linux/kernel/futex.c
<<
>>
Prefs
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/wake_q.h>
  65#include <linux/sched/mm.h>
  66#include <linux/hugetlb.h>
  67#include <linux/freezer.h>
  68#include <linux/memblock.h>
  69#include <linux/fault-inject.h>
  70
  71#include <asm/futex.h>
  72
  73#include "locking/rtmutex_common.h"
  74
  75/*
  76 * READ this before attempting to hack on futexes!
  77 *
  78 * Basic futex operation and ordering guarantees
  79 * =============================================
  80 *
  81 * The waiter reads the futex value in user space and calls
  82 * futex_wait(). This function computes the hash bucket and acquires
  83 * the hash bucket lock. After that it reads the futex user space value
  84 * again and verifies that the data has not changed. If it has not changed
  85 * it enqueues itself into the hash bucket, releases the hash bucket lock
  86 * and schedules.
  87 *
  88 * The waker side modifies the user space value of the futex and calls
  89 * futex_wake(). This function computes the hash bucket and acquires the
  90 * hash bucket lock. Then it looks for waiters on that futex in the hash
  91 * bucket and wakes them.
  92 *
  93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  94 * the hb spinlock can be avoided and simply return. In order for this
  95 * optimization to work, ordering guarantees must exist so that the waiter
  96 * being added to the list is acknowledged when the list is concurrently being
  97 * checked by the waker, avoiding scenarios like the following:
  98 *
  99 * CPU 0                               CPU 1
 100 * val = *futex;
 101 * sys_futex(WAIT, futex, val);
 102 *   futex_wait(futex, val);
 103 *   uval = *futex;
 104 *                                     *futex = newval;
 105 *                                     sys_futex(WAKE, futex);
 106 *                                       futex_wake(futex);
 107 *                                       if (queue_empty())
 108 *                                         return;
 109 *   if (uval == val)
 110 *      lock(hash_bucket(futex));
 111 *      queue();
 112 *     unlock(hash_bucket(futex));
 113 *     schedule();
 114 *
 115 * This would cause the waiter on CPU 0 to wait forever because it
 116 * missed the transition of the user space value from val to newval
 117 * and the waker did not find the waiter in the hash bucket queue.
 118 *
 119 * The correct serialization ensures that a waiter either observes
 120 * the changed user space value before blocking or is woken by a
 121 * concurrent waker:
 122 *
 123 * CPU 0                                 CPU 1
 124 * val = *futex;
 125 * sys_futex(WAIT, futex, val);
 126 *   futex_wait(futex, val);
 127 *
 128 *   waiters++; (a)
 129 *   smp_mb(); (A) <-- paired with -.
 130 *                                  |
 131 *   lock(hash_bucket(futex));      |
 132 *                                  |
 133 *   uval = *futex;                 |
 134 *                                  |        *futex = newval;
 135 *                                  |        sys_futex(WAKE, futex);
 136 *                                  |          futex_wake(futex);
 137 *                                  |
 138 *                                  `--------> smp_mb(); (B)
 139 *   if (uval == val)
 140 *     queue();
 141 *     unlock(hash_bucket(futex));
 142 *     schedule();                         if (waiters)
 143 *                                           lock(hash_bucket(futex));
 144 *   else                                    wake_waiters(futex);
 145 *     waiters--; (b)                        unlock(hash_bucket(futex));
 146 *
 147 * Where (A) orders the waiters increment and the futex value read through
 148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 149 * to futex and the waiters read -- this is done by the barriers for both
 150 * shared and private futexes in get_futex_key_refs().
 151 *
 152 * This yields the following case (where X:=waiters, Y:=futex):
 153 *
 154 *      X = Y = 0
 155 *
 156 *      w[X]=1          w[Y]=1
 157 *      MB              MB
 158 *      r[Y]=y          r[X]=x
 159 *
 160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 161 * the guarantee that we cannot both miss the futex variable change and the
 162 * enqueue.
 163 *
 164 * Note that a new waiter is accounted for in (a) even when it is possible that
 165 * the wait call can return error, in which case we backtrack from it in (b).
 166 * Refer to the comment in queue_lock().
 167 *
 168 * Similarly, in order to account for waiters being requeued on another
 169 * address we always increment the waiters for the destination bucket before
 170 * acquiring the lock. It then decrements them again  after releasing it -
 171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 172 * will do the additional required waiter count housekeeping. This is done for
 173 * double_lock_hb() and double_unlock_hb(), respectively.
 174 */
 175
 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 177int __read_mostly futex_cmpxchg_enabled;
 178#endif
 179
 180/*
 181 * Futex flags used to encode options to functions and preserve them across
 182 * restarts.
 183 */
 184#ifdef CONFIG_MMU
 185# define FLAGS_SHARED           0x01
 186#else
 187/*
 188 * NOMMU does not have per process address space. Let the compiler optimize
 189 * code away.
 190 */
 191# define FLAGS_SHARED           0x00
 192#endif
 193#define FLAGS_CLOCKRT           0x02
 194#define FLAGS_HAS_TIMEOUT       0x04
 195
 196/*
 197 * Priority Inheritance state:
 198 */
 199struct futex_pi_state {
 200        /*
 201         * list of 'owned' pi_state instances - these have to be
 202         * cleaned up in do_exit() if the task exits prematurely:
 203         */
 204        struct list_head list;
 205
 206        /*
 207         * The PI object:
 208         */
 209        struct rt_mutex pi_mutex;
 210
 211        struct task_struct *owner;
 212        atomic_t refcount;
 213
 214        union futex_key key;
 215} __randomize_layout;
 216
 217/**
 218 * struct futex_q - The hashed futex queue entry, one per waiting task
 219 * @list:               priority-sorted list of tasks waiting on this futex
 220 * @task:               the task waiting on the futex
 221 * @lock_ptr:           the hash bucket lock
 222 * @key:                the key the futex is hashed on
 223 * @pi_state:           optional priority inheritance state
 224 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 225 * @requeue_pi_key:     the requeue_pi target futex key
 226 * @bitset:             bitset for the optional bitmasked wakeup
 227 *
 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 229 * we can wake only the relevant ones (hashed queues may be shared).
 230 *
 231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 233 * The order of wakeup is always to make the first condition true, then
 234 * the second.
 235 *
 236 * PI futexes are typically woken before they are removed from the hash list via
 237 * the rt_mutex code. See unqueue_me_pi().
 238 */
 239struct futex_q {
 240        struct plist_node list;
 241
 242        struct task_struct *task;
 243        spinlock_t *lock_ptr;
 244        union futex_key key;
 245        struct futex_pi_state *pi_state;
 246        struct rt_mutex_waiter *rt_waiter;
 247        union futex_key *requeue_pi_key;
 248        u32 bitset;
 249} __randomize_layout;
 250
 251static const struct futex_q futex_q_init = {
 252        /* list gets initialized in queue_me()*/
 253        .key = FUTEX_KEY_INIT,
 254        .bitset = FUTEX_BITSET_MATCH_ANY
 255};
 256
 257/*
 258 * Hash buckets are shared by all the futex_keys that hash to the same
 259 * location.  Each key may have multiple futex_q structures, one for each task
 260 * waiting on a futex.
 261 */
 262struct futex_hash_bucket {
 263        atomic_t waiters;
 264        spinlock_t lock;
 265        struct plist_head chain;
 266} ____cacheline_aligned_in_smp;
 267
 268/*
 269 * The base of the bucket array and its size are always used together
 270 * (after initialization only in hash_futex()), so ensure that they
 271 * reside in the same cacheline.
 272 */
 273static struct {
 274        struct futex_hash_bucket *queues;
 275        unsigned long            hashsize;
 276} __futex_data __read_mostly __aligned(2*sizeof(long));
 277#define futex_queues   (__futex_data.queues)
 278#define futex_hashsize (__futex_data.hashsize)
 279
 280
 281/*
 282 * Fault injections for futexes.
 283 */
 284#ifdef CONFIG_FAIL_FUTEX
 285
 286static struct {
 287        struct fault_attr attr;
 288
 289        bool ignore_private;
 290} fail_futex = {
 291        .attr = FAULT_ATTR_INITIALIZER,
 292        .ignore_private = false,
 293};
 294
 295static int __init setup_fail_futex(char *str)
 296{
 297        return setup_fault_attr(&fail_futex.attr, str);
 298}
 299__setup("fail_futex=", setup_fail_futex);
 300
 301static bool should_fail_futex(bool fshared)
 302{
 303        if (fail_futex.ignore_private && !fshared)
 304                return false;
 305
 306        return should_fail(&fail_futex.attr, 1);
 307}
 308
 309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 310
 311static int __init fail_futex_debugfs(void)
 312{
 313        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 314        struct dentry *dir;
 315
 316        dir = fault_create_debugfs_attr("fail_futex", NULL,
 317                                        &fail_futex.attr);
 318        if (IS_ERR(dir))
 319                return PTR_ERR(dir);
 320
 321        if (!debugfs_create_bool("ignore-private", mode, dir,
 322                                 &fail_futex.ignore_private)) {
 323                debugfs_remove_recursive(dir);
 324                return -ENOMEM;
 325        }
 326
 327        return 0;
 328}
 329
 330late_initcall(fail_futex_debugfs);
 331
 332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 333
 334#else
 335static inline bool should_fail_futex(bool fshared)
 336{
 337        return false;
 338}
 339#endif /* CONFIG_FAIL_FUTEX */
 340
 341static inline void futex_get_mm(union futex_key *key)
 342{
 343        mmgrab(key->private.mm);
 344        /*
 345         * Ensure futex_get_mm() implies a full barrier such that
 346         * get_futex_key() implies a full barrier. This is relied upon
 347         * as smp_mb(); (B), see the ordering comment above.
 348         */
 349        smp_mb__after_atomic();
 350}
 351
 352/*
 353 * Reflects a new waiter being added to the waitqueue.
 354 */
 355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 356{
 357#ifdef CONFIG_SMP
 358        atomic_inc(&hb->waiters);
 359        /*
 360         * Full barrier (A), see the ordering comment above.
 361         */
 362        smp_mb__after_atomic();
 363#endif
 364}
 365
 366/*
 367 * Reflects a waiter being removed from the waitqueue by wakeup
 368 * paths.
 369 */
 370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 371{
 372#ifdef CONFIG_SMP
 373        atomic_dec(&hb->waiters);
 374#endif
 375}
 376
 377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 378{
 379#ifdef CONFIG_SMP
 380        return atomic_read(&hb->waiters);
 381#else
 382        return 1;
 383#endif
 384}
 385
 386/**
 387 * hash_futex - Return the hash bucket in the global hash
 388 * @key:        Pointer to the futex key for which the hash is calculated
 389 *
 390 * We hash on the keys returned from get_futex_key (see below) and return the
 391 * corresponding hash bucket in the global hash.
 392 */
 393static struct futex_hash_bucket *hash_futex(union futex_key *key)
 394{
 395        u32 hash = jhash2((u32*)&key->both.word,
 396                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 397                          key->both.offset);
 398        return &futex_queues[hash & (futex_hashsize - 1)];
 399}
 400
 401
 402/**
 403 * match_futex - Check whether two futex keys are equal
 404 * @key1:       Pointer to key1
 405 * @key2:       Pointer to key2
 406 *
 407 * Return 1 if two futex_keys are equal, 0 otherwise.
 408 */
 409static inline int match_futex(union futex_key *key1, union futex_key *key2)
 410{
 411        return (key1 && key2
 412                && key1->both.word == key2->both.word
 413                && key1->both.ptr == key2->both.ptr
 414                && key1->both.offset == key2->both.offset);
 415}
 416
 417/*
 418 * Take a reference to the resource addressed by a key.
 419 * Can be called while holding spinlocks.
 420 *
 421 */
 422static void get_futex_key_refs(union futex_key *key)
 423{
 424        if (!key->both.ptr)
 425                return;
 426
 427        /*
 428         * On MMU less systems futexes are always "private" as there is no per
 429         * process address space. We need the smp wmb nevertheless - yes,
 430         * arch/blackfin has MMU less SMP ...
 431         */
 432        if (!IS_ENABLED(CONFIG_MMU)) {
 433                smp_mb(); /* explicit smp_mb(); (B) */
 434                return;
 435        }
 436
 437        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 438        case FUT_OFF_INODE:
 439                ihold(key->shared.inode); /* implies smp_mb(); (B) */
 440                break;
 441        case FUT_OFF_MMSHARED:
 442                futex_get_mm(key); /* implies smp_mb(); (B) */
 443                break;
 444        default:
 445                /*
 446                 * Private futexes do not hold reference on an inode or
 447                 * mm, therefore the only purpose of calling get_futex_key_refs
 448                 * is because we need the barrier for the lockless waiter check.
 449                 */
 450                smp_mb(); /* explicit smp_mb(); (B) */
 451        }
 452}
 453
 454/*
 455 * Drop a reference to the resource addressed by a key.
 456 * The hash bucket spinlock must not be held. This is
 457 * a no-op for private futexes, see comment in the get
 458 * counterpart.
 459 */
 460static void drop_futex_key_refs(union futex_key *key)
 461{
 462        if (!key->both.ptr) {
 463                /* If we're here then we tried to put a key we failed to get */
 464                WARN_ON_ONCE(1);
 465                return;
 466        }
 467
 468        if (!IS_ENABLED(CONFIG_MMU))
 469                return;
 470
 471        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 472        case FUT_OFF_INODE:
 473                iput(key->shared.inode);
 474                break;
 475        case FUT_OFF_MMSHARED:
 476                mmdrop(key->private.mm);
 477                break;
 478        }
 479}
 480
 481/**
 482 * get_futex_key() - Get parameters which are the keys for a futex
 483 * @uaddr:      virtual address of the futex
 484 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 485 * @key:        address where result is stored.
 486 * @rw:         mapping needs to be read/write (values: VERIFY_READ,
 487 *              VERIFY_WRITE)
 488 *
 489 * Return: a negative error code or 0
 490 *
 491 * The key words are stored in @key on success.
 492 *
 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 494 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 495 * We can usually work out the index without swapping in the page.
 496 *
 497 * lock_page() might sleep, the caller should not hold a spinlock.
