linux/mm/kmemleak.c
<<
>>
Prefs
   1/*
   2 * mm/kmemleak.c
   3 *
   4 * Copyright (C) 2008 ARM Limited
   5 * Written by Catalin Marinas <catalin.marinas@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19 *
  20 *
  21 * For more information on the algorithm and kmemleak usage, please see
  22 * Documentation/dev-tools/kmemleak.rst.
  23 *
  24 * Notes on locking
  25 * ----------------
  26 *
  27 * The following locks and mutexes are used by kmemleak:
  28 *
  29 * - kmemleak_lock (rwlock): protects the object_list modifications and
  30 *   accesses to the object_tree_root. The object_list is the main list
  31 *   holding the metadata (struct kmemleak_object) for the allocated memory
  32 *   blocks. The object_tree_root is a red black tree used to look-up
  33 *   metadata based on a pointer to the corresponding memory block.  The
  34 *   kmemleak_object structures are added to the object_list and
  35 *   object_tree_root in the create_object() function called from the
  36 *   kmemleak_alloc() callback and removed in delete_object() called from the
  37 *   kmemleak_free() callback
  38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39 *   the metadata (e.g. count) are protected by this lock. Note that some
  40 *   members of this structure may be protected by other means (atomic or
  41 *   kmemleak_lock). This lock is also held when scanning the corresponding
  42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
  43 *   callback. This is less heavyweight than holding a global lock like
  44 *   kmemleak_lock during scanning
  45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46 *   unreferenced objects at a time. The gray_list contains the objects which
  47 *   are already referenced or marked as false positives and need to be
  48 *   scanned. This list is only modified during a scanning episode when the
  49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50 *   Note that the kmemleak_object.use_count is incremented when an object is
  51 *   added to the gray_list and therefore cannot be freed. This mutex also
  52 *   prevents multiple users of the "kmemleak" debugfs file together with
  53 *   modifications to the memory scanning parameters including the scan_thread
  54 *   pointer
  55 *
  56 * Locks and mutexes are acquired/nested in the following order:
  57 *
  58 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  59 *
  60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  61 * regions.
  62 *
  63 * The kmemleak_object structures have a use_count incremented or decremented
  64 * using the get_object()/put_object() functions. When the use_count becomes
  65 * 0, this count can no longer be incremented and put_object() schedules the
  66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  67 * function must be protected by rcu_read_lock() to avoid accessing a freed
  68 * structure.
  69 */
  70
  71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  72
  73#include <linux/init.h>
  74#include <linux/kernel.h>
  75#include <linux/list.h>
  76#include <linux/sched/signal.h>
  77#include <linux/sched/task.h>
  78#include <linux/sched/task_stack.h>
  79#include <linux/jiffies.h>
  80#include <linux/delay.h>
  81#include <linux/export.h>
  82#include <linux/kthread.h>
  83#include <linux/rbtree.h>
  84#include <linux/fs.h>
  85#include <linux/debugfs.h>
  86#include <linux/seq_file.h>
  87#include <linux/cpumask.h>
  88#include <linux/spinlock.h>
  89#include <linux/module.h>
  90#include <linux/mutex.h>
  91#include <linux/rcupdate.h>
  92#include <linux/stacktrace.h>
  93#include <linux/cache.h>
  94#include <linux/percpu.h>
  95#include <linux/memblock.h>
  96#include <linux/pfn.h>
  97#include <linux/mmzone.h>
  98#include <linux/slab.h>
  99#include <linux/thread_info.h>
 100#include <linux/err.h>
 101#include <linux/uaccess.h>
 102#include <linux/string.h>
 103#include <linux/nodemask.h>
 104#include <linux/mm.h>
 105#include <linux/workqueue.h>
 106#include <linux/crc32.h>
 107
 108#include <asm/sections.h>
 109#include <asm/processor.h>
 110#include <linux/atomic.h>
 111
 112#include <linux/kasan.h>
 113#include <linux/kmemleak.h>
 114#include <linux/memory_hotplug.h>
 115
 116/*
 117 * Kmemleak configuration and common defines.
 118 */
 119#define MAX_TRACE               16      /* stack trace length */
 120#define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
 121#define SECS_FIRST_SCAN         60      /* delay before the first scan */
 122#define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
 123#define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
 124
 125#define BYTES_PER_POINTER       sizeof(void *)
 126
 127/* GFP bitmask for kmemleak internal allocations */
 128#define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 129                                 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 130                                 __GFP_NOWARN | __GFP_NOFAIL)
 131
 132/* scanning area inside a memory block */
 133struct kmemleak_scan_area {
 134        struct hlist_node node;
 135        unsigned long start;
 136        size_t size;
 137};
 138
 139#define KMEMLEAK_GREY   0
 140#define KMEMLEAK_BLACK  -1
 141
 142/*
 143 * Structure holding the metadata for each allocated memory block.
 144 * Modifications to such objects should be made while holding the
 145 * object->lock. Insertions or deletions from object_list, gray_list or
 146 * rb_node are already protected by the corresponding locks or mutex (see
 147 * the notes on locking above). These objects are reference-counted
 148 * (use_count) and freed using the RCU mechanism.
 149 */
 150struct kmemleak_object {
 151        spinlock_t lock;
 152        unsigned int flags;             /* object status flags */
 153        struct list_head object_list;
 154        struct list_head gray_list;
 155        struct rb_node rb_node;
 156        struct rcu_head rcu;            /* object_list lockless traversal */
 157        /* object usage count; object freed when use_count == 0 */
 158        atomic_t use_count;
 159        unsigned long pointer;
 160        size_t size;
 161        /* pass surplus references to this pointer */
 162        unsigned long excess_ref;
 163        /* minimum number of a pointers found before it is considered leak */
 164        int min_count;
 165        /* the total number of pointers found pointing to this object */
 166        int count;
 167        /* checksum for detecting modified objects */
 168        u32 checksum;
 169        /* memory ranges to be scanned inside an object (empty for all) */
 170        struct hlist_head area_list;
 171        unsigned long trace[MAX_TRACE];
 172        unsigned int trace_len;
 173        unsigned long jiffies;          /* creation timestamp */
 174        pid_t pid;                      /* pid of the current task */
 175        char comm[TASK_COMM_LEN];       /* executable name */
 176};
 177
 178/* flag representing the memory block allocation status */
 179#define OBJECT_ALLOCATED        (1 << 0)
 180/* flag set after the first reporting of an unreference object */
 181#define OBJECT_REPORTED         (1 << 1)
 182/* flag set to not scan the object */
 183#define OBJECT_NO_SCAN          (1 << 2)
 184
 185#define HEX_PREFIX              "    "
 186/* number of bytes to print per line; must be 16 or 32 */
 187#define HEX_ROW_SIZE            16
 188/* number of bytes to print at a time (1, 2, 4, 8) */
 189#define HEX_GROUP_SIZE          1
 190/* include ASCII after the hex output */
 191#define HEX_ASCII               1
 192/* max number of lines to be printed */
 193#define HEX_MAX_LINES           2
 194
 195/* the list of all allocated objects */
 196static LIST_HEAD(object_list);
 197/* the list of gray-colored objects (see color_gray comment below) */
 198static LIST_HEAD(gray_list);
 199/* search tree for object boundaries */
 200static struct rb_root object_tree_root = RB_ROOT;
 201/* rw_lock protecting the access to object_list and object_tree_root */
 202static DEFINE_RWLOCK(kmemleak_lock);
 203
 204/* allocation caches for kmemleak internal data */
 205static struct kmem_cache *object_cache;
 206static struct kmem_cache *scan_area_cache;
 207
 208/* set if tracing memory operations is enabled */
 209static int kmemleak_enabled;
 210/* same as above but only for the kmemleak_free() callback */
 211static int kmemleak_free_enabled;
 212/* set in the late_initcall if there were no errors */
 213static int kmemleak_initialized;
 214/* enables or disables early logging of the memory operations */
 215static int kmemleak_early_log = 1;
 216/* set if a kmemleak warning was issued */
 217static int kmemleak_warning;
 218/* set if a fatal kmemleak error has occurred */
 219static int kmemleak_error;
 220
 221/* minimum and maximum address that may be valid pointers */
 222static unsigned long min_addr = ULONG_MAX;
 223static unsigned long max_addr;
 224
 225static struct task_struct *scan_thread;
 226/* used to avoid reporting of recently allocated objects */
 227static unsigned long jiffies_min_age;
 228static unsigned long jiffies_last_scan;
 229/* delay between automatic memory scannings */
 230static signed long jiffies_scan_wait;
 231/* enables or disables the task stacks scanning */
 232static int kmemleak_stack_scan = 1;
 233/* protects the memory scanning, parameters and debug/kmemleak file access */
 234static DEFINE_MUTEX(scan_mutex);
 235/* setting kmemleak=on, will set this var, skipping the disable */
 236static int kmemleak_skip_disable;
 237/* If there are leaks that can be reported */
 238static bool kmemleak_found_leaks;
 239
 240static bool kmemleak_verbose;
 241module_param_named(verbose, kmemleak_verbose, bool, 0600);
 242
 243/*
 244 * Early object allocation/freeing logging. Kmemleak is initialized after the
 245 * kernel allocator. However, both the kernel allocator and kmemleak may
 246 * allocate memory blocks which need to be tracked. Kmemleak defines an
 247 * arbitrary buffer to hold the allocation/freeing information before it is
 248 * fully initialized.
