linux/fs/btrfs/tree-log.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "ctree.h"
  12#include "tree-log.h"
  13#include "disk-io.h"
  14#include "locking.h"
  15#include "print-tree.h"
  16#include "backref.h"
  17#include "compression.h"
  18#include "qgroup.h"
  19#include "inode-map.h"
  20
  21/* magic values for the inode_only field in btrfs_log_inode:
  22 *
  23 * LOG_INODE_ALL means to log everything
  24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  25 * during log replay
  26 */
  27#define LOG_INODE_ALL 0
  28#define LOG_INODE_EXISTS 1
  29#define LOG_OTHER_INODE 2
  30
  31/*
  32 * directory trouble cases
  33 *
  34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  35 * log, we must force a full commit before doing an fsync of the directory
  36 * where the unlink was done.
  37 * ---> record transid of last unlink/rename per directory
  38 *
  39 * mkdir foo/some_dir
  40 * normal commit
  41 * rename foo/some_dir foo2/some_dir
  42 * mkdir foo/some_dir
  43 * fsync foo/some_dir/some_file
  44 *
  45 * The fsync above will unlink the original some_dir without recording
  46 * it in its new location (foo2).  After a crash, some_dir will be gone
  47 * unless the fsync of some_file forces a full commit
  48 *
  49 * 2) we must log any new names for any file or dir that is in the fsync
  50 * log. ---> check inode while renaming/linking.
  51 *
  52 * 2a) we must log any new names for any file or dir during rename
  53 * when the directory they are being removed from was logged.
  54 * ---> check inode and old parent dir during rename
  55 *
  56 *  2a is actually the more important variant.  With the extra logging
  57 *  a crash might unlink the old name without recreating the new one
  58 *
  59 * 3) after a crash, we must go through any directories with a link count
  60 * of zero and redo the rm -rf
  61 *
  62 * mkdir f1/foo
  63 * normal commit
  64 * rm -rf f1/foo
  65 * fsync(f1)
  66 *
  67 * The directory f1 was fully removed from the FS, but fsync was never
  68 * called on f1, only its parent dir.  After a crash the rm -rf must
  69 * be replayed.  This must be able to recurse down the entire
  70 * directory tree.  The inode link count fixup code takes care of the
  71 * ugly details.
  72 */
  73
  74/*
  75 * stages for the tree walking.  The first
  76 * stage (0) is to only pin down the blocks we find
  77 * the second stage (1) is to make sure that all the inodes
  78 * we find in the log are created in the subvolume.
  79 *
  80 * The last stage is to deal with directories and links and extents
  81 * and all the other fun semantics
  82 */
  83#define LOG_WALK_PIN_ONLY 0
  84#define LOG_WALK_REPLAY_INODES 1
  85#define LOG_WALK_REPLAY_DIR_INDEX 2
  86#define LOG_WALK_REPLAY_ALL 3
  87
  88static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  89                           struct btrfs_root *root, struct btrfs_inode *inode,
  90                           int inode_only,
  91                           const loff_t start,
  92                           const loff_t end,
  93                           struct btrfs_log_ctx *ctx);
  94static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  95                             struct btrfs_root *root,
  96                             struct btrfs_path *path, u64 objectid);
  97static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
  98                                       struct btrfs_root *root,
  99                                       struct btrfs_root *log,
 100                                       struct btrfs_path *path,
 101                                       u64 dirid, int del_all);
 102
 103/*
 104 * tree logging is a special write ahead log used to make sure that
 105 * fsyncs and O_SYNCs can happen without doing full tree commits.
 106 *
 107 * Full tree commits are expensive because they require commonly
 108 * modified blocks to be recowed, creating many dirty pages in the
 109 * extent tree an 4x-6x higher write load than ext3.
 110 *
 111 * Instead of doing a tree commit on every fsync, we use the
 112 * key ranges and transaction ids to find items for a given file or directory
 113 * that have changed in this transaction.  Those items are copied into
 114 * a special tree (one per subvolume root), that tree is written to disk
 115 * and then the fsync is considered complete.
 116 *
 117 * After a crash, items are copied out of the log-tree back into the
 118 * subvolume tree.  Any file data extents found are recorded in the extent
 119 * allocation tree, and the log-tree freed.
 120 *
 121 * The log tree is read three times, once to pin down all the extents it is
 122 * using in ram and once, once to create all the inodes logged in the tree
 123 * and once to do all the other items.
 124 */
 125
 126/*
 127 * start a sub transaction and setup the log tree
 128 * this increments the log tree writer count to make the people
 129 * syncing the tree wait for us to finish
 130 */
 131static int start_log_trans(struct btrfs_trans_handle *trans,
 132                           struct btrfs_root *root,
 133                           struct btrfs_log_ctx *ctx)
 134{
 135        struct btrfs_fs_info *fs_info = root->fs_info;
 136        int ret = 0;
 137
 138        mutex_lock(&root->log_mutex);
 139
 140        if (root->log_root) {
 141                if (btrfs_need_log_full_commit(fs_info, trans)) {
 142                        ret = -EAGAIN;
 143                        goto out;
 144                }
 145
 146                if (!root->log_start_pid) {
 147                        clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 148                        root->log_start_pid = current->pid;
 149                } else if (root->log_start_pid != current->pid) {
 150                        set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 151                }
 152        } else {
 153                mutex_lock(&fs_info->tree_log_mutex);
 154                if (!fs_info->log_root_tree)
 155                        ret = btrfs_init_log_root_tree(trans, fs_info);
 156                mutex_unlock(&fs_info->tree_log_mutex);
 157                if (ret)
 158                        goto out;
 159
 160                ret = btrfs_add_log_tree(trans, root);
 161                if (ret)
 162                        goto out;
 163
 164                clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 165                root->log_start_pid = current->pid;
 166        }
 167
 168        atomic_inc(&root->log_batch);
 169        atomic_inc(&root->log_writers);
 170        if (ctx) {
 171                int index = root->log_transid % 2;
 172                list_add_tail(&ctx->list, &root->log_ctxs[index]);
 173                ctx->log_transid = root->log_transid;
 174        }
 175
 176out:
 177        mutex_unlock(&root->log_mutex);
 178        return ret;
 179}
 180
 181/*
 182 * returns 0 if there was a log transaction running and we were able
 183 * to join, or returns -ENOENT if there were not transactions
 184 * in progress
 185 */
 186static int join_running_log_trans(struct btrfs_root *root)
 187{
 188        int ret = -ENOENT;
 189
 190        smp_mb();
 191        if (!root->log_root)
 192                return -ENOENT;
 193
 194        mutex_lock(&root->log_mutex);
 195        if (root->log_root) {
 196                ret = 0;
 197                atomic_inc(&root->log_writers);
 198        }
 199        mutex_unlock(&root->log_mutex);
 200        return ret;
 201}
 202
 203/*
 204 * This either makes the current running log transaction wait
 205 * until you call btrfs_end_log_trans() or it makes any future
 206 * log transactions wait until you call btrfs_end_log_trans()
 207 */
 208void btrfs_pin_log_trans(struct btrfs_root *root)
 209{
 210        mutex_lock(&root->log_mutex);
 211        atomic_inc(&root->log_writers);
 212        mutex_unlock(&root->log_mutex);
 213}
 214
 215/*
 216 * indicate we're done making changes to the log tree
 217 * and wake up anyone waiting to do a sync
 218 */
 219void btrfs_end_log_trans(struct btrfs_root *root)
 220{
 221        if (atomic_dec_and_test(&root->log_writers)) {
 222                /* atomic_dec_and_test implies a barrier */
 223                cond_wake_up_nomb(&root->log_writer_wait);
 224        }
 225}
 226
 227
 228/*
 229 * the walk control struct is used to pass state down the chain when
 230 * processing the log tree.  The stage field tells us which part
 231 * of the log tree processing we are currently doing.  The others
 232 * are state fields used for that specific part
 233 */
 234struct walk_control {
 235        /* should we free the extent on disk when done?  This is used
 236         * at transaction commit time while freeing a log tree
 237         */
 238        int free;
 239
 240        /* should we write out the extent buffer?  This is used
 241         * while flushing the log tree to disk during a sync
 242         */
 243        int write;
 244
 245        /* should we wait for the extent buffer io to finish?  Also used
 246         * while flushing the log tree to disk for a sync
 247         */
 248        int wait;
 249
 250        /* pin only walk, we record which extents on disk belong to the
 251         * log trees
 252         */
 253        int pin;
 254
 255        /* what stage of the replay code we're currently in */
 256        int stage;
 257
 258        /*
 259         * Ignore any items from the inode currently being processed. Needs
 260         * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 261         * the LOG_WALK_REPLAY_INODES stage.
 262         */
 263        bool ignore_cur_inode;
 264
 265        /* the root we are currently replaying */
 266        struct btrfs_root *replay_dest;
 267
 268        /* the trans handle for the current replay */
 269        struct btrfs_trans_handle *trans;
 270
 271        /* the function that gets used to process blocks we find in the
 272         * tree.  Note the extent_buffer might not be up to date when it is
 273         * passed in, and it must be checked or read if you need the data
 274         * inside it
 275         */
 276        int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 277                            struct walk_control *wc, u64 gen, int level);
 278};
 279
 280/*
 281 * process_func used to pin down extents, write them or wait on them
 282 */
 283static int process_one_buffer(struct btrfs_root *log,
 284                              struct extent_buffer *eb,
 285                              struct walk_control *wc, u64 gen, int level)
 286{
 287        struct btrfs_fs_info *fs_info = log->fs_info;
 288        int ret = 0;
 289
 290        /*
 291         * If this fs is mixed then we need to be able to process the leaves to
 292         * pin down any logged extents, so we have to read the block.
 293         */
 294        if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 295                ret = btrfs_read_buffer(eb, gen, level, NULL);
 296                if (ret)
 297                        return ret;
 298        }
 299
 300        if (wc->pin)
 301                ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 302                                                      eb->len);
 303
 304        if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 305                if (wc->pin && btrfs_header_level(eb) == 0)
 306                        ret = btrfs_exclude_logged_extents(fs_info, eb);
 307                if (wc->write)
 308                        btrfs_write_tree_block(eb);
 309                if (wc->wait)
 310                        btrfs_wait_tree_block_writeback(eb);
 311        }
 312        return ret;
 313}
 314
 315/*
 316 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 317 * to the src data we are copying out.
 318 *
 319 * root is the tree we are copying into, and path is a scratch
 320 * path for use in this function (it should be released on entry and
 321 * will be released on exit).
 322 *
 323 * If the key is already in the destination tree the existing item is
 324 * overwritten.  If the existing item isn't big enough, it is extended.
 325 * If it is too large, it is truncated.
 326 *
 327 * If the key isn't in the destination yet, a new item is inserted.
 328 */
 329static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 330                                   struct btrfs_root *root,
 331                                   struct btrfs_path *path,
 332                                   struct extent_buffer *eb, int slot,
 333                                   struct btrfs_key *key)
 334{
 335        struct btrfs_fs_info *fs_info = root->fs_info;
 336        int ret;
 337        u32 item_size;
 338        u64 saved_i_size = 0;
 339        int save_old_i_size = 0;
 340        unsigned long src_ptr;
 341        unsigned long dst_ptr;
 342        int overwrite_root = 0;
 343        bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 344
 345        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 346                overwrite_root = 1;
 347
 348        item_size = btrfs_item_size_nr(eb, slot);
 349        src_ptr = btrfs_item_ptr_offset(eb, slot);
 350
 351        /* look for the key in the destination tree */
 352        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 353        if (ret < 0)
 354                return ret;
 355
 356        if (ret == 0) {
 357                char *src_copy;
 358                char *dst_copy;
 359                u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 360                                                  path->slots[0]);
 361                if (dst_size != item_size)
 362                        goto insert;
 363
 364                if (item_size == 0) {
 365                        btrfs_release_path(path);
 366                        return 0;
 367                }
 368                dst_copy = kmalloc(item_size, GFP_NOFS);
 369                src_copy = kmalloc(item_size, GFP_NOFS);
 370                if (!dst_copy || !src_copy) {
 371                        btrfs_release_path(path);
 372                        kfree(dst_copy);
 373                        kfree(src_copy);
 374                        return -ENOMEM;
 375                }
 376
 377                read_extent_buffer(eb, src_copy, src_ptr, item_size);
 378
 379                dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 380                read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 381                                   item_size);
 382                ret = memcmp(dst_copy, src_copy, item_size);
 383
 384                kfree(dst_copy);
 385                kfree(src_copy);
 386                /*
 387                 * they have the same contents, just return, this saves
 388                 * us from cowing blocks in the destination tree and doing
 389                 * extra writes that may not have been done by a previous
 390                 * sync
 391                 */
 392                if (ret == 0) {
 393                        btrfs_release_path(path);
 394                        return 0;
 395                }
 396
 397                /*
 398                 * We need to load the old nbytes into the inode so when we
 399                 * replay the extents we've logged we get the right nbytes.
 400                 */
 401                if (inode_item) {
 402                        struct btrfs_inode_item *item;
 403                        u64 nbytes;
 404                        u32 mode;
 405
 406                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 407                                              struct btrfs_inode_item);
 408                        nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 409                        item = btrfs_item_ptr(eb, slot,
 410                                              struct btrfs_inode_item);
 411                        btrfs_set_inode_nbytes(eb, item, nbytes);
 412
 413                        /*
 414                         * If this is a directory we need to reset the i_size to
 415                         * 0 so that we can set it up properly when replaying
 416                         * the rest of the items in this log.
 417                         */
 418                        mode = btrfs_inode_mode(eb, item);
 419                        if (S_ISDIR(mode))
 420                                btrfs_set_inode_size(eb, item, 0);
 421                }
 422        } else if (inode_item) {
 423                struct btrfs_inode_item *item;
 424                u32 mode;
 425
 426                /*
 427                 * New inode, set nbytes to 0 so that the nbytes comes out
 428                 * properly when we replay the extents.
 429                 */
 430                item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 431                btrfs_set_inode_nbytes(eb, item, 0);
 432
 433                /*
 434                 * If this is a directory we need to reset the i_size to 0 so
 435                 * that we can set it up properly when replaying the rest of
 436                 * the items in this log.
 437                 */
 438                mode = btrfs_inode_mode(eb, item);
 439                if (S_ISDIR(mode))
 440                        btrfs_set_inode_size(eb, item, 0);
 441        }
 442insert:
 443        btrfs_release_path(path);
 444        /* try to insert the key into the destination tree */
 445        path->skip_release_on_error = 1;
 446        ret = btrfs_insert_empty_item(trans, root, path,
 447                                      key, item_size);
 448        path->skip_release_on_error = 0;
 449
 450        /* make sure any existing item is the correct size */
 451        if (ret == -EEXIST || ret == -EOVERFLOW) {
 452                u32 found_size;
 453                found_size = btrfs_item_size_nr(path->nodes[0],
 454                                                path->slots[0]);
 455                if (found_size > item_size)
 456                        btrfs_truncate_item(fs_info, path, item_size, 1);
 457                else if (found_size < item_size)
 458                        btrfs_extend_item(fs_info, path,
 459                                          item_size - found_size);
 460        } else if (ret) {
 461                return ret;
 462        }
 463        dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 464                                        path->slots[0]);
 465
 466        /* don't overwrite an existing inode if the generation number
 467         * was logged as zero.  This is done when the tree logging code
 468         * is just logging an inode to make sure it exists after recovery.
 469         *
 470         * Also, don't overwrite i_size on directories during replay.
 471         * log replay inserts and removes directory items based on the
 472         * state of the tree found in the subvolume, and i_size is modified
 473         * as it goes
 474         */
 475        if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 476                struct btrfs_inode_item *src_item;
 477                struct btrfs_inode_item *dst_item;
 478
 479                src_item = (struct btrfs_inode_item *)src_ptr;
 480                dst_item = (struct btrfs_inode_item *)dst_ptr;
 481
 482                if (btrfs_inode_generation(eb, src_item) == 0) {
 483                        struct extent_buffer *dst_eb = path->nodes[0];
 484                        const u64 ino_size = btrfs_inode_size(eb, src_item);
 485
 486                        /*
 487                         * For regular files an ino_size == 0 is used only when
 488                         * logging that an inode exists, as part of a directory
 489                         * fsync, and the inode wasn't fsynced before. In this
 490                         * case don't set the size of the inode in the fs/subvol
 491                         * tree, otherwise we would be throwing valid data away.
 492                         */
 493                        if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 494                            S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 495                            ino_size != 0) {
 496                                struct btrfs_map_token token;
 497
 498                                btrfs_init_map_token(&token);
 499                                btrfs_set_token_inode_size(dst_eb, dst_item,
 500                                                           ino_size, &token);
 501                        }
 502                        goto no_copy;
 503                }
 504
 505                if (overwrite_root &&
 506                    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 507                    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 508                        save_old_i_size = 1;
 509                        saved_i_size = btrfs_inode_size(path->nodes[0],
 510                                                        dst_item);
 511                }
 512        }
 513
 514        copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 515                           src_ptr, item_size);
 516
 517        if (save_old_i_size) {
 518                struct btrfs_inode_item *dst_item;
 519                dst_item = (struct btrfs_inode_item *)dst_ptr;
 520                btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 521        }
 522
 523        /* make sure the generation is filled in */
 524        if (key->type == BTRFS_INODE_ITEM_KEY) {
 525                struct btrfs_inode_item *dst_item;
 526                dst_item = (struct btrfs_inode_item *)dst_ptr;
 527                if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 528                        btrfs_set_inode_generation(path->nodes[0], dst_item,
 529                                                   trans->transid);
 530                }
 531        }
 532no_copy:
 533        btrfs_mark_buffer_dirty(path->nodes[0]);
 534        btrfs_release_path(path);
 535        return 0;
 536}
 537
 538/*
 539 * simple helper to read an inode off the disk from a given root
 540 * This can only be called for subvolume roots and not for the log
 541 */
 542static noinline struct inode *read_one_inode(struct btrfs_root *root,
 543                                             u64 objectid)
 544{
 545        struct btrfs_key key;
 546        struct inode *inode;
 547
 548        key.objectid = objectid;
 549        key.type = BTRFS_INODE_ITEM_KEY;
 550        key.offset = 0;
 551        inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 552        if (IS_ERR(inode))
 553                inode = NULL;
 554        return inode;
 555}
 556
 557/* replays a single extent in 'eb' at 'slot' with 'key' into the
 558 * subvolume 'root'.  path is released on entry and should be released
 559 * on exit.
 560 *
 561 * extents in the log tree have not been allocated out of the extent
 562 * tree yet.  So, this completes the allocation, taking a reference
 563 * as required if the extent already exists or creating a new extent
 564 * if it isn't in the extent allocation tree yet.
 565 *
 566 * The extent is inserted into the file, dropping any existing extents
 567 * from the file that overlap the new one.
 568 */
 569static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 570                                      struct btrfs_root *root,
 571                                      struct btrfs_path *path,
 572                                      struct extent_buffer *eb, int slot,
 573                                      struct btrfs_key *key)
 574{
 575        struct btrfs_fs_info *fs_info = root->fs_info;
 576        int found_type;
 577        u64 extent_end;
 578        u64 start = key->offset;
 579        u64 nbytes = 0;
 580        struct btrfs_file_extent_item *item;
 581        struct inode *inode = NULL;
 582        unsigned long size;
 583        int ret = 0;
 584
 585        item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 586        found_type = btrfs_file_extent_type(eb, item);
 587
 588        if (found_type == BTRFS_FILE_EXTENT_REG ||
 589            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 590                nbytes = btrfs_file_extent_num_bytes(eb, item);
 591                extent_end = start + nbytes;
 592
 593                /*
 594                 * We don't add to the inodes nbytes if we are prealloc or a
 595                 * hole.
 596                 */
 597                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 598                        nbytes = 0;
 599        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 600                size = btrfs_file_extent_ram_bytes(eb, item);
 601                nbytes = btrfs_file_extent_ram_bytes(eb, item);
 602                extent_end = ALIGN(start + size,
 603                                   fs_info->sectorsize);
 604        } else {
 605                ret = 0;
 606                goto out;
 607        }
 608
 609        inode = read_one_inode(root, key->objectid);
 610        if (!inode) {
 611                ret = -EIO;
 612                goto out;
 613        }
 614
 615        /*
 616         * first check to see if we already have this extent in the
 617         * file.  This must be done before the btrfs_drop_extents run
 618         * so we don't try to drop this extent.
 619         */
 620        ret = btrfs_lookup_file_extent(trans, root, path,
 621                        btrfs_ino(BTRFS_I(inode)), start, 0);
 622
 623        if (ret == 0 &&
 624            (found_type == BTRFS_FILE_EXTENT_REG ||
 625             found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 626                struct btrfs_file_extent_item cmp1;
 627                struct btrfs_file_extent_item cmp2;
 628                struct btrfs_file_extent_item *existing;
 629                struct extent_buffer *leaf;
 630
 631                leaf = path->nodes[0];
 632                existing = btrfs_item_ptr(leaf, path->slots[0],
 633                                          struct btrfs_file_extent_item);
 634
 635                read_extent_buffer(eb, &cmp1, (unsigned long)item,
 636                                   sizeof(cmp1));
 637                read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 638                                   sizeof(cmp2));
 639
 640                /*
 641                 * we already have a pointer to this exact extent,
 642                 * we don't have to do anything
 643                 */
 644                if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 645                        btrfs_release_path(path);
 646                        goto out;
 647                }
 648        }
 649        btrfs_release_path(path);
 650
 651        /* drop any overlapping extents */
 652        ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 653        if (ret)
 654                goto out;
 655
 656        if (found_type == BTRFS_FILE_EXTENT_REG ||
 657            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 658                u64 offset;
 659                unsigned long dest_offset;
 660                struct btrfs_key ins;
 661
 662                if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 663                    btrfs_fs_incompat(fs_info, NO_HOLES))
 664                        goto update_inode;
 665
 666                ret = btrfs_insert_empty_item(trans, root, path, key,
 667                                              sizeof(*item));
 668                if (ret)
 669                        goto out;
 670                dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 671                                                    path->slots[0]);
 672                copy_extent_buffer(path->nodes[0], eb, dest_offset,
 673                                (unsigned long)item,  sizeof(*item));
 674
 675                ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 676                ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 677                ins.type = BTRFS_EXTENT_ITEM_KEY;
 678                offset = key->offset - btrfs_file_extent_offset(eb, item);
 679
 680                /*
 681                 * Manually record dirty extent, as here we did a shallow
 682                 * file extent item copy and skip normal backref update,
 683                 * but modifying extent tree all by ourselves.
 684                 * So need to manually record dirty extent for qgroup,
 685                 * as the owner of the file extent changed from log tree
 686                 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 687                 */
 688                ret = btrfs_qgroup_trace_extent(trans,
 689                                btrfs_file_extent_disk_bytenr(eb, item),
 690                                btrfs_file_extent_disk_num_bytes(eb, item),
 691                                GFP_NOFS);
 692                if (ret < 0)
 693                        goto out;
 694
 695                if (ins.objectid > 0) {
 696                        u64 csum_start;
 697                        u64 csum_end;
 698                        LIST_HEAD(ordered_sums);
 699                        /*
 700                         * is this extent already allocated in the extent
 701                         * allocation tree?  If so, just add a reference
 702                         */
 703                        ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 704                                                ins.offset);
 705                        if (ret == 0) {
 706                                ret = btrfs_inc_extent_ref(trans, root,
 707                                                ins.objectid, ins.offset,
 708                                                0, root->root_key.objectid,
 709                                                key->objectid, offset);
 710                                if (ret)
 711                                        goto out;
 712                        } else {
 713                                /*
 714                                 * insert the extent pointer in the extent
 715                                 * allocation tree
 716                                 */
 717                                ret = btrfs_alloc_logged_file_extent(trans,
 718                                                root->root_key.objectid,
 719                                                key->objectid, offset, &ins);
 720                                if (ret)
 721                                        goto out;
 722                        }
 723                        btrfs_release_path(path);
 724
 725                        if (btrfs_file_extent_compression(eb, item)) {
 726                                csum_start = ins.objectid;
 727                                csum_end = csum_start + ins.offset;
 728                        } else {
 729                                csum_start = ins.objectid +
 730                                        btrfs_file_extent_offset(eb, item);
 731                                csum_end = csum_start +
 732                                        btrfs_file_extent_num_bytes(eb, item);
 733                        }
 734
 735                        ret = btrfs_lookup_csums_range(root->log_root,
 736                                                csum_start, csum_end - 1,
 737                                                &ordered_sums, 0);
 738                        if (ret)
 739                                goto out;
 740                        /*
 741                         * Now delete all existing cums in the csum root that
 742                         * cover our range. We do this because we can have an
 743                         * extent that is completely referenced by one file
 744                         * extent item and partially referenced by another
 745                         * file extent item (like after using the clone or
 746                         * extent_same ioctls). In this case if we end up doing
 747                         * the replay of the one that partially references the
 748                         * extent first, and we do not do the csum deletion
 749                         * below, we can get 2 csum items in the csum tree that
 750                         * overlap each other. For example, imagine our log has
 751                         * the two following file extent items:
 752                         *
 753                         * key (257 EXTENT_DATA 409600)
 754                         *     extent data disk byte 12845056 nr 102400
 755                         *     extent data offset 20480 nr 20480 ram 102400
 756                         *
 757                         * key (257 EXTENT_DATA 819200)
 758                         *     extent data disk byte 12845056 nr 102400
 759                         *     extent data offset 0 nr 102400 ram 102400
 760                         *
 761                         * Where the second one fully references the 100K extent
 762                         * that starts at disk byte 12845056, and the log tree
 763                         * has a single csum item that covers the entire range
 764                         * of the extent:
 765                         *
 766                         * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 767                         *
 768                         * After the first file extent item is replayed, the
 769                         * csum tree gets the following csum item:
 770                         *
 771                         * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 772                         *
 773                         * Which covers the 20K sub-range starting at offset 20K
 774                         * of our extent. Now when we replay the second file
 775                         * extent item, if we do not delete existing csum items
 776                         * that cover any of its blocks, we end up getting two
 777                         * csum items in our csum tree that overlap each other:
 778                         *
 779                         * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 780                         * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 781                         *
 782                         * Which is a problem, because after this anyone trying
 783                         * to lookup up for the checksum of any block of our
 784                         * extent starting at an offset of 40K or higher, will
 785                         * end up looking at the second csum item only, which
 786                         * does not contain the checksum for any block starting
 787                         * at offset 40K or higher of our extent.