 498 */
 499static int
 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 501{
 502        unsigned long address = (unsigned long)uaddr;
 503        struct mm_struct *mm = current->mm;
 504        struct page *page, *tail;
 505        struct address_space *mapping;
 506        int err, ro = 0;
 507
 508        /*
 509         * The futex address must be "naturally" aligned.
 510         */
 511        key->both.offset = address % PAGE_SIZE;
 512        if (unlikely((address % sizeof(u32)) != 0))
 513                return -EINVAL;
 514        address -= key->both.offset;
 515
 516        if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 517                return -EFAULT;
 518
 519        if (unlikely(should_fail_futex(fshared)))
 520                return -EFAULT;
 521
 522        /*
 523         * PROCESS_PRIVATE futexes are fast.
 524         * As the mm cannot disappear under us and the 'key' only needs
 525         * virtual address, we dont even have to find the underlying vma.
 526         * Note : We do have to check 'uaddr' is a valid user address,
 527         *        but access_ok() should be faster than find_vma()
 528         */
 529        if (!fshared) {
 530                key->private.mm = mm;
 531                key->private.address = address;
 532                get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 533                return 0;
 534        }
 535
 536again:
 537        /* Ignore any VERIFY_READ mapping (futex common case) */
 538        if (unlikely(should_fail_futex(fshared)))
 539                return -EFAULT;
 540
 541        err = get_user_pages_fast(address, 1, 1, &page);
 542        /*
 543         * If write access is not required (eg. FUTEX_WAIT), try
 544         * and get read-only access.
 545         */
 546        if (err == -EFAULT && rw == VERIFY_READ) {
 547                err = get_user_pages_fast(address, 1, 0, &page);
 548                ro = 1;
 549        }
 550        if (err < 0)
 551                return err;
 552        else
 553                err = 0;
 554
 555        /*
 556         * The treatment of mapping from this point on is critical. The page
 557         * lock protects many things but in this context the page lock
 558         * stabilizes mapping, prevents inode freeing in the shared
 559         * file-backed region case and guards against movement to swap cache.
 560         *
 561         * Strictly speaking the page lock is not needed in all cases being
 562         * considered here and page lock forces unnecessarily serialization
 563         * From this point on, mapping will be re-verified if necessary and
 564         * page lock will be acquired only if it is unavoidable
 565         *
 566         * Mapping checks require the head page for any compound page so the
 567         * head page and mapping is looked up now. For anonymous pages, it
 568         * does not matter if the page splits in the future as the key is
 569         * based on the address. For filesystem-backed pages, the tail is
 570         * required as the index of the page determines the key. For
 571         * base pages, there is no tail page and tail == page.
 572         */
 573        tail = page;
 574        page = compound_head(page);
 575        mapping = READ_ONCE(page->mapping);
 576
 577        /*
 578         * If page->mapping is NULL, then it cannot be a PageAnon
 579         * page; but it might be the ZERO_PAGE or in the gate area or
 580         * in a special mapping (all cases which we are happy to fail);
 581         * or it may have been a good file page when get_user_pages_fast
 582         * found it, but truncated or holepunched or subjected to
 583         * invalidate_complete_page2 before we got the page lock (also
 584         * cases which we are happy to fail).  And we hold a reference,
 585         * so refcount care in invalidate_complete_page's remove_mapping
 586         * prevents drop_caches from setting mapping to NULL beneath us.
 587         *
 588         * The case we do have to guard against is when memory pressure made
 589         * shmem_writepage move it from filecache to swapcache beneath us:
 590         * an unlikely race, but we do need to retry for page->mapping.
 591         */
 592        if (unlikely(!mapping)) {
 593                int shmem_swizzled;
 594
 595                /*
 596                 * Page lock is required to identify which special case above
 597                 * applies. If this is really a shmem page then the page lock
 598                 * will prevent unexpected transitions.
 599                 */
 600                lock_page(page);
 601                shmem_swizzled = PageSwapCache(page) || page->mapping;
 602                unlock_page(page);
 603                put_page(page);
 604
 605                if (shmem_swizzled)
 606                        goto again;
 607
 608                return -EFAULT;
 609        }
 610
 611        /*
 612         * Private mappings are handled in a simple way.
 613         *
 614         * If the futex key is stored on an anonymous page, then the associated
 615         * object is the mm which is implicitly pinned by the calling process.
 616         *
 617         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 618         * it's a read-only handle, it's expected that futexes attach to
 619         * the object not the particular process.
 620         */
 621        if (PageAnon(page)) {
 622                /*
 623                 * A RO anonymous page will never change and thus doesn't make
 624                 * sense for futex operations.
 625                 */
 626                if (unlikely(should_fail_futex(fshared)) || ro) {
 627                        err = -EFAULT;
 628                        goto out;
 629                }
 630
 631                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 632                key->private.mm = mm;
 633                key->private.address = address;
 634
 635                get_futex_key_refs(key); /* implies smp_mb(); (B) */
 636
 637        } else {
 638                struct inode *inode;
 639
 640                /*
 641                 * The associated futex object in this case is the inode and
 642                 * the page->mapping must be traversed. Ordinarily this should
 643                 * be stabilised under page lock but it's not strictly
 644                 * necessary in this case as we just want to pin the inode, not
 645                 * update the radix tree or anything like that.
 646                 *
 647                 * The RCU read lock is taken as the inode is finally freed
 648                 * under RCU. If the mapping still matches expectations then the
 649                 * mapping->host can be safely accessed as being a valid inode.
 650                 */
 651                rcu_read_lock();
 652
 653                if (READ_ONCE(page->mapping) != mapping) {
 654                        rcu_read_unlock();
 655                        put_page(page);
 656
 657                        goto again;
 658                }
 659
 660                inode = READ_ONCE(mapping->host);
 661                if (!inode) {
 662                        rcu_read_unlock();
 663                        put_page(page);
 664
 665                        goto again;
 666                }
 667
 668                /*
 669                 * Take a reference unless it is about to be freed. Previously
 670                 * this reference was taken by ihold under the page lock
 671                 * pinning the inode in place so i_lock was unnecessary. The
 672                 * only way for this check to fail is if the inode was
 673                 * truncated in parallel which is almost certainly an
 674                 * application bug. In such a case, just retry.
 675                 *
 676                 * We are not calling into get_futex_key_refs() in file-backed
 677                 * cases, therefore a successful atomic_inc return below will
 678                 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 679                 */
 680                if (!atomic_inc_not_zero(&inode->i_count)) {
 681                        rcu_read_unlock();
 682                        put_page(page);
 683
 684                        goto again;
 685                }
 686
 687                /* Should be impossible but lets be paranoid for now */
 688                if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 689                        err = -EFAULT;
 690                        rcu_read_unlock();
 691                        iput(inode);
 692
 693                        goto out;
 694                }
 695
 696                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 697                key->shared.inode = inode;
 698                key->shared.pgoff = basepage_index(tail);
 699                rcu_read_unlock();
 700        }
 701
 702out:
 703        put_page(page);
 704        return err;
 705}
 706
 707static inline void put_futex_key(union futex_key *key)
 708{
 709        drop_futex_key_refs(key);
 710}
 711
 712/**
 713 * fault_in_user_writeable() - Fault in user address and verify RW access
 714 * @uaddr:      pointer to faulting user space address
 715 *
 716 * Slow path to fixup the fault we just took in the atomic write
 717 * access to @uaddr.
 718 *
 719 * We have no generic implementation of a non-destructive write to the
 720 * user address. We know that we faulted in the atomic pagefault
 721 * disabled section so we can as well avoid the #PF overhead by
 722 * calling get_user_pages() right away.
 723 */
 724static int fault_in_user_writeable(u32 __user *uaddr)
 725{
 726        struct mm_struct *mm = current->mm;
 727        int ret;
 728
 729        down_read(&mm->mmap_sem);
 730        ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 731                               FAULT_FLAG_WRITE, NULL);
 732        up_read(&mm->mmap_sem);
 733
 734        return ret < 0 ? ret : 0;
 735}
 736
 737/**
 738 * futex_top_waiter() - Return the highest priority waiter on a futex
 739 * @hb:         the hash bucket the futex_q's reside in
 740 * @key:        the futex key (to distinguish it from other futex futex_q's)
 741 *
 742 * Must be called with the hb lock held.
 743 */
 744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 745                                        union futex_key *key)
 746{
 747        struct futex_q *this;
 748
 749        plist_for_each_entry(this, &hb->chain, list) {
 750                if (match_futex(&this->key, key))
 751                        return this;
 752        }
 753        return NULL;
 754}
 755
 756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 757                                      u32 uval, u32 newval)
 758{
 759        int ret;
 760
 761        pagefault_disable();
 762        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 763        pagefault_enable();
 764
 765        return ret;
 766}
 767
 768static int get_futex_value_locked(u32 *dest, u32 __user *from)
 769{
 770        int ret;
 771
 772        pagefault_disable();
 773        ret = __get_user(*dest, from);
 774        pagefault_enable();
 775
 776        return ret ? -EFAULT : 0;
 777}
 778
 779
 780/*
 781 * PI code:
 782 */
 783static int refill_pi_state_cache(void)
 784{
 785        struct futex_pi_state *pi_state;
 786
 787        if (likely(current->pi_state_cache))
 788                return 0;
 789
 790        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 791
 792        if (!pi_state)
 793                return -ENOMEM;
 794
 795        INIT_LIST_HEAD(&pi_state->list);
 796        /* pi_mutex gets initialized later */
 797        pi_state->owner = NULL;
 798        atomic_set(&pi_state->refcount, 1);
 799        pi_state->key = FUTEX_KEY_INIT;
 800
 801        current->pi_state_cache = pi_state;
 802
 803        return 0;
 804}
 805
 806static struct futex_pi_state *alloc_pi_state(void)
 807{
 808        struct futex_pi_state *pi_state = current->pi_state_cache;
 809
 810        WARN_ON(!pi_state);
 811        current->pi_state_cache = NULL;
 812
 813        return pi_state;
 814}
 815
 816static void get_pi_state(struct futex_pi_state *pi_state)
 817{
 818        WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
 819}
 820
 821/*
 822 * Drops a reference to the pi_state object and frees or caches it
 823 * when the last reference is gone.
 824 */
 825static void put_pi_state(struct futex_pi_state *pi_state)
 826{
 827        if (!pi_state)
 828                return;
 829
 830        if (!atomic_dec_and_test(&pi_state->refcount))
 831                return;
 832
 833        /*
 834         * If pi_state->owner is NULL, the owner is most probably dying
 835         * and has cleaned up the pi_state already
 836         */
 837        if (pi_state->owner) {
 838                struct task_struct *owner;
 839
 840                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 841                owner = pi_state->owner;
 842                if (owner) {
 843                        raw_spin_lock(&owner->pi_lock);
 844                        list_del_init(&pi_state->list);
 845                        raw_spin_unlock(&owner->pi_lock);
 846                }
 847                rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 848                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 849        }
 850
 851        if (current->pi_state_cache) {
 852                kfree(pi_state);
 853        } else {
 854                /*
 855                 * pi_state->list is already empty.
 856                 * clear pi_state->owner.
 857                 * refcount is at 0 - put it back to 1.
 858                 */
 859                pi_state->owner = NULL;
 860                atomic_set(&pi_state->refcount, 1);
 861                current->pi_state_cache = pi_state;
 862        }
 863}
 864
 865#ifdef CONFIG_FUTEX_PI
 866
 867/*
 868 * This task is holding PI mutexes at exit time => bad.
 869 * Kernel cleans up PI-state, but userspace is likely hosed.
 870 * (Robust-futex cleanup is separate and might save the day for userspace.)
 871 */
 872void exit_pi_state_list(struct task_struct *curr)
 873{
 874        struct list_head *next, *head = &curr->pi_state_list;
 875        struct futex_pi_state *pi_state;
 876        struct futex_hash_bucket *hb;
 877        union futex_key key = FUTEX_KEY_INIT;
 878
 879        if (!futex_cmpxchg_enabled)
 880                return;
 881        /*
 882         * We are a ZOMBIE and nobody can enqueue itself on
 883         * pi_state_list anymore, but we have to be careful
 884         * versus waiters unqueueing themselves:
 885         */
 886        raw_spin_lock_irq(&curr->pi_lock);
 887        while (!list_empty(head)) {
 888                next = head->next;
 889                pi_state = list_entry(next, struct futex_pi_state, list);
 890                key = pi_state->key;
 891                hb = hash_futex(&key);
 892
 893                /*
 894                 * We can race against put_pi_state() removing itself from the
 895                 * list (a waiter going away). put_pi_state() will first
 896                 * decrement the reference count and then modify the list, so
 897                 * its possible to see the list entry but fail this reference
 898                 * acquire.
 899                 *
 900                 * In that case; drop the locks to let put_pi_state() make
 901                 * progress and retry the loop.
 902                 */
 903                if (!atomic_inc_not_zero(&pi_state->refcount)) {
 904                        raw_spin_unlock_irq(&curr->pi_lock);
 905                        cpu_relax();
 906                        raw_spin_lock_irq(&curr->pi_lock);
 907                        continue;
 908                }
 909                raw_spin_unlock_irq(&curr->pi_lock);
 910
 911                spin_lock(&hb->lock);
 912                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 913                raw_spin_lock(&curr->pi_lock);
 914                /*
 915                 * We dropped the pi-lock, so re-check whether this
 916                 * task still owns the PI-state:
 917                 */
 918                if (head->next != next) {
 919                        /* retain curr->pi_lock for the loop invariant */
 920                        raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 921                        spin_unlock(&hb->lock);
 922                        put_pi_state(pi_state);
 923                        continue;
 924                }
 925
 926                WARN_ON(pi_state->owner != curr);
 927                WARN_ON(list_empty(&pi_state->list));
 928                list_del_init(&pi_state->list);
 929                pi_state->owner = NULL;
 930
 931                raw_spin_unlock(&curr->pi_lock);
 932                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 933                spin_unlock(&hb->lock);
 934
 935                rt_mutex_futex_unlock(&pi_state->pi_mutex);
 936                put_pi_state(pi_state);
 937
 938                raw_spin_lock_irq(&curr->pi_lock);
 939        }
 940        raw_spin_unlock_irq(&curr->pi_lock);
 941}
 942
 943#endif
 944
 945/*
 946 * We need to check the following states:
 947 *
 948 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 949 *
 950 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 951 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 952 *
 953 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 954 *
 955 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 956 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 957 *
 958 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 959 *
 960 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 961 *
 962 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 963 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 964 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 965 *
 966 * [1]  Indicates that the kernel can acquire the futex atomically. We
 967 *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 968 *
 969 * [2]  Valid, if TID does not belong to a kernel thread. If no matching
 970 *      thread is found then it indicates that the owner TID has died.
