linux/include/linux/kernel.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_KERNEL_H
   3#define _LINUX_KERNEL_H
   4
   5
   6#include <stdarg.h>
   7#include <linux/linkage.h>
   8#include <linux/stddef.h>
   9#include <linux/types.h>
  10#include <linux/compiler.h>
  11#include <linux/bitops.h>
  12#include <linux/log2.h>
  13#include <linux/typecheck.h>
  14#include <linux/printk.h>
  15#include <linux/build_bug.h>
  16#include <asm/byteorder.h>
  17#include <uapi/linux/kernel.h>
  18
  19#define USHRT_MAX       ((u16)(~0U))
  20#define SHRT_MAX        ((s16)(USHRT_MAX>>1))
  21#define SHRT_MIN        ((s16)(-SHRT_MAX - 1))
  22#define INT_MAX         ((int)(~0U>>1))
  23#define INT_MIN         (-INT_MAX - 1)
  24#define UINT_MAX        (~0U)
  25#define LONG_MAX        ((long)(~0UL>>1))
  26#define LONG_MIN        (-LONG_MAX - 1)
  27#define ULONG_MAX       (~0UL)
  28#define LLONG_MAX       ((long long)(~0ULL>>1))
  29#define LLONG_MIN       (-LLONG_MAX - 1)
  30#define ULLONG_MAX      (~0ULL)
  31#define SIZE_MAX        (~(size_t)0)
  32#define PHYS_ADDR_MAX   (~(phys_addr_t)0)
  33
  34#define U8_MAX          ((u8)~0U)
  35#define S8_MAX          ((s8)(U8_MAX>>1))
  36#define S8_MIN          ((s8)(-S8_MAX - 1))
  37#define U16_MAX         ((u16)~0U)
  38#define S16_MAX         ((s16)(U16_MAX>>1))
  39#define S16_MIN         ((s16)(-S16_MAX - 1))
  40#define U32_MAX         ((u32)~0U)
  41#define S32_MAX         ((s32)(U32_MAX>>1))
  42#define S32_MIN         ((s32)(-S32_MAX - 1))
  43#define U64_MAX         ((u64)~0ULL)
  44#define S64_MAX         ((s64)(U64_MAX>>1))
  45#define S64_MIN         ((s64)(-S64_MAX - 1))
  46
  47#define STACK_MAGIC     0xdeadbeef
  48
  49/**
  50 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
  51 * @x: value to repeat
  52 *
  53 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
  54 */
  55#define REPEAT_BYTE(x)  ((~0ul / 0xff) * (x))
  56
  57/* @a is a power of 2 value */
  58#define ALIGN(x, a)             __ALIGN_KERNEL((x), (a))
  59#define ALIGN_DOWN(x, a)        __ALIGN_KERNEL((x) - ((a) - 1), (a))
  60#define __ALIGN_MASK(x, mask)   __ALIGN_KERNEL_MASK((x), (mask))
  61#define PTR_ALIGN(p, a)         ((typeof(p))ALIGN((unsigned long)(p), (a)))
  62#define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
  63
  64/* generic data direction definitions */
  65#define READ                    0
  66#define WRITE                   1
  67
  68/**
  69 * ARRAY_SIZE - get the number of elements in array @arr
  70 * @arr: array to be sized
  71 */
  72#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
  73
  74#define u64_to_user_ptr(x) (            \
  75{                                       \
  76        typecheck(u64, x);              \
  77        (void __user *)(uintptr_t)x;    \
  78}                                       \
  79)
  80
  81/*
  82 * This looks more complex than it should be. But we need to
  83 * get the type for the ~ right in round_down (it needs to be
  84 * as wide as the result!), and we want to evaluate the macro
  85 * arguments just once each.
  86 */
  87#define __round_mask(x, y) ((__typeof__(x))((y)-1))
  88/**
  89 * round_up - round up to next specified power of 2
  90 * @x: the value to round
  91 * @y: multiple to round up to (must be a power of 2)
  92 *
  93 * Rounds @x up to next multiple of @y (which must be a power of 2).
  94 * To perform arbitrary rounding up, use roundup() below.
  95 */
  96#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
  97/**
  98 * round_down - round down to next specified power of 2
  99 * @x: the value to round
 100 * @y: multiple to round down to (must be a power of 2)
 101 *
 102 * Rounds @x down to next multiple of @y (which must be a power of 2).
 103 * To perform arbitrary rounding down, use rounddown() below.
 104 */
 105#define round_down(x, y) ((x) & ~__round_mask(x, y))
 106
 107/**
 108 * FIELD_SIZEOF - get the size of a struct's field
 109 * @t: the target struct
 110 * @f: the target struct's field
 111 * Return: the size of @f in the struct definition without having a
 112 * declared instance of @t.
