linux/kernel/irq/manage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/sched/rt.h>
  19#include <linux/sched/task.h>
  20#include <uapi/linux/sched/types.h>
  21#include <linux/task_work.h>
  22
  23#include "internals.h"
  24
  25#ifdef CONFIG_IRQ_FORCED_THREADING
  26__read_mostly bool force_irqthreads;
  27EXPORT_SYMBOL_GPL(force_irqthreads);
  28
  29static int __init setup_forced_irqthreads(char *arg)
  30{
  31        force_irqthreads = true;
  32        return 0;
  33}
  34early_param("threadirqs", setup_forced_irqthreads);
  35#endif
  36
  37static void __synchronize_hardirq(struct irq_desc *desc)
  38{
  39        bool inprogress;
  40
  41        do {
  42                unsigned long flags;
  43
  44                /*
  45                 * Wait until we're out of the critical section.  This might
  46                 * give the wrong answer due to the lack of memory barriers.
  47                 */
  48                while (irqd_irq_inprogress(&desc->irq_data))
  49                        cpu_relax();
  50
  51                /* Ok, that indicated we're done: double-check carefully. */
  52                raw_spin_lock_irqsave(&desc->lock, flags);
  53                inprogress = irqd_irq_inprogress(&desc->irq_data);
  54                raw_spin_unlock_irqrestore(&desc->lock, flags);
  55
  56                /* Oops, that failed? */
  57        } while (inprogress);
  58}
  59
  60/**
  61 *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  62 *      @irq: interrupt number to wait for
  63 *
  64 *      This function waits for any pending hard IRQ handlers for this
  65 *      interrupt to complete before returning. If you use this
  66 *      function while holding a resource the IRQ handler may need you
  67 *      will deadlock. It does not take associated threaded handlers
  68 *      into account.
  69 *
  70 *      Do not use this for shutdown scenarios where you must be sure
  71 *      that all parts (hardirq and threaded handler) have completed.
  72 *
  73 *      Returns: false if a threaded handler is active.
  74 *
  75 *      This function may be called - with care - from IRQ context.
  76 */
  77bool synchronize_hardirq(unsigned int irq)
  78{
  79        struct irq_desc *desc = irq_to_desc(irq);
  80
  81        if (desc) {
  82                __synchronize_hardirq(desc);
  83                return !atomic_read(&desc->threads_active);
  84        }
  85
  86        return true;
  87}
  88EXPORT_SYMBOL(synchronize_hardirq);
  89
  90/**
  91 *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
  92 *      @irq: interrupt number to wait for
  93 *
  94 *      This function waits for any pending IRQ handlers for this interrupt
  95 *      to complete before returning. If you use this function while
  96 *      holding a resource the IRQ handler may need you will deadlock.
  97 *
  98 *      This function may be called - with care - from IRQ context.
  99 */
 100void synchronize_irq(unsigned int irq)
 101{
 102        struct irq_desc *desc = irq_to_desc(irq);
 103
 104        if (desc) {
 105                __synchronize_hardirq(desc);
 106                /*
 107                 * We made sure that no hardirq handler is
 108                 * running. Now verify that no threaded handlers are
 109                 * active.
 110                 */
 111                wait_event(desc->wait_for_threads,
 112                           !atomic_read(&desc->threads_active));
 113        }
 114}
 115EXPORT_SYMBOL(synchronize_irq);
 116
 117#ifdef CONFIG_SMP
 118cpumask_var_t irq_default_affinity;
 119
 120static bool __irq_can_set_affinity(struct irq_desc *desc)
 121{
 122        if (!desc || !irqd_can_balance(&desc->irq_data) ||
 123            !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 124                return false;
 125        return true;
 126}
 127
 128/**
 129 *      irq_can_set_affinity - Check if the affinity of a given irq can be set
 130 *      @irq:           Interrupt to check
 131 *
 132 */
 133int irq_can_set_affinity(unsigned int irq)
 134{
 135        return __irq_can_set_affinity(irq_to_desc(irq));
 136}
 137
 138/**
 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 140 * @irq:        Interrupt to check
 141 *
 142 * Like irq_can_set_affinity() above, but additionally checks for the
 143 * AFFINITY_MANAGED flag.
 144 */
 145bool irq_can_set_affinity_usr(unsigned int irq)
 146{
 147        struct irq_desc *desc = irq_to_desc(irq);
 148
 149        return __irq_can_set_affinity(desc) &&
 150                !irqd_affinity_is_managed(&desc->irq_data);
 151}
 152
 153/**
 154 *      irq_set_thread_affinity - Notify irq threads to adjust affinity
 155 *      @desc:          irq descriptor which has affitnity changed
 156 *
 157 *      We just set IRQTF_AFFINITY and delegate the affinity setting
 158 *      to the interrupt thread itself. We can not call
 159 *      set_cpus_allowed_ptr() here as we hold desc->lock and this
 160 *      code can be called from hard interrupt context.
 161 */
 162void irq_set_thread_affinity(struct irq_desc *desc)
 163{
 164        struct irqaction *action;
 165
 166        for_each_action_of_desc(desc, action)
 167                if (action->thread)
 168                        set_bit(IRQTF_AFFINITY, &action->thread_flags);
 169}
 170
 171static void irq_validate_effective_affinity(struct irq_data *data)
 172{
 173#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 174        const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 175        struct irq_chip *chip = irq_data_get_irq_chip(data);
 176
 177        if (!cpumask_empty(m))
 178                return;
 179        pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 180                     chip->name, data->irq);
 181#endif
 182}
 183
 184int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 185                        bool force)
 186{
 187        struct irq_desc *desc = irq_data_to_desc(data);
 188        struct irq_chip *chip = irq_data_get_irq_chip(data);
 189        int ret;
 190
 191        if (!chip || !chip->irq_set_affinity)
 192                return -EINVAL;
 193
 194        ret = chip->irq_set_affinity(data, mask, force);
 195        switch (ret) {
 196        case IRQ_SET_MASK_OK:
 197        case IRQ_SET_MASK_OK_DONE:
 198                cpumask_copy(desc->irq_common_data.affinity, mask);
 199        case IRQ_SET_MASK_OK_NOCOPY:
 200                irq_validate_effective_affinity(data);
 201                irq_set_thread_affinity(desc);
 202                ret = 0;
 203        }
 204
 205        return ret;
 206}
 207
 208#ifdef CONFIG_GENERIC_PENDING_IRQ
 209static inline int irq_set_affinity_pending(struct irq_data *data,
 210                                           const struct cpumask *dest)
 211{
 212        struct irq_desc *desc = irq_data_to_desc(data);
 213
 214        irqd_set_move_pending(data);
 215        irq_copy_pending(desc, dest);
 216        return 0;
 217}
 218#else
 219static inline int irq_set_affinity_pending(struct irq_data *data,
 220                                           const struct cpumask *dest)
 221{
 222        return -EBUSY;
 223}
 224#endif
 225
 226static int irq_try_set_affinity(struct irq_data *data,
 227                                const struct cpumask *dest, bool force)
 228{
 229        int ret = irq_do_set_affinity(data, dest, force);
 230
 231        /*
 232         * In case that the underlying vector management is busy and the
 233         * architecture supports the generic pending mechanism then utilize
 234         * this to avoid returning an error to user space.
 235         */
 236        if (ret == -EBUSY && !force)
 237                ret = irq_set_affinity_pending(data, dest);
 238        return ret;
 239}
 240
 241int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 242                            bool force)
 243{
 244        struct irq_chip *chip = irq_data_get_irq_chip(data);
 245        struct irq_desc *desc = irq_data_to_desc(data);
 246        int ret = 0;
 247
 248        if (!chip || !chip->irq_set_affinity)
 249                return -EINVAL;
 250
 251        if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 252                ret = irq_try_set_affinity(data, mask, force);
 253        } else {
 254                irqd_set_move_pending(data);
 255                irq_copy_pending(desc, mask);
 256        }
 257
 258        if (desc->affinity_notify) {
 259                kref_get(&desc->affinity_notify->kref);
 260                schedule_work(&desc->affinity_notify->work);
 261        }
 262        irqd_set(data, IRQD_AFFINITY_SET);
 263
 264        return ret;
 265}
 266
 267int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 268{
 269        struct irq_desc *desc = irq_to_desc(irq);
 270        unsigned long flags;
 271        int ret;
 272
 273        if (!desc)
 274                return -EINVAL;
 275
 276        raw_spin_lock_irqsave(&desc->lock, flags);
 277        ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 278        raw_spin_unlock_irqrestore(&desc->lock, flags);
 279        return ret;
 280}
 281
 282int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 283{
 284        unsigned long flags;
 285        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 286
 287        if (!desc)
 288                return -EINVAL;
 289        desc->affinity_hint = m;
 290        irq_put_desc_unlock(desc, flags);
 291        /* set the initial affinity to prevent every interrupt being on CPU0 */
 292        if (m)
 293                __irq_set_affinity(irq, m, false);
 294        return 0;
 295}
 296EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 297
 298static void irq_affinity_notify(struct work_struct *work)
 299{
 300        struct irq_affinity_notify *notify =
 301                container_of(work, struct irq_affinity_notify, work);
 302        struct irq_desc *desc = irq_to_desc(notify->irq);
 303        cpumask_var_t cpumask;
 304        unsigned long flags;
 305
 306        if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 307                goto out;
 308
 309        raw_spin_lock_irqsave(&desc->lock, flags);
 310        if (irq_move_pending(&desc->irq_data))
 311                irq_get_pending(cpumask, desc);
 312        else
 313                cpumask_copy(cpumask, desc->irq_common_data.affinity);
 314        raw_spin_unlock_irqrestore(&desc->lock, flags);
 315
 316        notify->notify(notify, cpumask);
 317
 318        free_cpumask_var(cpumask);
 319out:
 320        kref_put(&notify->kref, notify->release);
 321}
 322
 323/**
 324 *      irq_set_affinity_notifier - control notification of IRQ affinity changes
 325 *      @irq:           Interrupt for which to enable/disable notification
 326 *      @notify:        Context for notification, or %NULL to disable
 327 *                      notification.  Function pointers must be initialised;
 328 *                      the other fields will be initialised by this function.