 971 *
 972 * [3]  Invalid. The waiter is queued on a non PI futex
 973 *
 974 * [4]  Valid state after exit_robust_list(), which sets the user space
 975 *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 976 *
 977 * [5]  The user space value got manipulated between exit_robust_list()
 978 *      and exit_pi_state_list()
 979 *
 980 * [6]  Valid state after exit_pi_state_list() which sets the new owner in
 981 *      the pi_state but cannot access the user space value.
 982 *
 983 * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 984 *
 985 * [8]  Owner and user space value match
 986 *
 987 * [9]  There is no transient state which sets the user space TID to 0
 988 *      except exit_robust_list(), but this is indicated by the
 989 *      FUTEX_OWNER_DIED bit. See [4]
 990 *
 991 * [10] There is no transient state which leaves owner and user space
 992 *      TID out of sync.
 993 *
 994 *
 995 * Serialization and lifetime rules:
 996 *
 997 * hb->lock:
 998 *
 999 *      hb -> futex_q, relation
1000 *      futex_q -> pi_state, relation
1001 *
1002 *      (cannot be raw because hb can contain arbitrary amount
1003 *       of futex_q's)
1004 *
1005 * pi_mutex->wait_lock:
1006 *
1007 *      {uval, pi_state}
1008 *
1009 *      (and pi_mutex 'obviously')
1010 *
1011 * p->pi_lock:
1012 *
1013 *      p->pi_state_list -> pi_state->list, relation
1014 *
1015 * pi_state->refcount:
1016 *
1017 *      pi_state lifetime
1018 *
1019 *
1020 * Lock order:
1021 *
1022 *   hb->lock
1023 *     pi_mutex->wait_lock
1024 *       p->pi_lock
1025 *
1026 */
1027
1028/*
1029 * Validate that the existing waiter has a pi_state and sanity check
1030 * the pi_state against the user space value. If correct, attach to
1031 * it.
1032 */
1033static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034                              struct futex_pi_state *pi_state,
1035                              struct futex_pi_state **ps)
1036{
1037        pid_t pid = uval & FUTEX_TID_MASK;
1038        u32 uval2;
1039        int ret;
1040
1041        /*
1042         * Userspace might have messed up non-PI and PI futexes [3]
1043         */
1044        if (unlikely(!pi_state))
1045                return -EINVAL;
1046
1047        /*
1048         * We get here with hb->lock held, and having found a
1049         * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050         * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051         * which in turn means that futex_lock_pi() still has a reference on
1052         * our pi_state.
1053         *
1054         * The waiter holding a reference on @pi_state also protects against
1055         * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056         * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057         * free pi_state before we can take a reference ourselves.
1058         */
1059        WARN_ON(!atomic_read(&pi_state->refcount));
1060
1061        /*
1062         * Now that we have a pi_state, we can acquire wait_lock
1063         * and do the state validation.
1064         */
1065        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1066
1067        /*
1068         * Since {uval, pi_state} is serialized by wait_lock, and our current
1069         * uval was read without holding it, it can have changed. Verify it
1070         * still is what we expect it to be, otherwise retry the entire
1071         * operation.
1072         */
1073        if (get_futex_value_locked(&uval2, uaddr))
1074                goto out_efault;
1075
1076        if (uval != uval2)
1077                goto out_eagain;
1078
1079        /*
1080         * Handle the owner died case:
1081         */
1082        if (uval & FUTEX_OWNER_DIED) {
1083                /*
1084                 * exit_pi_state_list sets owner to NULL and wakes the
1085                 * topmost waiter. The task which acquires the
1086                 * pi_state->rt_mutex will fixup owner.
1087                 */
1088                if (!pi_state->owner) {
1089                        /*
1090                         * No pi state owner, but the user space TID
1091                         * is not 0. Inconsistent state. [5]
1092                         */
1093                        if (pid)
1094                                goto out_einval;
1095                        /*
1096                         * Take a ref on the state and return success. [4]
1097                         */
1098                        goto out_attach;
1099                }
1100
1101                /*
1102                 * If TID is 0, then either the dying owner has not
1103                 * yet executed exit_pi_state_list() or some waiter
1104                 * acquired the rtmutex in the pi state, but did not
1105                 * yet fixup the TID in user space.
1106                 *
1107                 * Take a ref on the state and return success. [6]
1108                 */
1109                if (!pid)
1110                        goto out_attach;
1111        } else {
1112                /*
1113                 * If the owner died bit is not set, then the pi_state
1114                 * must have an owner. [7]
1115                 */
1116                if (!pi_state->owner)
1117                        goto out_einval;
1118        }
1119
1120        /*
1121         * Bail out if user space manipulated the futex value. If pi
1122         * state exists then the owner TID must be the same as the
1123         * user space TID. [9/10]
1124         */
1125        if (pid != task_pid_vnr(pi_state->owner))
1126                goto out_einval;
1127
1128out_attach:
1129        get_pi_state(pi_state);
1130        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131        *ps = pi_state;
1132        return 0;
1133
1134out_einval:
1135        ret = -EINVAL;
1136        goto out_error;
1137
1138out_eagain:
1139        ret = -EAGAIN;
1140        goto out_error;
1141
1142out_efault:
1143        ret = -EFAULT;
1144        goto out_error;
1145
1146out_error:
1147        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148        return ret;
1149}
1150
1151static int handle_exit_race(u32 __user *uaddr, u32 uval,
1152                            struct task_struct *tsk)
1153{
1154        u32 uval2;
1155
1156        /*
1157         * If PF_EXITPIDONE is not yet set, then try again.
1158         */
1159        if (tsk && !(tsk->flags & PF_EXITPIDONE))
1160                return -EAGAIN;
1161
1162        /*
1163         * Reread the user space value to handle the following situation:
1164         *
1165         * CPU0                         CPU1
1166         *
1167         * sys_exit()                   sys_futex()
1168         *  do_exit()                    futex_lock_pi()
1169         *                                futex_lock_pi_atomic()
1170         *   exit_signals(tsk)              No waiters:
1171         *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1172         *  mm_release(tsk)                 Set waiter bit
1173         *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1174         *      Set owner died              attach_to_pi_owner() {
1175         *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1176         *   }                               if (!tsk->flags & PF_EXITING) {
1177         *  ...                                attach();
1178         *  tsk->flags |= PF_EXITPIDONE;     } else {
1179         *                                     if (!(tsk->flags & PF_EXITPIDONE))
1180         *                                       return -EAGAIN;
1181         *                                     return -ESRCH; <--- FAIL
1182         *                                   }
1183         *
1184         * Returning ESRCH unconditionally is wrong here because the
1185         * user space value has been changed by the exiting task.
1186         *
1187         * The same logic applies to the case where the exiting task is
1188         * already gone.
1189         */
1190        if (get_futex_value_locked(&uval2, uaddr))
1191                return -EFAULT;
1192
1193        /* If the user space value has changed, try again. */
1194        if (uval2 != uval)
1195                return -EAGAIN;
1196
1197        /*
1198         * The exiting task did not have a robust list, the robust list was
1199         * corrupted or the user space value in *uaddr is simply bogus.
1200         * Give up and tell user space.
1201         */
1202        return -ESRCH;
1203}
1204
1205/*
1206 * Lookup the task for the TID provided from user space and attach to
1207 * it after doing proper sanity checks.
1208 */
1209static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1210                              struct futex_pi_state **ps)
1211{
1212        pid_t pid = uval & FUTEX_TID_MASK;
1213        struct futex_pi_state *pi_state;
1214        struct task_struct *p;
1215
1216        /*
1217         * We are the first waiter - try to look up the real owner and attach
1218         * the new pi_state to it, but bail out when TID = 0 [1]
1219         *
1220         * The !pid check is paranoid. None of the call sites should end up
1221         * with pid == 0, but better safe than sorry. Let the caller retry
1222         */
1223        if (!pid)
1224                return -EAGAIN;
1225        p = find_get_task_by_vpid(pid);
1226        if (!p)
1227                return handle_exit_race(uaddr, uval, NULL);
1228
1229        if (unlikely(p->flags & PF_KTHREAD)) {
1230                put_task_struct(p);
1231                return -EPERM;
1232        }
1233
1234        /*
1235         * We need to look at the task state flags to figure out,
1236         * whether the task is exiting. To protect against the do_exit
1237         * change of the task flags, we do this protected by
1238         * p->pi_lock:
1239         */
1240        raw_spin_lock_irq(&p->pi_lock);
1241        if (unlikely(p->flags & PF_EXITING)) {
1242                /*
1243                 * The task is on the way out. When PF_EXITPIDONE is
1244                 * set, we know that the task has finished the
1245                 * cleanup:
1246                 */
1247                int ret = handle_exit_race(uaddr, uval, p);
1248
1249                raw_spin_unlock_irq(&p->pi_lock);
1250                put_task_struct(p);
1251                return ret;
1252        }
1253
1254        /*
1255         * No existing pi state. First waiter. [2]
1256         *
1257         * This creates pi_state, we have hb->lock held, this means nothing can
1258         * observe this state, wait_lock is irrelevant.
1259         */
1260        pi_state = alloc_pi_state();
1261
1262        /*
1263         * Initialize the pi_mutex in locked state and make @p
1264         * the owner of it:
1265         */
1266        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1267
1268        /* Store the key for possible exit cleanups: */
1269        pi_state->key = *key;
1270
1271        WARN_ON(!list_empty(&pi_state->list));
1272        list_add(&pi_state->list, &p->pi_state_list);
1273        /*
1274         * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1275         * because there is no concurrency as the object is not published yet.
1276         */
1277        pi_state->owner = p;
1278        raw_spin_unlock_irq(&p->pi_lock);
1279
1280        put_task_struct(p);
1281
1282        *ps = pi_state;
1283
1284        return 0;
1285}
1286
1287static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1288                           struct futex_hash_bucket *hb,
1289                           union futex_key *key, struct futex_pi_state **ps)
1290{
1291        struct futex_q *top_waiter = futex_top_waiter(hb, key);
1292
1293        /*
1294         * If there is a waiter on that futex, validate it and
1295         * attach to the pi_state when the validation succeeds.
1296         */
1297        if (top_waiter)
1298                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1299
1300        /*
1301         * We are the first waiter - try to look up the owner based on
1302         * @uval and attach to it.
1303         */
1304        return attach_to_pi_owner(uaddr, uval, key, ps);
1305}
1306
1307static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1308{
1309        u32 uninitialized_var(curval);
1310
1311        if (unlikely(should_fail_futex(true)))
1312                return -EFAULT;
1313
1314        if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1315                return -EFAULT;
1316
1317        /* If user space value changed, let the caller retry */
1318        return curval != uval ? -EAGAIN : 0;
1319}
1320
1321/**
1322 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1323 * @uaddr:              the pi futex user address
1324 * @hb:                 the pi futex hash bucket
1325 * @key:                the futex key associated with uaddr and hb
1326 * @ps:                 the pi_state pointer where we store the result of the
1327 *                      lookup
1328 * @task:               the task to perform the atomic lock work for.  This will
1329 *                      be "current" except in the case of requeue pi.
1330 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1331 *
1332 * Return:
1333 *  -  0 - ready to wait;
1334 *  -  1 - acquired the lock;
1335 *  - <0 - error
1336 *
1337 * The hb->lock and futex_key refs shall be held by the caller.
1338 */
1339static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1340                                union futex_key *key,
1341                                struct futex_pi_state **ps,
1342                                struct task_struct *task, int set_waiters)
1343{
1344        u32 uval, newval, vpid = task_pid_vnr(task);
1345        struct futex_q *top_waiter;
1346        int ret;
1347
1348        /*
1349         * Read the user space value first so we can validate a few
1350         * things before proceeding further.
1351         */
1352        if (get_futex_value_locked(&uval, uaddr))
1353                return -EFAULT;
1354
1355        if (unlikely(should_fail_futex(true)))
1356                return -EFAULT;
1357
1358        /*
1359         * Detect deadlocks.
1360         */
1361        if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1362                return -EDEADLK;
1363
1364        if ((unlikely(should_fail_futex(true))))
1365                return -EDEADLK;
1366
1367        /*
1368         * Lookup existing state first. If it exists, try to attach to
1369         * its pi_state.
1370         */
1371        top_waiter = futex_top_waiter(hb, key);
1372        if (top_waiter)
1373                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1374
1375        /*
1376         * No waiter and user TID is 0. We are here because the
1377         * waiters or the owner died bit is set or called from
1378         * requeue_cmp_pi or for whatever reason something took the
1379         * syscall.
1380         */
1381        if (!(uval & FUTEX_TID_MASK)) {
1382                /*
1383                 * We take over the futex. No other waiters and the user space
1384                 * TID is 0. We preserve the owner died bit.
1385                 */
1386                newval = uval & FUTEX_OWNER_DIED;
1387                newval |= vpid;
1388
1389                /* The futex requeue_pi code can enforce the waiters bit */
1390                if (set_waiters)
1391                        newval |= FUTEX_WAITERS;
1392
1393                ret = lock_pi_update_atomic(uaddr, uval, newval);
1394                /* If the take over worked, return 1 */
1395                return ret < 0 ? ret : 1;
1396        }
1397
1398        /*
1399         * First waiter. Set the waiters bit before attaching ourself to
1400         * the owner. If owner tries to unlock, it will be forced into
1401         * the kernel and blocked on hb->lock.
1402         */
1403        newval = uval | FUTEX_WAITERS;
1404        ret = lock_pi_update_atomic(uaddr, uval, newval);
1405        if (ret)
1406                return ret;
1407        /*
1408         * If the update of the user space value succeeded, we try to
1409         * attach to the owner. If that fails, no harm done, we only
1410         * set the FUTEX_WAITERS bit in the user space variable.