 113 */
 114#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
 115
 116#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
 117
 118#define DIV_ROUND_DOWN_ULL(ll, d) \
 119        ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
 120
 121#define DIV_ROUND_UP_ULL(ll, d)         DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
 122
 123#if BITS_PER_LONG == 32
 124# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
 125#else
 126# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
 127#endif
 128
 129/**
 130 * roundup - round up to the next specified multiple
 131 * @x: the value to up
 132 * @y: multiple to round up to
 133 *
 134 * Rounds @x up to next multiple of @y. If @y will always be a power
 135 * of 2, consider using the faster round_up().
 136 *
 137 * The `const' here prevents gcc-3.3 from calling __divdi3
 138 */
 139#define roundup(x, y) (                                 \
 140{                                                       \
 141        const typeof(y) __y = y;                        \
 142        (((x) + (__y - 1)) / __y) * __y;                \
 143}                                                       \
 144)
 145/**
 146 * rounddown - round down to next specified multiple
 147 * @x: the value to round
 148 * @y: multiple to round down to
 149 *
 150 * Rounds @x down to next multiple of @y. If @y will always be a power
 151 * of 2, consider using the faster round_down().
 152 */
 153#define rounddown(x, y) (                               \
 154{                                                       \
 155        typeof(x) __x = (x);                            \
 156        __x - (__x % (y));                              \
 157}                                                       \
 158)
 159
 160/*
 161 * Divide positive or negative dividend by positive or negative divisor
 162 * and round to closest integer. Result is undefined for negative
 163 * divisors if the dividend variable type is unsigned and for negative
 164 * dividends if the divisor variable type is unsigned.
 165 */
 166#define DIV_ROUND_CLOSEST(x, divisor)(                  \
 167{                                                       \
 168        typeof(x) __x = x;                              \
 169        typeof(divisor) __d = divisor;                  \
 170        (((typeof(x))-1) > 0 ||                         \
 171         ((typeof(divisor))-1) > 0 ||                   \
 172         (((__x) > 0) == ((__d) > 0))) ?                \
 173                (((__x) + ((__d) / 2)) / (__d)) :       \
 174                (((__x) - ((__d) / 2)) / (__d));        \
 175}                                                       \
 176)
 177/*
 178 * Same as above but for u64 dividends. divisor must be a 32-bit
 179 * number.
 180 */
 181#define DIV_ROUND_CLOSEST_ULL(x, divisor)(              \
 182{                                                       \
 183        typeof(divisor) __d = divisor;                  \
 184        unsigned long long _tmp = (x) + (__d) / 2;      \
 185        do_div(_tmp, __d);                              \
 186        _tmp;                                           \
 187}                                                       \
 188)
 189
 190/*
 191 * Multiplies an integer by a fraction, while avoiding unnecessary
 192 * overflow or loss of precision.
 193 */
 194#define mult_frac(x, numer, denom)(                     \
 195{                                                       \
 196        typeof(x) quot = (x) / (denom);                 \
 197        typeof(x) rem  = (x) % (denom);                 \
 198        (quot * (numer)) + ((rem * (numer)) / (denom)); \
 199}                                                       \
 200)
 201
 202
 203#define _RET_IP_                (unsigned long)__builtin_return_address(0)
 204#define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
 205
 206#ifdef CONFIG_LBDAF
 207# include <asm/div64.h>
 208# define sector_div(a, b) do_div(a, b)
 209#else
 210# define sector_div(n, b)( \
 211{ \
 212        int _res; \
 213        _res = (n) % (b); \
 214        (n) /= (b); \
 215        _res; \
 216} \
 217)
 218#endif
 219
 220/**
 221 * upper_32_bits - return bits 32-63 of a number
 222 * @n: the number we're accessing
 223 *
 224 * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
 225 * the "right shift count >= width of type" warning when that quantity is
 226 * 32-bits.
 227 */
 228#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
 229
 230/**
 231 * lower_32_bits - return bits 0-31 of a number
 232 * @n: the number we're accessing
 233 */
 234#define lower_32_bits(n) ((u32)(n))
 235
 236struct completion;
 237struct pt_regs;
 238struct user;
 239
 240#ifdef CONFIG_PREEMPT_VOLUNTARY
 241extern int _cond_resched(void);
 242# define might_resched() _cond_resched()
 243#else
 244# define might_resched() do { } while (0)
 245#endif
 246
 247#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 248  void ___might_sleep(const char *file, int line, int preempt_offset);
 249  void __might_sleep(const char *file, int line, int preempt_offset);
 250/**
 251 * might_sleep - annotation for functions that can sleep
 252 *
 253 * this macro will print a stack trace if it is executed in an atomic
 254 * context (spinlock, irq-handler, ...).