 329 *
 330 *      Must be called in process context.  Notification may only be enabled
 331 *      after the IRQ is allocated and must be disabled before the IRQ is
 332 *      freed using free_irq().
 333 */
 334int
 335irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 336{
 337        struct irq_desc *desc = irq_to_desc(irq);
 338        struct irq_affinity_notify *old_notify;
 339        unsigned long flags;
 340
 341        /* The release function is promised process context */
 342        might_sleep();
 343
 344        if (!desc)
 345                return -EINVAL;
 346
 347        /* Complete initialisation of *notify */
 348        if (notify) {
 349                notify->irq = irq;
 350                kref_init(&notify->kref);
 351                INIT_WORK(&notify->work, irq_affinity_notify);
 352        }
 353
 354        raw_spin_lock_irqsave(&desc->lock, flags);
 355        old_notify = desc->affinity_notify;
 356        desc->affinity_notify = notify;
 357        raw_spin_unlock_irqrestore(&desc->lock, flags);
 358
 359        if (old_notify)
 360                kref_put(&old_notify->kref, old_notify->release);
 361
 362        return 0;
 363}
 364EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 365
 366#ifndef CONFIG_AUTO_IRQ_AFFINITY
 367/*
 368 * Generic version of the affinity autoselector.
 369 */
 370int irq_setup_affinity(struct irq_desc *desc)
 371{
 372        struct cpumask *set = irq_default_affinity;
 373        int ret, node = irq_desc_get_node(desc);
 374        static DEFINE_RAW_SPINLOCK(mask_lock);
 375        static struct cpumask mask;
 376
 377        /* Excludes PER_CPU and NO_BALANCE interrupts */
 378        if (!__irq_can_set_affinity(desc))
 379                return 0;
 380
 381        raw_spin_lock(&mask_lock);
 382        /*
 383         * Preserve the managed affinity setting and a userspace affinity
 384         * setup, but make sure that one of the targets is online.
 385         */
 386        if (irqd_affinity_is_managed(&desc->irq_data) ||
 387            irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 388                if (cpumask_intersects(desc->irq_common_data.affinity,
 389                                       cpu_online_mask))
 390                        set = desc->irq_common_data.affinity;
 391                else
 392                        irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 393        }
 394
 395        cpumask_and(&mask, cpu_online_mask, set);
 396        if (node != NUMA_NO_NODE) {
 397                const struct cpumask *nodemask = cpumask_of_node(node);
 398
 399                /* make sure at least one of the cpus in nodemask is online */
 400                if (cpumask_intersects(&mask, nodemask))
 401                        cpumask_and(&mask, &mask, nodemask);
 402        }
 403        ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 404        raw_spin_unlock(&mask_lock);
 405        return ret;
 406}
 407#else
 408/* Wrapper for ALPHA specific affinity selector magic */
 409int irq_setup_affinity(struct irq_desc *desc)
 410{
 411        return irq_select_affinity(irq_desc_get_irq(desc));
 412}
 413#endif
 414
 415/*
 416 * Called when a bogus affinity is set via /proc/irq
 417 */
 418int irq_select_affinity_usr(unsigned int irq)
 419{
 420        struct irq_desc *desc = irq_to_desc(irq);
 421        unsigned long flags;
 422        int ret;
 423
 424        raw_spin_lock_irqsave(&desc->lock, flags);
 425        ret = irq_setup_affinity(desc);
 426        raw_spin_unlock_irqrestore(&desc->lock, flags);
 427        return ret;
 428}
 429#endif
 430
 431/**
 432 *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 433 *      @irq: interrupt number to set affinity
 434 *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 435 *                  specific data for percpu_devid interrupts
 436 *
 437 *      This function uses the vCPU specific data to set the vCPU
 438 *      affinity for an irq. The vCPU specific data is passed from
 439 *      outside, such as KVM. One example code path is as below:
 440 *      KVM -> IOMMU -> irq_set_vcpu_affinity().
 441 */
 442int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 443{
 444        unsigned long flags;
 445        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 446        struct irq_data *data;
 447        struct irq_chip *chip;
 448        int ret = -ENOSYS;
 449
 450        if (!desc)
 451                return -EINVAL;
 452
 453        data = irq_desc_get_irq_data(desc);
 454        do {
 455                chip = irq_data_get_irq_chip(data);
 456                if (chip && chip->irq_set_vcpu_affinity)
 457                        break;
 458#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 459                data = data->parent_data;
 460#else
 461                data = NULL;
 462#endif
 463        } while (data);
 464
 465        if (data)
 466                ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 467        irq_put_desc_unlock(desc, flags);
 468
 469        return ret;
 470}
 471EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 472
 473void __disable_irq(struct irq_desc *desc)
 474{
 475        if (!desc->depth++)
 476                irq_disable(desc);
 477}
 478
 479static int __disable_irq_nosync(unsigned int irq)
 480{
 481        unsigned long flags;
 482        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 483
 484        if (!desc)
 485                return -EINVAL;
 486        __disable_irq(desc);
 487        irq_put_desc_busunlock(desc, flags);
 488        return 0;
 489}
 490
 491/**
 492 *      disable_irq_nosync - disable an irq without waiting
 493 *      @irq: Interrupt to disable
 494 *
 495 *      Disable the selected interrupt line.  Disables and Enables are
 496 *      nested.
 497 *      Unlike disable_irq(), this function does not ensure existing
 498 *      instances of the IRQ handler have completed before returning.
 499 *
 500 *      This function may be called from IRQ context.
 501 */
 502void disable_irq_nosync(unsigned int irq)
 503{
 504        __disable_irq_nosync(irq);
 505}
 506EXPORT_SYMBOL(disable_irq_nosync);
 507
 508/**
 509 *      disable_irq - disable an irq and wait for completion
 510 *      @irq: Interrupt to disable
 511 *
 512 *      Disable the selected interrupt line.  Enables and Disables are
 513 *      nested.
 514 *      This function waits for any pending IRQ handlers for this interrupt
 515 *      to complete before returning. If you use this function while
 516 *      holding a resource the IRQ handler may need you will deadlock.
 517 *
 518 *      This function may be called - with care - from IRQ context.
 519 */
 520void disable_irq(unsigned int irq)
 521{
 522        if (!__disable_irq_nosync(irq))
 523                synchronize_irq(irq);
 524}
 525EXPORT_SYMBOL(disable_irq);
 526
 527/**
 528 *      disable_hardirq - disables an irq and waits for hardirq completion
 529 *      @irq: Interrupt to disable
 530 *
 531 *      Disable the selected interrupt line.  Enables and Disables are
 532 *      nested.
 533 *      This function waits for any pending hard IRQ handlers for this
 534 *      interrupt to complete before returning. If you use this function while
 535 *      holding a resource the hard IRQ handler may need you will deadlock.
 536 *
 537 *      When used to optimistically disable an interrupt from atomic context
 538 *      the return value must be checked.
 539 *
 540 *      Returns: false if a threaded handler is active.
 541 *
 542 *      This function may be called - with care - from IRQ context.
 543 */
 544bool disable_hardirq(unsigned int irq)
 545{
 546        if (!__disable_irq_nosync(irq))
 547                return synchronize_hardirq(irq);
 548
 549        return false;
 550}
 551EXPORT_SYMBOL_GPL(disable_hardirq);
 552
 553void __enable_irq(struct irq_desc *desc)
 554{
 555        switch (desc->depth) {
 556        case 0:
 557 err_out:
 558                WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 559                     irq_desc_get_irq(desc));
 560                break;
 561        case 1: {
 562                if (desc->istate & IRQS_SUSPENDED)
 563                        goto err_out;
 564                /* Prevent probing on this irq: */
 565                irq_settings_set_noprobe(desc);
 566                /*
 567                 * Call irq_startup() not irq_enable() here because the
 568                 * interrupt might be marked NOAUTOEN. So irq_startup()
 569                 * needs to be invoked when it gets enabled the first
 570                 * time. If it was already started up, then irq_startup()
 571                 * will invoke irq_enable() under the hood.