1411         */
1412        return attach_to_pi_owner(uaddr, newval, key, ps);
1413}
1414
1415/**
1416 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1417 * @q:  The futex_q to unqueue
1418 *
1419 * The q->lock_ptr must not be NULL and must be held by the caller.
1420 */
1421static void __unqueue_futex(struct futex_q *q)
1422{
1423        struct futex_hash_bucket *hb;
1424
1425        if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1426                return;
1427        lockdep_assert_held(q->lock_ptr);
1428
1429        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1430        plist_del(&q->list, &hb->chain);
1431        hb_waiters_dec(hb);
1432}
1433
1434/*
1435 * The hash bucket lock must be held when this is called.
1436 * Afterwards, the futex_q must not be accessed. Callers
1437 * must ensure to later call wake_up_q() for the actual
1438 * wakeups to occur.
1439 */
1440static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1441{
1442        struct task_struct *p = q->task;
1443
1444        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1445                return;
1446
1447        /*
1448         * Queue the task for later wakeup for after we've released
1449         * the hb->lock. wake_q_add() grabs reference to p.
1450         */
1451        wake_q_add(wake_q, p);
1452        __unqueue_futex(q);
1453        /*
1454         * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1455         * is written, without taking any locks. This is possible in the event
1456         * of a spurious wakeup, for example. A memory barrier is required here
1457         * to prevent the following store to lock_ptr from getting ahead of the
1458         * plist_del in __unqueue_futex().
1459         */
1460        smp_store_release(&q->lock_ptr, NULL);
1461}
1462
1463/*
1464 * Caller must hold a reference on @pi_state.
1465 */
1466static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1467{
1468        u32 uninitialized_var(curval), newval;
1469        struct task_struct *new_owner;
1470        bool postunlock = false;
1471        DEFINE_WAKE_Q(wake_q);
1472        int ret = 0;
1473
1474        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1475        if (WARN_ON_ONCE(!new_owner)) {
1476                /*
1477                 * As per the comment in futex_unlock_pi() this should not happen.
1478                 *
1479                 * When this happens, give up our locks and try again, giving
1480                 * the futex_lock_pi() instance time to complete, either by
1481                 * waiting on the rtmutex or removing itself from the futex
1482                 * queue.
1483                 */
1484                ret = -EAGAIN;
1485                goto out_unlock;
1486        }
1487
1488        /*
1489         * We pass it to the next owner. The WAITERS bit is always kept
1490         * enabled while there is PI state around. We cleanup the owner
1491         * died bit, because we are the owner.
1492         */
1493        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1494
1495        if (unlikely(should_fail_futex(true)))
1496                ret = -EFAULT;
1497
1498        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1499                ret = -EFAULT;
1500
1501        } else if (curval != uval) {
1502                /*
1503                 * If a unconditional UNLOCK_PI operation (user space did not
1504                 * try the TID->0 transition) raced with a waiter setting the
1505                 * FUTEX_WAITERS flag between get_user() and locking the hash
1506                 * bucket lock, retry the operation.
1507                 */
1508                if ((FUTEX_TID_MASK & curval) == uval)
1509                        ret = -EAGAIN;
1510                else
1511                        ret = -EINVAL;
1512        }
1513
1514        if (ret)
1515                goto out_unlock;
1516
1517        /*
1518         * This is a point of no return; once we modify the uval there is no
1519         * going back and subsequent operations must not fail.
1520         */
1521
1522        raw_spin_lock(&pi_state->owner->pi_lock);
1523        WARN_ON(list_empty(&pi_state->list));
1524        list_del_init(&pi_state->list);
1525        raw_spin_unlock(&pi_state->owner->pi_lock);
1526
1527        raw_spin_lock(&new_owner->pi_lock);
1528        WARN_ON(!list_empty(&pi_state->list));
1529        list_add(&pi_state->list, &new_owner->pi_state_list);
1530        pi_state->owner = new_owner;
1531        raw_spin_unlock(&new_owner->pi_lock);
1532
1533        postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1534
1535out_unlock:
1536        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1537
1538        if (postunlock)
1539                rt_mutex_postunlock(&wake_q);
1540
1541        return ret;
1542}
1543
1544/*
1545 * Express the locking dependencies for lockdep:
1546 */
1547static inline void
1548double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1549{
1550        if (hb1 <= hb2) {
1551                spin_lock(&hb1->lock);
1552                if (hb1 < hb2)
1553                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1554        } else { /* hb1 > hb2 */
1555                spin_lock(&hb2->lock);
1556                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1557        }
1558}
1559
1560static inline void
1561double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1562{
1563        spin_unlock(&hb1->lock);
1564        if (hb1 != hb2)
1565                spin_unlock(&hb2->lock);
1566}
1567
1568/*
1569 * Wake up waiters matching bitset queued on this futex (uaddr).
1570 */
1571static int
1572futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1573{
1574        struct futex_hash_bucket *hb;
1575        struct futex_q *this, *next;
1576        union futex_key key = FUTEX_KEY_INIT;
1577        int ret;
1578        DEFINE_WAKE_Q(wake_q);
1579
1580        if (!bitset)
1581                return -EINVAL;
1582
1583        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1584        if (unlikely(ret != 0))
1585                goto out;
1586
1587        hb = hash_futex(&key);
1588
1589        /* Make sure we really have tasks to wakeup */
1590        if (!hb_waiters_pending(hb))
1591                goto out_put_key;
1592
1593        spin_lock(&hb->lock);
1594
1595        plist_for_each_entry_safe(this, next, &hb->chain, list) {
1596                if (match_futex (&this->key, &key)) {
1597                        if (this->pi_state || this->rt_waiter) {
1598                                ret = -EINVAL;
1599                                break;
1600                        }
1601
1602                        /* Check if one of the bits is set in both bitsets */
1603                        if (!(this->bitset & bitset))
1604                                continue;
1605
1606                        mark_wake_futex(&wake_q, this);
1607                        if (++ret >= nr_wake)
1608                                break;
1609                }
1610        }
1611
1612        spin_unlock(&hb->lock);
1613        wake_up_q(&wake_q);
1614out_put_key:
1615        put_futex_key(&key);
1616out:
1617        return ret;
1618}
1619
1620static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1621{
1622        unsigned int op =         (encoded_op & 0x70000000) >> 28;
1623        unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1624        int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1625        int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1626        int oldval, ret;
1627
1628        if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1629                if (oparg < 0 || oparg > 31) {
1630                        char comm[sizeof(current->comm)];
1631                        /*
1632                         * kill this print and return -EINVAL when userspace
1633                         * is sane again
1634                         */
1635                        pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1636                                        get_task_comm(comm, current), oparg);
1637                        oparg &= 31;
1638                }
1639                oparg = 1 << oparg;
1640        }
1641
1642        if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1643                return -EFAULT;
1644
1645        ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1646        if (ret)
1647                return ret;
1648
1649        switch (cmp) {
1650        case FUTEX_OP_CMP_EQ:
1651                return oldval == cmparg;
1652        case FUTEX_OP_CMP_NE:
1653                return oldval != cmparg;
1654        case FUTEX_OP_CMP_LT:
1655                return oldval < cmparg;
1656        case FUTEX_OP_CMP_GE:
1657                return oldval >= cmparg;
1658        case FUTEX_OP_CMP_LE:
1659                return oldval <= cmparg;
1660        case FUTEX_OP_CMP_GT:
1661                return oldval > cmparg;
1662        default:
1663                return -ENOSYS;
1664        }
1665}
1666
1667/*
1668 * Wake up all waiters hashed on the physical page that is mapped
1669 * to this virtual address:
1670 */
1671static int
1672futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1673              int nr_wake, int nr_wake2, int op)
1674{
1675        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1676        struct futex_hash_bucket *hb1, *hb2;
1677        struct futex_q *this, *next;
1678        int ret, op_ret;
1679        DEFINE_WAKE_Q(wake_q);
1680
1681retry:
1682        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1683        if (unlikely(ret != 0))
1684                goto out;
1685        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1686        if (unlikely(ret != 0))
1687                goto out_put_key1;
1688
1689        hb1 = hash_futex(&key1);
1690        hb2 = hash_futex(&key2);
1691
1692retry_private:
1693        double_lock_hb(hb1, hb2);
1694        op_ret = futex_atomic_op_inuser(op, uaddr2);
1695        if (unlikely(op_ret < 0)) {
1696
1697                double_unlock_hb(hb1, hb2);
1698
1699#ifndef CONFIG_MMU
1700                /*
1701                 * we don't get EFAULT from MMU faults if we don't have an MMU,
1702                 * but we might get them from range checking
1703                 */
1704                ret = op_ret;
1705                goto out_put_keys;
1706#endif
1707
1708                if (unlikely(op_ret != -EFAULT)) {
1709                        ret = op_ret;
1710                        goto out_put_keys;
1711                }
1712
1713                ret = fault_in_user_writeable(uaddr2);
1714                if (ret)
1715                        goto out_put_keys;
1716
1717                if (!(flags & FLAGS_SHARED))
1718                        goto retry_private;
1719
1720                put_futex_key(&key2);
1721                put_futex_key(&key1);
1722                goto retry;
1723        }
1724
1725        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1726                if (match_futex (&this->key, &key1)) {
1727                        if (this->pi_state || this->rt_waiter) {
1728                                ret = -EINVAL;
1729                                goto out_unlock;
1730                        }
1731                        mark_wake_futex(&wake_q, this);
1732                        if (++ret >= nr_wake)
1733                                break;
1734                }
1735        }
1736
1737        if (op_ret > 0) {
1738                op_ret = 0;
1739                plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1740                        if (match_futex (&this->key, &key2)) {
1741                                if (this->pi_state || this->rt_waiter) {
1742                                        ret = -EINVAL;
1743                                        goto out_unlock;
1744                                }
1745                                mark_wake_futex(&wake_q, this);
1746                                if (++op_ret >= nr_wake2)
1747                                        break;
1748                        }
1749                }
1750                ret += op_ret;
1751        }
1752
1753out_unlock:
1754        double_unlock_hb(hb1, hb2);
1755        wake_up_q(&wake_q);
1756out_put_keys:
1757        put_futex_key(&key2);
1758out_put_key1:
1759        put_futex_key(&key1);
1760out:
1761        return ret;
1762}
1763
1764/**
1765 * requeue_futex() - Requeue a futex_q from one hb to another
1766 * @q:          the futex_q to requeue
1767 * @hb1:        the source hash_bucket
1768 * @hb2:        the target hash_bucket
1769 * @key2:       the new key for the requeued futex_q
1770 */
1771static inline
1772void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1773                   struct futex_hash_bucket *hb2, union futex_key *key2)
1774{
1775
1776        /*
1777         * If key1 and key2 hash to the same bucket, no need to
1778         * requeue.
1779         */
1780        if (likely(&hb1->chain != &hb2->chain)) {
1781                plist_del(&q->list, &hb1->chain);
1782                hb_waiters_dec(hb1);
1783                hb_waiters_inc(hb2);
1784                plist_add(&q->list, &hb2->chain);
1785                q->lock_ptr = &hb2->lock;
1786        }
1787        get_futex_key_refs(key2);
1788        q->key = *key2;
1789}
1790
1791/**
1792 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1793 * @q:          the futex_q
1794 * @key:        the key of the requeue target futex
1795 * @hb:         the hash_bucket of the requeue target futex
1796 *
1797 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1798 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1799 * to the requeue target futex so the waiter can detect the wakeup on the right
1800 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1801 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1802 * to protect access to the pi_state to fixup the owner later.  Must be called
1803 * with both q->lock_ptr and hb->lock held.
1804 */
1805static inline
1806void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1807                           struct futex_hash_bucket *hb)
1808{
1809        get_futex_key_refs(key);
1810        q->key = *key;
1811
1812        __unqueue_futex(q);
1813
1814        WARN_ON(!q->rt_waiter);
1815        q->rt_waiter = NULL;
1816
1817        q->lock_ptr = &hb->lock;
1818
1819        wake_up_state(q->task, TASK_NORMAL);
1820}
1821
1822/**
1823 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1824 * @pifutex:            the user address of the to futex
1825 * @hb1:                the from futex hash bucket, must be locked by the caller
1826 * @hb2:                the to futex hash bucket, must be locked by the caller
1827 * @key1:               the from futex key
1828 * @key2:               the to futex key
1829 * @ps:                 address to store the pi_state pointer
1830 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1831 *
1832 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1833 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1834 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1835 * hb1 and hb2 must be held by the caller.
1836 *
1837 * Return:
1838 *  -  0 - failed to acquire the lock atomically;
1839 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1840 *  - <0 - error
1841 */
1842static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1843                                 struct futex_hash_bucket *hb1,
1844                                 struct futex_hash_bucket *hb2,
1845                                 union futex_key *key1, union futex_key *key2,
1846                                 struct futex_pi_state **ps, int set_waiters)
1847{
1848        struct futex_q *top_waiter = NULL;
1849        u32 curval;
1850        int ret, vpid;
1851
1852        if (get_futex_value_locked(&curval, pifutex))
1853                return -EFAULT;
1854
1855        if (unlikely(should_fail_futex(true)))
1856                return -EFAULT;
1857
1858        /*
1859         * Find the top_waiter and determine if there are additional waiters.
1860         * If the caller intends to requeue more than 1 waiter to pifutex,
1861         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1862         * as we have means to handle the possible fault.  If not, don't set
1863         * the bit unecessarily as it will force the subsequent unlock to enter
1864         * the kernel.
1865         */
1866        top_waiter = futex_top_waiter(hb1, key1);
1867
1868        /* There are no waiters, nothing for us to do. */
1869        if (!top_waiter)
1870                return 0;
1871
1872        /* Ensure we requeue to the expected futex. */
1873        if (!match_futex(top_waiter->requeue_pi_key, key2))
1874                return -EINVAL;
1875
1876        /*
1877         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1878         * the contended case or if set_waiters is 1.  The pi_state is returned
1879         * in ps in contended cases.