 255 *
 256 * This is a useful debugging help to be able to catch problems early and not
 257 * be bitten later when the calling function happens to sleep when it is not
 258 * supposed to.
 259 */
 260# define might_sleep() \
 261        do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
 262# define sched_annotate_sleep() (current->task_state_change = 0)
 263#else
 264  static inline void ___might_sleep(const char *file, int line,
 265                                   int preempt_offset) { }
 266  static inline void __might_sleep(const char *file, int line,
 267                                   int preempt_offset) { }
 268# define might_sleep() do { might_resched(); } while (0)
 269# define sched_annotate_sleep() do { } while (0)
 270#endif
 271
 272#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
 273
 274/**
 275 * abs - return absolute value of an argument
 276 * @x: the value.  If it is unsigned type, it is converted to signed type first.
 277 *     char is treated as if it was signed (regardless of whether it really is)
 278 *     but the macro's return type is preserved as char.
 279 *
 280 * Return: an absolute value of x.
 281 */
 282#define abs(x)  __abs_choose_expr(x, long long,                         \
 283                __abs_choose_expr(x, long,                              \
 284                __abs_choose_expr(x, int,                               \
 285                __abs_choose_expr(x, short,                             \
 286                __abs_choose_expr(x, char,                              \
 287                __builtin_choose_expr(                                  \
 288                        __builtin_types_compatible_p(typeof(x), char),  \
 289                        (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
 290                        ((void)0)))))))
 291
 292#define __abs_choose_expr(x, type, other) __builtin_choose_expr(        \
 293        __builtin_types_compatible_p(typeof(x),   signed type) ||       \
 294        __builtin_types_compatible_p(typeof(x), unsigned type),         \
 295        ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
 296
 297/**
 298 * reciprocal_scale - "scale" a value into range [0, ep_ro)
 299 * @val: value
 300 * @ep_ro: right open interval endpoint
 301 *
 302 * Perform a "reciprocal multiplication" in order to "scale" a value into
 303 * range [0, @ep_ro), where the upper interval endpoint is right-open.
 304 * This is useful, e.g. for accessing a index of an array containing
 305 * @ep_ro elements, for example. Think of it as sort of modulus, only that
 306 * the result isn't that of modulo. ;) Note that if initial input is a
 307 * small value, then result will return 0.
 308 *
 309 * Return: a result based on @val in interval [0, @ep_ro).
 310 */
 311static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
 312{
 313        return (u32)(((u64) val * ep_ro) >> 32);
 314}
 315
 316#if defined(CONFIG_MMU) && \
 317        (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
 318#define might_fault() __might_fault(__FILE__, __LINE__)
 319void __might_fault(const char *file, int line);
 320#else
 321static inline void might_fault(void) { }
 322#endif
 323
 324extern struct atomic_notifier_head panic_notifier_list;
 325extern long (*panic_blink)(int state);
 326__printf(1, 2)
 327void panic(const char *fmt, ...) __noreturn __cold;
 328void nmi_panic(struct pt_regs *regs, const char *msg);
 329extern void oops_enter(void);
 330extern void oops_exit(void);
 331void print_oops_end_marker(void);
 332extern int oops_may_print(void);
 333void do_exit(long error_code) __noreturn;
 334void complete_and_exit(struct completion *, long) __noreturn;
 335
 336#ifdef CONFIG_ARCH_HAS_REFCOUNT
 337void refcount_error_report(struct pt_regs *regs, const char *err);
 338#else
 339static inline void refcount_error_report(struct pt_regs *regs, const char *err)
 340{ }
 341#endif
 342
 343/* Internal, do not use. */
 344int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
 345int __must_check _kstrtol(const char *s, unsigned int base, long *res);
 346
 347int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
 348int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
 349
 350/**
 351 * kstrtoul - convert a string to an unsigned long
 352 * @s: The start of the string. The string must be null-terminated, and may also
 353 *  include a single newline before its terminating null. The first character
 354 *  may also be a plus sign, but not a minus sign.
 355 * @base: The number base to use. The maximum supported base is 16. If base is
 356 *  given as 0, then the base of the string is automatically detected with the
 357 *  conventional semantics - If it begins with 0x the number will be parsed as a
 358 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 359 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 360 * @res: Where to write the result of the conversion on success.
 361 *
 362 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 363 * Used as a replacement for the obsolete simple_strtoull. Return code must
 364 * be checked.
