linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in the
  15 * file called COPYING.
  16 */
  17#ifndef LINUX_DMAENGINE_H
  18#define LINUX_DMAENGINE_H
  19
  20#include <linux/device.h>
  21#include <linux/err.h>
  22#include <linux/uio.h>
  23#include <linux/bug.h>
  24#include <linux/scatterlist.h>
  25#include <linux/bitmap.h>
  26#include <linux/types.h>
  27#include <asm/page.h>
  28
  29/**
  30 * typedef dma_cookie_t - an opaque DMA cookie
  31 *
  32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  33 */
  34typedef s32 dma_cookie_t;
  35#define DMA_MIN_COOKIE  1
  36
  37static inline int dma_submit_error(dma_cookie_t cookie)
  38{
  39        return cookie < 0 ? cookie : 0;
  40}
  41
  42/**
  43 * enum dma_status - DMA transaction status
  44 * @DMA_COMPLETE: transaction completed
  45 * @DMA_IN_PROGRESS: transaction not yet processed
  46 * @DMA_PAUSED: transaction is paused
  47 * @DMA_ERROR: transaction failed
  48 */
  49enum dma_status {
  50        DMA_COMPLETE,
  51        DMA_IN_PROGRESS,
  52        DMA_PAUSED,
  53        DMA_ERROR,
  54};
  55
  56/**
  57 * enum dma_transaction_type - DMA transaction types/indexes
  58 *
  59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  60 * automatically set as dma devices are registered.
  61 */
  62enum dma_transaction_type {
  63        DMA_MEMCPY,
  64        DMA_XOR,
  65        DMA_PQ,
  66        DMA_XOR_VAL,
  67        DMA_PQ_VAL,
  68        DMA_MEMSET,
  69        DMA_MEMSET_SG,
  70        DMA_INTERRUPT,
  71        DMA_PRIVATE,
  72        DMA_ASYNC_TX,
  73        DMA_SLAVE,
  74        DMA_CYCLIC,
  75        DMA_INTERLEAVE,
  76/* last transaction type for creation of the capabilities mask */
  77        DMA_TX_TYPE_END,
  78};
  79
  80/**
  81 * enum dma_transfer_direction - dma transfer mode and direction indicator
  82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  86 */
  87enum dma_transfer_direction {
  88        DMA_MEM_TO_MEM,
  89        DMA_MEM_TO_DEV,
  90        DMA_DEV_TO_MEM,
  91        DMA_DEV_TO_DEV,
  92        DMA_TRANS_NONE,
  93};
  94
  95/**
  96 * Interleaved Transfer Request
  97 * ----------------------------
  98 * A chunk is collection of contiguous bytes to be transfered.
  99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
 100 * ICGs may or maynot change between chunks.
 101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
 102 *  that when repeated an integral number of times, specifies the transfer.
 103 * A transfer template is specification of a Frame, the number of times
 104 *  it is to be repeated and other per-transfer attributes.
 105 *
 106 * Practically, a client driver would have ready a template for each
 107 *  type of transfer it is going to need during its lifetime and
 108 *  set only 'src_start' and 'dst_start' before submitting the requests.
 109 *
 110 *
 111 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 112 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 113 *
 114 *    ==  Chunk size
 115 *    ... ICG
 116 */
 117
 118/**
 119 * struct data_chunk - Element of scatter-gather list that makes a frame.
 120 * @size: Number of bytes to read from source.
 121 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 122 * @icg: Number of bytes to jump after last src/dst address of this
 123 *       chunk and before first src/dst address for next chunk.
 124 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 125 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 126 * @dst_icg: Number of bytes to jump after last dst address of this
 127 *       chunk and before the first dst address for next chunk.
 128 *       Ignored if dst_inc is true and dst_sgl is false.
 129 * @src_icg: Number of bytes to jump after last src address of this
 130 *       chunk and before the first src address for next chunk.
 131 *       Ignored if src_inc is true and src_sgl is false.
 132 */
 133struct data_chunk {
 134        size_t size;
 135        size_t icg;
 136        size_t dst_icg;
 137        size_t src_icg;
 138};
 139
 140/**
 141 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 142 *       and attributes.
 143 * @src_start: Bus address of source for the first chunk.
 144 * @dst_start: Bus address of destination for the first chunk.
 145 * @dir: Specifies the type of Source and Destination.
 146 * @src_inc: If the source address increments after reading from it.
 147 * @dst_inc: If the destination address increments after writing to it.
 148 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 149 *              Otherwise, source is read contiguously (icg ignored).
 150 *              Ignored if src_inc is false.
 151 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 152 *              Otherwise, destination is filled contiguously (icg ignored).
 153 *              Ignored if dst_inc is false.
 154 * @numf: Number of frames in this template.
 155 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 156 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 157 */
 158struct dma_interleaved_template {
 159        dma_addr_t src_start;
 160        dma_addr_t dst_start;
 161        enum dma_transfer_direction dir;
 162        bool src_inc;
 163        bool dst_inc;
 164        bool src_sgl;
 165        bool dst_sgl;
 166        size_t numf;
 167        size_t frame_size;
 168        struct data_chunk sgl[0];
 169};
 170
 171/**
 172 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 173 *  control completion, and communicate status.
