linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/uaccess.h>
  15#include <linux/hardirq.h>
  16#include <linux/kthread.h>      /* for self test */
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26#include <linux/oom.h>
  27
  28#include <asm/local.h>
  29
  30static void update_pages_handler(struct work_struct *work);
  31
  32/*
  33 * The ring buffer header is special. We must manually up keep it.
  34 */
  35int ring_buffer_print_entry_header(struct trace_seq *s)
  36{
  37        trace_seq_puts(s, "# compressed entry header\n");
  38        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  39        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  40        trace_seq_puts(s, "\tarray       :   32 bits\n");
  41        trace_seq_putc(s, '\n');
  42        trace_seq_printf(s, "\tpadding     : type == %d\n",
  43                         RINGBUF_TYPE_PADDING);
  44        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  45                         RINGBUF_TYPE_TIME_EXTEND);
  46        trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  47                         RINGBUF_TYPE_TIME_STAMP);
  48        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  49                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  50
  51        return !trace_seq_has_overflowed(s);
  52}
  53
  54/*
  55 * The ring buffer is made up of a list of pages. A separate list of pages is
  56 * allocated for each CPU. A writer may only write to a buffer that is
  57 * associated with the CPU it is currently executing on.  A reader may read
  58 * from any per cpu buffer.
  59 *
  60 * The reader is special. For each per cpu buffer, the reader has its own
  61 * reader page. When a reader has read the entire reader page, this reader
  62 * page is swapped with another page in the ring buffer.
  63 *
  64 * Now, as long as the writer is off the reader page, the reader can do what
  65 * ever it wants with that page. The writer will never write to that page
  66 * again (as long as it is out of the ring buffer).
  67 *
  68 * Here's some silly ASCII art.
  69 *
  70 *   +------+
  71 *   |reader|          RING BUFFER
  72 *   |page  |
  73 *   +------+        +---+   +---+   +---+
  74 *                   |   |-->|   |-->|   |
  75 *                   +---+   +---+   +---+
  76 *                     ^               |
  77 *                     |               |
  78 *                     +---------------+
  79 *
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |------------------v
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *      ^            |   |-->|   |-->|   |
  97 *      |            +---+   +---+   +---+
  98 *      |                              |
  99 *      |                              |
 100 *      +------------------------------+
 101 *
 102 *
 103 *   +------+
 104 *   |buffer|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |   |   |-->|   |
 108 *      |   New      +---+   +---+   +---+
 109 *      |  Reader------^               |
 110 *      |   page                       |
 111 *      +------------------------------+
 112 *
 113 *
 114 * After we make this swap, the reader can hand this page off to the splice
 115 * code and be done with it. It can even allocate a new page if it needs to
 116 * and swap that into the ring buffer.
 117 *
 118 * We will be using cmpxchg soon to make all this lockless.
 119 *
 120 */
 121
 122/* Used for individual buffers (after the counter) */
 123#define RB_BUFFER_OFF           (1 << 20)
 124
 125#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 126
 127#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 128#define RB_ALIGNMENT            4U
 129#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 130#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 131
 132#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 133# define RB_FORCE_8BYTE_ALIGNMENT       0
 134# define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
 135#else
 136# define RB_FORCE_8BYTE_ALIGNMENT       1
 137# define RB_ARCH_ALIGNMENT              8U
 138#endif
 139
 140#define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
 141
 142/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 143#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 144
 145enum {
 146        RB_LEN_TIME_EXTEND = 8,
 147        RB_LEN_TIME_STAMP =  8,
 148};
 149
 150#define skip_time_extend(event) \
 151        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 152
 153#define extended_time(event) \
 154        (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 155
 156static inline int rb_null_event(struct ring_buffer_event *event)
 157{
 158        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 159}
 160
 161static void rb_event_set_padding(struct ring_buffer_event *event)
 162{
 163        /* padding has a NULL time_delta */
 164        event->type_len = RINGBUF_TYPE_PADDING;
 165        event->time_delta = 0;
 166}
 167
 168static unsigned
 169rb_event_data_length(struct ring_buffer_event *event)
 170{
 171        unsigned length;
 172
 173        if (event->type_len)
 174                length = event->type_len * RB_ALIGNMENT;
 175        else
 176                length = event->array[0];
 177        return length + RB_EVNT_HDR_SIZE;
 178}
 179
 180/*
 181 * Return the length of the given event. Will return
 182 * the length of the time extend if the event is a
 183 * time extend.
 184 */
 185static inline unsigned
 186rb_event_length(struct ring_buffer_event *event)
 187{
 188        switch (event->type_len) {
 189        case RINGBUF_TYPE_PADDING:
 190                if (rb_null_event(event))
 191                        /* undefined */
 192                        return -1;
 193                return  event->array[0] + RB_EVNT_HDR_SIZE;
 194
 195        case RINGBUF_TYPE_TIME_EXTEND:
 196                return RB_LEN_TIME_EXTEND;
 197
 198        case RINGBUF_TYPE_TIME_STAMP:
 199                return RB_LEN_TIME_STAMP;
 200
 201        case RINGBUF_TYPE_DATA:
 202                return rb_event_data_length(event);
 203        default:
 204                BUG();
 205        }
 206        /* not hit */
 207        return 0;
 208}
 209
 210/*
 211 * Return total length of time extend and data,
 212 *   or just the event length for all other events.
 213 */
 214static inline unsigned
 215rb_event_ts_length(struct ring_buffer_event *event)
 216{
 217        unsigned len = 0;
 218
 219        if (extended_time(event)) {
 220                /* time extends include the data event after it */
 221                len = RB_LEN_TIME_EXTEND;
 222                event = skip_time_extend(event);
 223        }
 224        return len + rb_event_length(event);
 225}
 226
 227/**
 228 * ring_buffer_event_length - return the length of the event
 229 * @event: the event to get the length of
 230 *
 231 * Returns the size of the data load of a data event.
 232 * If the event is something other than a data event, it
 233 * returns the size of the event itself. With the exception
 234 * of a TIME EXTEND, where it still returns the size of the
 235 * data load of the data event after it.
 236 */
 237unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 238{
 239        unsigned length;
 240
 241        if (extended_time(event))
 242                event = skip_time_extend(event);
 243
 244        length = rb_event_length(event);
 245        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 246                return length;
 247        length -= RB_EVNT_HDR_SIZE;
 248        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 249                length -= sizeof(event->array[0]);
 250        return length;
 251}
 252EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 253
 254/* inline for ring buffer fast paths */
 255static __always_inline void *
 256rb_event_data(struct ring_buffer_event *event)
 257{
 258        if (extended_time(event))
 259                event = skip_time_extend(event);
 260        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 261        /* If length is in len field, then array[0] has the data */
 262        if (event->type_len)
 263                return (void *)&event->array[0];
 264        /* Otherwise length is in array[0] and array[1] has the data */
 265        return (void *)&event->array[1];
 266}
 267
 268/**
 269 * ring_buffer_event_data - return the data of the event
 270 * @event: the event to get the data from
 271 */
 272void *ring_buffer_event_data(struct ring_buffer_event *event)
 273{
 274        return rb_event_data(event);
 275}
 276EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 277
 278#define for_each_buffer_cpu(buffer, cpu)                \
 279        for_each_cpu(cpu, buffer->cpumask)
 280
 281#define TS_SHIFT        27
 282#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 283#define TS_DELTA_TEST   (~TS_MASK)
 284
 285/**
 286 * ring_buffer_event_time_stamp - return the event's extended timestamp
 287 * @event: the event to get the timestamp of
 288 *
 289 * Returns the extended timestamp associated with a data event.
 290 * An extended time_stamp is a 64-bit timestamp represented
 291 * internally in a special way that makes the best use of space
 292 * contained within a ring buffer event.  This function decodes
 293 * it and maps it to a straight u64 value.
 294 */
 295u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 296{
 297        u64 ts;
 298
 299        ts = event->array[0];
 300        ts <<= TS_SHIFT;
 301        ts += event->time_delta;
 302
 303        return ts;
 304}
 305
 306/* Flag when events were overwritten */
 307#define RB_MISSED_EVENTS        (1 << 31)
 308/* Missed count stored at end */
 309#define RB_MISSED_STORED        (1 << 30)
 310
 311#define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
 312
 313struct buffer_data_page {
 314        u64              time_stamp;    /* page time stamp */
 315        local_t          commit;        /* write committed index */
 316        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 317};
 318
 319/*
 320 * Note, the buffer_page list must be first. The buffer pages
 321 * are allocated in cache lines, which means that each buffer
 322 * page will be at the beginning of a cache line, and thus
 323 * the least significant bits will be zero. We use this to
 324 * add flags in the list struct pointers, to make the ring buffer
 325 * lockless.
 326 */
 327struct buffer_page {
 328        struct list_head list;          /* list of buffer pages */
 329        local_t          write;         /* index for next write */
 330        unsigned         read;          /* index for next read */
 331        local_t          entries;       /* entries on this page */
 332        unsigned long    real_end;      /* real end of data */
 333        struct buffer_data_page *page;  /* Actual data page */
 334};
 335
 336/*
 337 * The buffer page counters, write and entries, must be reset
 338 * atomically when crossing page boundaries. To synchronize this
 339 * update, two counters are inserted into the number. One is
 340 * the actual counter for the write position or count on the page.
 341 *
 342 * The other is a counter of updaters. Before an update happens
 343 * the update partition of the counter is incremented. This will
 344 * allow the updater to update the counter atomically.
 345 *
 346 * The counter is 20 bits, and the state data is 12.
 347 */
 348#define RB_WRITE_MASK           0xfffff
 349#define RB_WRITE_INTCNT         (1 << 20)
 350
 351static void rb_init_page(struct buffer_data_page *bpage)
 352{
 353        local_set(&bpage->commit, 0);
 354}
 355
 356/**
 357 * ring_buffer_page_len - the size of data on the page.
 358 * @page: The page to read
 359 *
 360 * Returns the amount of data on the page, including buffer page header.
 361 */
 362size_t ring_buffer_page_len(void *page)
 363{
 364        struct buffer_data_page *bpage = page;
 365
 366        return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
 367                + BUF_PAGE_HDR_SIZE;
 368}
 369
 370/*
 371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 372 * this issue out.
 373 */
 374static void free_buffer_page(struct buffer_page *bpage)
 375{
 376        free_page((unsigned long)bpage->page);
 377        kfree(bpage);
 378}
 379
 380/*
 381 * We need to fit the time_stamp delta into 27 bits.
 382 */
 383static inline int test_time_stamp(u64 delta)
 384{
 385        if (delta & TS_DELTA_TEST)
 386                return 1;
 387        return 0;
 388}
 389
 390#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 391
 392/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 393#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 394
 395int ring_buffer_print_page_header(struct trace_seq *s)
 396{
 397        struct buffer_data_page field;
 398
 399        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 400                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 401                         (unsigned int)sizeof(field.time_stamp),
 402                         (unsigned int)is_signed_type(u64));
 403
 404        trace_seq_printf(s, "\tfield: local_t commit;\t"
 405                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 406                         (unsigned int)offsetof(typeof(field), commit),
 407                         (unsigned int)sizeof(field.commit),
 408                         (unsigned int)is_signed_type(long));
 409
 410        trace_seq_printf(s, "\tfield: int overwrite;\t"
 411                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 412                         (unsigned int)offsetof(typeof(field), commit),
 413                         1,
 414                         (unsigned int)is_signed_type(long));
 415
 416        trace_seq_printf(s, "\tfield: char data;\t"
 417                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 418                         (unsigned int)offsetof(typeof(field), data),
 419                         (unsigned int)BUF_PAGE_SIZE,
 420                         (unsigned int)is_signed_type(char));
 421
 422        return !trace_seq_has_overflowed(s);
 423}
 424
 425struct rb_irq_work {
 426        struct irq_work                 work;
 427        wait_queue_head_t               waiters;
 428        wait_queue_head_t               full_waiters;
 429        bool                            waiters_pending;
 430        bool                            full_waiters_pending;
 431        bool                            wakeup_full;
 432};
 433
 434/*
 435 * Structure to hold event state and handle nested events.
 436 */
 437struct rb_event_info {
 438        u64                     ts;
 439        u64                     delta;
 440        unsigned long           length;
 441        struct buffer_page      *tail_page;
 442        int                     add_timestamp;
 443};
 444
 445/*
 446 * Used for which event context the event is in.
 447 *  NMI     = 0
 448 *  IRQ     = 1
 449 *  SOFTIRQ = 2
 450 *  NORMAL  = 3
 451 *
 452 * See trace_recursive_lock() comment below for more details.
 453 */
 454enum {
 455        RB_CTX_NMI,
 456        RB_CTX_IRQ,
 457        RB_CTX_SOFTIRQ,
 458        RB_CTX_NORMAL,
 459        RB_CTX_MAX
 460};
 461
 462/*
 463 * head_page == tail_page && head == tail then buffer is empty.
 464 */
 465struct ring_buffer_per_cpu {
 466        int                             cpu;
 467        atomic_t                        record_disabled;
 468        struct ring_buffer              *buffer;
 469        raw_spinlock_t                  reader_lock;    /* serialize readers */
 470        arch_spinlock_t                 lock;
 471        struct lock_class_key           lock_key;
 472        struct buffer_data_page         *free_page;
 473        unsigned long                   nr_pages;
 474        unsigned int                    current_context;
 475        struct list_head                *pages;
 476        struct buffer_page              *head_page;     /* read from head */
 477        struct buffer_page              *tail_page;     /* write to tail */
 478        struct buffer_page              *commit_page;   /* committed pages */
 479        struct buffer_page              *reader_page;
 480        unsigned long                   lost_events;
 481        unsigned long                   last_overrun;
 482        unsigned long                   nest;
 483        local_t                         entries_bytes;
 484        local_t                         entries;
 485        local_t                         overrun;
 486        local_t                         commit_overrun;
 487        local_t                         dropped_events;
 488        local_t                         committing;
 489        local_t                         commits;
 490        unsigned long                   read;
 491        unsigned long                   read_bytes;
 492        u64                             write_stamp;
 493        u64                             read_stamp;
 494        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 495        long                            nr_pages_to_update;
 496        struct list_head                new_pages; /* new pages to add */
 497        struct work_struct              update_pages_work;
 498        struct completion               update_done;
 499
 500        struct rb_irq_work              irq_work;
 501};
 502
 503struct ring_buffer {
 504        unsigned                        flags;
 505        int                             cpus;
 506        atomic_t                        record_disabled;
 507        atomic_t                        resize_disabled;
 508        cpumask_var_t                   cpumask;
 509
 510        struct lock_class_key           *reader_lock_key;
 511
 512        struct mutex                    mutex;
 513
 514        struct ring_buffer_per_cpu      **buffers;
 515
 516        struct hlist_node               node;
 517        u64                             (*clock)(void);
 518
 519        struct rb_irq_work              irq_work;
 520        bool                            time_stamp_abs;
 521};
 522
 523struct ring_buffer_iter {
 524        struct ring_buffer_per_cpu      *cpu_buffer;
 525        unsigned long                   head;
 526        struct buffer_page              *head_page;
 527        struct buffer_page              *cache_reader_page;
 528        unsigned long                   cache_read;
 529        u64                             read_stamp;
 530};
 531
 532/*
 533 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 534 *
 535 * Schedules a delayed work to wake up any task that is blocked on the
 536 * ring buffer waiters queue.
 537 */
 538static void rb_wake_up_waiters(struct irq_work *work)
 539{
 540        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 541
 542        wake_up_all(&rbwork->waiters);
 543        if (rbwork->wakeup_full) {
 544                rbwork->wakeup_full = false;
 545                wake_up_all(&rbwork->full_waiters);
 546        }
 547}
 548
 549/**
 550 * ring_buffer_wait - wait for input to the ring buffer
 551 * @buffer: buffer to wait on
 552 * @cpu: the cpu buffer to wait on
 553 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 554 *
 555 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 556 * as data is added to any of the @buffer's cpu buffers. Otherwise
 557 * it will wait for data to be added to a specific cpu buffer.
 558 */
 559int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
 560{
 561        struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 562        DEFINE_WAIT(wait);
 563        struct rb_irq_work *work;
 564        int ret = 0;
 565
 566        /*
 567         * Depending on what the caller is waiting for, either any
 568         * data in any cpu buffer, or a specific buffer, put the
 569         * caller on the appropriate wait queue.
 570         */
 571        if (cpu == RING_BUFFER_ALL_CPUS) {
 572                work = &buffer->irq_work;
 573                /* Full only makes sense on per cpu reads */
 574                full = false;
 575        } else {
 576                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 577                        return -ENODEV;
 578                cpu_buffer = buffer->buffers[cpu];
 579                work = &cpu_buffer->irq_work;
 580        }
 581
 582
 583        while (true) {
 584                if (full)
 585                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 586                else
 587                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 588
 589                /*
 590                 * The events can happen in critical sections where
 591                 * checking a work queue can cause deadlocks.
 592                 * After adding a task to the queue, this flag is set
 593                 * only to notify events to try to wake up the queue
 594                 * using irq_work.
 595                 *
 596                 * We don't clear it even if the buffer is no longer
 597                 * empty. The flag only causes the next event to run
 598                 * irq_work to do the work queue wake up. The worse
 599                 * that can happen if we race with !trace_empty() is that
 600                 * an event will cause an irq_work to try to wake up
 601                 * an empty queue.
 602                 *
 603                 * There's no reason to protect this flag either, as
 604                 * the work queue and irq_work logic will do the necessary
 605                 * synchronization for the wake ups. The only thing
 606                 * that is necessary is that the wake up happens after
 607                 * a task has been queued. It's OK for spurious wake ups.
 608                 */
 609                if (full)
 610                        work->full_waiters_pending = true;
 611                else
 612                        work->waiters_pending = true;
 613
 614                if (signal_pending(current)) {
 615                        ret = -EINTR;
 616                        break;
 617                }
 618
 619                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 620                        break;
 621
 622                if (cpu != RING_BUFFER_ALL_CPUS &&
 623                    !ring_buffer_empty_cpu(buffer, cpu)) {
 624                        unsigned long flags;
 625                        bool pagebusy;
 626
 627                        if (!full)
 628                                break;
 629
 630                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 631                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 632                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 633
 634                        if (!pagebusy)
 635                                break;
 636                }
 637
 638                schedule();
 639        }
 640
 641        if (full)
 642                finish_wait(&work->full_waiters, &wait);
 643        else
 644                finish_wait(&work->waiters, &wait);
 645
 646        return ret;
 647}
 648
 649/**
 650 * ring_buffer_poll_wait - poll on buffer input
 651 * @buffer: buffer to wait on
 652 * @cpu: the cpu buffer to wait on
 653 * @filp: the file descriptor
 654 * @poll_table: The poll descriptor
 655 *
 656 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 657 * as data is added to any of the @buffer's cpu buffers. Otherwise
 658 * it will wait for data to be added to a specific cpu buffer.
 659 *
 660 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 661 * zero otherwise.