 249 */
 250
 251/* kmemleak operation type for early logging */
 252enum {
 253        KMEMLEAK_ALLOC,
 254        KMEMLEAK_ALLOC_PERCPU,
 255        KMEMLEAK_FREE,
 256        KMEMLEAK_FREE_PART,
 257        KMEMLEAK_FREE_PERCPU,
 258        KMEMLEAK_NOT_LEAK,
 259        KMEMLEAK_IGNORE,
 260        KMEMLEAK_SCAN_AREA,
 261        KMEMLEAK_NO_SCAN,
 262        KMEMLEAK_SET_EXCESS_REF
 263};
 264
 265/*
 266 * Structure holding the information passed to kmemleak callbacks during the
 267 * early logging.
 268 */
 269struct early_log {
 270        int op_type;                    /* kmemleak operation type */
 271        int min_count;                  /* minimum reference count */
 272        const void *ptr;                /* allocated/freed memory block */
 273        union {
 274                size_t size;            /* memory block size */
 275                unsigned long excess_ref; /* surplus reference passing */
 276        };
 277        unsigned long trace[MAX_TRACE]; /* stack trace */
 278        unsigned int trace_len;         /* stack trace length */
 279};
 280
 281/* early logging buffer and current position */
 282static struct early_log
 283        early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
 284static int crt_early_log __initdata;
 285
 286static void kmemleak_disable(void);
 287
 288/*
 289 * Print a warning and dump the stack trace.
 290 */
 291#define kmemleak_warn(x...)     do {            \
 292        pr_warn(x);                             \
 293        dump_stack();                           \
 294        kmemleak_warning = 1;                   \
 295} while (0)
 296
 297/*
 298 * Macro invoked when a serious kmemleak condition occurred and cannot be
 299 * recovered from. Kmemleak will be disabled and further allocation/freeing
 300 * tracing no longer available.
 301 */
 302#define kmemleak_stop(x...)     do {    \
 303        kmemleak_warn(x);               \
 304        kmemleak_disable();             \
 305} while (0)
 306
 307#define warn_or_seq_printf(seq, fmt, ...)       do {    \
 308        if (seq)                                        \
 309                seq_printf(seq, fmt, ##__VA_ARGS__);    \
 310        else                                            \
 311                pr_warn(fmt, ##__VA_ARGS__);            \
 312} while (0)
 313
 314static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
 315                                 int rowsize, int groupsize, const void *buf,
 316                                 size_t len, bool ascii)
 317{
 318        if (seq)
 319                seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
 320                             buf, len, ascii);
 321        else
 322                print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
 323                               rowsize, groupsize, buf, len, ascii);
 324}
 325
 326/*
 327 * Printing of the objects hex dump to the seq file. The number of lines to be
 328 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 329 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 330 * with the object->lock held.
 331 */
 332static void hex_dump_object(struct seq_file *seq,
 333                            struct kmemleak_object *object)
 334{
 335        const u8 *ptr = (const u8 *)object->pointer;
 336        size_t len;
 337
 338        /* limit the number of lines to HEX_MAX_LINES */
 339        len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 340
 341        warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 342        kasan_disable_current();
 343        warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 344                             HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
 345        kasan_enable_current();
 346}
 347
 348/*
 349 * Object colors, encoded with count and min_count:
 350 * - white - orphan object, not enough references to it (count < min_count)
 351 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 352 *              sufficient references to it (count >= min_count)
 353 * - black - ignore, it doesn't contain references (e.g. text section)
 354 *              (min_count == -1). No function defined for this color.
 355 * Newly created objects don't have any color assigned (object->count == -1)
 356 * before the next memory scan when they become white.
 357 */
 358static bool color_white(const struct kmemleak_object *object)
 359{
 360        return object->count != KMEMLEAK_BLACK &&
 361                object->count < object->min_count;
 362}
 363
 364static bool color_gray(const struct kmemleak_object *object)
 365{
 366        return object->min_count != KMEMLEAK_BLACK &&
 367                object->count >= object->min_count;
 368}
 369
 370/*
 371 * Objects are considered unreferenced only if their color is white, they have
 372 * not be deleted and have a minimum age to avoid false positives caused by
 373 * pointers temporarily stored in CPU registers.
 374 */
 375static bool unreferenced_object(struct kmemleak_object *object)
 376{
 377        return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 378                time_before_eq(object->jiffies + jiffies_min_age,
 379                               jiffies_last_scan);
 380}
 381
 382/*
 383 * Printing of the unreferenced objects information to the seq file. The
 384 * print_unreferenced function must be called with the object->lock held.
 385 */
 386static void print_unreferenced(struct seq_file *seq,
 387                               struct kmemleak_object *object)
 388{
 389        int i;
 390        unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 391
 392        warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 393                   object->pointer, object->size);
 394        warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 395                   object->comm, object->pid, object->jiffies,
 396                   msecs_age / 1000, msecs_age % 1000);
 397        hex_dump_object(seq, object);
 398        warn_or_seq_printf(seq, "  backtrace:\n");
 399
 400        for (i = 0; i < object->trace_len; i++) {
 401                void *ptr = (void *)object->trace[i];
 402                warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 403        }
 404}
 405
 406/*
 407 * Print the kmemleak_object information. This function is used mainly for
 408 * debugging special cases when kmemleak operations. It must be called with
 409 * the object->lock held.
 410 */
 411static void dump_object_info(struct kmemleak_object *object)
 412{
 413        struct stack_trace trace;
 414
 415        trace.nr_entries = object->trace_len;
 416        trace.entries = object->trace;
 417
 418        pr_notice("Object 0x%08lx (size %zu):\n",
 419                  object->pointer, object->size);
 420        pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 421                  object->comm, object->pid, object->jiffies);
 422        pr_notice("  min_count = %d\n", object->min_count);
 423        pr_notice("  count = %d\n", object->count);
 424        pr_notice("  flags = 0x%x\n", object->flags);
 425        pr_notice("  checksum = %u\n", object->checksum);
 426        pr_notice("  backtrace:\n");
 427        print_stack_trace(&trace, 4);
 428}
 429
 430/*
 431 * Look-up a memory block metadata (kmemleak_object) in the object search
 432 * tree based on a pointer value. If alias is 0, only values pointing to the
 433 * beginning of the memory block are allowed. The kmemleak_lock must be held
 434 * when calling this function.
 435 */
 436static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 437{
 438        struct rb_node *rb = object_tree_root.rb_node;
 439
 440        while (rb) {
 441                struct kmemleak_object *object =
 442                        rb_entry(rb, struct kmemleak_object, rb_node);
 443                if (ptr < object->pointer)
 444                        rb = object->rb_node.rb_left;
 445                else if (object->pointer + object->size <= ptr)
 446                        rb = object->rb_node.rb_right;
 447                else if (object->pointer == ptr || alias)
 448                        return object;
 449                else {
 450                        kmemleak_warn("Found object by alias at 0x%08lx\n",
 451                                      ptr);
 452                        dump_object_info(object);
 453                        break;
 454                }
 455        }
 456        return NULL;
 457}
 458
 459/*
 460 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 461 * that once an object's use_count reached 0, the RCU freeing was already
 462 * registered and the object should no longer be used. This function must be
 463 * called under the protection of rcu_read_lock().
 464 */
 465static int get_object(struct kmemleak_object *object)
 466{
 467        return atomic_inc_not_zero(&object->use_count);
 468}
 469
 470/*
 471 * RCU callback to free a kmemleak_object.
 472 */
 473static void free_object_rcu(struct rcu_head *rcu)
 474{
 475        struct hlist_node *tmp;
 476        struct kmemleak_scan_area *area;
 477        struct kmemleak_object *object =
 478                container_of(rcu, struct kmemleak_object, rcu);
 479
 480        /*
 481         * Once use_count is 0 (guaranteed by put_object), there is no other
 482         * code accessing this object, hence no need for locking.