 174 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 175 *  this transaction
 176 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 177 *  acknowledges receipt, i.e. has has a chance to establish any dependency
 178 *  chains
 179 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 180 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 181 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 182 *  sources that were the result of a previous operation, in the case of a PQ
 183 *  operation it continues the calculation with new sources
 184 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 185 *  on the result of this operation
 186 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
 187 *  cleared or freed
 188 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
 189 *  data and the descriptor should be in different format from normal
 190 *  data descriptors.
 191 */
 192enum dma_ctrl_flags {
 193        DMA_PREP_INTERRUPT = (1 << 0),
 194        DMA_CTRL_ACK = (1 << 1),
 195        DMA_PREP_PQ_DISABLE_P = (1 << 2),
 196        DMA_PREP_PQ_DISABLE_Q = (1 << 3),
 197        DMA_PREP_CONTINUE = (1 << 4),
 198        DMA_PREP_FENCE = (1 << 5),
 199        DMA_CTRL_REUSE = (1 << 6),
 200        DMA_PREP_CMD = (1 << 7),
 201};
 202
 203/**
 204 * enum sum_check_bits - bit position of pq_check_flags
 205 */
 206enum sum_check_bits {
 207        SUM_CHECK_P = 0,
 208        SUM_CHECK_Q = 1,
 209};
 210
 211/**
 212 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 213 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 214 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 215 */
 216enum sum_check_flags {
 217        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 218        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 219};
 220
 221
 222/**
 223 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 224 * See linux/cpumask.h
 225 */
 226typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 227
 228/**
 229 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 230 * @memcpy_count: transaction counter
 231 * @bytes_transferred: byte counter
 232 */
 233
 234struct dma_chan_percpu {
 235        /* stats */
 236        unsigned long memcpy_count;
 237        unsigned long bytes_transferred;
 238};
 239
 240/**
 241 * struct dma_router - DMA router structure
 242 * @dev: pointer to the DMA router device
 243 * @route_free: function to be called when the route can be disconnected
 244 */
 245struct dma_router {
 246        struct device *dev;
 247        void (*route_free)(struct device *dev, void *route_data);
 248};
 249
 250/**
 251 * struct dma_chan - devices supply DMA channels, clients use them
 252 * @device: ptr to the dma device who supplies this channel, always !%NULL
 253 * @cookie: last cookie value returned to client
 254 * @completed_cookie: last completed cookie for this channel
 255 * @chan_id: channel ID for sysfs
 256 * @dev: class device for sysfs
 257 * @device_node: used to add this to the device chan list
 258 * @local: per-cpu pointer to a struct dma_chan_percpu
 259 * @client_count: how many clients are using this channel
 260 * @table_count: number of appearances in the mem-to-mem allocation table
 261 * @router: pointer to the DMA router structure
 262 * @route_data: channel specific data for the router
 263 * @private: private data for certain client-channel associations
 264 */
 265struct dma_chan {
 266        struct dma_device *device;
 267        dma_cookie_t cookie;
 268        dma_cookie_t completed_cookie;
 269
 270        /* sysfs */
 271        int chan_id;
 272        struct dma_chan_dev *dev;
 273
 274        struct list_head device_node;
 275        struct dma_chan_percpu __percpu *local;
 276        int client_count;
 277        int table_count;
 278
 279        /* DMA router */
 280        struct dma_router *router;
 281        void *route_data;
 282
 283        void *private;
 284};
 285
 286/**
 287 * struct dma_chan_dev - relate sysfs device node to backing channel device
 288 * @chan: driver channel device
 289 * @device: sysfs device
 290 * @dev_id: parent dma_device dev_id
 291 * @idr_ref: reference count to gate release of dma_device dev_id
 292 */
 293struct dma_chan_dev {
 294        struct dma_chan *chan;
 295        struct device device;
 296        int dev_id;
 297        atomic_t *idr_ref;
 298};
 299
 300/**
 301 * enum dma_slave_buswidth - defines bus width of the DMA slave
 302 * device, source or target buses
 303 */
 304enum dma_slave_buswidth {
 305        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 306        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 307        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 308        DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
 309        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 310        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 311        DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
 312        DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
 313        DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
 314};
 315
 316/**
 317 * struct dma_slave_config - dma slave channel runtime config
 318 * @direction: whether the data shall go in or out on this slave
 319 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
 320 * legal values. DEPRECATED, drivers should use the direction argument
 321 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
 322 * the dir field in the dma_interleaved_template structure.
 323 * @src_addr: this is the physical address where DMA slave data
 324 * should be read (RX), if the source is memory this argument is
 325 * ignored.
 326 * @dst_addr: this is the physical address where DMA slave data
 327 * should be written (TX), if the source is memory this argument
 328 * is ignored.
 329 * @src_addr_width: this is the width in bytes of the source (RX)
 330 * register where DMA data shall be read. If the source
 331 * is memory this may be ignored depending on architecture.
 332 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
 333 * @dst_addr_width: same as src_addr_width but for destination
 334 * target (TX) mutatis mutandis.
 335 * @src_maxburst: the maximum number of words (note: words, as in
 336 * units of the src_addr_width member, not bytes) that can be sent
 337 * in one burst to the device. Typically something like half the
 338 * FIFO depth on I/O peripherals so you don't overflow it. This
 339 * may or may not be applicable on memory sources.
 340 * @dst_maxburst: same as src_maxburst but for destination target
 341 * mutatis mutandis.
 342 * @src_port_window_size: The length of the register area in words the data need
 343 * to be accessed on the device side. It is only used for devices which is using
 344 * an area instead of a single register to receive the data. Typically the DMA
 345 * loops in this area in order to transfer the data.
