS_ENABLE;
 495                *bar &= cpu_to_le32((u32)mask);
 496        } else
 497                *bar = 0;
 498
 499        vdev->bardirty = false;
 500}
 501
 502static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
 503                                  int count, struct perm_bits *perm,
 504                                  int offset, __le32 *val)
 505{
 506        if (is_bar(offset)) /* pos == offset for basic config */
 507                vfio_bar_fixup(vdev);
 508
 509        count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
 510
 511        /* Mask in virtual memory enable for SR-IOV devices */
 512        if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
 513                u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
 514                u32 tmp_val = le32_to_cpu(*val);
 515
 516                tmp_val |= cmd & PCI_COMMAND_MEMORY;
 517                *val = cpu_to_le32(tmp_val);
 518        }
 519
 520        return count;
 521}
 522
 523/* Test whether BARs match the value we think they should contain */
 524static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
 525{
 526        int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
 527        u32 bar;
 528
 529        for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
 530                if (vdev->rbar[i]) {
 531                        ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
 532                        if (ret || vdev->rbar[i] != bar)
 533                                return true;
 534                }
 535        }
 536
 537        return false;
 538}
 539
 540static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
 541                                   int count, struct perm_bits *perm,
 542                                   int offset, __le32 val)
 543{
 544        struct pci_dev *pdev = vdev->pdev;
 545        __le16 *virt_cmd;
 546        u16 new_cmd = 0;
 547        int ret;
 548
 549        virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
 550
 551        if (offset == PCI_COMMAND) {
 552                bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
 553                u16 phys_cmd;
 554
 555                ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
 556                if (ret)
 557                        return ret;
 558
 559                new_cmd = le32_to_cpu(val);
 560
 561                phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
 562                virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
 563                new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
 564
 565                phys_io = !!(phys_cmd & PCI_COMMAND_IO);
 566                virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
 567                new_io = !!(new_cmd & PCI_COMMAND_IO);
 568
 569                /*
 570                 * If the user is writing mem/io enable (new_mem/io) and we
 571                 * think it's already enabled (virt_mem/io), but the hardware
 572                 * shows it disabled (phys_mem/io, then the device has
 573                 * undergone some kind of backdoor reset and needs to be
 574                 * restored before we allow it to enable the bars.
 575                 * SR-IOV devices will trigger this, but we catch them later
 576                 */
 577                if ((new_mem && virt_mem && !phys_mem) ||
 578                    (new_io && virt_io && !phys_io) ||
 579                    vfio_need_bar_restore(vdev))
 580                        vfio_bar_restore(vdev);
 581        }
 582
 583        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 584        if (count < 0)
 585                return count;
 586
 587        /*
 588         * Save current memory/io enable bits in vconfig to allow for
 589         * the test above next time.
 590         */
 591        if (offset == PCI_COMMAND) {
 592                u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
 593
 594                *virt_cmd &= cpu_to_le16(~mask);
 595                *virt_cmd |= cpu_to_le16(new_cmd & mask);
 596        }
 597
 598        /* Emulate INTx disable */
 599        if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
 600                bool virt_intx_disable;
 601
 602                virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
 603                                       PCI_COMMAND_INTX_DISABLE);
 604
 605                if (virt_intx_disable && !vdev->virq_disabled) {
 606                        vdev->virq_disabled = true;
 607                        vfio_pci_intx_mask(vdev);
 608                } else if (!virt_intx_disable && vdev->virq_disabled) {
 609                        vdev->virq_disabled = false;
 610                        vfio_pci_intx_unmask(vdev);
 611                }
 612        }
 613
 614        if (is_bar(offset))
 615                vdev->bardirty = true;
 616
 617        return count;
 618}
 619
 620/* Permissions for the Basic PCI Header */
 621static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
 622{
 623        if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
 624                return -ENOMEM;
 625
 626        perm->readfn = vfio_basic_config_read;
 627        perm->writefn = vfio_basic_config_write;
 628
 629        /* Virtualized for SR-IOV functions, which just have FFFF */
 630        p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
 631        p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
 632
 633        /*
 634         * Virtualize INTx disable, we use it internally for interrupt
 635         * control and can emulate it for non-PCI 2.3 devices.
