linux/kernel/stop_machine.c
<<
>>
Prefs
   1/*
   2 * kernel/stop_machine.c
   3 *
   4 * Copyright (C) 2008, 2005     IBM Corporation.
   5 * Copyright (C) 2008, 2005     Rusty Russell rusty@rustcorp.com.au
   6 * Copyright (C) 2010           SUSE Linux Products GmbH
   7 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
   8 *
   9 * This file is released under the GPLv2 and any later version.
  10 */
  11#include <linux/completion.h>
  12#include <linux/cpu.h>
  13#include <linux/init.h>
  14#include <linux/kthread.h>
  15#include <linux/export.h>
  16#include <linux/percpu.h>
  17#include <linux/sched.h>
  18#include <linux/stop_machine.h>
  19#include <linux/interrupt.h>
  20#include <linux/kallsyms.h>
  21#include <linux/smpboot.h>
  22#include <linux/atomic.h>
  23#include <linux/nmi.h>
  24#include <linux/sched/wake_q.h>
  25
  26/*
  27 * Structure to determine completion condition and record errors.  May
  28 * be shared by works on different cpus.
  29 */
  30struct cpu_stop_done {
  31        atomic_t                nr_todo;        /* nr left to execute */
  32        int                     ret;            /* collected return value */
  33        struct completion       completion;     /* fired if nr_todo reaches 0 */
  34};
  35
  36/* the actual stopper, one per every possible cpu, enabled on online cpus */
  37struct cpu_stopper {
  38        struct task_struct      *thread;
  39
  40        raw_spinlock_t          lock;
  41        bool                    enabled;        /* is this stopper enabled? */
  42        struct list_head        works;          /* list of pending works */
  43
  44        struct cpu_stop_work    stop_work;      /* for stop_cpus */
  45};
  46
  47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
  48static bool stop_machine_initialized = false;
  49
  50/* static data for stop_cpus */
  51static DEFINE_MUTEX(stop_cpus_mutex);
  52static bool stop_cpus_in_progress;
  53
  54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
  55{
  56        memset(done, 0, sizeof(*done));
  57        atomic_set(&done->nr_todo, nr_todo);
  58        init_completion(&done->completion);
  59}
  60
  61/* signal completion unless @done is NULL */
  62static void cpu_stop_signal_done(struct cpu_stop_done *done)
  63{
  64        if (atomic_dec_and_test(&done->nr_todo))
  65                complete(&done->completion);
  66}
  67
  68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
  69                                        struct cpu_stop_work *work,
  70                                        struct wake_q_head *wakeq)
  71{
  72        list_add_tail(&work->list, &stopper->works);
  73        wake_q_add(wakeq, stopper->thread);
  74}
  75
  76/* queue @work to @stopper.  if offline, @work is completed immediately */
  77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
  78{
  79        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  80        DEFINE_WAKE_Q(wakeq);
  81        unsigned long flags;
  82        bool enabled;
  83
  84        preempt_disable();
  85        raw_spin_lock_irqsave(&stopper->lock, flags);
  86        enabled = stopper->enabled;
  87        if (enabled)
  88                __cpu_stop_queue_work(stopper, work, &wakeq);
  89        else if (work->done)
  90                cpu_stop_signal_done(work->done);
  91        raw_spin_unlock_irqrestore(&stopper->lock, flags);
  92
  93        wake_up_q(&wakeq);
  94        preempt_enable();
  95
  96        return enabled;
  97}
  98
  99/**
 100 * stop_one_cpu - stop a cpu
 101 * @cpu: cpu to stop
 102 * @fn: function to execute
 103 * @arg: argument to @fn
 104 *
 105 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 106 * the highest priority preempting any task on the cpu and
 107 * monopolizing it.  This function returns after the execution is
 108 * complete.
 109 *
 110 * This function doesn't guarantee @cpu stays online till @fn
 111 * completes.  If @cpu goes down in the middle, execution may happen
 112 * partially or fully on different cpus.  @fn should either be ready
 113 * for that or the caller should ensure that @cpu stays online until
 114 * this function completes.
 115 *
 116 * CONTEXT:
 117 * Might sleep.
 118 *
 119 * RETURNS:
 120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
 121 * otherwise, the return value of @fn.