1880         */
1881        vpid = task_pid_vnr(top_waiter->task);
1882        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1883                                   set_waiters);
1884        if (ret == 1) {
1885                requeue_pi_wake_futex(top_waiter, key2, hb2);
1886                return vpid;
1887        }
1888        return ret;
1889}
1890
1891/**
1892 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1893 * @uaddr1:     source futex user address
1894 * @flags:      futex flags (FLAGS_SHARED, etc.)
1895 * @uaddr2:     target futex user address
1896 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1897 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1898 * @cmpval:     @uaddr1 expected value (or %NULL)
1899 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1900 *              pi futex (pi to pi requeue is not supported)
1901 *
1902 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1903 * uaddr2 atomically on behalf of the top waiter.
1904 *
1905 * Return:
1906 *  - >=0 - on success, the number of tasks requeued or woken;
1907 *  -  <0 - on error
1908 */
1909static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1910                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
1911                         u32 *cmpval, int requeue_pi)
1912{
1913        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1914        int drop_count = 0, task_count = 0, ret;
1915        struct futex_pi_state *pi_state = NULL;
1916        struct futex_hash_bucket *hb1, *hb2;
1917        struct futex_q *this, *next;
1918        DEFINE_WAKE_Q(wake_q);
1919
1920        if (nr_wake < 0 || nr_requeue < 0)
1921                return -EINVAL;
1922
1923        /*
1924         * When PI not supported: return -ENOSYS if requeue_pi is true,
1925         * consequently the compiler knows requeue_pi is always false past
1926         * this point which will optimize away all the conditional code
1927         * further down.
1928         */
1929        if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1930                return -ENOSYS;
1931
1932        if (requeue_pi) {
1933                /*
1934                 * Requeue PI only works on two distinct uaddrs. This
1935                 * check is only valid for private futexes. See below.
1936                 */
1937                if (uaddr1 == uaddr2)
1938                        return -EINVAL;
1939
1940                /*
1941                 * requeue_pi requires a pi_state, try to allocate it now
1942                 * without any locks in case it fails.
1943                 */
1944                if (refill_pi_state_cache())
1945                        return -ENOMEM;
1946                /*
1947                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1948                 * + nr_requeue, since it acquires the rt_mutex prior to
1949                 * returning to userspace, so as to not leave the rt_mutex with
1950                 * waiters and no owner.  However, second and third wake-ups
1951                 * cannot be predicted as they involve race conditions with the
1952                 * first wake and a fault while looking up the pi_state.  Both
1953                 * pthread_cond_signal() and pthread_cond_broadcast() should
1954                 * use nr_wake=1.
1955                 */
1956                if (nr_wake != 1)
1957                        return -EINVAL;
1958        }
1959
1960retry:
1961        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1962        if (unlikely(ret != 0))
1963                goto out;
1964        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1965                            requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1966        if (unlikely(ret != 0))
1967                goto out_put_key1;
1968
1969        /*
1970         * The check above which compares uaddrs is not sufficient for
1971         * shared futexes. We need to compare the keys:
1972         */
1973        if (requeue_pi && match_futex(&key1, &key2)) {
1974                ret = -EINVAL;
1975                goto out_put_keys;
1976        }
1977
1978        hb1 = hash_futex(&key1);
1979        hb2 = hash_futex(&key2);
1980
1981retry_private:
1982        hb_waiters_inc(hb2);
1983        double_lock_hb(hb1, hb2);
1984
1985        if (likely(cmpval != NULL)) {
1986                u32 curval;
1987
1988                ret = get_futex_value_locked(&curval, uaddr1);
1989
1990                if (unlikely(ret)) {
1991                        double_unlock_hb(hb1, hb2);
1992                        hb_waiters_dec(hb2);
1993
1994                        ret = get_user(curval, uaddr1);
1995                        if (ret)
1996                                goto out_put_keys;
1997
1998                        if (!(flags & FLAGS_SHARED))
1999                                goto retry_private;
2000
2001                        put_futex_key(&key2);
2002                        put_futex_key(&key1);
2003                        goto retry;
2004                }
2005                if (curval != *cmpval) {
2006                        ret = -EAGAIN;
2007                        goto out_unlock;
2008                }
2009        }
2010
2011        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2012                /*
2013                 * Attempt to acquire uaddr2 and wake the top waiter. If we
2014                 * intend to requeue waiters, force setting the FUTEX_WAITERS
2015                 * bit.  We force this here where we are able to easily handle
2016                 * faults rather in the requeue loop below.
2017                 */
2018                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2019                                                 &key2, &pi_state, nr_requeue);
2020
2021                /*
2022                 * At this point the top_waiter has either taken uaddr2 or is
2023                 * waiting on it.  If the former, then the pi_state will not
2024                 * exist yet, look it up one more time to ensure we have a
2025                 * reference to it. If the lock was taken, ret contains the
2026                 * vpid of the top waiter task.
2027                 * If the lock was not taken, we have pi_state and an initial
2028                 * refcount on it. In case of an error we have nothing.
2029                 */
2030                if (ret > 0) {
2031                        WARN_ON(pi_state);
2032                        drop_count++;
2033                        task_count++;
2034                        /*
2035                         * If we acquired the lock, then the user space value
2036                         * of uaddr2 should be vpid. It cannot be changed by
2037                         * the top waiter as it is blocked on hb2 lock if it
2038                         * tries to do so. If something fiddled with it behind
2039                         * our back the pi state lookup might unearth it. So
2040                         * we rather use the known value than rereading and
2041                         * handing potential crap to lookup_pi_state.
2042                         *
2043                         * If that call succeeds then we have pi_state and an
2044                         * initial refcount on it.
2045                         */
2046                        ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2047                }
2048
2049                switch (ret) {
2050                case 0:
2051                        /* We hold a reference on the pi state. */
2052                        break;
2053
2054                        /* If the above failed, then pi_state is NULL */
2055                case -EFAULT:
2056                        double_unlock_hb(hb1, hb2);
2057                        hb_waiters_dec(hb2);
2058                        put_futex_key(&key2);
2059                        put_futex_key(&key1);
2060                        ret = fault_in_user_writeable(uaddr2);
2061                        if (!ret)
2062                                goto retry;
2063                        goto out;
2064                case -EAGAIN:
2065                        /*
2066                         * Two reasons for this:
2067                         * - Owner is exiting and we just wait for the
2068                         *   exit to complete.
2069                         * - The user space value changed.
2070                         */
2071                        double_unlock_hb(hb1, hb2);
2072                        hb_waiters_dec(hb2);
2073                        put_futex_key(&key2);
2074                        put_futex_key(&key1);
2075                        cond_resched();
2076                        goto retry;
2077                default:
2078                        goto out_unlock;
2079                }
2080        }
2081
2082        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2083                if (task_count - nr_wake >= nr_requeue)
2084                        break;
2085
2086                if (!match_futex(&this->key, &key1))
2087                        continue;
2088
2089                /*
2090                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2091                 * be paired with each other and no other futex ops.
2092                 *
2093                 * We should never be requeueing a futex_q with a pi_state,
2094                 * which is awaiting a futex_unlock_pi().
2095                 */
2096                if ((requeue_pi && !this->rt_waiter) ||
2097                    (!requeue_pi && this->rt_waiter) ||
2098                    this->pi_state) {
2099                        ret = -EINVAL;
2100                        break;
2101                }
2102
2103                /*
2104                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2105                 * lock, we already woke the top_waiter.  If not, it will be
2106                 * woken by futex_unlock_pi().
2107                 */
2108                if (++task_count <= nr_wake && !requeue_pi) {
2109                        mark_wake_futex(&wake_q, this);
2110                        continue;
2111                }
2112
2113                /* Ensure we requeue to the expected futex for requeue_pi. */
2114                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2115                        ret = -EINVAL;
2116                        break;
2117                }
2118
2119                /*
2120                 * Requeue nr_requeue waiters and possibly one more in the case
2121                 * of requeue_pi if we couldn't acquire the lock atomically.
2122                 */
2123                if (requeue_pi) {
2124                        /*
2125                         * Prepare the waiter to take the rt_mutex. Take a
2126                         * refcount on the pi_state and store the pointer in
2127                         * the futex_q object of the waiter.
2128                         */
2129                        get_pi_state(pi_state);
2130                        this->pi_state = pi_state;
2131                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2132                                                        this->rt_waiter,
2133                                                        this->task);
2134                        if (ret == 1) {
2135                                /*
2136                                 * We got the lock. We do neither drop the
2137                                 * refcount on pi_state nor clear
2138                                 * this->pi_state because the waiter needs the
2139                                 * pi_state for cleaning up the user space
2140                                 * value. It will drop the refcount after
2141                                 * doing so.
2142                                 */
2143                                requeue_pi_wake_futex(this, &key2, hb2);
2144                                drop_count++;
2145                                continue;
2146                        } else if (ret) {
2147                                /*
2148                                 * rt_mutex_start_proxy_lock() detected a
2149                                 * potential deadlock when we tried to queue
2150                                 * that waiter. Drop the pi_state reference
2151                                 * which we took above and remove the pointer
2152                                 * to the state from the waiters futex_q
2153                                 * object.
2154                                 */
2155                                this->pi_state = NULL;
2156                                put_pi_state(pi_state);
2157                                /*
2158                                 * We stop queueing more waiters and let user
2159                                 * space deal with the mess.
2160                                 */
2161                                break;
2162                        }
2163                }
2164                requeue_futex(this, hb1, hb2, &key2);
2165                drop_count++;
2166        }
2167
2168        /*
2169         * We took an extra initial reference to the pi_state either
2170         * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2171         * need to drop it here again.
2172         */
2173        put_pi_state(pi_state);
2174
2175out_unlock:
2176        double_unlock_hb(hb1, hb2);
2177        wake_up_q(&wake_q);
2178        hb_waiters_dec(hb2);
2179
2180        /*
2181         * drop_futex_key_refs() must be called outside the spinlocks. During
2182         * the requeue we moved futex_q's from the hash bucket at key1 to the
2183         * one at key2 and updated their key pointer.  We no longer need to
2184         * hold the references to key1.
2185         */
2186        while (--drop_count >= 0)
2187                drop_futex_key_refs(&key1);
2188
2189out_put_keys:
2190        put_futex_key(&key2);
2191out_put_key1:
2192        put_futex_key(&key1);
2193out:
2194        return ret ? ret : task_count;
2195}
2196
2197/* The key must be already stored in q->key. */
2198static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2199        __acquires(&hb->lock)
2200{
2201        struct futex_hash_bucket *hb;
2202
2203        hb = hash_futex(&q->key);
2204
2205        /*
2206         * Increment the counter before taking the lock so that
2207         * a potential waker won't miss a to-be-slept task that is
2208         * waiting for the spinlock. This is safe as all queue_lock()
2209         * users end up calling queue_me(). Similarly, for housekeeping,
2210         * decrement the counter at queue_unlock() when some error has
2211         * occurred and we don't end up adding the task to the list.
2212         */
2213        hb_waiters_inc(hb);
2214
2215        q->lock_ptr = &hb->lock;
2216
2217        spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2218        return hb;
2219}
2220
2221static inline void
2222queue_unlock(struct futex_hash_bucket *hb)
2223        __releases(&hb->lock)
2224{
2225        spin_unlock(&hb->lock);
2226        hb_waiters_dec(hb);
2227}
2228
2229static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2230{
2231        int prio;
2232
2233        /*
2234         * The priority used to register this element is
2235         * - either the real thread-priority for the real-time threads
2236         * (i.e. threads with a priority lower than MAX_RT_PRIO)
2237         * - or MAX_RT_PRIO for non-RT threads.
2238         * Thus, all RT-threads are woken first in priority order, and
2239         * the others are woken last, in FIFO order.
2240         */
2241        prio = min(current->normal_prio, MAX_RT_PRIO);
2242
2243        plist_node_init(&q->list, prio);
2244        plist_add(&q->list, &hb->chain);
2245        q->task = current;
2246}
2247
2248/**
2249 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2250 * @q:  The futex_q to enqueue
2251 * @hb: The destination hash bucket
2252 *
2253 * The hb->lock must be held by the caller, and is released here. A call to
2254 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2255 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2256 * or nothing if the unqueue is done as part of the wake process and the unqueue
2257 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2258 * an example).
2259 */
2260static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2261        __releases(&hb->lock)
2262{
2263        __queue_me(q, hb);
2264        spin_unlock(&hb->lock);
2265}
2266
2267/**
2268 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2269 * @q:  The futex_q to unqueue
2270 *
2271 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2272 * be paired with exactly one earlier call to queue_me().
2273 *
2274 * Return:
2275 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2276 *  - 0 - if the futex_q was already removed by the waking thread
2277 */
2278static int unqueue_me(struct futex_q *q)
2279{
2280        spinlock_t *lock_ptr;
2281        int ret = 0;
2282
2283        /* In the common case we don't take the spinlock, which is nice. */
2284retry:
2285        /*
2286         * q->lock_ptr can change between this read and the following spin_lock.
2287         * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2288         * optimizing lock_ptr out of the logic below.
2289         */
2290        lock_ptr = READ_ONCE(q->lock_ptr);
2291        if (lock_ptr != NULL) {
2292                spin_lock(lock_ptr);
2293                /*
2294                 * q->lock_ptr can change between reading it and
2295                 * spin_lock(), causing us to take the wrong lock.  This
2296                 * corrects the race condition.
2297                 *
2298                 * Reasoning goes like this: if we have the wrong lock,
2299                 * q->lock_ptr must have changed (maybe several times)
2300                 * between reading it and the spin_lock().  It can
2301                 * change again after the spin_lock() but only if it was
2302                 * already changed before the spin_lock().  It cannot,
2303                 * however, change back to the original value.  Therefore
2304                 * we can detect whether we acquired the correct lock.
2305                 */
2306                if (unlikely(lock_ptr != q->lock_ptr)) {
2307                        spin_unlock(lock_ptr);
2308                        goto retry;
2309                }
2310                __unqueue_futex(q);
2311
2312                BUG_ON(q->pi_state);
2313
2314                spin_unlock(lock_ptr);
2315                ret = 1;
2316        }
2317
2318        drop_futex_key_refs(&q->key);
2319        return ret;
2320}
2321
2322/*
2323 * PI futexes can not be requeued and must remove themself from the
2324 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2325 * and dropped here.