 483         */
 484        hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 485                hlist_del(&area->node);
 486                kmem_cache_free(scan_area_cache, area);
 487        }
 488        kmem_cache_free(object_cache, object);
 489}
 490
 491/*
 492 * Decrement the object use_count. Once the count is 0, free the object using
 493 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 494 * delete_object() path, the delayed RCU freeing ensures that there is no
 495 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 496 * is also possible.
 497 */
 498static void put_object(struct kmemleak_object *object)
 499{
 500        if (!atomic_dec_and_test(&object->use_count))
 501                return;
 502
 503        /* should only get here after delete_object was called */
 504        WARN_ON(object->flags & OBJECT_ALLOCATED);
 505
 506        call_rcu(&object->rcu, free_object_rcu);
 507}
 508
 509/*
 510 * Look up an object in the object search tree and increase its use_count.
 511 */
 512static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 513{
 514        unsigned long flags;
 515        struct kmemleak_object *object;
 516
 517        rcu_read_lock();
 518        read_lock_irqsave(&kmemleak_lock, flags);
 519        object = lookup_object(ptr, alias);
 520        read_unlock_irqrestore(&kmemleak_lock, flags);
 521
 522        /* check whether the object is still available */
 523        if (object && !get_object(object))
 524                object = NULL;
 525        rcu_read_unlock();
 526
 527        return object;
 528}
 529
 530/*
 531 * Look up an object in the object search tree and remove it from both
 532 * object_tree_root and object_list. The returned object's use_count should be
 533 * at least 1, as initially set by create_object().
 534 */
 535static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
 536{
 537        unsigned long flags;
 538        struct kmemleak_object *object;
 539
 540        write_lock_irqsave(&kmemleak_lock, flags);
 541        object = lookup_object(ptr, alias);
 542        if (object) {
 543                rb_erase(&object->rb_node, &object_tree_root);
 544                list_del_rcu(&object->object_list);
 545        }
 546        write_unlock_irqrestore(&kmemleak_lock, flags);
 547
 548        return object;
 549}
 550
 551/*
 552 * Save stack trace to the given array of MAX_TRACE size.
 553 */
 554static int __save_stack_trace(unsigned long *trace)
 555{
 556        struct stack_trace stack_trace;
 557
 558        stack_trace.max_entries = MAX_TRACE;
 559        stack_trace.nr_entries = 0;
 560        stack_trace.entries = trace;
 561        stack_trace.skip = 2;
 562        save_stack_trace(&stack_trace);
 563
 564        return stack_trace.nr_entries;
 565}
 566
 567/*
 568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 569 * memory block and add it to the object_list and object_tree_root.
 570 */
 571static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 572                                             int min_count, gfp_t gfp)
 573{
 574        unsigned long flags;
 575        struct kmemleak_object *object, *parent;
 576        struct rb_node **link, *rb_parent;
 577
 578        object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 579        if (!object) {
 580                pr_warn("Cannot allocate a kmemleak_object structure\n");
 581                kmemleak_disable();
 582                return NULL;
 583        }
 584
 585        INIT_LIST_HEAD(&object->object_list);
 586        INIT_LIST_HEAD(&object->gray_list);
 587        INIT_HLIST_HEAD(&object->area_list);
 588        spin_lock_init(&object->lock);
 589        atomic_set(&object->use_count, 1);
 590        object->flags = OBJECT_ALLOCATED;
 591        object->pointer = ptr;
 592        object->size = size;
 593        object->excess_ref = 0;
 594        object->min_count = min_count;
 595        object->count = 0;                      /* white color initially */
 596        object->jiffies = jiffies;
 597        object->checksum = 0;
 598
 599        /* task information */
 600        if (in_irq()) {
 601                object->pid = 0;
 602                strncpy(object->comm, "hardirq", sizeof(object->comm));
 603        } else if (in_softirq()) {
 604                object->pid = 0;
 605                strncpy(object->comm, "softirq", sizeof(object->comm));
 606        } else {
 607                object->pid = current->pid;
 608                /*
 609                 * There is a small chance of a race with set_task_comm(),
 610                 * however using get_task_comm() here may cause locking
 611                 * dependency issues with current->alloc_lock. In the worst
 612                 * case, the command line is not correct.
 613                 */
 614                strncpy(object->comm, current->comm, sizeof(object->comm));
 615        }
 616
 617        /* kernel backtrace */
 618        object->trace_len = __save_stack_trace(object->trace);
 619
 620        write_lock_irqsave(&kmemleak_lock, flags);
 621
 622        min_addr = min(min_addr, ptr);
 623        max_addr = max(max_addr, ptr + size);
 624        link = &object_tree_root.rb_node;
 625        rb_parent = NULL;
 626        while (*link) {
 627                rb_parent = *link;
 628                parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 629                if (ptr + size <= parent->pointer)
 630                        link = &parent->rb_node.rb_left;
 631                else if (parent->pointer + parent->size <= ptr)
 632                        link = &parent->rb_node.rb_right;
 633                else {
 634                        kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 635                                      ptr);
 636                        /*
 637                         * No need for parent->lock here since "parent" cannot
 638                         * be freed while the kmemleak_lock is held.
 639                         */
 640                        dump_object_info(parent);
 641                        kmem_cache_free(object_cache, object);
 642                        object = NULL;
 643                        goto out;
 644                }
 645        }
 646        rb_link_node(&object->rb_node, rb_parent, link);
 647        rb_insert_color(&object->rb_node, &object_tree_root);
 648
 649        list_add_tail_rcu(&object->object_list, &object_list);
 650out:
 651        write_unlock_irqrestore(&kmemleak_lock, flags);
 652        return object;
 653}
 654
 655/*
 656 * Mark the object as not allocated and schedule RCU freeing via put_object().
 657 */
 658static void __delete_object(struct kmemleak_object *object)
 659{
 660        unsigned long flags;
 661
 662        WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 663        WARN_ON(atomic_read(&object->use_count) < 1);
 664
 665        /*
 666         * Locking here also ensures that the corresponding memory block
 667         * cannot be freed when it is being scanned.
 668         */
 669        spin_lock_irqsave(&object->lock, flags);
 670        object->flags &= ~OBJECT_ALLOCATED;
 671        spin_unlock_irqrestore(&object->lock, flags);
 672        put_object(object);
 673}
 674
 675/*
 676 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 677 * delete it.
 678 */
 679static void delete_object_full(unsigned long ptr)
 680{
 681        struct kmemleak_object *object;
 682
 683        object = find_and_remove_object(ptr, 0);
 684        if (!object) {
 685#ifdef DEBUG
 686                kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 687                              ptr);
 688#endif
 689                return;
 690        }
 691        __delete_object(object);
 692}
 693
 694/*
 695 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 696 * delete it. If the memory block is partially freed, the function may create
 697 * additional metadata for the remaining parts of the block.
 698 */
 699static void delete_object_part(unsigned long ptr, size_t size)
 700{
 701        struct kmemleak_object *object;
 702        unsigned long start, end;
 703
 704        object = find_and_remove_object(ptr, 1);
 705        if (!object) {
 706#ifdef DEBUG
 707                kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 708                              ptr, size);
 709#endif
 710                return;
 711        }
 712
 713        /*
 714         * Create one or two objects that may result from the memory block
 715         * split. Note that partial freeing is only done by free_bootmem() and
 716         * this happens before kmemleak_init() is called. The path below is
 717         * only executed during early log recording in kmemleak_init(), so
 718         * GFP_KERNEL is enough.
 719         */
 720        start = object->pointer;
 721        end = object->pointer + object->size;
 722        if (ptr > start)
 723                create_object(start, ptr - start, object->min_count,
 724                              GFP_KERNEL);
 725        if (ptr + size < end)
 726                create_object(ptr + size, end - ptr - size, object->min_count,
 727                              GFP_KERNEL);
 728
 729        __delete_object(object);
 730}
 731
 732static void __paint_it(struct kmemleak_object *object, int color)
 733{
 734        object->min_count = color;
 735        if (color == KMEMLEAK_BLACK)
 736                object->flags |= OBJECT_NO_SCAN;
 737}
 738
 739static void paint_it(struct kmemleak_object *object, int color)
 740{
 741        unsigned long flags;
 742
 743        spin_lock_irqsave(&object->lock, flags);
 744        __paint_it(object, color);
 745        spin_unlock_irqrestore(&object->lock, flags);
 746}
 747
 748static void paint_ptr(unsigned long ptr, int color)
 749{
 750        struct kmemleak_object *object;
 751
 752        object = find_and_get_object(ptr, 0);
 753        if (!object) {
 754                kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 755                              ptr,
 756                              (color == KMEMLEAK_GREY) ? "Grey" :
 757                              (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 758                return;
 759        }
 760        paint_it(object, color);
 761        put_object(object);
 762}
 763
 764/*
 765 * Mark an object permanently as gray-colored so that it can no longer be
 766 * reported as a leak. This is used in general to mark a false positive.