 122 */
 123int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
 124{
 125        struct cpu_stop_done done;
 126        struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
 127
 128        cpu_stop_init_done(&done, 1);
 129        if (!cpu_stop_queue_work(cpu, &work))
 130                return -ENOENT;
 131        /*
 132         * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
 133         * cycle by doing a preemption:
 134         */
 135        cond_resched();
 136        wait_for_completion(&done.completion);
 137        return done.ret;
 138}
 139
 140/* This controls the threads on each CPU. */
 141enum multi_stop_state {
 142        /* Dummy starting state for thread. */
 143        MULTI_STOP_NONE,
 144        /* Awaiting everyone to be scheduled. */
 145        MULTI_STOP_PREPARE,
 146        /* Disable interrupts. */
 147        MULTI_STOP_DISABLE_IRQ,
 148        /* Run the function */
 149        MULTI_STOP_RUN,
 150        /* Exit */
 151        MULTI_STOP_EXIT,
 152};
 153
 154struct multi_stop_data {
 155        cpu_stop_fn_t           fn;
 156        void                    *data;
 157        /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
 158        unsigned int            num_threads;
 159        const struct cpumask    *active_cpus;
 160
 161        enum multi_stop_state   state;
 162        atomic_t                thread_ack;
 163};
 164
 165static void set_state(struct multi_stop_data *msdata,
 166                      enum multi_stop_state newstate)
 167{
 168        /* Reset ack counter. */
 169        atomic_set(&msdata->thread_ack, msdata->num_threads);
 170        smp_wmb();
 171        msdata->state = newstate;
 172}
 173
 174/* Last one to ack a state moves to the next state. */
 175static void ack_state(struct multi_stop_data *msdata)
 176{
 177        if (atomic_dec_and_test(&msdata->thread_ack))
 178                set_state(msdata, msdata->state + 1);
 179}
 180
 181/* This is the cpu_stop function which stops the CPU. */
 182static int multi_cpu_stop(void *data)
 183{
 184        struct multi_stop_data *msdata = data;
 185        enum multi_stop_state curstate = MULTI_STOP_NONE;
 186        int cpu = smp_processor_id(), err = 0;
 187        unsigned long flags;
 188        bool is_active;
 189
 190        /*
 191         * When called from stop_machine_from_inactive_cpu(), irq might
 192         * already be disabled.  Save the state and restore it on exit.
 193         */
 194        local_save_flags(flags);
 195
 196        if (!msdata->active_cpus)
 197                is_active = cpu == cpumask_first(cpu_online_mask);
 198        else
 199                is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
 200
 201        /* Simple state machine */
 202        do {
 203                /* Chill out and ensure we re-read multi_stop_state. */
 204                cpu_relax_yield();
 205                if (msdata->state != curstate) {
 206                        curstate = msdata->state;
 207                        switch (curstate) {
 208                        case MULTI_STOP_DISABLE_IRQ:
 209                                local_irq_disable();
 210                                hard_irq_disable();
 211                                break;
 212                        case MULTI_STOP_RUN:
 213                                if (is_active)
 214                                        err = msdata->fn(msdata->data);
 215                                break;
 216                        default:
 217                                break;
 218                        }
 219                        ack_state(msdata);
 220                } else if (curstate > MULTI_STOP_PREPARE) {
 221                        /*
 222                         * At this stage all other CPUs we depend on must spin
 223                         * in the same loop. Any reason for hard-lockup should
 224                         * be detected and reported on their side.
 225                         */
 226                        touch_nmi_watchdog();
 227                }
 228        } while (curstate != MULTI_STOP_EXIT);
 229
 230        local_irq_restore(flags);
 231        return err;
 232}
 233
 234static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
 235                                    int cpu2, struct cpu_stop_work *work2)
 236{
 237        struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
 238        struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
 239        DEFINE_WAKE_Q(wakeq);
 240        int err;
 241
 242retry:
 243        /*
 244         * The waking up of stopper threads has to happen in the same
 245         * scheduling context as the queueing.  Otherwise, there is a
 246         * possibility of one of the above stoppers being woken up by another
 247         * CPU, and preempting us. This will cause us to not wake up the other
 248         * stopper forever.
 249         */
 250        preempt_disable();
 251        raw_spin_lock_irq(&stopper1->lock);
 252        raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
 253
 254        if (!stopper1->enabled || !stopper2->enabled) {
 255                err = -ENOENT;
 256                goto unlock;
 257        }
 258
 259        /*
 260         * Ensure that if we race with __stop_cpus() the stoppers won't get
 261         * queued up in reverse order leading to system deadlock.
 262         *
 263         * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
 264         * queued a work on cpu1 but not on cpu2, we hold both locks.