2326 */
2327static void unqueue_me_pi(struct futex_q *q)
2328        __releases(q->lock_ptr)
2329{
2330        __unqueue_futex(q);
2331
2332        BUG_ON(!q->pi_state);
2333        put_pi_state(q->pi_state);
2334        q->pi_state = NULL;
2335
2336        spin_unlock(q->lock_ptr);
2337}
2338
2339static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2340                                struct task_struct *argowner)
2341{
2342        struct futex_pi_state *pi_state = q->pi_state;
2343        u32 uval, uninitialized_var(curval), newval;
2344        struct task_struct *oldowner, *newowner;
2345        u32 newtid;
2346        int ret;
2347
2348        lockdep_assert_held(q->lock_ptr);
2349
2350        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2351
2352        oldowner = pi_state->owner;
2353
2354        /*
2355         * We are here because either:
2356         *
2357         *  - we stole the lock and pi_state->owner needs updating to reflect
2358         *    that (@argowner == current),
2359         *
2360         * or:
2361         *
2362         *  - someone stole our lock and we need to fix things to point to the
2363         *    new owner (@argowner == NULL).
2364         *
2365         * Either way, we have to replace the TID in the user space variable.
2366         * This must be atomic as we have to preserve the owner died bit here.
2367         *
2368         * Note: We write the user space value _before_ changing the pi_state
2369         * because we can fault here. Imagine swapped out pages or a fork
2370         * that marked all the anonymous memory readonly for cow.
2371         *
2372         * Modifying pi_state _before_ the user space value would leave the
2373         * pi_state in an inconsistent state when we fault here, because we
2374         * need to drop the locks to handle the fault. This might be observed
2375         * in the PID check in lookup_pi_state.
2376         */
2377retry:
2378        if (!argowner) {
2379                if (oldowner != current) {
2380                        /*
2381                         * We raced against a concurrent self; things are
2382                         * already fixed up. Nothing to do.
2383                         */
2384                        ret = 0;
2385                        goto out_unlock;
2386                }
2387
2388                if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2389                        /* We got the lock after all, nothing to fix. */
2390                        ret = 0;
2391                        goto out_unlock;
2392                }
2393
2394                /*
2395                 * Since we just failed the trylock; there must be an owner.
2396                 */
2397                newowner = rt_mutex_owner(&pi_state->pi_mutex);
2398                BUG_ON(!newowner);
2399        } else {
2400                WARN_ON_ONCE(argowner != current);
2401                if (oldowner == current) {
2402                        /*
2403                         * We raced against a concurrent self; things are
2404                         * already fixed up. Nothing to do.
2405                         */
2406                        ret = 0;
2407                        goto out_unlock;
2408                }
2409                newowner = argowner;
2410        }
2411
2412        newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2413        /* Owner died? */
2414        if (!pi_state->owner)
2415                newtid |= FUTEX_OWNER_DIED;
2416
2417        if (get_futex_value_locked(&uval, uaddr))
2418                goto handle_fault;
2419
2420        for (;;) {
2421                newval = (uval & FUTEX_OWNER_DIED) | newtid;
2422
2423                if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2424                        goto handle_fault;
2425                if (curval == uval)
2426                        break;
2427                uval = curval;
2428        }
2429
2430        /*
2431         * We fixed up user space. Now we need to fix the pi_state
2432         * itself.
2433         */
2434        if (pi_state->owner != NULL) {
2435                raw_spin_lock(&pi_state->owner->pi_lock);
2436                WARN_ON(list_empty(&pi_state->list));
2437                list_del_init(&pi_state->list);
2438                raw_spin_unlock(&pi_state->owner->pi_lock);
2439        }
2440
2441        pi_state->owner = newowner;
2442
2443        raw_spin_lock(&newowner->pi_lock);
2444        WARN_ON(!list_empty(&pi_state->list));
2445        list_add(&pi_state->list, &newowner->pi_state_list);
2446        raw_spin_unlock(&newowner->pi_lock);
2447        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2448
2449        return 0;
2450
2451        /*
2452         * To handle the page fault we need to drop the locks here. That gives
2453         * the other task (either the highest priority waiter itself or the
2454         * task which stole the rtmutex) the chance to try the fixup of the
2455         * pi_state. So once we are back from handling the fault we need to
2456         * check the pi_state after reacquiring the locks and before trying to
2457         * do another fixup. When the fixup has been done already we simply
2458         * return.
2459         *
2460         * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2461         * drop hb->lock since the caller owns the hb -> futex_q relation.
2462         * Dropping the pi_mutex->wait_lock requires the state revalidate.
2463         */
2464handle_fault:
2465        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2466        spin_unlock(q->lock_ptr);
2467
2468        ret = fault_in_user_writeable(uaddr);
2469
2470        spin_lock(q->lock_ptr);
2471        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2472
2473        /*
2474         * Check if someone else fixed it for us:
2475         */
2476        if (pi_state->owner != oldowner) {
2477                ret = 0;
2478                goto out_unlock;
2479        }
2480
2481        if (ret)
2482                goto out_unlock;
2483
2484        goto retry;
2485
2486out_unlock:
2487        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2488        return ret;
2489}
2490
2491static long futex_wait_restart(struct restart_block *restart);
2492
2493/**
2494 * fixup_owner() - Post lock pi_state and corner case management
2495 * @uaddr:      user address of the futex
2496 * @q:          futex_q (contains pi_state and access to the rt_mutex)
2497 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2498 *
2499 * After attempting to lock an rt_mutex, this function is called to cleanup
2500 * the pi_state owner as well as handle race conditions that may allow us to
2501 * acquire the lock. Must be called with the hb lock held.
2502 *
2503 * Return:
2504 *  -  1 - success, lock taken;
2505 *  -  0 - success, lock not taken;
2506 *  - <0 - on error (-EFAULT)
2507 */
2508static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2509{
2510        int ret = 0;
2511
2512        if (locked) {
2513                /*
2514                 * Got the lock. We might not be the anticipated owner if we
2515                 * did a lock-steal - fix up the PI-state in that case:
2516                 *
2517                 * Speculative pi_state->owner read (we don't hold wait_lock);
2518                 * since we own the lock pi_state->owner == current is the
2519                 * stable state, anything else needs more attention.
2520                 */
2521                if (q->pi_state->owner != current)
2522                        ret = fixup_pi_state_owner(uaddr, q, current);
2523                goto out;
2524        }
2525
2526        /*
2527         * If we didn't get the lock; check if anybody stole it from us. In
2528         * that case, we need to fix up the uval to point to them instead of
2529         * us, otherwise bad things happen. [10]
2530         *
2531         * Another speculative read; pi_state->owner == current is unstable
2532         * but needs our attention.
2533         */
2534        if (q->pi_state->owner == current) {
2535                ret = fixup_pi_state_owner(uaddr, q, NULL);
2536                goto out;
2537        }
2538
2539        /*
2540         * Paranoia check. If we did not take the lock, then we should not be
2541         * the owner of the rt_mutex.
2542         */
2543        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2544                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2545                                "pi-state %p\n", ret,
2546                                q->pi_state->pi_mutex.owner,
2547                                q->pi_state->owner);
2548        }
2549
2550out:
2551        return ret ? ret : locked;
2552}
2553
2554/**
2555 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2556 * @hb:         the futex hash bucket, must be locked by the caller
2557 * @q:          the futex_q to queue up on
2558 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2559 */
2560static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2561                                struct hrtimer_sleeper *timeout)
2562{
2563        /*
2564         * The task state is guaranteed to be set before another task can
2565         * wake it. set_current_state() is implemented using smp_store_mb() and
2566         * queue_me() calls spin_unlock() upon completion, both serializing
2567         * access to the hash list and forcing another memory barrier.
2568         */
2569        set_current_state(TASK_INTERRUPTIBLE);
2570        queue_me(q, hb);
2571
2572        /* Arm the timer */
2573        if (timeout)
2574                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2575
2576        /*
2577         * If we have been removed from the hash list, then another task
2578         * has tried to wake us, and we can skip the call to schedule().
2579         */
2580        if (likely(!plist_node_empty(&q->list))) {
2581                /*
2582                 * If the timer has already expired, current will already be
2583                 * flagged for rescheduling. Only call schedule if there
2584                 * is no timeout, or if it has yet to expire.
2585                 */
2586                if (!timeout || timeout->task)
2587                        freezable_schedule();
2588        }
2589        __set_current_state(TASK_RUNNING);
2590}
2591
2592/**
2593 * futex_wait_setup() - Prepare to wait on a futex
2594 * @uaddr:      the futex userspace address
2595 * @val:        the expected value
2596 * @flags:      futex flags (FLAGS_SHARED, etc.)
2597 * @q:          the associated futex_q
2598 * @hb:         storage for hash_bucket pointer to be returned to caller
2599 *
2600 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2601 * compare it with the expected value.  Handle atomic faults internally.
2602 * Return with the hb lock held and a q.key reference on success, and unlocked
2603 * with no q.key reference on failure.
2604 *
2605 * Return:
2606 *  -  0 - uaddr contains val and hb has been locked;
2607 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2608 */
2609static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2610                           struct futex_q *q, struct futex_hash_bucket **hb)
2611{
2612        u32 uval;
2613        int ret;
2614
2615        /*
2616         * Access the page AFTER the hash-bucket is locked.
2617         * Order is important:
2618         *
2619         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2620         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2621         *
2622         * The basic logical guarantee of a futex is that it blocks ONLY
2623         * if cond(var) is known to be true at the time of blocking, for
2624         * any cond.  If we locked the hash-bucket after testing *uaddr, that
2625         * would open a race condition where we could block indefinitely with
2626         * cond(var) false, which would violate the guarantee.
2627         *
2628         * On the other hand, we insert q and release the hash-bucket only
2629         * after testing *uaddr.  This guarantees that futex_wait() will NOT
2630         * absorb a wakeup if *uaddr does not match the desired values
2631         * while the syscall executes.
2632         */
2633retry:
2634        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2635        if (unlikely(ret != 0))
2636                return ret;
2637
2638retry_private:
2639        *hb = queue_lock(q);
2640
2641        ret = get_futex_value_locked(&uval, uaddr);
2642
2643        if (ret) {
2644                queue_unlock(*hb);
2645
2646                ret = get_user(uval, uaddr);
2647                if (ret)
2648                        goto out;
2649
2650                if (!(flags & FLAGS_SHARED))
2651                        goto retry_private;
2652
2653                put_futex_key(&q->key);
2654                goto retry;
2655        }
2656
2657        if (uval != val) {
2658                queue_unlock(*hb);
2659                ret = -EWOULDBLOCK;
2660        }
2661
2662out:
2663        if (ret)
2664                put_futex_key(&q->key);
2665        return ret;
2666}
2667
2668static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2669                      ktime_t *abs_time, u32 bitset)
2670{
2671        struct hrtimer_sleeper timeout, *to = NULL;
2672        struct restart_block *restart;
2673        struct futex_hash_bucket *hb;
2674        struct futex_q q = futex_q_init;
2675        int ret;
2676
2677        if (!bitset)
2678                return -EINVAL;
2679        q.bitset = bitset;
2680
2681        if (abs_time) {
2682                to = &timeout;
2683
2684                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2685                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2686                                      HRTIMER_MODE_ABS);
2687                hrtimer_init_sleeper(to, current);
2688                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2689                                             current->timer_slack_ns);
2690        }
2691
2692retry:
2693        /*
2694         * Prepare to wait on uaddr. On success, holds hb lock and increments
2695         * q.key refs.
2696         */
2697        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2698        if (ret)
2699                goto out;
2700
2701        /* queue_me and wait for wakeup, timeout, or a signal. */
2702        futex_wait_queue_me(hb, &q, to);
2703
2704        /* If we were woken (and unqueued), we succeeded, whatever. */
2705        ret = 0;
2706        /* unqueue_me() drops q.key ref */
2707        if (!unqueue_me(&q))
2708                goto out;
2709        ret = -ETIMEDOUT;
2710        if (to && !to->task)
2711                goto out;
2712
2713        /*
2714         * We expect signal_pending(current), but we might be the
2715         * victim of a spurious wakeup as well.
2716         */
2717        if (!signal_pending(current))
2718                goto retry;
2719
2720        ret = -ERESTARTSYS;
2721        if (!abs_time)
2722                goto out;
2723
2724        restart = &current->restart_block;
2725        restart->fn = futex_wait_restart;
2726        restart->futex.uaddr = uaddr;
2727        restart->futex.val = val;
2728        restart->futex.time = *abs_time;
2729        restart->futex.bitset = bitset;
2730        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2731
2732        ret = -ERESTART_RESTARTBLOCK;
2733
2734out:
2735        if (to) {
2736                hrtimer_cancel(&to->timer);
2737                destroy_hrtimer_on_stack(&to->timer);
2738        }
2739        return ret;
2740}
2741
2742
2743static long futex_wait_restart(struct restart_block *restart)
2744{
2745        u32 __user *uaddr = restart->futex.uaddr;
2746        ktime_t t, *tp = NULL;
2747
2748        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2749                t = restart->futex.time;
2750                tp = &t;
2751        }
2752        restart->fn = do_no_restart_syscall;
2753
2754        return (long)futex_wait(uaddr, restart->futex.flags,
2755                                restart->futex.val, tp, restart->futex.bitset);
2756}
2757
2758
2759/*
2760 * Userspace tried a 0 -> TID atomic transition of the futex value
2761 * and failed. The kernel side here does the whole locking operation:
2762 * if there are waiters then it will block as a consequence of relying
2763 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2764 * a 0 value of the futex too.).
2765 *
2766 * Also serves as futex trylock_pi()'ing, and due semantics.