 662 */
 663__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 664                          struct file *filp, poll_table *poll_table)
 665{
 666        struct ring_buffer_per_cpu *cpu_buffer;
 667        struct rb_irq_work *work;
 668
 669        if (cpu == RING_BUFFER_ALL_CPUS)
 670                work = &buffer->irq_work;
 671        else {
 672                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 673                        return -EINVAL;
 674
 675                cpu_buffer = buffer->buffers[cpu];
 676                work = &cpu_buffer->irq_work;
 677        }
 678
 679        poll_wait(filp, &work->waiters, poll_table);
 680        work->waiters_pending = true;
 681        /*
 682         * There's a tight race between setting the waiters_pending and
 683         * checking if the ring buffer is empty.  Once the waiters_pending bit
 684         * is set, the next event will wake the task up, but we can get stuck
 685         * if there's only a single event in.
 686         *
 687         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 688         * but adding a memory barrier to all events will cause too much of a
 689         * performance hit in the fast path.  We only need a memory barrier when
 690         * the buffer goes from empty to having content.  But as this race is
 691         * extremely small, and it's not a problem if another event comes in, we
 692         * will fix it later.
 693         */
 694        smp_mb();
 695
 696        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 697            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 698                return EPOLLIN | EPOLLRDNORM;
 699        return 0;
 700}
 701
 702/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 703#define RB_WARN_ON(b, cond)                                             \
 704        ({                                                              \
 705                int _____ret = unlikely(cond);                          \
 706                if (_____ret) {                                         \
 707                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 708                                struct ring_buffer_per_cpu *__b =       \
 709                                        (void *)b;                      \
 710                                atomic_inc(&__b->buffer->record_disabled); \
 711                        } else                                          \
 712                                atomic_inc(&b->record_disabled);        \
 713                        WARN_ON(1);                                     \
 714                }                                                       \
 715                _____ret;                                               \
 716        })
 717
 718/* Up this if you want to test the TIME_EXTENTS and normalization */
 719#define DEBUG_SHIFT 0
 720
 721static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 722{
 723        /* shift to debug/test normalization and TIME_EXTENTS */
 724        return buffer->clock() << DEBUG_SHIFT;
 725}
 726
 727u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 728{
 729        u64 time;
 730
 731        preempt_disable_notrace();
 732        time = rb_time_stamp(buffer);
 733        preempt_enable_no_resched_notrace();
 734
 735        return time;
 736}
 737EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 738
 739void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 740                                      int cpu, u64 *ts)
 741{
 742        /* Just stupid testing the normalize function and deltas */
 743        *ts >>= DEBUG_SHIFT;
 744}
 745EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 746
 747/*
 748 * Making the ring buffer lockless makes things tricky.
 749 * Although writes only happen on the CPU that they are on,
 750 * and they only need to worry about interrupts. Reads can
 751 * happen on any CPU.
 752 *
 753 * The reader page is always off the ring buffer, but when the
 754 * reader finishes with a page, it needs to swap its page with
 755 * a new one from the buffer. The reader needs to take from
 756 * the head (writes go to the tail). But if a writer is in overwrite
 757 * mode and wraps, it must push the head page forward.
 758 *
 759 * Here lies the problem.
 760 *
 761 * The reader must be careful to replace only the head page, and
 762 * not another one. As described at the top of the file in the
 763 * ASCII art, the reader sets its old page to point to the next
 764 * page after head. It then sets the page after head to point to
 765 * the old reader page. But if the writer moves the head page
 766 * during this operation, the reader could end up with the tail.
 767 *
 768 * We use cmpxchg to help prevent this race. We also do something
 769 * special with the page before head. We set the LSB to 1.
 770 *
 771 * When the writer must push the page forward, it will clear the
 772 * bit that points to the head page, move the head, and then set
 773 * the bit that points to the new head page.
 774 *
 775 * We also don't want an interrupt coming in and moving the head
 776 * page on another writer. Thus we use the second LSB to catch
 777 * that too. Thus:
 778 *
 779 * head->list->prev->next        bit 1          bit 0
 780 *                              -------        -------
 781 * Normal page                     0              0
 782 * Points to head page             0              1
 783 * New head page                   1              0
 784 *
 785 * Note we can not trust the prev pointer of the head page, because:
 786 *
 787 * +----+       +-----+        +-----+
 788 * |    |------>|  T  |---X--->|  N  |
 789 * |    |<------|     |        |     |
 790 * +----+       +-----+        +-----+
 791 *   ^                           ^ |
 792 *   |          +-----+          | |
 793 *   +----------|  R  |----------+ |
 794 *              |     |<-----------+
 795 *              +-----+
 796 *
 797 * Key:  ---X-->  HEAD flag set in pointer
 798 *         T      Tail page
 799 *         R      Reader page
 800 *         N      Next page
 801 *
 802 * (see __rb_reserve_next() to see where this happens)
 803 *
 804 *  What the above shows is that the reader just swapped out
 805 *  the reader page with a page in the buffer, but before it
 806 *  could make the new header point back to the new page added
 807 *  it was preempted by a writer. The writer moved forward onto
 808 *  the new page added by the reader and is about to move forward
 809 *  again.
 810 *
 811 *  You can see, it is legitimate for the previous pointer of
 812 *  the head (or any page) not to point back to itself. But only
 813 *  temporarily.
 814 */
 815
 816#define RB_PAGE_NORMAL          0UL
 817#define RB_PAGE_HEAD            1UL
 818#define RB_PAGE_UPDATE          2UL
 819
 820
 821#define RB_FLAG_MASK            3UL
 822
 823/* PAGE_MOVED is not part of the mask */
 824#define RB_PAGE_MOVED           4UL
 825
 826/*
 827 * rb_list_head - remove any bit
 828 */
 829static struct list_head *rb_list_head(struct list_head *list)
 830{
 831        unsigned long val = (unsigned long)list;
 832
 833        return (struct list_head *)(val & ~RB_FLAG_MASK);
 834}
 835
 836/*
 837 * rb_is_head_page - test if the given page is the head page
 838 *
 839 * Because the reader may move the head_page pointer, we can
 840 * not trust what the head page is (it may be pointing to
 841 * the reader page). But if the next page is a header page,
 842 * its flags will be non zero.
 843 */
 844static inline int
 845rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 846                struct buffer_page *page, struct list_head *list)
 847{
 848        unsigned long val;
 849
 850        val = (unsigned long)list->next;
 851
 852        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 853                return RB_PAGE_MOVED;
 854
 855        return val & RB_FLAG_MASK;
 856}
 857
 858/*
 859 * rb_is_reader_page
 860 *
 861 * The unique thing about the reader page, is that, if the
 862 * writer is ever on it, the previous pointer never points
 863 * back to the reader page.
 864 */
 865static bool rb_is_reader_page(struct buffer_page *page)
 866{
 867        struct list_head *list = page->list.prev;
 868
 869        return rb_list_head(list->next) != &page->list;
 870}
 871
 872/*
 873 * rb_set_list_to_head - set a list_head to be pointing to head.
 874 */
 875static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 876                                struct list_head *list)
 877{
 878        unsigned long *ptr;
 879
 880        ptr = (unsigned long *)&list->next;
 881        *ptr |= RB_PAGE_HEAD;
 882        *ptr &= ~RB_PAGE_UPDATE;
 883}
 884
 885/*
 886 * rb_head_page_activate - sets up head page
 887 */
 888static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 889{
 890        struct buffer_page *head;
 891
 892        head = cpu_buffer->head_page;
 893        if (!head)
 894                return;
 895
 896        /*
 897         * Set the previous list pointer to have the HEAD flag.
 898         */
 899        rb_set_list_to_head(cpu_buffer, head->list.prev);
 900}
 901
 902static void rb_list_head_clear(struct list_head *list)
 903{
 904        unsigned long *ptr = (unsigned long *)&list->next;
 905
 906        *ptr &= ~RB_FLAG_MASK;
 907}
 908
 909/*
 910 * rb_head_page_deactivate - clears head page ptr (for free list)
 911 */
 912static void
 913rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 914{
 915        struct list_head *hd;
 916
 917        /* Go through the whole list and clear any pointers found. */
 918        rb_list_head_clear(cpu_buffer->pages);
 919
 920        list_for_each(hd, cpu_buffer->pages)
 921                rb_list_head_clear(hd);
 922}
 923
 924static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 925                            struct buffer_page *head,
 926                            struct buffer_page *prev,
 927                            int old_flag, int new_flag)
 928{
 929        struct list_head *list;
 930        unsigned long val = (unsigned long)&head->list;
 931        unsigned long ret;
 932
 933        list = &prev->list;
 934
 935        val &= ~RB_FLAG_MASK;
 936
 937        ret = cmpxchg((unsigned long *)&list->next,
 938                      val | old_flag, val | new_flag);
 939
 940        /* check if the reader took the page */
 941        if ((ret & ~RB_FLAG_MASK) != val)
 942                return RB_PAGE_MOVED;
 943
 944        return ret & RB_FLAG_MASK;
 945}
 946
 947static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 948                                   struct buffer_page *head,
 949                                   struct buffer_page *prev,
 950                                   int old_flag)
 951{
 952        return rb_head_page_set(cpu_buffer, head, prev,
 953                                old_flag, RB_PAGE_UPDATE);
 954}
 955
 956static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 957                                 struct buffer_page *head,
 958                                 struct buffer_page *prev,
 959                                 int old_flag)
 960{
 961        return rb_head_page_set(cpu_buffer, head, prev,
 962                                old_flag, RB_PAGE_HEAD);
 963}
 964
 965static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 966                                   struct buffer_page *head,
 967                                   struct buffer_page *prev,
 968                                   int old_flag)
 969{
 970        return rb_head_page_set(cpu_buffer, head, prev,
 971                                old_flag, RB_PAGE_NORMAL);
 972}
 973
 974static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 975                               struct buffer_page **bpage)
 976{
 977        struct list_head *p = rb_list_head((*bpage)->list.next);
 978
 979        *bpage = list_entry(p, struct buffer_page, list);
 980}
 981
 982static struct buffer_page *
 983rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 984{
 985        struct buffer_page *head;
 986        struct buffer_page *page;
 987        struct list_head *list;
 988        int i;
 989
 990        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 991                return NULL;
 992
 993        /* sanity check */
 994        list = cpu_buffer->pages;
 995        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 996                return NULL;
 997
 998        page = head = cpu_buffer->head_page;
 999        /*
1000         * It is possible that the writer moves the header behind
1001         * where we started, and we miss in one loop.
1002         * A second loop should grab the header, but we'll do
1003         * three loops just because I'm paranoid.
1004         */
1005        for (i = 0; i < 3; i++) {
1006                do {
1007                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1008                                cpu_buffer->head_page = page;
1009                                return page;
1010                        }
1011                        rb_inc_page(cpu_buffer, &page);
1012                } while (page != head);
1013        }
1014
1015        RB_WARN_ON(cpu_buffer, 1);
1016
1017        return NULL;
1018}
1019
1020static int rb_head_page_replace(struct buffer_page *old,
1021                                struct buffer_page *new)
1022{
1023        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1024        unsigned long val;
1025        unsigned long ret;
1026
1027        val = *ptr & ~RB_FLAG_MASK;
1028        val |= RB_PAGE_HEAD;
1029
1030        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1031
1032        return ret == val;
1033}
1034
1035/*
1036 * rb_tail_page_update - move the tail page forward
1037 */
1038static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1039                               struct buffer_page *tail_page,
1040                               struct buffer_page *next_page)
1041{
1042        unsigned long old_entries;
1043        unsigned long old_write;
1044
1045        /*
1046         * The tail page now needs to be moved forward.
1047         *
1048         * We need to reset the tail page, but without messing
1049         * with possible erasing of data brought in by interrupts
1050         * that have moved the tail page and are currently on it.
1051         *
1052         * We add a counter to the write field to denote this.
1053         */
1054        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1055        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1056
1057        /*
1058         * Just make sure we have seen our old_write and synchronize
1059         * with any interrupts that come in.
1060         */
1061        barrier();
1062
1063        /*
1064         * If the tail page is still the same as what we think
1065         * it is, then it is up to us to update the tail
1066         * pointer.
1067         */
1068        if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1069                /* Zero the write counter */
1070                unsigned long val = old_write & ~RB_WRITE_MASK;
1071                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1072
1073                /*
1074                 * This will only succeed if an interrupt did
1075                 * not come in and change it. In which case, we
1076                 * do not want to modify it.
1077                 *
1078                 * We add (void) to let the compiler know that we do not care
1079                 * about the return value of these functions. We use the
1080                 * cmpxchg to only update if an interrupt did not already
1081                 * do it for us. If the cmpxchg fails, we don't care.
1082                 */
1083                (void)local_cmpxchg(&next_page->write, old_write, val);
1084                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1085
1086                /*
1087                 * No need to worry about races with clearing out the commit.
1088                 * it only can increment when a commit takes place. But that
1089                 * only happens in the outer most nested commit.
1090                 */
1091                local_set(&next_page->page->commit, 0);
1092
1093                /* Again, either we update tail_page or an interrupt does */
1094                (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1095        }
1096}
1097
1098static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099                          struct buffer_page *bpage)
1100{
1101        unsigned long val = (unsigned long)bpage;
1102
1103        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104                return 1;
1105
1106        return 0;
1107}
1108
1109/**
1110 * rb_check_list - make sure a pointer to a list has the last bits zero
1111 */
1112static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113                         struct list_head *list)
1114{
1115        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116                return 1;
1117        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118                return 1;
1119        return 0;
1120}
1121
1122/**
1123 * rb_check_pages - integrity check of buffer pages
1124 * @cpu_buffer: CPU buffer with pages to test
1125 *
1126 * As a safety measure we check to make sure the data pages have not
1127 * been corrupted.
1128 */
1129static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130{
1131        struct list_head *head = cpu_buffer->pages;
1132        struct buffer_page *bpage, *tmp;
1133
1134        /* Reset the head page if it exists */
1135        if (cpu_buffer->head_page)
1136                rb_set_head_page(cpu_buffer);
1137
1138        rb_head_page_deactivate(cpu_buffer);
1139
1140        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141                return -1;
1142        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143                return -1;
1144
1145        if (rb_check_list(cpu_buffer, head))
1146                return -1;
1147
1148        list_for_each_entry_safe(bpage, tmp, head, list) {
1149                if (RB_WARN_ON(cpu_buffer,
1150                               bpage->list.next->prev != &bpage->list))
1151                        return -1;
1152                if (RB_WARN_ON(cpu_buffer,
1153                               bpage->list.prev->next != &bpage->list))
1154                        return -1;
1155                if (rb_check_list(cpu_buffer, &bpage->list))
1156                        return -1;
1157        }
1158
1159        rb_head_page_activate(cpu_buffer);
1160
1161        return 0;
1162}
1163
1164static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165{
1166        struct buffer_page *bpage, *tmp;
1167        bool user_thread = current->mm != NULL;
1168        gfp_t mflags;
1169        long i;
1170
1171        /*
1172         * Check if the available memory is there first.
1173         * Note, si_mem_available() only gives us a rough estimate of available
1174         * memory. It may not be accurate. But we don't care, we just want
1175         * to prevent doing any allocation when it is obvious that it is
1176         * not going to succeed.
1177         */
1178        i = si_mem_available();
1179        if (i < nr_pages)
1180                return -ENOMEM;
1181
1182        /*
1183         * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1184         * gracefully without invoking oom-killer and the system is not
1185         * destabilized.
1186         */
1187        mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1188
1189        /*
1190         * If a user thread allocates too much, and si_mem_available()
1191         * reports there's enough memory, even though there is not.
1192         * Make sure the OOM killer kills this thread. This can happen
1193         * even with RETRY_MAYFAIL because another task may be doing
1194         * an allocation after this task has taken all memory.
1195         * This is the task the OOM killer needs to take out during this
1196         * loop, even if it was triggered by an allocation somewhere else.
1197         */
1198        if (user_thread)
1199                set_current_oom_origin();
1200        for (i = 0; i < nr_pages; i++) {
1201                struct page *page;
1202
1203                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1204                                    mflags, cpu_to_node(cpu));
1205                if (!bpage)
1206                        goto free_pages;
1207
1208                list_add(&bpage->list, pages);
1209
1210                page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1211                if (!page)
1212                        goto free_pages;
1213                bpage->page = page_address(page);
1214                rb_init_page(bpage->page);
1215
1216                if (user_thread && fatal_signal_pending(current))
1217                        goto free_pages;
1218        }
1219        if (user_thread)
1220                clear_current_oom_origin();
1221
1222        return 0;
1223
1224free_pages:
1225        list_for_each_entry_safe(bpage, tmp, pages, list) {
1226                list_del_init(&bpage->list);
1227                free_buffer_page(bpage);
1228        }
1229        if (user_thread)
1230                clear_current_oom_origin();
1231
1232        return -ENOMEM;
1233}
1234
1235static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1236                             unsigned long nr_pages)
1237{
1238        LIST_HEAD(pages);
1239
1240        WARN_ON(!nr_pages);
1241
1242        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1243                return -ENOMEM;
1244
1245        /*
1246         * The ring buffer page list is a circular list that does not
1247         * start and end with a list head. All page list items point to
1248         * other pages.
1249         */
1250        cpu_buffer->pages = pages.next;
1251        list_del(&pages);
1252
1253        cpu_buffer->nr_pages = nr_pages;
1254
1255        rb_check_pages(cpu_buffer);
1256
1257        return 0;
1258}
1259
1260static struct ring_buffer_per_cpu *
1261rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1262{
1263        struct ring_buffer_per_cpu *cpu_buffer;
1264        struct buffer_page *bpage;
1265        struct page *page;
1266        int ret;
1267
1268        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1269                                  GFP_KERNEL, cpu_to_node(cpu));
1270        if (!cpu_buffer)
1271                return NULL;
1272
1273        cpu_buffer->cpu = cpu;
1274        cpu_buffer->buffer = buffer;
1275        raw_spin_lock_init(&cpu_buffer->reader_lock);
1276        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1277        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1278        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1279        init_completion(&cpu_buffer->update_done);
1280        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1281        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1282        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1283
1284        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1285                            GFP_KERNEL, cpu_to_node(cpu));
1286        if (!bpage)
1287                goto fail_free_buffer;
1288
1289        rb_check_bpage(cpu_buffer, bpage);
1290
1291        cpu_buffer->reader_page = bpage;
1292        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1293        if (!page)
1294                goto fail_free_reader;
1295        bpage->page = page_address(page);
1296        rb_init_page(bpage->page);
1297
1298        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1299        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1300
1301        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1302        if (ret < 0)
1303                goto fail_free_reader;
1304
1305        cpu_buffer->head_page
1306                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1307        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1308
1309        rb_head_page_activate(cpu_buffer);
1310
1311        return cpu_buffer;
1312
1313 fail_free_reader:
1314        free_buffer_page(cpu_buffer->reader_page);
1315
1316 fail_free_buffer:
1317        kfree(cpu_buffer);
1318        return NULL;
1319}
1320
1321static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1322{
1323        struct list_head *head = cpu_buffer->pages;
1324        struct buffer_page *bpage, *tmp;
1325
1326        free_buffer_page(cpu_buffer->reader_page);
1327
1328        rb_head_page_deactivate(cpu_buffer);
1329
1330        if (head) {
1331                list_for_each_entry_safe(bpage, tmp, head, list) {
1332                        list_del_init(&bpage->list);
1333                        free_buffer_page(bpage);
1334                }
1335                bpage = list_entry(head, struct buffer_page, list);
1336                free_buffer_page(bpage);
1337        }
1338
1339        kfree(cpu_buffer);
1340}
1341
1342/**
1343 * __ring_buffer_alloc - allocate a new ring_buffer
1344 * @size: the size in bytes per cpu that is needed.