 265         *
 266         * It can be falsely true but it is safe to spin until it is cleared,
 267         * queue_stop_cpus_work() does everything under preempt_disable().
 268         */
 269        if (unlikely(stop_cpus_in_progress)) {
 270                err = -EDEADLK;
 271                goto unlock;
 272        }
 273
 274        err = 0;
 275        __cpu_stop_queue_work(stopper1, work1, &wakeq);
 276        __cpu_stop_queue_work(stopper2, work2, &wakeq);
 277
 278unlock:
 279        raw_spin_unlock(&stopper2->lock);
 280        raw_spin_unlock_irq(&stopper1->lock);
 281
 282        if (unlikely(err == -EDEADLK)) {
 283                preempt_enable();
 284
 285                while (stop_cpus_in_progress)
 286                        cpu_relax();
 287
 288                goto retry;
 289        }
 290
 291        wake_up_q(&wakeq);
 292        preempt_enable();
 293
 294        return err;
 295}
 296/**
 297 * stop_two_cpus - stops two cpus
 298 * @cpu1: the cpu to stop
 299 * @cpu2: the other cpu to stop
 300 * @fn: function to execute
 301 * @arg: argument to @fn
 302 *
 303 * Stops both the current and specified CPU and runs @fn on one of them.
 304 *
 305 * returns when both are completed.
 306 */
 307int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
 308{
 309        struct cpu_stop_done done;
 310        struct cpu_stop_work work1, work2;
 311        struct multi_stop_data msdata;
 312
 313        msdata = (struct multi_stop_data){
 314                .fn = fn,
 315                .data = arg,
 316                .num_threads = 2,
 317                .active_cpus = cpumask_of(cpu1),
 318        };
 319
 320        work1 = work2 = (struct cpu_stop_work){
 321                .fn = multi_cpu_stop,
 322                .arg = &msdata,
 323                .done = &done
 324        };
 325
 326        cpu_stop_init_done(&done, 2);
 327        set_state(&msdata, MULTI_STOP_PREPARE);
 328
 329        if (cpu1 > cpu2)
 330                swap(cpu1, cpu2);
 331        if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
 332                return -ENOENT;
 333
 334        wait_for_completion(&done.completion);
 335        return done.ret;
 336}
 337
 338/**
 339 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
 340 * @cpu: cpu to stop
 341 * @fn: function to execute
 342 * @arg: argument to @fn
 343 * @work_buf: pointer to cpu_stop_work structure
 344 *
 345 * Similar to stop_one_cpu() but doesn't wait for completion.  The
 346 * caller is responsible for ensuring @work_buf is currently unused
 347 * and will remain untouched until stopper starts executing @fn.
 348 *
 349 * CONTEXT:
 350 * Don't care.
 351 *
 352 * RETURNS:
 353 * true if cpu_stop_work was queued successfully and @fn will be called,
 354 * false otherwise.
 355 */
 356bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
 357                        struct cpu_stop_work *work_buf)
 358{
 359        *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
 360        return cpu_stop_queue_work(cpu, work_buf);
 361}
 362
 363static bool queue_stop_cpus_work(const struct cpumask *cpumask,
 364                                 cpu_stop_fn_t fn, void *arg,
 365                                 struct cpu_stop_done *done)
 366{
 367        struct cpu_stop_work *work;
 368        unsigned int cpu;
 369        bool queued = false;
 370
 371        /*
 372         * Disable preemption while queueing to avoid getting
 373         * preempted by a stopper which might wait for other stoppers
 374         * to enter @fn which can lead to deadlock.
 375         */
 376        preempt_disable();
 377        stop_cpus_in_progress = true;
 378        for_each_cpu(cpu, cpumask) {
 379                work = &per_cpu(cpu_stopper.stop_work, cpu);
 380                work->fn = fn;
 381                work->arg = arg;
 382                work->done = done;
 383                if (cpu_stop_queue_work(cpu, work))
 384                        queued = true;
 385        }
 386        stop_cpus_in_progress = false;
 387        preempt_enable();
 388
 389        return queued;
 390}
 391
 392static int __stop_cpus(const struct cpumask *cpumask,
 393                       cpu_stop_fn_t fn, void *arg)
 394{
 395        struct cpu_stop_done done;
 396
 397        cpu_stop_init_done(&done, cpumask_weight(cpumask));
 398        if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
 399                return -ENOENT;
 400        wait_for_completion(&done.completion);
 401        return done.ret;
 402}
 403
 404/**
 405 * stop_cpus - stop multiple cpus
 406 * @cpumask: cpus to stop
 407 * @fn: function to execute
 408 * @arg: argument to @fn
 409 *
 410 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
 411 * @fn is run in a process context with the highest priority
 412 * preempting any task on the cpu and monopolizing it.  This function
 413 * returns after all executions are complete.