 365*/
 366static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
 367{
 368        /*
 369         * We want to shortcut function call, but
 370         * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
 371         */
 372        if (sizeof(unsigned long) == sizeof(unsigned long long) &&
 373            __alignof__(unsigned long) == __alignof__(unsigned long long))
 374                return kstrtoull(s, base, (unsigned long long *)res);
 375        else
 376                return _kstrtoul(s, base, res);
 377}
 378
 379/**
 380 * kstrtol - convert a string to a long
 381 * @s: The start of the string. The string must be null-terminated, and may also
 382 *  include a single newline before its terminating null. The first character
 383 *  may also be a plus sign or a minus sign.
 384 * @base: The number base to use. The maximum supported base is 16. If base is
 385 *  given as 0, then the base of the string is automatically detected with the
 386 *  conventional semantics - If it begins with 0x the number will be parsed as a
 387 *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
 388 *  parsed as an octal number. Otherwise it will be parsed as a decimal.
 389 * @res: Where to write the result of the conversion on success.
 390 *
 391 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
 392 * Used as a replacement for the obsolete simple_strtoull. Return code must
 393 * be checked.
 394 */
 395static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
 396{
 397        /*
 398         * We want to shortcut function call, but
 399         * __builtin_types_compatible_p(long, long long) = 0.
 400         */
 401        if (sizeof(long) == sizeof(long long) &&
 402            __alignof__(long) == __alignof__(long long))
 403                return kstrtoll(s, base, (long long *)res);
 404        else
 405                return _kstrtol(s, base, res);
 406}
 407
 408int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
 409int __must_check kstrtoint(const char *s, unsigned int base, int *res);
 410
 411static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
 412{
 413        return kstrtoull(s, base, res);
 414}
 415
 416static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
 417{
 418        return kstrtoll(s, base, res);
 419}
 420
 421static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
 422{
 423        return kstrtouint(s, base, res);
 424}
 425
 426static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
 427{
 428        return kstrtoint(s, base, res);
 429}
 430
 431int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
 432int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
 433int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
 434int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
 435int __must_check kstrtobool(const char *s, bool *res);
 436
 437int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
 438int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
 439int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
 440int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
 441int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
 442int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
 443int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
 444int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
 445int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
 446int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
 447int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
 448
 449static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
 450{
 451        return kstrtoull_from_user(s, count, base, res);
 452}
 453
 454static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
 455{
 456        return kstrtoll_from_user(s, count, base, res);
 457}
 458
 459static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
 460{
 461        return kstrtouint_from_user(s, count, base, res);
 462}
 463
 464static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
 465{
 466        return kstrtoint_from_user(s, count, base, res);
 467}
 468
 469/* Obsolete, do not use.  Use kstrto<foo> instead */
 470
 471extern unsigned long simple_strtoul(const char *,char **,unsigned int);
 472extern long simple_strtol(const char *,char **,unsigned int);
 473extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
 474extern long long simple_strtoll(const char *,char **,unsigned int);
 475
 476extern int num_to_str(char *buf, int size,
 477                      unsigned long long num, unsigned int width);
 478
 479/* lib/printf utilities */
 480
 481extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
 482extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
 483extern __printf(3, 4)
 484int snprintf(char *buf, size_t size, const char *fmt, ...);
 485extern __printf(3, 0)
 486int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
 487extern __printf(3, 4)
 488int scnprintf(char *buf, size_t size, const char *fmt, ...);
 489extern __printf(3, 0)
 490int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
 491extern __printf(2, 3) __malloc
 492char *kasprintf(gfp_t gfp, const char *fmt, ...);
 493extern __printf(2, 0) __malloc
 494char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
 495extern __printf(2, 0)
 496const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
 497
 498extern __scanf(2, 3)
 499int sscanf(const char *, const char *, ...);
 500extern __scanf(2, 0)
 501int vsscanf(const char *, const char *, va_list);
 502
 503extern int get_option(char **str, int *pint);
 504extern char *get_options(const char *str, int nints, int *ints);
 505extern unsigned long long memparse(const char *ptr, char **retptr);
 506extern bool parse_option_str(const char *str, const char *option);
 507extern char *next_arg(char *args, char **param, char **val);
 508
 509extern int core_kernel_text(unsigned long addr);
 510extern int init_kernel_text(unsigned long addr);
 511extern int core_kernel_data(unsigned long addr);
 512extern int __kernel_text_address(unsigned long addr);
 513extern int kernel_text_address(unsigned long addr);
 514extern int func_ptr_is_kernel_text(void *ptr);
 515
 516unsigned long int_sqrt(unsigned long);
 517
 518#if BITS_PER_LONG < 64
 519u32 int_sqrt64(u64 x);
 520#else
 521static inline u32 int_sqrt64(u64 x)
 522{
 523        return (u32)int_sqrt(x);
 524}
 525#endif
 526
 527extern void bust_spinlocks(int yes);
 528extern int oops_in_progress;            /* If set, an oops, panic(), BUG() or die() is in progress */
 529extern int panic_timeout;
 530extern int panic_on_oops;
 531extern int panic_on_unrecovered_nmi;
 532extern int panic_on_io_nmi;
 533extern int panic_on_warn;
 534extern int sysctl_panic_on_rcu_stall;
 535extern int sysctl_panic_on_stackoverflow;
 536
 537extern bool crash_kexec_post_notifiers;
 538
 539/*
 540 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
 541 * holds a CPU number which is executing panic() currently. A value of
 542 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
 543 */
 544extern atomic_t panic_cpu;
 545#define PANIC_CPU_INVALID       -1
 546
 547/*
 548 * Only to be used by arch init code. If the user over-wrote the default
 549 * CONFIG_PANIC_TIMEOUT, honor it.