 636         */
 637        p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
 638
 639        /* Virtualize capability list, we might want to skip/disable */
 640        p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
 641
 642        /* No harm to write */
 643        p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
 644        p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
 645        p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
 646
 647        /* Virtualize all bars, can't touch the real ones */
 648        p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
 649        p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
 650        p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
 651        p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
 652        p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
 653        p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
 654        p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
 655
 656        /* Allow us to adjust capability chain */
 657        p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
 658
 659        /* Sometimes used by sw, just virtualize */
 660        p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
 661
 662        /* Virtualize interrupt pin to allow hiding INTx */
 663        p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
 664
 665        return 0;
 666}
 667
 668static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
 669                                int count, struct perm_bits *perm,
 670                                int offset, __le32 val)
 671{
 672        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 673        if (count < 0)
 674                return count;
 675
 676        if (offset == PCI_PM_CTRL) {
 677                pci_power_t state;
 678
 679                switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
 680                case 0:
 681                        state = PCI_D0;
 682                        break;
 683                case 1:
 684                        state = PCI_D1;
 685                        break;
 686                case 2:
 687                        state = PCI_D2;
 688                        break;
 689                case 3:
 690                        state = PCI_D3hot;
 691                        break;
 692                }
 693
 694                pci_set_power_state(vdev->pdev, state);
 695        }
 696
 697        return count;
 698}
 699
 700/* Permissions for the Power Management capability */
 701static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
 702{
 703        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
 704                return -ENOMEM;
 705
 706        perm->writefn = vfio_pm_config_write;
 707
 708        /*
 709         * We always virtualize the next field so we can remove
 710         * capabilities from the chain if we want to.
 711         */
 712        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 713
 714        /*
 715         * Power management is defined *per function*, so we can let
 716         * the user change power state, but we trap and initiate the
 717         * change ourselves, so the state bits are read-only.
 718         */
 719        p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
 720        return 0;
 721}
 722
 723static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
 724                                 int count, struct perm_bits *perm,
 725                                 int offset, __le32 val)
 726{
 727        struct pci_dev *pdev = vdev->pdev;
 728        __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
 729        __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
 730        u16 addr;
 731        u32 data;
 732
 733        /*
 734         * Write through to emulation.  If the write includes the upper byte
 735         * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
 736         * have work to do.
 737         */
 738        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 739        if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
 740            offset + count <= PCI_VPD_ADDR + 1)
 741                return count;
 742
 743        addr = le16_to_cpu(*paddr);
 744
 745        if (addr & PCI_VPD_ADDR_F) {
 746                data = le32_to_cpu(*pdata);
 747                if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
 748                        return count;
 749        } else {
 750                data = 0;
 751                if (pci_read_vpd(pdev, addr, 4, &data) < 0)
 752                        return count;
 753                *pdata = cpu_to_le32(data);
 754        }
 755
 756        /*
 757         * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
 758         * signal completion.  If an error occurs above, we assume that not
 759         * toggling this bit will induce a driver timeout.
 760         */
 761        addr ^= PCI_VPD_ADDR_F;
 762        *paddr = cpu_to_le16(addr);
 763
 764        return count;
 765}
 766
 767/* Permissions for Vital Product Data capability */
 768static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
 769{
 770        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
 771                return -ENOMEM;
 772
 773        perm->writefn = vfio_vpd_config_write;
 774
 775        /*
 776         * We always virtualize the next field so we can remove
 777         * capabilities from the chain if we want to.
 778         */
 779        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 780
 781        /*
 782         * Both the address and data registers are virtualized to
 783         * enable access through the pci_vpd_read/write functions
 784         */
 785        p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
 786        p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
 787
 788        return 0;
 789}
 790
 791/* Permissions for PCI-X capability */
 792static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
 793{
 794        /* Alloc 24, but only 8 are used in v0 */
 795        if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
 796                return -ENOMEM;
 797
 798        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 799
 800        p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
 801        p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
 802        return 0;
 803}
 804
 805static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
 806                                 int count, struct perm_bits *perm,
 807                                 int offset, __le32 val)
 808{
 809        __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
 810                                  offset + PCI_EXP_DEVCTL);
 811        int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
 812
 813        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 814        if (count < 0)
 815                return count;
 816
 817        /*
 818         * The FLR bit is virtualized, if set and the device supports PCIe
 819         * FLR, issue a reset_function.  Regardless, clear the bit, the spec
 820         * requires it to be always read as zero.  NB, reset_function might
 821         * not use a PCIe FLR, we don't have that level of granularity.
 822         */
 823        if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
 824                u32 cap;
 825                int ret;
 826
 827                *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
 828
 829                ret = pci_user_read_config_dword(vdev->pdev,
 830                                                 pos - offset + PCI_EXP_DEVCAP,
 831                                                 &cap);
 832
 833                if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
 834                        pci_try_reset_function(vdev->pdev);
 835        }
 836
 837        /*
 838         * MPS is virtualized to the user, writes do not change the physical
 839         * register since determining a proper MPS value requires a system wide
 840         * device view.  The MRRS is largely independent of MPS, but since the
 841         * user does not have that system-wide view, they might set a safe, but
 842         * inefficiently low value.  Here we allow writes through to hardware,
 843         * but we set the floor to the physical device MPS setting, so that
 844         * we can at least use full TLPs, as defined by the MPS value.
 845         *
 846         * NB, if any devices actually depend on an artificially low MRRS
 847         * setting, this will need to be revisited, perhaps with a quirk
 848         * though pcie_set_readrq().
