linux/mm/memory_hotplug.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory_hotplug.c
   3 *
   4 *  Copyright (C)
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/swap.h>
  11#include <linux/interrupt.h>
  12#include <linux/pagemap.h>
  13#include <linux/compiler.h>
  14#include <linux/export.h>
  15#include <linux/pagevec.h>
  16#include <linux/writeback.h>
  17#include <linux/slab.h>
  18#include <linux/sysctl.h>
  19#include <linux/cpu.h>
  20#include <linux/memory.h>
  21#include <linux/memremap.h>
  22#include <linux/memory_hotplug.h>
  23#include <linux/highmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ioport.h>
  26#include <linux/delay.h>
  27#include <linux/migrate.h>
  28#include <linux/page-isolation.h>
  29#include <linux/pfn.h>
  30#include <linux/suspend.h>
  31#include <linux/mm_inline.h>
  32#include <linux/firmware-map.h>
  33#include <linux/stop_machine.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memblock.h>
  36#include <linux/compaction.h>
  37
  38#include <asm/tlbflush.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * online_page_callback contains pointer to current page onlining function.
  44 * Initially it is generic_online_page(). If it is required it could be
  45 * changed by calling set_online_page_callback() for callback registration
  46 * and restore_online_page_callback() for generic callback restore.
  47 */
  48
  49static void generic_online_page(struct page *page);
  50
  51static online_page_callback_t online_page_callback = generic_online_page;
  52static DEFINE_MUTEX(online_page_callback_lock);
  53
  54DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
  55
  56void get_online_mems(void)
  57{
  58        percpu_down_read(&mem_hotplug_lock);
  59}
  60
  61void put_online_mems(void)
  62{
  63        percpu_up_read(&mem_hotplug_lock);
  64}
  65
  66bool movable_node_enabled = false;
  67
  68#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  69bool memhp_auto_online;
  70#else
  71bool memhp_auto_online = true;
  72#endif
  73EXPORT_SYMBOL_GPL(memhp_auto_online);
  74
  75static int __init setup_memhp_default_state(char *str)
  76{
  77        if (!strcmp(str, "online"))
  78                memhp_auto_online = true;
  79        else if (!strcmp(str, "offline"))
  80                memhp_auto_online = false;
  81
  82        return 1;
  83}
  84__setup("memhp_default_state=", setup_memhp_default_state);
  85
  86void mem_hotplug_begin(void)
  87{
  88        cpus_read_lock();
  89        percpu_down_write(&mem_hotplug_lock);
  90}
  91
  92void mem_hotplug_done(void)
  93{
  94        percpu_up_write(&mem_hotplug_lock);
  95        cpus_read_unlock();
  96}
  97
  98/* add this memory to iomem resource */
  99static struct resource *register_memory_resource(u64 start, u64 size)
 100{
 101        struct resource *res, *conflict;
 102        res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 103        if (!res)
 104                return ERR_PTR(-ENOMEM);
 105
 106        res->name = "System RAM";
 107        res->start = start;
 108        res->end = start + size - 1;
 109        res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 110        conflict =  request_resource_conflict(&iomem_resource, res);
 111        if (conflict) {
 112                if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
 113                        pr_debug("Device unaddressable memory block "
 114                                 "memory hotplug at %#010llx !\n",
 115                                 (unsigned long long)start);
 116                }
 117                pr_debug("System RAM resource %pR cannot be added\n", res);
 118                kfree(res);
 119                return ERR_PTR(-EEXIST);
 120        }
 121        return res;
 122}
 123
 124static void release_memory_resource(struct resource *res)
 125{
 126        if (!res)
 127                return;
 128        release_resource(res);
 129        kfree(res);
 130        return;
 131}
 132
 133#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 134void get_page_bootmem(unsigned long info,  struct page *page,
 135                      unsigned long type)
 136{
 137        page->freelist = (void *)type;
 138        SetPagePrivate(page);
 139        set_page_private(page, info);
 140        page_ref_inc(page);
 141}
 142
 143void put_page_bootmem(struct page *page)
 144{
 145        unsigned long type;
 146
 147        type = (unsigned long) page->freelist;
 148        BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 149               type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 150
 151        if (page_ref_dec_return(page) == 1) {
 152                page->freelist = NULL;
 153                ClearPagePrivate(page);
 154                set_page_private(page, 0);
 155                INIT_LIST_HEAD(&page->lru);
 156                free_reserved_page(page);
 157        }
 158}
 159
 160#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 161#ifndef CONFIG_SPARSEMEM_VMEMMAP
 162static void register_page_bootmem_info_section(unsigned long start_pfn)
 163{
 164        unsigned long *usemap, mapsize, section_nr, i;
 165        struct mem_section *ms;
 166        struct page *page, *memmap;
 167
 168        section_nr = pfn_to_section_nr(start_pfn);
 169        ms = __nr_to_section(section_nr);
 170
 171        /* Get section's memmap address */
 172        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 173
 174        /*
 175         * Get page for the memmap's phys address
 176         * XXX: need more consideration for sparse_vmemmap...
 177         */
 178        page = virt_to_page(memmap);
 179        mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 180        mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 181
 182        /* remember memmap's page */
 183        for (i = 0; i < mapsize; i++, page++)
 184                get_page_bootmem(section_nr, page, SECTION_INFO);
 185
 186        usemap = ms->pageblock_flags;
 187        page = virt_to_page(usemap);
 188
 189        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 190
 191        for (i = 0; i < mapsize; i++, page++)
 192                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 193
 194}
 195#else /* CONFIG_SPARSEMEM_VMEMMAP */
 196static void register_page_bootmem_info_section(unsigned long start_pfn)
 197{
 198        unsigned long *usemap, mapsize, section_nr, i;
 199        struct mem_section *ms;
 200        struct page *page, *memmap;
 201
 202        section_nr = pfn_to_section_nr(start_pfn);
 203        ms = __nr_to_section(section_nr);
 204
 205        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 206
 207        register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 208
 209        usemap = ms->pageblock_flags;
 210        page = virt_to_page(usemap);
 211
 212        mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 213
 214        for (i = 0; i < mapsize; i++, page++)
 215                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 216}
 217#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 218
 219void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
 220{
 221        unsigned long i, pfn, end_pfn, nr_pages;
 222        int node = pgdat->node_id;
 223        struct page *page;
 224
 225        nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 226        page = virt_to_page(pgdat);
 227
 228        for (i = 0; i < nr_pages; i++, page++)
 229                get_page_bootmem(node, page, NODE_INFO);
 230
 231        pfn = pgdat->node_start_pfn;
 232        end_pfn = pgdat_end_pfn(pgdat);
 233
 234        /* register section info */
 235        for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 236                /*
 237                 * Some platforms can assign the same pfn to multiple nodes - on
 238                 * node0 as well as nodeN.  To avoid registering a pfn against
 239                 * multiple nodes we check that this pfn does not already
 240                 * reside in some other nodes.