 767 */
 768static void make_gray_object(unsigned long ptr)
 769{
 770        paint_ptr(ptr, KMEMLEAK_GREY);
 771}
 772
 773/*
 774 * Mark the object as black-colored so that it is ignored from scans and
 775 * reporting.
 776 */
 777static void make_black_object(unsigned long ptr)
 778{
 779        paint_ptr(ptr, KMEMLEAK_BLACK);
 780}
 781
 782/*
 783 * Add a scanning area to the object. If at least one such area is added,
 784 * kmemleak will only scan these ranges rather than the whole memory block.
 785 */
 786static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 787{
 788        unsigned long flags;
 789        struct kmemleak_object *object;
 790        struct kmemleak_scan_area *area;
 791
 792        object = find_and_get_object(ptr, 1);
 793        if (!object) {
 794                kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 795                              ptr);
 796                return;
 797        }
 798
 799        area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 800        if (!area) {
 801                pr_warn("Cannot allocate a scan area\n");
 802                goto out;
 803        }
 804
 805        spin_lock_irqsave(&object->lock, flags);
 806        if (size == SIZE_MAX) {
 807                size = object->pointer + object->size - ptr;
 808        } else if (ptr + size > object->pointer + object->size) {
 809                kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 810                dump_object_info(object);
 811                kmem_cache_free(scan_area_cache, area);
 812                goto out_unlock;
 813        }
 814
 815        INIT_HLIST_NODE(&area->node);
 816        area->start = ptr;
 817        area->size = size;
 818
 819        hlist_add_head(&area->node, &object->area_list);
 820out_unlock:
 821        spin_unlock_irqrestore(&object->lock, flags);
 822out:
 823        put_object(object);
 824}
 825
 826/*
 827 * Any surplus references (object already gray) to 'ptr' are passed to
 828 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
 829 * vm_struct may be used as an alternative reference to the vmalloc'ed object
 830 * (see free_thread_stack()).
 831 */
 832static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
 833{
 834        unsigned long flags;
 835        struct kmemleak_object *object;
 836
 837        object = find_and_get_object(ptr, 0);
 838        if (!object) {
 839                kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
 840                              ptr);
 841                return;
 842        }
 843
 844        spin_lock_irqsave(&object->lock, flags);
 845        object->excess_ref = excess_ref;
 846        spin_unlock_irqrestore(&object->lock, flags);
 847        put_object(object);
 848}
 849
 850/*
 851 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 852 * pointer. Such object will not be scanned by kmemleak but references to it
 853 * are searched.
 854 */
 855static void object_no_scan(unsigned long ptr)
 856{
 857        unsigned long flags;
 858        struct kmemleak_object *object;
 859
 860        object = find_and_get_object(ptr, 0);
 861        if (!object) {
 862                kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 863                return;
 864        }
 865
 866        spin_lock_irqsave(&object->lock, flags);
 867        object->flags |= OBJECT_NO_SCAN;
 868        spin_unlock_irqrestore(&object->lock, flags);
 869        put_object(object);
 870}
 871
 872/*
 873 * Log an early kmemleak_* call to the early_log buffer. These calls will be
 874 * processed later once kmemleak is fully initialized.
 875 */
 876static void __init log_early(int op_type, const void *ptr, size_t size,
 877                             int min_count)
 878{
 879        unsigned long flags;
 880        struct early_log *log;
 881
 882        if (kmemleak_error) {
 883                /* kmemleak stopped recording, just count the requests */
 884                crt_early_log++;
 885                return;
 886        }
 887
 888        if (crt_early_log >= ARRAY_SIZE(early_log)) {
 889                crt_early_log++;
 890                kmemleak_disable();
 891                return;
 892        }
 893
 894        /*
 895         * There is no need for locking since the kernel is still in UP mode
 896         * at this stage. Disabling the IRQs is enough.
 897         */
 898        local_irq_save(flags);
 899        log = &early_log[crt_early_log];
 900        log->op_type = op_type;
 901        log->ptr = ptr;
 902        log->size = size;
 903        log->min_count = min_count;
 904        log->trace_len = __save_stack_trace(log->trace);
 905        crt_early_log++;
 906        local_irq_restore(flags);
 907}
 908
 909/*
 910 * Log an early allocated block and populate the stack trace.
 911 */
 912static void early_alloc(struct early_log *log)
 913{
 914        struct kmemleak_object *object;
 915        unsigned long flags;
 916        int i;
 917
 918        if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
 919                return;
 920
 921        /*
 922         * RCU locking needed to ensure object is not freed via put_object().
 923         */
 924        rcu_read_lock();
 925        object = create_object((unsigned long)log->ptr, log->size,
 926                               log->min_count, GFP_ATOMIC);
 927        if (!object)
 928                goto out;
 929        spin_lock_irqsave(&object->lock, flags);
 930        for (i = 0; i < log->trace_len; i++)
 931                object->trace[i] = log->trace[i];
 932        object->trace_len = log->trace_len;
 933        spin_unlock_irqrestore(&object->lock, flags);
 934out:
 935        rcu_read_unlock();
 936}
 937
 938/*
 939 * Log an early allocated block and populate the stack trace.
 940 */
 941static void early_alloc_percpu(struct early_log *log)
 942{
 943        unsigned int cpu;
 944        const void __percpu *ptr = log->ptr;
 945
 946        for_each_possible_cpu(cpu) {
 947                log->ptr = per_cpu_ptr(ptr, cpu);
 948                early_alloc(log);
 949        }
 950}
 951
 952/**
 953 * kmemleak_alloc - register a newly allocated object
 954 * @ptr:        pointer to beginning of the object
 955 * @size:       size of the object
 956 * @min_count:  minimum number of references to this object. If during memory
 957 *              scanning a number of references less than @min_count is found,
 958 *              the object is reported as a memory leak. If @min_count is 0,
 959 *              the object is never reported as a leak. If @min_count is -1,
 960 *              the object is ignored (not scanned and not reported as a leak)
 961 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
 962 *
 963 * This function is called from the kernel allocators when a new object
 964 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
 965 */
 966void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 967                          gfp_t gfp)
 968{
 969        pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 970
 971        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 972                create_object((unsigned long)ptr, size, min_count, gfp);
 973        else if (kmemleak_early_log)
 974                log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
 975}
 976EXPORT_SYMBOL_GPL(kmemleak_alloc);
 977
 978/**
 979 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 980 * @ptr:        __percpu pointer to beginning of the object
 981 * @size:       size of the object
 982 * @gfp:        flags used for kmemleak internal memory allocations
 983 *
 984 * This function is called from the kernel percpu allocator when a new object
 985 * (memory block) is allocated (alloc_percpu).
 986 */
 987void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
 988                                 gfp_t gfp)
 989{
 990        unsigned int cpu;
 991
 992        pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 993
 994        /*
 995         * Percpu allocations are only scanned and not reported as leaks
 996         * (min_count is set to 0).
 997         */
 998        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 999                for_each_possible_cpu(cpu)
1000                        create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1001                                      size, 0, gfp);
1002        else if (kmemleak_early_log)
1003                log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
1004}
1005EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1006
1007/**
1008 * kmemleak_vmalloc - register a newly vmalloc'ed object
1009 * @area:       pointer to vm_struct
1010 * @size:       size of the object
1011 * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1012 *
1013 * This function is called from the vmalloc() kernel allocator when a new
1014 * object (memory block) is allocated.
1015 */
1016void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1017{
1018        pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1019
1020        /*
1021         * A min_count = 2 is needed because vm_struct contains a reference to
1022         * the virtual address of the vmalloc'ed block.
1023         */
1024        if (kmemleak_enabled) {
1025                create_object((unsigned long)area->addr, size, 2, gfp);
1026                object_set_excess_ref((unsigned long)area,
1027                                      (unsigned long)area->addr);
1028        } else if (kmemleak_early_log) {
1029                log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1030                /* reusing early_log.size for storing area->addr */
1031                log_early(KMEMLEAK_SET_EXCESS_REF,
1032                          area, (unsigned long)area->addr, 0);
1033        }
1034}
1035EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1036
1037/**
1038 * kmemleak_free - unregister a previously registered object
1039 * @ptr:        pointer to beginning of the object
1040 *
1041 * This function is called from the kernel allocators when an object (memory
1042 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1043 */
1044void __ref kmemleak_free(const void *ptr)
1045{
1046        pr_debug("%s(0x%p)\n", __func__, ptr);
1047
1048        if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1049                delete_object_full((unsigned long)ptr);
1050        else if (kmemleak_early_log)
1051                log_early(KMEMLEAK_FREE, ptr, 0, 0);
1052}
1053EXPORT_SYMBOL_GPL(kmemleak_free);
1054
1055/**
1056 * kmemleak_free_part - partially unregister a previously registered object
1057 * @ptr:        pointer to the beginning or inside the object. This also
1058 *              represents the start of the range to be freed
1059 * @size:       size to be unregistered
1060 *
1061 * This function is called when only a part of a memory block is freed
1062 * (usually from the bootmem allocator).