 849         */
 850        if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
 851                readrq = 128 <<
 852                        ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
 853                readrq = max(readrq, pcie_get_mps(vdev->pdev));
 854
 855                pcie_set_readrq(vdev->pdev, readrq);
 856        }
 857
 858        return count;
 859}
 860
 861/* Permissions for PCI Express capability */
 862static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
 863{
 864        /* Alloc largest of possible sizes */
 865        if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
 866                return -ENOMEM;
 867
 868        perm->writefn = vfio_exp_config_write;
 869
 870        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 871
 872        /*
 873         * Allow writes to device control fields, except devctl_phantom,
 874         * which could confuse IOMMU, MPS, which can break communication
 875         * with other physical devices, and the ARI bit in devctl2, which
 876         * is set at probe time.  FLR and MRRS get virtualized via our
 877         * writefn.
 878         */
 879        p_setw(perm, PCI_EXP_DEVCTL,
 880               PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
 881               PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
 882        p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
 883        return 0;
 884}
 885
 886static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
 887                                int count, struct perm_bits *perm,
 888                                int offset, __le32 val)
 889{
 890        u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
 891
 892        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 893        if (count < 0)
 894                return count;
 895
 896        /*
 897         * The FLR bit is virtualized, if set and the device supports AF
 898         * FLR, issue a reset_function.  Regardless, clear the bit, the spec
 899         * requires it to be always read as zero.  NB, reset_function might
 900         * not use an AF FLR, we don't have that level of granularity.
 901         */
 902        if (*ctrl & PCI_AF_CTRL_FLR) {
 903                u8 cap;
 904                int ret;
 905
 906                *ctrl &= ~PCI_AF_CTRL_FLR;
 907
 908                ret = pci_user_read_config_byte(vdev->pdev,
 909                                                pos - offset + PCI_AF_CAP,
 910                                                &cap);
 911
 912                if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
 913                        pci_try_reset_function(vdev->pdev);
 914        }
 915
 916        return count;
 917}
 918
 919/* Permissions for Advanced Function capability */
 920static int __init init_pci_cap_af_perm(struct perm_bits *perm)
 921{
 922        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
 923                return -ENOMEM;
 924
 925        perm->writefn = vfio_af_config_write;
 926
 927        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 928        p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
 929        return 0;
 930}
 931
 932/* Permissions for Advanced Error Reporting extended capability */
 933static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
 934{
 935        u32 mask;
 936
 937        if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
 938                return -ENOMEM;
 939
 940        /*
 941         * Virtualize the first dword of all express capabilities
 942         * because it includes the next pointer.  This lets us later
 943         * remove capabilities from the chain if we need to.
 944         */
 945        p_setd(perm, 0, ALL_VIRT, NO_WRITE);
 946
 947        /* Writable bits mask */
 948        mask =  PCI_ERR_UNC_UND |               /* Undefined */
 949                PCI_ERR_UNC_DLP |               /* Data Link Protocol */
 950                PCI_ERR_UNC_SURPDN |            /* Surprise Down */
 951                PCI_ERR_UNC_POISON_TLP |        /* Poisoned TLP */
 952                PCI_ERR_UNC_FCP |               /* Flow Control Protocol */
 953                PCI_ERR_UNC_COMP_TIME |         /* Completion Timeout */
 954                PCI_ERR_UNC_COMP_ABORT |        /* Completer Abort */
 955                PCI_ERR_UNC_UNX_COMP |          /* Unexpected Completion */
 956                PCI_ERR_UNC_RX_OVER |           /* Receiver Overflow */
 957                PCI_ERR_UNC_MALF_TLP |          /* Malformed TLP */
 958                PCI_ERR_UNC_ECRC |              /* ECRC Error Status */
 959                PCI_ERR_UNC_UNSUP |             /* Unsupported Request */
 960                PCI_ERR_UNC_ACSV |              /* ACS Violation */
 961                PCI_ERR_UNC_INTN |              /* internal error */
 962                PCI_ERR_UNC_MCBTLP |            /* MC blocked TLP */
 963                PCI_ERR_UNC_ATOMEG |            /* Atomic egress blocked */
 964                PCI_ERR_UNC_TLPPRE;             /* TLP prefix blocked */
 965        p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
 966        p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
 967        p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
 968
 969        mask =  PCI_ERR_COR_RCVR |              /* Receiver Error Status */
 970                PCI_ERR_COR_BAD_TLP |           /* Bad TLP Status */
 971                PCI_ERR_COR_BAD_DLLP |          /* Bad DLLP Status */
 972                PCI_ERR_COR_REP_ROLL |          /* REPLAY_NUM Rollover */
 973                PCI_ERR_COR_REP_TIMER |         /* Replay Timer Timeout */
 974                PCI_ERR_COR_ADV_NFAT |          /* Advisory Non-Fatal */
 975                PCI_ERR_COR_INTERNAL |          /* Corrected Internal */
 976                PCI_ERR_COR_LOG_OVER;           /* Header Log Overflow */
 977        p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
 978        p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
 979
 980        mask =  PCI_ERR_CAP_ECRC_GENE |         /* ECRC Generation Enable */
 981                PCI_ERR_CAP_ECRC_CHKE;          /* ECRC Check Enable */
 982        p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
 983        return 0;
 984}
 985
 986/* Permissions for Power Budgeting extended capability */
 987static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
 988{
 989        if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
 990                return -ENOMEM;
 991
 992        p_setd(perm, 0, ALL_VIRT, NO_WRITE);
 993
 994        /* Writing the data selector is OK, the info is still read-only */
 995        p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
 996        return 0;
 997}
 998
 999/*
1000 * Initialize the shared permission tables
1001 */
1002void vfio_pci_uninit_perm_bits(void)
1003{
1004        free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1005
1006        free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1007        free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1008        free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1009        free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1010        free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1011
1012        free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1013        free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1014}
1015
1016int __init vfio_pci_init_perm_bits(void)
1017{
1018        int ret;
1019