 572                 */
 573                irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 574                break;
 575        }
 576        default:
 577                desc->depth--;
 578        }
 579}
 580
 581/**
 582 *      enable_irq - enable handling of an irq
 583 *      @irq: Interrupt to enable
 584 *
 585 *      Undoes the effect of one call to disable_irq().  If this
 586 *      matches the last disable, processing of interrupts on this
 587 *      IRQ line is re-enabled.
 588 *
 589 *      This function may be called from IRQ context only when
 590 *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 591 */
 592void enable_irq(unsigned int irq)
 593{
 594        unsigned long flags;
 595        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 596
 597        if (!desc)
 598                return;
 599        if (WARN(!desc->irq_data.chip,
 600                 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 601                goto out;
 602
 603        __enable_irq(desc);
 604out:
 605        irq_put_desc_busunlock(desc, flags);
 606}
 607EXPORT_SYMBOL(enable_irq);
 608
 609static int set_irq_wake_real(unsigned int irq, unsigned int on)
 610{
 611        struct irq_desc *desc = irq_to_desc(irq);
 612        int ret = -ENXIO;
 613
 614        if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 615                return 0;
 616
 617        if (desc->irq_data.chip->irq_set_wake)
 618                ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 619
 620        return ret;
 621}
 622
 623/**
 624 *      irq_set_irq_wake - control irq power management wakeup
 625 *      @irq:   interrupt to control
 626 *      @on:    enable/disable power management wakeup
 627 *
 628 *      Enable/disable power management wakeup mode, which is
 629 *      disabled by default.  Enables and disables must match,
 630 *      just as they match for non-wakeup mode support.
 631 *
 632 *      Wakeup mode lets this IRQ wake the system from sleep
 633 *      states like "suspend to RAM".
 634 */
 635int irq_set_irq_wake(unsigned int irq, unsigned int on)
 636{
 637        unsigned long flags;
 638        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 639        int ret = 0;
 640
 641        if (!desc)
 642                return -EINVAL;
 643
 644        /* wakeup-capable irqs can be shared between drivers that
 645         * don't need to have the same sleep mode behaviors.
 646         */
 647        if (on) {
 648                if (desc->wake_depth++ == 0) {
 649                        ret = set_irq_wake_real(irq, on);
 650                        if (ret)
 651                                desc->wake_depth = 0;
 652                        else
 653                                irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 654                }
 655        } else {
 656                if (desc->wake_depth == 0) {
 657                        WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 658                } else if (--desc->wake_depth == 0) {
 659                        ret = set_irq_wake_real(irq, on);
 660                        if (ret)
 661                                desc->wake_depth = 1;
 662                        else
 663                                irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 664                }
 665        }
 666        irq_put_desc_busunlock(desc, flags);
 667        return ret;
 668}
 669EXPORT_SYMBOL(irq_set_irq_wake);
 670
 671/*
 672 * Internal function that tells the architecture code whether a
 673 * particular irq has been exclusively allocated or is available
 674 * for driver use.
 675 */
 676int can_request_irq(unsigned int irq, unsigned long irqflags)
 677{
 678        unsigned long flags;
 679        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 680        int canrequest = 0;
 681
 682        if (!desc)
 683                return 0;
 684
 685        if (irq_settings_can_request(desc)) {
 686                if (!desc->action ||
 687                    irqflags & desc->action->flags & IRQF_SHARED)
 688                        canrequest = 1;
 689        }
 690        irq_put_desc_unlock(desc, flags);
 691        return canrequest;
 692}
 693
 694int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 695{
 696        struct irq_chip *chip = desc->irq_data.chip;
 697        int ret, unmask = 0;
 698
 699        if (!chip || !chip->irq_set_type) {
 700                /*
 701                 * IRQF_TRIGGER_* but the PIC does not support multiple
 702                 * flow-types?
 703                 */
 704                pr_debug("No set_type function for IRQ %d (%s)\n",
 705                         irq_desc_get_irq(desc),
 706                         chip ? (chip->name ? : "unknown") : "unknown");
 707                return 0;
 708        }
 709
 710        if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 711                if (!irqd_irq_masked(&desc->irq_data))
 712                        mask_irq(desc);
 713                if (!irqd_irq_disabled(&desc->irq_data))
 714                        unmask = 1;
 715        }
 716
 717        /* Mask all flags except trigger mode */
 718        flags &= IRQ_TYPE_SENSE_MASK;
 719        ret = chip->irq_set_type(&desc->irq_data, flags);
 720
 721        switch (ret) {
 722        case IRQ_SET_MASK_OK:
 723        case IRQ_SET_MASK_OK_DONE:
 724                irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 725                irqd_set(&desc->irq_data, flags);
 726
 727        case IRQ_SET_MASK_OK_NOCOPY:
 728                flags = irqd_get_trigger_type(&desc->irq_data);
 729                irq_settings_set_trigger_mask(desc, flags);
 730                irqd_clear(&desc->irq_data, IRQD_LEVEL);
 731                irq_settings_clr_level(desc);
 732                if (flags & IRQ_TYPE_LEVEL_MASK) {
 733                        irq_settings_set_level(desc);
 734                        irqd_set(&desc->irq_data, IRQD_LEVEL);
 735                }
 736
 737                ret = 0;
 738                break;
 739        default:
 740                pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
 741                       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 742        }
 743        if (unmask)
 744                unmask_irq(desc);
 745        return ret;
 746}
 747
 748#ifdef CONFIG_HARDIRQS_SW_RESEND
 749int irq_set_parent(int irq, int parent_irq)
 750{
 751        unsigned long flags;
 752        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 753
 754        if (!desc)
 755                return -EINVAL;
 756
 757        desc->parent_irq = parent_irq;
 758
 759        irq_put_desc_unlock(desc, flags);
 760        return 0;
 761}
 762EXPORT_SYMBOL_GPL(irq_set_parent);
 763#endif
 764
 765/*
 766 * Default primary interrupt handler for threaded interrupts. Is
 767 * assigned as primary handler when request_threaded_irq is called
 768 * with handler == NULL. Useful for oneshot interrupts.
 769 */
 770static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 771{
 772        return IRQ_WAKE_THREAD;
 773}
 774
 775/*
 776 * Primary handler for nested threaded interrupts. Should never be
 777 * called.
 778 */
 779static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 780{
 781        WARN(1, "Primary handler called for nested irq %d\n", irq);
 782        return IRQ_NONE;
 783}
 784
 785static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 786{
 787        WARN(1, "Secondary action handler called for irq %d\n", irq);
 788        return IRQ_NONE;
 789}
 790
 791static int irq_wait_for_interrupt(struct irqaction *action)
 792{
 793        for (;;) {
 794                set_current_state(TASK_INTERRUPTIBLE);
 795
 796                if (kthread_should_stop()) {
 797                        /* may need to run one last time */
 798                        if (test_and_clear_bit(IRQTF_RUNTHREAD,
 799                                               &action->thread_flags)) {
 800                                __set_current_state(TASK_RUNNING);
 801                                return 0;
 802                        }
 803                        __set_current_state(TASK_RUNNING);
 804                        return -1;
 805                }
 806
 807                if (test_and_clear_bit(IRQTF_RUNTHREAD,
 808                                       &action->thread_flags)) {
 809                        __set_current_state(TASK_RUNNING);
 810                        return 0;
 811                }
 812                schedule();
 813        }
 814}
 815
 816/*
 817 * Oneshot interrupts keep the irq line masked until the threaded
 818 * handler finished. unmask if the interrupt has not been disabled and
 819 * is marked MASKED.
 820 */
 821static void irq_finalize_oneshot(struct irq_desc *desc,
 822                                 struct irqaction *action)
 823{
 824        if (!(desc->istate & IRQS_ONESHOT) ||
 825            action->handler == irq_forced_secondary_handler)
 826                return;
 827again:
 828        chip_bus_lock(desc);
 829        raw_spin_lock_irq(&desc->lock);
 830
 831        /*
 832         * Implausible though it may be we need to protect us against
 833         * the following scenario:
 834         *
 835         * The thread is faster done than the hard interrupt handler
 836         * on the other CPU. If we unmask the irq line then the
 837         * interrupt can come in again and masks the line, leaves due
 838         * to IRQS_INPROGRESS and the irq line is masked forever.
 839         *
 840         * This also serializes the state of shared oneshot handlers
 841         * versus "desc->threads_onehsot |= action->thread_mask;" in
 842         * irq_wake_thread(). See the comment there which explains the
 843         * serialization.
 844         */
 845        if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 846                raw_spin_unlock_irq(&desc->lock);
 847                chip_bus_sync_unlock(desc);
 848                cpu_relax();
 849                goto again;
 850        }
 851
 852        /*
 853         * Now check again, whether the thread should run. Otherwise
 854         * we would clear the threads_oneshot bit of this thread which
 855         * was just set.