1063 */
1064void __ref kmemleak_free_part(const void *ptr, size_t size)
1065{
1066        pr_debug("%s(0x%p)\n", __func__, ptr);
1067
1068        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1069                delete_object_part((unsigned long)ptr, size);
1070        else if (kmemleak_early_log)
1071                log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1072}
1073EXPORT_SYMBOL_GPL(kmemleak_free_part);
1074
1075/**
1076 * kmemleak_free_percpu - unregister a previously registered __percpu object
1077 * @ptr:        __percpu pointer to beginning of the object
1078 *
1079 * This function is called from the kernel percpu allocator when an object
1080 * (memory block) is freed (free_percpu).
1081 */
1082void __ref kmemleak_free_percpu(const void __percpu *ptr)
1083{
1084        unsigned int cpu;
1085
1086        pr_debug("%s(0x%p)\n", __func__, ptr);
1087
1088        if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1089                for_each_possible_cpu(cpu)
1090                        delete_object_full((unsigned long)per_cpu_ptr(ptr,
1091                                                                      cpu));
1092        else if (kmemleak_early_log)
1093                log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1094}
1095EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1096
1097/**
1098 * kmemleak_update_trace - update object allocation stack trace
1099 * @ptr:        pointer to beginning of the object
1100 *
1101 * Override the object allocation stack trace for cases where the actual
1102 * allocation place is not always useful.
1103 */
1104void __ref kmemleak_update_trace(const void *ptr)
1105{
1106        struct kmemleak_object *object;
1107        unsigned long flags;
1108
1109        pr_debug("%s(0x%p)\n", __func__, ptr);
1110
1111        if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1112                return;
1113
1114        object = find_and_get_object((unsigned long)ptr, 1);
1115        if (!object) {
1116#ifdef DEBUG
1117                kmemleak_warn("Updating stack trace for unknown object at %p\n",
1118                              ptr);
1119#endif
1120                return;
1121        }
1122
1123        spin_lock_irqsave(&object->lock, flags);
1124        object->trace_len = __save_stack_trace(object->trace);
1125        spin_unlock_irqrestore(&object->lock, flags);
1126
1127        put_object(object);
1128}
1129EXPORT_SYMBOL(kmemleak_update_trace);
1130
1131/**
1132 * kmemleak_not_leak - mark an allocated object as false positive
1133 * @ptr:        pointer to beginning of the object
1134 *
1135 * Calling this function on an object will cause the memory block to no longer
1136 * be reported as leak and always be scanned.
1137 */
1138void __ref kmemleak_not_leak(const void *ptr)
1139{
1140        pr_debug("%s(0x%p)\n", __func__, ptr);
1141
1142        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1143                make_gray_object((unsigned long)ptr);
1144        else if (kmemleak_early_log)
1145                log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1146}
1147EXPORT_SYMBOL(kmemleak_not_leak);
1148
1149/**
1150 * kmemleak_ignore - ignore an allocated object
1151 * @ptr:        pointer to beginning of the object
1152 *
1153 * Calling this function on an object will cause the memory block to be
1154 * ignored (not scanned and not reported as a leak). This is usually done when
1155 * it is known that the corresponding block is not a leak and does not contain
1156 * any references to other allocated memory blocks.
1157 */
1158void __ref kmemleak_ignore(const void *ptr)
1159{
1160        pr_debug("%s(0x%p)\n", __func__, ptr);
1161
1162        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1163                make_black_object((unsigned long)ptr);
1164        else if (kmemleak_early_log)
1165                log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1166}
1167EXPORT_SYMBOL(kmemleak_ignore);
1168
1169/**
1170 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1171 * @ptr:        pointer to beginning or inside the object. This also
1172 *              represents the start of the scan area
1173 * @size:       size of the scan area
1174 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1175 *
1176 * This function is used when it is known that only certain parts of an object
1177 * contain references to other objects. Kmemleak will only scan these areas
1178 * reducing the number false negatives.
1179 */
1180void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1181{
1182        pr_debug("%s(0x%p)\n", __func__, ptr);
1183
1184        if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1185                add_scan_area((unsigned long)ptr, size, gfp);
1186        else if (kmemleak_early_log)
1187                log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1188}
1189EXPORT_SYMBOL(kmemleak_scan_area);
1190
1191/**
1192 * kmemleak_no_scan - do not scan an allocated object
1193 * @ptr:        pointer to beginning of the object
1194 *
1195 * This function notifies kmemleak not to scan the given memory block. Useful
1196 * in situations where it is known that the given object does not contain any
1197 * references to other objects. Kmemleak will not scan such objects reducing
1198 * the number of false negatives.
1199 */
1200void __ref kmemleak_no_scan(const void *ptr)
1201{
1202        pr_debug("%s(0x%p)\n", __func__, ptr);
1203
1204        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1205                object_no_scan((unsigned long)ptr);
1206        else if (kmemleak_early_log)
1207                log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1208}
1209EXPORT_SYMBOL(kmemleak_no_scan);
1210
1211/**
1212 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1213 *                       address argument
1214 * @phys:       physical address of the object
1215 * @size:       size of the object
1216 * @min_count:  minimum number of references to this object.
1217 *              See kmemleak_alloc()
1218 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1219 */
1220void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1221                               gfp_t gfp)
1222{
1223        if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1224                kmemleak_alloc(__va(phys), size, min_count, gfp);
1225}
1226EXPORT_SYMBOL(kmemleak_alloc_phys);
1227
1228/**
1229 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1230 *                           physical address argument
1231 * @phys:       physical address if the beginning or inside an object. This
1232 *              also represents the start of the range to be freed
1233 * @size:       size to be unregistered
1234 */
1235void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1236{
1237        if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238                kmemleak_free_part(__va(phys), size);
1239}
1240EXPORT_SYMBOL(kmemleak_free_part_phys);
1241
1242/**
1243 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1244 *                          address argument
1245 * @phys:       physical address of the object
1246 */
1247void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1248{
1249        if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1250                kmemleak_not_leak(__va(phys));
1251}
1252EXPORT_SYMBOL(kmemleak_not_leak_phys);
1253
1254/**
1255 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1256 *                        address argument
1257 * @phys:       physical address of the object
1258 */
1259void __ref kmemleak_ignore_phys(phys_addr_t phys)
1260{
1261        if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1262                kmemleak_ignore(__va(phys));
1263}
1264EXPORT_SYMBOL(kmemleak_ignore_phys);
1265
1266/*
1267 * Update an object's checksum and return true if it was modified.
1268 */
1269static bool update_checksum(struct kmemleak_object *object)
1270{
1271        u32 old_csum = object->checksum;
1272
1273        kasan_disable_current();
1274        object->checksum = crc32(0, (void *)object->pointer, object->size);
1275        kasan_enable_current();
1276
1277        return object->checksum != old_csum;
1278}
1279
1280/*
1281 * Update an object's references. object->lock must be held by the caller.
1282 */
1283static void update_refs(struct kmemleak_object *object)
1284{
1285        if (!color_white(object)) {
1286                /* non-orphan, ignored or new */
1287                return;
1288        }
1289
1290        /*
1291         * Increase the object's reference count (number of pointers to the
1292         * memory block). If this count reaches the required minimum, the
1293         * object's color will become gray and it will be added to the
1294         * gray_list.
1295         */
1296        object->count++;
1297        if (color_gray(object)) {
1298                /* put_object() called when removing from gray_list */
1299                WARN_ON(!get_object(object));
1300                list_add_tail(&object->gray_list, &gray_list);
1301        }
1302}
1303
1304/*
1305 * Memory scanning is a long process and it needs to be interruptable. This
1306 * function checks whether such interrupt condition occurred.
1307 */
1308static int scan_should_stop(void)
1309{
1310        if (!kmemleak_enabled)
1311                return 1;
1312
1313        /*
1314         * This function may be called from either process or kthread context,
1315         * hence the need to check for both stop conditions.
1316         */
1317        if (current->mm)
1318                return signal_pending(current);
1319        else
1320                return kthread_should_stop();
1321
1322        return 0;
1323}
1324
1325/*
1326 * Scan a memory block (exclusive range) for valid pointers and add those
1327 * found to the gray list.