 241                 */
 242                if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
 243                        register_page_bootmem_info_section(pfn);
 244        }
 245}
 246#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 247
 248static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
 249                struct vmem_altmap *altmap, bool want_memblock)
 250{
 251        int ret;
 252
 253        if (pfn_valid(phys_start_pfn))
 254                return -EEXIST;
 255
 256        ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap);
 257        if (ret < 0)
 258                return ret;
 259
 260        if (!want_memblock)
 261                return 0;
 262
 263        return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
 264}
 265
 266/*
 267 * Reasonably generic function for adding memory.  It is
 268 * expected that archs that support memory hotplug will
 269 * call this function after deciding the zone to which to
 270 * add the new pages.
 271 */
 272int __ref __add_pages(int nid, unsigned long phys_start_pfn,
 273                unsigned long nr_pages, struct vmem_altmap *altmap,
 274                bool want_memblock)
 275{
 276        unsigned long i;
 277        int err = 0;
 278        int start_sec, end_sec;
 279
 280        /* during initialize mem_map, align hot-added range to section */
 281        start_sec = pfn_to_section_nr(phys_start_pfn);
 282        end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 283
 284        if (altmap) {
 285                /*
 286                 * Validate altmap is within bounds of the total request
 287                 */
 288                if (altmap->base_pfn != phys_start_pfn
 289                                || vmem_altmap_offset(altmap) > nr_pages) {
 290                        pr_warn_once("memory add fail, invalid altmap\n");
 291                        err = -EINVAL;
 292                        goto out;
 293                }
 294                altmap->alloc = 0;
 295        }
 296
 297        for (i = start_sec; i <= end_sec; i++) {
 298                err = __add_section(nid, section_nr_to_pfn(i), altmap,
 299                                want_memblock);
 300
 301                /*
 302                 * EEXIST is finally dealt with by ioresource collision
 303                 * check. see add_memory() => register_memory_resource()
 304                 * Warning will be printed if there is collision.
 305                 */
 306                if (err && (err != -EEXIST))
 307                        break;
 308                err = 0;
 309                cond_resched();
 310        }
 311        vmemmap_populate_print_last();
 312out:
 313        return err;
 314}
 315
 316#ifdef CONFIG_MEMORY_HOTREMOVE
 317/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 318static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 319                                     unsigned long start_pfn,
 320                                     unsigned long end_pfn)
 321{
 322        struct mem_section *ms;
 323
 324        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 325                ms = __pfn_to_section(start_pfn);
 326
 327                if (unlikely(!valid_section(ms)))
 328                        continue;
 329
 330                if (unlikely(pfn_to_nid(start_pfn) != nid))
 331                        continue;
 332
 333                if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 334                        continue;
 335
 336                return start_pfn;
 337        }
 338
 339        return 0;
 340}
 341
 342/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 343static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 344                                    unsigned long start_pfn,
 345                                    unsigned long end_pfn)
 346{
 347        struct mem_section *ms;
 348        unsigned long pfn;
 349
 350        /* pfn is the end pfn of a memory section. */
 351        pfn = end_pfn - 1;
 352        for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 353                ms = __pfn_to_section(pfn);
 354
 355                if (unlikely(!valid_section(ms)))
 356                        continue;
 357
 358                if (unlikely(pfn_to_nid(pfn) != nid))
 359                        continue;
 360
 361                if (zone && zone != page_zone(pfn_to_page(pfn)))
 362                        continue;
 363
 364                return pfn;
 365        }
 366
 367        return 0;
 368}
 369
 370static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 371                             unsigned long end_pfn)
 372{
 373        unsigned long zone_start_pfn = zone->zone_start_pfn;
 374        unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 375        unsigned long zone_end_pfn = z;
 376        unsigned long pfn;
 377        struct mem_section *ms;
 378        int nid = zone_to_nid(zone);
 379
 380        zone_span_writelock(zone);
 381        if (zone_start_pfn == start_pfn) {
 382                /*
 383                 * If the section is smallest section in the zone, it need
 384                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 385                 * In this case, we find second smallest valid mem_section
 386                 * for shrinking zone.
 387                 */
 388                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 389                                                zone_end_pfn);
 390                if (pfn) {
 391                        zone->zone_start_pfn = pfn;
 392                        zone->spanned_pages = zone_end_pfn - pfn;
 393                }
 394        } else if (zone_end_pfn == end_pfn) {
 395                /*
 396                 * If the section is biggest section in the zone, it need
 397                 * shrink zone->spanned_pages.
 398                 * In this case, we find second biggest valid mem_section for
 399                 * shrinking zone.
 400                 */
 401                pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 402                                               start_pfn);
 403                if (pfn)
 404                        zone->spanned_pages = pfn - zone_start_pfn + 1;
 405        }
 406
 407        /*
 408         * The section is not biggest or smallest mem_section in the zone, it
 409         * only creates a hole in the zone. So in this case, we need not
 410         * change the zone. But perhaps, the zone has only hole data. Thus
 411         * it check the zone has only hole or not.
 412         */
 413        pfn = zone_start_pfn;
 414        for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 415                ms = __pfn_to_section(pfn);
 416
 417                if (unlikely(!valid_section(ms)))
 418                        continue;
 419
 420                if (page_zone(pfn_to_page(pfn)) != zone)
 421                        continue;
 422
 423                 /* If the section is current section, it continues the loop */
 424                if (start_pfn == pfn)
 425                        continue;
 426
 427                /* If we find valid section, we have nothing to do */
 428                zone_span_writeunlock(zone);
 429                return;
 430        }
 431
 432        /* The zone has no valid section */
 433        zone->zone_start_pfn = 0;
 434        zone->spanned_pages = 0;
 435        zone_span_writeunlock(zone);
 436}
 437
 438static void shrink_pgdat_span(struct pglist_data *pgdat,
 439                              unsigned long start_pfn, unsigned long end_pfn)
 440{
 441        unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 442        unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 443        unsigned long pgdat_end_pfn = p;
 444        unsigned long pfn;
 445        struct mem_section *ms;
 446        int nid = pgdat->node_id;
 447
 448        if (pgdat_start_pfn == start_pfn) {
 449                /*
 450                 * If the section is smallest section in the pgdat, it need
 451                 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 452                 * In this case, we find second smallest valid mem_section
 453                 * for shrinking zone.
 454                 */
 455                pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 456                                                pgdat_end_pfn);
 457                if (pfn) {
 458                        pgdat->node_start_pfn = pfn;
 459                        pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 460                }
 461        } else if (pgdat_end_pfn == end_pfn) {
 462                /*
 463                 * If the section is biggest section in the pgdat, it need
 464                 * shrink pgdat->node_spanned_pages.
 465                 * In this case, we find second biggest valid mem_section for
 466                 * shrinking zone.
 467                 */
 468                pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 469                                               start_pfn);
 470                if (pfn)
 471                        pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 472        }
 473
 474        /*
 475         * If the section is not biggest or smallest mem_section in the pgdat,
 476         * it only creates a hole in the pgdat. So in this case, we need not
 477         * change the pgdat.
 478         * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 479         * has only hole or not.