 346 * @dst_port_window_size: same as src_port_window_size but for the destination
 347 * port.
 348 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 349 * with 'true' if peripheral should be flow controller. Direction will be
 350 * selected at Runtime.
 351 * @slave_id: Slave requester id. Only valid for slave channels. The dma
 352 * slave peripheral will have unique id as dma requester which need to be
 353 * pass as slave config.
 354 *
 355 * This struct is passed in as configuration data to a DMA engine
 356 * in order to set up a certain channel for DMA transport at runtime.
 357 * The DMA device/engine has to provide support for an additional
 358 * callback in the dma_device structure, device_config and this struct
 359 * will then be passed in as an argument to the function.
 360 *
 361 * The rationale for adding configuration information to this struct is as
 362 * follows: if it is likely that more than one DMA slave controllers in
 363 * the world will support the configuration option, then make it generic.
 364 * If not: if it is fixed so that it be sent in static from the platform
 365 * data, then prefer to do that.
 366 */
 367struct dma_slave_config {
 368        enum dma_transfer_direction direction;
 369        phys_addr_t src_addr;
 370        phys_addr_t dst_addr;
 371        enum dma_slave_buswidth src_addr_width;
 372        enum dma_slave_buswidth dst_addr_width;
 373        u32 src_maxburst;
 374        u32 dst_maxburst;
 375        u32 src_port_window_size;
 376        u32 dst_port_window_size;
 377        bool device_fc;
 378        unsigned int slave_id;
 379};
 380
 381/**
 382 * enum dma_residue_granularity - Granularity of the reported transfer residue
 383 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 384 *  DMA channel is only able to tell whether a descriptor has been completed or
 385 *  not, which means residue reporting is not supported by this channel. The
 386 *  residue field of the dma_tx_state field will always be 0.
 387 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 388 *  completed segment of the transfer (For cyclic transfers this is after each
 389 *  period). This is typically implemented by having the hardware generate an
 390 *  interrupt after each transferred segment and then the drivers updates the
 391 *  outstanding residue by the size of the segment. Another possibility is if
 392 *  the hardware supports scatter-gather and the segment descriptor has a field
 393 *  which gets set after the segment has been completed. The driver then counts
 394 *  the number of segments without the flag set to compute the residue.
 395 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 396 *  burst. This is typically only supported if the hardware has a progress
 397 *  register of some sort (E.g. a register with the current read/write address
 398 *  or a register with the amount of bursts/beats/bytes that have been
 399 *  transferred or still need to be transferred).
 400 */
 401enum dma_residue_granularity {
 402        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 403        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 404        DMA_RESIDUE_GRANULARITY_BURST = 2,
 405};
 406
 407/**
 408 * struct dma_slave_caps - expose capabilities of a slave channel only
 409 * @src_addr_widths: bit mask of src addr widths the channel supports.
 410 *      Width is specified in bytes, e.g. for a channel supporting
 411 *      a width of 4 the mask should have BIT(4) set.
 412 * @dst_addr_widths: bit mask of dst addr widths the channel supports
 413 * @directions: bit mask of slave directions the channel supports.
 414 *      Since the enum dma_transfer_direction is not defined as bit flag for
 415 *      each type, the dma controller should set BIT(<TYPE>) and same
 416 *      should be checked by controller as well
 417 * @max_burst: max burst capability per-transfer
 418 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
 419 *             for resume later)
 420 * @cmd_resume: true, if resume is supported
 421 * @cmd_terminate: true, if terminate cmd is supported
 422 * @residue_granularity: granularity of the reported transfer residue
 423 * @descriptor_reuse: if a descriptor can be reused by client and
 424 * resubmitted multiple times
 425 */
 426struct dma_slave_caps {
 427        u32 src_addr_widths;
 428        u32 dst_addr_widths;
 429        u32 directions;
 430        u32 max_burst;
 431        bool cmd_pause;
 432        bool cmd_resume;
 433        bool cmd_terminate;
 434        enum dma_residue_granularity residue_granularity;
 435        bool descriptor_reuse;
 436};
 437
 438static inline const char *dma_chan_name(struct dma_chan *chan)
 439{
 440        return dev_name(&chan->dev->device);
 441}
 442
 443void dma_chan_cleanup(struct kref *kref);
 444
 445/**
 446 * typedef dma_filter_fn - callback filter for dma_request_channel
 447 * @chan: channel to be reviewed
 448 * @filter_param: opaque parameter passed through dma_request_channel
 449 *
 450 * When this optional parameter is specified in a call to dma_request_channel a
 451 * suitable channel is passed to this routine for further dispositioning before
 452 * being returned.  Where 'suitable' indicates a non-busy channel that
 453 * satisfies the given capability mask.  It returns 'true' to indicate that the
 454 * channel is suitable.