1328 */
1329static void scan_block(void *_start, void *_end,
1330                       struct kmemleak_object *scanned)
1331{
1332        unsigned long *ptr;
1333        unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1334        unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1335        unsigned long flags;
1336
1337        read_lock_irqsave(&kmemleak_lock, flags);
1338        for (ptr = start; ptr < end; ptr++) {
1339                struct kmemleak_object *object;
1340                unsigned long pointer;
1341                unsigned long excess_ref;
1342
1343                if (scan_should_stop())
1344                        break;
1345
1346                kasan_disable_current();
1347                pointer = *ptr;
1348                kasan_enable_current();
1349
1350                if (pointer < min_addr || pointer >= max_addr)
1351                        continue;
1352
1353                /*
1354                 * No need for get_object() here since we hold kmemleak_lock.
1355                 * object->use_count cannot be dropped to 0 while the object
1356                 * is still present in object_tree_root and object_list
1357                 * (with updates protected by kmemleak_lock).
1358                 */
1359                object = lookup_object(pointer, 1);
1360                if (!object)
1361                        continue;
1362                if (object == scanned)
1363                        /* self referenced, ignore */
1364                        continue;
1365
1366                /*
1367                 * Avoid the lockdep recursive warning on object->lock being
1368                 * previously acquired in scan_object(). These locks are
1369                 * enclosed by scan_mutex.
1370                 */
1371                spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1372                /* only pass surplus references (object already gray) */
1373                if (color_gray(object)) {
1374                        excess_ref = object->excess_ref;
1375                        /* no need for update_refs() if object already gray */
1376                } else {
1377                        excess_ref = 0;
1378                        update_refs(object);
1379                }
1380                spin_unlock(&object->lock);
1381
1382                if (excess_ref) {
1383                        object = lookup_object(excess_ref, 0);
1384                        if (!object)
1385                                continue;
1386                        if (object == scanned)
1387                                /* circular reference, ignore */
1388                                continue;
1389                        spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1390                        update_refs(object);
1391                        spin_unlock(&object->lock);
1392                }
1393        }
1394        read_unlock_irqrestore(&kmemleak_lock, flags);
1395}
1396
1397/*
1398 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1399 */
1400static void scan_large_block(void *start, void *end)
1401{
1402        void *next;
1403
1404        while (start < end) {
1405                next = min(start + MAX_SCAN_SIZE, end);
1406                scan_block(start, next, NULL);
1407                start = next;
1408                cond_resched();
1409        }
1410}
1411
1412/*
1413 * Scan a memory block corresponding to a kmemleak_object. A condition is
1414 * that object->use_count >= 1.
1415 */
1416static void scan_object(struct kmemleak_object *object)
1417{
1418        struct kmemleak_scan_area *area;
1419        unsigned long flags;
1420
1421        /*
1422         * Once the object->lock is acquired, the corresponding memory block
1423         * cannot be freed (the same lock is acquired in delete_object).
1424         */
1425        spin_lock_irqsave(&object->lock, flags);
1426        if (object->flags & OBJECT_NO_SCAN)
1427                goto out;
1428        if (!(object->flags & OBJECT_ALLOCATED))
1429                /* already freed object */
1430                goto out;
1431        if (hlist_empty(&object->area_list)) {
1432                void *start = (void *)object->pointer;
1433                void *end = (void *)(object->pointer + object->size);
1434                void *next;
1435
1436                do {
1437                        next = min(start + MAX_SCAN_SIZE, end);
1438                        scan_block(start, next, object);
1439
1440                        start = next;
1441                        if (start >= end)
1442                                break;
1443
1444                        spin_unlock_irqrestore(&object->lock, flags);
1445                        cond_resched();
1446                        spin_lock_irqsave(&object->lock, flags);
1447                } while (object->flags & OBJECT_ALLOCATED);
1448        } else
1449                hlist_for_each_entry(area, &object->area_list, node)
1450                        scan_block((void *)area->start,
1451                                   (void *)(area->start + area->size),
1452                                   object);
1453out:
1454        spin_unlock_irqrestore(&object->lock, flags);
1455}
1456
1457/*
1458 * Scan the objects already referenced (gray objects). More objects will be
1459 * referenced and, if there are no memory leaks, all the objects are scanned.
1460 */
1461static void scan_gray_list(void)
1462{
1463        struct kmemleak_object *object, *tmp;
1464
1465        /*
1466         * The list traversal is safe for both tail additions and removals
1467         * from inside the loop. The kmemleak objects cannot be freed from
1468         * outside the loop because their use_count was incremented.
1469         */
1470        object = list_entry(gray_list.next, typeof(*object), gray_list);
1471        while (&object->gray_list != &gray_list) {
1472                cond_resched();
1473
1474                /* may add new objects to the list */
1475                if (!scan_should_stop())
1476                        scan_object(object);
1477
1478                tmp = list_entry(object->gray_list.next, typeof(*object),
1479                                 gray_list);
1480
1481                /* remove the object from the list and release it */
1482                list_del(&object->gray_list);
1483                put_object(object);
1484
1485                object = tmp;
1486        }
1487        WARN_ON(!list_empty(&gray_list));
1488}
1489
1490/*
1491 * Scan data sections and all the referenced memory blocks allocated via the
1492 * kernel's standard allocators. This function must be called with the
1493 * scan_mutex held.
1494 */
1495static void kmemleak_scan(void)
1496{
1497        unsigned long flags;
1498        struct kmemleak_object *object;
1499        int i;
1500        int new_leaks = 0;
1501
1502        jiffies_last_scan = jiffies;
1503
1504        /* prepare the kmemleak_object's */
1505        rcu_read_lock();
1506        list_for_each_entry_rcu(object, &object_list, object_list) {
1507                spin_lock_irqsave(&object->lock, flags);
1508#ifdef DEBUG
1509                /*
1510                 * With a few exceptions there should be a maximum of
1511                 * 1 reference to any object at this point.
1512                 */
1513                if (atomic_read(&object->use_count) > 1) {
1514                        pr_debug("object->use_count = %d\n",
1515                                 atomic_read(&object->use_count));
1516                        dump_object_info(object);
1517                }
1518#endif
1519                /* reset the reference count (whiten the object) */
1520                object->count = 0;
1521                if (color_gray(object) && get_object(object))
1522                        list_add_tail(&object->gray_list, &gray_list);
1523
1524                spin_unlock_irqrestore(&object->lock, flags);
1525        }
1526        rcu_read_unlock();
1527
1528        /* data/bss scanning */
1529        scan_large_block(_sdata, _edata);
1530        scan_large_block(__bss_start, __bss_stop);
1531        scan_large_block(__start_ro_after_init, __end_ro_after_init);
1532
1533#ifdef CONFIG_SMP
1534        /* per-cpu sections scanning */
1535        for_each_possible_cpu(i)
1536                scan_large_block(__per_cpu_start + per_cpu_offset(i),
1537                                 __per_cpu_end + per_cpu_offset(i));
1538#endif
1539
1540        /*
1541         * Struct page scanning for each node.
1542         */
1543        get_online_mems();
1544        for_each_online_node(i) {
1545                unsigned long start_pfn = node_start_pfn(i);
1546                unsigned long end_pfn = node_end_pfn(i);
1547                unsigned long pfn;
1548
1549                for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1550                        struct page *page;
1551
1552                        if (!pfn_valid(pfn))
1553                                continue;
1554                        page = pfn_to_page(pfn);
1555                        /* only scan if page is in use */
1556                        if (page_count(page) == 0)
1557                                continue;
1558                        scan_block(page, page + 1, NULL);
1559                        if (!(pfn & 63))
1560                                cond_resched();
1561                }
1562        }
1563        put_online_mems();
1564
1565        /*
1566         * Scanning the task stacks (may introduce false negatives).
1567         */
1568        if (kmemleak_stack_scan) {
1569                struct task_struct *p, *g;
1570
1571                read_lock(&tasklist_lock);
1572                do_each_thread(g, p) {
1573                        void *stack = try_get_task_stack(p);
1574                        if (stack) {
1575                                scan_block(stack, stack + THREAD_SIZE, NULL);
1576                                put_task_stack(p);
1577                        }
1578                } while_each_thread(g, p);
1579                read_unlock(&tasklist_lock);
1580        }
1581
1582        /*
1583         * Scan the objects already referenced from the sections scanned
1584         * above.
1585         */
1586        scan_gray_list();
1587
1588        /*
1589         * Check for new or unreferenced objects modified since the previous
1590         * scan and color them gray until the next scan.