1020        /* Basic config space */
1021        ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1022
1023        /* Capabilities */
1024        ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1025        ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1026        ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1027        cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1028        ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1029        ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1030
1031        /* Extended capabilities */
1032        ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1033        ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1034        ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1035
1036        if (ret)
1037                vfio_pci_uninit_perm_bits();
1038
1039        return ret;
1040}
1041
1042static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1043{
1044        u8 cap;
1045        int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1046                                                 PCI_STD_HEADER_SIZEOF;
1047        cap = vdev->pci_config_map[pos];
1048
1049        if (cap == PCI_CAP_ID_BASIC)
1050                return 0;
1051
1052        /* XXX Can we have to abutting capabilities of the same type? */
1053        while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1054                pos--;
1055
1056        return pos;
1057}
1058
1059static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1060                                int count, struct perm_bits *perm,
1061                                int offset, __le32 *val)
1062{
1063        /* Update max available queue size from msi_qmax */
1064        if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1065                __le16 *flags;
1066                int start;
1067
1068                start = vfio_find_cap_start(vdev, pos);
1069
1070                flags = (__le16 *)&vdev->vconfig[start];
1071
1072                *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1073                *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1074        }
1075
1076        return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1077}
1078
1079static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1080                                 int count, struct perm_bits *perm,
1081                                 int offset, __le32 val)
1082{
1083        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1084        if (count < 0)
1085                return count;
1086
1087        /* Fixup and write configured queue size and enable to hardware */
1088        if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1089                __le16 *pflags;
1090                u16 flags;
1091                int start, ret;
1092
1093                start = vfio_find_cap_start(vdev, pos);
1094
1095                pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1096
1097                flags = le16_to_cpu(*pflags);
1098
1099                /* MSI is enabled via ioctl */
1100                if  (!is_msi(vdev))
1101                        flags &= ~PCI_MSI_FLAGS_ENABLE;
1102
1103                /* Check queue size */
1104                if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1105                        flags &= ~PCI_MSI_FLAGS_QSIZE;
1106                        flags |= vdev->msi_qmax << 4;
1107                }
1108
1109                /* Write back to virt and to hardware */
1110                *pflags = cpu_to_le16(flags);
1111                ret = pci_user_write_config_word(vdev->pdev,
1112                                                 start + PCI_MSI_FLAGS,
1113                                                 flags);
1114                if (ret)
1115                        return ret;
1116        }
1117
1118        return count;
1119}
1120
1121/*
1122 * MSI determination is per-device, so this routine gets used beyond
1123 * initialization time. Don't add __init
1124 */
1125static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1126{
1127        if (alloc_perm_bits(perm, len))
1128                return -ENOMEM;
1129
1130        perm->readfn = vfio_msi_config_read;
1131        perm->writefn = vfio_msi_config_write;
1132
1133        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1134
1135        /*
1136         * The upper byte of the control register is reserved,
1137         * just setup the lower byte.
1138         */
1139        p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1140        p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1141        if (flags & PCI_MSI_FLAGS_64BIT) {
1142                p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1143                p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1144                if (flags & PCI_MSI_FLAGS_MASKBIT) {
1145                        p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1146                        p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1147                }
1148        } else {
1149                p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1150                if (flags & PCI_MSI_FLAGS_MASKBIT) {
1151                        p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1152                        p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1153                }
1154        }
1155        return 0;
1156}
1157
1158/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1159static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1160{
1161        struct pci_dev *pdev = vdev->pdev;
1162        int len, ret;
1163        u16 flags;
1164
1165        ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1166        if (ret)
1167                return pcibios_err_to_errno(ret);
1168
1169        len = 10; /* Minimum size */
1170        if (flags & PCI_MSI_FLAGS_64BIT)
1171                len += 4;
1172        if (flags & PCI_MSI_FLAGS_MASKBIT)
1173                len += 10;
1174
1175        if (vdev->msi_perm)
1176                return len;
1177
1178        vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1179        if (!vdev->msi_perm)
1180                return -ENOMEM;
1181
1182        ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1183        if (ret) {
1184                kfree(vdev->msi_perm);
1185                return ret;
1186        }
1187
1188        return len;
1189}
1190
1191/* Determine extended capability length for VC (2 & 9) and MFVC */
1192static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1193{
1194        struct pci_dev *pdev = vdev->pdev;
1195        u32 tmp;
1196        int ret, evcc, phases, vc_arb;
1197        int len = PCI_CAP_VC_BASE_SIZEOF;
1198
1199        ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1200        if (ret)
1201                return pcibios_err_to_errno(ret);
1202
1203        evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1204        ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1205        if (ret)
1206                return pcibios_err_to_errno(ret);
1207
1208        if (tmp & PCI_VC_CAP2_128_PHASE)
1209                phases = 128;
1210        else if (tmp & PCI_VC_CAP2_64_PHASE)
1211                phases = 64;
1212        else if (tmp & PCI_VC_CAP2_32_PHASE)
1213                phases = 32;
1214        else
1215                phases = 0;
1216
1217        vc_arb = phases * 4;
1218
1219        /*
1220         * Port arbitration tables are root & switch only;
1221         * function arbitration tables are function 0 only.