 455 */
 456typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 457
 458typedef void (*dma_async_tx_callback)(void *dma_async_param);
 459
 460enum dmaengine_tx_result {
 461        DMA_TRANS_NOERROR = 0,          /* SUCCESS */
 462        DMA_TRANS_READ_FAILED,          /* Source DMA read failed */
 463        DMA_TRANS_WRITE_FAILED,         /* Destination DMA write failed */
 464        DMA_TRANS_ABORTED,              /* Op never submitted / aborted */
 465};
 466
 467struct dmaengine_result {
 468        enum dmaengine_tx_result result;
 469        u32 residue;
 470};
 471
 472typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
 473                                const struct dmaengine_result *result);
 474
 475struct dmaengine_unmap_data {
 476#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
 477        u16 map_cnt;
 478#else
 479        u8 map_cnt;
 480#endif
 481        u8 to_cnt;
 482        u8 from_cnt;
 483        u8 bidi_cnt;
 484        struct device *dev;
 485        struct kref kref;
 486        size_t len;
 487        dma_addr_t addr[0];
 488};
 489
 490/**
 491 * struct dma_async_tx_descriptor - async transaction descriptor
 492 * ---dma generic offload fields---
 493 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 494 *      this tx is sitting on a dependency list
 495 * @flags: flags to augment operation preparation, control completion, and
 496 *      communicate status
 497 * @phys: physical address of the descriptor
 498 * @chan: target channel for this operation
 499 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
 500 * descriptor pending. To be pushed on .issue_pending() call
 501 * @callback: routine to call after this operation is complete
 502 * @callback_param: general parameter to pass to the callback routine
 503 * ---async_tx api specific fields---
 504 * @next: at completion submit this descriptor
 505 * @parent: pointer to the next level up in the dependency chain
 506 * @lock: protect the parent and next pointers
 507 */
 508struct dma_async_tx_descriptor {
 509        dma_cookie_t cookie;
 510        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 511        dma_addr_t phys;
 512        struct dma_chan *chan;
 513        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 514        int (*desc_free)(struct dma_async_tx_descriptor *tx);
 515        dma_async_tx_callback callback;
 516        dma_async_tx_callback_result callback_result;
 517        void *callback_param;
 518        struct dmaengine_unmap_data *unmap;
 519#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 520        struct dma_async_tx_descriptor *next;
 521        struct dma_async_tx_descriptor *parent;
 522        spinlock_t lock;
 523#endif
 524};
 525
 526#ifdef CONFIG_DMA_ENGINE
 527static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 528                                 struct dmaengine_unmap_data *unmap)
 529{
 530        kref_get(&unmap->kref);
 531        tx->unmap = unmap;
 532}
 533
 534struct dmaengine_unmap_data *
 535dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 536void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 537#else
 538static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 539                                 struct dmaengine_unmap_data *unmap)
 540{
 541}
 542static inline struct dmaengine_unmap_data *
 543dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 544{
 545        return NULL;
 546}
 547static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 548{
 549}
 550#endif
 551
 552static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 553{
 554        if (tx->unmap) {
 555                dmaengine_unmap_put(tx->unmap);
 556                tx->unmap = NULL;
 557        }
 558}
 559
 560#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 561static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 562{
 563}
 564static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 565{
 566}
 567static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 568{
 569        BUG();
 570}
 571static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 572{
 573}
 574static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 575{
 576}
 577static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 578{
 579        return NULL;
 580}
 581static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 582{
 583        return NULL;
 584}
 585
 586#else
 587static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 588{
 589        spin_lock_bh(&txd->lock);
 590}
 591static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 592{
 593        spin_unlock_bh(&txd->lock);
 594}
 595static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 596{
 597        txd->next = next;
 598        next->parent = txd;
 599}
 600static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 601{
 602        txd->parent = NULL;
 603}
 604static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 605{
 606        txd->next = NULL;
 607}
 608static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 609{
 610        return txd->parent;
 611}
 612static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 613{
 614        return txd->next;
 615}
 616#endif
 617
 618/**
 619 * struct dma_tx_state - filled in to report the status of
 620 * a transfer.
 621 * @last: last completed DMA cookie
 622 * @used: last issued DMA cookie (i.e. the one in progress)
 623 * @residue: the remaining number of bytes left to transmit
 624 *      on the selected transfer for states DMA_IN_PROGRESS and
 625 *      DMA_PAUSED if this is implemented in the driver, else 0
 626 */
 627struct dma_tx_state {
 628        dma_cookie_t last;
 629        dma_cookie_t used;
 630        u32 residue;
 631};
 632
 633/**
 634 * enum dmaengine_alignment - defines alignment of the DMA async tx
 635 * buffers
 636 */
 637enum dmaengine_alignment {
 638        DMAENGINE_ALIGN_1_BYTE = 0,
 639        DMAENGINE_ALIGN_2_BYTES = 1,
 640        DMAENGINE_ALIGN_4_BYTES = 2,
 641        DMAENGINE_ALIGN_8_BYTES = 3,
 642        DMAENGINE_ALIGN_16_BYTES = 4,
 643        DMAENGINE_ALIGN_32_BYTES = 5,
 644        DMAENGINE_ALIGN_64_BYTES = 6,
 645};
 646
 647/**
 648 * struct dma_slave_map - associates slave device and it's slave channel with
 649 * parameter to be used by a filter function
 650 * @devname: name of the device
 651 * @slave: slave channel name
 652 * @param: opaque parameter to pass to struct dma_filter.fn
 653 */
 654struct dma_slave_map {
 655        const char *devname;
 656        const char *slave;
 657        void *param;
 658};
 659
 660/**
 661 * struct dma_filter - information for slave device/channel to filter_fn/param
 662 * mapping
 663 * @fn: filter function callback
 664 * @mapcnt: number of slave device/channel in the map
 665 * @map: array of channel to filter mapping data
 666 */
 667struct dma_filter {
 668        dma_filter_fn fn;
 669        int mapcnt;
 670        const struct dma_slave_map *map;
 671};
 672
 673/**
 674 * struct dma_device - info on the entity supplying DMA services
 675 * @chancnt: how many DMA channels are supported
 676 * @privatecnt: how many DMA channels are requested by dma_request_channel
 677 * @channels: the list of struct dma_chan
 678 * @global_node: list_head for global dma_device_list
 679 * @filter: information for device/slave to filter function/param mapping
 680 * @cap_mask: one or more dma_capability flags
 681 * @max_xor: maximum number of xor sources, 0 if no capability
 682 * @max_pq: maximum number of PQ sources and PQ-continue capability
 683 * @copy_align: alignment shift for memcpy operations
 684 * @xor_align: alignment shift for xor operations
 685 * @pq_align: alignment shift for pq operations
 686 * @fill_align: alignment shift for memset operations
 687 * @dev_id: unique device ID
 688 * @dev: struct device reference for dma mapping api
 689 * @src_addr_widths: bit mask of src addr widths the device supports
 690 *      Width is specified in bytes, e.g. for a device supporting
 691 *      a width of 4 the mask should have BIT(4) set.