 788                         */
 789                        while (!list_empty(&ordered_sums)) {
 790                                struct btrfs_ordered_sum *sums;
 791                                sums = list_entry(ordered_sums.next,
 792                                                struct btrfs_ordered_sum,
 793                                                list);
 794                                if (!ret)
 795                                        ret = btrfs_del_csums(trans, fs_info,
 796                                                              sums->bytenr,
 797                                                              sums->len);
 798                                if (!ret)
 799                                        ret = btrfs_csum_file_blocks(trans,
 800                                                fs_info->csum_root, sums);
 801                                list_del(&sums->list);
 802                                kfree(sums);
 803                        }
 804                        if (ret)
 805                                goto out;
 806                } else {
 807                        btrfs_release_path(path);
 808                }
 809        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 810                /* inline extents are easy, we just overwrite them */
 811                ret = overwrite_item(trans, root, path, eb, slot, key);
 812                if (ret)
 813                        goto out;
 814        }
 815
 816        inode_add_bytes(inode, nbytes);
 817update_inode:
 818        ret = btrfs_update_inode(trans, root, inode);
 819out:
 820        if (inode)
 821                iput(inode);
 822        return ret;
 823}
 824
 825/*
 826 * when cleaning up conflicts between the directory names in the
 827 * subvolume, directory names in the log and directory names in the
 828 * inode back references, we may have to unlink inodes from directories.
 829 *
 830 * This is a helper function to do the unlink of a specific directory
 831 * item
 832 */
 833static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 834                                      struct btrfs_root *root,
 835                                      struct btrfs_path *path,
 836                                      struct btrfs_inode *dir,
 837                                      struct btrfs_dir_item *di)
 838{
 839        struct inode *inode;
 840        char *name;
 841        int name_len;
 842        struct extent_buffer *leaf;
 843        struct btrfs_key location;
 844        int ret;
 845
 846        leaf = path->nodes[0];
 847
 848        btrfs_dir_item_key_to_cpu(leaf, di, &location);
 849        name_len = btrfs_dir_name_len(leaf, di);
 850        name = kmalloc(name_len, GFP_NOFS);
 851        if (!name)
 852                return -ENOMEM;
 853
 854        read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 855        btrfs_release_path(path);
 856
 857        inode = read_one_inode(root, location.objectid);
 858        if (!inode) {
 859                ret = -EIO;
 860                goto out;
 861        }
 862
 863        ret = link_to_fixup_dir(trans, root, path, location.objectid);
 864        if (ret)
 865                goto out;
 866
 867        ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 868                        name_len);
 869        if (ret)
 870                goto out;
 871        else
 872                ret = btrfs_run_delayed_items(trans);
 873out:
 874        kfree(name);
 875        iput(inode);
 876        return ret;
 877}
 878
 879/*
 880 * helper function to see if a given name and sequence number found
 881 * in an inode back reference are already in a directory and correctly
 882 * point to this inode
 883 */
 884static noinline int inode_in_dir(struct btrfs_root *root,
 885                                 struct btrfs_path *path,
 886                                 u64 dirid, u64 objectid, u64 index,
 887                                 const char *name, int name_len)
 888{
 889        struct btrfs_dir_item *di;
 890        struct btrfs_key location;
 891        int match = 0;
 892
 893        di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 894                                         index, name, name_len, 0);
 895        if (di && !IS_ERR(di)) {
 896                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 897                if (location.objectid != objectid)
 898                        goto out;
 899        } else
 900                goto out;
 901        btrfs_release_path(path);
 902
 903        di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 904        if (di && !IS_ERR(di)) {
 905                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 906                if (location.objectid != objectid)
 907                        goto out;
 908        } else
 909                goto out;
 910        match = 1;
 911out:
 912        btrfs_release_path(path);
 913        return match;
 914}
 915
 916/*
 917 * helper function to check a log tree for a named back reference in
 918 * an inode.  This is used to decide if a back reference that is
 919 * found in the subvolume conflicts with what we find in the log.
 920 *
 921 * inode backreferences may have multiple refs in a single item,
 922 * during replay we process one reference at a time, and we don't
 923 * want to delete valid links to a file from the subvolume if that
 924 * link is also in the log.
 925 */
 926static noinline int backref_in_log(struct btrfs_root *log,
 927                                   struct btrfs_key *key,
 928                                   u64 ref_objectid,
 929                                   const char *name, int namelen)
 930{
 931        struct btrfs_path *path;
 932        struct btrfs_inode_ref *ref;
 933        unsigned long ptr;
 934        unsigned long ptr_end;
 935        unsigned long name_ptr;
 936        int found_name_len;
 937        int item_size;
 938        int ret;
 939        int match = 0;
 940
 941        path = btrfs_alloc_path();
 942        if (!path)
 943                return -ENOMEM;
 944
 945        ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 946        if (ret != 0)
 947                goto out;
 948
 949        ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 950
 951        if (key->type == BTRFS_INODE_EXTREF_KEY) {
 952                if (btrfs_find_name_in_ext_backref(path->nodes[0],
 953                                                   path->slots[0],
 954                                                   ref_objectid,
 955                                                   name, namelen, NULL))
 956                        match = 1;
 957
 958                goto out;
 959        }
 960
 961        item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 962        ptr_end = ptr + item_size;
 963        while (ptr < ptr_end) {
 964                ref = (struct btrfs_inode_ref *)ptr;
 965                found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 966                if (found_name_len == namelen) {
 967                        name_ptr = (unsigned long)(ref + 1);
 968                        ret = memcmp_extent_buffer(path->nodes[0], name,
 969                                                   name_ptr, namelen);
 970                        if (ret == 0) {
 971                                match = 1;
 972                                goto out;
 973                        }
 974                }
 975                ptr = (unsigned long)(ref + 1) + found_name_len;
 976        }
 977out:
 978        btrfs_free_path(path);
 979        return match;
 980}
 981
 982static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 983                                  struct btrfs_root *root,
 984                                  struct btrfs_path *path,
 985                                  struct btrfs_root *log_root,
 986                                  struct btrfs_inode *dir,
 987                                  struct btrfs_inode *inode,
 988                                  u64 inode_objectid, u64 parent_objectid,
 989                                  u64 ref_index, char *name, int namelen,
 990                                  int *search_done)
 991{
 992        int ret;
 993        char *victim_name;
 994        int victim_name_len;
 995        struct extent_buffer *leaf;
 996        struct btrfs_dir_item *di;
 997        struct btrfs_key search_key;
 998        struct btrfs_inode_extref *extref;
 999
1000again:
1001        /* Search old style refs */
1002        search_key.objectid = inode_objectid;
1003        search_key.type = BTRFS_INODE_REF_KEY;
1004        search_key.offset = parent_objectid;
1005        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1006        if (ret == 0) {
1007                struct btrfs_inode_ref *victim_ref;
1008                unsigned long ptr;
1009                unsigned long ptr_end;
1010
1011                leaf = path->nodes[0];
1012
1013                /* are we trying to overwrite a back ref for the root directory
1014                 * if so, just jump out, we're done
1015                 */
1016                if (search_key.objectid == search_key.offset)
1017                        return 1;
1018
1019                /* check all the names in this back reference to see
1020                 * if they are in the log.  if so, we allow them to stay
1021                 * otherwise they must be unlinked as a conflict
1022                 */
1023                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1024                ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1025                while (ptr < ptr_end) {
1026                        victim_ref = (struct btrfs_inode_ref *)ptr;
1027                        victim_name_len = btrfs_inode_ref_name_len(leaf,
1028                                                                   victim_ref);
1029                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1030                        if (!victim_name)
1031                                return -ENOMEM;
1032
1033                        read_extent_buffer(leaf, victim_name,
1034                                           (unsigned long)(victim_ref + 1),
1035                                           victim_name_len);
1036
1037                        if (!backref_in_log(log_root, &search_key,
1038                                            parent_objectid,
1039                                            victim_name,
1040                                            victim_name_len)) {
1041                                inc_nlink(&inode->vfs_inode);
1042                                btrfs_release_path(path);
1043
1044                                ret = btrfs_unlink_inode(trans, root, dir, inode,
1045                                                victim_name, victim_name_len);
1046                                kfree(victim_name);
1047                                if (ret)
1048                                        return ret;
1049                                ret = btrfs_run_delayed_items(trans);
1050                                if (ret)
1051                                        return ret;
1052                                *search_done = 1;
1053                                goto again;
1054                        }
1055                        kfree(victim_name);
1056
1057                        ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058                }
1059
1060                /*
1061                 * NOTE: we have searched root tree and checked the
1062                 * corresponding ref, it does not need to check again.
1063                 */
1064                *search_done = 1;
1065        }
1066        btrfs_release_path(path);
1067
1068        /* Same search but for extended refs */
1069        extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070                                           inode_objectid, parent_objectid, 0,
1071                                           0);
1072        if (!IS_ERR_OR_NULL(extref)) {
1073                u32 item_size;
1074                u32 cur_offset = 0;
1075                unsigned long base;
1076                struct inode *victim_parent;
1077
1078                leaf = path->nodes[0];
1079
1080                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081                base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082
1083                while (cur_offset < item_size) {
1084                        extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085
1086                        victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087
1088                        if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089                                goto next;
1090
1091                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092                        if (!victim_name)
1093                                return -ENOMEM;
1094                        read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095                                           victim_name_len);
1096
1097                        search_key.objectid = inode_objectid;
1098                        search_key.type = BTRFS_INODE_EXTREF_KEY;
1099                        search_key.offset = btrfs_extref_hash(parent_objectid,
1100                                                              victim_name,
1101                                                              victim_name_len);
1102                        ret = 0;
1103                        if (!backref_in_log(log_root, &search_key,
1104                                            parent_objectid, victim_name,
1105                                            victim_name_len)) {
1106                                ret = -ENOENT;
1107                                victim_parent = read_one_inode(root,
1108                                                parent_objectid);
1109                                if (victim_parent) {
1110                                        inc_nlink(&inode->vfs_inode);
1111                                        btrfs_release_path(path);
1112
1113                                        ret = btrfs_unlink_inode(trans, root,
1114                                                        BTRFS_I(victim_parent),
1115                                                        inode,
1116                                                        victim_name,
1117                                                        victim_name_len);
1118                                        if (!ret)
1119                                                ret = btrfs_run_delayed_items(
1120                                                                  trans);
1121                                }
1122                                iput(victim_parent);
1123                                kfree(victim_name);
1124                                if (ret)
1125                                        return ret;
1126                                *search_done = 1;
1127                                goto again;
1128                        }
1129                        kfree(victim_name);
1130next:
1131                        cur_offset += victim_name_len + sizeof(*extref);
1132                }
1133                *search_done = 1;
1134        }
1135        btrfs_release_path(path);
1136
1137        /* look for a conflicting sequence number */
1138        di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1139                                         ref_index, name, namelen, 0);
1140        if (di && !IS_ERR(di)) {
1141                ret = drop_one_dir_item(trans, root, path, dir, di);
1142                if (ret)
1143                        return ret;
1144        }
1145        btrfs_release_path(path);
1146
1147        /* look for a conflicing name */
1148        di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1149                                   name, namelen, 0);
1150        if (di && !IS_ERR(di)) {
1151                ret = drop_one_dir_item(trans, root, path, dir, di);
1152                if (ret)
1153                        return ret;
1154        }
1155        btrfs_release_path(path);
1156
1157        return 0;
1158}
1159
1160static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1161                             u32 *namelen, char **name, u64 *index,
1162                             u64 *parent_objectid)
1163{
1164        struct btrfs_inode_extref *extref;
1165
1166        extref = (struct btrfs_inode_extref *)ref_ptr;
1167
1168        *namelen = btrfs_inode_extref_name_len(eb, extref);
1169        *name = kmalloc(*namelen, GFP_NOFS);
1170        if (*name == NULL)
1171                return -ENOMEM;
1172
1173        read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1174                           *namelen);
1175
1176        if (index)
1177                *index = btrfs_inode_extref_index(eb, extref);
1178        if (parent_objectid)
1179                *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1180
1181        return 0;
1182}
1183
1184static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1185                          u32 *namelen, char **name, u64 *index)
1186{
1187        struct btrfs_inode_ref *ref;
1188
1189        ref = (struct btrfs_inode_ref *)ref_ptr;
1190
1191        *namelen = btrfs_inode_ref_name_len(eb, ref);
1192        *name = kmalloc(*namelen, GFP_NOFS);
1193        if (*name == NULL)
1194                return -ENOMEM;
1195
1196        read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1197
1198        if (index)
1199                *index = btrfs_inode_ref_index(eb, ref);
1200
1201        return 0;
1202}
1203
1204/*
1205 * Take an inode reference item from the log tree and iterate all names from the
1206 * inode reference item in the subvolume tree with the same key (if it exists).
1207 * For any name that is not in the inode reference item from the log tree, do a
1208 * proper unlink of that name (that is, remove its entry from the inode
1209 * reference item and both dir index keys).
1210 */
1211static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1212                                 struct btrfs_root *root,
1213                                 struct btrfs_path *path,
1214                                 struct btrfs_inode *inode,
1215                                 struct extent_buffer *log_eb,
1216                                 int log_slot,
1217                                 struct btrfs_key *key)
1218{
1219        int ret;
1220        unsigned long ref_ptr;
1221        unsigned long ref_end;
1222        struct extent_buffer *eb;
1223
1224again:
1225        btrfs_release_path(path);
1226        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1227        if (ret > 0) {
1228                ret = 0;
1229                goto out;
1230        }
1231        if (ret < 0)
1232                goto out;
1233
1234        eb = path->nodes[0];
1235        ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1236        ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1237        while (ref_ptr < ref_end) {
1238                char *name = NULL;
1239                int namelen;
1240                u64 parent_id;
1241
1242                if (key->type == BTRFS_INODE_EXTREF_KEY) {
1243                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1244                                                NULL, &parent_id);
1245                } else {
1246                        parent_id = key->offset;
1247                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1248                                             NULL);
1249                }
1250                if (ret)
1251                        goto out;
1252
1253                if (key->type == BTRFS_INODE_EXTREF_KEY)
1254                        ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1255                                                             parent_id, name,
1256                                                             namelen, NULL);
1257                else
1258                        ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1259                                                         namelen, NULL);
1260
1261                if (!ret) {
1262                        struct inode *dir;
1263
1264                        btrfs_release_path(path);
1265                        dir = read_one_inode(root, parent_id);
1266                        if (!dir) {
1267                                ret = -ENOENT;
1268                                kfree(name);
1269                                goto out;
1270                        }
1271                        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1272                                                 inode, name, namelen);
1273                        kfree(name);
1274                        iput(dir);
1275                        if (ret)
1276                                goto out;
1277                        goto again;
1278                }
1279
1280                kfree(name);
1281                ref_ptr += namelen;
1282                if (key->type == BTRFS_INODE_EXTREF_KEY)
1283                        ref_ptr += sizeof(struct btrfs_inode_extref);
1284                else
1285                        ref_ptr += sizeof(struct btrfs_inode_ref);
1286        }
1287        ret = 0;
1288 out:
1289        btrfs_release_path(path);
1290        return ret;
1291}
1292
1293static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1294                                  const u8 ref_type, const char *name,
1295                                  const int namelen)
1296{
1297        struct btrfs_key key;
1298        struct btrfs_path *path;
1299        const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1300        int ret;
1301
1302        path = btrfs_alloc_path();
1303        if (!path)
1304                return -ENOMEM;
1305
1306        key.objectid = btrfs_ino(BTRFS_I(inode));
1307        key.type = ref_type;
1308        if (key.type == BTRFS_INODE_REF_KEY)
1309                key.offset = parent_id;
1310        else
1311                key.offset = btrfs_extref_hash(parent_id, name, namelen);
1312
1313        ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1314        if (ret < 0)
1315                goto out;
1316        if (ret > 0) {
1317                ret = 0;
1318                goto out;
1319        }
1320        if (key.type == BTRFS_INODE_EXTREF_KEY)
1321                ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1322                                                     path->slots[0], parent_id,
1323                                                     name, namelen, NULL);
1324        else
1325                ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1326                                                 name, namelen, NULL);
1327
1328out:
1329        btrfs_free_path(path);
1330        return ret;
1331}
1332
1333/*
1334 * replay one inode back reference item found in the log tree.
1335 * eb, slot and key refer to the buffer and key found in the log tree.
1336 * root is the destination we are replaying into, and path is for temp
1337 * use by this function.  (it should be released on return).
1338 */
1339static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1340                                  struct btrfs_root *root,
1341                                  struct btrfs_root *log,
1342                                  struct btrfs_path *path,
1343                                  struct extent_buffer *eb, int slot,
1344                                  struct btrfs_key *key)
1345{
1346        struct inode *dir = NULL;
1347        struct inode *inode = NULL;
1348        unsigned long ref_ptr;
1349        unsigned long ref_end;
1350        char *name = NULL;
1351        int namelen;
1352        int ret;
1353        int search_done = 0;
1354        int log_ref_ver = 0;
1355        u64 parent_objectid;
1356        u64 inode_objectid;
1357        u64 ref_index = 0;
1358        int ref_struct_size;
1359
1360        ref_ptr = btrfs_item_ptr_offset(eb, slot);
1361        ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1362
1363        if (key->type == BTRFS_INODE_EXTREF_KEY) {
1364                struct btrfs_inode_extref *r;
1365
1366                ref_struct_size = sizeof(struct btrfs_inode_extref);
1367                log_ref_ver = 1;
1368                r = (struct btrfs_inode_extref *)ref_ptr;
1369                parent_objectid = btrfs_inode_extref_parent(eb, r);
1370        } else {
1371                ref_struct_size = sizeof(struct btrfs_inode_ref);
1372                parent_objectid = key->offset;
1373        }
1374        inode_objectid = key->objectid;
1375
1376        /*
1377         * it is possible that we didn't log all the parent directories
1378         * for a given inode.  If we don't find the dir, just don't
1379         * copy the back ref in.  The link count fixup code will take
1380         * care of the rest
1381         */
1382        dir = read_one_inode(root, parent_objectid);
1383        if (!dir) {
1384                ret = -ENOENT;
1385                goto out;
1386        }
1387
1388        inode = read_one_inode(root, inode_objectid);
1389        if (!inode) {
1390                ret = -EIO;
1391                goto out;
1392        }
1393
1394        while (ref_ptr < ref_end) {
1395                if (log_ref_ver) {
1396                        ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1397                                                &ref_index, &parent_objectid);
1398                        /*
1399                         * parent object can change from one array
1400                         * item to another.
1401                         */
1402                        if (!dir)
1403                                dir = read_one_inode(root, parent_objectid);
1404                        if (!dir) {
1405                                ret = -ENOENT;
1406                                goto out;
1407                        }
1408                } else {
1409                        ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1410                                             &ref_index);
1411                }
1412                if (ret)
1413                        goto out;
1414
1415                /* if we already have a perfect match, we're done */
1416                if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1417                                        btrfs_ino(BTRFS_I(inode)), ref_index,
1418                                        name, namelen)) {
1419                        /*
1420                         * look for a conflicting back reference in the
1421                         * metadata. if we find one we have to unlink that name
1422                         * of the file before we add our new link.  Later on, we
1423                         * overwrite any existing back reference, and we don't
1424                         * want to create dangling pointers in the directory.
1425                         */
1426
1427                        if (!search_done) {
1428                                ret = __add_inode_ref(trans, root, path, log,
1429                                                      BTRFS_I(dir),
1430                                                      BTRFS_I(inode),
1431                                                      inode_objectid,
1432                                                      parent_objectid,
1433                                                      ref_index, name, namelen,
1434                                                      &search_done);
1435                                if (ret) {
1436                                        if (ret == 1)
1437                                                ret = 0;
1438                                        goto out;
1439                                }
1440                        }
1441
1442                        /*
1443                         * If a reference item already exists for this inode
1444                         * with the same parent and name, but different index,
1445                         * drop it and the corresponding directory index entries
1446                         * from the parent before adding the new reference item
1447                         * and dir index entries, otherwise we would fail with
1448                         * -EEXIST returned from btrfs_add_link() below.
1449                         */
1450                        ret = btrfs_inode_ref_exists(inode, dir, key->type,
1451                                                     name, namelen);
1452                        if (ret > 0) {
1453                                ret = btrfs_unlink_inode(trans, root,
1454                                                         BTRFS_I(dir),
1455                                                         BTRFS_I(inode),
1456                                                         name, namelen);
1457                                /*
1458                                 * If we dropped the link count to 0, bump it so
1459                                 * that later the iput() on the inode will not
1460                                 * free it. We will fixup the link count later.
1461                                 */
1462                                if (!ret && inode->i_nlink == 0)
1463                                        inc_nlink(inode);
1464                        }
1465                        if (ret < 0)
1466                                goto out;
1467
1468                        /* insert our name */
1469                        ret = btrfs_add_link(trans, BTRFS_I(dir),
1470                                        BTRFS_I(inode),
1471                                        name, namelen, 0, ref_index);
1472                        if (ret)
1473                                goto out;
1474
1475                        btrfs_update_inode(trans, root, inode);
1476                }
1477
1478                ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1479                kfree(name);
1480                name = NULL;
1481                if (log_ref_ver) {
1482                        iput(dir);
1483                        dir = NULL;
1484                }
1485        }
1486
1487        /*
1488         * Before we overwrite the inode reference item in the subvolume tree
1489         * with the item from the log tree, we must unlink all names from the
1490         * parent directory that are in the subvolume's tree inode reference
1491         * item, otherwise we end up with an inconsistent subvolume tree where
1492         * dir index entries exist for a name but there is no inode reference
1493         * item with the same name.