1345 * @flags: attributes to set for the ring buffer.
1346 *
1347 * Currently the only flag that is available is the RB_FL_OVERWRITE
1348 * flag. This flag means that the buffer will overwrite old data
1349 * when the buffer wraps. If this flag is not set, the buffer will
1350 * drop data when the tail hits the head.
1351 */
1352struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1353                                        struct lock_class_key *key)
1354{
1355        struct ring_buffer *buffer;
1356        long nr_pages;
1357        int bsize;
1358        int cpu;
1359        int ret;
1360
1361        /* keep it in its own cache line */
1362        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1363                         GFP_KERNEL);
1364        if (!buffer)
1365                return NULL;
1366
1367        if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1368                goto fail_free_buffer;
1369
1370        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1371        buffer->flags = flags;
1372        buffer->clock = trace_clock_local;
1373        buffer->reader_lock_key = key;
1374
1375        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1376        init_waitqueue_head(&buffer->irq_work.waiters);
1377
1378        /* need at least two pages */
1379        if (nr_pages < 2)
1380                nr_pages = 2;
1381
1382        buffer->cpus = nr_cpu_ids;
1383
1384        bsize = sizeof(void *) * nr_cpu_ids;
1385        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1386                                  GFP_KERNEL);
1387        if (!buffer->buffers)
1388                goto fail_free_cpumask;
1389
1390        cpu = raw_smp_processor_id();
1391        cpumask_set_cpu(cpu, buffer->cpumask);
1392        buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1393        if (!buffer->buffers[cpu])
1394                goto fail_free_buffers;
1395
1396        ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1397        if (ret < 0)
1398                goto fail_free_buffers;
1399
1400        mutex_init(&buffer->mutex);
1401
1402        return buffer;
1403
1404 fail_free_buffers:
1405        for_each_buffer_cpu(buffer, cpu) {
1406                if (buffer->buffers[cpu])
1407                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1408        }
1409        kfree(buffer->buffers);
1410
1411 fail_free_cpumask:
1412        free_cpumask_var(buffer->cpumask);
1413
1414 fail_free_buffer:
1415        kfree(buffer);
1416        return NULL;
1417}
1418EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1419
1420/**
1421 * ring_buffer_free - free a ring buffer.
1422 * @buffer: the buffer to free.
1423 */
1424void
1425ring_buffer_free(struct ring_buffer *buffer)
1426{
1427        int cpu;
1428
1429        cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1430
1431        for_each_buffer_cpu(buffer, cpu)
1432                rb_free_cpu_buffer(buffer->buffers[cpu]);
1433
1434        kfree(buffer->buffers);
1435        free_cpumask_var(buffer->cpumask);
1436
1437        kfree(buffer);
1438}
1439EXPORT_SYMBOL_GPL(ring_buffer_free);
1440
1441void ring_buffer_set_clock(struct ring_buffer *buffer,
1442                           u64 (*clock)(void))
1443{
1444        buffer->clock = clock;
1445}
1446
1447void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1448{
1449        buffer->time_stamp_abs = abs;
1450}
1451
1452bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1453{
1454        return buffer->time_stamp_abs;
1455}
1456
1457static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1458
1459static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1460{
1461        return local_read(&bpage->entries) & RB_WRITE_MASK;
1462}
1463
1464static inline unsigned long rb_page_write(struct buffer_page *bpage)
1465{
1466        return local_read(&bpage->write) & RB_WRITE_MASK;
1467}
1468
1469static int
1470rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1471{
1472        struct list_head *tail_page, *to_remove, *next_page;
1473        struct buffer_page *to_remove_page, *tmp_iter_page;
1474        struct buffer_page *last_page, *first_page;
1475        unsigned long nr_removed;
1476        unsigned long head_bit;
1477        int page_entries;
1478
1479        head_bit = 0;
1480
1481        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1482        atomic_inc(&cpu_buffer->record_disabled);
1483        /*
1484         * We don't race with the readers since we have acquired the reader
1485         * lock. We also don't race with writers after disabling recording.
1486         * This makes it easy to figure out the first and the last page to be
1487         * removed from the list. We unlink all the pages in between including
1488         * the first and last pages. This is done in a busy loop so that we
1489         * lose the least number of traces.
1490         * The pages are freed after we restart recording and unlock readers.
1491         */
1492        tail_page = &cpu_buffer->tail_page->list;
1493
1494        /*
1495         * tail page might be on reader page, we remove the next page
1496         * from the ring buffer
1497         */
1498        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1499                tail_page = rb_list_head(tail_page->next);
1500        to_remove = tail_page;
1501
1502        /* start of pages to remove */
1503        first_page = list_entry(rb_list_head(to_remove->next),
1504                                struct buffer_page, list);
1505
1506        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1507                to_remove = rb_list_head(to_remove)->next;
1508                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1509        }
1510
1511        next_page = rb_list_head(to_remove)->next;
1512
1513        /*
1514         * Now we remove all pages between tail_page and next_page.
1515         * Make sure that we have head_bit value preserved for the
1516         * next page
1517         */
1518        tail_page->next = (struct list_head *)((unsigned long)next_page |
1519                                                head_bit);
1520        next_page = rb_list_head(next_page);
1521        next_page->prev = tail_page;
1522
1523        /* make sure pages points to a valid page in the ring buffer */
1524        cpu_buffer->pages = next_page;
1525
1526        /* update head page */
1527        if (head_bit)
1528                cpu_buffer->head_page = list_entry(next_page,
1529                                                struct buffer_page, list);
1530
1531        /*
1532         * change read pointer to make sure any read iterators reset
1533         * themselves
1534         */
1535        cpu_buffer->read = 0;
1536
1537        /* pages are removed, resume tracing and then free the pages */
1538        atomic_dec(&cpu_buffer->record_disabled);
1539        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1540
1541        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1542
1543        /* last buffer page to remove */
1544        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1545                                list);
1546        tmp_iter_page = first_page;
1547
1548        do {
1549                cond_resched();
1550
1551                to_remove_page = tmp_iter_page;
1552                rb_inc_page(cpu_buffer, &tmp_iter_page);
1553
1554                /* update the counters */
1555                page_entries = rb_page_entries(to_remove_page);
1556                if (page_entries) {
1557                        /*
1558                         * If something was added to this page, it was full
1559                         * since it is not the tail page. So we deduct the
1560                         * bytes consumed in ring buffer from here.
1561                         * Increment overrun to account for the lost events.
1562                         */
1563                        local_add(page_entries, &cpu_buffer->overrun);
1564                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1565                }
1566
1567                /*
1568                 * We have already removed references to this list item, just
1569                 * free up the buffer_page and its page
1570                 */
1571                free_buffer_page(to_remove_page);
1572                nr_removed--;
1573
1574        } while (to_remove_page != last_page);
1575
1576        RB_WARN_ON(cpu_buffer, nr_removed);
1577
1578        return nr_removed == 0;
1579}
1580
1581static int
1582rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1583{
1584        struct list_head *pages = &cpu_buffer->new_pages;
1585        int retries, success;
1586
1587        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1588        /*
1589         * We are holding the reader lock, so the reader page won't be swapped
1590         * in the ring buffer. Now we are racing with the writer trying to
1591         * move head page and the tail page.
1592         * We are going to adapt the reader page update process where:
1593         * 1. We first splice the start and end of list of new pages between
1594         *    the head page and its previous page.
1595         * 2. We cmpxchg the prev_page->next to point from head page to the
1596         *    start of new pages list.
1597         * 3. Finally, we update the head->prev to the end of new list.
1598         *
1599         * We will try this process 10 times, to make sure that we don't keep
1600         * spinning.
1601         */
1602        retries = 10;
1603        success = 0;
1604        while (retries--) {
1605                struct list_head *head_page, *prev_page, *r;
1606                struct list_head *last_page, *first_page;
1607                struct list_head *head_page_with_bit;
1608
1609                head_page = &rb_set_head_page(cpu_buffer)->list;
1610                if (!head_page)
1611                        break;
1612                prev_page = head_page->prev;
1613
1614                first_page = pages->next;
1615                last_page  = pages->prev;
1616
1617                head_page_with_bit = (struct list_head *)
1618                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1619
1620                last_page->next = head_page_with_bit;
1621                first_page->prev = prev_page;
1622
1623                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1624
1625                if (r == head_page_with_bit) {
1626                        /*
1627                         * yay, we replaced the page pointer to our new list,
1628                         * now, we just have to update to head page's prev
1629                         * pointer to point to end of list
1630                         */
1631                        head_page->prev = last_page;
1632                        success = 1;
1633                        break;
1634                }
1635        }
1636
1637        if (success)
1638                INIT_LIST_HEAD(pages);
1639        /*
1640         * If we weren't successful in adding in new pages, warn and stop
1641         * tracing
1642         */
1643        RB_WARN_ON(cpu_buffer, !success);
1644        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1645
1646        /* free pages if they weren't inserted */
1647        if (!success) {
1648                struct buffer_page *bpage, *tmp;
1649                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1650                                         list) {
1651                        list_del_init(&bpage->list);
1652                        free_buffer_page(bpage);
1653                }
1654        }
1655        return success;
1656}
1657
1658static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1659{
1660        int success;
1661
1662        if (cpu_buffer->nr_pages_to_update > 0)
1663                success = rb_insert_pages(cpu_buffer);
1664        else
1665                success = rb_remove_pages(cpu_buffer,
1666                                        -cpu_buffer->nr_pages_to_update);
1667
1668        if (success)
1669                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1670}
1671
1672static void update_pages_handler(struct work_struct *work)
1673{
1674        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1675                        struct ring_buffer_per_cpu, update_pages_work);
1676        rb_update_pages(cpu_buffer);
1677        complete(&cpu_buffer->update_done);
1678}
1679
1680/**
1681 * ring_buffer_resize - resize the ring buffer
1682 * @buffer: the buffer to resize.
1683 * @size: the new size.
1684 * @cpu_id: the cpu buffer to resize
1685 *
1686 * Minimum size is 2 * BUF_PAGE_SIZE.
1687 *
1688 * Returns 0 on success and < 0 on failure.
1689 */
1690int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1691                        int cpu_id)
1692{
1693        struct ring_buffer_per_cpu *cpu_buffer;
1694        unsigned long nr_pages;
1695        int cpu, err = 0;
1696
1697        /*
1698         * Always succeed at resizing a non-existent buffer:
1699         */
1700        if (!buffer)
1701                return size;
1702
1703        /* Make sure the requested buffer exists */
1704        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1705            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1706                return size;
1707
1708        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1709
1710        /* we need a minimum of two pages */
1711        if (nr_pages < 2)
1712                nr_pages = 2;
1713
1714        size = nr_pages * BUF_PAGE_SIZE;
1715
1716        /*
1717         * Don't succeed if resizing is disabled, as a reader might be
1718         * manipulating the ring buffer and is expecting a sane state while
1719         * this is true.
1720         */
1721        if (atomic_read(&buffer->resize_disabled))
1722                return -EBUSY;
1723
1724        /* prevent another thread from changing buffer sizes */
1725        mutex_lock(&buffer->mutex);
1726
1727        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1728                /* calculate the pages to update */
1729                for_each_buffer_cpu(buffer, cpu) {
1730                        cpu_buffer = buffer->buffers[cpu];
1731
1732                        cpu_buffer->nr_pages_to_update = nr_pages -
1733                                                        cpu_buffer->nr_pages;
1734                        /*
1735                         * nothing more to do for removing pages or no update
1736                         */
1737                        if (cpu_buffer->nr_pages_to_update <= 0)
1738                                continue;
1739                        /*
1740                         * to add pages, make sure all new pages can be
1741                         * allocated without receiving ENOMEM
1742                         */
1743                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1744                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1745                                                &cpu_buffer->new_pages, cpu)) {
1746                                /* not enough memory for new pages */
1747                                err = -ENOMEM;
1748                                goto out_err;
1749                        }
1750                }
1751
1752                get_online_cpus();
1753                /*
1754                 * Fire off all the required work handlers
1755                 * We can't schedule on offline CPUs, but it's not necessary
1756                 * since we can change their buffer sizes without any race.
1757                 */
1758                for_each_buffer_cpu(buffer, cpu) {
1759                        cpu_buffer = buffer->buffers[cpu];
1760                        if (!cpu_buffer->nr_pages_to_update)
1761                                continue;
1762
1763                        /* Can't run something on an offline CPU. */
1764                        if (!cpu_online(cpu)) {
1765                                rb_update_pages(cpu_buffer);
1766                                cpu_buffer->nr_pages_to_update = 0;
1767                        } else {
1768                                schedule_work_on(cpu,
1769                                                &cpu_buffer->update_pages_work);
1770                        }
1771                }
1772
1773                /* wait for all the updates to complete */
1774                for_each_buffer_cpu(buffer, cpu) {
1775                        cpu_buffer = buffer->buffers[cpu];
1776                        if (!cpu_buffer->nr_pages_to_update)
1777                                continue;
1778
1779                        if (cpu_online(cpu))
1780                                wait_for_completion(&cpu_buffer->update_done);
1781                        cpu_buffer->nr_pages_to_update = 0;
1782                }
1783
1784                put_online_cpus();
1785        } else {
1786                /* Make sure this CPU has been initialized */
1787                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1788                        goto out;
1789
1790                cpu_buffer = buffer->buffers[cpu_id];
1791
1792                if (nr_pages == cpu_buffer->nr_pages)
1793                        goto out;
1794
1795                cpu_buffer->nr_pages_to_update = nr_pages -
1796                                                cpu_buffer->nr_pages;
1797
1798                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1799                if (cpu_buffer->nr_pages_to_update > 0 &&
1800                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1801                                            &cpu_buffer->new_pages, cpu_id)) {
1802                        err = -ENOMEM;
1803                        goto out_err;
1804                }
1805
1806                get_online_cpus();
1807
1808                /* Can't run something on an offline CPU. */
1809                if (!cpu_online(cpu_id))
1810                        rb_update_pages(cpu_buffer);
1811                else {
1812                        schedule_work_on(cpu_id,
1813                                         &cpu_buffer->update_pages_work);
1814                        wait_for_completion(&cpu_buffer->update_done);
1815                }
1816
1817                cpu_buffer->nr_pages_to_update = 0;
1818                put_online_cpus();
1819        }
1820
1821 out:
1822        /*
1823         * The ring buffer resize can happen with the ring buffer
1824         * enabled, so that the update disturbs the tracing as little
1825         * as possible. But if the buffer is disabled, we do not need
1826         * to worry about that, and we can take the time to verify
1827         * that the buffer is not corrupt.
1828         */
1829        if (atomic_read(&buffer->record_disabled)) {
1830                atomic_inc(&buffer->record_disabled);
1831                /*
1832                 * Even though the buffer was disabled, we must make sure
1833                 * that it is truly disabled before calling rb_check_pages.
1834                 * There could have been a race between checking
1835                 * record_disable and incrementing it.
1836                 */
1837                synchronize_sched();
1838                for_each_buffer_cpu(buffer, cpu) {
1839                        cpu_buffer = buffer->buffers[cpu];
1840                        rb_check_pages(cpu_buffer);
1841                }
1842                atomic_dec(&buffer->record_disabled);
1843        }
1844
1845        mutex_unlock(&buffer->mutex);
1846        return size;
1847
1848 out_err:
1849        for_each_buffer_cpu(buffer, cpu) {
1850                struct buffer_page *bpage, *tmp;
1851
1852                cpu_buffer = buffer->buffers[cpu];
1853                cpu_buffer->nr_pages_to_update = 0;
1854
1855                if (list_empty(&cpu_buffer->new_pages))
1856                        continue;
1857
1858                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1859                                        list) {
1860                        list_del_init(&bpage->list);
1861                        free_buffer_page(bpage);
1862                }
1863        }
1864        mutex_unlock(&buffer->mutex);
1865        return err;
1866}
1867EXPORT_SYMBOL_GPL(ring_buffer_resize);
1868
1869void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1870{
1871        mutex_lock(&buffer->mutex);
1872        if (val)
1873                buffer->flags |= RB_FL_OVERWRITE;
1874        else
1875                buffer->flags &= ~RB_FL_OVERWRITE;
1876        mutex_unlock(&buffer->mutex);
1877}
1878EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1879
1880static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1881{
1882        return bpage->page->data + index;
1883}
1884
1885static __always_inline struct ring_buffer_event *
1886rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1887{
1888        return __rb_page_index(cpu_buffer->reader_page,
1889                               cpu_buffer->reader_page->read);
1890}
1891
1892static __always_inline struct ring_buffer_event *
1893rb_iter_head_event(struct ring_buffer_iter *iter)
1894{
1895        return __rb_page_index(iter->head_page, iter->head);
1896}
1897
1898static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1899{
1900        return local_read(&bpage->page->commit);
1901}
1902
1903/* Size is determined by what has been committed */
1904static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1905{
1906        return rb_page_commit(bpage);
1907}
1908
1909static __always_inline unsigned
1910rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1911{
1912        return rb_page_commit(cpu_buffer->commit_page);
1913}
1914
1915static __always_inline unsigned
1916rb_event_index(struct ring_buffer_event *event)
1917{
1918        unsigned long addr = (unsigned long)event;
1919
1920        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1921}
1922
1923static void rb_inc_iter(struct ring_buffer_iter *iter)
1924{
1925        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1926
1927        /*
1928         * The iterator could be on the reader page (it starts there).
1929         * But the head could have moved, since the reader was
1930         * found. Check for this case and assign the iterator
1931         * to the head page instead of next.
1932         */
1933        if (iter->head_page == cpu_buffer->reader_page)
1934                iter->head_page = rb_set_head_page(cpu_buffer);
1935        else
1936                rb_inc_page(cpu_buffer, &iter->head_page);
1937
1938        iter->read_stamp = iter->head_page->page->time_stamp;
1939        iter->head = 0;
1940}
1941
1942/*
1943 * rb_handle_head_page - writer hit the head page
1944 *
1945 * Returns: +1 to retry page
1946 *           0 to continue
1947 *          -1 on error
1948 */
1949static int
1950rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1951                    struct buffer_page *tail_page,
1952                    struct buffer_page *next_page)
1953{
1954        struct buffer_page *new_head;
1955        int entries;
1956        int type;
1957        int ret;
1958
1959        entries = rb_page_entries(next_page);
1960
1961        /*
1962         * The hard part is here. We need to move the head
1963         * forward, and protect against both readers on
1964         * other CPUs and writers coming in via interrupts.
1965         */
1966        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1967                                       RB_PAGE_HEAD);
1968
1969        /*
1970         * type can be one of four:
1971         *  NORMAL - an interrupt already moved it for us
1972         *  HEAD   - we are the first to get here.
1973         *  UPDATE - we are the interrupt interrupting
1974         *           a current move.
1975         *  MOVED  - a reader on another CPU moved the next
1976         *           pointer to its reader page. Give up
1977         *           and try again.