 550 */
 551static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
 552{
 553        if (panic_timeout == arch_default_timeout)
 554                panic_timeout = timeout;
 555}
 556extern const char *print_tainted(void);
 557enum lockdep_ok {
 558        LOCKDEP_STILL_OK,
 559        LOCKDEP_NOW_UNRELIABLE
 560};
 561extern void add_taint(unsigned flag, enum lockdep_ok);
 562extern int test_taint(unsigned flag);
 563extern unsigned long get_taint(void);
 564extern int root_mountflags;
 565
 566extern bool early_boot_irqs_disabled;
 567
 568/*
 569 * Values used for system_state. Ordering of the states must not be changed
 570 * as code checks for <, <=, >, >= STATE.
 571 */
 572extern enum system_states {
 573        SYSTEM_BOOTING,
 574        SYSTEM_SCHEDULING,
 575        SYSTEM_RUNNING,
 576        SYSTEM_HALT,
 577        SYSTEM_POWER_OFF,
 578        SYSTEM_RESTART,
 579        SYSTEM_SUSPEND,
 580} system_state;
 581
 582/* This cannot be an enum because some may be used in assembly source. */
 583#define TAINT_PROPRIETARY_MODULE        0
 584#define TAINT_FORCED_MODULE             1
 585#define TAINT_CPU_OUT_OF_SPEC           2
 586#define TAINT_FORCED_RMMOD              3
 587#define TAINT_MACHINE_CHECK             4
 588#define TAINT_BAD_PAGE                  5
 589#define TAINT_USER                      6
 590#define TAINT_DIE                       7
 591#define TAINT_OVERRIDDEN_ACPI_TABLE     8
 592#define TAINT_WARN                      9
 593#define TAINT_CRAP                      10
 594#define TAINT_FIRMWARE_WORKAROUND       11
 595#define TAINT_OOT_MODULE                12
 596#define TAINT_UNSIGNED_MODULE           13
 597#define TAINT_SOFTLOCKUP                14
 598#define TAINT_LIVEPATCH                 15
 599#define TAINT_AUX                       16
 600#define TAINT_RANDSTRUCT                17
 601#define TAINT_FLAGS_COUNT               18
 602
 603struct taint_flag {
 604        char c_true;    /* character printed when tainted */
 605        char c_false;   /* character printed when not tainted */
 606        bool module;    /* also show as a per-module taint flag */
 607};
 608
 609extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
 610
 611extern const char hex_asc[];
 612#define hex_asc_lo(x)   hex_asc[((x) & 0x0f)]
 613#define hex_asc_hi(x)   hex_asc[((x) & 0xf0) >> 4]
 614
 615static inline char *hex_byte_pack(char *buf, u8 byte)
 616{
 617        *buf++ = hex_asc_hi(byte);
 618        *buf++ = hex_asc_lo(byte);
 619        return buf;
 620}
 621
 622extern const char hex_asc_upper[];
 623#define hex_asc_upper_lo(x)     hex_asc_upper[((x) & 0x0f)]
 624#define hex_asc_upper_hi(x)     hex_asc_upper[((x) & 0xf0) >> 4]
 625
 626static inline char *hex_byte_pack_upper(char *buf, u8 byte)
 627{
 628        *buf++ = hex_asc_upper_hi(byte);
 629        *buf++ = hex_asc_upper_lo(byte);
 630        return buf;
 631}
 632
 633extern int hex_to_bin(char ch);
 634extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
 635extern char *bin2hex(char *dst, const void *src, size_t count);
 636
 637bool mac_pton(const char *s, u8 *mac);
 638
 639/*
 640 * General tracing related utility functions - trace_printk(),
 641 * tracing_on/tracing_off and tracing_start()/tracing_stop
 642 *
 643 * Use tracing_on/tracing_off when you want to quickly turn on or off
 644 * tracing. It simply enables or disables the recording of the trace events.
 645 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
 646 * file, which gives a means for the kernel and userspace to interact.