 856         */
 857        if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 858                goto out_unlock;
 859
 860        desc->threads_oneshot &= ~action->thread_mask;
 861
 862        if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 863            irqd_irq_masked(&desc->irq_data))
 864                unmask_threaded_irq(desc);
 865
 866out_unlock:
 867        raw_spin_unlock_irq(&desc->lock);
 868        chip_bus_sync_unlock(desc);
 869}
 870
 871#ifdef CONFIG_SMP
 872/*
 873 * Check whether we need to change the affinity of the interrupt thread.
 874 */
 875static void
 876irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 877{
 878        cpumask_var_t mask;
 879        bool valid = true;
 880
 881        if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 882                return;
 883
 884        /*
 885         * In case we are out of memory we set IRQTF_AFFINITY again and
 886         * try again next time
 887         */
 888        if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 889                set_bit(IRQTF_AFFINITY, &action->thread_flags);
 890                return;
 891        }
 892
 893        raw_spin_lock_irq(&desc->lock);
 894        /*
 895         * This code is triggered unconditionally. Check the affinity
 896         * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 897         */
 898        if (cpumask_available(desc->irq_common_data.affinity)) {
 899                const struct cpumask *m;
 900
 901                m = irq_data_get_effective_affinity_mask(&desc->irq_data);
 902                cpumask_copy(mask, m);
 903        } else {
 904                valid = false;
 905        }
 906        raw_spin_unlock_irq(&desc->lock);
 907
 908        if (valid)
 909                set_cpus_allowed_ptr(current, mask);
 910        free_cpumask_var(mask);
 911}
 912#else
 913static inline void
 914irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 915#endif
 916
 917/*
 918 * Interrupts which are not explicitely requested as threaded
 919 * interrupts rely on the implicit bh/preempt disable of the hard irq
 920 * context. So we need to disable bh here to avoid deadlocks and other
 921 * side effects.
 922 */
 923static irqreturn_t
 924irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 925{
 926        irqreturn_t ret;
 927
 928        local_bh_disable();
 929        ret = action->thread_fn(action->irq, action->dev_id);
 930        if (ret == IRQ_HANDLED)
 931                atomic_inc(&desc->threads_handled);
 932
 933        irq_finalize_oneshot(desc, action);
 934        local_bh_enable();
 935        return ret;
 936}
 937
 938/*
 939 * Interrupts explicitly requested as threaded interrupts want to be
 940 * preemtible - many of them need to sleep and wait for slow busses to
 941 * complete.
 942 */
 943static irqreturn_t irq_thread_fn(struct irq_desc *desc,
 944                struct irqaction *action)
 945{
 946        irqreturn_t ret;
 947
 948        ret = action->thread_fn(action->irq, action->dev_id);
 949        if (ret == IRQ_HANDLED)
 950                atomic_inc(&desc->threads_handled);
 951
 952        irq_finalize_oneshot(desc, action);
 953        return ret;
 954}
 955
 956static void wake_threads_waitq(struct irq_desc *desc)
 957{
 958        if (atomic_dec_and_test(&desc->threads_active))
 959                wake_up(&desc->wait_for_threads);
 960}
 961
 962static void irq_thread_dtor(struct callback_head *unused)
 963{
 964        struct task_struct *tsk = current;
 965        struct irq_desc *desc;
 966        struct irqaction *action;
 967
 968        if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
 969                return;
 970
 971        action = kthread_data(tsk);
 972
 973        pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
 974               tsk->comm, tsk->pid, action->irq);
 975
 976
 977        desc = irq_to_desc(action->irq);
 978        /*
 979         * If IRQTF_RUNTHREAD is set, we need to decrement
 980         * desc->threads_active and wake possible waiters.
 981         */
 982        if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 983                wake_threads_waitq(desc);
 984
 985        /* Prevent a stale desc->threads_oneshot */
 986        irq_finalize_oneshot(desc, action);
 987}
 988
 989static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
 990{
 991        struct irqaction *secondary = action->secondary;
 992
 993        if (WARN_ON_ONCE(!secondary))
 994                return;
 995
 996        raw_spin_lock_irq(&desc->lock);
 997        __irq_wake_thread(desc, secondary);
 998        raw_spin_unlock_irq(&desc->lock);
 999}
1000
1001/*
1002 * Interrupt handler thread
1003 */
1004static int irq_thread(void *data)
1005{
1006        struct callback_head on_exit_work;
1007        struct irqaction *action = data;
1008        struct irq_desc *desc = irq_to_desc(action->irq);
1009        irqreturn_t (*handler_fn)(struct irq_desc *desc,
1010                        struct irqaction *action);
1011
1012        if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1013                                        &action->thread_flags))
1014                handler_fn = irq_forced_thread_fn;
1015        else
1016                handler_fn = irq_thread_fn;
1017
1018        init_task_work(&on_exit_work, irq_thread_dtor);
1019        task_work_add(current, &on_exit_work, false);
1020
1021        irq_thread_check_affinity(desc, action);
1022
1023        while (!irq_wait_for_interrupt(action)) {
1024                irqreturn_t action_ret;
1025
1026                irq_thread_check_affinity(desc, action);
1027
1028                action_ret = handler_fn(desc, action);
1029                if (action_ret == IRQ_WAKE_THREAD)
1030                        irq_wake_secondary(desc, action);
1031
1032                wake_threads_waitq(desc);
1033        }
1034
1035        /*
1036         * This is the regular exit path. __free_irq() is stopping the
1037         * thread via kthread_stop() after calling
1038         * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1039         * oneshot mask bit can be set.
1040         */
1041        task_work_cancel(current, irq_thread_dtor);
1042        return 0;
1043}
1044
1045/**
1046 *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1047 *      @irq:           Interrupt line
1048 *      @dev_id:        Device identity for which the thread should be woken
1049 *
1050 */
1051void irq_wake_thread(unsigned int irq, void *dev_id)
1052{
1053        struct irq_desc *desc = irq_to_desc(irq);
1054        struct irqaction *action;
1055        unsigned long flags;
1056
1057        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1058                return;
1059
1060        raw_spin_lock_irqsave(&desc->lock, flags);
1061        for_each_action_of_desc(desc, action) {
1062                if (action->dev_id == dev_id) {
1063                        if (action->thread)
1064                                __irq_wake_thread(desc, action);
1065                        break;
1066                }
1067        }
1068        raw_spin_unlock_irqrestore(&desc->lock, flags);
1069}
1070EXPORT_SYMBOL_GPL(irq_wake_thread);
1071
1072static int irq_setup_forced_threading(struct irqaction *new)
1073{
1074        if (!force_irqthreads)
1075                return 0;
1076        if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1077                return 0;
1078
1079        /*
1080         * No further action required for interrupts which are requested as
1081         * threaded interrupts already
1082         */
1083        if (new->handler == irq_default_primary_handler)
1084                return 0;
1085
1086        new->flags |= IRQF_ONESHOT;
1087
1088        /*
1089         * Handle the case where we have a real primary handler and a
1090         * thread handler. We force thread them as well by creating a
1091         * secondary action.
1092         */
1093        if (new->handler && new->thread_fn) {
1094                /* Allocate the secondary action */
1095                new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1096                if (!new->secondary)
1097                        return -ENOMEM;
1098                new->secondary->handler = irq_forced_secondary_handler;
1099                new->secondary->thread_fn = new->thread_fn;
1100                new->secondary->dev_id = new->dev_id;
1101                new->secondary->irq = new->irq;
1102                new->secondary->name = new->name;
1103        }
1104        /* Deal with the primary handler */
1105        set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1106        new->thread_fn = new->handler;
1107        new->handler = irq_default_primary_handler;
1108        return 0;
1109}
1110
1111static int irq_request_resources(struct irq_desc *desc)
1112{
1113        struct irq_data *d = &desc->irq_data;
1114        struct irq_chip *c = d->chip;
1115
1116        return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1117}
1118
1119static void irq_release_resources(struct irq_desc *desc)
1120{
1121        struct irq_data *d = &desc->irq_data;
1122        struct irq_chip *c = d->chip;
1123
1124        if (c->irq_release_resources)
1125                c->irq_release_resources(d);
1126}
1127
1128static int
1129setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1130{
1131        struct task_struct *t;
1132        struct sched_param param = {
1133                .sched_priority = MAX_USER_RT_PRIO/2,
1134        };
1135
1136        if (!secondary) {
1137                t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1138                                   new->name);
1139        } else {
1140                t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1141                                   new->name);
1142                param.sched_priority -= 1;
1143        }
1144
1145        if (IS_ERR(t))
1146                return PTR_ERR(t);
1147
1148        sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1149
1150        /*
1151         * We keep the reference to the task struct even if
1152         * the thread dies to avoid that the interrupt code
1153         * references an already freed task_struct.
1154         */
1155        get_task_struct(t);
1156        new->thread = t;
1157        /*
1158         * Tell the thread to set its affinity. This is
1159         * important for shared interrupt handlers as we do
1160         * not invoke setup_affinity() for the secondary
1161         * handlers as everything is already set up. Even for
1162         * interrupts marked with IRQF_NO_BALANCE this is
1163         * correct as we want the thread to move to the cpu(s)
1164         * on which the requesting code placed the interrupt.