 414 *
 415 * This function doesn't guarantee the cpus in @cpumask stay online
 416 * till @fn completes.  If some cpus go down in the middle, execution
 417 * on the cpu may happen partially or fully on different cpus.  @fn
 418 * should either be ready for that or the caller should ensure that
 419 * the cpus stay online until this function completes.
 420 *
 421 * All stop_cpus() calls are serialized making it safe for @fn to wait
 422 * for all cpus to start executing it.
 423 *
 424 * CONTEXT:
 425 * Might sleep.
 426 *
 427 * RETURNS:
 428 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
 429 * @cpumask were offline; otherwise, 0 if all executions of @fn
 430 * returned 0, any non zero return value if any returned non zero.
 431 */
 432int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
 433{
 434        int ret;
 435
 436        /* static works are used, process one request at a time */
 437        mutex_lock(&stop_cpus_mutex);
 438        ret = __stop_cpus(cpumask, fn, arg);
 439        mutex_unlock(&stop_cpus_mutex);
 440        return ret;
 441}
 442
 443/**
 444 * try_stop_cpus - try to stop multiple cpus
 445 * @cpumask: cpus to stop
 446 * @fn: function to execute
 447 * @arg: argument to @fn
 448 *
 449 * Identical to stop_cpus() except that it fails with -EAGAIN if
 450 * someone else is already using the facility.
 451 *
 452 * CONTEXT:
 453 * Might sleep.
 454 *
 455 * RETURNS:
 456 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
 457 * @fn(@arg) was not executed at all because all cpus in @cpumask were
 458 * offline; otherwise, 0 if all executions of @fn returned 0, any non
 459 * zero return value if any returned non zero.
 460 */
 461int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
 462{
 463        int ret;
 464
 465        /* static works are used, process one request at a time */
 466        if (!mutex_trylock(&stop_cpus_mutex))
 467                return -EAGAIN;
 468        ret = __stop_cpus(cpumask, fn, arg);
 469        mutex_unlock(&stop_cpus_mutex);
 470        return ret;
 471}
 472
 473static int cpu_stop_should_run(unsigned int cpu)
 474{
 475        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 476        unsigned long flags;
 477        int run;
 478
 479        raw_spin_lock_irqsave(&stopper->lock, flags);
 480        run = !list_empty(&stopper->works);
 481        raw_spin_unlock_irqrestore(&stopper->lock, flags);
 482        return run;
 483}
 484
 485static void cpu_stopper_thread(unsigned int cpu)
 486{
 487        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 488        struct cpu_stop_work *work;
 489
 490repeat:
 491        work = NULL;
 492        raw_spin_lock_irq(&stopper->lock);
 493        if (!list_empty(&stopper->works)) {
 494                work = list_first_entry(&stopper->works,
 495                                        struct cpu_stop_work, list);
 496                list_del_init(&work->list);
 497        }
 498        raw_spin_unlock_irq(&stopper->lock);
 499
 500        if (work) {
 501                cpu_stop_fn_t fn = work->fn;
 502                void *arg = work->arg;
 503                struct cpu_stop_done *done = work->done;
 504                int ret;
 505
 506                /* cpu stop callbacks must not sleep, make in_atomic() == T */
 507                preempt_count_inc();
 508                ret = fn(arg);
 509                if (done) {
 510                        if (ret)
 511                                done->ret = ret;
 512                        cpu_stop_signal_done(done);
 513                }
 514                preempt_count_dec();
 515                WARN_ONCE(preempt_count(),
 516                          "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
 517                goto repeat;
 518        }
 519}
 520
 521void stop_machine_park(int cpu)
 522{
 523        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 524        /*
 525         * Lockless. cpu_stopper_thread() will take stopper->lock and flush
 526         * the pending works before it parks, until then it is fine to queue
 527         * the new works.