 647 * Place a tracing_off() in the kernel where you want tracing to end.
 648 * From user space, examine the trace, and then echo 1 > tracing_on
 649 * to continue tracing.
 650 *
 651 * tracing_stop/tracing_start has slightly more overhead. It is used
 652 * by things like suspend to ram where disabling the recording of the
 653 * trace is not enough, but tracing must actually stop because things
 654 * like calling smp_processor_id() may crash the system.
 655 *
 656 * Most likely, you want to use tracing_on/tracing_off.
 657 */
 658
 659enum ftrace_dump_mode {
 660        DUMP_NONE,
 661        DUMP_ALL,
 662        DUMP_ORIG,
 663};
 664
 665#ifdef CONFIG_TRACING
 666void tracing_on(void);
 667void tracing_off(void);
 668int tracing_is_on(void);
 669void tracing_snapshot(void);
 670void tracing_snapshot_alloc(void);
 671
 672extern void tracing_start(void);
 673extern void tracing_stop(void);
 674
 675static inline __printf(1, 2)
 676void ____trace_printk_check_format(const char *fmt, ...)
 677{
 678}
 679#define __trace_printk_check_format(fmt, args...)                       \
 680do {                                                                    \
 681        if (0)                                                          \
 682                ____trace_printk_check_format(fmt, ##args);             \
 683} while (0)
 684
 685/**
 686 * trace_printk - printf formatting in the ftrace buffer
 687 * @fmt: the printf format for printing
 688 *
 689 * Note: __trace_printk is an internal function for trace_printk() and
 690 *       the @ip is passed in via the trace_printk() macro.
 691 *
 692 * This function allows a kernel developer to debug fast path sections
 693 * that printk is not appropriate for. By scattering in various
 694 * printk like tracing in the code, a developer can quickly see
 695 * where problems are occurring.
 696 *
 697 * This is intended as a debugging tool for the developer only.
 698 * Please refrain from leaving trace_printks scattered around in
 699 * your code. (Extra memory is used for special buffers that are
 700 * allocated when trace_printk() is used.)
 701 *
 702 * A little optimization trick is done here. If there's only one
 703 * argument, there's no need to scan the string for printf formats.
 704 * The trace_puts() will suffice. But how can we take advantage of
 705 * using trace_puts() when trace_printk() has only one argument?
 706 * By stringifying the args and checking the size we can tell
 707 * whether or not there are args. __stringify((__VA_ARGS__)) will
 708 * turn into "()\0" with a size of 3 when there are no args, anything
 709 * else will be bigger. All we need to do is define a string to this,
 710 * and then take its size and compare to 3. If it's bigger, use
 711 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
 712 * let gcc optimize the rest.
 713 */
 714
 715#define trace_printk(fmt, ...)                          \
 716do {                                                    \
 717        char _______STR[] = __stringify((__VA_ARGS__)); \
 718        if (sizeof(_______STR) > 3)                     \
 719                do_trace_printk(fmt, ##__VA_ARGS__);    \
 720        else                                            \
 721                trace_puts(fmt);                        \
 722} while (0)
 723
 724#define do_trace_printk(fmt, args...)                                   \
 725do {                                                                    \
 726        static const char *trace_printk_fmt __used                      \
 727                __attribute__((section("__trace_printk_fmt"))) =        \
 728                __builtin_constant_p(fmt) ? fmt : NULL;                 \
 729                                                                        \
 730        __trace_printk_check_format(fmt, ##args);                       \
 731                                                                        \
 732        if (__builtin_constant_p(fmt))                                  \
 733                __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);   \
 734        else                                                            \
 735                __trace_printk(_THIS_IP_, fmt, ##args);                 \
 736} while (0)
 737
 738extern __printf(2, 3)
 739int __trace_bprintk(unsigned long ip, const char *fmt, ...);
 740
 741extern __printf(2, 3)
 742int __trace_printk(unsigned long ip, const char *fmt, ...);
 743
 744/**
 745 * trace_puts - write a string into the ftrace buffer
 746 * @str: the string to record
 747 *
 748 * Note: __trace_bputs is an internal function for trace_puts and
 749 *       the @ip is passed in via the trace_puts macro.
 750 *
 751 * This is similar to trace_printk() but is made for those really fast
 752 * paths that a developer wants the least amount of "Heisenbug" effects,
 753 * where the processing of the print format is still too much.
 754 *
 755 * This function allows a kernel developer to debug fast path sections
 756 * that printk is not appropriate for. By scattering in various
 757 * printk like tracing in the code, a developer can quickly see
 758 * where problems are occurring.
 759 *
 760 * This is intended as a debugging tool for the developer only.
 761 * Please refrain from leaving trace_puts scattered around in
 762 * your code. (Extra memory is used for special buffers that are
 763 * allocated when trace_puts() is used.)