 480         */
 481        pfn = pgdat_start_pfn;
 482        for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 483                ms = __pfn_to_section(pfn);
 484
 485                if (unlikely(!valid_section(ms)))
 486                        continue;
 487
 488                if (pfn_to_nid(pfn) != nid)
 489                        continue;
 490
 491                 /* If the section is current section, it continues the loop */
 492                if (start_pfn == pfn)
 493                        continue;
 494
 495                /* If we find valid section, we have nothing to do */
 496                return;
 497        }
 498
 499        /* The pgdat has no valid section */
 500        pgdat->node_start_pfn = 0;
 501        pgdat->node_spanned_pages = 0;
 502}
 503
 504static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 505{
 506        struct pglist_data *pgdat = zone->zone_pgdat;
 507        int nr_pages = PAGES_PER_SECTION;
 508        unsigned long flags;
 509
 510        pgdat_resize_lock(zone->zone_pgdat, &flags);
 511        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 512        shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 513        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 514}
 515
 516static int __remove_section(struct zone *zone, struct mem_section *ms,
 517                unsigned long map_offset, struct vmem_altmap *altmap)
 518{
 519        unsigned long start_pfn;
 520        int scn_nr;
 521        int ret = -EINVAL;
 522
 523        if (!valid_section(ms))
 524                return ret;
 525
 526        ret = unregister_memory_section(ms);
 527        if (ret)
 528                return ret;
 529
 530        scn_nr = __section_nr(ms);
 531        start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
 532        __remove_zone(zone, start_pfn);
 533
 534        sparse_remove_one_section(zone, ms, map_offset, altmap);
 535        return 0;
 536}
 537
 538/**
 539 * __remove_pages() - remove sections of pages from a zone
 540 * @zone: zone from which pages need to be removed
 541 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 542 * @nr_pages: number of pages to remove (must be multiple of section size)
 543 * @altmap: alternative device page map or %NULL if default memmap is used
 544 *
 545 * Generic helper function to remove section mappings and sysfs entries
 546 * for the section of the memory we are removing. Caller needs to make
 547 * sure that pages are marked reserved and zones are adjust properly by
 548 * calling offline_pages().
 549 */
 550int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 551                 unsigned long nr_pages, struct vmem_altmap *altmap)
 552{
 553        unsigned long i;
 554        unsigned long map_offset = 0;
 555        int sections_to_remove, ret = 0;
 556
 557        /* In the ZONE_DEVICE case device driver owns the memory region */
 558        if (is_dev_zone(zone)) {
 559                if (altmap)
 560                        map_offset = vmem_altmap_offset(altmap);
 561        } else {
 562                resource_size_t start, size;
 563
 564                start = phys_start_pfn << PAGE_SHIFT;
 565                size = nr_pages * PAGE_SIZE;
 566
 567                ret = release_mem_region_adjustable(&iomem_resource, start,
 568                                        size);
 569                if (ret) {
 570                        resource_size_t endres = start + size - 1;
 571
 572                        pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
 573                                        &start, &endres, ret);
 574                }
 575        }
 576
 577        clear_zone_contiguous(zone);
 578
 579        /*
 580         * We can only remove entire sections
 581         */
 582        BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 583        BUG_ON(nr_pages % PAGES_PER_SECTION);
 584
 585        sections_to_remove = nr_pages / PAGES_PER_SECTION;
 586        for (i = 0; i < sections_to_remove; i++) {
 587                unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 588
 589                cond_resched();
 590                ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
 591                                altmap);
 592                map_offset = 0;
 593                if (ret)
 594                        break;
 595        }
 596
 597        set_zone_contiguous(zone);
 598
 599        return ret;
 600}
 601#endif /* CONFIG_MEMORY_HOTREMOVE */
 602
 603int set_online_page_callback(online_page_callback_t callback)
 604{
 605        int rc = -EINVAL;
 606
 607        get_online_mems();
 608        mutex_lock(&online_page_callback_lock);
 609
 610        if (online_page_callback == generic_online_page) {
 611                online_page_callback = callback;
 612                rc = 0;
 613        }
 614
 615        mutex_unlock(&online_page_callback_lock);
 616        put_online_mems();
 617
 618        return rc;
 619}
 620EXPORT_SYMBOL_GPL(set_online_page_callback);
 621
 622int restore_online_page_callback(online_page_callback_t callback)
 623{
 624        int rc = -EINVAL;
 625
 626        get_online_mems();
 627        mutex_lock(&online_page_callback_lock);
 628
 629        if (online_page_callback == callback) {
 630                online_page_callback = generic_online_page;
 631                rc = 0;
 632        }
 633
 634        mutex_unlock(&online_page_callback_lock);
 635        put_online_mems();
 636
 637        return rc;
 638}
 639EXPORT_SYMBOL_GPL(restore_online_page_callback);
 640
 641void __online_page_set_limits(struct page *page)
 642{
 643}
 644EXPORT_SYMBOL_GPL(__online_page_set_limits);
 645
 646void __online_page_increment_counters(struct page *page)
 647{
 648        adjust_managed_page_count(page, 1);
 649}
 650EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 651
 652void __online_page_free(struct page *page)
 653{
 654        __free_reserved_page(page);
 655}
 656EXPORT_SYMBOL_GPL(__online_page_free);
 657
 658static void generic_online_page(struct page *page)
 659{
 660        __online_page_set_limits(page);
 661        __online_page_increment_counters(page);
 662        __online_page_free(page);
 663}
 664
 665static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 666                        void *arg)
 667{
 668        unsigned long i;
 669        unsigned long onlined_pages = *(unsigned long *)arg;
 670        struct page *page;
 671
 672        if (PageReserved(pfn_to_page(start_pfn)))
 673                for (i = 0; i < nr_pages; i++) {
 674                        page = pfn_to_page(start_pfn + i);
 675                        (*online_page_callback)(page);
 676                        onlined_pages++;
 677                }
 678
 679        online_mem_sections(start_pfn, start_pfn + nr_pages);
 680
 681        *(unsigned long *)arg = onlined_pages;
 682        return 0;
 683}
 684
 685/* check which state of node_states will be changed when online memory */
 686static void node_states_check_changes_online(unsigned long nr_pages,
 687        struct zone *zone, struct memory_notify *arg)
 688{
 689        int nid = zone_to_nid(zone);
 690
 691        arg->status_change_nid = -1;
 692        arg->status_change_nid_normal = -1;
 693        arg->status_change_nid_high = -1;
 694
 695        if (!node_state(nid, N_MEMORY))
 696                arg->status_change_nid = nid;
 697        if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 698                arg->status_change_nid_normal = nid;
 699#ifdef CONFIG_HIGHMEM
 700        if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
 701                arg->status_change_nid_high = nid;
 702#endif
 703}
 704
 705static void node_states_set_node(int node, struct memory_notify *arg)
 706{
 707        if (arg->status_change_nid_normal >= 0)
 708                node_set_state(node, N_NORMAL_MEMORY);
 709
 710        if (arg->status_change_nid_high >= 0)
 711                node_set_state(node, N_HIGH_MEMORY);
 712
 713        if (arg->status_change_nid >= 0)
 714                node_set_state(node, N_MEMORY);
 715}
 716
 717static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 718                unsigned long nr_pages)
 719{
 720        unsigned long old_end_pfn = zone_end_pfn(zone);
 721
 722        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 723                zone->zone_start_pfn = start_pfn;
 724
 725        zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 726}
 727
 728static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 729                                     unsigned long nr_pages)
 730{
 731        unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 732
 733        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 734                pgdat->node_start_pfn = start_pfn;
 735
 736        pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 737}
 738
 739void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 740                unsigned long nr_pages, struct vmem_altmap *altmap)
 741{
 742        struct pglist_data *pgdat = zone->zone_pgdat;
 743        int nid = pgdat->node_id;
 744        unsigned long flags;
 745
 746        if (zone_is_empty(zone))
 747                init_currently_empty_zone(zone, start_pfn, nr_pages);
 748
 749        clear_zone_contiguous(zone);
 750
 751        /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
 752        pgdat_resize_lock(pgdat, &flags);
 753        zone_span_writelock(zone);
 754        resize_zone_range(zone, start_pfn, nr_pages);
 755        zone_span_writeunlock(zone);
 756        resize_pgdat_range(pgdat, start_pfn, nr_pages);
 757        pgdat_resize_unlock(pgdat, &flags);
 758
 759        /*
 760         * TODO now we have a visible range of pages which are not associated
 761         * with their zone properly. Not nice but set_pfnblock_flags_mask
 762         * expects the zone spans the pfn range. All the pages in the range
 763         * are reserved so nobody should be touching them so we should be safe
 764         */
 765        memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
 766                        MEMMAP_HOTPLUG, altmap);
 767
 768        set_zone_contiguous(zone);
 769}
 770
 771/*
 772 * Returns a default kernel memory zone for the given pfn range.