1222         * In either case, we'll never let user write them so
1223         * we don't care how big they are
1224         */
1225        len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1226        if (vc_arb) {
1227                len = round_up(len, 16);
1228                len += vc_arb / 8;
1229        }
1230        return len;
1231}
1232
1233static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1234{
1235        struct pci_dev *pdev = vdev->pdev;
1236        u32 dword;
1237        u16 word;
1238        u8 byte;
1239        int ret;
1240
1241        switch (cap) {
1242        case PCI_CAP_ID_MSI:
1243                return vfio_msi_cap_len(vdev, pos);
1244        case PCI_CAP_ID_PCIX:
1245                ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1246                if (ret)
1247                        return pcibios_err_to_errno(ret);
1248
1249                if (PCI_X_CMD_VERSION(word)) {
1250                        if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1251                                /* Test for extended capabilities */
1252                                pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1253                                                      &dword);
1254                                vdev->extended_caps = (dword != 0);
1255                        }
1256                        return PCI_CAP_PCIX_SIZEOF_V2;
1257                } else
1258                        return PCI_CAP_PCIX_SIZEOF_V0;
1259        case PCI_CAP_ID_VNDR:
1260                /* length follows next field */
1261                ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1262                if (ret)
1263                        return pcibios_err_to_errno(ret);
1264
1265                return byte;
1266        case PCI_CAP_ID_EXP:
1267                if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1268                        /* Test for extended capabilities */
1269                        pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1270                        vdev->extended_caps = (dword != 0);
1271                }
1272
1273                /* length based on version and type */
1274                if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1275                        if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1276                                return 0xc; /* "All Devices" only, no link */
1277                        return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1278                } else {
1279                        if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1280                                return 0x2c; /* No link */
1281                        return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1282                }
1283        case PCI_CAP_ID_HT:
1284                ret = pci_read_config_byte(pdev, pos + 3, &byte);
1285                if (ret)
1286                        return pcibios_err_to_errno(ret);
1287
1288                return (byte & HT_3BIT_CAP_MASK) ?
1289                        HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1290        case PCI_CAP_ID_SATA:
1291                ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1292                if (ret)
1293                        return pcibios_err_to_errno(ret);
1294
1295                byte &= PCI_SATA_REGS_MASK;
1296                if (byte == PCI_SATA_REGS_INLINE)
1297                        return PCI_SATA_SIZEOF_LONG;
1298                else
1299                        return PCI_SATA_SIZEOF_SHORT;
1300        default:
1301                pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1302                        dev_name(&pdev->dev), __func__, cap, pos);
1303        }
1304
1305        return 0;
1306}
1307
1308static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1309{
1310        struct pci_dev *pdev = vdev->pdev;
1311        u8 byte;
1312        u32 dword;
1313        int ret;
1314
1315        switch (ecap) {
1316        case PCI_EXT_CAP_ID_VNDR:
1317                ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1318                if (ret)
1319                        return pcibios_err_to_errno(ret);
1320
1321                return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1322        case PCI_EXT_CAP_ID_VC:
1323        case PCI_EXT_CAP_ID_VC9:
1324        case PCI_EXT_CAP_ID_MFVC:
1325                return vfio_vc_cap_len(vdev, epos);
1326        case PCI_EXT_CAP_ID_ACS:
1327                ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1328                if (ret)
1329                        return pcibios_err_to_errno(ret);
1330
1331                if (byte & PCI_ACS_EC) {
1332                        int bits;
1333
1334                        ret = pci_read_config_byte(pdev,
1335                                                   epos + PCI_ACS_EGRESS_BITS,
1336                                                   &byte);
1337                        if (ret)
1338                                return pcibios_err_to_errno(ret);
1339
1340                        bits = byte ? round_up(byte, 32) : 256;
1341                        return 8 + (bits / 8);
1342                }
1343                return 8;
1344
1345        case PCI_EXT_CAP_ID_REBAR:
1346                ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1347                if (ret)
1348                        return pcibios_err_to_errno(ret);
1349
1350                byte &= PCI_REBAR_CTRL_NBAR_MASK;
1351                byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1352
1353                return 4 + (byte * 8);
1354        case PCI_EXT_CAP_ID_DPA:
1355                ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1356                if (ret)
1357                        return pcibios_err_to_errno(ret);
1358
1359                byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1360                return PCI_DPA_BASE_SIZEOF + byte + 1;
1361        case PCI_EXT_CAP_ID_TPH:
1362                ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1363                if (ret)
1364                        return pcibios_err_to_errno(ret);
1365
1366                if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1367                        int sts;
1368
1369                        sts = dword & PCI_TPH_CAP_ST_MASK;
1370                        sts >>= PCI_TPH_CAP_ST_SHIFT;
1371                        return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1372                }
1373                return PCI_TPH_BASE_SIZEOF;
1374        default:
1375                pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1376                        dev_name(&pdev->dev), __func__, ecap, epos);
1377        }
1378
1379        return 0;
1380}
1381
1382static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1383                                   int offset, int size)
1384{
1385        struct pci_dev *pdev = vdev->pdev;
1386        int ret = 0;
1387
1388        /*
1389         * We try to read physical config space in the largest chunks
1390         * we can, assuming that all of the fields support dword access.