1494         */
1495        ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1496                                    key);
1497        if (ret)
1498                goto out;
1499
1500        /* finally write the back reference in the inode */
1501        ret = overwrite_item(trans, root, path, eb, slot, key);
1502out:
1503        btrfs_release_path(path);
1504        kfree(name);
1505        iput(dir);
1506        iput(inode);
1507        return ret;
1508}
1509
1510static int insert_orphan_item(struct btrfs_trans_handle *trans,
1511                              struct btrfs_root *root, u64 ino)
1512{
1513        int ret;
1514
1515        ret = btrfs_insert_orphan_item(trans, root, ino);
1516        if (ret == -EEXIST)
1517                ret = 0;
1518
1519        return ret;
1520}
1521
1522static int count_inode_extrefs(struct btrfs_root *root,
1523                struct btrfs_inode *inode, struct btrfs_path *path)
1524{
1525        int ret = 0;
1526        int name_len;
1527        unsigned int nlink = 0;
1528        u32 item_size;
1529        u32 cur_offset = 0;
1530        u64 inode_objectid = btrfs_ino(inode);
1531        u64 offset = 0;
1532        unsigned long ptr;
1533        struct btrfs_inode_extref *extref;
1534        struct extent_buffer *leaf;
1535
1536        while (1) {
1537                ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1538                                            &extref, &offset);
1539                if (ret)
1540                        break;
1541
1542                leaf = path->nodes[0];
1543                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1544                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1545                cur_offset = 0;
1546
1547                while (cur_offset < item_size) {
1548                        extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1549                        name_len = btrfs_inode_extref_name_len(leaf, extref);
1550
1551                        nlink++;
1552
1553                        cur_offset += name_len + sizeof(*extref);
1554                }
1555
1556                offset++;
1557                btrfs_release_path(path);
1558        }
1559        btrfs_release_path(path);
1560
1561        if (ret < 0 && ret != -ENOENT)
1562                return ret;
1563        return nlink;
1564}
1565
1566static int count_inode_refs(struct btrfs_root *root,
1567                        struct btrfs_inode *inode, struct btrfs_path *path)
1568{
1569        int ret;
1570        struct btrfs_key key;
1571        unsigned int nlink = 0;
1572        unsigned long ptr;
1573        unsigned long ptr_end;
1574        int name_len;
1575        u64 ino = btrfs_ino(inode);
1576
1577        key.objectid = ino;
1578        key.type = BTRFS_INODE_REF_KEY;
1579        key.offset = (u64)-1;
1580
1581        while (1) {
1582                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1583                if (ret < 0)
1584                        break;
1585                if (ret > 0) {
1586                        if (path->slots[0] == 0)
1587                                break;
1588                        path->slots[0]--;
1589                }
1590process_slot:
1591                btrfs_item_key_to_cpu(path->nodes[0], &key,
1592                                      path->slots[0]);
1593                if (key.objectid != ino ||
1594                    key.type != BTRFS_INODE_REF_KEY)
1595                        break;
1596                ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1597                ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1598                                                   path->slots[0]);
1599                while (ptr < ptr_end) {
1600                        struct btrfs_inode_ref *ref;
1601
1602                        ref = (struct btrfs_inode_ref *)ptr;
1603                        name_len = btrfs_inode_ref_name_len(path->nodes[0],
1604                                                            ref);
1605                        ptr = (unsigned long)(ref + 1) + name_len;
1606                        nlink++;
1607                }
1608
1609                if (key.offset == 0)
1610                        break;
1611                if (path->slots[0] > 0) {
1612                        path->slots[0]--;
1613                        goto process_slot;
1614                }
1615                key.offset--;
1616                btrfs_release_path(path);
1617        }
1618        btrfs_release_path(path);
1619
1620        return nlink;
1621}
1622
1623/*
1624 * There are a few corners where the link count of the file can't
1625 * be properly maintained during replay.  So, instead of adding
1626 * lots of complexity to the log code, we just scan the backrefs
1627 * for any file that has been through replay.
1628 *
1629 * The scan will update the link count on the inode to reflect the
1630 * number of back refs found.  If it goes down to zero, the iput
1631 * will free the inode.
1632 */
1633static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1634                                           struct btrfs_root *root,
1635                                           struct inode *inode)
1636{
1637        struct btrfs_path *path;
1638        int ret;
1639        u64 nlink = 0;
1640        u64 ino = btrfs_ino(BTRFS_I(inode));
1641
1642        path = btrfs_alloc_path();
1643        if (!path)
1644                return -ENOMEM;
1645
1646        ret = count_inode_refs(root, BTRFS_I(inode), path);
1647        if (ret < 0)
1648                goto out;
1649
1650        nlink = ret;
1651
1652        ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1653        if (ret < 0)
1654                goto out;
1655
1656        nlink += ret;
1657
1658        ret = 0;
1659
1660        if (nlink != inode->i_nlink) {
1661                set_nlink(inode, nlink);
1662                btrfs_update_inode(trans, root, inode);
1663        }
1664        BTRFS_I(inode)->index_cnt = (u64)-1;
1665
1666        if (inode->i_nlink == 0) {
1667                if (S_ISDIR(inode->i_mode)) {
1668                        ret = replay_dir_deletes(trans, root, NULL, path,
1669                                                 ino, 1);
1670                        if (ret)
1671                                goto out;
1672                }
1673                ret = insert_orphan_item(trans, root, ino);
1674        }
1675
1676out:
1677        btrfs_free_path(path);
1678        return ret;
1679}
1680
1681static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1682                                            struct btrfs_root *root,
1683                                            struct btrfs_path *path)
1684{
1685        int ret;
1686        struct btrfs_key key;
1687        struct inode *inode;
1688
1689        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1690        key.type = BTRFS_ORPHAN_ITEM_KEY;
1691        key.offset = (u64)-1;
1692        while (1) {
1693                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1694                if (ret < 0)
1695                        break;
1696
1697                if (ret == 1) {
1698                        if (path->slots[0] == 0)
1699                                break;
1700                        path->slots[0]--;
1701                }
1702
1703                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1704                if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1705                    key.type != BTRFS_ORPHAN_ITEM_KEY)
1706                        break;
1707
1708                ret = btrfs_del_item(trans, root, path);
1709                if (ret)
1710                        goto out;
1711
1712                btrfs_release_path(path);
1713                inode = read_one_inode(root, key.offset);
1714                if (!inode)
1715                        return -EIO;
1716
1717                ret = fixup_inode_link_count(trans, root, inode);
1718                iput(inode);
1719                if (ret)
1720                        goto out;
1721
1722                /*
1723                 * fixup on a directory may create new entries,
1724                 * make sure we always look for the highset possible
1725                 * offset
1726                 */
1727                key.offset = (u64)-1;
1728        }
1729        ret = 0;
1730out:
1731        btrfs_release_path(path);
1732        return ret;
1733}
1734
1735
1736/*
1737 * record a given inode in the fixup dir so we can check its link
1738 * count when replay is done.  The link count is incremented here
1739 * so the inode won't go away until we check it
1740 */
1741static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1742                                      struct btrfs_root *root,
1743                                      struct btrfs_path *path,
1744                                      u64 objectid)
1745{
1746        struct btrfs_key key;
1747        int ret = 0;
1748        struct inode *inode;
1749
1750        inode = read_one_inode(root, objectid);
1751        if (!inode)
1752                return -EIO;
1753
1754        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1755        key.type = BTRFS_ORPHAN_ITEM_KEY;
1756        key.offset = objectid;
1757
1758        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1759
1760        btrfs_release_path(path);
1761        if (ret == 0) {
1762                if (!inode->i_nlink)
1763                        set_nlink(inode, 1);
1764                else
1765                        inc_nlink(inode);
1766                ret = btrfs_update_inode(trans, root, inode);
1767        } else if (ret == -EEXIST) {
1768                ret = 0;
1769        } else {
1770                BUG(); /* Logic Error */
1771        }
1772        iput(inode);
1773
1774        return ret;
1775}
1776
1777/*
1778 * when replaying the log for a directory, we only insert names
1779 * for inodes that actually exist.  This means an fsync on a directory
1780 * does not implicitly fsync all the new files in it
1781 */
1782static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1783                                    struct btrfs_root *root,
1784                                    u64 dirid, u64 index,
1785                                    char *name, int name_len,
1786                                    struct btrfs_key *location)
1787{
1788        struct inode *inode;
1789        struct inode *dir;
1790        int ret;
1791
1792        inode = read_one_inode(root, location->objectid);
1793        if (!inode)
1794                return -ENOENT;
1795
1796        dir = read_one_inode(root, dirid);
1797        if (!dir) {
1798                iput(inode);
1799                return -EIO;
1800        }
1801
1802        ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1803                        name_len, 1, index);
1804
1805        /* FIXME, put inode into FIXUP list */
1806
1807        iput(inode);
1808        iput(dir);
1809        return ret;
1810}
1811
1812/*
1813 * Return true if an inode reference exists in the log for the given name,
1814 * inode and parent inode.
1815 */
1816static bool name_in_log_ref(struct btrfs_root *log_root,
1817                            const char *name, const int name_len,
1818                            const u64 dirid, const u64 ino)
1819{
1820        struct btrfs_key search_key;
1821
1822        search_key.objectid = ino;
1823        search_key.type = BTRFS_INODE_REF_KEY;
1824        search_key.offset = dirid;
1825        if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1826                return true;
1827
1828        search_key.type = BTRFS_INODE_EXTREF_KEY;
1829        search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1830        if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1831                return true;
1832
1833        return false;
1834}
1835
1836/*
1837 * take a single entry in a log directory item and replay it into
1838 * the subvolume.
1839 *
1840 * if a conflicting item exists in the subdirectory already,
1841 * the inode it points to is unlinked and put into the link count
1842 * fix up tree.
1843 *
1844 * If a name from the log points to a file or directory that does
1845 * not exist in the FS, it is skipped.  fsyncs on directories
1846 * do not force down inodes inside that directory, just changes to the
1847 * names or unlinks in a directory.
1848 *
1849 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1850 * non-existing inode) and 1 if the name was replayed.
1851 */
1852static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1853                                    struct btrfs_root *root,
1854                                    struct btrfs_path *path,
1855                                    struct extent_buffer *eb,
1856                                    struct btrfs_dir_item *di,
1857                                    struct btrfs_key *key)
1858{
1859        char *name;
1860        int name_len;
1861        struct btrfs_dir_item *dst_di;
1862        struct btrfs_key found_key;
1863        struct btrfs_key log_key;
1864        struct inode *dir;
1865        u8 log_type;
1866        int exists;
1867        int ret = 0;
1868        bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1869        bool name_added = false;
1870
1871        dir = read_one_inode(root, key->objectid);
1872        if (!dir)
1873                return -EIO;
1874
1875        name_len = btrfs_dir_name_len(eb, di);
1876        name = kmalloc(name_len, GFP_NOFS);
1877        if (!name) {
1878                ret = -ENOMEM;
1879                goto out;
1880        }
1881
1882        log_type = btrfs_dir_type(eb, di);
1883        read_extent_buffer(eb, name, (unsigned long)(di + 1),
1884                   name_len);
1885
1886        btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1887        exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1888        if (exists == 0)
1889                exists = 1;
1890        else
1891                exists = 0;
1892        btrfs_release_path(path);
1893
1894        if (key->type == BTRFS_DIR_ITEM_KEY) {
1895                dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1896                                       name, name_len, 1);
1897        } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1898                dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1899                                                     key->objectid,
1900                                                     key->offset, name,
1901                                                     name_len, 1);
1902        } else {
1903                /* Corruption */
1904                ret = -EINVAL;
1905                goto out;
1906        }
1907        if (IS_ERR_OR_NULL(dst_di)) {
1908                /* we need a sequence number to insert, so we only
1909                 * do inserts for the BTRFS_DIR_INDEX_KEY types
1910                 */
1911                if (key->type != BTRFS_DIR_INDEX_KEY)
1912                        goto out;
1913                goto insert;
1914        }
1915
1916        btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1917        /* the existing item matches the logged item */
1918        if (found_key.objectid == log_key.objectid &&
1919            found_key.type == log_key.type &&
1920            found_key.offset == log_key.offset &&
1921            btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1922                update_size = false;
1923                goto out;
1924        }
1925
1926        /*
1927         * don't drop the conflicting directory entry if the inode
1928         * for the new entry doesn't exist
1929         */
1930        if (!exists)
1931                goto out;
1932
1933        ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1934        if (ret)
1935                goto out;
1936
1937        if (key->type == BTRFS_DIR_INDEX_KEY)
1938                goto insert;
1939out:
1940        btrfs_release_path(path);
1941        if (!ret && update_size) {
1942                btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1943                ret = btrfs_update_inode(trans, root, dir);
1944        }
1945        kfree(name);
1946        iput(dir);
1947        if (!ret && name_added)
1948                ret = 1;
1949        return ret;
1950
1951insert:
1952        if (name_in_log_ref(root->log_root, name, name_len,
1953                            key->objectid, log_key.objectid)) {
1954                /* The dentry will be added later. */
1955                ret = 0;
1956                update_size = false;
1957                goto out;
1958        }
1959        btrfs_release_path(path);
1960        ret = insert_one_name(trans, root, key->objectid, key->offset,
1961                              name, name_len, &log_key);
1962        if (ret && ret != -ENOENT && ret != -EEXIST)
1963                goto out;
1964        if (!ret)
1965                name_added = true;
1966        update_size = false;
1967        ret = 0;
1968        goto out;
1969}
1970
1971/*
1972 * find all the names in a directory item and reconcile them into
1973 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1974 * one name in a directory item, but the same code gets used for
1975 * both directory index types
1976 */
1977static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1978                                        struct btrfs_root *root,
1979                                        struct btrfs_path *path,
1980                                        struct extent_buffer *eb, int slot,
1981                                        struct btrfs_key *key)
1982{
1983        int ret = 0;
1984        u32 item_size = btrfs_item_size_nr(eb, slot);
1985        struct btrfs_dir_item *di;
1986        int name_len;
1987        unsigned long ptr;
1988        unsigned long ptr_end;
1989        struct btrfs_path *fixup_path = NULL;
1990
1991        ptr = btrfs_item_ptr_offset(eb, slot);
1992        ptr_end = ptr + item_size;
1993        while (ptr < ptr_end) {
1994                di = (struct btrfs_dir_item *)ptr;
1995                name_len = btrfs_dir_name_len(eb, di);
1996                ret = replay_one_name(trans, root, path, eb, di, key);
1997                if (ret < 0)
1998                        break;
1999                ptr = (unsigned long)(di + 1);
2000                ptr += name_len;
2001
2002                /*
2003                 * If this entry refers to a non-directory (directories can not
2004                 * have a link count > 1) and it was added in the transaction
2005                 * that was not committed, make sure we fixup the link count of
2006                 * the inode it the entry points to. Otherwise something like
2007                 * the following would result in a directory pointing to an
2008                 * inode with a wrong link that does not account for this dir
2009                 * entry:
2010                 *
2011                 * mkdir testdir
2012                 * touch testdir/foo
2013                 * touch testdir/bar
2014                 * sync
2015                 *
2016                 * ln testdir/bar testdir/bar_link
2017                 * ln testdir/foo testdir/foo_link
2018                 * xfs_io -c "fsync" testdir/bar
2019                 *
2020                 * <power failure>
2021                 *
2022                 * mount fs, log replay happens
2023                 *
2024                 * File foo would remain with a link count of 1 when it has two
2025                 * entries pointing to it in the directory testdir. This would
2026                 * make it impossible to ever delete the parent directory has
2027                 * it would result in stale dentries that can never be deleted.
2028                 */
2029                if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2030                        struct btrfs_key di_key;
2031
2032                        if (!fixup_path) {
2033                                fixup_path = btrfs_alloc_path();
2034                                if (!fixup_path) {
2035                                        ret = -ENOMEM;
2036                                        break;
2037                                }
2038                        }
2039
2040                        btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2041                        ret = link_to_fixup_dir(trans, root, fixup_path,
2042                                                di_key.objectid);
2043                        if (ret)
2044                                break;
2045                }
2046                ret = 0;
2047        }
2048        btrfs_free_path(fixup_path);
2049        return ret;
2050}
2051
2052/*
2053 * directory replay has two parts.  There are the standard directory
2054 * items in the log copied from the subvolume, and range items
2055 * created in the log while the subvolume was logged.
2056 *
2057 * The range items tell us which parts of the key space the log
2058 * is authoritative for.  During replay, if a key in the subvolume
2059 * directory is in a logged range item, but not actually in the log
2060 * that means it was deleted from the directory before the fsync
2061 * and should be removed.
2062 */
2063static noinline int find_dir_range(struct btrfs_root *root,
2064                                   struct btrfs_path *path,
2065                                   u64 dirid, int key_type,
2066                                   u64 *start_ret, u64 *end_ret)
2067{
2068        struct btrfs_key key;
2069        u64 found_end;
2070        struct btrfs_dir_log_item *item;
2071        int ret;
2072        int nritems;
2073
2074        if (*start_ret == (u64)-1)
2075                return 1;
2076
2077        key.objectid = dirid;
2078        key.type = key_type;
2079        key.offset = *start_ret;
2080
2081        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2082        if (ret < 0)
2083                goto out;
2084        if (ret > 0) {
2085                if (path->slots[0] == 0)
2086                        goto out;
2087                path->slots[0]--;
2088        }
2089        if (ret != 0)
2090                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2091
2092        if (key.type != key_type || key.objectid != dirid) {
2093                ret = 1;
2094                goto next;
2095        }
2096        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2097                              struct btrfs_dir_log_item);
2098        found_end = btrfs_dir_log_end(path->nodes[0], item);
2099
2100        if (*start_ret >= key.offset && *start_ret <= found_end) {
2101                ret = 0;
2102                *start_ret = key.offset;
2103                *end_ret = found_end;
2104                goto out;
2105        }
2106        ret = 1;
2107next:
2108        /* check the next slot in the tree to see if it is a valid item */
2109        nritems = btrfs_header_nritems(path->nodes[0]);
2110        path->slots[0]++;
2111        if (path->slots[0] >= nritems) {
2112                ret = btrfs_next_leaf(root, path);
2113                if (ret)
2114                        goto out;
2115        }
2116
2117        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2118
2119        if (key.type != key_type || key.objectid != dirid) {
2120                ret = 1;
2121                goto out;
2122        }
2123        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2124                              struct btrfs_dir_log_item);
2125        found_end = btrfs_dir_log_end(path->nodes[0], item);
2126        *start_ret = key.offset;
2127        *end_ret = found_end;
2128        ret = 0;
2129out:
2130        btrfs_release_path(path);
2131        return ret;
2132}
2133
2134/*
2135 * this looks for a given directory item in the log.  If the directory
2136 * item is not in the log, the item is removed and the inode it points
2137 * to is unlinked
2138 */
2139static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2140                                      struct btrfs_root *root,
2141                                      struct btrfs_root *log,
2142                                      struct btrfs_path *path,
2143                                      struct btrfs_path *log_path,
2144                                      struct inode *dir,
2145                                      struct btrfs_key *dir_key)
2146{
2147        int ret;
2148        struct extent_buffer *eb;
2149        int slot;
2150        u32 item_size;
2151        struct btrfs_dir_item *di;
2152        struct btrfs_dir_item *log_di;
2153        int name_len;
2154        unsigned long ptr;
2155        unsigned long ptr_end;
2156        char *name;
2157        struct inode *inode;
2158        struct btrfs_key location;
2159
2160again:
2161        eb = path->nodes[0];
2162        slot = path->slots[0];
2163        item_size = btrfs_item_size_nr(eb, slot);
2164        ptr = btrfs_item_ptr_offset(eb, slot);
2165        ptr_end = ptr + item_size;
2166        while (ptr < ptr_end) {
2167                di = (struct btrfs_dir_item *)ptr;
2168                name_len = btrfs_dir_name_len(eb, di);
2169                name = kmalloc(name_len, GFP_NOFS);
2170                if (!name) {
2171                        ret = -ENOMEM;
2172                        goto out;
2173                }
2174                read_extent_buffer(eb, name, (unsigned long)(di + 1),
2175                                  name_len);
2176                log_di = NULL;
2177                if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2178                        log_di = btrfs_lookup_dir_item(trans, log, log_path,
2179                                                       dir_key->objectid,
2180                                                       name, name_len, 0);
2181                } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2182                        log_di = btrfs_lookup_dir_index_item(trans, log,
2183                                                     log_path,
2184                                                     dir_key->objectid,
2185                                                     dir_key->offset,
2186                                                     name, name_len, 0);
2187                }
2188                if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2189                        btrfs_dir_item_key_to_cpu(eb, di, &location);
2190                        btrfs_release_path(path);
2191                        btrfs_release_path(log_path);
2192                        inode = read_one_inode(root, location.objectid);
2193                        if (!inode) {
2194                                kfree(name);
2195                                return -EIO;
2196                        }
2197
2198                        ret = link_to_fixup_dir(trans, root,
2199                                                path, location.objectid);
2200                        if (ret) {
2201                                kfree(name);
2202                                iput(inode);
2203                                goto out;
2204                        }
2205
2206                        inc_nlink(inode);
2207                        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2208                                        BTRFS_I(inode), name, name_len);
2209                        if (!ret)
2210                                ret = btrfs_run_delayed_items(trans);
2211                        kfree(name);
2212                        iput(inode);
2213                        if (ret)
2214                                goto out;
2215
2216                        /* there might still be more names under this key
2217                         * check and repeat if required
2218                         */
2219                        ret = btrfs_search_slot(NULL, root, dir_key, path,
2220                                                0, 0);
2221                        if (ret == 0)
2222                                goto again;
2223                        ret = 0;
2224                        goto out;
2225                } else if (IS_ERR(log_di)) {
2226                        kfree(name);
2227                        return PTR_ERR(log_di);
2228                }
2229                btrfs_release_path(log_path);
2230                kfree(name);
2231
2232                ptr = (unsigned long)(di + 1);
2233                ptr += name_len;
2234        }
2235        ret = 0;
2236out:
2237        btrfs_release_path(path);
2238        btrfs_release_path(log_path);
2239        return ret;
2240}
2241
2242static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2243                              struct btrfs_root *root,
2244                              struct btrfs_root *log,
2245                              struct btrfs_path *path,
2246                              const u64 ino)
2247{
2248        struct btrfs_key search_key;
2249        struct btrfs_path *log_path;
2250        int i;
2251        int nritems;
2252        int ret;
2253
2254        log_path = btrfs_alloc_path();
2255        if (!log_path)
2256                return -ENOMEM;
2257
2258        search_key.objectid = ino;
2259        search_key.type = BTRFS_XATTR_ITEM_KEY;
2260        search_key.offset = 0;
2261again:
2262        ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2263        if (ret < 0)
2264                goto out;
2265process_leaf:
2266        nritems = btrfs_header_nritems(path->nodes[0]);
2267        for (i = path->slots[0]; i < nritems; i++) {
2268                struct btrfs_key key;
2269                struct btrfs_dir_item *di;
2270                struct btrfs_dir_item *log_di;
2271                u32 total_size;
2272                u32 cur;
2273
2274                btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2275                if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2276                        ret = 0;
2277                        goto out;
2278                }
2279
2280                di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2281                total_size = btrfs_item_size_nr(path->nodes[0], i);
2282                cur = 0;
2283                while (cur < total_size) {
2284                        u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2285                        u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2286                        u32 this_len = sizeof(*di) + name_len + data_len;
2287                        char *name;
2288
2289                        name = kmalloc(name_len, GFP_NOFS);
2290                        if (!name) {
2291                                ret = -ENOMEM;
2292                                goto out;
2293                        }
2294                        read_extent_buffer(path->nodes[0], name,
2295                                           (unsigned long)(di + 1), name_len);
2296
2297                        log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2298                                                    name, name_len, 0);
2299                        btrfs_release_path(log_path);
2300                        if (!log_di) {
2301                                /* Doesn't exist in log tree, so delete it. */
2302                                btrfs_release_path(path);
2303                                di = btrfs_lookup_xattr(trans, root, path, ino,
2304                                                        name, name_len, -1);
2305                                kfree(name);
2306                                if (IS_ERR(di)) {
2307                                        ret = PTR_ERR(di);
2308                                        goto out;
2309                                }
2310                                ASSERT(di);
2311                                ret = btrfs_delete_one_dir_name(trans, root,
2312                                                                path, di);
2313                                if (ret)
2314                                        goto out;
2315                                btrfs_release_path(path);
2316                                search_key = key;
2317                                goto again;
2318                        }
2319                        kfree(name);
2320                        if (IS_ERR(log_di)) {
2321                                ret = PTR_ERR(log_di);
2322                                goto out;
2323                        }
2324                        cur += this_len;
2325                        di = (struct btrfs_dir_item *)((char *)di + this_len);
2326                }
2327        }
2328        ret = btrfs_next_leaf(root, path);
2329        if (ret > 0)
2330                ret = 0;
2331        else if (ret == 0)
2332                goto process_leaf;
2333out:
2334        btrfs_free_path(log_path);
2335        btrfs_release_path(path);
2336        return ret;
2337}
2338
2339
2340/*
2341 * deletion replay happens before we copy any new directory items
2342 * out of the log or out of backreferences from inodes.  It
2343 * scans the log to find ranges of keys that log is authoritative for,
2344 * and then scans the directory to find items in those ranges that are
2345 * not present in the log.
2346 *
2347 * Anything we don't find in the log is unlinked and removed from the
2348 * directory.