1165         */
1166        set_bit(IRQTF_AFFINITY, &new->thread_flags);
1167        return 0;
1168}
1169
1170/*
1171 * Internal function to register an irqaction - typically used to
1172 * allocate special interrupts that are part of the architecture.
1173 *
1174 * Locking rules:
1175 *
1176 * desc->request_mutex  Provides serialization against a concurrent free_irq()
1177 *   chip_bus_lock      Provides serialization for slow bus operations
1178 *     desc->lock       Provides serialization against hard interrupts
1179 *
1180 * chip_bus_lock and desc->lock are sufficient for all other management and
1181 * interrupt related functions. desc->request_mutex solely serializes
1182 * request/free_irq().
1183 */
1184static int
1185__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1186{
1187        struct irqaction *old, **old_ptr;
1188        unsigned long flags, thread_mask = 0;
1189        int ret, nested, shared = 0;
1190
1191        if (!desc)
1192                return -EINVAL;
1193
1194        if (desc->irq_data.chip == &no_irq_chip)
1195                return -ENOSYS;
1196        if (!try_module_get(desc->owner))
1197                return -ENODEV;
1198
1199        new->irq = irq;
1200
1201        /*
1202         * If the trigger type is not specified by the caller,
1203         * then use the default for this interrupt.
1204         */
1205        if (!(new->flags & IRQF_TRIGGER_MASK))
1206                new->flags |= irqd_get_trigger_type(&desc->irq_data);
1207
1208        /*
1209         * Check whether the interrupt nests into another interrupt
1210         * thread.
1211         */
1212        nested = irq_settings_is_nested_thread(desc);
1213        if (nested) {
1214                if (!new->thread_fn) {
1215                        ret = -EINVAL;
1216                        goto out_mput;
1217                }
1218                /*
1219                 * Replace the primary handler which was provided from
1220                 * the driver for non nested interrupt handling by the
1221                 * dummy function which warns when called.
1222                 */
1223                new->handler = irq_nested_primary_handler;
1224        } else {
1225                if (irq_settings_can_thread(desc)) {
1226                        ret = irq_setup_forced_threading(new);
1227                        if (ret)
1228                                goto out_mput;
1229                }
1230        }
1231
1232        /*
1233         * Create a handler thread when a thread function is supplied
1234         * and the interrupt does not nest into another interrupt
1235         * thread.
1236         */
1237        if (new->thread_fn && !nested) {
1238                ret = setup_irq_thread(new, irq, false);
1239                if (ret)
1240                        goto out_mput;
1241                if (new->secondary) {
1242                        ret = setup_irq_thread(new->secondary, irq, true);
1243                        if (ret)
1244                                goto out_thread;
1245                }
1246        }
1247
1248        /*
1249         * Drivers are often written to work w/o knowledge about the
1250         * underlying irq chip implementation, so a request for a
1251         * threaded irq without a primary hard irq context handler
1252         * requires the ONESHOT flag to be set. Some irq chips like
1253         * MSI based interrupts are per se one shot safe. Check the
1254         * chip flags, so we can avoid the unmask dance at the end of
1255         * the threaded handler for those.
1256         */
1257        if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1258                new->flags &= ~IRQF_ONESHOT;
1259
1260        /*
1261         * Protects against a concurrent __free_irq() call which might wait
1262         * for synchronize_hardirq() to complete without holding the optional
1263         * chip bus lock and desc->lock. Also protects against handing out
1264         * a recycled oneshot thread_mask bit while it's still in use by
1265         * its previous owner.
1266         */
1267        mutex_lock(&desc->request_mutex);
1268
1269        /*
1270         * Acquire bus lock as the irq_request_resources() callback below
1271         * might rely on the serialization or the magic power management
1272         * functions which are abusing the irq_bus_lock() callback,
1273         */
1274        chip_bus_lock(desc);
1275
1276        /* First installed action requests resources. */
1277        if (!desc->action) {
1278                ret = irq_request_resources(desc);
1279                if (ret) {
1280                        pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1281                               new->name, irq, desc->irq_data.chip->name);
1282                        goto out_bus_unlock;
1283                }
1284        }
1285
1286        /*
1287         * The following block of code has to be executed atomically
1288         * protected against a concurrent interrupt and any of the other
1289         * management calls which are not serialized via
1290         * desc->request_mutex or the optional bus lock.
1291         */
1292        raw_spin_lock_irqsave(&desc->lock, flags);
1293        old_ptr = &desc->action;
1294        old = *old_ptr;
1295        if (old) {
1296                /*
1297                 * Can't share interrupts unless both agree to and are
1298                 * the same type (level, edge, polarity). So both flag
1299                 * fields must have IRQF_SHARED set and the bits which
1300                 * set the trigger type must match. Also all must
1301                 * agree on ONESHOT.
1302                 */
1303                unsigned int oldtype;
1304
1305                /*
1306                 * If nobody did set the configuration before, inherit
1307                 * the one provided by the requester.
1308                 */
1309                if (irqd_trigger_type_was_set(&desc->irq_data)) {
1310                        oldtype = irqd_get_trigger_type(&desc->irq_data);
1311                } else {
1312                        oldtype = new->flags & IRQF_TRIGGER_MASK;
1313                        irqd_set_trigger_type(&desc->irq_data, oldtype);
1314                }
1315
1316                if (!((old->flags & new->flags) & IRQF_SHARED) ||
1317                    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1318                    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1319                        goto mismatch;
1320
1321                /* All handlers must agree on per-cpuness */
1322                if ((old->flags & IRQF_PERCPU) !=
1323                    (new->flags & IRQF_PERCPU))
1324                        goto mismatch;
1325
1326                /* add new interrupt at end of irq queue */
1327                do {
1328                        /*
1329                         * Or all existing action->thread_mask bits,
1330                         * so we can find the next zero bit for this
1331                         * new action.
1332                         */
1333                        thread_mask |= old->thread_mask;
1334                        old_ptr = &old->next;
1335                        old = *old_ptr;
1336                } while (old);
1337                shared = 1;
1338        }
1339
1340        /*
1341         * Setup the thread mask for this irqaction for ONESHOT. For
1342         * !ONESHOT irqs the thread mask is 0 so we can avoid a
1343         * conditional in irq_wake_thread().
1344         */
1345        if (new->flags & IRQF_ONESHOT) {
1346                /*
1347                 * Unlikely to have 32 resp 64 irqs sharing one line,
1348                 * but who knows.
1349                 */
1350                if (thread_mask == ~0UL) {
1351                        ret = -EBUSY;
1352                        goto out_unlock;
1353                }
1354                /*
1355                 * The thread_mask for the action is or'ed to
1356                 * desc->thread_active to indicate that the
1357                 * IRQF_ONESHOT thread handler has been woken, but not
1358                 * yet finished. The bit is cleared when a thread
1359                 * completes. When all threads of a shared interrupt
1360                 * line have completed desc->threads_active becomes
1361                 * zero and the interrupt line is unmasked. See
1362                 * handle.c:irq_wake_thread() for further information.
1363                 *
1364                 * If no thread is woken by primary (hard irq context)
1365                 * interrupt handlers, then desc->threads_active is
1366                 * also checked for zero to unmask the irq line in the
1367                 * affected hard irq flow handlers
1368                 * (handle_[fasteoi|level]_irq).
1369                 *
1370                 * The new action gets the first zero bit of
1371                 * thread_mask assigned. See the loop above which or's
1372                 * all existing action->thread_mask bits.
1373                 */
1374                new->thread_mask = 1UL << ffz(thread_mask);
1375
1376        } else if (new->handler == irq_default_primary_handler &&
1377                   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1378                /*
1379                 * The interrupt was requested with handler = NULL, so
1380                 * we use the default primary handler for it. But it
1381                 * does not have the oneshot flag set. In combination
1382                 * with level interrupts this is deadly, because the
1383                 * default primary handler just wakes the thread, then
1384                 * the irq lines is reenabled, but the device still
1385                 * has the level irq asserted. Rinse and repeat....
1386                 *
1387                 * While this works for edge type interrupts, we play
1388                 * it safe and reject unconditionally because we can't
1389                 * say for sure which type this interrupt really
1390                 * has. The type flags are unreliable as the
1391                 * underlying chip implementation can override them.
1392                 */
1393                pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1394                       irq);
1395                ret = -EINVAL;
1396                goto out_unlock;
1397        }
1398
1399        if (!shared) {
1400                init_waitqueue_head(&desc->wait_for_threads);
1401
1402                /* Setup the type (level, edge polarity) if configured: */
1403                if (new->flags & IRQF_TRIGGER_MASK) {
1404                        ret = __irq_set_trigger(desc,
1405                                                new->flags & IRQF_TRIGGER_MASK);
1406
1407                        if (ret)
1408                                goto out_unlock;
1409                }
1410
1411                /*
1412                 * Activate the interrupt. That activation must happen
1413                 * independently of IRQ_NOAUTOEN. request_irq() can fail
1414                 * and the callers are supposed to handle
1415                 * that. enable_irq() of an interrupt requested with
1416                 * IRQ_NOAUTOEN is not supposed to fail. The activation
1417                 * keeps it in shutdown mode, it merily associates
1418                 * resources if necessary and if that's not possible it
1419                 * fails. Interrupts which are in managed shutdown mode
1420                 * will simply ignore that activation request.