1978         */
1979
1980        switch (type) {
1981        case RB_PAGE_HEAD:
1982                /*
1983                 * We changed the head to UPDATE, thus
1984                 * it is our responsibility to update
1985                 * the counters.
1986                 */
1987                local_add(entries, &cpu_buffer->overrun);
1988                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1989
1990                /*
1991                 * The entries will be zeroed out when we move the
1992                 * tail page.
1993                 */
1994
1995                /* still more to do */
1996                break;
1997
1998        case RB_PAGE_UPDATE:
1999                /*
2000                 * This is an interrupt that interrupt the
2001                 * previous update. Still more to do.
2002                 */
2003                break;
2004        case RB_PAGE_NORMAL:
2005                /*
2006                 * An interrupt came in before the update
2007                 * and processed this for us.
2008                 * Nothing left to do.
2009                 */
2010                return 1;
2011        case RB_PAGE_MOVED:
2012                /*
2013                 * The reader is on another CPU and just did
2014                 * a swap with our next_page.
2015                 * Try again.
2016                 */
2017                return 1;
2018        default:
2019                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2020                return -1;
2021        }
2022
2023        /*
2024         * Now that we are here, the old head pointer is
2025         * set to UPDATE. This will keep the reader from
2026         * swapping the head page with the reader page.
2027         * The reader (on another CPU) will spin till
2028         * we are finished.
2029         *
2030         * We just need to protect against interrupts
2031         * doing the job. We will set the next pointer
2032         * to HEAD. After that, we set the old pointer
2033         * to NORMAL, but only if it was HEAD before.
2034         * otherwise we are an interrupt, and only
2035         * want the outer most commit to reset it.
2036         */
2037        new_head = next_page;
2038        rb_inc_page(cpu_buffer, &new_head);
2039
2040        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2041                                    RB_PAGE_NORMAL);
2042
2043        /*
2044         * Valid returns are:
2045         *  HEAD   - an interrupt came in and already set it.
2046         *  NORMAL - One of two things:
2047         *            1) We really set it.
2048         *            2) A bunch of interrupts came in and moved
2049         *               the page forward again.
2050         */
2051        switch (ret) {
2052        case RB_PAGE_HEAD:
2053        case RB_PAGE_NORMAL:
2054                /* OK */
2055                break;
2056        default:
2057                RB_WARN_ON(cpu_buffer, 1);
2058                return -1;
2059        }
2060
2061        /*
2062         * It is possible that an interrupt came in,
2063         * set the head up, then more interrupts came in
2064         * and moved it again. When we get back here,
2065         * the page would have been set to NORMAL but we
2066         * just set it back to HEAD.
2067         *
2068         * How do you detect this? Well, if that happened
2069         * the tail page would have moved.
2070         */
2071        if (ret == RB_PAGE_NORMAL) {
2072                struct buffer_page *buffer_tail_page;
2073
2074                buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2075                /*
2076                 * If the tail had moved passed next, then we need
2077                 * to reset the pointer.
2078                 */
2079                if (buffer_tail_page != tail_page &&
2080                    buffer_tail_page != next_page)
2081                        rb_head_page_set_normal(cpu_buffer, new_head,
2082                                                next_page,
2083                                                RB_PAGE_HEAD);
2084        }
2085
2086        /*
2087         * If this was the outer most commit (the one that
2088         * changed the original pointer from HEAD to UPDATE),
2089         * then it is up to us to reset it to NORMAL.
2090         */
2091        if (type == RB_PAGE_HEAD) {
2092                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2093                                              tail_page,
2094                                              RB_PAGE_UPDATE);
2095                if (RB_WARN_ON(cpu_buffer,
2096                               ret != RB_PAGE_UPDATE))
2097                        return -1;
2098        }
2099
2100        return 0;
2101}
2102
2103static inline void
2104rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2105              unsigned long tail, struct rb_event_info *info)
2106{
2107        struct buffer_page *tail_page = info->tail_page;
2108        struct ring_buffer_event *event;
2109        unsigned long length = info->length;
2110
2111        /*
2112         * Only the event that crossed the page boundary
2113         * must fill the old tail_page with padding.
2114         */
2115        if (tail >= BUF_PAGE_SIZE) {
2116                /*
2117                 * If the page was filled, then we still need
2118                 * to update the real_end. Reset it to zero
2119                 * and the reader will ignore it.
2120                 */
2121                if (tail == BUF_PAGE_SIZE)
2122                        tail_page->real_end = 0;
2123
2124                local_sub(length, &tail_page->write);
2125                return;
2126        }
2127
2128        event = __rb_page_index(tail_page, tail);
2129
2130        /* account for padding bytes */
2131        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2132
2133        /*
2134         * Save the original length to the meta data.
2135         * This will be used by the reader to add lost event
2136         * counter.
2137         */
2138        tail_page->real_end = tail;
2139
2140        /*
2141         * If this event is bigger than the minimum size, then
2142         * we need to be careful that we don't subtract the
2143         * write counter enough to allow another writer to slip
2144         * in on this page.
2145         * We put in a discarded commit instead, to make sure
2146         * that this space is not used again.
2147         *
2148         * If we are less than the minimum size, we don't need to
2149         * worry about it.
2150         */
2151        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2152                /* No room for any events */
2153
2154                /* Mark the rest of the page with padding */
2155                rb_event_set_padding(event);
2156
2157                /* Set the write back to the previous setting */
2158                local_sub(length, &tail_page->write);
2159                return;
2160        }
2161
2162        /* Put in a discarded event */
2163        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2164        event->type_len = RINGBUF_TYPE_PADDING;
2165        /* time delta must be non zero */
2166        event->time_delta = 1;
2167
2168        /* Set write to end of buffer */
2169        length = (tail + length) - BUF_PAGE_SIZE;
2170        local_sub(length, &tail_page->write);
2171}
2172
2173static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2174
2175/*
2176 * This is the slow path, force gcc not to inline it.
2177 */
2178static noinline struct ring_buffer_event *
2179rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2180             unsigned long tail, struct rb_event_info *info)
2181{
2182        struct buffer_page *tail_page = info->tail_page;
2183        struct buffer_page *commit_page = cpu_buffer->commit_page;
2184        struct ring_buffer *buffer = cpu_buffer->buffer;
2185        struct buffer_page *next_page;
2186        int ret;
2187
2188        next_page = tail_page;
2189
2190        rb_inc_page(cpu_buffer, &next_page);
2191
2192        /*
2193         * If for some reason, we had an interrupt storm that made
2194         * it all the way around the buffer, bail, and warn
2195         * about it.
2196         */
2197        if (unlikely(next_page == commit_page)) {
2198                local_inc(&cpu_buffer->commit_overrun);
2199                goto out_reset;
2200        }
2201
2202        /*
2203         * This is where the fun begins!
2204         *
2205         * We are fighting against races between a reader that
2206         * could be on another CPU trying to swap its reader
2207         * page with the buffer head.
2208         *
2209         * We are also fighting against interrupts coming in and
2210         * moving the head or tail on us as well.
2211         *
2212         * If the next page is the head page then we have filled
2213         * the buffer, unless the commit page is still on the
2214         * reader page.
2215         */
2216        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2217
2218                /*
2219                 * If the commit is not on the reader page, then
2220                 * move the header page.
2221                 */
2222                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2223                        /*
2224                         * If we are not in overwrite mode,
2225                         * this is easy, just stop here.
2226                         */
2227                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2228                                local_inc(&cpu_buffer->dropped_events);
2229                                goto out_reset;
2230                        }
2231
2232                        ret = rb_handle_head_page(cpu_buffer,
2233                                                  tail_page,
2234                                                  next_page);
2235                        if (ret < 0)
2236                                goto out_reset;
2237                        if (ret)
2238                                goto out_again;
2239                } else {
2240                        /*
2241                         * We need to be careful here too. The
2242                         * commit page could still be on the reader
2243                         * page. We could have a small buffer, and
2244                         * have filled up the buffer with events
2245                         * from interrupts and such, and wrapped.
2246                         *
2247                         * Note, if the tail page is also the on the
2248                         * reader_page, we let it move out.
2249                         */
2250                        if (unlikely((cpu_buffer->commit_page !=
2251                                      cpu_buffer->tail_page) &&
2252                                     (cpu_buffer->commit_page ==
2253                                      cpu_buffer->reader_page))) {
2254                                local_inc(&cpu_buffer->commit_overrun);
2255                                goto out_reset;
2256                        }
2257                }
2258        }
2259
2260        rb_tail_page_update(cpu_buffer, tail_page, next_page);
2261
2262 out_again:
2263
2264        rb_reset_tail(cpu_buffer, tail, info);
2265
2266        /* Commit what we have for now. */
2267        rb_end_commit(cpu_buffer);
2268        /* rb_end_commit() decs committing */
2269        local_inc(&cpu_buffer->committing);
2270
2271        /* fail and let the caller try again */
2272        return ERR_PTR(-EAGAIN);
2273
2274 out_reset:
2275        /* reset write */
2276        rb_reset_tail(cpu_buffer, tail, info);
2277
2278        return NULL;
2279}
2280
2281/* Slow path, do not inline */
2282static noinline struct ring_buffer_event *
2283rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2284{
2285        if (abs)
2286                event->type_len = RINGBUF_TYPE_TIME_STAMP;
2287        else
2288                event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2289
2290        /* Not the first event on the page, or not delta? */
2291        if (abs || rb_event_index(event)) {
2292                event->time_delta = delta & TS_MASK;
2293                event->array[0] = delta >> TS_SHIFT;
2294        } else {
2295                /* nope, just zero it */
2296                event->time_delta = 0;
2297                event->array[0] = 0;
2298        }
2299
2300        return skip_time_extend(event);
2301}
2302
2303static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2304                                     struct ring_buffer_event *event);
2305
2306/**
2307 * rb_update_event - update event type and data
2308 * @event: the event to update
2309 * @type: the type of event
2310 * @length: the size of the event field in the ring buffer
2311 *
2312 * Update the type and data fields of the event. The length
2313 * is the actual size that is written to the ring buffer,
2314 * and with this, we can determine what to place into the
2315 * data field.
2316 */
2317static void
2318rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2319                struct ring_buffer_event *event,
2320                struct rb_event_info *info)
2321{
2322        unsigned length = info->length;
2323        u64 delta = info->delta;
2324
2325        /* Only a commit updates the timestamp */
2326        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2327                delta = 0;
2328
2329        /*
2330         * If we need to add a timestamp, then we
2331         * add it to the start of the reserved space.
2332         */
2333        if (unlikely(info->add_timestamp)) {
2334                bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2335
2336                event = rb_add_time_stamp(event, info->delta, abs);
2337                length -= RB_LEN_TIME_EXTEND;
2338                delta = 0;
2339        }
2340
2341        event->time_delta = delta;
2342        length -= RB_EVNT_HDR_SIZE;
2343        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2344                event->type_len = 0;
2345                event->array[0] = length;
2346        } else
2347                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2348}
2349
2350static unsigned rb_calculate_event_length(unsigned length)
2351{
2352        struct ring_buffer_event event; /* Used only for sizeof array */
2353
2354        /* zero length can cause confusions */
2355        if (!length)
2356                length++;
2357
2358        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2359                length += sizeof(event.array[0]);
2360
2361        length += RB_EVNT_HDR_SIZE;
2362        length = ALIGN(length, RB_ARCH_ALIGNMENT);
2363
2364        /*
2365         * In case the time delta is larger than the 27 bits for it
2366         * in the header, we need to add a timestamp. If another
2367         * event comes in when trying to discard this one to increase
2368         * the length, then the timestamp will be added in the allocated
2369         * space of this event. If length is bigger than the size needed
2370         * for the TIME_EXTEND, then padding has to be used. The events
2371         * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2372         * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2373         * As length is a multiple of 4, we only need to worry if it
2374         * is 12 (RB_LEN_TIME_EXTEND + 4).
2375         */
2376        if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2377                length += RB_ALIGNMENT;
2378
2379        return length;
2380}
2381
2382#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2383static inline bool sched_clock_stable(void)
2384{
2385        return true;
2386}
2387#endif
2388
2389static inline int
2390rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2391                  struct ring_buffer_event *event)
2392{
2393        unsigned long new_index, old_index;
2394        struct buffer_page *bpage;
2395        unsigned long index;
2396        unsigned long addr;
2397
2398        new_index = rb_event_index(event);
2399        old_index = new_index + rb_event_ts_length(event);
2400        addr = (unsigned long)event;
2401        addr &= PAGE_MASK;
2402
2403        bpage = READ_ONCE(cpu_buffer->tail_page);
2404
2405        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2406                unsigned long write_mask =
2407                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2408                unsigned long event_length = rb_event_length(event);
2409                /*
2410                 * This is on the tail page. It is possible that
2411                 * a write could come in and move the tail page
2412                 * and write to the next page. That is fine
2413                 * because we just shorten what is on this page.
2414                 */
2415                old_index += write_mask;
2416                new_index += write_mask;
2417                index = local_cmpxchg(&bpage->write, old_index, new_index);
2418                if (index == old_index) {
2419                        /* update counters */
2420                        local_sub(event_length, &cpu_buffer->entries_bytes);
2421                        return 1;
2422                }
2423        }
2424
2425        /* could not discard */
2426        return 0;
2427}
2428
2429static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2430{
2431        local_inc(&cpu_buffer->committing);
2432        local_inc(&cpu_buffer->commits);
2433}
2434
2435static __always_inline void
2436rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2437{
2438        unsigned long max_count;
2439
2440        /*
2441         * We only race with interrupts and NMIs on this CPU.
2442         * If we own the commit event, then we can commit
2443         * all others that interrupted us, since the interruptions
2444         * are in stack format (they finish before they come
2445         * back to us). This allows us to do a simple loop to
2446         * assign the commit to the tail.
2447         */
2448 again:
2449        max_count = cpu_buffer->nr_pages * 100;
2450
2451        while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2452                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2453                        return;
2454                if (RB_WARN_ON(cpu_buffer,
2455                               rb_is_reader_page(cpu_buffer->tail_page)))
2456                        return;
2457                local_set(&cpu_buffer->commit_page->page->commit,
2458                          rb_page_write(cpu_buffer->commit_page));
2459                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2460                /* Only update the write stamp if the page has an event */
2461                if (rb_page_write(cpu_buffer->commit_page))
2462                        cpu_buffer->write_stamp =
2463                                cpu_buffer->commit_page->page->time_stamp;
2464                /* add barrier to keep gcc from optimizing too much */
2465                barrier();
2466        }
2467        while (rb_commit_index(cpu_buffer) !=
2468               rb_page_write(cpu_buffer->commit_page)) {
2469
2470                local_set(&cpu_buffer->commit_page->page->commit,
2471                          rb_page_write(cpu_buffer->commit_page));
2472                RB_WARN_ON(cpu_buffer,
2473                           local_read(&cpu_buffer->commit_page->page->commit) &
2474                           ~RB_WRITE_MASK);
2475                barrier();
2476        }
2477
2478        /* again, keep gcc from optimizing */
2479        barrier();
2480
2481        /*
2482         * If an interrupt came in just after the first while loop
2483         * and pushed the tail page forward, we will be left with
2484         * a dangling commit that will never go forward.
2485         */
2486        if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2487                goto again;
2488}
2489
2490static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2491{
2492        unsigned long commits;
2493
2494        if (RB_WARN_ON(cpu_buffer,
2495                       !local_read(&cpu_buffer->committing)))
2496                return;
2497
2498 again:
2499        commits = local_read(&cpu_buffer->commits);
2500        /* synchronize with interrupts */
2501        barrier();
2502        if (local_read(&cpu_buffer->committing) == 1)
2503                rb_set_commit_to_write(cpu_buffer);
2504
2505        local_dec(&cpu_buffer->committing);
2506
2507        /* synchronize with interrupts */
2508        barrier();
2509
2510        /*
2511         * Need to account for interrupts coming in between the
2512         * updating of the commit page and the clearing of the
2513         * committing counter.
2514         */
2515        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2516            !local_read(&cpu_buffer->committing)) {
2517                local_inc(&cpu_buffer->committing);
2518                goto again;
2519        }
2520}
2521
2522static inline void rb_event_discard(struct ring_buffer_event *event)
2523{
2524        if (extended_time(event))
2525                event = skip_time_extend(event);
2526
2527        /* array[0] holds the actual length for the discarded event */
2528        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2529        event->type_len = RINGBUF_TYPE_PADDING;
2530        /* time delta must be non zero */
2531        if (!event->time_delta)
2532                event->time_delta = 1;
2533}
2534
2535static __always_inline bool
2536rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2537                   struct ring_buffer_event *event)
2538{
2539        unsigned long addr = (unsigned long)event;
2540        unsigned long index;
2541
2542        index = rb_event_index(event);
2543        addr &= PAGE_MASK;
2544
2545        return cpu_buffer->commit_page->page == (void *)addr &&
2546                rb_commit_index(cpu_buffer) == index;
2547}
2548
2549static __always_inline void
2550rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2551                      struct ring_buffer_event *event)
2552{
2553        u64 delta;
2554
2555        /*
2556         * The event first in the commit queue updates the
2557         * time stamp.
2558         */
2559        if (rb_event_is_commit(cpu_buffer, event)) {
2560                /*
2561                 * A commit event that is first on a page
2562                 * updates the write timestamp with the page stamp
2563                 */
2564                if (!rb_event_index(event))
2565                        cpu_buffer->write_stamp =
2566                                cpu_buffer->commit_page->page->time_stamp;
2567                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2568                        delta = ring_buffer_event_time_stamp(event);
2569                        cpu_buffer->write_stamp += delta;
2570                } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2571                        delta = ring_buffer_event_time_stamp(event);
2572                        cpu_buffer->write_stamp = delta;
2573                } else
2574                        cpu_buffer->write_stamp += event->time_delta;
2575        }
2576}
2577
2578static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2579                      struct ring_buffer_event *event)
2580{
2581        local_inc(&cpu_buffer->entries);
2582        rb_update_write_stamp(cpu_buffer, event);
2583        rb_end_commit(cpu_buffer);
2584}
2585
2586static __always_inline void
2587rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2588{
2589        bool pagebusy;
2590
2591        if (buffer->irq_work.waiters_pending) {
2592                buffer->irq_work.waiters_pending = false;
2593                /* irq_work_queue() supplies it's own memory barriers */
2594                irq_work_queue(&buffer->irq_work.work);
2595        }
2596
2597        if (cpu_buffer->irq_work.waiters_pending) {
2598                cpu_buffer->irq_work.waiters_pending = false;
2599                /* irq_work_queue() supplies it's own memory barriers */
2600                irq_work_queue(&cpu_buffer->irq_work.work);
2601        }
2602
2603        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2604
2605        if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2606                cpu_buffer->irq_work.wakeup_full = true;
2607                cpu_buffer->irq_work.full_waiters_pending = false;
2608                /* irq_work_queue() supplies it's own memory barriers */
2609                irq_work_queue(&cpu_buffer->irq_work.work);
2610        }
2611}
2612
2613/*
2614 * The lock and unlock are done within a preempt disable section.