 773 * If no kernel zone covers this pfn range it will automatically go
 774 * to the ZONE_NORMAL.
 775 */
 776static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 777                unsigned long nr_pages)
 778{
 779        struct pglist_data *pgdat = NODE_DATA(nid);
 780        int zid;
 781
 782        for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 783                struct zone *zone = &pgdat->node_zones[zid];
 784
 785                if (zone_intersects(zone, start_pfn, nr_pages))
 786                        return zone;
 787        }
 788
 789        return &pgdat->node_zones[ZONE_NORMAL];
 790}
 791
 792static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 793                unsigned long nr_pages)
 794{
 795        struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 796                        nr_pages);
 797        struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 798        bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 799        bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 800
 801        /*
 802         * We inherit the existing zone in a simple case where zones do not
 803         * overlap in the given range
 804         */
 805        if (in_kernel ^ in_movable)
 806                return (in_kernel) ? kernel_zone : movable_zone;
 807
 808        /*
 809         * If the range doesn't belong to any zone or two zones overlap in the
 810         * given range then we use movable zone only if movable_node is
 811         * enabled because we always online to a kernel zone by default.
 812         */
 813        return movable_node_enabled ? movable_zone : kernel_zone;
 814}
 815
 816struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
 817                unsigned long nr_pages)
 818{
 819        if (online_type == MMOP_ONLINE_KERNEL)
 820                return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 821
 822        if (online_type == MMOP_ONLINE_MOVABLE)
 823                return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 824
 825        return default_zone_for_pfn(nid, start_pfn, nr_pages);
 826}
 827
 828/*
 829 * Associates the given pfn range with the given node and the zone appropriate
 830 * for the given online type.
 831 */
 832static struct zone * __meminit move_pfn_range(int online_type, int nid,
 833                unsigned long start_pfn, unsigned long nr_pages)
 834{
 835        struct zone *zone;
 836
 837        zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
 838        move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
 839        return zone;
 840}
 841
 842int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
 843{
 844        unsigned long flags;
 845        unsigned long onlined_pages = 0;
 846        struct zone *zone;
 847        int need_zonelists_rebuild = 0;
 848        int nid;
 849        int ret;
 850        struct memory_notify arg;
 851        struct memory_block *mem;
 852
 853        mem_hotplug_begin();
 854
 855        /*
 856         * We can't use pfn_to_nid() because nid might be stored in struct page
 857         * which is not yet initialized. Instead, we find nid from memory block.
 858         */
 859        mem = find_memory_block(__pfn_to_section(pfn));
 860        nid = mem->nid;
 861
 862        /* associate pfn range with the zone */
 863        zone = move_pfn_range(online_type, nid, pfn, nr_pages);
 864
 865        arg.start_pfn = pfn;
 866        arg.nr_pages = nr_pages;
 867        node_states_check_changes_online(nr_pages, zone, &arg);
 868
 869        ret = memory_notify(MEM_GOING_ONLINE, &arg);
 870        ret = notifier_to_errno(ret);
 871        if (ret)
 872                goto failed_addition;
 873
 874        /*
 875         * If this zone is not populated, then it is not in zonelist.
 876         * This means the page allocator ignores this zone.
 877         * So, zonelist must be updated after online.
 878         */
 879        if (!populated_zone(zone)) {
 880                need_zonelists_rebuild = 1;
 881                setup_zone_pageset(zone);
 882        }
 883
 884        ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
 885                online_pages_range);
 886        if (ret) {
 887                if (need_zonelists_rebuild)
 888                        zone_pcp_reset(zone);
 889                goto failed_addition;
 890        }
 891
 892        zone->present_pages += onlined_pages;
 893
 894        pgdat_resize_lock(zone->zone_pgdat, &flags);
 895        zone->zone_pgdat->node_present_pages += onlined_pages;
 896        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 897
 898        if (onlined_pages) {
 899                node_states_set_node(nid, &arg);
 900                if (need_zonelists_rebuild)
 901                        build_all_zonelists(NULL);
 902                else
 903                        zone_pcp_update(zone);
 904        }
 905
 906        init_per_zone_wmark_min();
 907
 908        if (onlined_pages) {
 909                kswapd_run(nid);
 910                kcompactd_run(nid);
 911        }
 912
 913        vm_total_pages = nr_free_pagecache_pages();
 914
 915        writeback_set_ratelimit();
 916
 917        if (onlined_pages)
 918                memory_notify(MEM_ONLINE, &arg);
 919        mem_hotplug_done();
 920        return 0;
 921
 922failed_addition:
 923        pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
 924                 (unsigned long long) pfn << PAGE_SHIFT,
 925                 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
 926        memory_notify(MEM_CANCEL_ONLINE, &arg);
 927        mem_hotplug_done();
 928        return ret;
 929}
 930#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 931
 932static void reset_node_present_pages(pg_data_t *pgdat)
 933{
 934        struct zone *z;
 935
 936        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 937                z->present_pages = 0;
 938
 939        pgdat->node_present_pages = 0;
 940}
 941
 942/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
 943static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
 944{
 945        struct pglist_data *pgdat;
 946        unsigned long start_pfn = PFN_DOWN(start);
 947
 948        pgdat = NODE_DATA(nid);
 949        if (!pgdat) {
 950                pgdat = arch_alloc_nodedata(nid);
 951                if (!pgdat)
 952                        return NULL;
 953
 954                arch_refresh_nodedata(nid, pgdat);
 955        } else {
 956                /*
 957                 * Reset the nr_zones, order and classzone_idx before reuse.