2349 */
2350static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2351                                       struct btrfs_root *root,
2352                                       struct btrfs_root *log,
2353                                       struct btrfs_path *path,
2354                                       u64 dirid, int del_all)
2355{
2356        u64 range_start;
2357        u64 range_end;
2358        int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2359        int ret = 0;
2360        struct btrfs_key dir_key;
2361        struct btrfs_key found_key;
2362        struct btrfs_path *log_path;
2363        struct inode *dir;
2364
2365        dir_key.objectid = dirid;
2366        dir_key.type = BTRFS_DIR_ITEM_KEY;
2367        log_path = btrfs_alloc_path();
2368        if (!log_path)
2369                return -ENOMEM;
2370
2371        dir = read_one_inode(root, dirid);
2372        /* it isn't an error if the inode isn't there, that can happen
2373         * because we replay the deletes before we copy in the inode item
2374         * from the log
2375         */
2376        if (!dir) {
2377                btrfs_free_path(log_path);
2378                return 0;
2379        }
2380again:
2381        range_start = 0;
2382        range_end = 0;
2383        while (1) {
2384                if (del_all)
2385                        range_end = (u64)-1;
2386                else {
2387                        ret = find_dir_range(log, path, dirid, key_type,
2388                                             &range_start, &range_end);
2389                        if (ret != 0)
2390                                break;
2391                }
2392
2393                dir_key.offset = range_start;
2394                while (1) {
2395                        int nritems;
2396                        ret = btrfs_search_slot(NULL, root, &dir_key, path,
2397                                                0, 0);
2398                        if (ret < 0)
2399                                goto out;
2400
2401                        nritems = btrfs_header_nritems(path->nodes[0]);
2402                        if (path->slots[0] >= nritems) {
2403                                ret = btrfs_next_leaf(root, path);
2404                                if (ret == 1)
2405                                        break;
2406                                else if (ret < 0)
2407                                        goto out;
2408                        }
2409                        btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2410                                              path->slots[0]);
2411                        if (found_key.objectid != dirid ||
2412                            found_key.type != dir_key.type)
2413                                goto next_type;
2414
2415                        if (found_key.offset > range_end)
2416                                break;
2417
2418                        ret = check_item_in_log(trans, root, log, path,
2419                                                log_path, dir,
2420                                                &found_key);
2421                        if (ret)
2422                                goto out;
2423                        if (found_key.offset == (u64)-1)
2424                                break;
2425                        dir_key.offset = found_key.offset + 1;
2426                }
2427                btrfs_release_path(path);
2428                if (range_end == (u64)-1)
2429                        break;
2430                range_start = range_end + 1;
2431        }
2432
2433next_type:
2434        ret = 0;
2435        if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2436                key_type = BTRFS_DIR_LOG_INDEX_KEY;
2437                dir_key.type = BTRFS_DIR_INDEX_KEY;
2438                btrfs_release_path(path);
2439                goto again;
2440        }
2441out:
2442        btrfs_release_path(path);
2443        btrfs_free_path(log_path);
2444        iput(dir);
2445        return ret;
2446}
2447
2448/*
2449 * the process_func used to replay items from the log tree.  This
2450 * gets called in two different stages.  The first stage just looks
2451 * for inodes and makes sure they are all copied into the subvolume.
2452 *
2453 * The second stage copies all the other item types from the log into
2454 * the subvolume.  The two stage approach is slower, but gets rid of
2455 * lots of complexity around inodes referencing other inodes that exist
2456 * only in the log (references come from either directory items or inode
2457 * back refs).
2458 */
2459static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2460                             struct walk_control *wc, u64 gen, int level)
2461{
2462        int nritems;
2463        struct btrfs_path *path;
2464        struct btrfs_root *root = wc->replay_dest;
2465        struct btrfs_key key;
2466        int i;
2467        int ret;
2468
2469        ret = btrfs_read_buffer(eb, gen, level, NULL);
2470        if (ret)
2471                return ret;
2472
2473        level = btrfs_header_level(eb);
2474
2475        if (level != 0)
2476                return 0;
2477
2478        path = btrfs_alloc_path();
2479        if (!path)
2480                return -ENOMEM;
2481
2482        nritems = btrfs_header_nritems(eb);
2483        for (i = 0; i < nritems; i++) {
2484                btrfs_item_key_to_cpu(eb, &key, i);
2485
2486                /* inode keys are done during the first stage */
2487                if (key.type == BTRFS_INODE_ITEM_KEY &&
2488                    wc->stage == LOG_WALK_REPLAY_INODES) {
2489                        struct btrfs_inode_item *inode_item;
2490                        u32 mode;
2491
2492                        inode_item = btrfs_item_ptr(eb, i,
2493                                            struct btrfs_inode_item);
2494                        /*
2495                         * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2496                         * and never got linked before the fsync, skip it, as
2497                         * replaying it is pointless since it would be deleted
2498                         * later. We skip logging tmpfiles, but it's always
2499                         * possible we are replaying a log created with a kernel
2500                         * that used to log tmpfiles.
2501                         */
2502                        if (btrfs_inode_nlink(eb, inode_item) == 0) {
2503                                wc->ignore_cur_inode = true;
2504                                continue;
2505                        } else {
2506                                wc->ignore_cur_inode = false;
2507                        }
2508                        ret = replay_xattr_deletes(wc->trans, root, log,
2509                                                   path, key.objectid);
2510                        if (ret)
2511                                break;
2512                        mode = btrfs_inode_mode(eb, inode_item);
2513                        if (S_ISDIR(mode)) {
2514                                ret = replay_dir_deletes(wc->trans,
2515                                         root, log, path, key.objectid, 0);
2516                                if (ret)
2517                                        break;
2518                        }
2519                        ret = overwrite_item(wc->trans, root, path,
2520                                             eb, i, &key);
2521                        if (ret)
2522                                break;
2523
2524                        /*
2525                         * Before replaying extents, truncate the inode to its
2526                         * size. We need to do it now and not after log replay
2527                         * because before an fsync we can have prealloc extents
2528                         * added beyond the inode's i_size. If we did it after,
2529                         * through orphan cleanup for example, we would drop
2530                         * those prealloc extents just after replaying them.
2531                         */
2532                        if (S_ISREG(mode)) {
2533                                struct inode *inode;
2534                                u64 from;
2535
2536                                inode = read_one_inode(root, key.objectid);
2537                                if (!inode) {
2538                                        ret = -EIO;
2539                                        break;
2540                                }
2541                                from = ALIGN(i_size_read(inode),
2542                                             root->fs_info->sectorsize);
2543                                ret = btrfs_drop_extents(wc->trans, root, inode,
2544                                                         from, (u64)-1, 1);
2545                                if (!ret) {
2546                                        /* Update the inode's nbytes. */
2547                                        ret = btrfs_update_inode(wc->trans,
2548                                                                 root, inode);
2549                                }
2550                                iput(inode);
2551                                if (ret)
2552                                        break;
2553                        }
2554
2555                        ret = link_to_fixup_dir(wc->trans, root,
2556                                                path, key.objectid);
2557                        if (ret)
2558                                break;
2559                }
2560
2561                if (wc->ignore_cur_inode)
2562                        continue;
2563
2564                if (key.type == BTRFS_DIR_INDEX_KEY &&
2565                    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2566                        ret = replay_one_dir_item(wc->trans, root, path,
2567                                                  eb, i, &key);
2568                        if (ret)
2569                                break;
2570                }
2571
2572                if (wc->stage < LOG_WALK_REPLAY_ALL)
2573                        continue;
2574
2575                /* these keys are simply copied */
2576                if (key.type == BTRFS_XATTR_ITEM_KEY) {
2577                        ret = overwrite_item(wc->trans, root, path,
2578                                             eb, i, &key);
2579                        if (ret)
2580                                break;
2581                } else if (key.type == BTRFS_INODE_REF_KEY ||
2582                           key.type == BTRFS_INODE_EXTREF_KEY) {
2583                        ret = add_inode_ref(wc->trans, root, log, path,
2584                                            eb, i, &key);
2585                        if (ret && ret != -ENOENT)
2586                                break;
2587                        ret = 0;
2588                } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2589                        ret = replay_one_extent(wc->trans, root, path,
2590                                                eb, i, &key);
2591                        if (ret)
2592                                break;
2593                } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2594                        ret = replay_one_dir_item(wc->trans, root, path,
2595                                                  eb, i, &key);
2596                        if (ret)
2597                                break;
2598                }
2599        }
2600        btrfs_free_path(path);
2601        return ret;
2602}
2603
2604static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2605                                   struct btrfs_root *root,
2606                                   struct btrfs_path *path, int *level,
2607                                   struct walk_control *wc)
2608{
2609        struct btrfs_fs_info *fs_info = root->fs_info;
2610        u64 root_owner;
2611        u64 bytenr;
2612        u64 ptr_gen;
2613        struct extent_buffer *next;
2614        struct extent_buffer *cur;
2615        struct extent_buffer *parent;
2616        u32 blocksize;
2617        int ret = 0;
2618
2619        WARN_ON(*level < 0);
2620        WARN_ON(*level >= BTRFS_MAX_LEVEL);
2621
2622        while (*level > 0) {
2623                struct btrfs_key first_key;
2624
2625                WARN_ON(*level < 0);
2626                WARN_ON(*level >= BTRFS_MAX_LEVEL);
2627                cur = path->nodes[*level];
2628
2629                WARN_ON(btrfs_header_level(cur) != *level);
2630
2631                if (path->slots[*level] >=
2632                    btrfs_header_nritems(cur))
2633                        break;
2634
2635                bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2636                ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2637                btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2638                blocksize = fs_info->nodesize;
2639
2640                parent = path->nodes[*level];
2641                root_owner = btrfs_header_owner(parent);
2642
2643                next = btrfs_find_create_tree_block(fs_info, bytenr);
2644                if (IS_ERR(next))
2645                        return PTR_ERR(next);
2646
2647                if (*level == 1) {
2648                        ret = wc->process_func(root, next, wc, ptr_gen,
2649                                               *level - 1);
2650                        if (ret) {
2651                                free_extent_buffer(next);
2652                                return ret;
2653                        }
2654
2655                        path->slots[*level]++;
2656                        if (wc->free) {
2657                                ret = btrfs_read_buffer(next, ptr_gen,
2658                                                        *level - 1, &first_key);
2659                                if (ret) {
2660                                        free_extent_buffer(next);
2661                                        return ret;
2662                                }
2663
2664                                if (trans) {
2665                                        btrfs_tree_lock(next);
2666                                        btrfs_set_lock_blocking(next);
2667                                        clean_tree_block(fs_info, next);
2668                                        btrfs_wait_tree_block_writeback(next);
2669                                        btrfs_tree_unlock(next);
2670                                } else {
2671                                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2672                                                clear_extent_buffer_dirty(next);
2673                                }
2674
2675                                WARN_ON(root_owner !=
2676                                        BTRFS_TREE_LOG_OBJECTID);
2677                                ret = btrfs_free_and_pin_reserved_extent(
2678                                                        fs_info, bytenr,
2679                                                        blocksize);
2680                                if (ret) {
2681                                        free_extent_buffer(next);
2682                                        return ret;
2683                                }
2684                        }
2685                        free_extent_buffer(next);
2686                        continue;
2687                }
2688                ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2689                if (ret) {
2690                        free_extent_buffer(next);
2691                        return ret;
2692                }
2693
2694                WARN_ON(*level <= 0);
2695                if (path->nodes[*level-1])
2696                        free_extent_buffer(path->nodes[*level-1]);
2697                path->nodes[*level-1] = next;
2698                *level = btrfs_header_level(next);
2699                path->slots[*level] = 0;
2700                cond_resched();
2701        }
2702        WARN_ON(*level < 0);
2703        WARN_ON(*level >= BTRFS_MAX_LEVEL);
2704
2705        path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2706
2707        cond_resched();
2708        return 0;
2709}
2710
2711static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2712                                 struct btrfs_root *root,
2713                                 struct btrfs_path *path, int *level,
2714                                 struct walk_control *wc)
2715{
2716        struct btrfs_fs_info *fs_info = root->fs_info;
2717        u64 root_owner;
2718        int i;
2719        int slot;
2720        int ret;
2721
2722        for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2723                slot = path->slots[i];
2724                if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2725                        path->slots[i]++;
2726                        *level = i;
2727                        WARN_ON(*level == 0);
2728                        return 0;
2729                } else {
2730                        struct extent_buffer *parent;
2731                        if (path->nodes[*level] == root->node)
2732                                parent = path->nodes[*level];
2733                        else
2734                                parent = path->nodes[*level + 1];
2735
2736                        root_owner = btrfs_header_owner(parent);
2737                        ret = wc->process_func(root, path->nodes[*level], wc,
2738                                 btrfs_header_generation(path->nodes[*level]),
2739                                 *level);
2740                        if (ret)
2741                                return ret;
2742
2743                        if (wc->free) {
2744                                struct extent_buffer *next;
2745
2746                                next = path->nodes[*level];
2747
2748                                if (trans) {
2749                                        btrfs_tree_lock(next);
2750                                        btrfs_set_lock_blocking(next);
2751                                        clean_tree_block(fs_info, next);
2752                                        btrfs_wait_tree_block_writeback(next);
2753                                        btrfs_tree_unlock(next);
2754                                } else {
2755                                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2756                                                clear_extent_buffer_dirty(next);
2757                                }
2758
2759                                WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2760                                ret = btrfs_free_and_pin_reserved_extent(
2761                                                fs_info,
2762                                                path->nodes[*level]->start,
2763                                                path->nodes[*level]->len);
2764                                if (ret)
2765                                        return ret;
2766                        }
2767                        free_extent_buffer(path->nodes[*level]);
2768                        path->nodes[*level] = NULL;
2769                        *level = i + 1;
2770                }
2771        }
2772        return 1;
2773}
2774
2775/*
2776 * drop the reference count on the tree rooted at 'snap'.  This traverses
2777 * the tree freeing any blocks that have a ref count of zero after being
2778 * decremented.
2779 */
2780static int walk_log_tree(struct btrfs_trans_handle *trans,
2781                         struct btrfs_root *log, struct walk_control *wc)
2782{
2783        struct btrfs_fs_info *fs_info = log->fs_info;
2784        int ret = 0;
2785        int wret;
2786        int level;
2787        struct btrfs_path *path;
2788        int orig_level;
2789
2790        path = btrfs_alloc_path();
2791        if (!path)
2792                return -ENOMEM;
2793
2794        level = btrfs_header_level(log->node);
2795        orig_level = level;
2796        path->nodes[level] = log->node;
2797        extent_buffer_get(log->node);
2798        path->slots[level] = 0;
2799
2800        while (1) {
2801                wret = walk_down_log_tree(trans, log, path, &level, wc);
2802                if (wret > 0)
2803                        break;
2804                if (wret < 0) {
2805                        ret = wret;
2806                        goto out;
2807                }
2808
2809                wret = walk_up_log_tree(trans, log, path, &level, wc);
2810                if (wret > 0)
2811                        break;
2812                if (wret < 0) {
2813                        ret = wret;
2814                        goto out;
2815                }
2816        }
2817
2818        /* was the root node processed? if not, catch it here */
2819        if (path->nodes[orig_level]) {
2820                ret = wc->process_func(log, path->nodes[orig_level], wc,
2821                         btrfs_header_generation(path->nodes[orig_level]),
2822                         orig_level);
2823                if (ret)
2824                        goto out;
2825                if (wc->free) {
2826                        struct extent_buffer *next;
2827
2828                        next = path->nodes[orig_level];
2829
2830                        if (trans) {
2831                                btrfs_tree_lock(next);
2832                                btrfs_set_lock_blocking(next);
2833                                clean_tree_block(fs_info, next);
2834                                btrfs_wait_tree_block_writeback(next);
2835                                btrfs_tree_unlock(next);
2836                        } else {
2837                                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2838                                        clear_extent_buffer_dirty(next);
2839                        }
2840
2841                        WARN_ON(log->root_key.objectid !=
2842                                BTRFS_TREE_LOG_OBJECTID);
2843                        ret = btrfs_free_and_pin_reserved_extent(fs_info,
2844                                                        next->start, next->len);
2845                        if (ret)
2846                                goto out;
2847                }
2848        }
2849
2850out:
2851        btrfs_free_path(path);
2852        return ret;
2853}
2854
2855/*
2856 * helper function to update the item for a given subvolumes log root
2857 * in the tree of log roots
2858 */
2859static int update_log_root(struct btrfs_trans_handle *trans,
2860                           struct btrfs_root *log)
2861{
2862        struct btrfs_fs_info *fs_info = log->fs_info;
2863        int ret;
2864
2865        if (log->log_transid == 1) {
2866                /* insert root item on the first sync */
2867                ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2868                                &log->root_key, &log->root_item);
2869        } else {
2870                ret = btrfs_update_root(trans, fs_info->log_root_tree,
2871                                &log->root_key, &log->root_item);
2872        }
2873        return ret;
2874}
2875
2876static void wait_log_commit(struct btrfs_root *root, int transid)
2877{
2878        DEFINE_WAIT(wait);
2879        int index = transid % 2;
2880
2881        /*
2882         * we only allow two pending log transactions at a time,
2883         * so we know that if ours is more than 2 older than the
2884         * current transaction, we're done
2885         */
2886        for (;;) {
2887                prepare_to_wait(&root->log_commit_wait[index],
2888                                &wait, TASK_UNINTERRUPTIBLE);
2889
2890                if (!(root->log_transid_committed < transid &&
2891                      atomic_read(&root->log_commit[index])))
2892                        break;
2893
2894                mutex_unlock(&root->log_mutex);
2895                schedule();
2896                mutex_lock(&root->log_mutex);
2897        }
2898        finish_wait(&root->log_commit_wait[index], &wait);
2899}
2900
2901static void wait_for_writer(struct btrfs_root *root)
2902{
2903        DEFINE_WAIT(wait);
2904
2905        for (;;) {
2906                prepare_to_wait(&root->log_writer_wait, &wait,
2907                                TASK_UNINTERRUPTIBLE);
2908                if (!atomic_read(&root->log_writers))
2909                        break;
2910
2911                mutex_unlock(&root->log_mutex);
2912                schedule();
2913                mutex_lock(&root->log_mutex);
2914        }
2915        finish_wait(&root->log_writer_wait, &wait);
2916}
2917
2918static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2919                                        struct btrfs_log_ctx *ctx)
2920{
2921        if (!ctx)
2922                return;
2923
2924        mutex_lock(&root->log_mutex);
2925        list_del_init(&ctx->list);
2926        mutex_unlock(&root->log_mutex);
2927}
2928
2929/* 
2930 * Invoked in log mutex context, or be sure there is no other task which
2931 * can access the list.
2932 */
2933static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2934                                             int index, int error)
2935{
2936        struct btrfs_log_ctx *ctx;
2937        struct btrfs_log_ctx *safe;
2938
2939        list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2940                list_del_init(&ctx->list);
2941                ctx->log_ret = error;
2942        }
2943
2944        INIT_LIST_HEAD(&root->log_ctxs[index]);
2945}
2946
2947/*
2948 * btrfs_sync_log does sends a given tree log down to the disk and
2949 * updates the super blocks to record it.  When this call is done,
2950 * you know that any inodes previously logged are safely on disk only
2951 * if it returns 0.
2952 *
2953 * Any other return value means you need to call btrfs_commit_transaction.
2954 * Some of the edge cases for fsyncing directories that have had unlinks
2955 * or renames done in the past mean that sometimes the only safe
2956 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2957 * that has happened.
2958 */
2959int btrfs_sync_log(struct btrfs_trans_handle *trans,
2960                   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2961{
2962        int index1;
2963        int index2;
2964        int mark;
2965        int ret;
2966        struct btrfs_fs_info *fs_info = root->fs_info;
2967        struct btrfs_root *log = root->log_root;
2968        struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2969        int log_transid = 0;
2970        struct btrfs_log_ctx root_log_ctx;
2971        struct blk_plug plug;
2972
2973        mutex_lock(&root->log_mutex);
2974        log_transid = ctx->log_transid;
2975        if (root->log_transid_committed >= log_transid) {
2976                mutex_unlock(&root->log_mutex);
2977                return ctx->log_ret;
2978        }
2979
2980        index1 = log_transid % 2;
2981        if (atomic_read(&root->log_commit[index1])) {
2982                wait_log_commit(root, log_transid);
2983                mutex_unlock(&root->log_mutex);
2984                return ctx->log_ret;
2985        }
2986        ASSERT(log_transid == root->log_transid);
2987        atomic_set(&root->log_commit[index1], 1);
2988
2989        /* wait for previous tree log sync to complete */
2990        if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2991                wait_log_commit(root, log_transid - 1);
2992
2993        while (1) {
2994                int batch = atomic_read(&root->log_batch);
2995                /* when we're on an ssd, just kick the log commit out */
2996                if (!btrfs_test_opt(fs_info, SSD) &&
2997                    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2998                        mutex_unlock(&root->log_mutex);
2999                        schedule_timeout_uninterruptible(1);
3000                        mutex_lock(&root->log_mutex);
3001                }
3002                wait_for_writer(root);
3003                if (batch == atomic_read(&root->log_batch))
3004                        break;
3005        }
3006
3007        /* bail out if we need to do a full commit */
3008        if (btrfs_need_log_full_commit(fs_info, trans)) {
3009                ret = -EAGAIN;
3010                mutex_unlock(&root->log_mutex);
3011                goto out;
3012        }
3013
3014        if (log_transid % 2 == 0)
3015                mark = EXTENT_DIRTY;
3016        else
3017                mark = EXTENT_NEW;
3018
3019        /* we start IO on  all the marked extents here, but we don't actually
3020         * wait for them until later.
3021         */
3022        blk_start_plug(&plug);
3023        ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3024        if (ret) {
3025                blk_finish_plug(&plug);
3026                btrfs_abort_transaction(trans, ret);
3027                btrfs_set_log_full_commit(fs_info, trans);
3028                mutex_unlock(&root->log_mutex);
3029                goto out;
3030        }
3031
3032        btrfs_set_root_node(&log->root_item, log->node);
3033
3034        root->log_transid++;
3035        log->log_transid = root->log_transid;
3036        root->log_start_pid = 0;
3037        /*
3038         * IO has been started, blocks of the log tree have WRITTEN flag set
3039         * in their headers. new modifications of the log will be written to
3040         * new positions. so it's safe to allow log writers to go in.
3041         */
3042        mutex_unlock(&root->log_mutex);
3043
3044        btrfs_init_log_ctx(&root_log_ctx, NULL);
3045
3046        mutex_lock(&log_root_tree->log_mutex);
3047        atomic_inc(&log_root_tree->log_batch);
3048        atomic_inc(&log_root_tree->log_writers);
3049
3050        index2 = log_root_tree->log_transid % 2;
3051        list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3052        root_log_ctx.log_transid = log_root_tree->log_transid;
3053
3054        mutex_unlock(&log_root_tree->log_mutex);
3055
3056        ret = update_log_root(trans, log);
3057
3058        mutex_lock(&log_root_tree->log_mutex);
3059        if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3060                /* atomic_dec_and_test implies a barrier */
3061                cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3062        }
3063
3064        if (ret) {
3065                if (!list_empty(&root_log_ctx.list))
3066                        list_del_init(&root_log_ctx.list);
3067
3068                blk_finish_plug(&plug);
3069                btrfs_set_log_full_commit(fs_info, trans);
3070
3071                if (ret != -ENOSPC) {
3072                        btrfs_abort_transaction(trans, ret);
3073                        mutex_unlock(&log_root_tree->log_mutex);
3074                        goto out;
3075                }
3076                btrfs_wait_tree_log_extents(log, mark);
3077                mutex_unlock(&log_root_tree->log_mutex);
3078                ret = -EAGAIN;
3079                goto out;
3080        }
3081
3082        if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3083                blk_finish_plug(&plug);
3084                list_del_init(&root_log_ctx.list);
3085                mutex_unlock(&log_root_tree->log_mutex);
3086                ret = root_log_ctx.log_ret;
3087                goto out;
3088        }
3089
3090        index2 = root_log_ctx.log_transid % 2;
3091        if (atomic_read(&log_root_tree->log_commit[index2])) {
3092                blk_finish_plug(&plug);
3093                ret = btrfs_wait_tree_log_extents(log, mark);
3094                wait_log_commit(log_root_tree,
3095                                root_log_ctx.log_transid);
3096                mutex_unlock(&log_root_tree->log_mutex);
3097                if (!ret)
3098                        ret = root_log_ctx.log_ret;
3099                goto out;
3100        }
3101        ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3102        atomic_set(&log_root_tree->log_commit[index2], 1);
3103
3104        if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3105                wait_log_commit(log_root_tree,
3106                                root_log_ctx.log_transid - 1);
3107        }
3108
3109        wait_for_writer(log_root_tree);
3110
3111        /*
3112         * now that we've moved on to the tree of log tree roots,
3113         * check the full commit flag again
3114         */
3115        if (btrfs_need_log_full_commit(fs_info, trans)) {
3116                blk_finish_plug(&plug);
3117                btrfs_wait_tree_log_extents(log, mark);
3118                mutex_unlock(&log_root_tree->log_mutex);
3119                ret = -EAGAIN;
3120                goto out_wake_log_root;
3121        }
3122
3123        ret = btrfs_write_marked_extents(fs_info,
3124                                         &log_root_tree->dirty_log_pages,
3125                                         EXTENT_DIRTY | EXTENT_NEW);
3126        blk_finish_plug(&plug);
3127        if (ret) {
3128                btrfs_set_log_full_commit(fs_info, trans);
3129                btrfs_abort_transaction(trans, ret);
3130                mutex_unlock(&log_root_tree->log_mutex);
3131                goto out_wake_log_root;
3132        }
3133        ret = btrfs_wait_tree_log_extents(log, mark);
3134        if (!ret)
3135                ret = btrfs_wait_tree_log_extents(log_root_tree,
3136                                                  EXTENT_NEW | EXTENT_DIRTY);
3137        if (ret) {
3138                btrfs_set_log_full_commit(fs_info, trans);
3139                mutex_unlock(&log_root_tree->log_mutex);
3140                goto out_wake_log_root;
3141        }
3142
3143        btrfs_set_super_log_root(fs_info->super_for_commit,
3144                                 log_root_tree->node->start);
3145        btrfs_set_super_log_root_level(fs_info->super_for_commit,
3146                                       btrfs_header_level(log_root_tree->node));
3147
3148        log_root_tree->log_transid++;
3149        mutex_unlock(&log_root_tree->log_mutex);
3150
3151        /*
3152         * nobody else is going to jump in and write the the ctree
3153         * super here because the log_commit atomic below is protecting
3154         * us.  We must be called with a transaction handle pinning
3155         * the running transaction open, so a full commit can't hop
3156         * in and cause problems either.