1421                 */
1422                ret = irq_activate(desc);
1423                if (ret)
1424                        goto out_unlock;
1425
1426                desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1427                                  IRQS_ONESHOT | IRQS_WAITING);
1428                irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1429
1430                if (new->flags & IRQF_PERCPU) {
1431                        irqd_set(&desc->irq_data, IRQD_PER_CPU);
1432                        irq_settings_set_per_cpu(desc);
1433                }
1434
1435                if (new->flags & IRQF_ONESHOT)
1436                        desc->istate |= IRQS_ONESHOT;
1437
1438                /* Exclude IRQ from balancing if requested */
1439                if (new->flags & IRQF_NOBALANCING) {
1440                        irq_settings_set_no_balancing(desc);
1441                        irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1442                }
1443
1444                if (irq_settings_can_autoenable(desc)) {
1445                        irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1446                } else {
1447                        /*
1448                         * Shared interrupts do not go well with disabling
1449                         * auto enable. The sharing interrupt might request
1450                         * it while it's still disabled and then wait for
1451                         * interrupts forever.
1452                         */
1453                        WARN_ON_ONCE(new->flags & IRQF_SHARED);
1454                        /* Undo nested disables: */
1455                        desc->depth = 1;
1456                }
1457
1458        } else if (new->flags & IRQF_TRIGGER_MASK) {
1459                unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1460                unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1461
1462                if (nmsk != omsk)
1463                        /* hope the handler works with current  trigger mode */
1464                        pr_warn("irq %d uses trigger mode %u; requested %u\n",
1465                                irq, omsk, nmsk);
1466        }
1467
1468        *old_ptr = new;
1469
1470        irq_pm_install_action(desc, new);
1471
1472        /* Reset broken irq detection when installing new handler */
1473        desc->irq_count = 0;
1474        desc->irqs_unhandled = 0;
1475
1476        /*
1477         * Check whether we disabled the irq via the spurious handler
1478         * before. Reenable it and give it another chance.
1479         */
1480        if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1481                desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1482                __enable_irq(desc);
1483        }
1484
1485        raw_spin_unlock_irqrestore(&desc->lock, flags);
1486        chip_bus_sync_unlock(desc);
1487        mutex_unlock(&desc->request_mutex);
1488
1489        irq_setup_timings(desc, new);
1490
1491        /*
1492         * Strictly no need to wake it up, but hung_task complains
1493         * when no hard interrupt wakes the thread up.
1494         */
1495        if (new->thread)
1496                wake_up_process(new->thread);
1497        if (new->secondary)
1498                wake_up_process(new->secondary->thread);
1499
1500        register_irq_proc(irq, desc);
1501        new->dir = NULL;
1502        register_handler_proc(irq, new);
1503        return 0;
1504
1505mismatch:
1506        if (!(new->flags & IRQF_PROBE_SHARED)) {
1507                pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1508                       irq, new->flags, new->name, old->flags, old->name);
1509#ifdef CONFIG_DEBUG_SHIRQ
1510                dump_stack();
1511#endif
1512        }
1513        ret = -EBUSY;
1514
1515out_unlock:
1516        raw_spin_unlock_irqrestore(&desc->lock, flags);
1517
1518        if (!desc->action)
1519                irq_release_resources(desc);
1520out_bus_unlock:
1521        chip_bus_sync_unlock(desc);
1522        mutex_unlock(&desc->request_mutex);
1523
1524out_thread:
1525        if (new->thread) {
1526                struct task_struct *t = new->thread;
1527
1528                new->thread = NULL;
1529                kthread_stop(t);
1530                put_task_struct(t);
1531        }
1532        if (new->secondary && new->secondary->thread) {
1533                struct task_struct *t = new->secondary->thread;
1534
1535                new->secondary->thread = NULL;
1536                kthread_stop(t);
1537                put_task_struct(t);
1538        }
1539out_mput:
1540        module_put(desc->owner);
1541        return ret;
1542}
1543
1544/**
1545 *      setup_irq - setup an interrupt
1546 *      @irq: Interrupt line to setup
1547 *      @act: irqaction for the interrupt
1548 *
1549 * Used to statically setup interrupts in the early boot process.
1550 */
1551int setup_irq(unsigned int irq, struct irqaction *act)
1552{
1553        int retval;
1554        struct irq_desc *desc = irq_to_desc(irq);
1555
1556        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1557                return -EINVAL;
1558
1559        retval = irq_chip_pm_get(&desc->irq_data);
1560        if (retval < 0)
1561                return retval;
1562
1563        retval = __setup_irq(irq, desc, act);
1564
1565        if (retval)
1566                irq_chip_pm_put(&desc->irq_data);
1567
1568        return retval;
1569}
1570EXPORT_SYMBOL_GPL(setup_irq);
1571
1572/*
1573 * Internal function to unregister an irqaction - used to free
1574 * regular and special interrupts that are part of the architecture.
1575 */
1576static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1577{
1578        unsigned irq = desc->irq_data.irq;
1579        struct irqaction *action, **action_ptr;
1580        unsigned long flags;
1581
1582        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1583
1584        mutex_lock(&desc->request_mutex);
1585        chip_bus_lock(desc);
1586        raw_spin_lock_irqsave(&desc->lock, flags);
1587
1588        /*
1589         * There can be multiple actions per IRQ descriptor, find the right
1590         * one based on the dev_id:
1591         */
1592        action_ptr = &desc->action;
1593        for (;;) {
1594                action = *action_ptr;
1595
1596                if (!action) {
1597                        WARN(1, "Trying to free already-free IRQ %d\n", irq);
1598                        raw_spin_unlock_irqrestore(&desc->lock, flags);
1599                        chip_bus_sync_unlock(desc);
1600                        mutex_unlock(&desc->request_mutex);
1601                        return NULL;
1602                }
1603
1604                if (action->dev_id == dev_id)
1605                        break;
1606                action_ptr = &action->next;
1607        }
1608
1609        /* Found it - now remove it from the list of entries: */
1610        *action_ptr = action->next;
1611
1612        irq_pm_remove_action(desc, action);
1613
1614        /* If this was the last handler, shut down the IRQ line: */
1615        if (!desc->action) {
1616                irq_settings_clr_disable_unlazy(desc);
1617                irq_shutdown(desc);
1618        }
1619
1620#ifdef CONFIG_SMP
1621        /* make sure affinity_hint is cleaned up */
1622        if (WARN_ON_ONCE(desc->affinity_hint))
1623                desc->affinity_hint = NULL;
1624#endif
1625
1626        raw_spin_unlock_irqrestore(&desc->lock, flags);
1627        /*
1628         * Drop bus_lock here so the changes which were done in the chip
1629         * callbacks above are synced out to the irq chips which hang
1630         * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1631         *
1632         * Aside of that the bus_lock can also be taken from the threaded
1633         * handler in irq_finalize_oneshot() which results in a deadlock
1634         * because kthread_stop() would wait forever for the thread to
1635         * complete, which is blocked on the bus lock.
1636         *
1637         * The still held desc->request_mutex() protects against a
1638         * concurrent request_irq() of this irq so the release of resources
1639         * and timing data is properly serialized.
1640         */
1641        chip_bus_sync_unlock(desc);
1642
1643        unregister_handler_proc(irq, action);
1644
1645        /* Make sure it's not being used on another CPU: */
1646        synchronize_hardirq(irq);
1647
1648#ifdef CONFIG_DEBUG_SHIRQ
1649        /*
1650         * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1651         * event to happen even now it's being freed, so let's make sure that
1652         * is so by doing an extra call to the handler ....
1653         *
1654         * ( We do this after actually deregistering it, to make sure that a
1655         *   'real' IRQ doesn't run in parallel with our fake. )
1656         */
1657        if (action->flags & IRQF_SHARED) {
1658                local_irq_save(flags);
1659                action->handler(irq, dev_id);
1660                local_irq_restore(flags);
1661        }
1662#endif
1663
1664        /*
1665         * The action has already been removed above, but the thread writes
1666         * its oneshot mask bit when it completes. Though request_mutex is
1667         * held across this which prevents __setup_irq() from handing out
1668         * the same bit to a newly requested action.
1669         */
1670        if (action->thread) {
1671                kthread_stop(action->thread);
1672                put_task_struct(action->thread);
1673                if (action->secondary && action->secondary->thread) {
1674                        kthread_stop(action->secondary->thread);
1675                        put_task_struct(action->secondary->thread);
1676                }
1677        }
1678
1679        /* Last action releases resources */
1680        if (!desc->action) {
1681                /*
1682                 * Reaquire bus lock as irq_release_resources() might
1683                 * require it to deallocate resources over the slow bus.