2615 * The current_context per_cpu variable can only be modified
2616 * by the current task between lock and unlock. But it can
2617 * be modified more than once via an interrupt. To pass this
2618 * information from the lock to the unlock without having to
2619 * access the 'in_interrupt()' functions again (which do show
2620 * a bit of overhead in something as critical as function tracing,
2621 * we use a bitmask trick.
2622 *
2623 *  bit 0 =  NMI context
2624 *  bit 1 =  IRQ context
2625 *  bit 2 =  SoftIRQ context
2626 *  bit 3 =  normal context.
2627 *
2628 * This works because this is the order of contexts that can
2629 * preempt other contexts. A SoftIRQ never preempts an IRQ
2630 * context.
2631 *
2632 * When the context is determined, the corresponding bit is
2633 * checked and set (if it was set, then a recursion of that context
2634 * happened).
2635 *
2636 * On unlock, we need to clear this bit. To do so, just subtract
2637 * 1 from the current_context and AND it to itself.
2638 *
2639 * (binary)
2640 *  101 - 1 = 100
2641 *  101 & 100 = 100 (clearing bit zero)
2642 *
2643 *  1010 - 1 = 1001
2644 *  1010 & 1001 = 1000 (clearing bit 1)
2645 *
2646 * The least significant bit can be cleared this way, and it
2647 * just so happens that it is the same bit corresponding to
2648 * the current context.
2649 */
2650
2651static __always_inline int
2652trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2653{
2654        unsigned int val = cpu_buffer->current_context;
2655        unsigned long pc = preempt_count();
2656        int bit;
2657
2658        if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2659                bit = RB_CTX_NORMAL;
2660        else
2661                bit = pc & NMI_MASK ? RB_CTX_NMI :
2662                        pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2663
2664        if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2665                return 1;
2666
2667        val |= (1 << (bit + cpu_buffer->nest));
2668        cpu_buffer->current_context = val;
2669
2670        return 0;
2671}
2672
2673static __always_inline void
2674trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2675{
2676        cpu_buffer->current_context &=
2677                cpu_buffer->current_context - (1 << cpu_buffer->nest);
2678}
2679
2680/* The recursive locking above uses 4 bits */
2681#define NESTED_BITS 4
2682
2683/**
2684 * ring_buffer_nest_start - Allow to trace while nested
2685 * @buffer: The ring buffer to modify
2686 *
2687 * The ring buffer has a safety mechanism to prevent recursion.
2688 * But there may be a case where a trace needs to be done while
2689 * tracing something else. In this case, calling this function
2690 * will allow this function to nest within a currently active
2691 * ring_buffer_lock_reserve().
2692 *
2693 * Call this function before calling another ring_buffer_lock_reserve() and
2694 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2695 */
2696void ring_buffer_nest_start(struct ring_buffer *buffer)
2697{
2698        struct ring_buffer_per_cpu *cpu_buffer;
2699        int cpu;
2700
2701        /* Enabled by ring_buffer_nest_end() */
2702        preempt_disable_notrace();
2703        cpu = raw_smp_processor_id();
2704        cpu_buffer = buffer->buffers[cpu];
2705        /* This is the shift value for the above recursive locking */
2706        cpu_buffer->nest += NESTED_BITS;
2707}
2708
2709/**
2710 * ring_buffer_nest_end - Allow to trace while nested
2711 * @buffer: The ring buffer to modify
2712 *
2713 * Must be called after ring_buffer_nest_start() and after the
2714 * ring_buffer_unlock_commit().
2715 */
2716void ring_buffer_nest_end(struct ring_buffer *buffer)
2717{
2718        struct ring_buffer_per_cpu *cpu_buffer;
2719        int cpu;
2720
2721        /* disabled by ring_buffer_nest_start() */
2722        cpu = raw_smp_processor_id();
2723        cpu_buffer = buffer->buffers[cpu];
2724        /* This is the shift value for the above recursive locking */
2725        cpu_buffer->nest -= NESTED_BITS;
2726        preempt_enable_notrace();
2727}
2728
2729/**
2730 * ring_buffer_unlock_commit - commit a reserved
2731 * @buffer: The buffer to commit to
2732 * @event: The event pointer to commit.
2733 *
2734 * This commits the data to the ring buffer, and releases any locks held.
2735 *
2736 * Must be paired with ring_buffer_lock_reserve.
2737 */
2738int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2739                              struct ring_buffer_event *event)
2740{
2741        struct ring_buffer_per_cpu *cpu_buffer;
2742        int cpu = raw_smp_processor_id();
2743
2744        cpu_buffer = buffer->buffers[cpu];
2745
2746        rb_commit(cpu_buffer, event);
2747
2748        rb_wakeups(buffer, cpu_buffer);
2749
2750        trace_recursive_unlock(cpu_buffer);
2751
2752        preempt_enable_notrace();
2753
2754        return 0;
2755}
2756EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2757
2758static noinline void
2759rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2760                    struct rb_event_info *info)
2761{
2762        WARN_ONCE(info->delta > (1ULL << 59),
2763                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2764                  (unsigned long long)info->delta,
2765                  (unsigned long long)info->ts,
2766                  (unsigned long long)cpu_buffer->write_stamp,
2767                  sched_clock_stable() ? "" :
2768                  "If you just came from a suspend/resume,\n"
2769                  "please switch to the trace global clock:\n"
2770                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2771                  "or add trace_clock=global to the kernel command line\n");
2772        info->add_timestamp = 1;
2773}
2774
2775static struct ring_buffer_event *
2776__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2777                  struct rb_event_info *info)
2778{
2779        struct ring_buffer_event *event;
2780        struct buffer_page *tail_page;
2781        unsigned long tail, write;
2782
2783        /*
2784         * If the time delta since the last event is too big to
2785         * hold in the time field of the event, then we append a
2786         * TIME EXTEND event ahead of the data event.
2787         */
2788        if (unlikely(info->add_timestamp))
2789                info->length += RB_LEN_TIME_EXTEND;
2790
2791        /* Don't let the compiler play games with cpu_buffer->tail_page */
2792        tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2793        write = local_add_return(info->length, &tail_page->write);
2794
2795        /* set write to only the index of the write */
2796        write &= RB_WRITE_MASK;
2797        tail = write - info->length;
2798
2799        /*
2800         * If this is the first commit on the page, then it has the same
2801         * timestamp as the page itself.
2802         */
2803        if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2804                info->delta = 0;
2805
2806        /* See if we shot pass the end of this buffer page */
2807        if (unlikely(write > BUF_PAGE_SIZE))
2808                return rb_move_tail(cpu_buffer, tail, info);
2809
2810        /* We reserved something on the buffer */
2811
2812        event = __rb_page_index(tail_page, tail);
2813        rb_update_event(cpu_buffer, event, info);
2814
2815        local_inc(&tail_page->entries);
2816
2817        /*
2818         * If this is the first commit on the page, then update
2819         * its timestamp.
2820         */
2821        if (!tail)
2822                tail_page->page->time_stamp = info->ts;
2823
2824        /* account for these added bytes */
2825        local_add(info->length, &cpu_buffer->entries_bytes);
2826
2827        return event;
2828}
2829
2830static __always_inline struct ring_buffer_event *
2831rb_reserve_next_event(struct ring_buffer *buffer,
2832                      struct ring_buffer_per_cpu *cpu_buffer,
2833                      unsigned long length)
2834{
2835        struct ring_buffer_event *event;
2836        struct rb_event_info info;
2837        int nr_loops = 0;
2838        u64 diff;
2839
2840        rb_start_commit(cpu_buffer);
2841
2842#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2843        /*
2844         * Due to the ability to swap a cpu buffer from a buffer
2845         * it is possible it was swapped before we committed.
2846         * (committing stops a swap). We check for it here and
2847         * if it happened, we have to fail the write.
2848         */
2849        barrier();
2850        if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2851                local_dec(&cpu_buffer->committing);
2852                local_dec(&cpu_buffer->commits);
2853                return NULL;
2854        }
2855#endif
2856
2857        info.length = rb_calculate_event_length(length);
2858 again:
2859        info.add_timestamp = 0;
2860        info.delta = 0;
2861
2862        /*
2863         * We allow for interrupts to reenter here and do a trace.
2864         * If one does, it will cause this original code to loop
2865         * back here. Even with heavy interrupts happening, this
2866         * should only happen a few times in a row. If this happens
2867         * 1000 times in a row, there must be either an interrupt
2868         * storm or we have something buggy.
2869         * Bail!
2870         */
2871        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2872                goto out_fail;
2873
2874        info.ts = rb_time_stamp(cpu_buffer->buffer);
2875        diff = info.ts - cpu_buffer->write_stamp;
2876
2877        /* make sure this diff is calculated here */
2878        barrier();
2879
2880        if (ring_buffer_time_stamp_abs(buffer)) {
2881                info.delta = info.ts;
2882                rb_handle_timestamp(cpu_buffer, &info);
2883        } else /* Did the write stamp get updated already? */
2884                if (likely(info.ts >= cpu_buffer->write_stamp)) {
2885                info.delta = diff;
2886                if (unlikely(test_time_stamp(info.delta)))
2887                        rb_handle_timestamp(cpu_buffer, &info);
2888        }
2889
2890        event = __rb_reserve_next(cpu_buffer, &info);
2891
2892        if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2893                if (info.add_timestamp)
2894                        info.length -= RB_LEN_TIME_EXTEND;
2895                goto again;
2896        }
2897
2898        if (!event)
2899                goto out_fail;
2900
2901        return event;
2902
2903 out_fail:
2904        rb_end_commit(cpu_buffer);
2905        return NULL;
2906}
2907
2908/**
2909 * ring_buffer_lock_reserve - reserve a part of the buffer
2910 * @buffer: the ring buffer to reserve from
2911 * @length: the length of the data to reserve (excluding event header)
2912 *
2913 * Returns a reserved event on the ring buffer to copy directly to.
2914 * The user of this interface will need to get the body to write into
2915 * and can use the ring_buffer_event_data() interface.
2916 *
2917 * The length is the length of the data needed, not the event length
2918 * which also includes the event header.
2919 *
2920 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2921 * If NULL is returned, then nothing has been allocated or locked.
2922 */
2923struct ring_buffer_event *
2924ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2925{
2926        struct ring_buffer_per_cpu *cpu_buffer;
2927        struct ring_buffer_event *event;
2928        int cpu;
2929
2930        /* If we are tracing schedule, we don't want to recurse */
2931        preempt_disable_notrace();
2932
2933        if (unlikely(atomic_read(&buffer->record_disabled)))
2934                goto out;
2935
2936        cpu = raw_smp_processor_id();
2937
2938        if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2939                goto out;
2940
2941        cpu_buffer = buffer->buffers[cpu];
2942
2943        if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2944                goto out;
2945
2946        if (unlikely(length > BUF_MAX_DATA_SIZE))
2947                goto out;
2948
2949        if (unlikely(trace_recursive_lock(cpu_buffer)))
2950                goto out;
2951
2952        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2953        if (!event)
2954                goto out_unlock;
2955
2956        return event;
2957
2958 out_unlock:
2959        trace_recursive_unlock(cpu_buffer);
2960 out:
2961        preempt_enable_notrace();
2962        return NULL;
2963}
2964EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2965
2966/*
2967 * Decrement the entries to the page that an event is on.
2968 * The event does not even need to exist, only the pointer
2969 * to the page it is on. This may only be called before the commit
2970 * takes place.
2971 */
2972static inline void
2973rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2974                   struct ring_buffer_event *event)
2975{
2976        unsigned long addr = (unsigned long)event;
2977        struct buffer_page *bpage = cpu_buffer->commit_page;
2978        struct buffer_page *start;
2979
2980        addr &= PAGE_MASK;
2981
2982        /* Do the likely case first */
2983        if (likely(bpage->page == (void *)addr)) {
2984                local_dec(&bpage->entries);
2985                return;
2986        }
2987
2988        /*
2989         * Because the commit page may be on the reader page we
2990         * start with the next page and check the end loop there.
2991         */
2992        rb_inc_page(cpu_buffer, &bpage);
2993        start = bpage;
2994        do {
2995                if (bpage->page == (void *)addr) {
2996                        local_dec(&bpage->entries);
2997                        return;
2998                }
2999                rb_inc_page(cpu_buffer, &bpage);
3000        } while (bpage != start);
3001
3002        /* commit not part of this buffer?? */
3003        RB_WARN_ON(cpu_buffer, 1);
3004}
3005
3006/**
3007 * ring_buffer_commit_discard - discard an event that has not been committed
3008 * @buffer: the ring buffer
3009 * @event: non committed event to discard
3010 *
3011 * Sometimes an event that is in the ring buffer needs to be ignored.
3012 * This function lets the user discard an event in the ring buffer
3013 * and then that event will not be read later.
3014 *
3015 * This function only works if it is called before the item has been
3016 * committed. It will try to free the event from the ring buffer
3017 * if another event has not been added behind it.
3018 *
3019 * If another event has been added behind it, it will set the event
3020 * up as discarded, and perform the commit.
3021 *
3022 * If this function is called, do not call ring_buffer_unlock_commit on
3023 * the event.
3024 */
3025void ring_buffer_discard_commit(struct ring_buffer *buffer,
3026                                struct ring_buffer_event *event)
3027{
3028        struct ring_buffer_per_cpu *cpu_buffer;
3029        int cpu;
3030
3031        /* The event is discarded regardless */
3032        rb_event_discard(event);
3033
3034        cpu = smp_processor_id();
3035        cpu_buffer = buffer->buffers[cpu];
3036
3037        /*
3038         * This must only be called if the event has not been
3039         * committed yet. Thus we can assume that preemption
3040         * is still disabled.
3041         */
3042        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3043
3044        rb_decrement_entry(cpu_buffer, event);
3045        if (rb_try_to_discard(cpu_buffer, event))
3046                goto out;
3047
3048        /*
3049         * The commit is still visible by the reader, so we
3050         * must still update the timestamp.
3051         */
3052        rb_update_write_stamp(cpu_buffer, event);
3053 out:
3054        rb_end_commit(cpu_buffer);
3055
3056        trace_recursive_unlock(cpu_buffer);
3057
3058        preempt_enable_notrace();
3059
3060}
3061EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3062
3063/**
3064 * ring_buffer_write - write data to the buffer without reserving
3065 * @buffer: The ring buffer to write to.
3066 * @length: The length of the data being written (excluding the event header)
3067 * @data: The data to write to the buffer.
3068 *
3069 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3070 * one function. If you already have the data to write to the buffer, it
3071 * may be easier to simply call this function.
3072 *
3073 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3074 * and not the length of the event which would hold the header.
3075 */
3076int ring_buffer_write(struct ring_buffer *buffer,
3077                      unsigned long length,
3078                      void *data)
3079{
3080        struct ring_buffer_per_cpu *cpu_buffer;
3081        struct ring_buffer_event *event;
3082        void *body;
3083        int ret = -EBUSY;
3084        int cpu;
3085
3086        preempt_disable_notrace();
3087
3088        if (atomic_read(&buffer->record_disabled))
3089                goto out;
3090
3091        cpu = raw_smp_processor_id();
3092
3093        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3094                goto out;
3095
3096        cpu_buffer = buffer->buffers[cpu];
3097
3098        if (atomic_read(&cpu_buffer->record_disabled))
3099                goto out;
3100
3101        if (length > BUF_MAX_DATA_SIZE)
3102                goto out;
3103
3104        if (unlikely(trace_recursive_lock(cpu_buffer)))
3105                goto out;
3106
3107        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3108        if (!event)
3109                goto out_unlock;
3110
3111        body = rb_event_data(event);
3112
3113        memcpy(body, data, length);
3114
3115        rb_commit(cpu_buffer, event);
3116
3117        rb_wakeups(buffer, cpu_buffer);
3118
3119        ret = 0;
3120
3121 out_unlock:
3122        trace_recursive_unlock(cpu_buffer);
3123
3124 out:
3125        preempt_enable_notrace();
3126
3127        return ret;
3128}
3129EXPORT_SYMBOL_GPL(ring_buffer_write);
3130
3131static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3132{
3133        struct buffer_page *reader = cpu_buffer->reader_page;
3134        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3135        struct buffer_page *commit = cpu_buffer->commit_page;
3136
3137        /* In case of error, head will be NULL */
3138        if (unlikely(!head))
3139                return true;
3140
3141        return reader->read == rb_page_commit(reader) &&
3142                (commit == reader ||
3143                 (commit == head &&
3144                  head->read == rb_page_commit(commit)));
3145}
3146
3147/**
3148 * ring_buffer_record_disable - stop all writes into the buffer
3149 * @buffer: The ring buffer to stop writes to.
3150 *
3151 * This prevents all writes to the buffer. Any attempt to write
3152 * to the buffer after this will fail and return NULL.
3153 *
3154 * The caller should call synchronize_sched() after this.
3155 */
3156void ring_buffer_record_disable(struct ring_buffer *buffer)
3157{
3158        atomic_inc(&buffer->record_disabled);
3159}
3160EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3161
3162/**
3163 * ring_buffer_record_enable - enable writes to the buffer
3164 * @buffer: The ring buffer to enable writes
3165 *
3166 * Note, multiple disables will need the same number of enables
3167 * to truly enable the writing (much like preempt_disable).
3168 */
3169void ring_buffer_record_enable(struct ring_buffer *buffer)
3170{
3171        atomic_dec(&buffer->record_disabled);
3172}
3173EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3174
3175/**
3176 * ring_buffer_record_off - stop all writes into the buffer
3177 * @buffer: The ring buffer to stop writes to.
3178 *
3179 * This prevents all writes to the buffer. Any attempt to write
3180 * to the buffer after this will fail and return NULL.
3181 *
3182 * This is different than ring_buffer_record_disable() as
3183 * it works like an on/off switch, where as the disable() version
3184 * must be paired with a enable().
3185 */
3186void ring_buffer_record_off(struct ring_buffer *buffer)
3187{
3188        unsigned int rd;
3189        unsigned int new_rd;
3190
3191        do {
3192                rd = atomic_read(&buffer->record_disabled);
3193                new_rd = rd | RB_BUFFER_OFF;
3194        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3195}
3196EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3197
3198/**
3199 * ring_buffer_record_on - restart writes into the buffer
3200 * @buffer: The ring buffer to start writes to.
3201 *
3202 * This enables all writes to the buffer that was disabled by
3203 * ring_buffer_record_off().
3204 *
3205 * This is different than ring_buffer_record_enable() as
3206 * it works like an on/off switch, where as the enable() version
3207 * must be paired with a disable().
3208 */
3209void ring_buffer_record_on(struct ring_buffer *buffer)
3210{
3211        unsigned int rd;
3212        unsigned int new_rd;
3213
3214        do {
3215                rd = atomic_read(&buffer->record_disabled);
3216                new_rd = rd & ~RB_BUFFER_OFF;
3217        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3218}
3219EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3220
3221/**
3222 * ring_buffer_record_is_on - return true if the ring buffer can write
3223 * @buffer: The ring buffer to see if write is enabled
3224 *
3225 * Returns true if the ring buffer is in a state that it accepts writes.
3226 */
3227bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3228{
3229        return !atomic_read(&buffer->record_disabled);
3230}
3231
3232/**
3233 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3234 * @buffer: The ring buffer to see if write is set enabled
3235 *
3236 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3237 * Note that this does NOT mean it is in a writable state.