3157         */
3158        ret = write_all_supers(fs_info, 1);
3159        if (ret) {
3160                btrfs_set_log_full_commit(fs_info, trans);
3161                btrfs_abort_transaction(trans, ret);
3162                goto out_wake_log_root;
3163        }
3164
3165        mutex_lock(&root->log_mutex);
3166        if (root->last_log_commit < log_transid)
3167                root->last_log_commit = log_transid;
3168        mutex_unlock(&root->log_mutex);
3169
3170out_wake_log_root:
3171        mutex_lock(&log_root_tree->log_mutex);
3172        btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3173
3174        log_root_tree->log_transid_committed++;
3175        atomic_set(&log_root_tree->log_commit[index2], 0);
3176        mutex_unlock(&log_root_tree->log_mutex);
3177
3178        /*
3179         * The barrier before waitqueue_active (in cond_wake_up) is needed so
3180         * all the updates above are seen by the woken threads. It might not be
3181         * necessary, but proving that seems to be hard.
3182         */
3183        cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3184out:
3185        mutex_lock(&root->log_mutex);
3186        btrfs_remove_all_log_ctxs(root, index1, ret);
3187        root->log_transid_committed++;
3188        atomic_set(&root->log_commit[index1], 0);
3189        mutex_unlock(&root->log_mutex);
3190
3191        /*
3192         * The barrier before waitqueue_active (in cond_wake_up) is needed so
3193         * all the updates above are seen by the woken threads. It might not be
3194         * necessary, but proving that seems to be hard.
3195         */
3196        cond_wake_up(&root->log_commit_wait[index1]);
3197        return ret;
3198}
3199
3200static void free_log_tree(struct btrfs_trans_handle *trans,
3201                          struct btrfs_root *log)
3202{
3203        int ret;
3204        u64 start;
3205        u64 end;
3206        struct walk_control wc = {
3207                .free = 1,
3208                .process_func = process_one_buffer
3209        };
3210
3211        ret = walk_log_tree(trans, log, &wc);
3212        if (ret) {
3213                if (trans)
3214                        btrfs_abort_transaction(trans, ret);
3215                else
3216                        btrfs_handle_fs_error(log->fs_info, ret, NULL);
3217        }
3218
3219        while (1) {
3220                ret = find_first_extent_bit(&log->dirty_log_pages,
3221                                0, &start, &end,
3222                                EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3223                                NULL);
3224                if (ret)
3225                        break;
3226
3227                clear_extent_bits(&log->dirty_log_pages, start, end,
3228                                  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3229        }
3230
3231        free_extent_buffer(log->node);
3232        kfree(log);
3233}
3234
3235/*
3236 * free all the extents used by the tree log.  This should be called
3237 * at commit time of the full transaction
3238 */
3239int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3240{
3241        if (root->log_root) {
3242                free_log_tree(trans, root->log_root);
3243                root->log_root = NULL;
3244        }
3245        return 0;
3246}
3247
3248int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3249                             struct btrfs_fs_info *fs_info)
3250{
3251        if (fs_info->log_root_tree) {
3252                free_log_tree(trans, fs_info->log_root_tree);
3253                fs_info->log_root_tree = NULL;
3254        }
3255        return 0;
3256}
3257
3258/*
3259 * If both a file and directory are logged, and unlinks or renames are
3260 * mixed in, we have a few interesting corners:
3261 *
3262 * create file X in dir Y
3263 * link file X to X.link in dir Y
3264 * fsync file X
3265 * unlink file X but leave X.link
3266 * fsync dir Y
3267 *
3268 * After a crash we would expect only X.link to exist.  But file X
3269 * didn't get fsync'd again so the log has back refs for X and X.link.
3270 *
3271 * We solve this by removing directory entries and inode backrefs from the
3272 * log when a file that was logged in the current transaction is
3273 * unlinked.  Any later fsync will include the updated log entries, and
3274 * we'll be able to reconstruct the proper directory items from backrefs.
3275 *
3276 * This optimizations allows us to avoid relogging the entire inode
3277 * or the entire directory.
3278 */
3279int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3280                                 struct btrfs_root *root,
3281                                 const char *name, int name_len,
3282                                 struct btrfs_inode *dir, u64 index)
3283{
3284        struct btrfs_root *log;
3285        struct btrfs_dir_item *di;
3286        struct btrfs_path *path;
3287        int ret;
3288        int err = 0;
3289        int bytes_del = 0;
3290        u64 dir_ino = btrfs_ino(dir);
3291
3292        if (dir->logged_trans < trans->transid)
3293                return 0;
3294
3295        ret = join_running_log_trans(root);
3296        if (ret)
3297                return 0;
3298
3299        mutex_lock(&dir->log_mutex);
3300
3301        log = root->log_root;
3302        path = btrfs_alloc_path();
3303        if (!path) {
3304                err = -ENOMEM;
3305                goto out_unlock;
3306        }
3307
3308        di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3309                                   name, name_len, -1);
3310        if (IS_ERR(di)) {
3311                err = PTR_ERR(di);
3312                goto fail;
3313        }
3314        if (di) {
3315                ret = btrfs_delete_one_dir_name(trans, log, path, di);
3316                bytes_del += name_len;
3317                if (ret) {
3318                        err = ret;
3319                        goto fail;
3320                }
3321        }
3322        btrfs_release_path(path);
3323        di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3324                                         index, name, name_len, -1);
3325        if (IS_ERR(di)) {
3326                err = PTR_ERR(di);
3327                goto fail;
3328        }
3329        if (di) {
3330                ret = btrfs_delete_one_dir_name(trans, log, path, di);
3331                bytes_del += name_len;
3332                if (ret) {
3333                        err = ret;
3334                        goto fail;
3335                }
3336        }
3337
3338        /* update the directory size in the log to reflect the names
3339         * we have removed
3340         */
3341        if (bytes_del) {
3342                struct btrfs_key key;
3343
3344                key.objectid = dir_ino;
3345                key.offset = 0;
3346                key.type = BTRFS_INODE_ITEM_KEY;
3347                btrfs_release_path(path);
3348
3349                ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3350                if (ret < 0) {
3351                        err = ret;
3352                        goto fail;
3353                }
3354                if (ret == 0) {
3355                        struct btrfs_inode_item *item;
3356                        u64 i_size;
3357
3358                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3359                                              struct btrfs_inode_item);
3360                        i_size = btrfs_inode_size(path->nodes[0], item);
3361                        if (i_size > bytes_del)
3362                                i_size -= bytes_del;
3363                        else
3364                                i_size = 0;
3365                        btrfs_set_inode_size(path->nodes[0], item, i_size);
3366                        btrfs_mark_buffer_dirty(path->nodes[0]);
3367                } else
3368                        ret = 0;
3369                btrfs_release_path(path);
3370        }
3371fail:
3372        btrfs_free_path(path);
3373out_unlock:
3374        mutex_unlock(&dir->log_mutex);
3375        if (ret == -ENOSPC) {
3376                btrfs_set_log_full_commit(root->fs_info, trans);
3377                ret = 0;
3378        } else if (ret < 0)
3379                btrfs_abort_transaction(trans, ret);
3380
3381        btrfs_end_log_trans(root);
3382
3383        return err;
3384}
3385
3386/* see comments for btrfs_del_dir_entries_in_log */
3387int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3388                               struct btrfs_root *root,
3389                               const char *name, int name_len,
3390                               struct btrfs_inode *inode, u64 dirid)
3391{
3392        struct btrfs_fs_info *fs_info = root->fs_info;
3393        struct btrfs_root *log;
3394        u64 index;
3395        int ret;
3396
3397        if (inode->logged_trans < trans->transid)
3398                return 0;
3399
3400        ret = join_running_log_trans(root);
3401        if (ret)
3402                return 0;
3403        log = root->log_root;
3404        mutex_lock(&inode->log_mutex);
3405
3406        ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3407                                  dirid, &index);
3408        mutex_unlock(&inode->log_mutex);
3409        if (ret == -ENOSPC) {
3410                btrfs_set_log_full_commit(fs_info, trans);
3411                ret = 0;
3412        } else if (ret < 0 && ret != -ENOENT)
3413                btrfs_abort_transaction(trans, ret);
3414        btrfs_end_log_trans(root);
3415
3416        return ret;
3417}
3418
3419/*
3420 * creates a range item in the log for 'dirid'.  first_offset and
3421 * last_offset tell us which parts of the key space the log should
3422 * be considered authoritative for.
3423 */
3424static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3425                                       struct btrfs_root *log,
3426                                       struct btrfs_path *path,
3427                                       int key_type, u64 dirid,
3428                                       u64 first_offset, u64 last_offset)
3429{
3430        int ret;
3431        struct btrfs_key key;
3432        struct btrfs_dir_log_item *item;
3433
3434        key.objectid = dirid;
3435        key.offset = first_offset;
3436        if (key_type == BTRFS_DIR_ITEM_KEY)
3437                key.type = BTRFS_DIR_LOG_ITEM_KEY;
3438        else
3439                key.type = BTRFS_DIR_LOG_INDEX_KEY;
3440        ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3441        if (ret)
3442                return ret;
3443
3444        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3445                              struct btrfs_dir_log_item);
3446        btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3447        btrfs_mark_buffer_dirty(path->nodes[0]);
3448        btrfs_release_path(path);
3449        return 0;
3450}
3451
3452/*
3453 * log all the items included in the current transaction for a given
3454 * directory.  This also creates the range items in the log tree required
3455 * to replay anything deleted before the fsync
3456 */
3457static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3458                          struct btrfs_root *root, struct btrfs_inode *inode,
3459                          struct btrfs_path *path,
3460                          struct btrfs_path *dst_path, int key_type,
3461                          struct btrfs_log_ctx *ctx,
3462                          u64 min_offset, u64 *last_offset_ret)
3463{
3464        struct btrfs_key min_key;
3465        struct btrfs_root *log = root->log_root;
3466        struct extent_buffer *src;
3467        int err = 0;
3468        int ret;
3469        int i;
3470        int nritems;
3471        u64 first_offset = min_offset;
3472        u64 last_offset = (u64)-1;
3473        u64 ino = btrfs_ino(inode);
3474
3475        log = root->log_root;
3476
3477        min_key.objectid = ino;
3478        min_key.type = key_type;
3479        min_key.offset = min_offset;
3480
3481        ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3482
3483        /*
3484         * we didn't find anything from this transaction, see if there
3485         * is anything at all
3486         */
3487        if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3488                min_key.objectid = ino;
3489                min_key.type = key_type;
3490                min_key.offset = (u64)-1;
3491                btrfs_release_path(path);
3492                ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3493                if (ret < 0) {
3494                        btrfs_release_path(path);
3495                        return ret;
3496                }
3497                ret = btrfs_previous_item(root, path, ino, key_type);
3498
3499                /* if ret == 0 there are items for this type,
3500                 * create a range to tell us the last key of this type.
3501                 * otherwise, there are no items in this directory after
3502                 * *min_offset, and we create a range to indicate that.
3503                 */
3504                if (ret == 0) {
3505                        struct btrfs_key tmp;
3506                        btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3507                                              path->slots[0]);
3508                        if (key_type == tmp.type)
3509                                first_offset = max(min_offset, tmp.offset) + 1;
3510                }
3511                goto done;
3512        }
3513
3514        /* go backward to find any previous key */
3515        ret = btrfs_previous_item(root, path, ino, key_type);
3516        if (ret == 0) {
3517                struct btrfs_key tmp;
3518                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3519                if (key_type == tmp.type) {
3520                        first_offset = tmp.offset;
3521                        ret = overwrite_item(trans, log, dst_path,
3522                                             path->nodes[0], path->slots[0],
3523                                             &tmp);
3524                        if (ret) {
3525                                err = ret;
3526                                goto done;
3527                        }
3528                }
3529        }
3530        btrfs_release_path(path);
3531
3532        /* find the first key from this transaction again */
3533        ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3534        if (WARN_ON(ret != 0))
3535                goto done;
3536
3537        /*
3538         * we have a block from this transaction, log every item in it
3539         * from our directory
3540         */
3541        while (1) {
3542                struct btrfs_key tmp;
3543                src = path->nodes[0];
3544                nritems = btrfs_header_nritems(src);
3545                for (i = path->slots[0]; i < nritems; i++) {
3546                        struct btrfs_dir_item *di;
3547
3548                        btrfs_item_key_to_cpu(src, &min_key, i);
3549
3550                        if (min_key.objectid != ino || min_key.type != key_type)
3551                                goto done;
3552                        ret = overwrite_item(trans, log, dst_path, src, i,
3553                                             &min_key);
3554                        if (ret) {
3555                                err = ret;
3556                                goto done;
3557                        }
3558
3559                        /*
3560                         * We must make sure that when we log a directory entry,
3561                         * the corresponding inode, after log replay, has a
3562                         * matching link count. For example:
3563                         *
3564                         * touch foo
3565                         * mkdir mydir
3566                         * sync
3567                         * ln foo mydir/bar
3568                         * xfs_io -c "fsync" mydir
3569                         * <crash>
3570                         * <mount fs and log replay>
3571                         *
3572                         * Would result in a fsync log that when replayed, our
3573                         * file inode would have a link count of 1, but we get
3574                         * two directory entries pointing to the same inode.
3575                         * After removing one of the names, it would not be
3576                         * possible to remove the other name, which resulted
3577                         * always in stale file handle errors, and would not
3578                         * be possible to rmdir the parent directory, since
3579                         * its i_size could never decrement to the value
3580                         * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3581                         */
3582                        di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3583                        btrfs_dir_item_key_to_cpu(src, di, &tmp);
3584                        if (ctx &&
3585                            (btrfs_dir_transid(src, di) == trans->transid ||
3586                             btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3587                            tmp.type != BTRFS_ROOT_ITEM_KEY)
3588                                ctx->log_new_dentries = true;
3589                }
3590                path->slots[0] = nritems;
3591
3592                /*
3593                 * look ahead to the next item and see if it is also
3594                 * from this directory and from this transaction
3595                 */
3596                ret = btrfs_next_leaf(root, path);
3597                if (ret) {
3598                        if (ret == 1)
3599                                last_offset = (u64)-1;
3600                        else
3601                                err = ret;
3602                        goto done;
3603                }
3604                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3605                if (tmp.objectid != ino || tmp.type != key_type) {
3606                        last_offset = (u64)-1;
3607                        goto done;
3608                }
3609                if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3610                        ret = overwrite_item(trans, log, dst_path,
3611                                             path->nodes[0], path->slots[0],
3612                                             &tmp);
3613                        if (ret)
3614                                err = ret;
3615                        else
3616                                last_offset = tmp.offset;
3617                        goto done;
3618                }
3619        }
3620done:
3621        btrfs_release_path(path);
3622        btrfs_release_path(dst_path);
3623
3624        if (err == 0) {
3625                *last_offset_ret = last_offset;
3626                /*
3627                 * insert the log range keys to indicate where the log
3628                 * is valid
3629                 */
3630                ret = insert_dir_log_key(trans, log, path, key_type,
3631                                         ino, first_offset, last_offset);
3632                if (ret)
3633                        err = ret;
3634        }
3635        return err;
3636}
3637
3638/*
3639 * logging directories is very similar to logging inodes, We find all the items
3640 * from the current transaction and write them to the log.
3641 *
3642 * The recovery code scans the directory in the subvolume, and if it finds a
3643 * key in the range logged that is not present in the log tree, then it means
3644 * that dir entry was unlinked during the transaction.
3645 *
3646 * In order for that scan to work, we must include one key smaller than
3647 * the smallest logged by this transaction and one key larger than the largest
3648 * key logged by this transaction.
3649 */
3650static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3651                          struct btrfs_root *root, struct btrfs_inode *inode,
3652                          struct btrfs_path *path,
3653                          struct btrfs_path *dst_path,
3654                          struct btrfs_log_ctx *ctx)
3655{
3656        u64 min_key;
3657        u64 max_key;
3658        int ret;
3659        int key_type = BTRFS_DIR_ITEM_KEY;
3660
3661again:
3662        min_key = 0;
3663        max_key = 0;
3664        while (1) {
3665                ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3666                                ctx, min_key, &max_key);
3667                if (ret)
3668                        return ret;
3669                if (max_key == (u64)-1)
3670                        break;
3671                min_key = max_key + 1;
3672        }
3673
3674        if (key_type == BTRFS_DIR_ITEM_KEY) {
3675                key_type = BTRFS_DIR_INDEX_KEY;
3676                goto again;
3677        }
3678        return 0;
3679}
3680
3681/*
3682 * a helper function to drop items from the log before we relog an
3683 * inode.  max_key_type indicates the highest item type to remove.
3684 * This cannot be run for file data extents because it does not
3685 * free the extents they point to.
3686 */
3687static int drop_objectid_items(struct btrfs_trans_handle *trans,
3688                                  struct btrfs_root *log,
3689                                  struct btrfs_path *path,
3690                                  u64 objectid, int max_key_type)
3691{
3692        int ret;
3693        struct btrfs_key key;
3694        struct btrfs_key found_key;
3695        int start_slot;
3696
3697        key.objectid = objectid;
3698        key.type = max_key_type;
3699        key.offset = (u64)-1;
3700
3701        while (1) {
3702                ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3703                BUG_ON(ret == 0); /* Logic error */
3704                if (ret < 0)
3705                        break;
3706
3707                if (path->slots[0] == 0)
3708                        break;
3709
3710                path->slots[0]--;
3711                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3712                                      path->slots[0]);
3713
3714                if (found_key.objectid != objectid)
3715                        break;
3716
3717                found_key.offset = 0;
3718                found_key.type = 0;
3719                ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3720                                       &start_slot);
3721
3722                ret = btrfs_del_items(trans, log, path, start_slot,
3723                                      path->slots[0] - start_slot + 1);
3724                /*
3725                 * If start slot isn't 0 then we don't need to re-search, we've
3726                 * found the last guy with the objectid in this tree.
3727                 */
3728                if (ret || start_slot != 0)
3729                        break;
3730                btrfs_release_path(path);
3731        }
3732        btrfs_release_path(path);
3733        if (ret > 0)
3734                ret = 0;
3735        return ret;
3736}
3737
3738static void fill_inode_item(struct btrfs_trans_handle *trans,
3739                            struct extent_buffer *leaf,
3740                            struct btrfs_inode_item *item,
3741                            struct inode *inode, int log_inode_only,
3742                            u64 logged_isize)
3743{
3744        struct btrfs_map_token token;
3745
3746        btrfs_init_map_token(&token);
3747
3748        if (log_inode_only) {
3749                /* set the generation to zero so the recover code
3750                 * can tell the difference between an logging
3751                 * just to say 'this inode exists' and a logging
3752                 * to say 'update this inode with these values'
3753                 */
3754                btrfs_set_token_inode_generation(leaf, item, 0, &token);
3755                btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3756        } else {
3757                btrfs_set_token_inode_generation(leaf, item,
3758                                                 BTRFS_I(inode)->generation,
3759                                                 &token);
3760                btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3761        }
3762
3763        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3764        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3765        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3766        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3767
3768        btrfs_set_token_timespec_sec(leaf, &item->atime,
3769                                     inode->i_atime.tv_sec, &token);
3770        btrfs_set_token_timespec_nsec(leaf, &item->atime,
3771                                      inode->i_atime.tv_nsec, &token);
3772
3773        btrfs_set_token_timespec_sec(leaf, &item->mtime,
3774                                     inode->i_mtime.tv_sec, &token);
3775        btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3776                                      inode->i_mtime.tv_nsec, &token);
3777
3778        btrfs_set_token_timespec_sec(leaf, &item->ctime,
3779                                     inode->i_ctime.tv_sec, &token);
3780        btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3781                                      inode->i_ctime.tv_nsec, &token);
3782
3783        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3784                                     &token);
3785
3786        btrfs_set_token_inode_sequence(leaf, item,
3787                                       inode_peek_iversion(inode), &token);
3788        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3789        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3790        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3791        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3792}
3793
3794static int log_inode_item(struct btrfs_trans_handle *trans,
3795                          struct btrfs_root *log, struct btrfs_path *path,
3796                          struct btrfs_inode *inode)
3797{
3798        struct btrfs_inode_item *inode_item;
3799        int ret;
3800
3801        ret = btrfs_insert_empty_item(trans, log, path,
3802                                      &inode->location, sizeof(*inode_item));
3803        if (ret && ret != -EEXIST)
3804                return ret;
3805        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3806                                    struct btrfs_inode_item);
3807        fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3808                        0, 0);
3809        btrfs_release_path(path);
3810        return 0;
3811}
3812
3813static noinline int copy_items(struct btrfs_trans_handle *trans,
3814                               struct btrfs_inode *inode,
3815                               struct btrfs_path *dst_path,
3816                               struct btrfs_path *src_path, u64 *last_extent,
3817                               int start_slot, int nr, int inode_only,
3818                               u64 logged_isize)
3819{
3820        struct btrfs_fs_info *fs_info = trans->fs_info;
3821        unsigned long src_offset;
3822        unsigned long dst_offset;
3823        struct btrfs_root *log = inode->root->log_root;
3824        struct btrfs_file_extent_item *extent;
3825        struct btrfs_inode_item *inode_item;
3826        struct extent_buffer *src = src_path->nodes[0];
3827        struct btrfs_key first_key, last_key, key;
3828        int ret;
3829        struct btrfs_key *ins_keys;
3830        u32 *ins_sizes;
3831        char *ins_data;
3832        int i;
3833        struct list_head ordered_sums;
3834        int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3835        bool has_extents = false;
3836        bool need_find_last_extent = true;
3837        bool done = false;
3838
3839        INIT_LIST_HEAD(&ordered_sums);
3840
3841        ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3842                           nr * sizeof(u32), GFP_NOFS);
3843        if (!ins_data)
3844                return -ENOMEM;
3845
3846        first_key.objectid = (u64)-1;
3847
3848        ins_sizes = (u32 *)ins_data;
3849        ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3850
3851        for (i = 0; i < nr; i++) {
3852                ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3853                btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3854        }
3855        ret = btrfs_insert_empty_items(trans, log, dst_path,
3856                                       ins_keys, ins_sizes, nr);
3857        if (ret) {
3858                kfree(ins_data);
3859                return ret;
3860        }
3861
3862        for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3863                dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3864                                                   dst_path->slots[0]);
3865
3866                src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3867
3868                if (i == nr - 1)
3869                        last_key = ins_keys[i];
3870
3871                if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3872                        inode_item = btrfs_item_ptr(dst_path->nodes[0],
3873                                                    dst_path->slots[0],
3874                                                    struct btrfs_inode_item);
3875                        fill_inode_item(trans, dst_path->nodes[0], inode_item,
3876                                        &inode->vfs_inode,
3877                                        inode_only == LOG_INODE_EXISTS,
3878                                        logged_isize);
3879                } else {
3880                        copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3881                                           src_offset, ins_sizes[i]);
3882                }
3883
3884                /*
3885                 * We set need_find_last_extent here in case we know we were
3886                 * processing other items and then walk into the first extent in
3887                 * the inode.  If we don't hit an extent then nothing changes,
3888                 * we'll do the last search the next time around.