1391         * pci_save_state() makes this same assumption and seems to do ok.
1392         */
1393        while (size) {
1394                int filled;
1395
1396                if (size >= 4 && !(offset % 4)) {
1397                        __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1398                        u32 dword;
1399
1400                        ret = pci_read_config_dword(pdev, offset, &dword);
1401                        if (ret)
1402                                return ret;
1403                        *dwordp = cpu_to_le32(dword);
1404                        filled = 4;
1405                } else if (size >= 2 && !(offset % 2)) {
1406                        __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1407                        u16 word;
1408
1409                        ret = pci_read_config_word(pdev, offset, &word);
1410                        if (ret)
1411                                return ret;
1412                        *wordp = cpu_to_le16(word);
1413                        filled = 2;
1414                } else {
1415                        u8 *byte = &vdev->vconfig[offset];
1416                        ret = pci_read_config_byte(pdev, offset, byte);
1417                        if (ret)
1418                                return ret;
1419                        filled = 1;
1420                }
1421
1422                offset += filled;
1423                size -= filled;
1424        }
1425
1426        return ret;
1427}
1428
1429static int vfio_cap_init(struct vfio_pci_device *vdev)
1430{
1431        struct pci_dev *pdev = vdev->pdev;
1432        u8 *map = vdev->pci_config_map;
1433        u16 status;
1434        u8 pos, *prev, cap;
1435        int loops, ret, caps = 0;
1436
1437        /* Any capabilities? */
1438        ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1439        if (ret)
1440                return ret;
1441
1442        if (!(status & PCI_STATUS_CAP_LIST))
1443                return 0; /* Done */
1444
1445        ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1446        if (ret)
1447                return ret;
1448
1449        /* Mark the previous position in case we want to skip a capability */
1450        prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1451
1452        /* We can bound our loop, capabilities are dword aligned */
1453        loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1454        while (pos && loops--) {
1455                u8 next;
1456                int i, len = 0;
1457
1458                ret = pci_read_config_byte(pdev, pos, &cap);
1459                if (ret)
1460                        return ret;
1461
1462                ret = pci_read_config_byte(pdev,
1463                                           pos + PCI_CAP_LIST_NEXT, &next);
1464                if (ret)
1465                        return ret;
1466
1467                if (cap <= PCI_CAP_ID_MAX) {
1468                        len = pci_cap_length[cap];
1469                        if (len == 0xFF) { /* Variable length */
1470                                len = vfio_cap_len(vdev, cap, pos);
1471                                if (len < 0)
1472                                        return len;
1473                        }
1474                }
1475
1476                if (!len) {
1477                        pr_info("%s: %s hiding cap 0x%x\n",
1478                                __func__, dev_name(&pdev->dev), cap);
1479                        *prev = next;
1480                        pos = next;
1481                        continue;
1482                }
1483
1484                /* Sanity check, do we overlap other capabilities? */
1485                for (i = 0; i < len; i++) {
1486                        if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1487                                continue;
1488
1489                        pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1490                                __func__, dev_name(&pdev->dev),
1491                                pos + i, map[pos + i], cap);
1492                }
1493
1494                BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1495
1496                memset(map + pos, cap, len);
1497                ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1498                if (ret)
1499                        return ret;
1500
1501                prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1502                pos = next;
1503                caps++;
1504        }
1505
1506        /* If we didn't fill any capabilities, clear the status flag */
1507        if (!caps) {
1508                __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1509                *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1510        }
1511
1512        return 0;
1513}
1514
1515static int vfio_ecap_init(struct vfio_pci_device *vdev)
1516{
1517        struct pci_dev *pdev = vdev->pdev;
1518        u8 *map = vdev->pci_config_map;
1519        u16 epos;
1520        __le32 *prev = NULL;
1521        int loops, ret, ecaps = 0;
1522
1523        if (!vdev->extended_caps)
1524                return 0;
1525
1526        epos = PCI_CFG_SPACE_SIZE;
1527
1528        loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1529
1530        while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1531                u32 header;
1532                u16 ecap;
1533                int i, len = 0;
1534                bool hidden = false;
1535
1536                ret = pci_read_config_dword(pdev, epos, &header);
1537                if (ret)
1538                        return ret;
1539
1540                ecap = PCI_EXT_CAP_ID(header);
1541
1542                if (ecap <= PCI_EXT_CAP_ID_MAX) {
1543                        len = pci_ext_cap_length[ecap];
1544                        if (len == 0xFF) {
1545                                len = vfio_ext_cap_len(vdev, ecap, epos);
1546                                if (len < 0)
1547                                        return ret;
1548                        }
1549                }
1550
1551                if (!len) {
1552                        pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1553                                __func__, dev_name(&pdev->dev), ecap, epos);
1554
1555                        /* If not the first in the chain, we can skip over it */