 958                 * Note that kswapd will init kswapd_classzone_idx properly
 959                 * when it starts in the near future.
 960                 */
 961                pgdat->nr_zones = 0;
 962                pgdat->kswapd_order = 0;
 963                pgdat->kswapd_classzone_idx = 0;
 964        }
 965
 966        /* we can use NODE_DATA(nid) from here */
 967
 968        pgdat->node_id = nid;
 969        pgdat->node_start_pfn = start_pfn;
 970
 971        /* init node's zones as empty zones, we don't have any present pages.*/
 972        free_area_init_core_hotplug(nid);
 973        pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
 974
 975        /*
 976         * The node we allocated has no zone fallback lists. For avoiding
 977         * to access not-initialized zonelist, build here.
 978         */
 979        build_all_zonelists(pgdat);
 980
 981        /*
 982         * When memory is hot-added, all the memory is in offline state. So
 983         * clear all zones' present_pages because they will be updated in
 984         * online_pages() and offline_pages().
 985         */
 986        reset_node_managed_pages(pgdat);
 987        reset_node_present_pages(pgdat);
 988
 989        return pgdat;
 990}
 991
 992static void rollback_node_hotadd(int nid)
 993{
 994        pg_data_t *pgdat = NODE_DATA(nid);
 995
 996        arch_refresh_nodedata(nid, NULL);
 997        free_percpu(pgdat->per_cpu_nodestats);
 998        arch_free_nodedata(pgdat);
 999        return;
1000}
1001
1002
1003/**
1004 * try_online_node - online a node if offlined
1005 * @nid: the node ID
1006 * @start: start addr of the node
1007 * @set_node_online: Whether we want to online the node
1008 * called by cpu_up() to online a node without onlined memory.
1009 *
1010 * Returns:
1011 * 1 -> a new node has been allocated
1012 * 0 -> the node is already online
1013 * -ENOMEM -> the node could not be allocated
1014 */
1015static int __try_online_node(int nid, u64 start, bool set_node_online)
1016{
1017        pg_data_t *pgdat;
1018        int ret = 1;
1019
1020        if (node_online(nid))
1021                return 0;
1022
1023        pgdat = hotadd_new_pgdat(nid, start);
1024        if (!pgdat) {
1025                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1026                ret = -ENOMEM;
1027                goto out;
1028        }
1029
1030        if (set_node_online) {
1031                node_set_online(nid);
1032                ret = register_one_node(nid);
1033                BUG_ON(ret);
1034        }
1035out:
1036        return ret;
1037}
1038
1039/*
1040 * Users of this function always want to online/register the node
1041 */
1042int try_online_node(int nid)
1043{
1044        int ret;
1045
1046        mem_hotplug_begin();
1047        ret =  __try_online_node(nid, 0, true);
1048        mem_hotplug_done();
1049        return ret;
1050}
1051
1052static int check_hotplug_memory_range(u64 start, u64 size)
1053{
1054        unsigned long block_sz = memory_block_size_bytes();
1055        u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1056        u64 nr_pages = size >> PAGE_SHIFT;
1057        u64 start_pfn = PFN_DOWN(start);
1058
1059        /* memory range must be block size aligned */
1060        if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1061            !IS_ALIGNED(nr_pages, block_nr_pages)) {
1062                pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1063                       block_sz, start, size);
1064                return -EINVAL;
1065        }
1066
1067        return 0;
1068}
1069
1070static int online_memory_block(struct memory_block *mem, void *arg)
1071{
1072        return device_online(&mem->dev);
1073}
1074
1075/*
1076 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1077 * and online/offline operations (triggered e.g. by sysfs).
1078 *
1079 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1080 */
1081int __ref add_memory_resource(int nid, struct resource *res, bool online)
1082{
1083        u64 start, size;
1084        bool new_node = false;
1085        int ret;
1086
1087        start = res->start;
1088        size = resource_size(res);
1089
1090        ret = check_hotplug_memory_range(start, size);
1091        if (ret)
1092                return ret;
1093
1094        mem_hotplug_begin();
1095
1096        /*
1097         * Add new range to memblock so that when hotadd_new_pgdat() is called
1098         * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1099         * this new range and calculate total pages correctly.  The range will
1100         * be removed at hot-remove time.
1101         */
1102        memblock_add_node(start, size, nid);
1103
1104        ret = __try_online_node(nid, start, false);
1105        if (ret < 0)
1106                goto error;
1107        new_node = ret;
1108
1109        /* call arch's memory hotadd */
1110        ret = arch_add_memory(nid, start, size, NULL, true);
1111        if (ret < 0)
1112                goto error;
1113
1114        if (new_node) {
1115                /* If sysfs file of new node can't be created, cpu on the node
1116                 * can't be hot-added. There is no rollback way now.
1117                 * So, check by BUG_ON() to catch it reluctantly..
1118                 * We online node here. We can't roll back from here.
1119                 */
1120                node_set_online(nid);
1121                ret = __register_one_node(nid);
1122                BUG_ON(ret);
1123        }
1124
1125        /* link memory sections under this node.*/
1126        ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1127        BUG_ON(ret);
1128
1129        /* create new memmap entry */
1130        firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132        /* device_online() will take the lock when calling online_pages() */
1133        mem_hotplug_done();
1134
1135        /* online pages if requested */
1136        if (online)
1137                walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1138                                  NULL, online_memory_block);
1139
1140        return ret;
1141error:
1142        /* rollback pgdat allocation and others */
1143        if (new_node)
1144                rollback_node_hotadd(nid);
1145        memblock_remove(start, size);
1146        mem_hotplug_done();
1147        return ret;
1148}
1149
1150/* requires device_hotplug_lock, see add_memory_resource() */
1151int __ref __add_memory(int nid, u64 start, u64 size)
1152{
1153        struct resource *res;
1154        int ret;
1155
1156        res = register_memory_resource(start, size);
1157        if (IS_ERR(res))
1158                return PTR_ERR(res);
1159
1160        ret = add_memory_resource(nid, res, memhp_auto_online);
1161        if (ret < 0)
1162                release_memory_resource(res);
1163        return ret;
1164}
1165
1166int add_memory(int nid, u64 start, u64 size)
1167{
1168        int rc;
1169
1170        lock_device_hotplug();
1171        rc = __add_memory(nid, start, size);
1172        unlock_device_hotplug();
1173
1174        return rc;
1175}
1176EXPORT_SYMBOL_GPL(add_memory);
1177
1178#ifdef CONFIG_MEMORY_HOTREMOVE
1179/*
1180 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1181 * set and the size of the free page is given by page_order(). Using this,
1182 * the function determines if the pageblock contains only free pages.