3238 *
3239 * It may return true when the ring buffer has been disabled by
3240 * ring_buffer_record_disable(), as that is a temporary disabling of
3241 * the ring buffer.
3242 */
3243bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3244{
3245        return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3246}
3247
3248/**
3249 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3250 * @buffer: The ring buffer to stop writes to.
3251 * @cpu: The CPU buffer to stop
3252 *
3253 * This prevents all writes to the buffer. Any attempt to write
3254 * to the buffer after this will fail and return NULL.
3255 *
3256 * The caller should call synchronize_sched() after this.
3257 */
3258void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3259{
3260        struct ring_buffer_per_cpu *cpu_buffer;
3261
3262        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3263                return;
3264
3265        cpu_buffer = buffer->buffers[cpu];
3266        atomic_inc(&cpu_buffer->record_disabled);
3267}
3268EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3269
3270/**
3271 * ring_buffer_record_enable_cpu - enable writes to the buffer
3272 * @buffer: The ring buffer to enable writes
3273 * @cpu: The CPU to enable.
3274 *
3275 * Note, multiple disables will need the same number of enables
3276 * to truly enable the writing (much like preempt_disable).
3277 */
3278void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3279{
3280        struct ring_buffer_per_cpu *cpu_buffer;
3281
3282        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283                return;
3284
3285        cpu_buffer = buffer->buffers[cpu];
3286        atomic_dec(&cpu_buffer->record_disabled);
3287}
3288EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3289
3290/*
3291 * The total entries in the ring buffer is the running counter
3292 * of entries entered into the ring buffer, minus the sum of
3293 * the entries read from the ring buffer and the number of
3294 * entries that were overwritten.
3295 */
3296static inline unsigned long
3297rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3298{
3299        return local_read(&cpu_buffer->entries) -
3300                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3301}
3302
3303/**
3304 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3305 * @buffer: The ring buffer
3306 * @cpu: The per CPU buffer to read from.
3307 */
3308u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3309{
3310        unsigned long flags;
3311        struct ring_buffer_per_cpu *cpu_buffer;
3312        struct buffer_page *bpage;
3313        u64 ret = 0;
3314
3315        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3316                return 0;
3317
3318        cpu_buffer = buffer->buffers[cpu];
3319        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3320        /*
3321         * if the tail is on reader_page, oldest time stamp is on the reader
3322         * page
3323         */
3324        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3325                bpage = cpu_buffer->reader_page;
3326        else
3327                bpage = rb_set_head_page(cpu_buffer);
3328        if (bpage)
3329                ret = bpage->page->time_stamp;
3330        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3331
3332        return ret;
3333}
3334EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3335
3336/**
3337 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3338 * @buffer: The ring buffer
3339 * @cpu: The per CPU buffer to read from.
3340 */
3341unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3342{
3343        struct ring_buffer_per_cpu *cpu_buffer;
3344        unsigned long ret;
3345
3346        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347                return 0;
3348
3349        cpu_buffer = buffer->buffers[cpu];
3350        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3351
3352        return ret;
3353}
3354EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3355
3356/**
3357 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3358 * @buffer: The ring buffer
3359 * @cpu: The per CPU buffer to get the entries from.
3360 */
3361unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3362{
3363        struct ring_buffer_per_cpu *cpu_buffer;
3364
3365        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3366                return 0;
3367
3368        cpu_buffer = buffer->buffers[cpu];
3369
3370        return rb_num_of_entries(cpu_buffer);
3371}
3372EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3373
3374/**
3375 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3376 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to get the number of overruns from
3379 */
3380unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3381{
3382        struct ring_buffer_per_cpu *cpu_buffer;
3383        unsigned long ret;
3384
3385        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386                return 0;
3387
3388        cpu_buffer = buffer->buffers[cpu];
3389        ret = local_read(&cpu_buffer->overrun);
3390
3391        return ret;
3392}
3393EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3394
3395/**
3396 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3397 * commits failing due to the buffer wrapping around while there are uncommitted
3398 * events, such as during an interrupt storm.
3399 * @buffer: The ring buffer
3400 * @cpu: The per CPU buffer to get the number of overruns from
3401 */
3402unsigned long
3403ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3404{
3405        struct ring_buffer_per_cpu *cpu_buffer;
3406        unsigned long ret;
3407
3408        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3409                return 0;
3410
3411        cpu_buffer = buffer->buffers[cpu];
3412        ret = local_read(&cpu_buffer->commit_overrun);
3413
3414        return ret;
3415}
3416EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3417
3418/**
3419 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3420 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3421 * @buffer: The ring buffer
3422 * @cpu: The per CPU buffer to get the number of overruns from
3423 */
3424unsigned long
3425ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3426{
3427        struct ring_buffer_per_cpu *cpu_buffer;
3428        unsigned long ret;
3429
3430        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3431                return 0;
3432
3433        cpu_buffer = buffer->buffers[cpu];
3434        ret = local_read(&cpu_buffer->dropped_events);
3435
3436        return ret;
3437}
3438EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3439
3440/**
3441 * ring_buffer_read_events_cpu - get the number of events successfully read
3442 * @buffer: The ring buffer
3443 * @cpu: The per CPU buffer to get the number of events read
3444 */
3445unsigned long
3446ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3447{
3448        struct ring_buffer_per_cpu *cpu_buffer;
3449
3450        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3451                return 0;
3452
3453        cpu_buffer = buffer->buffers[cpu];
3454        return cpu_buffer->read;
3455}
3456EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3457
3458/**
3459 * ring_buffer_entries - get the number of entries in a buffer
3460 * @buffer: The ring buffer
3461 *
3462 * Returns the total number of entries in the ring buffer
3463 * (all CPU entries)
3464 */
3465unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3466{
3467        struct ring_buffer_per_cpu *cpu_buffer;
3468        unsigned long entries = 0;
3469        int cpu;
3470
3471        /* if you care about this being correct, lock the buffer */
3472        for_each_buffer_cpu(buffer, cpu) {
3473                cpu_buffer = buffer->buffers[cpu];
3474                entries += rb_num_of_entries(cpu_buffer);
3475        }
3476
3477        return entries;
3478}
3479EXPORT_SYMBOL_GPL(ring_buffer_entries);
3480
3481/**
3482 * ring_buffer_overruns - get the number of overruns in buffer
3483 * @buffer: The ring buffer
3484 *
3485 * Returns the total number of overruns in the ring buffer
3486 * (all CPU entries)
3487 */
3488unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3489{
3490        struct ring_buffer_per_cpu *cpu_buffer;
3491        unsigned long overruns = 0;
3492        int cpu;
3493
3494        /* if you care about this being correct, lock the buffer */
3495        for_each_buffer_cpu(buffer, cpu) {
3496                cpu_buffer = buffer->buffers[cpu];
3497                overruns += local_read(&cpu_buffer->overrun);
3498        }
3499
3500        return overruns;
3501}
3502EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3503
3504static void rb_iter_reset(struct ring_buffer_iter *iter)
3505{
3506        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3507
3508        /* Iterator usage is expected to have record disabled */
3509        iter->head_page = cpu_buffer->reader_page;
3510        iter->head = cpu_buffer->reader_page->read;
3511
3512        iter->cache_reader_page = iter->head_page;
3513        iter->cache_read = cpu_buffer->read;
3514
3515        if (iter->head)
3516                iter->read_stamp = cpu_buffer->read_stamp;
3517        else
3518                iter->read_stamp = iter->head_page->page->time_stamp;
3519}
3520
3521/**
3522 * ring_buffer_iter_reset - reset an iterator
3523 * @iter: The iterator to reset
3524 *
3525 * Resets the iterator, so that it will start from the beginning
3526 * again.
3527 */
3528void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3529{
3530        struct ring_buffer_per_cpu *cpu_buffer;
3531        unsigned long flags;
3532
3533        if (!iter)
3534                return;
3535
3536        cpu_buffer = iter->cpu_buffer;
3537
3538        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3539        rb_iter_reset(iter);
3540        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3541}
3542EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3543
3544/**
3545 * ring_buffer_iter_empty - check if an iterator has no more to read
3546 * @iter: The iterator to check
3547 */
3548int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3549{
3550        struct ring_buffer_per_cpu *cpu_buffer;
3551        struct buffer_page *reader;
3552        struct buffer_page *head_page;
3553        struct buffer_page *commit_page;
3554        unsigned commit;
3555
3556        cpu_buffer = iter->cpu_buffer;
3557
3558        /* Remember, trace recording is off when iterator is in use */
3559        reader = cpu_buffer->reader_page;
3560        head_page = cpu_buffer->head_page;
3561        commit_page = cpu_buffer->commit_page;
3562        commit = rb_page_commit(commit_page);
3563
3564        return ((iter->head_page == commit_page && iter->head == commit) ||
3565                (iter->head_page == reader && commit_page == head_page &&
3566                 head_page->read == commit &&
3567                 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3568}
3569EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3570
3571static void
3572rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3573                     struct ring_buffer_event *event)
3574{
3575        u64 delta;
3576
3577        switch (event->type_len) {
3578        case RINGBUF_TYPE_PADDING:
3579                return;
3580
3581        case RINGBUF_TYPE_TIME_EXTEND:
3582                delta = ring_buffer_event_time_stamp(event);
3583                cpu_buffer->read_stamp += delta;
3584                return;
3585
3586        case RINGBUF_TYPE_TIME_STAMP:
3587                delta = ring_buffer_event_time_stamp(event);
3588                cpu_buffer->read_stamp = delta;
3589                return;
3590
3591        case RINGBUF_TYPE_DATA:
3592                cpu_buffer->read_stamp += event->time_delta;
3593                return;
3594
3595        default:
3596                BUG();
3597        }
3598        return;
3599}
3600
3601static void
3602rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3603                          struct ring_buffer_event *event)
3604{
3605        u64 delta;
3606
3607        switch (event->type_len) {
3608        case RINGBUF_TYPE_PADDING:
3609                return;
3610
3611        case RINGBUF_TYPE_TIME_EXTEND:
3612                delta = ring_buffer_event_time_stamp(event);
3613                iter->read_stamp += delta;
3614                return;
3615
3616        case RINGBUF_TYPE_TIME_STAMP:
3617                delta = ring_buffer_event_time_stamp(event);
3618                iter->read_stamp = delta;
3619                return;
3620
3621        case RINGBUF_TYPE_DATA:
3622                iter->read_stamp += event->time_delta;
3623                return;
3624
3625        default:
3626                BUG();
3627        }
3628        return;
3629}
3630
3631static struct buffer_page *
3632rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3633{
3634        struct buffer_page *reader = NULL;
3635        unsigned long overwrite;
3636        unsigned long flags;
3637        int nr_loops = 0;
3638        int ret;
3639
3640        local_irq_save(flags);
3641        arch_spin_lock(&cpu_buffer->lock);
3642
3643 again:
3644        /*
3645         * This should normally only loop twice. But because the
3646         * start of the reader inserts an empty page, it causes
3647         * a case where we will loop three times. There should be no
3648         * reason to loop four times (that I know of).
3649         */
3650        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3651                reader = NULL;
3652                goto out;
3653        }
3654
3655        reader = cpu_buffer->reader_page;
3656
3657        /* If there's more to read, return this page */
3658        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3659                goto out;
3660
3661        /* Never should we have an index greater than the size */
3662        if (RB_WARN_ON(cpu_buffer,
3663                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3664                goto out;
3665
3666        /* check if we caught up to the tail */
3667        reader = NULL;
3668        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3669                goto out;
3670
3671        /* Don't bother swapping if the ring buffer is empty */
3672        if (rb_num_of_entries(cpu_buffer) == 0)
3673                goto out;
3674
3675        /*
3676         * Reset the reader page to size zero.
3677         */
3678        local_set(&cpu_buffer->reader_page->write, 0);
3679        local_set(&cpu_buffer->reader_page->entries, 0);
3680        local_set(&cpu_buffer->reader_page->page->commit, 0);
3681        cpu_buffer->reader_page->real_end = 0;
3682
3683 spin:
3684        /*
3685         * Splice the empty reader page into the list around the head.
3686         */
3687        reader = rb_set_head_page(cpu_buffer);
3688        if (!reader)
3689                goto out;
3690        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3691        cpu_buffer->reader_page->list.prev = reader->list.prev;
3692
3693        /*
3694         * cpu_buffer->pages just needs to point to the buffer, it
3695         *  has no specific buffer page to point to. Lets move it out
3696         *  of our way so we don't accidentally swap it.
3697         */
3698        cpu_buffer->pages = reader->list.prev;
3699
3700        /* The reader page will be pointing to the new head */
3701        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3702
3703        /*
3704         * We want to make sure we read the overruns after we set up our
3705         * pointers to the next object. The writer side does a
3706         * cmpxchg to cross pages which acts as the mb on the writer
3707         * side. Note, the reader will constantly fail the swap
3708         * while the writer is updating the pointers, so this
3709         * guarantees that the overwrite recorded here is the one we
3710         * want to compare with the last_overrun.
3711         */
3712        smp_mb();
3713        overwrite = local_read(&(cpu_buffer->overrun));
3714
3715        /*
3716         * Here's the tricky part.
3717         *
3718         * We need to move the pointer past the header page.
3719         * But we can only do that if a writer is not currently
3720         * moving it. The page before the header page has the
3721         * flag bit '1' set if it is pointing to the page we want.
3722         * but if the writer is in the process of moving it
3723         * than it will be '2' or already moved '0'.
3724         */
3725
3726        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3727
3728        /*
3729         * If we did not convert it, then we must try again.
3730         */
3731        if (!ret)
3732                goto spin;
3733
3734        /*
3735         * Yeah! We succeeded in replacing the page.
3736         *
3737         * Now make the new head point back to the reader page.
3738         */
3739        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3740        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3741
3742        /* Finally update the reader page to the new head */
3743        cpu_buffer->reader_page = reader;
3744        cpu_buffer->reader_page->read = 0;
3745
3746        if (overwrite != cpu_buffer->last_overrun) {
3747                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3748                cpu_buffer->last_overrun = overwrite;
3749        }
3750
3751        goto again;
3752
3753 out:
3754        /* Update the read_stamp on the first event */
3755        if (reader && reader->read == 0)
3756                cpu_buffer->read_stamp = reader->page->time_stamp;
3757
3758        arch_spin_unlock(&cpu_buffer->lock);
3759        local_irq_restore(flags);
3760
3761        return reader;
3762}
3763
3764static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3765{
3766        struct ring_buffer_event *event;
3767        struct buffer_page *reader;
3768        unsigned length;
3769
3770        reader = rb_get_reader_page(cpu_buffer);
3771
3772        /* This function should not be called when buffer is empty */
3773        if (RB_WARN_ON(cpu_buffer, !reader))
3774                return;
3775
3776        event = rb_reader_event(cpu_buffer);
3777
3778        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3779                cpu_buffer->read++;
3780
3781        rb_update_read_stamp(cpu_buffer, event);
3782
3783        length = rb_event_length(event);
3784        cpu_buffer->reader_page->read += length;
3785}
3786
3787static void rb_advance_iter(struct ring_buffer_iter *iter)
3788{
3789        struct ring_buffer_per_cpu *cpu_buffer;
3790        struct ring_buffer_event *event;
3791        unsigned length;
3792
3793        cpu_buffer = iter->cpu_buffer;
3794
3795        /*
3796         * Check if we are at the end of the buffer.
3797         */
3798        if (iter->head >= rb_page_size(iter->head_page)) {
3799                /* discarded commits can make the page empty */
3800                if (iter->head_page == cpu_buffer->commit_page)
3801                        return;
3802                rb_inc_iter(iter);
3803                return;
3804        }
3805
3806        event = rb_iter_head_event(iter);
3807
3808        length = rb_event_length(event);
3809
3810        /*
3811         * This should not be called to advance the header if we are
3812         * at the tail of the buffer.
3813         */
3814        if (RB_WARN_ON(cpu_buffer,
3815                       (iter->head_page == cpu_buffer->commit_page) &&
3816                       (iter->head + length > rb_commit_index(cpu_buffer))))
3817                return;
3818
3819        rb_update_iter_read_stamp(iter, event);
3820
3821        iter->head += length;
3822
3823        /* check for end of page padding */
3824        if ((iter->head >= rb_page_size(iter->head_page)) &&
3825            (iter->head_page != cpu_buffer->commit_page))
3826                rb_inc_iter(iter);
3827}
3828
3829static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3830{
3831        return cpu_buffer->lost_events;
3832}
3833
3834static struct ring_buffer_event *
3835rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3836               unsigned long *lost_events)
3837{
3838        struct ring_buffer_event *event;
3839        struct buffer_page *reader;
3840        int nr_loops = 0;
3841
3842        if (ts)
3843                *ts = 0;
3844 again:
3845        /*
3846         * We repeat when a time extend is encountered.
3847         * Since the time extend is always attached to a data event,
3848         * we should never loop more than once.
3849         * (We never hit the following condition more than twice).
3850         */
3851        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3852                return NULL;
3853
3854        reader = rb_get_reader_page(cpu_buffer);
3855        if (!reader)
3856                return NULL;
3857
3858        event = rb_reader_event(cpu_buffer);
3859
3860        switch (event->type_len) {
3861        case RINGBUF_TYPE_PADDING:
3862                if (rb_null_event(event))
3863                        RB_WARN_ON(cpu_buffer, 1);
3864                /*
3865                 * Because the writer could be discarding every
3866                 * event it creates (which would probably be bad)
3867                 * if we were to go back to "again" then we may never
3868                 * catch up, and will trigger the warn on, or lock
3869                 * the box. Return the padding, and we will release
3870                 * the current locks, and try again.
3871                 */
3872                return event;
3873
3874        case RINGBUF_TYPE_TIME_EXTEND:
3875                /* Internal data, OK to advance */
3876                rb_advance_reader(cpu_buffer);
3877                goto again;
3878
3879        case RINGBUF_TYPE_TIME_STAMP:
3880                if (ts) {
3881                        *ts = ring_buffer_event_time_stamp(event);
3882                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3883                                                         cpu_buffer->cpu, ts);
3884                }
3885                /* Internal data, OK to advance */
3886                rb_advance_reader(cpu_buffer);
3887                goto again;
3888
3889        case RINGBUF_TYPE_DATA:
3890                if (ts && !(*ts)) {
3891                        *ts = cpu_buffer->read_stamp + event->time_delta;
3892                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3893                                                         cpu_buffer->cpu, ts);
3894                }
3895                if (lost_events)
3896                        *lost_events = rb_lost_events(cpu_buffer);
3897                return event;
3898
3899        default:
3900                BUG();
3901        }
3902
3903        return NULL;
3904}
3905EXPORT_SYMBOL_GPL(ring_buffer_peek);
3906
3907static struct ring_buffer_event *
3908rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3909{
3910        struct ring_buffer *buffer;
3911        struct ring_buffer_per_cpu *cpu_buffer;
3912        struct ring_buffer_event *event;
3913        int nr_loops = 0;
3914
3915        if (ts)
3916                *ts = 0;
3917
3918        cpu_buffer = iter->cpu_buffer;
3919        buffer = cpu_buffer->buffer;
3920
3921        /*
3922         * Check if someone performed a consuming read to
3923         * the buffer. A consuming read invalidates the iterator
3924         * and we need to reset the iterator in this case.