1591         */
1592        rcu_read_lock();
1593        list_for_each_entry_rcu(object, &object_list, object_list) {
1594                spin_lock_irqsave(&object->lock, flags);
1595                if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1596                    && update_checksum(object) && get_object(object)) {
1597                        /* color it gray temporarily */
1598                        object->count = object->min_count;
1599                        list_add_tail(&object->gray_list, &gray_list);
1600                }
1601                spin_unlock_irqrestore(&object->lock, flags);
1602        }
1603        rcu_read_unlock();
1604
1605        /*
1606         * Re-scan the gray list for modified unreferenced objects.
1607         */
1608        scan_gray_list();
1609
1610        /*
1611         * If scanning was stopped do not report any new unreferenced objects.
1612         */
1613        if (scan_should_stop())
1614                return;
1615
1616        /*
1617         * Scanning result reporting.
1618         */
1619        rcu_read_lock();
1620        list_for_each_entry_rcu(object, &object_list, object_list) {
1621                spin_lock_irqsave(&object->lock, flags);
1622                if (unreferenced_object(object) &&
1623                    !(object->flags & OBJECT_REPORTED)) {
1624                        object->flags |= OBJECT_REPORTED;
1625
1626                        if (kmemleak_verbose)
1627                                print_unreferenced(NULL, object);
1628
1629                        new_leaks++;
1630                }
1631                spin_unlock_irqrestore(&object->lock, flags);
1632        }
1633        rcu_read_unlock();
1634
1635        if (new_leaks) {
1636                kmemleak_found_leaks = true;
1637
1638                pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1639                        new_leaks);
1640        }
1641
1642}
1643
1644/*
1645 * Thread function performing automatic memory scanning. Unreferenced objects
1646 * at the end of a memory scan are reported but only the first time.
1647 */
1648static int kmemleak_scan_thread(void *arg)
1649{
1650        static int first_run = 1;
1651
1652        pr_info("Automatic memory scanning thread started\n");
1653        set_user_nice(current, 10);
1654
1655        /*
1656         * Wait before the first scan to allow the system to fully initialize.
1657         */
1658        if (first_run) {
1659                signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1660                first_run = 0;
1661                while (timeout && !kthread_should_stop())
1662                        timeout = schedule_timeout_interruptible(timeout);
1663        }
1664
1665        while (!kthread_should_stop()) {
1666                signed long timeout = jiffies_scan_wait;
1667
1668                mutex_lock(&scan_mutex);
1669                kmemleak_scan();
1670                mutex_unlock(&scan_mutex);
1671
1672                /* wait before the next scan */
1673                while (timeout && !kthread_should_stop())
1674                        timeout = schedule_timeout_interruptible(timeout);
1675        }
1676
1677        pr_info("Automatic memory scanning thread ended\n");
1678
1679        return 0;
1680}
1681
1682/*
1683 * Start the automatic memory scanning thread. This function must be called
1684 * with the scan_mutex held.
1685 */
1686static void start_scan_thread(void)
1687{
1688        if (scan_thread)
1689                return;
1690        scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1691        if (IS_ERR(scan_thread)) {
1692                pr_warn("Failed to create the scan thread\n");
1693                scan_thread = NULL;
1694        }
1695}
1696
1697/*
1698 * Stop the automatic memory scanning thread.
1699 */
1700static void stop_scan_thread(void)
1701{
1702        if (scan_thread) {
1703                kthread_stop(scan_thread);
1704                scan_thread = NULL;
1705        }
1706}
1707
1708/*
1709 * Iterate over the object_list and return the first valid object at or after
1710 * the required position with its use_count incremented. The function triggers
1711 * a memory scanning when the pos argument points to the first position.
1712 */
1713static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1714{
1715        struct kmemleak_object *object;
1716        loff_t n = *pos;
1717        int err;
1718
1719        err = mutex_lock_interruptible(&scan_mutex);
1720        if (err < 0)
1721                return ERR_PTR(err);
1722
1723        rcu_read_lock();
1724        list_for_each_entry_rcu(object, &object_list, object_list) {
1725                if (n-- > 0)
1726                        continue;
1727                if (get_object(object))
1728                        goto out;
1729        }
1730        object = NULL;
1731out:
1732        return object;
1733}
1734
1735/*
1736 * Return the next object in the object_list. The function decrements the
1737 * use_count of the previous object and increases that of the next one.
1738 */
1739static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1740{
1741        struct kmemleak_object *prev_obj = v;
1742        struct kmemleak_object *next_obj = NULL;
1743        struct kmemleak_object *obj = prev_obj;
1744
1745        ++(*pos);
1746
1747        list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1748                if (get_object(obj)) {
1749                        next_obj = obj;
1750                        break;
1751                }
1752        }
1753
1754        put_object(prev_obj);
1755        return next_obj;
1756}
1757
1758/*
1759 * Decrement the use_count of the last object required, if any.
1760 */
1761static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1762{
1763        if (!IS_ERR(v)) {
1764                /*
1765                 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1766                 * waiting was interrupted, so only release it if !IS_ERR.
1767                 */
1768                rcu_read_unlock();
1769                mutex_unlock(&scan_mutex);
1770                if (v)
1771                        put_object(v);
1772        }
1773}
1774
1775/*
1776 * Print the information for an unreferenced object to the seq file.
1777 */
1778static int kmemleak_seq_show(struct seq_file *seq, void *v)
1779{
1780        struct kmemleak_object *object = v;
1781        unsigned long flags;
1782
1783        spin_lock_irqsave(&object->lock, flags);
1784        if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1785                print_unreferenced(seq, object);
1786        spin_unlock_irqrestore(&object->lock, flags);
1787        return 0;
1788}
1789
1790static const struct seq_operations kmemleak_seq_ops = {
1791        .start = kmemleak_seq_start,
1792        .next  = kmemleak_seq_next,
1793        .stop  = kmemleak_seq_stop,
1794        .show  = kmemleak_seq_show,
1795};
1796
1797static int kmemleak_open(struct inode *inode, struct file *file)
1798{
1799        return seq_open(file, &kmemleak_seq_ops);
1800}
1801
1802static int dump_str_object_info(const char *str)
1803{
1804        unsigned long flags;
1805        struct kmemleak_object *object;
1806        unsigned long addr;
1807
1808        if (kstrtoul(str, 0, &addr))
1809                return -EINVAL;
1810        object = find_and_get_object(addr, 0);
1811        if (!object) {
1812                pr_info("Unknown object at 0x%08lx\n", addr);
1813                return -EINVAL;
1814        }
1815
1816        spin_lock_irqsave(&object->lock, flags);
1817        dump_object_info(object);
1818        spin_unlock_irqrestore(&object->lock, flags);
1819
1820        put_object(object);
1821        return 0;
1822}
1823
1824/*
1825 * We use grey instead of black to ensure we can do future scans on the same
1826 * objects. If we did not do future scans these black objects could
1827 * potentially contain references to newly allocated objects in the future and
1828 * we'd end up with false positives.
1829 */
1830static void kmemleak_clear(void)
1831{
1832        struct kmemleak_object *object;
1833        unsigned long flags;
1834
1835        rcu_read_lock();
1836        list_for_each_entry_rcu(object, &object_list, object_list) {
1837                spin_lock_irqsave(&object->lock, flags);
1838                if ((object->flags & OBJECT_REPORTED) &&
1839                    unreferenced_object(object))
1840                        __paint_it(object, KMEMLEAK_GREY);
1841                spin_unlock_irqrestore(&object->lock, flags);
1842        }
1843        rcu_read_unlock();
1844
1845        kmemleak_found_leaks = false;
1846}
1847
1848static void __kmemleak_do_cleanup(void);
1849
1850/*
1851 * File write operation to configure kmemleak at run-time. The following
1852 * commands can be written to the /sys/kernel/debug/kmemleak file:
1853 *   off        - disable kmemleak (irreversible)
1854 *   stack=on   - enable the task stacks scanning
1855 *   stack=off  - disable the tasks stacks scanning
1856 *   scan=on    - start the automatic memory scanning thread
1857 *   scan=off   - stop the automatic memory scanning thread
1858 *   scan=...   - set the automatic memory scanning period in seconds (0 to
1859 *                disable it)
1860 *   scan       - trigger a memory scan
1861 *   clear      - mark all current reported unreferenced kmemleak objects as
1862 *                grey to ignore printing them, or free all kmemleak objects
1863 *                if kmemleak has been disabled.