1183 * Due to buddy contraints, a free page at least the size of a pageblock will
1184 * be located at the start of the pageblock
1185 */
1186static inline int pageblock_free(struct page *page)
1187{
1188        return PageBuddy(page) && page_order(page) >= pageblock_order;
1189}
1190
1191/* Return the start of the next active pageblock after a given page */
1192static struct page *next_active_pageblock(struct page *page)
1193{
1194        /* Ensure the starting page is pageblock-aligned */
1195        BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1196
1197        /* If the entire pageblock is free, move to the end of free page */
1198        if (pageblock_free(page)) {
1199                int order;
1200                /* be careful. we don't have locks, page_order can be changed.*/
1201                order = page_order(page);
1202                if ((order < MAX_ORDER) && (order >= pageblock_order))
1203                        return page + (1 << order);
1204        }
1205
1206        return page + pageblock_nr_pages;
1207}
1208
1209static bool is_pageblock_removable_nolock(struct page *page)
1210{
1211        struct zone *zone;
1212        unsigned long pfn;
1213
1214        /*
1215         * We have to be careful here because we are iterating over memory
1216         * sections which are not zone aware so we might end up outside of
1217         * the zone but still within the section.
1218         * We have to take care about the node as well. If the node is offline
1219         * its NODE_DATA will be NULL - see page_zone.
1220         */
1221        if (!node_online(page_to_nid(page)))
1222                return false;
1223
1224        zone = page_zone(page);
1225        pfn = page_to_pfn(page);
1226        if (!zone_spans_pfn(zone, pfn))
1227                return false;
1228
1229        return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
1230}
1231
1232/* Checks if this range of memory is likely to be hot-removable. */
1233bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1234{
1235        struct page *page = pfn_to_page(start_pfn);
1236        struct page *end_page = page + nr_pages;
1237
1238        /* Check the starting page of each pageblock within the range */
1239        for (; page < end_page; page = next_active_pageblock(page)) {
1240                if (!is_pageblock_removable_nolock(page))
1241                        return false;
1242                cond_resched();
1243        }
1244
1245        /* All pageblocks in the memory block are likely to be hot-removable */
1246        return true;
1247}
1248
1249/*
1250 * Confirm all pages in a range [start, end) belong to the same zone.
1251 * When true, return its valid [start, end).
1252 */
1253int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1254                         unsigned long *valid_start, unsigned long *valid_end)
1255{
1256        unsigned long pfn, sec_end_pfn;
1257        unsigned long start, end;
1258        struct zone *zone = NULL;
1259        struct page *page;
1260        int i;
1261        for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1262             pfn < end_pfn;
1263             pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1264                /* Make sure the memory section is present first */
1265                if (!present_section_nr(pfn_to_section_nr(pfn)))
1266                        continue;
1267                for (; pfn < sec_end_pfn && pfn < end_pfn;
1268                     pfn += MAX_ORDER_NR_PAGES) {
1269                        i = 0;
1270                        /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1271                        while ((i < MAX_ORDER_NR_PAGES) &&
1272                                !pfn_valid_within(pfn + i))
1273                                i++;
1274                        if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1275                                continue;
1276                        page = pfn_to_page(pfn + i);
1277                        if (zone && page_zone(page) != zone)
1278                                return 0;
1279                        if (!zone)
1280                                start = pfn + i;
1281                        zone = page_zone(page);
1282                        end = pfn + MAX_ORDER_NR_PAGES;
1283                }
1284        }
1285
1286        if (zone) {
1287                *valid_start = start;
1288                *valid_end = min(end, end_pfn);
1289                return 1;
1290        } else {
1291                return 0;
1292        }
1293}
1294
1295/*
1296 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1297 * non-lru movable pages and hugepages). We scan pfn because it's much
1298 * easier than scanning over linked list. This function returns the pfn
1299 * of the first found movable page if it's found, otherwise 0.
1300 */
1301static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1302{
1303        unsigned long pfn;
1304        struct page *page;
1305        for (pfn = start; pfn < end; pfn++) {
1306                if (pfn_valid(pfn)) {
1307                        page = pfn_to_page(pfn);
1308                        if (PageLRU(page))
1309                                return pfn;
1310                        if (__PageMovable(page))
1311                                return pfn;
1312                        if (PageHuge(page)) {
1313                                if (hugepage_migration_supported(page_hstate(page)) &&
1314                                    page_huge_active(page))
1315                                        return pfn;
1316                                else
1317                                        pfn = round_up(pfn + 1,
1318                                                1 << compound_order(page)) - 1;
1319                        }
1320                }
1321        }
1322        return 0;
1323}
1324
1325static struct page *new_node_page(struct page *page, unsigned long private)
1326{
1327        int nid = page_to_nid(page);
1328        nodemask_t nmask = node_states[N_MEMORY];
1329
1330        /*
1331         * try to allocate from a different node but reuse this node if there
1332         * are no other online nodes to be used (e.g. we are offlining a part
1333         * of the only existing node)
1334         */
1335        node_clear(nid, nmask);
1336        if (nodes_empty(nmask))
1337                node_set(nid, nmask);
1338
1339        return new_page_nodemask(page, nid, &nmask);
1340}
1341
1342#define NR_OFFLINE_AT_ONCE_PAGES        (256)
1343static int
1344do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1345{
1346        unsigned long pfn;
1347        struct page *page;
1348        int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1349        int not_managed = 0;
1350        int ret = 0;
1351        LIST_HEAD(source);
1352
1353        for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1354                if (!pfn_valid(pfn))
1355                        continue;
1356                page = pfn_to_page(pfn);
1357
1358                if (PageHuge(page)) {
1359                        struct page *head = compound_head(page);
1360                        pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1361                        if (compound_order(head) > PFN_SECTION_SHIFT) {
1362                                ret = -EBUSY;
1363                                break;
1364                        }
1365                        if (isolate_huge_page(page, &source))
1366                                move_pages -= 1 << compound_order(head);
1367                        continue;
1368                } else if (PageTransHuge(page))
1369                        pfn = page_to_pfn(compound_head(page))
1370                                + hpage_nr_pages(page) - 1;
1371
1372                if (!get_page_unless_zero(page))
1373                        continue;
1374                /*
1375                 * We can skip free pages. And we can deal with pages on
1376                 * LRU and non-lru movable pages.