3925         */
3926        if (unlikely(iter->cache_read != cpu_buffer->read ||
3927                     iter->cache_reader_page != cpu_buffer->reader_page))
3928                rb_iter_reset(iter);
3929
3930 again:
3931        if (ring_buffer_iter_empty(iter))
3932                return NULL;
3933
3934        /*
3935         * We repeat when a time extend is encountered or we hit
3936         * the end of the page. Since the time extend is always attached
3937         * to a data event, we should never loop more than three times.
3938         * Once for going to next page, once on time extend, and
3939         * finally once to get the event.
3940         * (We never hit the following condition more than thrice).
3941         */
3942        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3943                return NULL;
3944
3945        if (rb_per_cpu_empty(cpu_buffer))
3946                return NULL;
3947
3948        if (iter->head >= rb_page_size(iter->head_page)) {
3949                rb_inc_iter(iter);
3950                goto again;
3951        }
3952
3953        event = rb_iter_head_event(iter);
3954
3955        switch (event->type_len) {
3956        case RINGBUF_TYPE_PADDING:
3957                if (rb_null_event(event)) {
3958                        rb_inc_iter(iter);
3959                        goto again;
3960                }
3961                rb_advance_iter(iter);
3962                return event;
3963
3964        case RINGBUF_TYPE_TIME_EXTEND:
3965                /* Internal data, OK to advance */
3966                rb_advance_iter(iter);
3967                goto again;
3968
3969        case RINGBUF_TYPE_TIME_STAMP:
3970                if (ts) {
3971                        *ts = ring_buffer_event_time_stamp(event);
3972                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3973                                                         cpu_buffer->cpu, ts);
3974                }
3975                /* Internal data, OK to advance */
3976                rb_advance_iter(iter);
3977                goto again;
3978
3979        case RINGBUF_TYPE_DATA:
3980                if (ts && !(*ts)) {
3981                        *ts = iter->read_stamp + event->time_delta;
3982                        ring_buffer_normalize_time_stamp(buffer,
3983                                                         cpu_buffer->cpu, ts);
3984                }
3985                return event;
3986
3987        default:
3988                BUG();
3989        }
3990
3991        return NULL;
3992}
3993EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3994
3995static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3996{
3997        if (likely(!in_nmi())) {
3998                raw_spin_lock(&cpu_buffer->reader_lock);
3999                return true;
4000        }
4001
4002        /*
4003         * If an NMI die dumps out the content of the ring buffer
4004         * trylock must be used to prevent a deadlock if the NMI
4005         * preempted a task that holds the ring buffer locks. If
4006         * we get the lock then all is fine, if not, then continue
4007         * to do the read, but this can corrupt the ring buffer,
4008         * so it must be permanently disabled from future writes.
4009         * Reading from NMI is a oneshot deal.
4010         */
4011        if (raw_spin_trylock(&cpu_buffer->reader_lock))
4012                return true;
4013
4014        /* Continue without locking, but disable the ring buffer */
4015        atomic_inc(&cpu_buffer->record_disabled);
4016        return false;
4017}
4018
4019static inline void
4020rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4021{
4022        if (likely(locked))
4023                raw_spin_unlock(&cpu_buffer->reader_lock);
4024        return;
4025}
4026
4027/**
4028 * ring_buffer_peek - peek at the next event to be read
4029 * @buffer: The ring buffer to read
4030 * @cpu: The cpu to peak at
4031 * @ts: The timestamp counter of this event.
4032 * @lost_events: a variable to store if events were lost (may be NULL)
4033 *
4034 * This will return the event that will be read next, but does
4035 * not consume the data.
4036 */
4037struct ring_buffer_event *
4038ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4039                 unsigned long *lost_events)
4040{
4041        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4042        struct ring_buffer_event *event;
4043        unsigned long flags;
4044        bool dolock;
4045
4046        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4047                return NULL;
4048
4049 again:
4050        local_irq_save(flags);
4051        dolock = rb_reader_lock(cpu_buffer);
4052        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4053        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4054                rb_advance_reader(cpu_buffer);
4055        rb_reader_unlock(cpu_buffer, dolock);
4056        local_irq_restore(flags);
4057
4058        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4059                goto again;
4060
4061        return event;
4062}
4063
4064/**
4065 * ring_buffer_iter_peek - peek at the next event to be read
4066 * @iter: The ring buffer iterator
4067 * @ts: The timestamp counter of this event.
4068 *
4069 * This will return the event that will be read next, but does
4070 * not increment the iterator.
4071 */
4072struct ring_buffer_event *
4073ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4074{
4075        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076        struct ring_buffer_event *event;
4077        unsigned long flags;
4078
4079 again:
4080        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4081        event = rb_iter_peek(iter, ts);
4082        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4083
4084        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4085                goto again;
4086
4087        return event;
4088}
4089
4090/**
4091 * ring_buffer_consume - return an event and consume it
4092 * @buffer: The ring buffer to get the next event from
4093 * @cpu: the cpu to read the buffer from
4094 * @ts: a variable to store the timestamp (may be NULL)
4095 * @lost_events: a variable to store if events were lost (may be NULL)
4096 *
4097 * Returns the next event in the ring buffer, and that event is consumed.
4098 * Meaning, that sequential reads will keep returning a different event,
4099 * and eventually empty the ring buffer if the producer is slower.
4100 */
4101struct ring_buffer_event *
4102ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4103                    unsigned long *lost_events)
4104{
4105        struct ring_buffer_per_cpu *cpu_buffer;
4106        struct ring_buffer_event *event = NULL;
4107        unsigned long flags;
4108        bool dolock;
4109
4110 again:
4111        /* might be called in atomic */
4112        preempt_disable();
4113
4114        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4115                goto out;
4116
4117        cpu_buffer = buffer->buffers[cpu];
4118        local_irq_save(flags);
4119        dolock = rb_reader_lock(cpu_buffer);
4120
4121        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4122        if (event) {
4123                cpu_buffer->lost_events = 0;
4124                rb_advance_reader(cpu_buffer);
4125        }
4126
4127        rb_reader_unlock(cpu_buffer, dolock);
4128        local_irq_restore(flags);
4129
4130 out:
4131        preempt_enable();
4132
4133        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4134                goto again;
4135
4136        return event;
4137}
4138EXPORT_SYMBOL_GPL(ring_buffer_consume);
4139
4140/**
4141 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4142 * @buffer: The ring buffer to read from
4143 * @cpu: The cpu buffer to iterate over
4144 *
4145 * This performs the initial preparations necessary to iterate
4146 * through the buffer.  Memory is allocated, buffer recording
4147 * is disabled, and the iterator pointer is returned to the caller.
4148 *
4149 * Disabling buffer recording prevents the reading from being
4150 * corrupted. This is not a consuming read, so a producer is not
4151 * expected.
4152 *
4153 * After a sequence of ring_buffer_read_prepare calls, the user is
4154 * expected to make at least one call to ring_buffer_read_prepare_sync.
4155 * Afterwards, ring_buffer_read_start is invoked to get things going
4156 * for real.
4157 *
4158 * This overall must be paired with ring_buffer_read_finish.
4159 */
4160struct ring_buffer_iter *
4161ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4162{
4163        struct ring_buffer_per_cpu *cpu_buffer;
4164        struct ring_buffer_iter *iter;
4165
4166        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167                return NULL;
4168
4169        iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4170        if (!iter)
4171                return NULL;
4172
4173        cpu_buffer = buffer->buffers[cpu];
4174
4175        iter->cpu_buffer = cpu_buffer;
4176
4177        atomic_inc(&buffer->resize_disabled);
4178        atomic_inc(&cpu_buffer->record_disabled);
4179
4180        return iter;
4181}
4182EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4183
4184/**
4185 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4186 *
4187 * All previously invoked ring_buffer_read_prepare calls to prepare
4188 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4189 * calls on those iterators are allowed.
4190 */
4191void
4192ring_buffer_read_prepare_sync(void)
4193{
4194        synchronize_sched();
4195}
4196EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4197
4198/**
4199 * ring_buffer_read_start - start a non consuming read of the buffer
4200 * @iter: The iterator returned by ring_buffer_read_prepare
4201 *
4202 * This finalizes the startup of an iteration through the buffer.
4203 * The iterator comes from a call to ring_buffer_read_prepare and
4204 * an intervening ring_buffer_read_prepare_sync must have been
4205 * performed.
4206 *
4207 * Must be paired with ring_buffer_read_finish.
4208 */
4209void
4210ring_buffer_read_start(struct ring_buffer_iter *iter)
4211{
4212        struct ring_buffer_per_cpu *cpu_buffer;
4213        unsigned long flags;
4214
4215        if (!iter)
4216                return;
4217
4218        cpu_buffer = iter->cpu_buffer;
4219
4220        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4221        arch_spin_lock(&cpu_buffer->lock);
4222        rb_iter_reset(iter);
4223        arch_spin_unlock(&cpu_buffer->lock);
4224        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4225}
4226EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4227
4228/**
4229 * ring_buffer_read_finish - finish reading the iterator of the buffer
4230 * @iter: The iterator retrieved by ring_buffer_start
4231 *
4232 * This re-enables the recording to the buffer, and frees the
4233 * iterator.
4234 */
4235void
4236ring_buffer_read_finish(struct ring_buffer_iter *iter)
4237{
4238        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4239        unsigned long flags;
4240
4241        /*
4242         * Ring buffer is disabled from recording, here's a good place
4243         * to check the integrity of the ring buffer.
4244         * Must prevent readers from trying to read, as the check
4245         * clears the HEAD page and readers require it.
4246         */
4247        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4248        rb_check_pages(cpu_buffer);
4249        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4250
4251        atomic_dec(&cpu_buffer->record_disabled);
4252        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4253        kfree(iter);
4254}
4255EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4256
4257/**
4258 * ring_buffer_read - read the next item in the ring buffer by the iterator
4259 * @iter: The ring buffer iterator
4260 * @ts: The time stamp of the event read.
4261 *
4262 * This reads the next event in the ring buffer and increments the iterator.
4263 */
4264struct ring_buffer_event *
4265ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4266{
4267        struct ring_buffer_event *event;
4268        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4269        unsigned long flags;
4270
4271        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4272 again:
4273        event = rb_iter_peek(iter, ts);
4274        if (!event)
4275                goto out;
4276
4277        if (event->type_len == RINGBUF_TYPE_PADDING)
4278                goto again;
4279
4280        rb_advance_iter(iter);
4281 out:
4282        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4283
4284        return event;
4285}
4286EXPORT_SYMBOL_GPL(ring_buffer_read);
4287
4288/**
4289 * ring_buffer_size - return the size of the ring buffer (in bytes)
4290 * @buffer: The ring buffer.
4291 */
4292unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4293{
4294        /*
4295         * Earlier, this method returned
4296         *      BUF_PAGE_SIZE * buffer->nr_pages
4297         * Since the nr_pages field is now removed, we have converted this to
4298         * return the per cpu buffer value.
4299         */
4300        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4301                return 0;
4302
4303        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4304}
4305EXPORT_SYMBOL_GPL(ring_buffer_size);
4306
4307static void
4308rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4309{
4310        rb_head_page_deactivate(cpu_buffer);
4311
4312        cpu_buffer->head_page
4313                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4314        local_set(&cpu_buffer->head_page->write, 0);
4315        local_set(&cpu_buffer->head_page->entries, 0);
4316        local_set(&cpu_buffer->head_page->page->commit, 0);
4317
4318        cpu_buffer->head_page->read = 0;
4319
4320        cpu_buffer->tail_page = cpu_buffer->head_page;
4321        cpu_buffer->commit_page = cpu_buffer->head_page;
4322
4323        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4324        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4325        local_set(&cpu_buffer->reader_page->write, 0);
4326        local_set(&cpu_buffer->reader_page->entries, 0);
4327        local_set(&cpu_buffer->reader_page->page->commit, 0);
4328        cpu_buffer->reader_page->read = 0;
4329
4330        local_set(&cpu_buffer->entries_bytes, 0);
4331        local_set(&cpu_buffer->overrun, 0);
4332        local_set(&cpu_buffer->commit_overrun, 0);
4333        local_set(&cpu_buffer->dropped_events, 0);
4334        local_set(&cpu_buffer->entries, 0);
4335        local_set(&cpu_buffer->committing, 0);
4336        local_set(&cpu_buffer->commits, 0);
4337        cpu_buffer->read = 0;
4338        cpu_buffer->read_bytes = 0;
4339
4340        cpu_buffer->write_stamp = 0;
4341        cpu_buffer->read_stamp = 0;
4342
4343        cpu_buffer->lost_events = 0;
4344        cpu_buffer->last_overrun = 0;
4345
4346        rb_head_page_activate(cpu_buffer);
4347}
4348
4349/**
4350 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4351 * @buffer: The ring buffer to reset a per cpu buffer of
4352 * @cpu: The CPU buffer to be reset
4353 */
4354void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4355{
4356        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4357        unsigned long flags;
4358
4359        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4360                return;
4361
4362        atomic_inc(&buffer->resize_disabled);
4363        atomic_inc(&cpu_buffer->record_disabled);
4364
4365        /* Make sure all commits have finished */
4366        synchronize_sched();
4367
4368        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4369
4370        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4371                goto out;
4372
4373        arch_spin_lock(&cpu_buffer->lock);
4374
4375        rb_reset_cpu(cpu_buffer);
4376
4377        arch_spin_unlock(&cpu_buffer->lock);
4378
4379 out:
4380        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4381
4382        atomic_dec(&cpu_buffer->record_disabled);
4383        atomic_dec(&buffer->resize_disabled);
4384}
4385EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4386
4387/**
4388 * ring_buffer_reset - reset a ring buffer
4389 * @buffer: The ring buffer to reset all cpu buffers
4390 */
4391void ring_buffer_reset(struct ring_buffer *buffer)
4392{
4393        int cpu;
4394
4395        for_each_buffer_cpu(buffer, cpu)
4396                ring_buffer_reset_cpu(buffer, cpu);
4397}
4398EXPORT_SYMBOL_GPL(ring_buffer_reset);
4399
4400/**
4401 * rind_buffer_empty - is the ring buffer empty?
4402 * @buffer: The ring buffer to test
4403 */
4404bool ring_buffer_empty(struct ring_buffer *buffer)
4405{
4406        struct ring_buffer_per_cpu *cpu_buffer;
4407        unsigned long flags;
4408        bool dolock;
4409        int cpu;
4410        int ret;
4411
4412        /* yes this is racy, but if you don't like the race, lock the buffer */
4413        for_each_buffer_cpu(buffer, cpu) {
4414                cpu_buffer = buffer->buffers[cpu];
4415                local_irq_save(flags);
4416                dolock = rb_reader_lock(cpu_buffer);
4417                ret = rb_per_cpu_empty(cpu_buffer);
4418                rb_reader_unlock(cpu_buffer, dolock);
4419                local_irq_restore(flags);
4420
4421                if (!ret)
4422                        return false;
4423        }
4424
4425        return true;
4426}
4427EXPORT_SYMBOL_GPL(ring_buffer_empty);
4428
4429/**
4430 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4431 * @buffer: The ring buffer
4432 * @cpu: The CPU buffer to test
4433 */
4434bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4435{
4436        struct ring_buffer_per_cpu *cpu_buffer;
4437        unsigned long flags;
4438        bool dolock;
4439        int ret;
4440
4441        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4442                return true;
4443
4444        cpu_buffer = buffer->buffers[cpu];
4445        local_irq_save(flags);
4446        dolock = rb_reader_lock(cpu_buffer);
4447        ret = rb_per_cpu_empty(cpu_buffer);
4448        rb_reader_unlock(cpu_buffer, dolock);
4449        local_irq_restore(flags);
4450
4451        return ret;
4452}
4453EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4454
4455#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4456/**
4457 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4458 * @buffer_a: One buffer to swap with
4459 * @buffer_b: The other buffer to swap with
4460 *
4461 * This function is useful for tracers that want to take a "snapshot"
4462 * of a CPU buffer and has another back up buffer lying around.
4463 * it is expected that the tracer handles the cpu buffer not being
4464 * used at the moment.
4465 */
4466int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4467                         struct ring_buffer *buffer_b, int cpu)
4468{
4469        struct ring_buffer_per_cpu *cpu_buffer_a;
4470        struct ring_buffer_per_cpu *cpu_buffer_b;
4471        int ret = -EINVAL;
4472
4473        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4474            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4475                goto out;
4476
4477        cpu_buffer_a = buffer_a->buffers[cpu];
4478        cpu_buffer_b = buffer_b->buffers[cpu];
4479
4480        /* At least make sure the two buffers are somewhat the same */
4481        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4482                goto out;
4483
4484        ret = -EAGAIN;
4485
4486        if (atomic_read(&buffer_a->record_disabled))
4487                goto out;
4488
4489        if (atomic_read(&buffer_b->record_disabled))
4490                goto out;
4491
4492        if (atomic_read(&cpu_buffer_a->record_disabled))
4493                goto out;
4494
4495        if (atomic_read(&cpu_buffer_b->record_disabled))
4496                goto out;
4497
4498        /*
4499         * We can't do a synchronize_sched here because this
4500         * function can be called in atomic context.
4501         * Normally this will be called from the same CPU as cpu.
4502         * If not it's up to the caller to protect this.
4503         */
4504        atomic_inc(&cpu_buffer_a->record_disabled);
4505        atomic_inc(&cpu_buffer_b->record_disabled);
4506
4507        ret = -EBUSY;
4508        if (local_read(&cpu_buffer_a->committing))
4509                goto out_dec;
4510        if (local_read(&cpu_buffer_b->committing))
4511                goto out_dec;
4512
4513        buffer_a->buffers[cpu] = cpu_buffer_b;
4514        buffer_b->buffers[cpu] = cpu_buffer_a;
4515
4516        cpu_buffer_b->buffer = buffer_a;
4517        cpu_buffer_a->buffer = buffer_b;
4518
4519        ret = 0;
4520
4521out_dec:
4522        atomic_dec(&cpu_buffer_a->record_disabled);
4523        atomic_dec(&cpu_buffer_b->record_disabled);
4524out:
4525        return ret;
4526}
4527EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4528#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4529
4530/**
4531 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4532 * @buffer: the buffer to allocate for.
4533 * @cpu: the cpu buffer to allocate.
4534 *
4535 * This function is used in conjunction with ring_buffer_read_page.
4536 * When reading a full page from the ring buffer, these functions
4537 * can be used to speed up the process. The calling function should
4538 * allocate a few pages first with this function. Then when it
4539 * needs to get pages from the ring buffer, it passes the result
4540 * of this function into ring_buffer_read_page, which will swap
4541 * the page that was allocated, with the read page of the buffer.