 692 * @dst_addr_widths: bit mask of dst addr widths the device supports
 693 * @directions: bit mask of slave directions the device supports.
 694 *      Since the enum dma_transfer_direction is not defined as bit flag for
 695 *      each type, the dma controller should set BIT(<TYPE>) and same
 696 *      should be checked by controller as well
 697 * @max_burst: max burst capability per-transfer
 698 * @residue_granularity: granularity of the transfer residue reported
 699 *      by tx_status
 700 * @device_alloc_chan_resources: allocate resources and return the
 701 *      number of allocated descriptors
 702 * @device_free_chan_resources: release DMA channel's resources
 703 * @device_prep_dma_memcpy: prepares a memcpy operation
 704 * @device_prep_dma_xor: prepares a xor operation
 705 * @device_prep_dma_xor_val: prepares a xor validation operation
 706 * @device_prep_dma_pq: prepares a pq operation
 707 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 708 * @device_prep_dma_memset: prepares a memset operation
 709 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
 710 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 711 * @device_prep_slave_sg: prepares a slave dma operation
 712 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 713 *      The function takes a buffer of size buf_len. The callback function will
 714 *      be called after period_len bytes have been transferred.
 715 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 716 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
 717 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 718 *      code
 719 * @device_pause: Pauses any transfer happening on a channel. Returns
 720 *      0 or an error code
 721 * @device_resume: Resumes any transfer on a channel previously
 722 *      paused. Returns 0 or an error code
 723 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 724 *      or an error code
 725 * @device_synchronize: Synchronizes the termination of a transfers to the
 726 *  current context.
 727 * @device_tx_status: poll for transaction completion, the optional
 728 *      txstate parameter can be supplied with a pointer to get a
 729 *      struct with auxiliary transfer status information, otherwise the call
 730 *      will just return a simple status code
 731 * @device_issue_pending: push pending transactions to hardware
 732 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
 733 */
 734struct dma_device {
 735
 736        unsigned int chancnt;
 737        unsigned int privatecnt;
 738        struct list_head channels;
 739        struct list_head global_node;
 740        struct dma_filter filter;
 741        dma_cap_mask_t  cap_mask;
 742        unsigned short max_xor;
 743        unsigned short max_pq;
 744        enum dmaengine_alignment copy_align;
 745        enum dmaengine_alignment xor_align;
 746        enum dmaengine_alignment pq_align;
 747        enum dmaengine_alignment fill_align;
 748        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 749
 750        int dev_id;
 751        struct device *dev;
 752
 753        u32 src_addr_widths;
 754        u32 dst_addr_widths;
 755        u32 directions;
 756        u32 max_burst;
 757        bool descriptor_reuse;
 758        enum dma_residue_granularity residue_granularity;
 759
 760        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 761        void (*device_free_chan_resources)(struct dma_chan *chan);
 762
 763        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 764                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 765                size_t len, unsigned long flags);
 766        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 767                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 768                unsigned int src_cnt, size_t len, unsigned long flags);
 769        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 770                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 771                size_t len, enum sum_check_flags *result, unsigned long flags);
 772        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 773                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 774                unsigned int src_cnt, const unsigned char *scf,
 775                size_t len, unsigned long flags);
 776        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 777                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 778                unsigned int src_cnt, const unsigned char *scf, size_t len,
 779                enum sum_check_flags *pqres, unsigned long flags);
 780        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 781                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 782                unsigned long flags);
 783        struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
 784                struct dma_chan *chan, struct scatterlist *sg,
 785                unsigned int nents, int value, unsigned long flags);
 786        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 787                struct dma_chan *chan, unsigned long flags);
 788
 789        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 790                struct dma_chan *chan, struct scatterlist *sgl,
 791                unsigned int sg_len, enum dma_transfer_direction direction,
 792                unsigned long flags, void *context);
 793        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 794                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 795                size_t period_len, enum dma_transfer_direction direction,
 796                unsigned long flags);
 797        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 798                struct dma_chan *chan, struct dma_interleaved_template *xt,
 799                unsigned long flags);
 800        struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
 801                struct dma_chan *chan, dma_addr_t dst, u64 data,
 802                unsigned long flags);
 803
 804        int (*device_config)(struct dma_chan *chan,
 805                             struct dma_slave_config *config);
 806        int (*device_pause)(struct dma_chan *chan);
 807        int (*device_resume)(struct dma_chan *chan);
 808        int (*device_terminate_all)(struct dma_chan *chan);
 809        void (*device_synchronize)(struct dma_chan *chan);
 810
 811        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 812                                            dma_cookie_t cookie,
 813                                            struct dma_tx_state *txstate);
 814        void (*device_issue_pending)(struct dma_chan *chan);
 815};
 816
 817static inline int dmaengine_slave_config(struct dma_chan *chan,
 818                                          struct dma_slave_config *config)
 819{
 820        if (chan->device->device_config)
 821                return chan->device->device_config(chan, config);
 822
 823        return -ENOSYS;
 824}
 825
 826static inline bool is_slave_direction(enum dma_transfer_direction direction)