1377                 */
1378                if (PageLRU(page))
1379                        ret = isolate_lru_page(page);
1380                else
1381                        ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1382                if (!ret) { /* Success */
1383                        put_page(page);
1384                        list_add_tail(&page->lru, &source);
1385                        move_pages--;
1386                        if (!__PageMovable(page))
1387                                inc_node_page_state(page, NR_ISOLATED_ANON +
1388                                                    page_is_file_cache(page));
1389
1390                } else {
1391#ifdef CONFIG_DEBUG_VM
1392                        pr_alert("failed to isolate pfn %lx\n", pfn);
1393                        dump_page(page, "isolation failed");
1394#endif
1395                        put_page(page);
1396                        /* Because we don't have big zone->lock. we should
1397                           check this again here. */
1398                        if (page_count(page)) {
1399                                not_managed++;
1400                                ret = -EBUSY;
1401                                break;
1402                        }
1403                }
1404        }
1405        if (!list_empty(&source)) {
1406                if (not_managed) {
1407                        putback_movable_pages(&source);
1408                        goto out;
1409                }
1410
1411                /* Allocate a new page from the nearest neighbor node */
1412                ret = migrate_pages(&source, new_node_page, NULL, 0,
1413                                        MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1414                if (ret)
1415                        putback_movable_pages(&source);
1416        }
1417out:
1418        return ret;
1419}
1420
1421/*
1422 * remove from free_area[] and mark all as Reserved.
1423 */
1424static int
1425offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1426                        void *data)
1427{
1428        __offline_isolated_pages(start, start + nr_pages);
1429        return 0;
1430}
1431
1432static void
1433offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1434{
1435        walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1436                                offline_isolated_pages_cb);
1437}
1438
1439/*
1440 * Check all pages in range, recoreded as memory resource, are isolated.
1441 */
1442static int
1443check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1444                        void *data)
1445{
1446        int ret;
1447        long offlined = *(long *)data;
1448        ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1449        offlined = nr_pages;
1450        if (!ret)
1451                *(long *)data += offlined;
1452        return ret;
1453}
1454
1455static long
1456check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1457{
1458        long offlined = 0;
1459        int ret;
1460
1461        ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1462                        check_pages_isolated_cb);
1463        if (ret < 0)
1464                offlined = (long)ret;
1465        return offlined;
1466}
1467
1468static int __init cmdline_parse_movable_node(char *p)
1469{
1470#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1471        movable_node_enabled = true;
1472#else
1473        pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1474#endif
1475        return 0;
1476}
1477early_param("movable_node", cmdline_parse_movable_node);
1478
1479/* check which state of node_states will be changed when offline memory */
1480static void node_states_check_changes_offline(unsigned long nr_pages,
1481                struct zone *zone, struct memory_notify *arg)
1482{
1483        struct pglist_data *pgdat = zone->zone_pgdat;
1484        unsigned long present_pages = 0;
1485        enum zone_type zt;
1486
1487        arg->status_change_nid = -1;
1488        arg->status_change_nid_normal = -1;
1489        arg->status_change_nid_high = -1;
1490
1491        /*
1492         * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1493         * If the memory to be offline is within the range
1494         * [0..ZONE_NORMAL], and it is the last present memory there,
1495         * the zones in that range will become empty after the offlining,
1496         * thus we can determine that we need to clear the node from
1497         * node_states[N_NORMAL_MEMORY].
1498         */
1499        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1500                present_pages += pgdat->node_zones[zt].present_pages;
1501        if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1502                arg->status_change_nid_normal = zone_to_nid(zone);
1503
1504#ifdef CONFIG_HIGHMEM
1505        /*
1506         * node_states[N_HIGH_MEMORY] contains nodes which
1507         * have normal memory or high memory.
1508         * Here we add the present_pages belonging to ZONE_HIGHMEM.
1509         * If the zone is within the range of [0..ZONE_HIGHMEM), and
1510         * we determine that the zones in that range become empty,
1511         * we need to clear the node for N_HIGH_MEMORY.
1512         */
1513        present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1514        if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1515                arg->status_change_nid_high = zone_to_nid(zone);
1516#endif
1517
1518        /*
1519         * We have accounted the pages from [0..ZONE_NORMAL), and
1520         * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1521         * as well.
1522         * Here we count the possible pages from ZONE_MOVABLE.
1523         * If after having accounted all the pages, we see that the nr_pages
1524         * to be offlined is over or equal to the accounted pages,
1525         * we know that the node will become empty, and so, we can clear
1526         * it for N_MEMORY as well.
1527         */
1528        present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1529
1530        if (nr_pages >= present_pages)
1531                arg->status_change_nid = zone_to_nid(zone);
1532}
1533
1534static void node_states_clear_node(int node, struct memory_notify *arg)
1535{
1536        if (arg->status_change_nid_normal >= 0)
1537                node_clear_state(node, N_NORMAL_MEMORY);
1538
1539        if (arg->status_change_nid_high >= 0)
1540                node_clear_state(node, N_HIGH_MEMORY);
1541
1542        if (arg->status_change_nid >= 0)
1543                node_clear_state(node, N_MEMORY);
1544}
1545
1546static int __ref __offline_pages(unsigned long start_pfn,
1547                  unsigned long end_pfn)
1548{
1549        unsigned long pfn, nr_pages;
1550        long offlined_pages;
1551        int ret, node;
1552        unsigned long flags;
1553        unsigned long valid_start, valid_end;
1554        struct zone *zone;
1555        struct memory_notify arg;
1556
1557        /* at least, alignment against pageblock is necessary */
1558        if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1559                return -EINVAL;
1560        if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1561                return -EINVAL;
1562
1563        mem_hotplug_begin();
1564
1565        /* This makes hotplug much easier...and readable.
1566           we assume this for now. .*/
1567        if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1568                                  &valid_end)) {
1569                mem_hotplug_done();
1570                return -EINVAL;
1571        }
1572
1573        zone = page_zone(pfn_to_page(valid_start));
1574        node = zone_to_nid(zone);
1575        nr_pages = end_pfn - start_pfn;
1576
1577        /* set above range as isolated */
1578        ret = start_isolate_page_range(start_pfn, end_pfn,
1579                                       MIGRATE_MOVABLE, true);
1580        if (ret) {
1581                mem_hotplug_done();
1582                return ret;
1583        }
1584
1585        arg.start_pfn = start_pfn;
1586        arg.nr_pages = nr_pages;
1587        node_states_check_changes_offline(nr_pages, zone, &arg);
1588
1589        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1590        ret = notifier_to_errno(ret);
1591        if (ret)
1592                goto failed_removal;
1593
1594        pfn = start_pfn;
1595repeat:
1596        /* start memory hot removal */
1597        ret = -EINTR;
1598        if (signal_pending(current))
1599                goto failed_removal;
1600
1601        cond_resched();
1602        lru_add_drain_all();
1603        drain_all_pages(zone);
1604
1605        pfn = scan_movable_pages(start_pfn, end_pfn);
1606        if (pfn) { /* We have movable pages */
1607                ret = do_migrate_range(pfn, end_pfn);
1608                goto repeat;
1609        }
1610
1611        /*
1612         * dissolve free hugepages in the memory block before doing offlining
1613         * actually in order to make hugetlbfs's object counting consistent.
1614         */
1615        ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1616        if (ret)
1617                goto failed_removal;
1618        /* check again */
1619        offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1620        if (offlined_pages < 0)
1621                goto repeat;
1622        pr_info("Offlined Pages %ld\n", offlined_pages);
1623        /* Ok, all of our target is isolated.