1684                 */
1685                chip_bus_lock(desc);
1686                irq_release_resources(desc);
1687                chip_bus_sync_unlock(desc);
1688                irq_remove_timings(desc);
1689        }
1690
1691        mutex_unlock(&desc->request_mutex);
1692
1693        irq_chip_pm_put(&desc->irq_data);
1694        module_put(desc->owner);
1695        kfree(action->secondary);
1696        return action;
1697}
1698
1699/**
1700 *      remove_irq - free an interrupt
1701 *      @irq: Interrupt line to free
1702 *      @act: irqaction for the interrupt
1703 *
1704 * Used to remove interrupts statically setup by the early boot process.
1705 */
1706void remove_irq(unsigned int irq, struct irqaction *act)
1707{
1708        struct irq_desc *desc = irq_to_desc(irq);
1709
1710        if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1711                __free_irq(desc, act->dev_id);
1712}
1713EXPORT_SYMBOL_GPL(remove_irq);
1714
1715/**
1716 *      free_irq - free an interrupt allocated with request_irq
1717 *      @irq: Interrupt line to free
1718 *      @dev_id: Device identity to free
1719 *
1720 *      Remove an interrupt handler. The handler is removed and if the
1721 *      interrupt line is no longer in use by any driver it is disabled.
1722 *      On a shared IRQ the caller must ensure the interrupt is disabled
1723 *      on the card it drives before calling this function. The function
1724 *      does not return until any executing interrupts for this IRQ
1725 *      have completed.
1726 *
1727 *      This function must not be called from interrupt context.
1728 *
1729 *      Returns the devname argument passed to request_irq.
1730 */
1731const void *free_irq(unsigned int irq, void *dev_id)
1732{
1733        struct irq_desc *desc = irq_to_desc(irq);
1734        struct irqaction *action;
1735        const char *devname;
1736
1737        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1738                return NULL;
1739
1740#ifdef CONFIG_SMP
1741        if (WARN_ON(desc->affinity_notify))
1742                desc->affinity_notify = NULL;
1743#endif
1744
1745        action = __free_irq(desc, dev_id);
1746
1747        if (!action)
1748                return NULL;
1749
1750        devname = action->name;
1751        kfree(action);
1752        return devname;
1753}
1754EXPORT_SYMBOL(free_irq);
1755
1756/**
1757 *      request_threaded_irq - allocate an interrupt line
1758 *      @irq: Interrupt line to allocate
1759 *      @handler: Function to be called when the IRQ occurs.
1760 *                Primary handler for threaded interrupts
1761 *                If NULL and thread_fn != NULL the default
1762 *                primary handler is installed
1763 *      @thread_fn: Function called from the irq handler thread
1764 *                  If NULL, no irq thread is created
1765 *      @irqflags: Interrupt type flags
1766 *      @devname: An ascii name for the claiming device
1767 *      @dev_id: A cookie passed back to the handler function
1768 *
1769 *      This call allocates interrupt resources and enables the
1770 *      interrupt line and IRQ handling. From the point this
1771 *      call is made your handler function may be invoked. Since
1772 *      your handler function must clear any interrupt the board
1773 *      raises, you must take care both to initialise your hardware
1774 *      and to set up the interrupt handler in the right order.
1775 *
1776 *      If you want to set up a threaded irq handler for your device
1777 *      then you need to supply @handler and @thread_fn. @handler is
1778 *      still called in hard interrupt context and has to check
1779 *      whether the interrupt originates from the device. If yes it
1780 *      needs to disable the interrupt on the device and return
1781 *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1782 *      @thread_fn. This split handler design is necessary to support
1783 *      shared interrupts.
1784 *
1785 *      Dev_id must be globally unique. Normally the address of the
1786 *      device data structure is used as the cookie. Since the handler
1787 *      receives this value it makes sense to use it.
1788 *
1789 *      If your interrupt is shared you must pass a non NULL dev_id
1790 *      as this is required when freeing the interrupt.
1791 *
1792 *      Flags:
1793 *
1794 *      IRQF_SHARED             Interrupt is shared
1795 *      IRQF_TRIGGER_*          Specify active edge(s) or level
1796 *
1797 */
1798int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1799                         irq_handler_t thread_fn, unsigned long irqflags,
1800                         const char *devname, void *dev_id)
1801{
1802        struct irqaction *action;
1803        struct irq_desc *desc;
1804        int retval;
1805
1806        if (irq == IRQ_NOTCONNECTED)
1807                return -ENOTCONN;
1808
1809        /*
1810         * Sanity-check: shared interrupts must pass in a real dev-ID,
1811         * otherwise we'll have trouble later trying to figure out
1812         * which interrupt is which (messes up the interrupt freeing
1813         * logic etc).
1814         *
1815         * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1816         * it cannot be set along with IRQF_NO_SUSPEND.
1817         */
1818        if (((irqflags & IRQF_SHARED) && !dev_id) ||
1819            (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1820            ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1821                return -EINVAL;
1822
1823        desc = irq_to_desc(irq);
1824        if (!desc)
1825                return -EINVAL;
1826
1827        if (!irq_settings_can_request(desc) ||
1828            WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1829                return -EINVAL;
1830
1831        if (!handler) {
1832                if (!thread_fn)
1833                        return -EINVAL;
1834                handler = irq_default_primary_handler;
1835        }
1836
1837        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1838        if (!action)
1839                return -ENOMEM;
1840
1841        action->handler = handler;
1842        action->thread_fn = thread_fn;
1843        action->flags = irqflags;
1844        action->name = devname;
1845        action->dev_id = dev_id;
1846
1847        retval = irq_chip_pm_get(&desc->irq_data);
1848        if (retval < 0) {
1849                kfree(action);
1850                return retval;
1851        }
1852
1853        retval = __setup_irq(irq, desc, action);
1854
1855        if (retval) {
1856                irq_chip_pm_put(&desc->irq_data);
1857                kfree(action->secondary);
1858                kfree(action);
1859        }
1860
1861#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1862        if (!retval && (irqflags & IRQF_SHARED)) {
1863                /*
1864                 * It's a shared IRQ -- the driver ought to be prepared for it
1865                 * to happen immediately, so let's make sure....
1866                 * We disable the irq to make sure that a 'real' IRQ doesn't
1867                 * run in parallel with our fake.
1868                 */
1869                unsigned long flags;
1870
1871                disable_irq(irq);
1872                local_irq_save(flags);
1873
1874                handler(irq, dev_id);
1875
1876                local_irq_restore(flags);
1877                enable_irq(irq);
1878        }
1879#endif
1880        return retval;
1881}
1882EXPORT_SYMBOL(request_threaded_irq);
1883
1884/**
1885 *      request_any_context_irq - allocate an interrupt line
1886 *      @irq: Interrupt line to allocate
1887 *      @handler: Function to be called when the IRQ occurs.
1888 *                Threaded handler for threaded interrupts.
1889 *      @flags: Interrupt type flags
1890 *      @name: An ascii name for the claiming device
1891 *      @dev_id: A cookie passed back to the handler function
1892 *
1893 *      This call allocates interrupt resources and enables the
1894 *      interrupt line and IRQ handling. It selects either a
1895 *      hardirq or threaded handling method depending on the
1896 *      context.
1897 *
1898 *      On failure, it returns a negative value. On success,
1899 *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1900 */
1901int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1902                            unsigned long flags, const char *name, void *dev_id)
1903{
1904        struct irq_desc *desc;
1905        int ret;
1906
1907        if (irq == IRQ_NOTCONNECTED)
1908                return -ENOTCONN;
1909
1910        desc = irq_to_desc(irq);
1911        if (!desc)
1912                return -EINVAL;
1913
1914        if (irq_settings_is_nested_thread(desc)) {
1915                ret = request_threaded_irq(irq, NULL, handler,
1916                                           flags, name, dev_id);
1917                return !ret ? IRQC_IS_NESTED : ret;
1918        }
1919
1920        ret = request_irq(irq, handler, flags, name, dev_id);
1921        return !ret ? IRQC_IS_HARDIRQ : ret;
1922}
1923EXPORT_SYMBOL_GPL(request_any_context_irq);
1924
1925void enable_percpu_irq(unsigned int irq, unsigned int type)
1926{
1927        unsigned int cpu = smp_processor_id();
1928        unsigned long flags;
1929        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1930
1931        if (!desc)
1932                return;
1933
1934        /*
1935         * If the trigger type is not specified by the caller, then
1936         * use the default for this interrupt.
1937         */
1938        type &= IRQ_TYPE_SENSE_MASK;
1939        if (type == IRQ_TYPE_NONE)
1940                type = irqd_get_trigger_type(&desc->irq_data);
1941
1942        if (type != IRQ_TYPE_NONE) {
1943                int ret;
1944
1945                ret = __irq_set_trigger(desc, type);
1946
1947                if (ret) {
1948                        WARN(1, "failed to set type for IRQ%d\n", irq);
1949                        goto out;
1950                }
1951        }
1952
1953        irq_percpu_enable(desc, cpu);
1954out:
1955        irq_put_desc_unlock(desc, flags);
1956}
1957EXPORT_SYMBOL_GPL(enable_percpu_irq);
1958
1959/**
1960 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1961 * @irq:        Linux irq number to check for
1962 *
1963 * Must be called from a non migratable context. Returns the enable
1964 * state of a per cpu interrupt on the current cpu.