 827{
 828        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 829}
 830
 831static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 832        struct dma_chan *chan, dma_addr_t buf, size_t len,
 833        enum dma_transfer_direction dir, unsigned long flags)
 834{
 835        struct scatterlist sg;
 836        sg_init_table(&sg, 1);
 837        sg_dma_address(&sg) = buf;
 838        sg_dma_len(&sg) = len;
 839
 840        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 841                return NULL;
 842
 843        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 844                                                  dir, flags, NULL);
 845}
 846
 847static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 848        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 849        enum dma_transfer_direction dir, unsigned long flags)
 850{
 851        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 852                return NULL;
 853
 854        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 855                                                  dir, flags, NULL);
 856}
 857
 858#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 859struct rio_dma_ext;
 860static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 861        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 862        enum dma_transfer_direction dir, unsigned long flags,
 863        struct rio_dma_ext *rio_ext)
 864{
 865        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 866                return NULL;
 867
 868        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 869                                                  dir, flags, rio_ext);
 870}
 871#endif
 872
 873static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
 874                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 875                size_t period_len, enum dma_transfer_direction dir,
 876                unsigned long flags)
 877{
 878        if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
 879                return NULL;
 880
 881        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
 882                                                period_len, dir, flags);
 883}
 884
 885static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
 886                struct dma_chan *chan, struct dma_interleaved_template *xt,
 887                unsigned long flags)
 888{
 889        if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
 890                return NULL;
 891
 892        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
 893}
 894
 895static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
 896                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 897                unsigned long flags)
 898{
 899        if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
 900                return NULL;
 901
 902        return chan->device->device_prep_dma_memset(chan, dest, value,
 903                                                    len, flags);
 904}
 905
 906static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
 907                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 908                size_t len, unsigned long flags)
 909{
 910        if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
 911                return NULL;
 912
 913        return chan->device->device_prep_dma_memcpy(chan, dest, src,
 914                                                    len, flags);
 915}
 916
 917/**
 918 * dmaengine_terminate_all() - Terminate all active DMA transfers
 919 * @chan: The channel for which to terminate the transfers
 920 *
 921 * This function is DEPRECATED use either dmaengine_terminate_sync() or
 922 * dmaengine_terminate_async() instead.
 923 */
 924static inline int dmaengine_terminate_all(struct dma_chan *chan)
 925{
 926        if (chan->device->device_terminate_all)
 927                return chan->device->device_terminate_all(chan);
 928
 929        return -ENOSYS;
 930}
 931
 932/**
 933 * dmaengine_terminate_async() - Terminate all active DMA transfers
 934 * @chan: The channel for which to terminate the transfers
 935 *
 936 * Calling this function will terminate all active and pending descriptors
 937 * that have previously been submitted to the channel. It is not guaranteed
 938 * though that the transfer for the active descriptor has stopped when the
 939 * function returns. Furthermore it is possible the complete callback of a
 940 * submitted transfer is still running when this function returns.
 941 *
 942 * dmaengine_synchronize() needs to be called before it is safe to free
 943 * any memory that is accessed by previously submitted descriptors or before
 944 * freeing any resources accessed from within the completion callback of any
 945 * perviously submitted descriptors.
 946 *
 947 * This function can be called from atomic context as well as from within a
 948 * complete callback of a descriptor submitted on the same channel.
 949 *
 950 * If none of the two conditions above apply consider using
 951 * dmaengine_terminate_sync() instead.
 952 */
 953static inline int dmaengine_terminate_async(struct dma_chan *chan)
 954{
 955        if (chan->device->device_terminate_all)
 956                return chan->device->device_terminate_all(chan);
 957
 958        return -EINVAL;
 959}
 960
 961/**
 962 * dmaengine_synchronize() - Synchronize DMA channel termination
 963 * @chan: The channel to synchronize
 964 *
 965 * Synchronizes to the DMA channel termination to the current context. When this
 966 * function returns it is guaranteed that all transfers for previously issued
 967 * descriptors have stopped and and it is safe to free the memory assoicated
 968 * with them. Furthermore it is guaranteed that all complete callback functions
 969 * for a previously submitted descriptor have finished running and it is safe to
 970 * free resources accessed from within the complete callbacks.
 971 *
 972 * The behavior of this function is undefined if dma_async_issue_pending() has
 973 * been called between dmaengine_terminate_async() and this function.
 974 *
 975 * This function must only be called from non-atomic context and must not be
 976 * called from within a complete callback of a descriptor submitted on the same
 977 * channel.
 978 */
 979static inline void dmaengine_synchronize(struct dma_chan *chan)
 980{
 981        might_sleep();
 982
 983        if (chan->device->device_synchronize)
 984                chan->device->device_synchronize(chan);
 985}
 986
 987/**
 988 * dmaengine_terminate_sync() - Terminate all active DMA transfers
 989 * @chan: The channel for which to terminate the transfers
 990 *
 991 * Calling this function will terminate all active and pending transfers
 992 * that have previously been submitted to the channel. It is similar to
 993 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
 994 * stopped and that all complete callbacks have finished running when the
 995 * function returns.