 528         */
 529        stopper->enabled = false;
 530        kthread_park(stopper->thread);
 531}
 532
 533extern void sched_set_stop_task(int cpu, struct task_struct *stop);
 534
 535static void cpu_stop_create(unsigned int cpu)
 536{
 537        sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
 538}
 539
 540static void cpu_stop_park(unsigned int cpu)
 541{
 542        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 543
 544        WARN_ON(!list_empty(&stopper->works));
 545}
 546
 547void stop_machine_unpark(int cpu)
 548{
 549        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 550
 551        stopper->enabled = true;
 552        kthread_unpark(stopper->thread);
 553}
 554
 555static struct smp_hotplug_thread cpu_stop_threads = {
 556        .store                  = &cpu_stopper.thread,
 557        .thread_should_run      = cpu_stop_should_run,
 558        .thread_fn              = cpu_stopper_thread,
 559        .thread_comm            = "migration/%u",
 560        .create                 = cpu_stop_create,
 561        .park                   = cpu_stop_park,
 562        .selfparking            = true,
 563};
 564
 565static int __init cpu_stop_init(void)
 566{
 567        unsigned int cpu;
 568
 569        for_each_possible_cpu(cpu) {
 570                struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 571
 572                raw_spin_lock_init(&stopper->lock);
 573                INIT_LIST_HEAD(&stopper->works);
 574        }
 575
 576        BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
 577        stop_machine_unpark(raw_smp_processor_id());
 578        stop_machine_initialized = true;
 579        return 0;
 580}
 581early_initcall(cpu_stop_init);
 582
 583int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
 584                            const struct cpumask *cpus)
 585{
 586        struct multi_stop_data msdata = {
 587                .fn = fn,
 588                .data = data,
 589                .num_threads = num_online_cpus(),
 590                .active_cpus = cpus,
 591        };
 592
 593        lockdep_assert_cpus_held();
 594
 595        if (!stop_machine_initialized) {
 596                /*
 597                 * Handle the case where stop_machine() is called
 598                 * early in boot before stop_machine() has been
 599                 * initialized.
 600                 */
 601                unsigned long flags;
 602                int ret;
 603
 604                WARN_ON_ONCE(msdata.num_threads != 1);
 605
 606                local_irq_save(flags);
 607                hard_irq_disable();
 608                ret = (*fn)(data);
 609                local_irq_restore(flags);
 610
 611                return ret;
 612        }
 613
 614        /* Set the initial state and stop all online cpus. */
 615        set_state(&msdata, MULTI_STOP_PREPARE);
 616        return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
 617}
 618
 619int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
 620{
 621        int ret;
 622
 623        /* No CPUs can come up or down during this. */
 624        cpus_read_lock();
 625        ret = stop_machine_cpuslocked(fn, data, cpus);
 626        cpus_read_unlock();
 627        return ret;
 628}
 629EXPORT_SYMBOL_GPL(stop_machine);
 630
 631/**
 632 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
 633 * @fn: the function to run
 634 * @data: the data ptr for the @fn()
 635 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
 636 *
 637 * This is identical to stop_machine() but can be called from a CPU which
 638 * is not active.  The local CPU is in the process of hotplug (so no other
 639 * CPU hotplug can start) and not marked active and doesn't have enough
 640 * context to sleep.
 641 *
 642 * This function provides stop_machine() functionality for such state by
 643 * using busy-wait for synchronization and executing @fn directly for local
 644 * CPU.
 645 *
 646 * CONTEXT:
 647 * Local CPU is inactive.  Temporarily stops all active CPUs.
 648 *
 649 * RETURNS:
 650 * 0 if all executions of @fn returned 0, any non zero return value if any
 651 * returned non zero.
 652 */
 653int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
 654                                  const struct cpumask *cpus)
 655{
 656        struct multi_stop_data msdata = { .fn = fn, .data = data,
 657                                            .active_cpus = cpus };
 658        struct cpu_stop_done done;
 659        int ret;
 660
 661        /* Local CPU must be inactive and CPU hotplug in progress. */
 662        BUG_ON(cpu_active(raw_smp_processor_id()));
 663        msdata.num_threads = num_active_cpus() + 1;     /* +1 for local */
 664
 665        /* No proper task established and can't sleep - busy wait for lock. */
 666        while (!mutex_trylock(&stop_cpus_mutex))
 667                cpu_relax();
 668
 669        /* Schedule work on other CPUs and execute directly for local CPU */
 670        set_state(&msdata, MULTI_STOP_PREPARE);
 671        cpu_stop_init_done(&done, num_active_cpus());
 672        queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
 673                             &done);
 674        ret = multi_cpu_stop(&msdata);
 675
 676        /* Busy wait for completion. */
 677        while (!completion_done(&done.completion))
 678                cpu_relax();
 679
 680        mutex_unlock(&stop_cpus_mutex);
 681        return ret ?: done.ret;
 682}
 683