1965 */
1966bool irq_percpu_is_enabled(unsigned int irq)
1967{
1968        unsigned int cpu = smp_processor_id();
1969        struct irq_desc *desc;
1970        unsigned long flags;
1971        bool is_enabled;
1972
1973        desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1974        if (!desc)
1975                return false;
1976
1977        is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1978        irq_put_desc_unlock(desc, flags);
1979
1980        return is_enabled;
1981}
1982EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1983
1984void disable_percpu_irq(unsigned int irq)
1985{
1986        unsigned int cpu = smp_processor_id();
1987        unsigned long flags;
1988        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1989
1990        if (!desc)
1991                return;
1992
1993        irq_percpu_disable(desc, cpu);
1994        irq_put_desc_unlock(desc, flags);
1995}
1996EXPORT_SYMBOL_GPL(disable_percpu_irq);
1997
1998/*
1999 * Internal function to unregister a percpu irqaction.
2000 */
2001static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2002{
2003        struct irq_desc *desc = irq_to_desc(irq);
2004        struct irqaction *action;
2005        unsigned long flags;
2006
2007        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2008
2009        if (!desc)
2010                return NULL;
2011
2012        raw_spin_lock_irqsave(&desc->lock, flags);
2013
2014        action = desc->action;
2015        if (!action || action->percpu_dev_id != dev_id) {
2016                WARN(1, "Trying to free already-free IRQ %d\n", irq);
2017                goto bad;
2018        }
2019
2020        if (!cpumask_empty(desc->percpu_enabled)) {
2021                WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2022                     irq, cpumask_first(desc->percpu_enabled));
2023                goto bad;
2024        }
2025
2026        /* Found it - now remove it from the list of entries: */
2027        desc->action = NULL;
2028
2029        raw_spin_unlock_irqrestore(&desc->lock, flags);
2030
2031        unregister_handler_proc(irq, action);
2032
2033        irq_chip_pm_put(&desc->irq_data);
2034        module_put(desc->owner);
2035        return action;
2036
2037bad:
2038        raw_spin_unlock_irqrestore(&desc->lock, flags);
2039        return NULL;
2040}
2041
2042/**
2043 *      remove_percpu_irq - free a per-cpu interrupt
2044 *      @irq: Interrupt line to free
2045 *      @act: irqaction for the interrupt
2046 *
2047 * Used to remove interrupts statically setup by the early boot process.
2048 */
2049void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2050{
2051        struct irq_desc *desc = irq_to_desc(irq);
2052
2053        if (desc && irq_settings_is_per_cpu_devid(desc))
2054            __free_percpu_irq(irq, act->percpu_dev_id);
2055}
2056
2057/**
2058 *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2059 *      @irq: Interrupt line to free
2060 *      @dev_id: Device identity to free
2061 *
2062 *      Remove a percpu interrupt handler. The handler is removed, but
2063 *      the interrupt line is not disabled. This must be done on each
2064 *      CPU before calling this function. The function does not return
2065 *      until any executing interrupts for this IRQ have completed.
2066 *
2067 *      This function must not be called from interrupt context.
2068 */
2069void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2070{
2071        struct irq_desc *desc = irq_to_desc(irq);
2072
2073        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2074                return;
2075
2076        chip_bus_lock(desc);
2077        kfree(__free_percpu_irq(irq, dev_id));
2078        chip_bus_sync_unlock(desc);
2079}
2080EXPORT_SYMBOL_GPL(free_percpu_irq);
2081
2082/**
2083 *      setup_percpu_irq - setup a per-cpu interrupt
2084 *      @irq: Interrupt line to setup
2085 *      @act: irqaction for the interrupt
2086 *
2087 * Used to statically setup per-cpu interrupts in the early boot process.
2088 */
2089int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2090{
2091        struct irq_desc *desc = irq_to_desc(irq);
2092        int retval;
2093
2094        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2095                return -EINVAL;
2096
2097        retval = irq_chip_pm_get(&desc->irq_data);
2098        if (retval < 0)
2099                return retval;
2100
2101        retval = __setup_irq(irq, desc, act);
2102
2103        if (retval)
2104                irq_chip_pm_put(&desc->irq_data);
2105
2106        return retval;
2107}
2108
2109/**
2110 *      __request_percpu_irq - allocate a percpu interrupt line
2111 *      @irq: Interrupt line to allocate
2112 *      @handler: Function to be called when the IRQ occurs.
2113 *      @flags: Interrupt type flags (IRQF_TIMER only)
2114 *      @devname: An ascii name for the claiming device
2115 *      @dev_id: A percpu cookie passed back to the handler function
2116 *
2117 *      This call allocates interrupt resources and enables the
2118 *      interrupt on the local CPU. If the interrupt is supposed to be
2119 *      enabled on other CPUs, it has to be done on each CPU using
2120 *      enable_percpu_irq().
2121 *
2122 *      Dev_id must be globally unique. It is a per-cpu variable, and
2123 *      the handler gets called with the interrupted CPU's instance of
2124 *      that variable.
2125 */
2126int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2127                         unsigned long flags, const char *devname,
2128                         void __percpu *dev_id)
2129{
2130        struct irqaction *action;
2131        struct irq_desc *desc;
2132        int retval;
2133
2134        if (!dev_id)
2135                return -EINVAL;
2136
2137        desc = irq_to_desc(irq);
2138        if (!desc || !irq_settings_can_request(desc) ||
2139            !irq_settings_is_per_cpu_devid(desc))
2140                return -EINVAL;
2141
2142        if (flags && flags != IRQF_TIMER)
2143                return -EINVAL;
2144
2145        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2146        if (!action)
2147                return -ENOMEM;
2148
2149        action->handler = handler;
2150        action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2151        action->name = devname;
2152        action->percpu_dev_id = dev_id;
2153
2154        retval = irq_chip_pm_get(&desc->irq_data);
2155        if (retval < 0) {
2156                kfree(action);
2157                return retval;
2158        }
2159
2160        retval = __setup_irq(irq, desc, action);
2161
2162        if (retval) {
2163                irq_chip_pm_put(&desc->irq_data);
2164                kfree(action);
2165        }
2166
2167        return retval;
2168}
2169EXPORT_SYMBOL_GPL(__request_percpu_irq);
2170
2171/**
2172 *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2173 *      @irq: Interrupt line that is forwarded to a VM
2174 *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2175 *      @state: a pointer to a boolean where the state is to be storeed
2176 *
2177 *      This call snapshots the internal irqchip state of an
2178 *      interrupt, returning into @state the bit corresponding to
2179 *      stage @which
2180 *
2181 *      This function should be called with preemption disabled if the
2182 *      interrupt controller has per-cpu registers.
2183 */
2184int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2185                          bool *state)
2186{
2187        struct irq_desc *desc;
2188        struct irq_data *data;
2189        struct irq_chip *chip;
2190        unsigned long flags;
2191        int err = -EINVAL;
2192
2193        desc = irq_get_desc_buslock(irq, &flags, 0);
2194        if (!desc)
2195                return err;
2196
2197        data = irq_desc_get_irq_data(desc);
2198
2199        do {
2200                chip = irq_data_get_irq_chip(data);
2201                if (chip->irq_get_irqchip_state)
2202                        break;
2203#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2204                data = data->parent_data;
2205#else
2206                data = NULL;
2207#endif
2208        } while (data);
2209
2210        if (data)
2211                err = chip->irq_get_irqchip_state(data, which, state);
2212
2213        irq_put_desc_busunlock(desc, flags);
2214        return err;
2215}
2216EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2217
2218/**
2219 *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2220 *      @irq: Interrupt line that is forwarded to a VM
2221 *      @which: State to be restored (one of IRQCHIP_STATE_*)
2222 *      @val: Value corresponding to @which
2223 *
2224 *      This call sets the internal irqchip state of an interrupt,
2225 *      depending on the value of @which.
2226 *
2227 *      This function should be called with preemption disabled if the
2228 *      interrupt controller has per-cpu registers.
2229 */
2230int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2231                          bool val)
2232{
2233        struct irq_desc *desc;
2234        struct irq_data *data;
2235        struct irq_chip *chip;
2236        unsigned long flags;
2237        int err = -EINVAL;
2238
2239        desc = irq_get_desc_buslock(irq, &flags, 0);
2240        if (!desc)
2241                return err;
2242
2243        data = irq_desc_get_irq_data(desc);
2244
2245        do {
2246                chip = irq_data_get_irq_chip(data);
2247                if (chip->irq_set_irqchip_state)
2248                        break;
2249#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2250                data = data->parent_data;
2251#else
2252                data = NULL;
2253#endif
2254        } while (data);
2255
2256        if (data)
2257                err = chip->irq_set_irqchip_state(data, which, val);
2258
2259        irq_put_desc_busunlock(desc, flags);
2260        return err;
2261}
2262EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2263