 764 *
 765 * Returns: 0 if nothing was written, positive # if string was.
 766 *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
 767 */
 768
 769#define trace_puts(str) ({                                              \
 770        static const char *trace_printk_fmt __used                      \
 771                __attribute__((section("__trace_printk_fmt"))) =        \
 772                __builtin_constant_p(str) ? str : NULL;                 \
 773                                                                        \
 774        if (__builtin_constant_p(str))                                  \
 775                __trace_bputs(_THIS_IP_, trace_printk_fmt);             \
 776        else                                                            \
 777                __trace_puts(_THIS_IP_, str, strlen(str));              \
 778})
 779extern int __trace_bputs(unsigned long ip, const char *str);
 780extern int __trace_puts(unsigned long ip, const char *str, int size);
 781
 782extern void trace_dump_stack(int skip);
 783
 784/*
 785 * The double __builtin_constant_p is because gcc will give us an error
 786 * if we try to allocate the static variable to fmt if it is not a
 787 * constant. Even with the outer if statement.
 788 */
 789#define ftrace_vprintk(fmt, vargs)                                      \
 790do {                                                                    \
 791        if (__builtin_constant_p(fmt)) {                                \
 792                static const char *trace_printk_fmt __used              \
 793                  __attribute__((section("__trace_printk_fmt"))) =      \
 794                        __builtin_constant_p(fmt) ? fmt : NULL;         \
 795                                                                        \
 796                __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);  \
 797        } else                                                          \
 798                __ftrace_vprintk(_THIS_IP_, fmt, vargs);                \
 799} while (0)
 800
 801extern __printf(2, 0) int
 802__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
 803
 804extern __printf(2, 0) int
 805__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
 806
 807extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
 808#else
 809static inline void tracing_start(void) { }
 810static inline void tracing_stop(void) { }
 811static inline void trace_dump_stack(int skip) { }
 812
 813static inline void tracing_on(void) { }
 814static inline void tracing_off(void) { }
 815static inline int tracing_is_on(void) { return 0; }
 816static inline void tracing_snapshot(void) { }
 817static inline void tracing_snapshot_alloc(void) { }
 818
 819static inline __printf(1, 2)
 820int trace_printk(const char *fmt, ...)
 821{
 822        return 0;
 823}
 824static __printf(1, 0) inline int
 825ftrace_vprintk(const char *fmt, va_list ap)
 826{
 827        return 0;
 828}
 829static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
 830#endif /* CONFIG_TRACING */
 831
 832/*
 833 * min()/max()/clamp() macros must accomplish three things:
 834 *
 835 * - avoid multiple evaluations of the arguments (so side-effects like
 836 *   "x++" happen only once) when non-constant.
 837 * - perform strict type-checking (to generate warnings instead of
 838 *   nasty runtime surprises). See the "unnecessary" pointer comparison
 839 *   in __typecheck().
 840 * - retain result as a constant expressions when called with only
 841 *   constant expressions (to avoid tripping VLA warnings in stack
 842 *   allocation usage).
 843 */
 844#define __typecheck(x, y) \
 845                (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
 846
 847/*
 848 * This returns a constant expression while determining if an argument is
 849 * a constant expression, most importantly without evaluating the argument.
 850 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 851 */
 852#define __is_constexpr(x) \
 853        (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
 854
 855#define __no_side_effects(x, y) \
 856                (__is_constexpr(x) && __is_constexpr(y))
 857
 858#define __safe_cmp(x, y) \
 859                (__typecheck(x, y) && __no_side_effects(x, y))
 860
 861#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
 862
 863#define __cmp_once(x, y, unique_x, unique_y, op) ({     \
 864                typeof(x) unique_x = (x);               \
 865                typeof(y) unique_y = (y);               \
 866                __cmp(unique_x, unique_y, op); })
 867
 868#define __careful_cmp(x, y, op) \
 869        __builtin_choose_expr(__safe_cmp(x, y), \
 870                __cmp(x, y, op), \
 871                __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
 872
 873/**
 874 * min - return minimum of two values of the same or compatible types
 875 * @x: first value
 876 * @y: second value
 877 */
 878#define min(x, y)       __careful_cmp(x, y, <)
 879
 880/**
 881 * max - return maximum of two values of the same or compatible types
 882 * @x: first value
 883 * @y: second value
 884 */
 885#define max(x, y)       __careful_cmp(x, y, >)
 886
 887/**
 888 * min3 - return minimum of three values
 889 * @x: first value
 890 * @y: second value
 891 * @z: third value
 892 */
 893#define min3(x, y, z) min((typeof(x))min(x, y), z)
 894
 895/**
 896 * max3 - return maximum of three values
 897 * @x: first value
 898 * @y: second value
 899 * @z: third value
 900 */
 901#define max3(x, y, z) max((typeof(x))max(x, y), z)
 902
 903/**
 904 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
 905 * @x: value1
 906 * @y: value2
 907 */
 908#define min_not_zero(x, y) ({                   \
 909        typeof(x) __x = (x);                    \
 910        typeof(y) __y = (y);                    \
 911        __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
 912
 913/**
 914 * clamp - return a value clamped to a given range with strict typechecking
 915 * @val: current value
 916 * @lo: lowest allowable value
 917 * @hi: highest allowable value
 918 *
 919 * This macro does strict typechecking of @lo/@hi to make sure they are of the
 920 * same type as @val.  See the unnecessary pointer comparisons.