4542 *
4543 * Returns:
4544 *  The page allocated, or ERR_PTR
4545 */
4546void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4547{
4548        struct ring_buffer_per_cpu *cpu_buffer;
4549        struct buffer_data_page *bpage = NULL;
4550        unsigned long flags;
4551        struct page *page;
4552
4553        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4554                return ERR_PTR(-ENODEV);
4555
4556        cpu_buffer = buffer->buffers[cpu];
4557        local_irq_save(flags);
4558        arch_spin_lock(&cpu_buffer->lock);
4559
4560        if (cpu_buffer->free_page) {
4561                bpage = cpu_buffer->free_page;
4562                cpu_buffer->free_page = NULL;
4563        }
4564
4565        arch_spin_unlock(&cpu_buffer->lock);
4566        local_irq_restore(flags);
4567
4568        if (bpage)
4569                goto out;
4570
4571        page = alloc_pages_node(cpu_to_node(cpu),
4572                                GFP_KERNEL | __GFP_NORETRY, 0);
4573        if (!page)
4574                return ERR_PTR(-ENOMEM);
4575
4576        bpage = page_address(page);
4577
4578 out:
4579        rb_init_page(bpage);
4580
4581        return bpage;
4582}
4583EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4584
4585/**
4586 * ring_buffer_free_read_page - free an allocated read page
4587 * @buffer: the buffer the page was allocate for
4588 * @cpu: the cpu buffer the page came from
4589 * @data: the page to free
4590 *
4591 * Free a page allocated from ring_buffer_alloc_read_page.
4592 */
4593void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4594{
4595        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4596        struct buffer_data_page *bpage = data;
4597        struct page *page = virt_to_page(bpage);
4598        unsigned long flags;
4599
4600        /* If the page is still in use someplace else, we can't reuse it */
4601        if (page_ref_count(page) > 1)
4602                goto out;
4603
4604        local_irq_save(flags);
4605        arch_spin_lock(&cpu_buffer->lock);
4606
4607        if (!cpu_buffer->free_page) {
4608                cpu_buffer->free_page = bpage;
4609                bpage = NULL;
4610        }
4611
4612        arch_spin_unlock(&cpu_buffer->lock);
4613        local_irq_restore(flags);
4614
4615 out:
4616        free_page((unsigned long)bpage);
4617}
4618EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4619
4620/**
4621 * ring_buffer_read_page - extract a page from the ring buffer
4622 * @buffer: buffer to extract from
4623 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4624 * @len: amount to extract
4625 * @cpu: the cpu of the buffer to extract
4626 * @full: should the extraction only happen when the page is full.
4627 *
4628 * This function will pull out a page from the ring buffer and consume it.
4629 * @data_page must be the address of the variable that was returned
4630 * from ring_buffer_alloc_read_page. This is because the page might be used
4631 * to swap with a page in the ring buffer.
4632 *
4633 * for example:
4634 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4635 *      if (IS_ERR(rpage))
4636 *              return PTR_ERR(rpage);
4637 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4638 *      if (ret >= 0)
4639 *              process_page(rpage, ret);
4640 *
4641 * When @full is set, the function will not return true unless
4642 * the writer is off the reader page.
4643 *
4644 * Note: it is up to the calling functions to handle sleeps and wakeups.
4645 *  The ring buffer can be used anywhere in the kernel and can not
4646 *  blindly call wake_up. The layer that uses the ring buffer must be
4647 *  responsible for that.
4648 *
4649 * Returns:
4650 *  >=0 if data has been transferred, returns the offset of consumed data.
4651 *  <0 if no data has been transferred.
4652 */
4653int ring_buffer_read_page(struct ring_buffer *buffer,
4654                          void **data_page, size_t len, int cpu, int full)
4655{
4656        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4657        struct ring_buffer_event *event;
4658        struct buffer_data_page *bpage;
4659        struct buffer_page *reader;
4660        unsigned long missed_events;
4661        unsigned long flags;
4662        unsigned int commit;
4663        unsigned int read;
4664        u64 save_timestamp;
4665        int ret = -1;
4666
4667        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4668                goto out;
4669
4670        /*
4671         * If len is not big enough to hold the page header, then
4672         * we can not copy anything.
4673         */
4674        if (len <= BUF_PAGE_HDR_SIZE)
4675                goto out;
4676
4677        len -= BUF_PAGE_HDR_SIZE;
4678
4679        if (!data_page)
4680                goto out;
4681
4682        bpage = *data_page;
4683        if (!bpage)
4684                goto out;
4685
4686        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4687
4688        reader = rb_get_reader_page(cpu_buffer);
4689        if (!reader)
4690                goto out_unlock;
4691
4692        event = rb_reader_event(cpu_buffer);
4693
4694        read = reader->read;
4695        commit = rb_page_commit(reader);
4696
4697        /* Check if any events were dropped */
4698        missed_events = cpu_buffer->lost_events;
4699
4700        /*
4701         * If this page has been partially read or
4702         * if len is not big enough to read the rest of the page or
4703         * a writer is still on the page, then
4704         * we must copy the data from the page to the buffer.
4705         * Otherwise, we can simply swap the page with the one passed in.
4706         */
4707        if (read || (len < (commit - read)) ||
4708            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4709                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4710                unsigned int rpos = read;
4711                unsigned int pos = 0;
4712                unsigned int size;
4713
4714                if (full)
4715                        goto out_unlock;
4716
4717                if (len > (commit - read))
4718                        len = (commit - read);
4719
4720                /* Always keep the time extend and data together */
4721                size = rb_event_ts_length(event);
4722
4723                if (len < size)
4724                        goto out_unlock;
4725
4726                /* save the current timestamp, since the user will need it */
4727                save_timestamp = cpu_buffer->read_stamp;
4728
4729                /* Need to copy one event at a time */
4730                do {
4731                        /* We need the size of one event, because
4732                         * rb_advance_reader only advances by one event,
4733                         * whereas rb_event_ts_length may include the size of
4734                         * one or two events.
4735                         * We have already ensured there's enough space if this
4736                         * is a time extend. */
4737                        size = rb_event_length(event);
4738                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4739
4740                        len -= size;
4741
4742                        rb_advance_reader(cpu_buffer);
4743                        rpos = reader->read;
4744                        pos += size;
4745
4746                        if (rpos >= commit)
4747                                break;
4748
4749                        event = rb_reader_event(cpu_buffer);
4750                        /* Always keep the time extend and data together */
4751                        size = rb_event_ts_length(event);
4752                } while (len >= size);
4753
4754                /* update bpage */
4755                local_set(&bpage->commit, pos);
4756                bpage->time_stamp = save_timestamp;
4757
4758                /* we copied everything to the beginning */
4759                read = 0;
4760        } else {
4761                /* update the entry counter */
4762                cpu_buffer->read += rb_page_entries(reader);
4763                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4764
4765                /* swap the pages */
4766                rb_init_page(bpage);
4767                bpage = reader->page;
4768                reader->page = *data_page;
4769                local_set(&reader->write, 0);
4770                local_set(&reader->entries, 0);
4771                reader->read = 0;
4772                *data_page = bpage;
4773
4774                /*
4775                 * Use the real_end for the data size,
4776                 * This gives us a chance to store the lost events
4777                 * on the page.
4778                 */
4779                if (reader->real_end)
4780                        local_set(&bpage->commit, reader->real_end);
4781        }
4782        ret = read;
4783
4784        cpu_buffer->lost_events = 0;
4785
4786        commit = local_read(&bpage->commit);
4787        /*
4788         * Set a flag in the commit field if we lost events
4789         */
4790        if (missed_events) {
4791                /* If there is room at the end of the page to save the
4792                 * missed events, then record it there.
4793                 */
4794                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4795                        memcpy(&bpage->data[commit], &missed_events,
4796                               sizeof(missed_events));
4797                        local_add(RB_MISSED_STORED, &bpage->commit);
4798                        commit += sizeof(missed_events);
4799                }
4800                local_add(RB_MISSED_EVENTS, &bpage->commit);
4801        }
4802
4803        /*
4804         * This page may be off to user land. Zero it out here.
4805         */
4806        if (commit < BUF_PAGE_SIZE)
4807                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4808
4809 out_unlock:
4810        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4811
4812 out:
4813        return ret;
4814}
4815EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4816
4817/*
4818 * We only allocate new buffers, never free them if the CPU goes down.
4819 * If we were to free the buffer, then the user would lose any trace that was in
4820 * the buffer.
4821 */
4822int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4823{
4824        struct ring_buffer *buffer;
4825        long nr_pages_same;
4826        int cpu_i;
4827        unsigned long nr_pages;
4828
4829        buffer = container_of(node, struct ring_buffer, node);
4830        if (cpumask_test_cpu(cpu, buffer->cpumask))
4831                return 0;
4832
4833        nr_pages = 0;
4834        nr_pages_same = 1;
4835        /* check if all cpu sizes are same */
4836        for_each_buffer_cpu(buffer, cpu_i) {
4837                /* fill in the size from first enabled cpu */
4838                if (nr_pages == 0)
4839                        nr_pages = buffer->buffers[cpu_i]->nr_pages;
4840                if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4841                        nr_pages_same = 0;
4842                        break;
4843                }
4844        }
4845        /* allocate minimum pages, user can later expand it */
4846        if (!nr_pages_same)
4847                nr_pages = 2;
4848        buffer->buffers[cpu] =
4849                rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4850        if (!buffer->buffers[cpu]) {
4851                WARN(1, "failed to allocate ring buffer on CPU %u\n",
4852                     cpu);
4853                return -ENOMEM;
4854        }
4855        smp_wmb();
4856        cpumask_set_cpu(cpu, buffer->cpumask);
4857        return 0;
4858}
4859
4860#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4861/*
4862 * This is a basic integrity check of the ring buffer.
4863 * Late in the boot cycle this test will run when configured in.
4864 * It will kick off a thread per CPU that will go into a loop
4865 * writing to the per cpu ring buffer various sizes of data.
4866 * Some of the data will be large items, some small.
4867 *
4868 * Another thread is created that goes into a spin, sending out
4869 * IPIs to the other CPUs to also write into the ring buffer.
4870 * this is to test the nesting ability of the buffer.
4871 *
4872 * Basic stats are recorded and reported. If something in the
4873 * ring buffer should happen that's not expected, a big warning
4874 * is displayed and all ring buffers are disabled.
4875 */
4876static struct task_struct *rb_threads[NR_CPUS] __initdata;
4877
4878struct rb_test_data {
4879        struct ring_buffer      *buffer;
4880        unsigned long           events;
4881        unsigned long           bytes_written;
4882        unsigned long           bytes_alloc;
4883        unsigned long           bytes_dropped;
4884        unsigned long           events_nested;
4885        unsigned long           bytes_written_nested;
4886        unsigned long           bytes_alloc_nested;
4887        unsigned long           bytes_dropped_nested;
4888        int                     min_size_nested;
4889        int                     max_size_nested;
4890        int                     max_size;
4891        int                     min_size;
4892        int                     cpu;
4893        int                     cnt;
4894};
4895
4896static struct rb_test_data rb_data[NR_CPUS] __initdata;
4897
4898/* 1 meg per cpu */
4899#define RB_TEST_BUFFER_SIZE     1048576
4900
4901static char rb_string[] __initdata =
4902        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4903        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4904        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4905
4906static bool rb_test_started __initdata;
4907
4908struct rb_item {
4909        int size;
4910        char str[];
4911};
4912
4913static __init int rb_write_something(struct rb_test_data *data, bool nested)
4914{
4915        struct ring_buffer_event *event;
4916        struct rb_item *item;
4917        bool started;
4918        int event_len;
4919        int size;
4920        int len;
4921        int cnt;
4922
4923        /* Have nested writes different that what is written */
4924        cnt = data->cnt + (nested ? 27 : 0);
4925
4926        /* Multiply cnt by ~e, to make some unique increment */
4927        size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4928
4929        len = size + sizeof(struct rb_item);
4930
4931        started = rb_test_started;
4932        /* read rb_test_started before checking buffer enabled */
4933        smp_rmb();
4934
4935        event = ring_buffer_lock_reserve(data->buffer, len);
4936        if (!event) {
4937                /* Ignore dropped events before test starts. */
4938                if (started) {
4939                        if (nested)
4940                                data->bytes_dropped += len;
4941                        else
4942                                data->bytes_dropped_nested += len;
4943                }
4944                return len;
4945        }
4946
4947        event_len = ring_buffer_event_length(event);
4948
4949        if (RB_WARN_ON(data->buffer, event_len < len))
4950                goto out;
4951
4952        item = ring_buffer_event_data(event);
4953        item->size = size;
4954        memcpy(item->str, rb_string, size);
4955
4956        if (nested) {
4957                data->bytes_alloc_nested += event_len;
4958                data->bytes_written_nested += len;
4959                data->events_nested++;
4960                if (!data->min_size_nested || len < data->min_size_nested)
4961                        data->min_size_nested = len;
4962                if (len > data->max_size_nested)
4963                        data->max_size_nested = len;
4964        } else {
4965                data->bytes_alloc += event_len;
4966                data->bytes_written += len;
4967                data->events++;
4968                if (!data->min_size || len < data->min_size)
4969                        data->max_size = len;
4970                if (len > data->max_size)
4971                        data->max_size = len;
4972        }
4973
4974 out:
4975        ring_buffer_unlock_commit(data->buffer, event);
4976
4977        return 0;
4978}
4979
4980static __init int rb_test(void *arg)
4981{
4982        struct rb_test_data *data = arg;
4983
4984        while (!kthread_should_stop()) {
4985                rb_write_something(data, false);
4986                data->cnt++;
4987
4988                set_current_state(TASK_INTERRUPTIBLE);
4989                /* Now sleep between a min of 100-300us and a max of 1ms */
4990                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4991        }
4992
4993        return 0;
4994}
4995
4996static __init void rb_ipi(void *ignore)
4997{
4998        struct rb_test_data *data;
4999        int cpu = smp_processor_id();
5000
5001        data = &rb_data[cpu];
5002        rb_write_something(data, true);
5003}
5004
5005static __init int rb_hammer_test(void *arg)
5006{
5007        while (!kthread_should_stop()) {
5008
5009                /* Send an IPI to all cpus to write data! */
5010                smp_call_function(rb_ipi, NULL, 1);
5011                /* No sleep, but for non preempt, let others run */
5012                schedule();
5013        }
5014
5015        return 0;
5016}
5017
5018static __init int test_ringbuffer(void)
5019{
5020        struct task_struct *rb_hammer;
5021        struct ring_buffer *buffer;
5022        int cpu;
5023        int ret = 0;
5024
5025        pr_info("Running ring buffer tests...\n");
5026
5027        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5028        if (WARN_ON(!buffer))
5029                return 0;
5030
5031        /* Disable buffer so that threads can't write to it yet */
5032        ring_buffer_record_off(buffer);
5033
5034        for_each_online_cpu(cpu) {
5035                rb_data[cpu].buffer = buffer;
5036                rb_data[cpu].cpu = cpu;
5037                rb_data[cpu].cnt = cpu;
5038                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5039                                                 "rbtester/%d", cpu);
5040                if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5041                        pr_cont("FAILED\n");
5042                        ret = PTR_ERR(rb_threads[cpu]);
5043                        goto out_free;
5044                }
5045
5046                kthread_bind(rb_threads[cpu], cpu);
5047                wake_up_process(rb_threads[cpu]);
5048        }
5049
5050        /* Now create the rb hammer! */
5051        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5052        if (WARN_ON(IS_ERR(rb_hammer))) {
5053                pr_cont("FAILED\n");
5054                ret = PTR_ERR(rb_hammer);
5055                goto out_free;
5056        }
5057
5058        ring_buffer_record_on(buffer);
5059        /*
5060         * Show buffer is enabled before setting rb_test_started.
5061         * Yes there's a small race window where events could be
5062         * dropped and the thread wont catch it. But when a ring
5063         * buffer gets enabled, there will always be some kind of
5064         * delay before other CPUs see it. Thus, we don't care about
5065         * those dropped events. We care about events dropped after
5066         * the threads see that the buffer is active.
5067         */
5068        smp_wmb();
5069        rb_test_started = true;
5070
5071        set_current_state(TASK_INTERRUPTIBLE);
5072        /* Just run for 10 seconds */;
5073        schedule_timeout(10 * HZ);
5074
5075        kthread_stop(rb_hammer);
5076
5077 out_free:
5078        for_each_online_cpu(cpu) {
5079                if (!rb_threads[cpu])
5080                        break;
5081                kthread_stop(rb_threads[cpu]);
5082        }
5083        if (ret) {
5084                ring_buffer_free(buffer);
5085                return ret;
5086        }
5087
5088        /* Report! */
5089        pr_info("finished\n");
5090        for_each_online_cpu(cpu) {
5091                struct ring_buffer_event *event;
5092                struct rb_test_data *data = &rb_data[cpu];
5093                struct rb_item *item;
5094                unsigned long total_events;
5095                unsigned long total_dropped;
5096                unsigned long total_written;
5097                unsigned long total_alloc;
5098                unsigned long total_read = 0;
5099                unsigned long total_size = 0;
5100                unsigned long total_len = 0;
5101                unsigned long total_lost = 0;
5102                unsigned long lost;
5103                int big_event_size;
5104                int small_event_size;
5105
5106                ret = -1;
5107
5108                total_events = data->events + data->events_nested;
5109                total_written = data->bytes_written + data->bytes_written_nested;
5110                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5111                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5112
5113                big_event_size = data->max_size + data->max_size_nested;
5114                small_event_size = data->min_size + data->min_size_nested;
5115
5116                pr_info("CPU %d:\n", cpu);
5117                pr_info("              events:    %ld\n", total_events);
5118                pr_info("       dropped bytes:    %ld\n", total_dropped);
5119                pr_info("       alloced bytes:    %ld\n", total_alloc);
5120                pr_info("       written bytes:    %ld\n", total_written);
5121                pr_info("       biggest event:    %d\n", big_event_size);
5122                pr_info("      smallest event:    %d\n", small_event_size);
5123
5124                if (RB_WARN_ON(buffer, total_dropped))
5125                        break;
5126
5127                ret = 0;
5128
5129                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5130                        total_lost += lost;
5131                        item = ring_buffer_event_data(event);
5132                        total_len += ring_buffer_event_length(event);
5133                        total_size += item->size + sizeof(struct rb_item);
5134                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5135                                pr_info("FAILED!\n");
5136                                pr_info("buffer had: %.*s\n", item->size, item->str);
5137                                pr_info("expected:   %.*s\n", item->size, rb_string);
5138                                RB_WARN_ON(buffer, 1);
5139                                ret = -1;
5140                                break;
5141                        }
5142                        total_read++;
5143                }
5144                if (ret)
5145                        break;
5146
5147                ret = -1;
5148
5149                pr_info("         read events:   %ld\n", total_read);
5150                pr_info("         lost events:   %ld\n", total_lost);
5151                pr_info("        total events:   %ld\n", total_lost + total_read);
5152                pr_info("  recorded len bytes:   %ld\n", total_len);
5153                pr_info(" recorded size bytes:   %ld\n", total_size);
5154                if (total_lost)
5155                        pr_info(" With dropped events, record len and size may not match\n"
5156                                " alloced and written from above\n");
5157                if (!total_lost) {
5158                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
5159                                       total_size != total_written))
5160                                break;
5161                }
5162                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5163                        break;
5164
5165                ret = 0;
5166        }
5167        if (!ret)
5168                pr_info("Ring buffer PASSED!\n");
5169
5170        ring_buffer_free(buffer);
5171        return 0;
5172}
5173
5174late_initcall(test_ringbuffer);
5175#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5176