 996 *
 997 * This function must only be called from non-atomic context and must not be
 998 * called from within a complete callback of a descriptor submitted on the same
 999 * channel.
1000 */
1001static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1002{
1003        int ret;
1004
1005        ret = dmaengine_terminate_async(chan);
1006        if (ret)
1007                return ret;
1008
1009        dmaengine_synchronize(chan);
1010
1011        return 0;
1012}
1013
1014static inline int dmaengine_pause(struct dma_chan *chan)
1015{
1016        if (chan->device->device_pause)
1017                return chan->device->device_pause(chan);
1018
1019        return -ENOSYS;
1020}
1021
1022static inline int dmaengine_resume(struct dma_chan *chan)
1023{
1024        if (chan->device->device_resume)
1025                return chan->device->device_resume(chan);
1026
1027        return -ENOSYS;
1028}
1029
1030static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1031        dma_cookie_t cookie, struct dma_tx_state *state)
1032{
1033        return chan->device->device_tx_status(chan, cookie, state);
1034}
1035
1036static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1037{
1038        return desc->tx_submit(desc);
1039}
1040
1041static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1042                                         size_t off1, size_t off2, size_t len)
1043{
1044        size_t mask;
1045
1046        if (!align)
1047                return true;
1048        mask = (1 << align) - 1;
1049        if (mask & (off1 | off2 | len))
1050                return false;
1051        return true;
1052}
1053
1054static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1055                                       size_t off2, size_t len)
1056{
1057        return dmaengine_check_align(dev->copy_align, off1, off2, len);
1058}
1059
1060static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1061                                      size_t off2, size_t len)
1062{
1063        return dmaengine_check_align(dev->xor_align, off1, off2, len);
1064}
1065
1066static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1067                                     size_t off2, size_t len)
1068{
1069        return dmaengine_check_align(dev->pq_align, off1, off2, len);
1070}
1071
1072static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1073                                       size_t off2, size_t len)
1074{
1075        return dmaengine_check_align(dev->fill_align, off1, off2, len);
1076}
1077
1078static inline void
1079dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1080{
1081        dma->max_pq = maxpq;
1082        if (has_pq_continue)
1083                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1084}
1085
1086static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1087{
1088        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1089}
1090
1091static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1092{
1093        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1094
1095        return (flags & mask) == mask;
1096}
1097
1098static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1099{
1100        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1101}
1102
1103static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1104{
1105        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1106}
1107
1108/* dma_maxpq - reduce maxpq in the face of continued operations
1109 * @dma - dma device with PQ capability
1110 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1111 *
1112 * When an engine does not support native continuation we need 3 extra
1113 * source slots to reuse P and Q with the following coefficients:
1114 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1115 * 2/ {01} * Q : use Q to continue Q' calculation
1116 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1117 *
1118 * In the case where P is disabled we only need 1 extra source:
1119 * 1/ {01} * Q : use Q to continue Q' calculation
1120 */
1121static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1122{
1123        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1124                return dma_dev_to_maxpq(dma);
1125        else if (dmaf_p_disabled_continue(flags))
1126                return dma_dev_to_maxpq(dma) - 1;
1127        else if (dmaf_continue(flags))
1128                return dma_dev_to_maxpq(dma) - 3;
1129        BUG();
1130}
1131
1132static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1133                                      size_t dir_icg)
1134{
1135        if (inc) {
1136                if (dir_icg)
1137                        return dir_icg;
1138                else if (sgl)
1139                        return icg;
1140        }
1141
1142        return 0;
1143}
1144
1145static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1146                                           struct data_chunk *chunk)
1147{
1148        return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1149                                 chunk->icg, chunk->dst_icg);
1150}
1151
1152static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1153                                           struct data_chunk *chunk)
1154{
1155        return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1156                                 chunk->icg, chunk->src_icg);
1157}
1158
1159/* --- public DMA engine API --- */
1160
1161#ifdef CONFIG_DMA_ENGINE
1162void dmaengine_get(void);
1163void dmaengine_put(void);
1164#else
1165static inline void dmaengine_get(void)
1166{
1167}
1168static inline void dmaengine_put(void)
1169{
1170}
1171#endif
1172
1173#ifdef CONFIG_ASYNC_TX_DMA
1174#define async_dmaengine_get()   dmaengine_get()
1175#define async_dmaengine_put()   dmaengine_put()
1176#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1177#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1178#else
1179#define async_dma_find_channel(type) dma_find_channel(type)
1180#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1181#else
1182static inline void async_dmaengine_get(void)
1183{
1184}
1185static inline void async_dmaengine_put(void)
1186{
1187}
1188static inline struct dma_chan *
1189async_dma_find_channel(enum dma_transaction_type type)
1190{
1191        return NULL;
1192}
1193#endif /* CONFIG_ASYNC_TX_DMA */
1194void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1195                                  struct dma_chan *chan);
1196
1197static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1198{
1199        tx->flags |= DMA_CTRL_ACK;
1200}
1201
1202static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1203{
1204        tx->flags &= ~DMA_CTRL_ACK;
1205}
1206
1207static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1208{
1209        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1210}
1211
1212#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1213static inline void
1214__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1215{
1216        set_bit(tx_type, dstp->bits);
1217}
1218
1219#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1220static inline void
1221__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1222{
1223        clear_bit(tx_type, dstp->bits);
1224}
1225
1226#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1227static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1228{
1229        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1230}
1231
1232#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1233static inline int
1234__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1235{
1236        return test_bit(tx_type, srcp->bits);
1237}
1238
1239#define for_each_dma_cap_mask(cap, mask) \
1240        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1241
1242/**
1243 * dma_async_issue_pending - flush pending transactions to HW
1244 * @chan: target DMA channel
1245 *
1246 * This allows drivers to push copies to HW in batches,
1247 * reducing MMIO writes where possible.