1556                        if (prev) {
1557                                u32 val = epos = PCI_EXT_CAP_NEXT(header);
1558                                *prev &= cpu_to_le32(~(0xffcU << 20));
1559                                *prev |= cpu_to_le32(val << 20);
1560                                continue;
1561                        }
1562
1563                        /*
1564                         * Otherwise, fill in a placeholder, the direct
1565                         * readfn will virtualize this automatically
1566                         */
1567                        len = PCI_CAP_SIZEOF;
1568                        hidden = true;
1569                }
1570
1571                for (i = 0; i < len; i++) {
1572                        if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1573                                continue;
1574
1575                        pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1576                                __func__, dev_name(&pdev->dev),
1577                                epos + i, map[epos + i], ecap);
1578                }
1579
1580                /*
1581                 * Even though ecap is 2 bytes, we're currently a long way
1582                 * from exceeding 1 byte capabilities.  If we ever make it
1583                 * up to 0xFE we'll need to up this to a two-byte, byte map.
1584                 */
1585                BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1586
1587                memset(map + epos, ecap, len);
1588                ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1589                if (ret)
1590                        return ret;
1591
1592                /*
1593                 * If we're just using this capability to anchor the list,
1594                 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1595                 * indicates to use cap id = 0, version = 0, next = 0 if
1596                 * ecaps are absent, hope users check all the way to next.
1597                 */
1598                if (hidden)
1599                        *(__le32 *)&vdev->vconfig[epos] &=
1600                                cpu_to_le32((0xffcU << 20));
1601                else
1602                        ecaps++;
1603
1604                prev = (__le32 *)&vdev->vconfig[epos];
1605                epos = PCI_EXT_CAP_NEXT(header);
1606        }
1607
1608        if (!ecaps)
1609                *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1610
1611        return 0;
1612}
1613
1614/*
1615 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1616 * to collect a list of dependencies for the VF INTx pin quirk below.
1617 */
1618static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1619        { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1620        {}
1621};
1622
1623/*
1624 * For each device we allocate a pci_config_map that indicates the
1625 * capability occupying each dword and thus the struct perm_bits we
1626 * use for read and write.  We also allocate a virtualized config
1627 * space which tracks reads and writes to bits that we emulate for
1628 * the user.  Initial values filled from device.
1629 *
1630 * Using shared struct perm_bits between all vfio-pci devices saves
1631 * us from allocating cfg_size buffers for virt and write for every
1632 * device.  We could remove vconfig and allocate individual buffers
1633 * for each area requiring emulated bits, but the array of pointers
1634 * would be comparable in size (at least for standard config space).
1635 */
1636int vfio_config_init(struct vfio_pci_device *vdev)
1637{
1638        struct pci_dev *pdev = vdev->pdev;
1639        u8 *map, *vconfig;
1640        int ret;
1641
1642        /*
1643         * Config space, caps and ecaps are all dword aligned, so we could
1644         * use one byte per dword to record the type.  However, there are
1645         * no requiremenst on the length of a capability, so the gap between
1646         * capabilities needs byte granularity.
1647         */
1648        map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1649        if (!map)
1650                return -ENOMEM;
1651
1652        vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1653        if (!vconfig) {
1654                kfree(map);
1655                return -ENOMEM;
1656        }
1657
1658        vdev->pci_config_map = map;
1659        vdev->vconfig = vconfig;
1660
1661        memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1662        memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1663               pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1664
1665        ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1666        if (ret)
1667                goto out;
1668
1669        vdev->bardirty = true;
1670
1671        /*
1672         * XXX can we just pci_load_saved_state/pci_restore_state?
1673         * may need to rebuild vconfig after that
1674         */
1675
1676        /* For restore after reset */
1677        vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1678        vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1679        vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1680        vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1681        vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1682        vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1683        vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1684
1685        if (pdev->is_virtfn) {
1686                *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1687                *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1688
1689                /*
1690                 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1691                 * does not apply to VFs and VFs must implement this register
1692                 * as read-only with value zero.  Userspace is not readily able
1693                 * to identify whether a device is a VF and thus that the pin
1694                 * definition on the device is bogus should it violate this
1695                 * requirement.  We already virtualize the pin register for
1696                 * other purposes, so we simply need to replace the bogus value
1697                 * and consider VFs when we determine INTx IRQ count.