3889                 */
3890                if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3891                        has_extents = true;
3892                        if (first_key.objectid == (u64)-1)
3893                                first_key = ins_keys[i];
3894                } else {
3895                        need_find_last_extent = false;
3896                }
3897
3898                /* take a reference on file data extents so that truncates
3899                 * or deletes of this inode don't have to relog the inode
3900                 * again
3901                 */
3902                if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3903                    !skip_csum) {
3904                        int found_type;
3905                        extent = btrfs_item_ptr(src, start_slot + i,
3906                                                struct btrfs_file_extent_item);
3907
3908                        if (btrfs_file_extent_generation(src, extent) < trans->transid)
3909                                continue;
3910
3911                        found_type = btrfs_file_extent_type(src, extent);
3912                        if (found_type == BTRFS_FILE_EXTENT_REG) {
3913                                u64 ds, dl, cs, cl;
3914                                ds = btrfs_file_extent_disk_bytenr(src,
3915                                                                extent);
3916                                /* ds == 0 is a hole */
3917                                if (ds == 0)
3918                                        continue;
3919
3920                                dl = btrfs_file_extent_disk_num_bytes(src,
3921                                                                extent);
3922                                cs = btrfs_file_extent_offset(src, extent);
3923                                cl = btrfs_file_extent_num_bytes(src,
3924                                                                extent);
3925                                if (btrfs_file_extent_compression(src,
3926                                                                  extent)) {
3927                                        cs = 0;
3928                                        cl = dl;
3929                                }
3930
3931                                ret = btrfs_lookup_csums_range(
3932                                                fs_info->csum_root,
3933                                                ds + cs, ds + cs + cl - 1,
3934                                                &ordered_sums, 0);
3935                                if (ret) {
3936                                        btrfs_release_path(dst_path);
3937                                        kfree(ins_data);
3938                                        return ret;
3939                                }
3940                        }
3941                }
3942        }
3943
3944        btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3945        btrfs_release_path(dst_path);
3946        kfree(ins_data);
3947
3948        /*
3949         * we have to do this after the loop above to avoid changing the
3950         * log tree while trying to change the log tree.
3951         */
3952        ret = 0;
3953        while (!list_empty(&ordered_sums)) {
3954                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3955                                                   struct btrfs_ordered_sum,
3956                                                   list);
3957                if (!ret)
3958                        ret = btrfs_csum_file_blocks(trans, log, sums);
3959                list_del(&sums->list);
3960                kfree(sums);
3961        }
3962
3963        if (!has_extents)
3964                return ret;
3965
3966        if (need_find_last_extent && *last_extent == first_key.offset) {
3967                /*
3968                 * We don't have any leafs between our current one and the one
3969                 * we processed before that can have file extent items for our
3970                 * inode (and have a generation number smaller than our current
3971                 * transaction id).
3972                 */
3973                need_find_last_extent = false;
3974        }
3975
3976        /*
3977         * Because we use btrfs_search_forward we could skip leaves that were
3978         * not modified and then assume *last_extent is valid when it really
3979         * isn't.  So back up to the previous leaf and read the end of the last
3980         * extent before we go and fill in holes.
3981         */
3982        if (need_find_last_extent) {
3983                u64 len;
3984
3985                ret = btrfs_prev_leaf(inode->root, src_path);
3986                if (ret < 0)
3987                        return ret;
3988                if (ret)
3989                        goto fill_holes;
3990                if (src_path->slots[0])
3991                        src_path->slots[0]--;
3992                src = src_path->nodes[0];
3993                btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3994                if (key.objectid != btrfs_ino(inode) ||
3995                    key.type != BTRFS_EXTENT_DATA_KEY)
3996                        goto fill_holes;
3997                extent = btrfs_item_ptr(src, src_path->slots[0],
3998                                        struct btrfs_file_extent_item);
3999                if (btrfs_file_extent_type(src, extent) ==
4000                    BTRFS_FILE_EXTENT_INLINE) {
4001                        len = btrfs_file_extent_ram_bytes(src, extent);
4002                        *last_extent = ALIGN(key.offset + len,
4003                                             fs_info->sectorsize);
4004                } else {
4005                        len = btrfs_file_extent_num_bytes(src, extent);
4006                        *last_extent = key.offset + len;
4007                }
4008        }
4009fill_holes:
4010        /* So we did prev_leaf, now we need to move to the next leaf, but a few
4011         * things could have happened
4012         *
4013         * 1) A merge could have happened, so we could currently be on a leaf
4014         * that holds what we were copying in the first place.
4015         * 2) A split could have happened, and now not all of the items we want
4016         * are on the same leaf.
4017         *
4018         * So we need to adjust how we search for holes, we need to drop the
4019         * path and re-search for the first extent key we found, and then walk
4020         * forward until we hit the last one we copied.
4021         */
4022        if (need_find_last_extent) {
4023                /* btrfs_prev_leaf could return 1 without releasing the path */
4024                btrfs_release_path(src_path);
4025                ret = btrfs_search_slot(NULL, inode->root, &first_key,
4026                                src_path, 0, 0);
4027                if (ret < 0)
4028                        return ret;
4029                ASSERT(ret == 0);
4030                src = src_path->nodes[0];
4031                i = src_path->slots[0];
4032        } else {
4033                i = start_slot;
4034        }
4035
4036        /*
4037         * Ok so here we need to go through and fill in any holes we may have
4038         * to make sure that holes are punched for those areas in case they had
4039         * extents previously.
4040         */
4041        while (!done) {
4042                u64 offset, len;
4043                u64 extent_end;
4044
4045                if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4046                        ret = btrfs_next_leaf(inode->root, src_path);
4047                        if (ret < 0)
4048                                return ret;
4049                        ASSERT(ret == 0);
4050                        src = src_path->nodes[0];
4051                        i = 0;
4052                        need_find_last_extent = true;
4053                }
4054
4055                btrfs_item_key_to_cpu(src, &key, i);
4056                if (!btrfs_comp_cpu_keys(&key, &last_key))
4057                        done = true;
4058                if (key.objectid != btrfs_ino(inode) ||
4059                    key.type != BTRFS_EXTENT_DATA_KEY) {
4060                        i++;
4061                        continue;
4062                }
4063                extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4064                if (btrfs_file_extent_type(src, extent) ==
4065                    BTRFS_FILE_EXTENT_INLINE) {
4066                        len = btrfs_file_extent_ram_bytes(src, extent);
4067                        extent_end = ALIGN(key.offset + len,
4068                                           fs_info->sectorsize);
4069                } else {
4070                        len = btrfs_file_extent_num_bytes(src, extent);
4071                        extent_end = key.offset + len;
4072                }
4073                i++;
4074
4075                if (*last_extent == key.offset) {
4076                        *last_extent = extent_end;
4077                        continue;
4078                }
4079                offset = *last_extent;
4080                len = key.offset - *last_extent;
4081                ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4082                                offset, 0, 0, len, 0, len, 0, 0, 0);
4083                if (ret)
4084                        break;
4085                *last_extent = extent_end;
4086        }
4087
4088        /*
4089         * Check if there is a hole between the last extent found in our leaf
4090         * and the first extent in the next leaf. If there is one, we need to
4091         * log an explicit hole so that at replay time we can punch the hole.
4092         */
4093        if (ret == 0 &&
4094            key.objectid == btrfs_ino(inode) &&
4095            key.type == BTRFS_EXTENT_DATA_KEY &&
4096            i == btrfs_header_nritems(src_path->nodes[0])) {
4097                ret = btrfs_next_leaf(inode->root, src_path);
4098                need_find_last_extent = true;
4099                if (ret > 0) {
4100                        ret = 0;
4101                } else if (ret == 0) {
4102                        btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4103                                              src_path->slots[0]);
4104                        if (key.objectid == btrfs_ino(inode) &&
4105                            key.type == BTRFS_EXTENT_DATA_KEY &&
4106                            *last_extent < key.offset) {
4107                                const u64 len = key.offset - *last_extent;
4108
4109                                ret = btrfs_insert_file_extent(trans, log,
4110                                                               btrfs_ino(inode),
4111                                                               *last_extent, 0,
4112                                                               0, len, 0, len,
4113                                                               0, 0, 0);
4114                        }
4115                }
4116        }
4117        /*
4118         * Need to let the callers know we dropped the path so they should
4119         * re-search.
4120         */
4121        if (!ret && need_find_last_extent)
4122                ret = 1;
4123        return ret;
4124}
4125
4126static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4127{
4128        struct extent_map *em1, *em2;
4129
4130        em1 = list_entry(a, struct extent_map, list);
4131        em2 = list_entry(b, struct extent_map, list);
4132
4133        if (em1->start < em2->start)
4134                return -1;
4135        else if (em1->start > em2->start)
4136                return 1;
4137        return 0;
4138}
4139
4140static int log_extent_csums(struct btrfs_trans_handle *trans,
4141                            struct btrfs_inode *inode,
4142                            struct btrfs_root *log_root,
4143                            const struct extent_map *em)
4144{
4145        u64 csum_offset;
4146        u64 csum_len;
4147        LIST_HEAD(ordered_sums);
4148        int ret = 0;
4149
4150        if (inode->flags & BTRFS_INODE_NODATASUM ||
4151            test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4152            em->block_start == EXTENT_MAP_HOLE)
4153                return 0;
4154
4155        /* If we're compressed we have to save the entire range of csums. */
4156        if (em->compress_type) {
4157                csum_offset = 0;
4158                csum_len = max(em->block_len, em->orig_block_len);
4159        } else {
4160                csum_offset = em->mod_start - em->start;
4161                csum_len = em->mod_len;
4162        }
4163
4164        /* block start is already adjusted for the file extent offset. */
4165        ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4166                                       em->block_start + csum_offset,
4167                                       em->block_start + csum_offset +
4168                                       csum_len - 1, &ordered_sums, 0);
4169        if (ret)
4170                return ret;
4171
4172        while (!list_empty(&ordered_sums)) {
4173                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4174                                                   struct btrfs_ordered_sum,
4175                                                   list);
4176                if (!ret)
4177                        ret = btrfs_csum_file_blocks(trans, log_root, sums);
4178                list_del(&sums->list);
4179                kfree(sums);
4180        }
4181
4182        return ret;
4183}
4184
4185static int log_one_extent(struct btrfs_trans_handle *trans,
4186                          struct btrfs_inode *inode, struct btrfs_root *root,
4187                          const struct extent_map *em,
4188                          struct btrfs_path *path,
4189                          struct btrfs_log_ctx *ctx)
4190{
4191        struct btrfs_root *log = root->log_root;
4192        struct btrfs_file_extent_item *fi;
4193        struct extent_buffer *leaf;
4194        struct btrfs_map_token token;
4195        struct btrfs_key key;
4196        u64 extent_offset = em->start - em->orig_start;
4197        u64 block_len;
4198        int ret;
4199        int extent_inserted = 0;
4200
4201        ret = log_extent_csums(trans, inode, log, em);
4202        if (ret)
4203                return ret;
4204
4205        btrfs_init_map_token(&token);
4206
4207        ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4208                                   em->start + em->len, NULL, 0, 1,
4209                                   sizeof(*fi), &extent_inserted);
4210        if (ret)
4211                return ret;
4212
4213        if (!extent_inserted) {
4214                key.objectid = btrfs_ino(inode);
4215                key.type = BTRFS_EXTENT_DATA_KEY;
4216                key.offset = em->start;
4217
4218                ret = btrfs_insert_empty_item(trans, log, path, &key,
4219                                              sizeof(*fi));
4220                if (ret)
4221                        return ret;
4222        }
4223        leaf = path->nodes[0];
4224        fi = btrfs_item_ptr(leaf, path->slots[0],
4225                            struct btrfs_file_extent_item);
4226
4227        btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4228                                               &token);
4229        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4230                btrfs_set_token_file_extent_type(leaf, fi,
4231                                                 BTRFS_FILE_EXTENT_PREALLOC,
4232                                                 &token);
4233        else
4234                btrfs_set_token_file_extent_type(leaf, fi,
4235                                                 BTRFS_FILE_EXTENT_REG,
4236                                                 &token);
4237
4238        block_len = max(em->block_len, em->orig_block_len);
4239        if (em->compress_type != BTRFS_COMPRESS_NONE) {
4240                btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4241                                                        em->block_start,
4242                                                        &token);
4243                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4244                                                           &token);
4245        } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4246                btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4247                                                        em->block_start -
4248                                                        extent_offset, &token);
4249                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4250                                                           &token);
4251        } else {
4252                btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4253                btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4254                                                           &token);
4255        }
4256
4257        btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4258        btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4259        btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4260        btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4261                                                &token);
4262        btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4263        btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4264        btrfs_mark_buffer_dirty(leaf);
4265
4266        btrfs_release_path(path);
4267
4268        return ret;
4269}
4270
4271/*
4272 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4273 * lose them after doing a fast fsync and replaying the log. We scan the
4274 * subvolume's root instead of iterating the inode's extent map tree because
4275 * otherwise we can log incorrect extent items based on extent map conversion.
4276 * That can happen due to the fact that extent maps are merged when they
4277 * are not in the extent map tree's list of modified extents.
4278 */
4279static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4280                                      struct btrfs_inode *inode,
4281                                      struct btrfs_path *path)
4282{
4283        struct btrfs_root *root = inode->root;
4284        struct btrfs_key key;
4285        const u64 i_size = i_size_read(&inode->vfs_inode);
4286        const u64 ino = btrfs_ino(inode);
4287        struct btrfs_path *dst_path = NULL;
4288        u64 last_extent = (u64)-1;
4289        int ins_nr = 0;
4290        int start_slot;
4291        int ret;
4292
4293        if (!(inode->flags & BTRFS_INODE_PREALLOC))
4294                return 0;
4295
4296        key.objectid = ino;
4297        key.type = BTRFS_EXTENT_DATA_KEY;
4298        key.offset = i_size;
4299        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4300        if (ret < 0)
4301                goto out;
4302
4303        while (true) {
4304                struct extent_buffer *leaf = path->nodes[0];
4305                int slot = path->slots[0];
4306
4307                if (slot >= btrfs_header_nritems(leaf)) {
4308                        if (ins_nr > 0) {
4309                                ret = copy_items(trans, inode, dst_path, path,
4310                                                 &last_extent, start_slot,
4311                                                 ins_nr, 1, 0);
4312                                if (ret < 0)
4313                                        goto out;
4314                                ins_nr = 0;
4315                        }
4316                        ret = btrfs_next_leaf(root, path);
4317                        if (ret < 0)
4318                                goto out;
4319                        if (ret > 0) {
4320                                ret = 0;
4321                                break;
4322                        }
4323                        continue;
4324                }
4325
4326                btrfs_item_key_to_cpu(leaf, &key, slot);
4327                if (key.objectid > ino)
4328                        break;
4329                if (WARN_ON_ONCE(key.objectid < ino) ||
4330                    key.type < BTRFS_EXTENT_DATA_KEY ||
4331                    key.offset < i_size) {
4332                        path->slots[0]++;
4333                        continue;
4334                }
4335                if (last_extent == (u64)-1) {
4336                        last_extent = key.offset;
4337                        /*
4338                         * Avoid logging extent items logged in past fsync calls
4339                         * and leading to duplicate keys in the log tree.
4340                         */
4341                        do {
4342                                ret = btrfs_truncate_inode_items(trans,
4343                                                         root->log_root,
4344                                                         &inode->vfs_inode,
4345                                                         i_size,
4346                                                         BTRFS_EXTENT_DATA_KEY);
4347                        } while (ret == -EAGAIN);
4348                        if (ret)
4349                                goto out;
4350                }
4351                if (ins_nr == 0)
4352                        start_slot = slot;
4353                ins_nr++;
4354                path->slots[0]++;
4355                if (!dst_path) {
4356                        dst_path = btrfs_alloc_path();
4357                        if (!dst_path) {
4358                                ret = -ENOMEM;
4359                                goto out;
4360                        }
4361                }
4362        }
4363        if (ins_nr > 0) {
4364                ret = copy_items(trans, inode, dst_path, path, &last_extent,
4365                                 start_slot, ins_nr, 1, 0);
4366                if (ret > 0)
4367                        ret = 0;
4368        }
4369out:
4370        btrfs_release_path(path);
4371        btrfs_free_path(dst_path);
4372        return ret;
4373}
4374
4375static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4376                                     struct btrfs_root *root,
4377                                     struct btrfs_inode *inode,
4378                                     struct btrfs_path *path,
4379                                     struct btrfs_log_ctx *ctx,
4380                                     const u64 start,
4381                                     const u64 end)
4382{
4383        struct extent_map *em, *n;
4384        struct list_head extents;
4385        struct extent_map_tree *tree = &inode->extent_tree;
4386        u64 logged_start, logged_end;
4387        u64 test_gen;
4388        int ret = 0;
4389        int num = 0;
4390
4391        INIT_LIST_HEAD(&extents);
4392
4393        write_lock(&tree->lock);
4394        test_gen = root->fs_info->last_trans_committed;
4395        logged_start = start;
4396        logged_end = end;
4397
4398        list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4399                /*
4400                 * Skip extents outside our logging range. It's important to do
4401                 * it for correctness because if we don't ignore them, we may
4402                 * log them before their ordered extent completes, and therefore
4403                 * we could log them without logging their respective checksums
4404                 * (the checksum items are added to the csum tree at the very
4405                 * end of btrfs_finish_ordered_io()). Also leave such extents
4406                 * outside of our range in the list, since we may have another
4407                 * ranged fsync in the near future that needs them. If an extent
4408                 * outside our range corresponds to a hole, log it to avoid
4409                 * leaving gaps between extents (fsck will complain when we are
4410                 * not using the NO_HOLES feature).
4411                 */
4412                if ((em->start > end || em->start + em->len <= start) &&
4413                    em->block_start != EXTENT_MAP_HOLE)
4414                        continue;
4415
4416                list_del_init(&em->list);
4417                /*
4418                 * Just an arbitrary number, this can be really CPU intensive
4419                 * once we start getting a lot of extents, and really once we
4420                 * have a bunch of extents we just want to commit since it will
4421                 * be faster.
4422                 */
4423                if (++num > 32768) {
4424                        list_del_init(&tree->modified_extents);
4425                        ret = -EFBIG;
4426                        goto process;
4427                }
4428
4429                if (em->generation <= test_gen)
4430                        continue;
4431
4432                /* We log prealloc extents beyond eof later. */
4433                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4434                    em->start >= i_size_read(&inode->vfs_inode))
4435                        continue;
4436
4437                if (em->start < logged_start)
4438                        logged_start = em->start;
4439                if ((em->start + em->len - 1) > logged_end)
4440                        logged_end = em->start + em->len - 1;
4441
4442                /* Need a ref to keep it from getting evicted from cache */
4443                refcount_inc(&em->refs);
4444                set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4445                list_add_tail(&em->list, &extents);
4446                num++;
4447        }
4448
4449        list_sort(NULL, &extents, extent_cmp);
4450process:
4451        while (!list_empty(&extents)) {
4452                em = list_entry(extents.next, struct extent_map, list);
4453
4454                list_del_init(&em->list);
4455
4456                /*
4457                 * If we had an error we just need to delete everybody from our
4458                 * private list.
4459                 */
4460                if (ret) {
4461                        clear_em_logging(tree, em);
4462                        free_extent_map(em);
4463                        continue;
4464                }
4465
4466                write_unlock(&tree->lock);
4467
4468                ret = log_one_extent(trans, inode, root, em, path, ctx);
4469                write_lock(&tree->lock);
4470                clear_em_logging(tree, em);
4471                free_extent_map(em);
4472        }
4473        WARN_ON(!list_empty(&extents));
4474        write_unlock(&tree->lock);
4475
4476        btrfs_release_path(path);
4477        if (!ret)
4478                ret = btrfs_log_prealloc_extents(trans, inode, path);
4479
4480        return ret;
4481}
4482
4483static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4484                             struct btrfs_path *path, u64 *size_ret)
4485{
4486        struct btrfs_key key;
4487        int ret;
4488
4489        key.objectid = btrfs_ino(inode);
4490        key.type = BTRFS_INODE_ITEM_KEY;
4491        key.offset = 0;
4492
4493        ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4494        if (ret < 0) {
4495                return ret;
4496        } else if (ret > 0) {
4497                *size_ret = 0;
4498        } else {
4499                struct btrfs_inode_item *item;
4500
4501                item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4502                                      struct btrfs_inode_item);
4503                *size_ret = btrfs_inode_size(path->nodes[0], item);
4504        }
4505
4506        btrfs_release_path(path);
4507        return 0;
4508}
4509
4510/*
4511 * At the moment we always log all xattrs. This is to figure out at log replay
4512 * time which xattrs must have their deletion replayed. If a xattr is missing
4513 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4514 * because if a xattr is deleted, the inode is fsynced and a power failure
4515 * happens, causing the log to be replayed the next time the fs is mounted,
4516 * we want the xattr to not exist anymore (same behaviour as other filesystems
4517 * with a journal, ext3/4, xfs, f2fs, etc).
4518 */
4519static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4520                                struct btrfs_root *root,
4521                                struct btrfs_inode *inode,
4522                                struct btrfs_path *path,
4523                                struct btrfs_path *dst_path)
4524{
4525        int ret;
4526        struct btrfs_key key;
4527        const u64 ino = btrfs_ino(inode);
4528        int ins_nr = 0;
4529        int start_slot = 0;
4530
4531        key.objectid = ino;
4532        key.type = BTRFS_XATTR_ITEM_KEY;
4533        key.offset = 0;
4534
4535        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4536        if (ret < 0)
4537                return ret;
4538
4539        while (true) {
4540                int slot = path->slots[0];
4541                struct extent_buffer *leaf = path->nodes[0];
4542                int nritems = btrfs_header_nritems(leaf);
4543
4544                if (slot >= nritems) {
4545                        if (ins_nr > 0) {
4546                                u64 last_extent = 0;
4547
4548                                ret = copy_items(trans, inode, dst_path, path,
4549                                                 &last_extent, start_slot,
4550                                                 ins_nr, 1, 0);
4551                                /* can't be 1, extent items aren't processed */
4552                                ASSERT(ret <= 0);
4553                                if (ret < 0)
4554                                        return ret;
4555                                ins_nr = 0;
4556                        }
4557                        ret = btrfs_next_leaf(root, path);
4558                        if (ret < 0)
4559                                return ret;
4560                        else if (ret > 0)
4561                                break;
4562                        continue;
4563                }
4564
4565                btrfs_item_key_to_cpu(leaf, &key, slot);
4566                if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4567                        break;
4568
4569                if (ins_nr == 0)
4570                        start_slot = slot;
4571                ins_nr++;
4572                path->slots[0]++;
4573                cond_resched();
4574        }
4575        if (ins_nr > 0) {
4576                u64 last_extent = 0;
4577
4578                ret = copy_items(trans, inode, dst_path, path,
4579                                 &last_extent, start_slot,
4580                                 ins_nr, 1, 0);
4581                /* can't be 1, extent items aren't processed */
4582                ASSERT(ret <= 0);
4583                if (ret < 0)
4584                        return ret;
4585        }
4586
4587        return 0;
4588}
4589
4590/*
4591 * If the no holes feature is enabled we need to make sure any hole between the
4592 * last extent and the i_size of our inode is explicitly marked in the log. This
4593 * is to make sure that doing something like:
4594 *
4595 *      1) create file with 128Kb of data
4596 *      2) truncate file to 64Kb
4597 *      3) truncate file to 256Kb
4598 *      4) fsync file
4599 *      5) <crash/power failure>
4600 *      6) mount fs and trigger log replay
4601 *
4602 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4603 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4604 * file correspond to a hole. The presence of explicit holes in a log tree is
4605 * what guarantees that log replay will remove/adjust file extent items in the
4606 * fs/subvol tree.
4607 *
4608 * Here we do not need to care about holes between extents, that is already done
4609 * by copy_items(). We also only need to do this in the full sync path, where we
4610 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4611 * lookup the list of modified extent maps and if any represents a hole, we
4612 * insert a corresponding extent representing a hole in the log tree.
4613 */
4614static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4615                                   struct btrfs_root *root,
4616                                   struct btrfs_inode *inode,
4617                                   struct btrfs_path *path)
4618{
4619        struct btrfs_fs_info *fs_info = root->fs_info;
4620        int ret;
4621        struct btrfs_key key;
4622        u64 hole_start;
4623        u64 hole_size;
4624        struct extent_buffer *leaf;
4625        struct btrfs_root *log = root->log_root;
4626        const u64 ino = btrfs_ino(inode);
4627        const u64 i_size = i_size_read(&inode->vfs_inode);
4628
4629        if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4630                return 0;
4631
4632        key.objectid = ino;
4633        key.type = BTRFS_EXTENT_DATA_KEY;
4634        key.offset = (u64)-1;
4635
4636        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4637        ASSERT(ret != 0);
4638        if (ret < 0)
4639                return ret;
4640
4641        ASSERT(path->slots[0] > 0);
4642        path->slots[0]--;
4643        leaf = path->nodes[0];
4644        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4645
4646        if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4647                /* inode does not have any extents */
4648                hole_start = 0;
4649                hole_size = i_size;
4650        } else {
4651                struct btrfs_file_extent_item *extent;
4652                u64 len;
4653
4654                /*
4655                 * If there's an extent beyond i_size, an explicit hole was
4656                 * already inserted by copy_items().