1248 */
1249static inline void dma_async_issue_pending(struct dma_chan *chan)
1250{
1251        chan->device->device_issue_pending(chan);
1252}
1253
1254/**
1255 * dma_async_is_tx_complete - poll for transaction completion
1256 * @chan: DMA channel
1257 * @cookie: transaction identifier to check status of
1258 * @last: returns last completed cookie, can be NULL
1259 * @used: returns last issued cookie, can be NULL
1260 *
1261 * If @last and @used are passed in, upon return they reflect the driver
1262 * internal state and can be used with dma_async_is_complete() to check
1263 * the status of multiple cookies without re-checking hardware state.
1264 */
1265static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1266        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1267{
1268        struct dma_tx_state state;
1269        enum dma_status status;
1270
1271        status = chan->device->device_tx_status(chan, cookie, &state);
1272        if (last)
1273                *last = state.last;
1274        if (used)
1275                *used = state.used;
1276        return status;
1277}
1278
1279/**
1280 * dma_async_is_complete - test a cookie against chan state
1281 * @cookie: transaction identifier to test status of
1282 * @last_complete: last know completed transaction
1283 * @last_used: last cookie value handed out
1284 *
1285 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1286 * the test logic is separated for lightweight testing of multiple cookies
1287 */
1288static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1289                        dma_cookie_t last_complete, dma_cookie_t last_used)
1290{
1291        if (last_complete <= last_used) {
1292                if ((cookie <= last_complete) || (cookie > last_used))
1293                        return DMA_COMPLETE;
1294        } else {
1295                if ((cookie <= last_complete) && (cookie > last_used))
1296                        return DMA_COMPLETE;
1297        }
1298        return DMA_IN_PROGRESS;
1299}
1300
1301static inline void
1302dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1303{
1304        if (st) {
1305                st->last = last;
1306                st->used = used;
1307                st->residue = residue;
1308        }
1309}
1310
1311#ifdef CONFIG_DMA_ENGINE
1312struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1313enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1314enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1315void dma_issue_pending_all(void);
1316struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1317                                        dma_filter_fn fn, void *fn_param);
1318struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1319
1320struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1321struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1322
1323void dma_release_channel(struct dma_chan *chan);
1324int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1325#else
1326static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1327{
1328        return NULL;
1329}
1330static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1331{
1332        return DMA_COMPLETE;
1333}
1334static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1335{
1336        return DMA_COMPLETE;
1337}
1338static inline void dma_issue_pending_all(void)
1339{
1340}
1341static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1342                                              dma_filter_fn fn, void *fn_param)
1343{
1344        return NULL;
1345}
1346static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1347                                                         const char *name)
1348{
1349        return NULL;
1350}
1351static inline struct dma_chan *dma_request_chan(struct device *dev,
1352                                                const char *name)
1353{
1354        return ERR_PTR(-ENODEV);
1355}
1356static inline struct dma_chan *dma_request_chan_by_mask(
1357                                                const dma_cap_mask_t *mask)
1358{
1359        return ERR_PTR(-ENODEV);
1360}
1361static inline void dma_release_channel(struct dma_chan *chan)
1362{
1363}
1364static inline int dma_get_slave_caps(struct dma_chan *chan,
1365                                     struct dma_slave_caps *caps)
1366{
1367        return -ENXIO;
1368}
1369#endif
1370
1371#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1372
1373static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1374{
1375        struct dma_slave_caps caps;
1376
1377        dma_get_slave_caps(tx->chan, &caps);
1378
1379        if (caps.descriptor_reuse) {
1380                tx->flags |= DMA_CTRL_REUSE;
1381                return 0;
1382        } else {
1383                return -EPERM;
1384        }
1385}
1386
1387static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1388{
1389        tx->flags &= ~DMA_CTRL_REUSE;
1390}
1391
1392static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1393{
1394        return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1395}
1396
1397static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1398{
1399        /* this is supported for reusable desc, so check that */
1400        if (dmaengine_desc_test_reuse(desc))
1401                return desc->desc_free(desc);
1402        else
1403                return -EPERM;
1404}
1405
1406/* --- DMA device --- */
1407
1408int dma_async_device_register(struct dma_device *device);
1409int dmaenginem_async_device_register(struct dma_device *device);
1410void dma_async_device_unregister(struct dma_device *device);
1411void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1412struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1413struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1414#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1415#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1416        __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1417
1418static inline struct dma_chan
1419*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1420                                  dma_filter_fn fn, void *fn_param,
1421                                  struct device *dev, const char *name)
1422{
1423        struct dma_chan *chan;
1424
1425        chan = dma_request_slave_channel(dev, name);
1426        if (chan)
1427                return chan;
1428
1429        if (!fn || !fn_param)
1430                return NULL;
1431
1432        return __dma_request_channel(mask, fn, fn_param);
1433}
1434#endif /* DMAENGINE_H */
1435