 921 */
 922#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
 923
 924/*
 925 * ..and if you can't take the strict
 926 * types, you can specify one yourself.
 927 *
 928 * Or not use min/max/clamp at all, of course.
 929 */
 930
 931/**
 932 * min_t - return minimum of two values, using the specified type
 933 * @type: data type to use
 934 * @x: first value
 935 * @y: second value
 936 */
 937#define min_t(type, x, y)       __careful_cmp((type)(x), (type)(y), <)
 938
 939/**
 940 * max_t - return maximum of two values, using the specified type
 941 * @type: data type to use
 942 * @x: first value
 943 * @y: second value
 944 */
 945#define max_t(type, x, y)       __careful_cmp((type)(x), (type)(y), >)
 946
 947/**
 948 * clamp_t - return a value clamped to a given range using a given type
 949 * @type: the type of variable to use
 950 * @val: current value
 951 * @lo: minimum allowable value
 952 * @hi: maximum allowable value
 953 *
 954 * This macro does no typechecking and uses temporary variables of type
 955 * @type to make all the comparisons.
 956 */
 957#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
 958
 959/**
 960 * clamp_val - return a value clamped to a given range using val's type
 961 * @val: current value
 962 * @lo: minimum allowable value
 963 * @hi: maximum allowable value
 964 *
 965 * This macro does no typechecking and uses temporary variables of whatever
 966 * type the input argument @val is.  This is useful when @val is an unsigned
 967 * type and @lo and @hi are literals that will otherwise be assigned a signed
 968 * integer type.
 969 */
 970#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
 971
 972
 973/**
 974 * swap - swap values of @a and @b
 975 * @a: first value
 976 * @b: second value
 977 */
 978#define swap(a, b) \
 979        do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
 980
 981/* This counts to 12. Any more, it will return 13th argument. */
 982#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
 983#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
 984
 985#define __CONCAT(a, b) a ## b
 986#define CONCATENATE(a, b) __CONCAT(a, b)
 987
 988/**
 989 * container_of - cast a member of a structure out to the containing structure
 990 * @ptr:        the pointer to the member.
 991 * @type:       the type of the container struct this is embedded in.
 992 * @member:     the name of the member within the struct.
 993 *
 994 */
 995#define container_of(ptr, type, member) ({                              \
 996        void *__mptr = (void *)(ptr);                                   \
 997        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
 998                         !__same_type(*(ptr), void),                    \
 999                         "pointer type mismatch in container_of()");    \
1000        ((type *)(__mptr - offsetof(type, member))); })
1001
1002/**
1003 * container_of_safe - cast a member of a structure out to the containing structure
1004 * @ptr:        the pointer to the member.
1005 * @type:       the type of the container struct this is embedded in.
1006 * @member:     the name of the member within the struct.
1007 *
1008 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1009 */
1010#define container_of_safe(ptr, type, member) ({                         \
1011        void *__mptr = (void *)(ptr);                                   \
1012        BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&   \
1013                         !__same_type(*(ptr), void),                    \
1014                         "pointer type mismatch in container_of()");    \
1015        IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :                     \
1016                ((type *)(__mptr - offsetof(type, member))); })
1017
1018/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1019#ifdef CONFIG_FTRACE_MCOUNT_RECORD
1020# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1021#endif
1022
1023/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1024#define VERIFY_OCTAL_PERMISSIONS(perms)                                         \
1025        (BUILD_BUG_ON_ZERO((perms) < 0) +                                       \
1026         BUILD_BUG_ON_ZERO((perms) > 0777) +                                    \
1027         /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */                \
1028         BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +       \
1029         BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +              \
1030         /* USER_WRITABLE >= GROUP_WRITABLE */                                  \
1031         BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +       \
1032         /* OTHER_WRITABLE?  Generally considered a bad idea. */                \
1033         BUILD_BUG_ON_ZERO((perms) & 2) +                                       \
1034         (perms))
1035#endif
1036