1698                 */
1699                if (vconfig[PCI_INTERRUPT_PIN] &&
1700                    !pci_match_id(known_bogus_vf_intx_pin, pdev))
1701                        pci_warn(pdev,
1702                                 "Hardware bug: VF reports bogus INTx pin %d\n",
1703                                 vconfig[PCI_INTERRUPT_PIN]);
1704
1705                vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1706        }
1707
1708        if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1709                vconfig[PCI_INTERRUPT_PIN] = 0;
1710
1711        ret = vfio_cap_init(vdev);
1712        if (ret)
1713                goto out;
1714
1715        ret = vfio_ecap_init(vdev);
1716        if (ret)
1717                goto out;
1718
1719        return 0;
1720
1721out:
1722        kfree(map);
1723        vdev->pci_config_map = NULL;
1724        kfree(vconfig);
1725        vdev->vconfig = NULL;
1726        return pcibios_err_to_errno(ret);
1727}
1728
1729void vfio_config_free(struct vfio_pci_device *vdev)
1730{
1731        kfree(vdev->vconfig);
1732        vdev->vconfig = NULL;
1733        kfree(vdev->pci_config_map);
1734        vdev->pci_config_map = NULL;
1735        kfree(vdev->msi_perm);
1736        vdev->msi_perm = NULL;
1737}
1738
1739/*
1740 * Find the remaining number of bytes in a dword that match the given
1741 * position.  Stop at either the end of the capability or the dword boundary.
1742 */
1743static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1744                                           loff_t pos)
1745{
1746        u8 cap = vdev->pci_config_map[pos];
1747        size_t i;
1748
1749        for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1750                /* nop */;
1751
1752        return i;
1753}
1754
1755static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1756                                 size_t count, loff_t *ppos, bool iswrite)
1757{
1758        struct pci_dev *pdev = vdev->pdev;
1759        struct perm_bits *perm;
1760        __le32 val = 0;
1761        int cap_start = 0, offset;
1762        u8 cap_id;
1763        ssize_t ret;
1764
1765        if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1766            *ppos + count > pdev->cfg_size)
1767                return -EFAULT;
1768
1769        /*
1770         * Chop accesses into aligned chunks containing no more than a
1771         * single capability.  Caller increments to the next chunk.
1772         */
1773        count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1774        if (count >= 4 && !(*ppos % 4))
1775                count = 4;
1776        else if (count >= 2 && !(*ppos % 2))
1777                count = 2;
1778        else
1779                count = 1;
1780
1781        ret = count;
1782
1783        cap_id = vdev->pci_config_map[*ppos];
1784
1785        if (cap_id == PCI_CAP_ID_INVALID) {
1786                perm = &unassigned_perms;
1787                cap_start = *ppos;
1788        } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1789                perm = &virt_perms;
1790                cap_start = *ppos;
1791        } else {
1792                if (*ppos >= PCI_CFG_SPACE_SIZE) {
1793                        WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1794
1795                        perm = &ecap_perms[cap_id];
1796                        cap_start = vfio_find_cap_start(vdev, *ppos);
1797                } else {
1798                        WARN_ON(cap_id > PCI_CAP_ID_MAX);
1799
1800                        perm = &cap_perms[cap_id];
1801
1802                        if (cap_id == PCI_CAP_ID_MSI)
1803                                perm = vdev->msi_perm;
1804
1805                        if (cap_id > PCI_CAP_ID_BASIC)
1806                                cap_start = vfio_find_cap_start(vdev, *ppos);
1807                }
1808        }
1809
1810        WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1811        WARN_ON(cap_start > *ppos);
1812
1813        offset = *ppos - cap_start;
1814
1815        if (iswrite) {
1816                if (!perm->writefn)
1817                        return ret;
1818
1819                if (copy_from_user(&val, buf, count))
1820                        return -EFAULT;
1821
1822                ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1823        } else {
1824                if (perm->readfn) {
1825                        ret = perm->readfn(vdev, *ppos, count,
1826                                           perm, offset, &val);
1827                        if (ret < 0)
1828                                return ret;
1829                }
1830
1831                if (copy_to_user(buf, &val, count))
1832                        return -EFAULT;
1833        }
1834
1835        return ret;
1836}
1837
1838ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1839                           size_t count, loff_t *ppos, bool iswrite)
1840{
1841        size_t done = 0;
1842        int ret = 0;
1843        loff_t pos = *ppos;
1844
1845        pos &= VFIO_PCI_OFFSET_MASK;
1846
1847        while (count) {
1848                ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1849                if (ret < 0)
1850                        return ret;
1851
1852                count -= ret;
1853                done += ret;
1854                buf += ret;
1855                pos += ret;
1856        }
1857
1858        *ppos += done;
1859
1860        return done;
1861}
1862