2767 */
2768static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2769                         ktime_t *time, int trylock)
2770{
2771        struct hrtimer_sleeper timeout, *to = NULL;
2772        struct futex_pi_state *pi_state = NULL;
2773        struct rt_mutex_waiter rt_waiter;
2774        struct futex_hash_bucket *hb;
2775        struct futex_q q = futex_q_init;
2776        int res, ret;
2777
2778        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2779                return -ENOSYS;
2780
2781        if (refill_pi_state_cache())
2782                return -ENOMEM;
2783
2784        if (time) {
2785                to = &timeout;
2786                hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2787                                      HRTIMER_MODE_ABS);
2788                hrtimer_init_sleeper(to, current);
2789                hrtimer_set_expires(&to->timer, *time);
2790        }
2791
2792retry:
2793        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2794        if (unlikely(ret != 0))
2795                goto out;
2796
2797retry_private:
2798        hb = queue_lock(&q);
2799
2800        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2801        if (unlikely(ret)) {
2802                /*
2803                 * Atomic work succeeded and we got the lock,
2804                 * or failed. Either way, we do _not_ block.
2805                 */
2806                switch (ret) {
2807                case 1:
2808                        /* We got the lock. */
2809                        ret = 0;
2810                        goto out_unlock_put_key;
2811                case -EFAULT:
2812                        goto uaddr_faulted;
2813                case -EAGAIN:
2814                        /*
2815                         * Two reasons for this:
2816                         * - Task is exiting and we just wait for the
2817                         *   exit to complete.
2818                         * - The user space value changed.
2819                         */
2820                        queue_unlock(hb);
2821                        put_futex_key(&q.key);
2822                        cond_resched();
2823                        goto retry;
2824                default:
2825                        goto out_unlock_put_key;
2826                }
2827        }
2828
2829        WARN_ON(!q.pi_state);
2830
2831        /*
2832         * Only actually queue now that the atomic ops are done:
2833         */
2834        __queue_me(&q, hb);
2835
2836        if (trylock) {
2837                ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2838                /* Fixup the trylock return value: */
2839                ret = ret ? 0 : -EWOULDBLOCK;
2840                goto no_block;
2841        }
2842
2843        rt_mutex_init_waiter(&rt_waiter);
2844
2845        /*
2846         * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2847         * hold it while doing rt_mutex_start_proxy(), because then it will
2848         * include hb->lock in the blocking chain, even through we'll not in
2849         * fact hold it while blocking. This will lead it to report -EDEADLK
2850         * and BUG when futex_unlock_pi() interleaves with this.
2851         *
2852         * Therefore acquire wait_lock while holding hb->lock, but drop the
2853         * latter before calling rt_mutex_start_proxy_lock(). This still fully
2854         * serializes against futex_unlock_pi() as that does the exact same
2855         * lock handoff sequence.
2856         */
2857        raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2858        spin_unlock(q.lock_ptr);
2859        ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2860        raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2861
2862        if (ret) {
2863                if (ret == 1)
2864                        ret = 0;
2865
2866                spin_lock(q.lock_ptr);
2867                goto no_block;
2868        }
2869
2870
2871        if (unlikely(to))
2872                hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2873
2874        ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2875
2876        spin_lock(q.lock_ptr);
2877        /*
2878         * If we failed to acquire the lock (signal/timeout), we must
2879         * first acquire the hb->lock before removing the lock from the
2880         * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2881         * wait lists consistent.
2882         *
2883         * In particular; it is important that futex_unlock_pi() can not
2884         * observe this inconsistency.
2885         */
2886        if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2887                ret = 0;
2888
2889no_block:
2890        /*
2891         * Fixup the pi_state owner and possibly acquire the lock if we
2892         * haven't already.
2893         */
2894        res = fixup_owner(uaddr, &q, !ret);
2895        /*
2896         * If fixup_owner() returned an error, proprogate that.  If it acquired
2897         * the lock, clear our -ETIMEDOUT or -EINTR.
2898         */
2899        if (res)
2900                ret = (res < 0) ? res : 0;
2901
2902        /*
2903         * If fixup_owner() faulted and was unable to handle the fault, unlock
2904         * it and return the fault to userspace.
2905         */
2906        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2907                pi_state = q.pi_state;
2908                get_pi_state(pi_state);
2909        }
2910
2911        /* Unqueue and drop the lock */
2912        unqueue_me_pi(&q);
2913
2914        if (pi_state) {
2915                rt_mutex_futex_unlock(&pi_state->pi_mutex);
2916                put_pi_state(pi_state);
2917        }
2918
2919        goto out_put_key;
2920
2921out_unlock_put_key:
2922        queue_unlock(hb);
2923
2924out_put_key:
2925        put_futex_key(&q.key);
2926out:
2927        if (to) {
2928                hrtimer_cancel(&to->timer);
2929                destroy_hrtimer_on_stack(&to->timer);
2930        }
2931        return ret != -EINTR ? ret : -ERESTARTNOINTR;
2932
2933uaddr_faulted:
2934        queue_unlock(hb);
2935
2936        ret = fault_in_user_writeable(uaddr);
2937        if (ret)
2938                goto out_put_key;
2939
2940        if (!(flags & FLAGS_SHARED))
2941                goto retry_private;
2942
2943        put_futex_key(&q.key);
2944        goto retry;
2945}
2946
2947/*
2948 * Userspace attempted a TID -> 0 atomic transition, and failed.
2949 * This is the in-kernel slowpath: we look up the PI state (if any),
2950 * and do the rt-mutex unlock.
2951 */
2952static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2953{
2954        u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2955        union futex_key key = FUTEX_KEY_INIT;
2956        struct futex_hash_bucket *hb;
2957        struct futex_q *top_waiter;
2958        int ret;
2959
2960        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2961                return -ENOSYS;
2962
2963retry:
2964        if (get_user(uval, uaddr))
2965                return -EFAULT;
2966        /*
2967         * We release only a lock we actually own:
2968         */
2969        if ((uval & FUTEX_TID_MASK) != vpid)
2970                return -EPERM;
2971
2972        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2973        if (ret)
2974                return ret;
2975
2976        hb = hash_futex(&key);
2977        spin_lock(&hb->lock);
2978
2979        /*
2980         * Check waiters first. We do not trust user space values at
2981         * all and we at least want to know if user space fiddled
2982         * with the futex value instead of blindly unlocking.
2983         */
2984        top_waiter = futex_top_waiter(hb, &key);
2985        if (top_waiter) {
2986                struct futex_pi_state *pi_state = top_waiter->pi_state;
2987
2988                ret = -EINVAL;
2989                if (!pi_state)
2990                        goto out_unlock;
2991
2992                /*
2993                 * If current does not own the pi_state then the futex is
2994                 * inconsistent and user space fiddled with the futex value.
2995                 */
2996                if (pi_state->owner != current)
2997                        goto out_unlock;
2998
2999                get_pi_state(pi_state);
3000                /*
3001                 * By taking wait_lock while still holding hb->lock, we ensure
3002                 * there is no point where we hold neither; and therefore
3003                 * wake_futex_pi() must observe a state consistent with what we
3004                 * observed.
3005                 */
3006                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3007                spin_unlock(&hb->lock);
3008
3009                /* drops pi_state->pi_mutex.wait_lock */
3010                ret = wake_futex_pi(uaddr, uval, pi_state);
3011
3012                put_pi_state(pi_state);
3013
3014                /*
3015                 * Success, we're done! No tricky corner cases.
3016                 */
3017                if (!ret)
3018                        goto out_putkey;
3019                /*
3020                 * The atomic access to the futex value generated a
3021                 * pagefault, so retry the user-access and the wakeup:
3022                 */
3023                if (ret == -EFAULT)
3024                        goto pi_faulted;
3025                /*
3026                 * A unconditional UNLOCK_PI op raced against a waiter
3027                 * setting the FUTEX_WAITERS bit. Try again.
3028                 */
3029                if (ret == -EAGAIN) {
3030                        put_futex_key(&key);
3031                        goto retry;
3032                }
3033                /*
3034                 * wake_futex_pi has detected invalid state. Tell user
3035                 * space.
3036                 */
3037                goto out_putkey;
3038        }
3039
3040        /*
3041         * We have no kernel internal state, i.e. no waiters in the
3042         * kernel. Waiters which are about to queue themselves are stuck
3043         * on hb->lock. So we can safely ignore them. We do neither
3044         * preserve the WAITERS bit not the OWNER_DIED one. We are the
3045         * owner.
3046         */
3047        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3048                spin_unlock(&hb->lock);
3049                goto pi_faulted;
3050        }
3051
3052        /*
3053         * If uval has changed, let user space handle it.
3054         */
3055        ret = (curval == uval) ? 0 : -EAGAIN;
3056
3057out_unlock:
3058        spin_unlock(&hb->lock);
3059out_putkey:
3060        put_futex_key(&key);
3061        return ret;
3062
3063pi_faulted:
3064        put_futex_key(&key);
3065
3066        ret = fault_in_user_writeable(uaddr);
3067        if (!ret)
3068                goto retry;
3069
3070        return ret;
3071}
3072
3073/**
3074 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3075 * @hb:         the hash_bucket futex_q was original enqueued on
3076 * @q:          the futex_q woken while waiting to be requeued
3077 * @key2:       the futex_key of the requeue target futex
3078 * @timeout:    the timeout associated with the wait (NULL if none)
3079 *
3080 * Detect if the task was woken on the initial futex as opposed to the requeue
3081 * target futex.  If so, determine if it was a timeout or a signal that caused
3082 * the wakeup and return the appropriate error code to the caller.  Must be
3083 * called with the hb lock held.
3084 *
3085 * Return:
3086 *  -  0 = no early wakeup detected;
3087 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3088 */
3089static inline
3090int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3091                                   struct futex_q *q, union futex_key *key2,
3092                                   struct hrtimer_sleeper *timeout)
3093{
3094        int ret = 0;
3095
3096        /*
3097         * With the hb lock held, we avoid races while we process the wakeup.
3098         * We only need to hold hb (and not hb2) to ensure atomicity as the
3099         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3100         * It can't be requeued from uaddr2 to something else since we don't
3101         * support a PI aware source futex for requeue.
3102         */
3103        if (!match_futex(&q->key, key2)) {
3104                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3105                /*
3106                 * We were woken prior to requeue by a timeout or a signal.
3107                 * Unqueue the futex_q and determine which it was.
3108                 */
3109                plist_del(&q->list, &hb->chain);
3110                hb_waiters_dec(hb);
3111
3112                /* Handle spurious wakeups gracefully */
3113                ret = -EWOULDBLOCK;
3114                if (timeout && !timeout->task)
3115                        ret = -ETIMEDOUT;
3116                else if (signal_pending(current))
3117                        ret = -ERESTARTNOINTR;
3118        }
3119        return ret;
3120}
3121
3122/**
3123 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3124 * @uaddr:      the futex we initially wait on (non-pi)
3125 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3126 *              the same type, no requeueing from private to shared, etc.
3127 * @val:        the expected value of uaddr
3128 * @abs_time:   absolute timeout
3129 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3130 * @uaddr2:     the pi futex we will take prior to returning to user-space
3131 *
3132 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3133 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3134 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3135 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3136 * without one, the pi logic would not know which task to boost/deboost, if
3137 * there was a need to.
3138 *
3139 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3140 * via the following--
3141 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3142 * 2) wakeup on uaddr2 after a requeue
3143 * 3) signal
3144 * 4) timeout
3145 *
3146 * If 3, cleanup and return -ERESTARTNOINTR.
3147 *
3148 * If 2, we may then block on trying to take the rt_mutex and return via:
3149 * 5) successful lock
3150 * 6) signal
3151 * 7) timeout
3152 * 8) other lock acquisition failure
3153 *
3154 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3155 *
3156 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3157 *
3158 * Return:
3159 *  -  0 - On success;
3160 *  - <0 - On error
3161 */
3162static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3163                                 u32 val, ktime_t *abs_time, u32 bitset,
3164                                 u32 __user *uaddr2)
3165{
3166        struct hrtimer_sleeper timeout, *to = NULL;
3167        struct futex_pi_state *pi_state = NULL;
3168        struct rt_mutex_waiter rt_waiter;
3169        struct futex_hash_bucket *hb;
3170        union futex_key key2 = FUTEX_KEY_INIT;
3171        struct futex_q q = futex_q_init;
3172        int res, ret;
3173
3174        if (!IS_ENABLED(CONFIG_FUTEX_PI))
3175                return -ENOSYS;
3176
3177        if (uaddr == uaddr2)
3178                return -EINVAL;
3179
3180        if (!bitset)
3181                return -EINVAL;
3182
3183        if (abs_time) {
3184                to = &timeout;
3185                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3186                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
3187                                      HRTIMER_MODE_ABS);
3188                hrtimer_init_sleeper(to, current);
3189                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3190                                             current->timer_slack_ns);
3191        }
3192
3193        /*
3194         * The waiter is allocated on our stack, manipulated by the requeue
3195         * code while we sleep on uaddr.
3196         */
3197        rt_mutex_init_waiter(&rt_waiter);
3198
3199        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3200        if (unlikely(ret != 0))
3201                goto out;
3202
3203        q.bitset = bitset;
3204        q.rt_waiter = &rt_waiter;
3205        q.requeue_pi_key = &key2;
3206
3207        /*
3208         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3209         * count.
3210         */
3211        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3212        if (ret)
3213                goto out_key2;
3214
3215        /*
3216         * The check above which compares uaddrs is not sufficient for
3217         * shared futexes. We need to compare the keys:
3218         */
3219        if (match_futex(&q.key, &key2)) {
3220                queue_unlock(hb);
3221                ret = -EINVAL;
3222                goto out_put_keys;
3223        }
3224
3225        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3226        futex_wait_queue_me(hb, &q, to);
3227
3228        spin_lock(&hb->lock);
3229        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3230        spin_unlock(&hb->lock);
3231        if (ret)
3232                goto out_put_keys;
3233
3234        /*
3235         * In order for us to be here, we know our q.key == key2, and since
3236         * we took the hb->lock above, we also know that futex_requeue() has
3237         * completed and we no longer have to concern ourselves with a wakeup
3238         * race with the atomic proxy lock acquisition by the requeue code. The
3239         * futex_requeue dropped our key1 reference and incremented our key2
3240         * reference count.
3241         */
3242
3243        /* Check if the requeue code acquired the second futex for us. */
3244        if (!q.rt_waiter) {
3245                /*
3246                 * Got the lock. We might not be the anticipated owner if we
3247                 * did a lock-steal - fix up the PI-state in that case.