1864 *   dump=...   - dump information about the object found at the given address
1865 */
1866static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1867                              size_t size, loff_t *ppos)
1868{
1869        char buf[64];
1870        int buf_size;
1871        int ret;
1872
1873        buf_size = min(size, (sizeof(buf) - 1));
1874        if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1875                return -EFAULT;
1876        buf[buf_size] = 0;
1877
1878        ret = mutex_lock_interruptible(&scan_mutex);
1879        if (ret < 0)
1880                return ret;
1881
1882        if (strncmp(buf, "clear", 5) == 0) {
1883                if (kmemleak_enabled)
1884                        kmemleak_clear();
1885                else
1886                        __kmemleak_do_cleanup();
1887                goto out;
1888        }
1889
1890        if (!kmemleak_enabled) {
1891                ret = -EBUSY;
1892                goto out;
1893        }
1894
1895        if (strncmp(buf, "off", 3) == 0)
1896                kmemleak_disable();
1897        else if (strncmp(buf, "stack=on", 8) == 0)
1898                kmemleak_stack_scan = 1;
1899        else if (strncmp(buf, "stack=off", 9) == 0)
1900                kmemleak_stack_scan = 0;
1901        else if (strncmp(buf, "scan=on", 7) == 0)
1902                start_scan_thread();
1903        else if (strncmp(buf, "scan=off", 8) == 0)
1904                stop_scan_thread();
1905        else if (strncmp(buf, "scan=", 5) == 0) {
1906                unsigned long secs;
1907
1908                ret = kstrtoul(buf + 5, 0, &secs);
1909                if (ret < 0)
1910                        goto out;
1911                stop_scan_thread();
1912                if (secs) {
1913                        jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1914                        start_scan_thread();
1915                }
1916        } else if (strncmp(buf, "scan", 4) == 0)
1917                kmemleak_scan();
1918        else if (strncmp(buf, "dump=", 5) == 0)
1919                ret = dump_str_object_info(buf + 5);
1920        else
1921                ret = -EINVAL;
1922
1923out:
1924        mutex_unlock(&scan_mutex);
1925        if (ret < 0)
1926                return ret;
1927
1928        /* ignore the rest of the buffer, only one command at a time */
1929        *ppos += size;
1930        return size;
1931}
1932
1933static const struct file_operations kmemleak_fops = {
1934        .owner          = THIS_MODULE,
1935        .open           = kmemleak_open,
1936        .read           = seq_read,
1937        .write          = kmemleak_write,
1938        .llseek         = seq_lseek,
1939        .release        = seq_release,
1940};
1941
1942static void __kmemleak_do_cleanup(void)
1943{
1944        struct kmemleak_object *object;
1945
1946        rcu_read_lock();
1947        list_for_each_entry_rcu(object, &object_list, object_list)
1948                delete_object_full(object->pointer);
1949        rcu_read_unlock();
1950}
1951
1952/*
1953 * Stop the memory scanning thread and free the kmemleak internal objects if
1954 * no previous scan thread (otherwise, kmemleak may still have some useful
1955 * information on memory leaks).
1956 */
1957static void kmemleak_do_cleanup(struct work_struct *work)
1958{
1959        stop_scan_thread();
1960
1961        mutex_lock(&scan_mutex);
1962        /*
1963         * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1964         * longer track object freeing. Ordering of the scan thread stopping and
1965         * the memory accesses below is guaranteed by the kthread_stop()
1966         * function.
1967         */
1968        kmemleak_free_enabled = 0;
1969        mutex_unlock(&scan_mutex);
1970
1971        if (!kmemleak_found_leaks)
1972                __kmemleak_do_cleanup();
1973        else
1974                pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1975}
1976
1977static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1978
1979/*
1980 * Disable kmemleak. No memory allocation/freeing will be traced once this
1981 * function is called. Disabling kmemleak is an irreversible operation.
1982 */
1983static void kmemleak_disable(void)
1984{
1985        /* atomically check whether it was already invoked */
1986        if (cmpxchg(&kmemleak_error, 0, 1))
1987                return;
1988
1989        /* stop any memory operation tracing */
1990        kmemleak_enabled = 0;
1991
1992        /* check whether it is too early for a kernel thread */
1993        if (kmemleak_initialized)
1994                schedule_work(&cleanup_work);
1995        else
1996                kmemleak_free_enabled = 0;
1997
1998        pr_info("Kernel memory leak detector disabled\n");
1999}
2000
2001/*
2002 * Allow boot-time kmemleak disabling (enabled by default).
2003 */
2004static int __init kmemleak_boot_config(char *str)
2005{
2006        if (!str)
2007                return -EINVAL;
2008        if (strcmp(str, "off") == 0)
2009                kmemleak_disable();
2010        else if (strcmp(str, "on") == 0)
2011                kmemleak_skip_disable = 1;
2012        else
2013                return -EINVAL;
2014        return 0;
2015}
2016early_param("kmemleak", kmemleak_boot_config);
2017
2018static void __init print_log_trace(struct early_log *log)
2019{
2020        struct stack_trace trace;
2021
2022        trace.nr_entries = log->trace_len;
2023        trace.entries = log->trace;
2024
2025        pr_notice("Early log backtrace:\n");
2026        print_stack_trace(&trace, 2);
2027}
2028
2029/*
2030 * Kmemleak initialization.
2031 */
2032void __init kmemleak_init(void)
2033{
2034        int i;
2035        unsigned long flags;
2036
2037#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2038        if (!kmemleak_skip_disable) {
2039                kmemleak_early_log = 0;
2040                kmemleak_disable();
2041                return;
2042        }
2043#endif
2044
2045        jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2046        jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2047
2048        object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2049        scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2050
2051        if (crt_early_log > ARRAY_SIZE(early_log))
2052                pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2053                        crt_early_log);
2054
2055        /* the kernel is still in UP mode, so disabling the IRQs is enough */
2056        local_irq_save(flags);
2057        kmemleak_early_log = 0;
2058        if (kmemleak_error) {
2059                local_irq_restore(flags);
2060                return;
2061        } else {
2062                kmemleak_enabled = 1;
2063                kmemleak_free_enabled = 1;
2064        }
2065        local_irq_restore(flags);
2066
2067        /*
2068         * This is the point where tracking allocations is safe. Automatic
2069         * scanning is started during the late initcall. Add the early logged
2070         * callbacks to the kmemleak infrastructure.
2071         */
2072        for (i = 0; i < crt_early_log; i++) {
2073                struct early_log *log = &early_log[i];
2074
2075                switch (log->op_type) {
2076                case KMEMLEAK_ALLOC:
2077                        early_alloc(log);
2078                        break;
2079                case KMEMLEAK_ALLOC_PERCPU:
2080                        early_alloc_percpu(log);
2081                        break;
2082                case KMEMLEAK_FREE:
2083                        kmemleak_free(log->ptr);
2084                        break;
2085                case KMEMLEAK_FREE_PART:
2086                        kmemleak_free_part(log->ptr, log->size);
2087                        break;
2088                case KMEMLEAK_FREE_PERCPU:
2089                        kmemleak_free_percpu(log->ptr);
2090                        break;
2091                case KMEMLEAK_NOT_LEAK:
2092                        kmemleak_not_leak(log->ptr);
2093                        break;
2094                case KMEMLEAK_IGNORE:
2095                        kmemleak_ignore(log->ptr);
2096                        break;
2097                case KMEMLEAK_SCAN_AREA:
2098                        kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2099                        break;
2100                case KMEMLEAK_NO_SCAN:
2101                        kmemleak_no_scan(log->ptr);
2102                        break;
2103                case KMEMLEAK_SET_EXCESS_REF:
2104                        object_set_excess_ref((unsigned long)log->ptr,
2105                                              log->excess_ref);
2106                        break;
2107                default:
2108                        kmemleak_warn("Unknown early log operation: %d\n",
2109                                      log->op_type);
2110                }
2111
2112                if (kmemleak_warning) {
2113                        print_log_trace(log);
2114                        kmemleak_warning = 0;
2115                }
2116        }
2117}
2118
2119/*
2120 * Late initialization function.
2121 */
2122static int __init kmemleak_late_init(void)
2123{
2124        struct dentry *dentry;
2125
2126        kmemleak_initialized = 1;
2127
2128        dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2129                                     &kmemleak_fops);
2130        if (!dentry)
2131                pr_warn("Failed to create the debugfs kmemleak file\n");
2132
2133        if (kmemleak_error) {
2134                /*
2135                 * Some error occurred and kmemleak was disabled. There is a
2136                 * small chance that kmemleak_disable() was called immediately
2137                 * after setting kmemleak_initialized and we may end up with
2138                 * two clean-up threads but serialized by scan_mutex.
2139                 */
2140                schedule_work(&cleanup_work);
2141                return -ENOMEM;
2142        }
2143
2144        mutex_lock(&scan_mutex);
2145        start_scan_thread();
2146        mutex_unlock(&scan_mutex);
2147
2148        pr_info("Kernel memory leak detector initialized\n");
2149
2150        return 0;
2151}
2152late_initcall(kmemleak_late_init);
2153