4657                 */
4658                if (key.offset >= i_size)
4659                        return 0;
4660
4661                extent = btrfs_item_ptr(leaf, path->slots[0],
4662                                        struct btrfs_file_extent_item);
4663
4664                if (btrfs_file_extent_type(leaf, extent) ==
4665                    BTRFS_FILE_EXTENT_INLINE) {
4666                        len = btrfs_file_extent_ram_bytes(leaf, extent);
4667                        ASSERT(len == i_size ||
4668                               (len == fs_info->sectorsize &&
4669                                btrfs_file_extent_compression(leaf, extent) !=
4670                                BTRFS_COMPRESS_NONE) ||
4671                               (len < i_size && i_size < fs_info->sectorsize));
4672                        return 0;
4673                }
4674
4675                len = btrfs_file_extent_num_bytes(leaf, extent);
4676                /* Last extent goes beyond i_size, no need to log a hole. */
4677                if (key.offset + len > i_size)
4678                        return 0;
4679                hole_start = key.offset + len;
4680                hole_size = i_size - hole_start;
4681        }
4682        btrfs_release_path(path);
4683
4684        /* Last extent ends at i_size. */
4685        if (hole_size == 0)
4686                return 0;
4687
4688        hole_size = ALIGN(hole_size, fs_info->sectorsize);
4689        ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4690                                       hole_size, 0, hole_size, 0, 0, 0);
4691        return ret;
4692}
4693
4694/*
4695 * When we are logging a new inode X, check if it doesn't have a reference that
4696 * matches the reference from some other inode Y created in a past transaction
4697 * and that was renamed in the current transaction. If we don't do this, then at
4698 * log replay time we can lose inode Y (and all its files if it's a directory):
4699 *
4700 * mkdir /mnt/x
4701 * echo "hello world" > /mnt/x/foobar
4702 * sync
4703 * mv /mnt/x /mnt/y
4704 * mkdir /mnt/x                 # or touch /mnt/x
4705 * xfs_io -c fsync /mnt/x
4706 * <power fail>
4707 * mount fs, trigger log replay
4708 *
4709 * After the log replay procedure, we would lose the first directory and all its
4710 * files (file foobar).
4711 * For the case where inode Y is not a directory we simply end up losing it:
4712 *
4713 * echo "123" > /mnt/foo
4714 * sync
4715 * mv /mnt/foo /mnt/bar
4716 * echo "abc" > /mnt/foo
4717 * xfs_io -c fsync /mnt/foo
4718 * <power fail>
4719 *
4720 * We also need this for cases where a snapshot entry is replaced by some other
4721 * entry (file or directory) otherwise we end up with an unreplayable log due to
4722 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4723 * if it were a regular entry:
4724 *
4725 * mkdir /mnt/x
4726 * btrfs subvolume snapshot /mnt /mnt/x/snap
4727 * btrfs subvolume delete /mnt/x/snap
4728 * rmdir /mnt/x
4729 * mkdir /mnt/x
4730 * fsync /mnt/x or fsync some new file inside it
4731 * <power fail>
4732 *
4733 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4734 * the same transaction.
4735 */
4736static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4737                                         const int slot,
4738                                         const struct btrfs_key *key,
4739                                         struct btrfs_inode *inode,
4740                                         u64 *other_ino)
4741{
4742        int ret;
4743        struct btrfs_path *search_path;
4744        char *name = NULL;
4745        u32 name_len = 0;
4746        u32 item_size = btrfs_item_size_nr(eb, slot);
4747        u32 cur_offset = 0;
4748        unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4749
4750        search_path = btrfs_alloc_path();
4751        if (!search_path)
4752                return -ENOMEM;
4753        search_path->search_commit_root = 1;
4754        search_path->skip_locking = 1;
4755
4756        while (cur_offset < item_size) {
4757                u64 parent;
4758                u32 this_name_len;
4759                u32 this_len;
4760                unsigned long name_ptr;
4761                struct btrfs_dir_item *di;
4762
4763                if (key->type == BTRFS_INODE_REF_KEY) {
4764                        struct btrfs_inode_ref *iref;
4765
4766                        iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4767                        parent = key->offset;
4768                        this_name_len = btrfs_inode_ref_name_len(eb, iref);
4769                        name_ptr = (unsigned long)(iref + 1);
4770                        this_len = sizeof(*iref) + this_name_len;
4771                } else {
4772                        struct btrfs_inode_extref *extref;
4773
4774                        extref = (struct btrfs_inode_extref *)(ptr +
4775                                                               cur_offset);
4776                        parent = btrfs_inode_extref_parent(eb, extref);
4777                        this_name_len = btrfs_inode_extref_name_len(eb, extref);
4778                        name_ptr = (unsigned long)&extref->name;
4779                        this_len = sizeof(*extref) + this_name_len;
4780                }
4781
4782                if (this_name_len > name_len) {
4783                        char *new_name;
4784
4785                        new_name = krealloc(name, this_name_len, GFP_NOFS);
4786                        if (!new_name) {
4787                                ret = -ENOMEM;
4788                                goto out;
4789                        }
4790                        name_len = this_name_len;
4791                        name = new_name;
4792                }
4793
4794                read_extent_buffer(eb, name, name_ptr, this_name_len);
4795                di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4796                                parent, name, this_name_len, 0);
4797                if (di && !IS_ERR(di)) {
4798                        struct btrfs_key di_key;
4799
4800                        btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4801                                                  di, &di_key);
4802                        if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4803                                ret = 1;
4804                                *other_ino = di_key.objectid;
4805                        } else {
4806                                ret = -EAGAIN;
4807                        }
4808                        goto out;
4809                } else if (IS_ERR(di)) {
4810                        ret = PTR_ERR(di);
4811                        goto out;
4812                }
4813                btrfs_release_path(search_path);
4814
4815                cur_offset += this_len;
4816        }
4817        ret = 0;
4818out:
4819        btrfs_free_path(search_path);
4820        kfree(name);
4821        return ret;
4822}
4823
4824/* log a single inode in the tree log.
4825 * At least one parent directory for this inode must exist in the tree
4826 * or be logged already.
4827 *
4828 * Any items from this inode changed by the current transaction are copied
4829 * to the log tree.  An extra reference is taken on any extents in this
4830 * file, allowing us to avoid a whole pile of corner cases around logging
4831 * blocks that have been removed from the tree.
4832 *
4833 * See LOG_INODE_ALL and related defines for a description of what inode_only
4834 * does.
4835 *
4836 * This handles both files and directories.
4837 */
4838static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4839                           struct btrfs_root *root, struct btrfs_inode *inode,
4840                           int inode_only,
4841                           const loff_t start,
4842                           const loff_t end,
4843                           struct btrfs_log_ctx *ctx)
4844{
4845        struct btrfs_fs_info *fs_info = root->fs_info;
4846        struct btrfs_path *path;
4847        struct btrfs_path *dst_path;
4848        struct btrfs_key min_key;
4849        struct btrfs_key max_key;
4850        struct btrfs_root *log = root->log_root;
4851        u64 last_extent = 0;
4852        int err = 0;
4853        int ret;
4854        int nritems;
4855        int ins_start_slot = 0;
4856        int ins_nr;
4857        bool fast_search = false;
4858        u64 ino = btrfs_ino(inode);
4859        struct extent_map_tree *em_tree = &inode->extent_tree;
4860        u64 logged_isize = 0;
4861        bool need_log_inode_item = true;
4862        bool xattrs_logged = false;
4863
4864        path = btrfs_alloc_path();
4865        if (!path)
4866                return -ENOMEM;
4867        dst_path = btrfs_alloc_path();
4868        if (!dst_path) {
4869                btrfs_free_path(path);
4870                return -ENOMEM;
4871        }
4872
4873        min_key.objectid = ino;
4874        min_key.type = BTRFS_INODE_ITEM_KEY;
4875        min_key.offset = 0;
4876
4877        max_key.objectid = ino;
4878
4879
4880        /* today the code can only do partial logging of directories */
4881        if (S_ISDIR(inode->vfs_inode.i_mode) ||
4882            (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4883                       &inode->runtime_flags) &&
4884             inode_only >= LOG_INODE_EXISTS))
4885                max_key.type = BTRFS_XATTR_ITEM_KEY;
4886        else
4887                max_key.type = (u8)-1;
4888        max_key.offset = (u64)-1;
4889
4890        /*
4891         * Only run delayed items if we are a dir or a new file.
4892         * Otherwise commit the delayed inode only, which is needed in
4893         * order for the log replay code to mark inodes for link count
4894         * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4895         */
4896        if (S_ISDIR(inode->vfs_inode.i_mode) ||
4897            inode->generation > fs_info->last_trans_committed)
4898                ret = btrfs_commit_inode_delayed_items(trans, inode);
4899        else
4900                ret = btrfs_commit_inode_delayed_inode(inode);
4901
4902        if (ret) {
4903                btrfs_free_path(path);
4904                btrfs_free_path(dst_path);
4905                return ret;
4906        }
4907
4908        if (inode_only == LOG_OTHER_INODE) {
4909                inode_only = LOG_INODE_EXISTS;
4910                mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4911        } else {
4912                mutex_lock(&inode->log_mutex);
4913        }
4914
4915        /*
4916         * a brute force approach to making sure we get the most uptodate
4917         * copies of everything.
4918         */
4919        if (S_ISDIR(inode->vfs_inode.i_mode)) {
4920                int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4921
4922                if (inode_only == LOG_INODE_EXISTS)
4923                        max_key_type = BTRFS_XATTR_ITEM_KEY;
4924                ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4925        } else {
4926                if (inode_only == LOG_INODE_EXISTS) {
4927                        /*
4928                         * Make sure the new inode item we write to the log has
4929                         * the same isize as the current one (if it exists).
4930                         * This is necessary to prevent data loss after log
4931                         * replay, and also to prevent doing a wrong expanding
4932                         * truncate - for e.g. create file, write 4K into offset
4933                         * 0, fsync, write 4K into offset 4096, add hard link,
4934                         * fsync some other file (to sync log), power fail - if
4935                         * we use the inode's current i_size, after log replay
4936                         * we get a 8Kb file, with the last 4Kb extent as a hole
4937                         * (zeroes), as if an expanding truncate happened,
4938                         * instead of getting a file of 4Kb only.
4939                         */
4940                        err = logged_inode_size(log, inode, path, &logged_isize);
4941                        if (err)
4942                                goto out_unlock;
4943                }
4944                if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4945                             &inode->runtime_flags)) {
4946                        if (inode_only == LOG_INODE_EXISTS) {
4947                                max_key.type = BTRFS_XATTR_ITEM_KEY;
4948                                ret = drop_objectid_items(trans, log, path, ino,
4949                                                          max_key.type);
4950                        } else {
4951                                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4952                                          &inode->runtime_flags);
4953                                clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4954                                          &inode->runtime_flags);
4955                                while(1) {
4956                                        ret = btrfs_truncate_inode_items(trans,
4957                                                log, &inode->vfs_inode, 0, 0);
4958                                        if (ret != -EAGAIN)
4959                                                break;
4960                                }
4961                        }
4962                } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4963                                              &inode->runtime_flags) ||
4964                           inode_only == LOG_INODE_EXISTS) {
4965                        if (inode_only == LOG_INODE_ALL)
4966                                fast_search = true;
4967                        max_key.type = BTRFS_XATTR_ITEM_KEY;
4968                        ret = drop_objectid_items(trans, log, path, ino,
4969                                                  max_key.type);
4970                } else {
4971                        if (inode_only == LOG_INODE_ALL)
4972                                fast_search = true;
4973                        goto log_extents;
4974                }
4975
4976        }
4977        if (ret) {
4978                err = ret;
4979                goto out_unlock;
4980        }
4981
4982        while (1) {
4983                ins_nr = 0;
4984                ret = btrfs_search_forward(root, &min_key,
4985                                           path, trans->transid);
4986                if (ret < 0) {
4987                        err = ret;
4988                        goto out_unlock;
4989                }
4990                if (ret != 0)
4991                        break;
4992again:
4993                /* note, ins_nr might be > 0 here, cleanup outside the loop */
4994                if (min_key.objectid != ino)
4995                        break;
4996                if (min_key.type > max_key.type)
4997                        break;
4998
4999                if (min_key.type == BTRFS_INODE_ITEM_KEY)
5000                        need_log_inode_item = false;
5001
5002                if ((min_key.type == BTRFS_INODE_REF_KEY ||
5003                     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5004                    inode->generation == trans->transid) {
5005                        u64 other_ino = 0;
5006
5007                        ret = btrfs_check_ref_name_override(path->nodes[0],
5008                                        path->slots[0], &min_key, inode,
5009                                        &other_ino);
5010                        if (ret < 0) {
5011                                err = ret;
5012                                goto out_unlock;
5013                        } else if (ret > 0 && ctx &&
5014                                   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5015                                struct btrfs_key inode_key;
5016                                struct inode *other_inode;
5017
5018                                if (ins_nr > 0) {
5019                                        ins_nr++;
5020                                } else {
5021                                        ins_nr = 1;
5022                                        ins_start_slot = path->slots[0];
5023                                }
5024                                ret = copy_items(trans, inode, dst_path, path,
5025                                                 &last_extent, ins_start_slot,
5026                                                 ins_nr, inode_only,
5027                                                 logged_isize);
5028                                if (ret < 0) {
5029                                        err = ret;
5030                                        goto out_unlock;
5031                                }
5032                                ins_nr = 0;
5033                                btrfs_release_path(path);
5034                                inode_key.objectid = other_ino;
5035                                inode_key.type = BTRFS_INODE_ITEM_KEY;
5036                                inode_key.offset = 0;
5037                                other_inode = btrfs_iget(fs_info->sb,
5038                                                         &inode_key, root,
5039                                                         NULL);
5040                                /*
5041                                 * If the other inode that had a conflicting dir
5042                                 * entry was deleted in the current transaction,
5043                                 * we don't need to do more work nor fallback to
5044                                 * a transaction commit.
5045                                 */
5046                                if (other_inode == ERR_PTR(-ENOENT)) {
5047                                        goto next_key;
5048                                } else if (IS_ERR(other_inode)) {
5049                                        err = PTR_ERR(other_inode);
5050                                        goto out_unlock;
5051                                }
5052                                /*
5053                                 * We are safe logging the other inode without
5054                                 * acquiring its i_mutex as long as we log with
5055                                 * the LOG_INODE_EXISTS mode. We're safe against
5056                                 * concurrent renames of the other inode as well
5057                                 * because during a rename we pin the log and
5058                                 * update the log with the new name before we
5059                                 * unpin it.
5060                                 */
5061                                err = btrfs_log_inode(trans, root,
5062                                                BTRFS_I(other_inode),
5063                                                LOG_OTHER_INODE, 0, LLONG_MAX,
5064                                                ctx);
5065                                iput(other_inode);
5066                                if (err)
5067                                        goto out_unlock;
5068                                else
5069                                        goto next_key;
5070                        }
5071                }
5072
5073                /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5074                if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5075                        if (ins_nr == 0)
5076                                goto next_slot;
5077                        ret = copy_items(trans, inode, dst_path, path,
5078                                         &last_extent, ins_start_slot,
5079                                         ins_nr, inode_only, logged_isize);
5080                        if (ret < 0) {
5081                                err = ret;
5082                                goto out_unlock;
5083                        }
5084                        ins_nr = 0;
5085                        if (ret) {
5086                                btrfs_release_path(path);
5087                                continue;
5088                        }
5089                        goto next_slot;
5090                }
5091
5092                if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5093                        ins_nr++;
5094                        goto next_slot;
5095                } else if (!ins_nr) {
5096                        ins_start_slot = path->slots[0];
5097                        ins_nr = 1;
5098                        goto next_slot;
5099                }
5100
5101                ret = copy_items(trans, inode, dst_path, path, &last_extent,
5102                                 ins_start_slot, ins_nr, inode_only,
5103                                 logged_isize);
5104                if (ret < 0) {
5105                        err = ret;
5106                        goto out_unlock;
5107                }
5108                if (ret) {
5109                        ins_nr = 0;
5110                        btrfs_release_path(path);
5111                        continue;
5112                }
5113                ins_nr = 1;
5114                ins_start_slot = path->slots[0];
5115next_slot:
5116
5117                nritems = btrfs_header_nritems(path->nodes[0]);
5118                path->slots[0]++;
5119                if (path->slots[0] < nritems) {
5120                        btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5121                                              path->slots[0]);
5122                        goto again;
5123                }
5124                if (ins_nr) {
5125                        ret = copy_items(trans, inode, dst_path, path,
5126                                         &last_extent, ins_start_slot,
5127                                         ins_nr, inode_only, logged_isize);
5128                        if (ret < 0) {
5129                                err = ret;
5130                                goto out_unlock;
5131                        }
5132                        ret = 0;
5133                        ins_nr = 0;
5134                }
5135                btrfs_release_path(path);
5136next_key:
5137                if (min_key.offset < (u64)-1) {
5138                        min_key.offset++;
5139                } else if (min_key.type < max_key.type) {
5140                        min_key.type++;
5141                        min_key.offset = 0;
5142                } else {
5143                        break;
5144                }
5145        }
5146        if (ins_nr) {
5147                ret = copy_items(trans, inode, dst_path, path, &last_extent,
5148                                 ins_start_slot, ins_nr, inode_only,
5149                                 logged_isize);
5150                if (ret < 0) {
5151                        err = ret;
5152                        goto out_unlock;
5153                }
5154                ret = 0;
5155                ins_nr = 0;
5156        }
5157
5158        btrfs_release_path(path);
5159        btrfs_release_path(dst_path);
5160        err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5161        if (err)
5162                goto out_unlock;
5163        xattrs_logged = true;
5164        if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5165                btrfs_release_path(path);
5166                btrfs_release_path(dst_path);
5167                err = btrfs_log_trailing_hole(trans, root, inode, path);
5168                if (err)
5169                        goto out_unlock;
5170        }
5171log_extents:
5172        btrfs_release_path(path);
5173        btrfs_release_path(dst_path);
5174        if (need_log_inode_item) {
5175                err = log_inode_item(trans, log, dst_path, inode);
5176                if (!err && !xattrs_logged) {
5177                        err = btrfs_log_all_xattrs(trans, root, inode, path,
5178                                                   dst_path);
5179                        btrfs_release_path(path);
5180                }
5181                if (err)
5182                        goto out_unlock;
5183        }
5184        if (fast_search) {
5185                ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5186                                                ctx, start, end);
5187                if (ret) {
5188                        err = ret;
5189                        goto out_unlock;
5190                }
5191        } else if (inode_only == LOG_INODE_ALL) {
5192                struct extent_map *em, *n;
5193
5194                write_lock(&em_tree->lock);
5195                /*
5196                 * We can't just remove every em if we're called for a ranged
5197                 * fsync - that is, one that doesn't cover the whole possible
5198                 * file range (0 to LLONG_MAX). This is because we can have
5199                 * em's that fall outside the range we're logging and therefore
5200                 * their ordered operations haven't completed yet
5201                 * (btrfs_finish_ordered_io() not invoked yet). This means we
5202                 * didn't get their respective file extent item in the fs/subvol
5203                 * tree yet, and need to let the next fast fsync (one which
5204                 * consults the list of modified extent maps) find the em so
5205                 * that it logs a matching file extent item and waits for the
5206                 * respective ordered operation to complete (if it's still
5207                 * running).
5208                 *
5209                 * Removing every em outside the range we're logging would make
5210                 * the next fast fsync not log their matching file extent items,
5211                 * therefore making us lose data after a log replay.
5212                 */
5213                list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5214                                         list) {
5215                        const u64 mod_end = em->mod_start + em->mod_len - 1;
5216
5217                        if (em->mod_start >= start && mod_end <= end)
5218                                list_del_init(&em->list);
5219                }
5220                write_unlock(&em_tree->lock);
5221        }
5222
5223        if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5224                ret = log_directory_changes(trans, root, inode, path, dst_path,
5225                                        ctx);
5226                if (ret) {
5227                        err = ret;
5228                        goto out_unlock;
5229                }
5230        }
5231
5232        spin_lock(&inode->lock);
5233        inode->logged_trans = trans->transid;
5234        inode->last_log_commit = inode->last_sub_trans;
5235        spin_unlock(&inode->lock);
5236out_unlock:
5237        mutex_unlock(&inode->log_mutex);
5238
5239        btrfs_free_path(path);
5240        btrfs_free_path(dst_path);
5241        return err;
5242}
5243
5244/*
5245 * Check if we must fallback to a transaction commit when logging an inode.
5246 * This must be called after logging the inode and is used only in the context
5247 * when fsyncing an inode requires the need to log some other inode - in which
5248 * case we can't lock the i_mutex of each other inode we need to log as that
5249 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5250 * log inodes up or down in the hierarchy) or rename operations for example. So
5251 * we take the log_mutex of the inode after we have logged it and then check for
5252 * its last_unlink_trans value - this is safe because any task setting
5253 * last_unlink_trans must take the log_mutex and it must do this before it does
5254 * the actual unlink operation, so if we do this check before a concurrent task
5255 * sets last_unlink_trans it means we've logged a consistent version/state of
5256 * all the inode items, otherwise we are not sure and must do a transaction
5257 * commit (the concurrent task might have only updated last_unlink_trans before
5258 * we logged the inode or it might have also done the unlink).
5259 */
5260static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5261                                          struct btrfs_inode *inode)
5262{
5263        struct btrfs_fs_info *fs_info = inode->root->fs_info;
5264        bool ret = false;
5265
5266        mutex_lock(&inode->log_mutex);
5267        if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5268                /*
5269                 * Make sure any commits to the log are forced to be full
5270                 * commits.
5271                 */
5272                btrfs_set_log_full_commit(fs_info, trans);
5273                ret = true;
5274        }
5275        mutex_unlock(&inode->log_mutex);
5276
5277        return ret;
5278}
5279
5280/*
5281 * follow the dentry parent pointers up the chain and see if any
5282 * of the directories in it require a full commit before they can
5283 * be logged.  Returns zero if nothing special needs to be done or 1 if
5284 * a full commit is required.
5285 */
5286static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5287                                               struct btrfs_inode *inode,
5288                                               struct dentry *parent,
5289                                               struct super_block *sb,
5290                                               u64 last_committed)
5291{
5292        int ret = 0;
5293        struct dentry *old_parent = NULL;
5294        struct btrfs_inode *orig_inode = inode;
5295
5296        /*
5297         * for regular files, if its inode is already on disk, we don't
5298         * have to worry about the parents at all.  This is because
5299         * we can use the last_unlink_trans field to record renames
5300         * and other fun in this file.
5301         */
5302        if (S_ISREG(inode->vfs_inode.i_mode) &&
5303            inode->generation <= last_committed &&
5304            inode->last_unlink_trans <= last_committed)
5305                goto out;
5306
5307        if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5308                if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5309                        goto out;
5310                inode = BTRFS_I(d_inode(parent));
5311        }
5312
5313        while (1) {
5314                /*
5315                 * If we are logging a directory then we start with our inode,
5316                 * not our parent's inode, so we need to skip setting the
5317                 * logged_trans so that further down in the log code we don't
5318                 * think this inode has already been logged.
5319                 */
5320                if (inode != orig_inode)
5321                        inode->logged_trans = trans->transid;
5322                smp_mb();
5323
5324                if (btrfs_must_commit_transaction(trans, inode)) {
5325                        ret = 1;
5326                        break;
5327                }
5328
5329                if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5330                        break;
5331
5332                if (IS_ROOT(parent)) {
5333                        inode = BTRFS_I(d_inode(parent));
5334                        if (btrfs_must_commit_transaction(trans, inode))
5335                                ret = 1;
5336                        break;
5337                }
5338
5339                parent = dget_parent(parent);
5340                dput(old_parent);
5341                old_parent = parent;
5342                inode = BTRFS_I(d_inode(parent));
5343
5344        }
5345        dput(old_parent);
5346out:
5347        return ret;
5348}
5349
5350struct btrfs_dir_list {
5351        u64 ino;
5352        struct list_head list;
5353};
5354
5355/*
5356 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5357 * details about the why it is needed.
5358 * This is a recursive operation - if an existing dentry corresponds to a
5359 * directory, that directory's new entries are logged too (same behaviour as
5360 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5361 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5362 * complains about the following circular lock dependency / possible deadlock:
5363 *
5364 *        CPU0                                        CPU1
5365 *        ----                                        ----
5366 * lock(&type->i_mutex_dir_key#3/2);
5367 *                                            lock(sb_internal#2);
5368 *                                            lock(&type->i_mutex_dir_key#3/2);
5369 * lock(&sb->s_type->i_mutex_key#14);
5370 *
5371 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5372 * sb_start_intwrite() in btrfs_start_transaction().