1624           We cannot do rollback at this point. */
1625        offline_isolated_pages(start_pfn, end_pfn);
1626        /* reset pagetype flags and makes migrate type to be MOVABLE */
1627        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1628        /* removal success */
1629        adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1630        zone->present_pages -= offlined_pages;
1631
1632        pgdat_resize_lock(zone->zone_pgdat, &flags);
1633        zone->zone_pgdat->node_present_pages -= offlined_pages;
1634        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1635
1636        init_per_zone_wmark_min();
1637
1638        if (!populated_zone(zone)) {
1639                zone_pcp_reset(zone);
1640                build_all_zonelists(NULL);
1641        } else
1642                zone_pcp_update(zone);
1643
1644        node_states_clear_node(node, &arg);
1645        if (arg.status_change_nid >= 0) {
1646                kswapd_stop(node);
1647                kcompactd_stop(node);
1648        }
1649
1650        vm_total_pages = nr_free_pagecache_pages();
1651        writeback_set_ratelimit();
1652
1653        memory_notify(MEM_OFFLINE, &arg);
1654        mem_hotplug_done();
1655        return 0;
1656
1657failed_removal:
1658        pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1659                 (unsigned long long) start_pfn << PAGE_SHIFT,
1660                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1661        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1662        /* pushback to free area */
1663        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1664        mem_hotplug_done();
1665        return ret;
1666}
1667
1668int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1669{
1670        return __offline_pages(start_pfn, start_pfn + nr_pages);
1671}
1672#endif /* CONFIG_MEMORY_HOTREMOVE */
1673
1674/**
1675 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1676 * @start_pfn: start pfn of the memory range
1677 * @end_pfn: end pfn of the memory range
1678 * @arg: argument passed to func
1679 * @func: callback for each memory section walked
1680 *
1681 * This function walks through all present mem sections in range
1682 * [start_pfn, end_pfn) and call func on each mem section.
1683 *
1684 * Returns the return value of func.
1685 */
1686int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1687                void *arg, int (*func)(struct memory_block *, void *))
1688{
1689        struct memory_block *mem = NULL;
1690        struct mem_section *section;
1691        unsigned long pfn, section_nr;
1692        int ret;
1693
1694        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1695                section_nr = pfn_to_section_nr(pfn);
1696                if (!present_section_nr(section_nr))
1697                        continue;
1698
1699                section = __nr_to_section(section_nr);
1700                /* same memblock? */
1701                if (mem)
1702                        if ((section_nr >= mem->start_section_nr) &&
1703                            (section_nr <= mem->end_section_nr))
1704                                continue;
1705
1706                mem = find_memory_block_hinted(section, mem);
1707                if (!mem)
1708                        continue;
1709
1710                ret = func(mem, arg);
1711                if (ret) {
1712                        kobject_put(&mem->dev.kobj);
1713                        return ret;
1714                }
1715        }
1716
1717        if (mem)
1718                kobject_put(&mem->dev.kobj);
1719
1720        return 0;
1721}
1722
1723#ifdef CONFIG_MEMORY_HOTREMOVE
1724static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1725{
1726        int ret = !is_memblock_offlined(mem);
1727
1728        if (unlikely(ret)) {
1729                phys_addr_t beginpa, endpa;
1730
1731                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1732                endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1733                pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1734                        &beginpa, &endpa);
1735        }
1736
1737        return ret;
1738}
1739
1740static int check_cpu_on_node(pg_data_t *pgdat)
1741{
1742        int cpu;
1743
1744        for_each_present_cpu(cpu) {
1745                if (cpu_to_node(cpu) == pgdat->node_id)
1746                        /*
1747                         * the cpu on this node isn't removed, and we can't
1748                         * offline this node.
1749                         */
1750                        return -EBUSY;
1751        }
1752
1753        return 0;
1754}
1755
1756static void unmap_cpu_on_node(pg_data_t *pgdat)
1757{
1758#ifdef CONFIG_ACPI_NUMA
1759        int cpu;
1760
1761        for_each_possible_cpu(cpu)
1762                if (cpu_to_node(cpu) == pgdat->node_id)
1763                        numa_clear_node(cpu);
1764#endif
1765}
1766
1767static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1768{
1769        int ret;
1770
1771        ret = check_cpu_on_node(pgdat);
1772        if (ret)
1773                return ret;
1774
1775        /*
1776         * the node will be offlined when we come here, so we can clear
1777         * the cpu_to_node() now.
1778         */
1779
1780        unmap_cpu_on_node(pgdat);
1781        return 0;
1782}
1783
1784/**
1785 * try_offline_node
1786 * @nid: the node ID
1787 *
1788 * Offline a node if all memory sections and cpus of the node are removed.
1789 *
1790 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1791 * and online/offline operations before this call.
1792 */
1793void try_offline_node(int nid)
1794{
1795        pg_data_t *pgdat = NODE_DATA(nid);
1796        unsigned long start_pfn = pgdat->node_start_pfn;
1797        unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1798        unsigned long pfn;
1799
1800        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1801                unsigned long section_nr = pfn_to_section_nr(pfn);
1802
1803                if (!present_section_nr(section_nr))
1804                        continue;
1805
1806                if (pfn_to_nid(pfn) != nid)
1807                        continue;
1808
1809                /*
1810                 * some memory sections of this node are not removed, and we
1811                 * can't offline node now.
1812                 */
1813                return;
1814        }
1815
1816        if (check_and_unmap_cpu_on_node(pgdat))
1817                return;
1818
1819        /*
1820         * all memory/cpu of this node are removed, we can offline this
1821         * node now.
1822         */
1823        node_set_offline(nid);
1824        unregister_one_node(nid);
1825}
1826EXPORT_SYMBOL(try_offline_node);
1827
1828/**
1829 * remove_memory
1830 * @nid: the node ID
1831 * @start: physical address of the region to remove
1832 * @size: size of the region to remove
1833 *
1834 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1835 * and online/offline operations before this call, as required by
1836 * try_offline_node().
1837 */
1838void __ref __remove_memory(int nid, u64 start, u64 size)
1839{
1840        int ret;
1841
1842        BUG_ON(check_hotplug_memory_range(start, size));
1843
1844        mem_hotplug_begin();
1845
1846        /*
1847         * All memory blocks must be offlined before removing memory.  Check
1848         * whether all memory blocks in question are offline and trigger a BUG()
1849         * if this is not the case.
1850         */
1851        ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1852                                check_memblock_offlined_cb);
1853        if (ret)
1854                BUG();
1855
1856        /* remove memmap entry */
1857        firmware_map_remove(start, start + size, "System RAM");
1858        memblock_free(start, size);
1859        memblock_remove(start, size);
1860
1861        arch_remove_memory(start, size, NULL);
1862
1863        try_offline_node(nid);
1864
1865        mem_hotplug_done();
1866}
1867
1868void remove_memory(int nid, u64 start, u64 size)
1869{
1870        lock_device_hotplug();
1871        __remove_memory(nid, start, size);
1872        unlock_device_hotplug();
1873}
1874EXPORT_SYMBOL_GPL(remove_memory);
1875#endif /* CONFIG_MEMORY_HOTREMOVE */
1876