3248                 */
3249                if (q.pi_state && (q.pi_state->owner != current)) {
3250                        spin_lock(q.lock_ptr);
3251                        ret = fixup_pi_state_owner(uaddr2, &q, current);
3252                        if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3253                                pi_state = q.pi_state;
3254                                get_pi_state(pi_state);
3255                        }
3256                        /*
3257                         * Drop the reference to the pi state which
3258                         * the requeue_pi() code acquired for us.
3259                         */
3260                        put_pi_state(q.pi_state);
3261                        spin_unlock(q.lock_ptr);
3262                }
3263        } else {
3264                struct rt_mutex *pi_mutex;
3265
3266                /*
3267                 * We have been woken up by futex_unlock_pi(), a timeout, or a
3268                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3269                 * the pi_state.
3270                 */
3271                WARN_ON(!q.pi_state);
3272                pi_mutex = &q.pi_state->pi_mutex;
3273                ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3274
3275                spin_lock(q.lock_ptr);
3276                if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3277                        ret = 0;
3278
3279                debug_rt_mutex_free_waiter(&rt_waiter);
3280                /*
3281                 * Fixup the pi_state owner and possibly acquire the lock if we
3282                 * haven't already.
3283                 */
3284                res = fixup_owner(uaddr2, &q, !ret);
3285                /*
3286                 * If fixup_owner() returned an error, proprogate that.  If it
3287                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3288                 */
3289                if (res)
3290                        ret = (res < 0) ? res : 0;
3291
3292                /*
3293                 * If fixup_pi_state_owner() faulted and was unable to handle
3294                 * the fault, unlock the rt_mutex and return the fault to
3295                 * userspace.
3296                 */
3297                if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3298                        pi_state = q.pi_state;
3299                        get_pi_state(pi_state);
3300                }
3301
3302                /* Unqueue and drop the lock. */
3303                unqueue_me_pi(&q);
3304        }
3305
3306        if (pi_state) {
3307                rt_mutex_futex_unlock(&pi_state->pi_mutex);
3308                put_pi_state(pi_state);
3309        }
3310
3311        if (ret == -EINTR) {
3312                /*
3313                 * We've already been requeued, but cannot restart by calling
3314                 * futex_lock_pi() directly. We could restart this syscall, but
3315                 * it would detect that the user space "val" changed and return
3316                 * -EWOULDBLOCK.  Save the overhead of the restart and return
3317                 * -EWOULDBLOCK directly.
3318                 */
3319                ret = -EWOULDBLOCK;
3320        }
3321
3322out_put_keys:
3323        put_futex_key(&q.key);
3324out_key2:
3325        put_futex_key(&key2);
3326
3327out:
3328        if (to) {
3329                hrtimer_cancel(&to->timer);
3330                destroy_hrtimer_on_stack(&to->timer);
3331        }
3332        return ret;
3333}
3334
3335/*
3336 * Support for robust futexes: the kernel cleans up held futexes at
3337 * thread exit time.
3338 *
3339 * Implementation: user-space maintains a per-thread list of locks it
3340 * is holding. Upon do_exit(), the kernel carefully walks this list,
3341 * and marks all locks that are owned by this thread with the
3342 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3343 * always manipulated with the lock held, so the list is private and
3344 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3345 * field, to allow the kernel to clean up if the thread dies after
3346 * acquiring the lock, but just before it could have added itself to
3347 * the list. There can only be one such pending lock.
3348 */
3349
3350/**
3351 * sys_set_robust_list() - Set the robust-futex list head of a task
3352 * @head:       pointer to the list-head
3353 * @len:        length of the list-head, as userspace expects
3354 */
3355SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3356                size_t, len)
3357{
3358        if (!futex_cmpxchg_enabled)
3359                return -ENOSYS;
3360        /*
3361         * The kernel knows only one size for now:
3362         */
3363        if (unlikely(len != sizeof(*head)))
3364                return -EINVAL;
3365
3366        current->robust_list = head;
3367
3368        return 0;
3369}
3370
3371/**
3372 * sys_get_robust_list() - Get the robust-futex list head of a task
3373 * @pid:        pid of the process [zero for current task]
3374 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3375 * @len_ptr:    pointer to a length field, the kernel fills in the header size
3376 */
3377SYSCALL_DEFINE3(get_robust_list, int, pid,
3378                struct robust_list_head __user * __user *, head_ptr,
3379                size_t __user *, len_ptr)
3380{
3381        struct robust_list_head __user *head;
3382        unsigned long ret;
3383        struct task_struct *p;
3384
3385        if (!futex_cmpxchg_enabled)
3386                return -ENOSYS;
3387
3388        rcu_read_lock();
3389
3390        ret = -ESRCH;
3391        if (!pid)
3392                p = current;
3393        else {
3394                p = find_task_by_vpid(pid);
3395                if (!p)
3396                        goto err_unlock;
3397        }
3398
3399        ret = -EPERM;
3400        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3401                goto err_unlock;
3402
3403        head = p->robust_list;
3404        rcu_read_unlock();
3405
3406        if (put_user(sizeof(*head), len_ptr))
3407                return -EFAULT;
3408        return put_user(head, head_ptr);
3409
3410err_unlock:
3411        rcu_read_unlock();
3412
3413        return ret;
3414}
3415
3416/*
3417 * Process a futex-list entry, check whether it's owned by the
3418 * dying task, and do notification if so:
3419 */
3420int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3421{
3422        u32 uval, uninitialized_var(nval), mval;
3423
3424retry:
3425        if (get_user(uval, uaddr))
3426                return -1;
3427
3428        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3429                /*
3430                 * Ok, this dying thread is truly holding a futex
3431                 * of interest. Set the OWNER_DIED bit atomically
3432                 * via cmpxchg, and if the value had FUTEX_WAITERS
3433                 * set, wake up a waiter (if any). (We have to do a
3434                 * futex_wake() even if OWNER_DIED is already set -
3435                 * to handle the rare but possible case of recursive
3436                 * thread-death.) The rest of the cleanup is done in
3437                 * userspace.
3438                 */
3439                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3440                /*
3441                 * We are not holding a lock here, but we want to have
3442                 * the pagefault_disable/enable() protection because
3443                 * we want to handle the fault gracefully. If the
3444                 * access fails we try to fault in the futex with R/W
3445                 * verification via get_user_pages. get_user() above
3446                 * does not guarantee R/W access. If that fails we
3447                 * give up and leave the futex locked.
3448                 */
3449                if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3450                        if (fault_in_user_writeable(uaddr))
3451                                return -1;
3452                        goto retry;
3453                }
3454                if (nval != uval)
3455                        goto retry;
3456
3457                /*
3458                 * Wake robust non-PI futexes here. The wakeup of
3459                 * PI futexes happens in exit_pi_state():
3460                 */
3461                if (!pi && (uval & FUTEX_WAITERS))
3462                        futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3463        }
3464        return 0;
3465}
3466
3467/*
3468 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3469 */
3470static inline int fetch_robust_entry(struct robust_list __user **entry,
3471                                     struct robust_list __user * __user *head,
3472                                     unsigned int *pi)
3473{
3474        unsigned long uentry;
3475
3476        if (get_user(uentry, (unsigned long __user *)head))
3477                return -EFAULT;
3478
3479        *entry = (void __user *)(uentry & ~1UL);
3480        *pi = uentry & 1;
3481
3482        return 0;
3483}
3484
3485/*
3486 * Walk curr->robust_list (very carefully, it's a userspace list!)
3487 * and mark any locks found there dead, and notify any waiters.
3488 *
3489 * We silently return on any sign of list-walking problem.
3490 */
3491void exit_robust_list(struct task_struct *curr)
3492{
3493        struct robust_list_head __user *head = curr->robust_list;
3494        struct robust_list __user *entry, *next_entry, *pending;
3495        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3496        unsigned int uninitialized_var(next_pi);
3497        unsigned long futex_offset;
3498        int rc;
3499
3500        if (!futex_cmpxchg_enabled)
3501                return;
3502
3503        /*
3504         * Fetch the list head (which was registered earlier, via
3505         * sys_set_robust_list()):
3506         */
3507        if (fetch_robust_entry(&entry, &head->list.next, &pi))
3508                return;
3509        /*
3510         * Fetch the relative futex offset:
3511         */
3512        if (get_user(futex_offset, &head->futex_offset))
3513                return;
3514        /*
3515         * Fetch any possibly pending lock-add first, and handle it
3516         * if it exists:
3517         */
3518        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3519                return;
3520
3521        next_entry = NULL;      /* avoid warning with gcc */
3522        while (entry != &head->list) {
3523                /*
3524                 * Fetch the next entry in the list before calling
3525                 * handle_futex_death:
3526                 */
3527                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3528                /*
3529                 * A pending lock might already be on the list, so
3530                 * don't process it twice:
3531                 */
3532                if (entry != pending)
3533                        if (handle_futex_death((void __user *)entry + futex_offset,
3534                                                curr, pi))
3535                                return;
3536                if (rc)
3537                        return;
3538                entry = next_entry;
3539                pi = next_pi;
3540                /*
3541                 * Avoid excessively long or circular lists:
3542                 */
3543                if (!--limit)
3544                        break;
3545
3546                cond_resched();
3547        }
3548
3549        if (pending)
3550                handle_futex_death((void __user *)pending + futex_offset,
3551                                   curr, pip);
3552}
3553
3554long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3555                u32 __user *uaddr2, u32 val2, u32 val3)
3556{
3557        int cmd = op & FUTEX_CMD_MASK;
3558        unsigned int flags = 0;
3559
3560        if (!(op & FUTEX_PRIVATE_FLAG))
3561                flags |= FLAGS_SHARED;
3562
3563        if (op & FUTEX_CLOCK_REALTIME) {
3564                flags |= FLAGS_CLOCKRT;
3565                if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3566                    cmd != FUTEX_WAIT_REQUEUE_PI)
3567                        return -ENOSYS;
3568        }
3569
3570        switch (cmd) {
3571        case FUTEX_LOCK_PI:
3572        case FUTEX_UNLOCK_PI:
3573        case FUTEX_TRYLOCK_PI:
3574        case FUTEX_WAIT_REQUEUE_PI:
3575        case FUTEX_CMP_REQUEUE_PI:
3576                if (!futex_cmpxchg_enabled)
3577                        return -ENOSYS;
3578        }
3579
3580        switch (cmd) {
3581        case FUTEX_WAIT:
3582                val3 = FUTEX_BITSET_MATCH_ANY;
3583                /* fall through */
3584        case FUTEX_WAIT_BITSET:
3585                return futex_wait(uaddr, flags, val, timeout, val3);
3586        case FUTEX_WAKE:
3587                val3 = FUTEX_BITSET_MATCH_ANY;
3588                /* fall through */
3589        case FUTEX_WAKE_BITSET:
3590                return futex_wake(uaddr, flags, val, val3);
3591        case FUTEX_REQUEUE:
3592                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3593        case FUTEX_CMP_REQUEUE:
3594                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3595        case FUTEX_WAKE_OP:
3596                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3597        case FUTEX_LOCK_PI:
3598                return futex_lock_pi(uaddr, flags, timeout, 0);
3599        case FUTEX_UNLOCK_PI:
3600                return futex_unlock_pi(uaddr, flags);
3601        case FUTEX_TRYLOCK_PI:
3602                return futex_lock_pi(uaddr, flags, NULL, 1);
3603        case FUTEX_WAIT_REQUEUE_PI:
3604                val3 = FUTEX_BITSET_MATCH_ANY;
3605                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3606                                             uaddr2);
3607        case FUTEX_CMP_REQUEUE_PI:
3608                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3609        }
3610        return -ENOSYS;
3611}
3612
3613
3614SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3615                struct timespec __user *, utime, u32 __user *, uaddr2,
3616                u32, val3)
3617{
3618        struct timespec ts;
3619        ktime_t t, *tp = NULL;
3620        u32 val2 = 0;
3621        int cmd = op & FUTEX_CMD_MASK;
3622
3623        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3624                      cmd == FUTEX_WAIT_BITSET ||
3625                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3626                if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3627                        return -EFAULT;
3628                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3629                        return -EFAULT;
3630                if (!timespec_valid(&ts))
3631                        return -EINVAL;
3632
3633                t = timespec_to_ktime(ts);
3634                if (cmd == FUTEX_WAIT)
3635                        t = ktime_add_safe(ktime_get(), t);
3636                tp = &t;
3637        }
3638        /*
3639         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3640         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3641         */
3642        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3643            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3644                val2 = (u32) (unsigned long) utime;
3645
3646        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3647}
3648
3649static void __init futex_detect_cmpxchg(void)
3650{
3651#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3652        u32 curval;
3653
3654        /*
3655         * This will fail and we want it. Some arch implementations do
3656         * runtime detection of the futex_atomic_cmpxchg_inatomic()
3657         * functionality. We want to know that before we call in any
3658         * of the complex code paths. Also we want to prevent
3659         * registration of robust lists in that case. NULL is
3660         * guaranteed to fault and we get -EFAULT on functional
3661         * implementation, the non-functional ones will return
3662         * -ENOSYS.
3663         */
3664        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3665                futex_cmpxchg_enabled = 1;
3666#endif
3667}
3668
3669static int __init futex_init(void)
3670{
3671        unsigned int futex_shift;
3672        unsigned long i;
3673
3674#if CONFIG_BASE_SMALL
3675        futex_hashsize = 16;
3676#else
3677        futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3678#endif
3679
3680        futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3681                                               futex_hashsize, 0,
3682                                               futex_hashsize < 256 ? HASH_SMALL : 0,
3683                                               &futex_shift, NULL,
3684                                               futex_hashsize, futex_hashsize);
3685        futex_hashsize = 1UL << futex_shift;
3686
3687        futex_detect_cmpxchg();
3688
3689        for (i = 0; i < futex_hashsize; i++) {
3690                atomic_set(&futex_queues[i].waiters, 0);
3691                plist_head_init(&futex_queues[i].chain);
3692                spin_lock_init(&futex_queues[i].lock);
3693        }
3694
3695        return 0;
3696}
3697core_initcall(futex_init);
3698