5373 * Not locking i_mutex of the inodes is still safe because:
5374 *
5375 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5376 *    that while logging the inode new references (names) are added or removed
5377 *    from the inode, leaving the logged inode item with a link count that does
5378 *    not match the number of logged inode reference items. This is fine because
5379 *    at log replay time we compute the real number of links and correct the
5380 *    link count in the inode item (see replay_one_buffer() and
5381 *    link_to_fixup_dir());
5382 *
5383 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5384 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5385 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5386 *    has a size that doesn't match the sum of the lengths of all the logged
5387 *    names. This does not result in a problem because if a dir_item key is
5388 *    logged but its matching dir_index key is not logged, at log replay time we
5389 *    don't use it to replay the respective name (see replay_one_name()). On the
5390 *    other hand if only the dir_index key ends up being logged, the respective
5391 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5392 *    keys created (see replay_one_name()).
5393 *    The directory's inode item with a wrong i_size is not a problem as well,
5394 *    since we don't use it at log replay time to set the i_size in the inode
5395 *    item of the fs/subvol tree (see overwrite_item()).
5396 */
5397static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5398                                struct btrfs_root *root,
5399                                struct btrfs_inode *start_inode,
5400                                struct btrfs_log_ctx *ctx)
5401{
5402        struct btrfs_fs_info *fs_info = root->fs_info;
5403        struct btrfs_root *log = root->log_root;
5404        struct btrfs_path *path;
5405        LIST_HEAD(dir_list);
5406        struct btrfs_dir_list *dir_elem;
5407        int ret = 0;
5408
5409        path = btrfs_alloc_path();
5410        if (!path)
5411                return -ENOMEM;
5412
5413        dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5414        if (!dir_elem) {
5415                btrfs_free_path(path);
5416                return -ENOMEM;
5417        }
5418        dir_elem->ino = btrfs_ino(start_inode);
5419        list_add_tail(&dir_elem->list, &dir_list);
5420
5421        while (!list_empty(&dir_list)) {
5422                struct extent_buffer *leaf;
5423                struct btrfs_key min_key;
5424                int nritems;
5425                int i;
5426
5427                dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5428                                            list);
5429                if (ret)
5430                        goto next_dir_inode;
5431
5432                min_key.objectid = dir_elem->ino;
5433                min_key.type = BTRFS_DIR_ITEM_KEY;
5434                min_key.offset = 0;
5435again:
5436                btrfs_release_path(path);
5437                ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5438                if (ret < 0) {
5439                        goto next_dir_inode;
5440                } else if (ret > 0) {
5441                        ret = 0;
5442                        goto next_dir_inode;
5443                }
5444
5445process_leaf:
5446                leaf = path->nodes[0];
5447                nritems = btrfs_header_nritems(leaf);
5448                for (i = path->slots[0]; i < nritems; i++) {
5449                        struct btrfs_dir_item *di;
5450                        struct btrfs_key di_key;
5451                        struct inode *di_inode;
5452                        struct btrfs_dir_list *new_dir_elem;
5453                        int log_mode = LOG_INODE_EXISTS;
5454                        int type;
5455
5456                        btrfs_item_key_to_cpu(leaf, &min_key, i);
5457                        if (min_key.objectid != dir_elem->ino ||
5458                            min_key.type != BTRFS_DIR_ITEM_KEY)
5459                                goto next_dir_inode;
5460
5461                        di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5462                        type = btrfs_dir_type(leaf, di);
5463                        if (btrfs_dir_transid(leaf, di) < trans->transid &&
5464                            type != BTRFS_FT_DIR)
5465                                continue;
5466                        btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5467                        if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5468                                continue;
5469
5470                        btrfs_release_path(path);
5471                        di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5472                        if (IS_ERR(di_inode)) {
5473                                ret = PTR_ERR(di_inode);
5474                                goto next_dir_inode;
5475                        }
5476
5477                        if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5478                                iput(di_inode);
5479                                break;
5480                        }
5481
5482                        ctx->log_new_dentries = false;
5483                        if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5484                                log_mode = LOG_INODE_ALL;
5485                        ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5486                                              log_mode, 0, LLONG_MAX, ctx);
5487                        if (!ret &&
5488                            btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5489                                ret = 1;
5490                        iput(di_inode);
5491                        if (ret)
5492                                goto next_dir_inode;
5493                        if (ctx->log_new_dentries) {
5494                                new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5495                                                       GFP_NOFS);
5496                                if (!new_dir_elem) {
5497                                        ret = -ENOMEM;
5498                                        goto next_dir_inode;
5499                                }
5500                                new_dir_elem->ino = di_key.objectid;
5501                                list_add_tail(&new_dir_elem->list, &dir_list);
5502                        }
5503                        break;
5504                }
5505                if (i == nritems) {
5506                        ret = btrfs_next_leaf(log, path);
5507                        if (ret < 0) {
5508                                goto next_dir_inode;
5509                        } else if (ret > 0) {
5510                                ret = 0;
5511                                goto next_dir_inode;
5512                        }
5513                        goto process_leaf;
5514                }
5515                if (min_key.offset < (u64)-1) {
5516                        min_key.offset++;
5517                        goto again;
5518                }
5519next_dir_inode:
5520                list_del(&dir_elem->list);
5521                kfree(dir_elem);
5522        }
5523
5524        btrfs_free_path(path);
5525        return ret;
5526}
5527
5528static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5529                                 struct btrfs_inode *inode,
5530                                 struct btrfs_log_ctx *ctx)
5531{
5532        struct btrfs_fs_info *fs_info = trans->fs_info;
5533        int ret;
5534        struct btrfs_path *path;
5535        struct btrfs_key key;
5536        struct btrfs_root *root = inode->root;
5537        const u64 ino = btrfs_ino(inode);
5538
5539        path = btrfs_alloc_path();
5540        if (!path)
5541                return -ENOMEM;
5542        path->skip_locking = 1;
5543        path->search_commit_root = 1;
5544
5545        key.objectid = ino;
5546        key.type = BTRFS_INODE_REF_KEY;
5547        key.offset = 0;
5548        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5549        if (ret < 0)
5550                goto out;
5551
5552        while (true) {
5553                struct extent_buffer *leaf = path->nodes[0];
5554                int slot = path->slots[0];
5555                u32 cur_offset = 0;
5556                u32 item_size;
5557                unsigned long ptr;
5558
5559                if (slot >= btrfs_header_nritems(leaf)) {
5560                        ret = btrfs_next_leaf(root, path);
5561                        if (ret < 0)
5562                                goto out;
5563                        else if (ret > 0)
5564                                break;
5565                        continue;
5566                }
5567
5568                btrfs_item_key_to_cpu(leaf, &key, slot);
5569                /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5570                if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5571                        break;
5572
5573                item_size = btrfs_item_size_nr(leaf, slot);
5574                ptr = btrfs_item_ptr_offset(leaf, slot);
5575                while (cur_offset < item_size) {
5576                        struct btrfs_key inode_key;
5577                        struct inode *dir_inode;
5578
5579                        inode_key.type = BTRFS_INODE_ITEM_KEY;
5580                        inode_key.offset = 0;
5581
5582                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
5583                                struct btrfs_inode_extref *extref;
5584
5585                                extref = (struct btrfs_inode_extref *)
5586                                        (ptr + cur_offset);
5587                                inode_key.objectid = btrfs_inode_extref_parent(
5588                                        leaf, extref);
5589                                cur_offset += sizeof(*extref);
5590                                cur_offset += btrfs_inode_extref_name_len(leaf,
5591                                        extref);
5592                        } else {
5593                                inode_key.objectid = key.offset;
5594                                cur_offset = item_size;
5595                        }
5596
5597                        dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5598                                               root, NULL);
5599                        /*
5600                         * If the parent inode was deleted, return an error to
5601                         * fallback to a transaction commit. This is to prevent
5602                         * getting an inode that was moved from one parent A to
5603                         * a parent B, got its former parent A deleted and then
5604                         * it got fsync'ed, from existing at both parents after
5605                         * a log replay (and the old parent still existing).
5606                         * Example:
5607                         *
5608                         * mkdir /mnt/A
5609                         * mkdir /mnt/B
5610                         * touch /mnt/B/bar
5611                         * sync
5612                         * mv /mnt/B/bar /mnt/A/bar
5613                         * mv -T /mnt/A /mnt/B
5614                         * fsync /mnt/B/bar
5615                         * <power fail>
5616                         *
5617                         * If we ignore the old parent B which got deleted,
5618                         * after a log replay we would have file bar linked
5619                         * at both parents and the old parent B would still
5620                         * exist.
5621                         */
5622                        if (IS_ERR(dir_inode)) {
5623                                ret = PTR_ERR(dir_inode);
5624                                goto out;
5625                        }
5626
5627                        if (ctx)
5628                                ctx->log_new_dentries = false;
5629                        ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5630                                              LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5631                        if (!ret &&
5632                            btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5633                                ret = 1;
5634                        if (!ret && ctx && ctx->log_new_dentries)
5635                                ret = log_new_dir_dentries(trans, root,
5636                                                   BTRFS_I(dir_inode), ctx);
5637                        iput(dir_inode);
5638                        if (ret)
5639                                goto out;
5640                }
5641                path->slots[0]++;
5642        }
5643        ret = 0;
5644out:
5645        btrfs_free_path(path);
5646        return ret;
5647}
5648
5649/*
5650 * helper function around btrfs_log_inode to make sure newly created
5651 * parent directories also end up in the log.  A minimal inode and backref
5652 * only logging is done of any parent directories that are older than
5653 * the last committed transaction
5654 */
5655static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5656                                  struct btrfs_inode *inode,
5657                                  struct dentry *parent,
5658                                  const loff_t start,
5659                                  const loff_t end,
5660                                  int inode_only,
5661                                  struct btrfs_log_ctx *ctx)
5662{
5663        struct btrfs_root *root = inode->root;
5664        struct btrfs_fs_info *fs_info = root->fs_info;
5665        struct super_block *sb;
5666        struct dentry *old_parent = NULL;
5667        int ret = 0;
5668        u64 last_committed = fs_info->last_trans_committed;
5669        bool log_dentries = false;
5670        struct btrfs_inode *orig_inode = inode;
5671
5672        sb = inode->vfs_inode.i_sb;
5673
5674        if (btrfs_test_opt(fs_info, NOTREELOG)) {
5675                ret = 1;
5676                goto end_no_trans;
5677        }
5678
5679        /*
5680         * The prev transaction commit doesn't complete, we need do
5681         * full commit by ourselves.
5682         */
5683        if (fs_info->last_trans_log_full_commit >
5684            fs_info->last_trans_committed) {
5685                ret = 1;
5686                goto end_no_trans;
5687        }
5688
5689        if (btrfs_root_refs(&root->root_item) == 0) {
5690                ret = 1;
5691                goto end_no_trans;
5692        }
5693
5694        ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5695                        last_committed);
5696        if (ret)
5697                goto end_no_trans;
5698
5699        /*
5700         * Skip already logged inodes or inodes corresponding to tmpfiles
5701         * (since logging them is pointless, a link count of 0 means they
5702         * will never be accessible).
5703         */
5704        if (btrfs_inode_in_log(inode, trans->transid) ||
5705            inode->vfs_inode.i_nlink == 0) {
5706                ret = BTRFS_NO_LOG_SYNC;
5707                goto end_no_trans;
5708        }
5709
5710        ret = start_log_trans(trans, root, ctx);
5711        if (ret)
5712                goto end_no_trans;
5713
5714        ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5715        if (ret)
5716                goto end_trans;
5717
5718        /*
5719         * for regular files, if its inode is already on disk, we don't
5720         * have to worry about the parents at all.  This is because
5721         * we can use the last_unlink_trans field to record renames
5722         * and other fun in this file.
5723         */
5724        if (S_ISREG(inode->vfs_inode.i_mode) &&
5725            inode->generation <= last_committed &&
5726            inode->last_unlink_trans <= last_committed) {
5727                ret = 0;
5728                goto end_trans;
5729        }
5730
5731        if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5732                log_dentries = true;
5733
5734        /*
5735         * On unlink we must make sure all our current and old parent directory
5736         * inodes are fully logged. This is to prevent leaving dangling
5737         * directory index entries in directories that were our parents but are
5738         * not anymore. Not doing this results in old parent directory being
5739         * impossible to delete after log replay (rmdir will always fail with
5740         * error -ENOTEMPTY).
5741         *
5742         * Example 1:
5743         *
5744         * mkdir testdir
5745         * touch testdir/foo
5746         * ln testdir/foo testdir/bar
5747         * sync
5748         * unlink testdir/bar
5749         * xfs_io -c fsync testdir/foo
5750         * <power failure>
5751         * mount fs, triggers log replay
5752         *
5753         * If we don't log the parent directory (testdir), after log replay the
5754         * directory still has an entry pointing to the file inode using the bar
5755         * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5756         * the file inode has a link count of 1.
5757         *
5758         * Example 2:
5759         *
5760         * mkdir testdir
5761         * touch foo
5762         * ln foo testdir/foo2
5763         * ln foo testdir/foo3
5764         * sync
5765         * unlink testdir/foo3
5766         * xfs_io -c fsync foo
5767         * <power failure>
5768         * mount fs, triggers log replay
5769         *
5770         * Similar as the first example, after log replay the parent directory
5771         * testdir still has an entry pointing to the inode file with name foo3
5772         * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5773         * and has a link count of 2.
5774         */
5775        if (inode->last_unlink_trans > last_committed) {
5776                ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5777                if (ret)
5778                        goto end_trans;
5779        }
5780
5781        while (1) {
5782                if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5783                        break;
5784
5785                inode = BTRFS_I(d_inode(parent));
5786                if (root != inode->root)
5787                        break;
5788
5789                if (inode->generation > last_committed) {
5790                        ret = btrfs_log_inode(trans, root, inode,
5791                                        LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5792                        if (ret)
5793                                goto end_trans;
5794                }
5795                if (IS_ROOT(parent))
5796                        break;
5797
5798                parent = dget_parent(parent);
5799                dput(old_parent);
5800                old_parent = parent;
5801        }
5802        if (log_dentries)
5803                ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5804        else
5805                ret = 0;
5806end_trans:
5807        dput(old_parent);
5808        if (ret < 0) {
5809                btrfs_set_log_full_commit(fs_info, trans);
5810                ret = 1;
5811        }
5812
5813        if (ret)
5814                btrfs_remove_log_ctx(root, ctx);
5815        btrfs_end_log_trans(root);
5816end_no_trans:
5817        return ret;
5818}
5819
5820/*
5821 * it is not safe to log dentry if the chunk root has added new
5822 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5823 * If this returns 1, you must commit the transaction to safely get your
5824 * data on disk.
5825 */
5826int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5827                          struct dentry *dentry,
5828                          const loff_t start,
5829                          const loff_t end,
5830                          struct btrfs_log_ctx *ctx)
5831{
5832        struct dentry *parent = dget_parent(dentry);
5833        int ret;
5834
5835        ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5836                                     start, end, LOG_INODE_ALL, ctx);
5837        dput(parent);
5838
5839        return ret;
5840}
5841
5842/*
5843 * should be called during mount to recover any replay any log trees
5844 * from the FS
5845 */
5846int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5847{
5848        int ret;
5849        struct btrfs_path *path;
5850        struct btrfs_trans_handle *trans;
5851        struct btrfs_key key;
5852        struct btrfs_key found_key;
5853        struct btrfs_key tmp_key;
5854        struct btrfs_root *log;
5855        struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5856        struct walk_control wc = {
5857                .process_func = process_one_buffer,
5858                .stage = 0,
5859        };
5860
5861        path = btrfs_alloc_path();
5862        if (!path)
5863                return -ENOMEM;
5864
5865        set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5866
5867        trans = btrfs_start_transaction(fs_info->tree_root, 0);
5868        if (IS_ERR(trans)) {
5869                ret = PTR_ERR(trans);
5870                goto error;
5871        }
5872
5873        wc.trans = trans;
5874        wc.pin = 1;
5875
5876        ret = walk_log_tree(trans, log_root_tree, &wc);
5877        if (ret) {
5878                btrfs_handle_fs_error(fs_info, ret,
5879                        "Failed to pin buffers while recovering log root tree.");
5880                goto error;
5881        }
5882
5883again:
5884        key.objectid = BTRFS_TREE_LOG_OBJECTID;
5885        key.offset = (u64)-1;
5886        key.type = BTRFS_ROOT_ITEM_KEY;
5887
5888        while (1) {
5889                ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5890
5891                if (ret < 0) {
5892                        btrfs_handle_fs_error(fs_info, ret,
5893                                    "Couldn't find tree log root.");
5894                        goto error;
5895                }
5896                if (ret > 0) {
5897                        if (path->slots[0] == 0)
5898                                break;
5899                        path->slots[0]--;
5900                }
5901                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5902                                      path->slots[0]);
5903                btrfs_release_path(path);
5904                if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5905                        break;
5906
5907                log = btrfs_read_fs_root(log_root_tree, &found_key);
5908                if (IS_ERR(log)) {
5909                        ret = PTR_ERR(log);
5910                        btrfs_handle_fs_error(fs_info, ret,
5911                                    "Couldn't read tree log root.");
5912                        goto error;
5913                }
5914
5915                tmp_key.objectid = found_key.offset;
5916                tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5917                tmp_key.offset = (u64)-1;
5918
5919                wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5920                if (IS_ERR(wc.replay_dest)) {
5921                        ret = PTR_ERR(wc.replay_dest);
5922                        free_extent_buffer(log->node);
5923                        free_extent_buffer(log->commit_root);
5924                        kfree(log);
5925                        btrfs_handle_fs_error(fs_info, ret,
5926                                "Couldn't read target root for tree log recovery.");
5927                        goto error;
5928                }
5929
5930                wc.replay_dest->log_root = log;
5931                btrfs_record_root_in_trans(trans, wc.replay_dest);
5932                ret = walk_log_tree(trans, log, &wc);
5933
5934                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5935                        ret = fixup_inode_link_counts(trans, wc.replay_dest,
5936                                                      path);
5937                }
5938
5939                if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5940                        struct btrfs_root *root = wc.replay_dest;
5941
5942                        btrfs_release_path(path);
5943
5944                        /*
5945                         * We have just replayed everything, and the highest
5946                         * objectid of fs roots probably has changed in case
5947                         * some inode_item's got replayed.
5948                         *
5949                         * root->objectid_mutex is not acquired as log replay
5950                         * could only happen during mount.
5951                         */
5952                        ret = btrfs_find_highest_objectid(root,
5953                                                  &root->highest_objectid);
5954                }
5955
5956                key.offset = found_key.offset - 1;
5957                wc.replay_dest->log_root = NULL;
5958                free_extent_buffer(log->node);
5959                free_extent_buffer(log->commit_root);
5960                kfree(log);
5961
5962                if (ret)
5963                        goto error;
5964
5965                if (found_key.offset == 0)
5966                        break;
5967        }
5968        btrfs_release_path(path);
5969
5970        /* step one is to pin it all, step two is to replay just inodes */
5971        if (wc.pin) {
5972                wc.pin = 0;
5973                wc.process_func = replay_one_buffer;
5974                wc.stage = LOG_WALK_REPLAY_INODES;
5975                goto again;
5976        }
5977        /* step three is to replay everything */
5978        if (wc.stage < LOG_WALK_REPLAY_ALL) {
5979                wc.stage++;
5980                goto again;
5981        }
5982
5983        btrfs_free_path(path);
5984
5985        /* step 4: commit the transaction, which also unpins the blocks */
5986        ret = btrfs_commit_transaction(trans);
5987        if (ret)
5988                return ret;
5989
5990        free_extent_buffer(log_root_tree->node);
5991        log_root_tree->log_root = NULL;
5992        clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5993        kfree(log_root_tree);
5994
5995        return 0;
5996error:
5997        if (wc.trans)
5998                btrfs_end_transaction(wc.trans);
5999        btrfs_free_path(path);
6000        return ret;
6001}
6002
6003/*
6004 * there are some corner cases where we want to force a full
6005 * commit instead of allowing a directory to be logged.
6006 *
6007 * They revolve around files there were unlinked from the directory, and
6008 * this function updates the parent directory so that a full commit is
6009 * properly done if it is fsync'd later after the unlinks are done.
6010 *
6011 * Must be called before the unlink operations (updates to the subvolume tree,
6012 * inodes, etc) are done.
6013 */
6014void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6015                             struct btrfs_inode *dir, struct btrfs_inode *inode,
6016                             int for_rename)
6017{
6018        /*
6019         * when we're logging a file, if it hasn't been renamed
6020         * or unlinked, and its inode is fully committed on disk,
6021         * we don't have to worry about walking up the directory chain
6022         * to log its parents.
6023         *
6024         * So, we use the last_unlink_trans field to put this transid
6025         * into the file.  When the file is logged we check it and
6026         * don't log the parents if the file is fully on disk.
6027         */
6028        mutex_lock(&inode->log_mutex);
6029        inode->last_unlink_trans = trans->transid;
6030        mutex_unlock(&inode->log_mutex);
6031
6032        /*
6033         * if this directory was already logged any new
6034         * names for this file/dir will get recorded
6035         */
6036        smp_mb();
6037        if (dir->logged_trans == trans->transid)
6038                return;
6039
6040        /*
6041         * if the inode we're about to unlink was logged,
6042         * the log will be properly updated for any new names
6043         */
6044        if (inode->logged_trans == trans->transid)
6045                return;
6046
6047        /*
6048         * when renaming files across directories, if the directory
6049         * there we're unlinking from gets fsync'd later on, there's
6050         * no way to find the destination directory later and fsync it
6051         * properly.  So, we have to be conservative and force commits
6052         * so the new name gets discovered.
6053         */
6054        if (for_rename)
6055                goto record;
6056
6057        /* we can safely do the unlink without any special recording */
6058        return;
6059
6060record:
6061        mutex_lock(&dir->log_mutex);
6062        dir->last_unlink_trans = trans->transid;
6063        mutex_unlock(&dir->log_mutex);
6064}
6065
6066/*
6067 * Make sure that if someone attempts to fsync the parent directory of a deleted
6068 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6069 * that after replaying the log tree of the parent directory's root we will not
6070 * see the snapshot anymore and at log replay time we will not see any log tree
6071 * corresponding to the deleted snapshot's root, which could lead to replaying
6072 * it after replaying the log tree of the parent directory (which would replay
6073 * the snapshot delete operation).
6074 *
6075 * Must be called before the actual snapshot destroy operation (updates to the
6076 * parent root and tree of tree roots trees, etc) are done.
6077 */
6078void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6079                                   struct btrfs_inode *dir)
6080{
6081        mutex_lock(&dir->log_mutex);
6082        dir->last_unlink_trans = trans->transid;
6083        mutex_unlock(&dir->log_mutex);
6084}
6085
6086/*
6087 * Call this after adding a new name for a file and it will properly
6088 * update the log to reflect the new name.
6089 *
6090 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6091 * true (because it's not used).
6092 *
6093 * Return value depends on whether @sync_log is true or false.
6094 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6095 *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6096 *            otherwise.
6097 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6098 *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6099 *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6100 *             committed (without attempting to sync the log).
6101 */
6102int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6103                        struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6104                        struct dentry *parent,
6105                        bool sync_log, struct btrfs_log_ctx *ctx)
6106{
6107        struct btrfs_fs_info *fs_info = trans->fs_info;
6108        int ret;
6109
6110        /*
6111         * this will force the logging code to walk the dentry chain
6112         * up for the file
6113         */
6114        if (!S_ISDIR(inode->vfs_inode.i_mode))
6115                inode->last_unlink_trans = trans->transid;
6116
6117        /*
6118         * if this inode hasn't been logged and directory we're renaming it
6119         * from hasn't been logged, we don't need to log it
6120         */
6121        if (inode->logged_trans <= fs_info->last_trans_committed &&
6122            (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6123                return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6124                        BTRFS_DONT_NEED_LOG_SYNC;
6125
6126        if (sync_log) {
6127                struct btrfs_log_ctx ctx2;
6128
6129                btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6130                ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6131                                             LOG_INODE_EXISTS, &ctx2);
6132                if (ret == BTRFS_NO_LOG_SYNC)
6133                        return BTRFS_DONT_NEED_TRANS_COMMIT;
6134                else if (ret)
6135                        return BTRFS_NEED_TRANS_COMMIT;
6136
6137                ret = btrfs_sync_log(trans, inode->root, &ctx2);
6138                if (ret)
6139                        return BTRFS_NEED_TRANS_COMMIT;
6140                return BTRFS_DONT_NEED_TRANS_COMMIT;
6141        }
6142
6143        ASSERT(ctx);
6144        ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6145                                     LOG_INODE_EXISTS, ctx);
6146        if (ret == BTRFS_NO_LOG_SYNC)
6147                return BTRFS_DONT_NEED_LOG_SYNC;
6148        else if (ret)
6149                return BTRFS_NEED_TRANS_COMMIT;
6150
6151        return BTRFS_NEED_LOG_SYNC;
6152}
6153
6154