linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pfn_t.h>
  42#include <linux/memremap.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/balloon_compaction.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/page_idle.h>
  47#include <linux/page_owner.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ptrace.h>
  50
  51#include <asm/tlbflush.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/migrate.h>
  55
  56#include "internal.h"
  57
  58/*
  59 * migrate_prep() needs to be called before we start compiling a list of pages
  60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  61 * undesirable, use migrate_prep_local()
  62 */
  63int migrate_prep(void)
  64{
  65        /*
  66         * Clear the LRU lists so pages can be isolated.
  67         * Note that pages may be moved off the LRU after we have
  68         * drained them. Those pages will fail to migrate like other
  69         * pages that may be busy.
  70         */
  71        lru_add_drain_all();
  72
  73        return 0;
  74}
  75
  76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  77int migrate_prep_local(void)
  78{
  79        lru_add_drain();
  80
  81        return 0;
  82}
  83
  84int isolate_movable_page(struct page *page, isolate_mode_t mode)
  85{
  86        struct address_space *mapping;
  87
  88        /*
  89         * Avoid burning cycles with pages that are yet under __free_pages(),
  90         * or just got freed under us.
  91         *
  92         * In case we 'win' a race for a movable page being freed under us and
  93         * raise its refcount preventing __free_pages() from doing its job
  94         * the put_page() at the end of this block will take care of
  95         * release this page, thus avoiding a nasty leakage.
  96         */
  97        if (unlikely(!get_page_unless_zero(page)))
  98                goto out;
  99
 100        /*
 101         * Check PageMovable before holding a PG_lock because page's owner
 102         * assumes anybody doesn't touch PG_lock of newly allocated page
 103         * so unconditionally grapping the lock ruins page's owner side.
 104         */
 105        if (unlikely(!__PageMovable(page)))
 106                goto out_putpage;
 107        /*
 108         * As movable pages are not isolated from LRU lists, concurrent
 109         * compaction threads can race against page migration functions
 110         * as well as race against the releasing a page.
 111         *
 112         * In order to avoid having an already isolated movable page
 113         * being (wrongly) re-isolated while it is under migration,
 114         * or to avoid attempting to isolate pages being released,
 115         * lets be sure we have the page lock
 116         * before proceeding with the movable page isolation steps.
 117         */
 118        if (unlikely(!trylock_page(page)))
 119                goto out_putpage;
 120
 121        if (!PageMovable(page) || PageIsolated(page))
 122                goto out_no_isolated;
 123
 124        mapping = page_mapping(page);
 125        VM_BUG_ON_PAGE(!mapping, page);
 126
 127        if (!mapping->a_ops->isolate_page(page, mode))
 128                goto out_no_isolated;
 129
 130        /* Driver shouldn't use PG_isolated bit of page->flags */
 131        WARN_ON_ONCE(PageIsolated(page));
 132        __SetPageIsolated(page);
 133        unlock_page(page);
 134
 135        return 0;
 136
 137out_no_isolated:
 138        unlock_page(page);
 139out_putpage:
 140        put_page(page);
 141out:
 142        return -EBUSY;
 143}
 144
 145/* It should be called on page which is PG_movable */
 146void putback_movable_page(struct page *page)
 147{
 148        struct address_space *mapping;
 149
 150        VM_BUG_ON_PAGE(!PageLocked(page), page);
 151        VM_BUG_ON_PAGE(!PageMovable(page), page);
 152        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 153
 154        mapping = page_mapping(page);
 155        mapping->a_ops->putback_page(page);
 156        __ClearPageIsolated(page);
 157}
 158
 159/*
 160 * Put previously isolated pages back onto the appropriate lists
 161 * from where they were once taken off for compaction/migration.
 162 *
 163 * This function shall be used whenever the isolated pageset has been
 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 165 * and isolate_huge_page().
 166 */
 167void putback_movable_pages(struct list_head *l)
 168{
 169        struct page *page;
 170        struct page *page2;
 171
 172        list_for_each_entry_safe(page, page2, l, lru) {
 173                if (unlikely(PageHuge(page))) {
 174                        putback_active_hugepage(page);
 175                        continue;
 176                }
 177                list_del(&page->lru);
 178                /*
 179                 * We isolated non-lru movable page so here we can use
 180                 * __PageMovable because LRU page's mapping cannot have
 181                 * PAGE_MAPPING_MOVABLE.
 182                 */
 183                if (unlikely(__PageMovable(page))) {
 184                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 185                        lock_page(page);
 186                        if (PageMovable(page))
 187                                putback_movable_page(page);
 188                        else
 189                                __ClearPageIsolated(page);
 190                        unlock_page(page);
 191                        put_page(page);
 192                } else {
 193                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 194                                        page_is_file_cache(page), -hpage_nr_pages(page));
 195                        putback_lru_page(page);
 196                }
 197        }
 198}
 199
 200/*
 201 * Restore a potential migration pte to a working pte entry
 202 */
 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 204                                 unsigned long addr, void *old)
 205{
 206        struct page_vma_mapped_walk pvmw = {
 207                .page = old,
 208                .vma = vma,
 209                .address = addr,
 210                .flags = PVMW_SYNC | PVMW_MIGRATION,
 211        };
 212        struct page *new;
 213        pte_t pte;
 214        swp_entry_t entry;
 215
 216        VM_BUG_ON_PAGE(PageTail(page), page);
 217        while (page_vma_mapped_walk(&pvmw)) {
 218                if (PageKsm(page))
 219                        new = page;
 220                else
 221                        new = page - pvmw.page->index +
 222                                linear_page_index(vma, pvmw.address);
 223
 224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 225                /* PMD-mapped THP migration entry */
 226                if (!pvmw.pte) {
 227                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 228                        remove_migration_pmd(&pvmw, new);
 229                        continue;
 230                }
 231#endif
 232
 233                get_page(new);
 234                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 235                if (pte_swp_soft_dirty(*pvmw.pte))
 236                        pte = pte_mksoft_dirty(pte);
 237
 238                /*
 239                 * Recheck VMA as permissions can change since migration started
 240                 */
 241                entry = pte_to_swp_entry(*pvmw.pte);
 242                if (is_write_migration_entry(entry))
 243                        pte = maybe_mkwrite(pte, vma);
 244
 245                if (unlikely(is_zone_device_page(new))) {
 246                        if (is_device_private_page(new)) {
 247                                entry = make_device_private_entry(new, pte_write(pte));
 248                                pte = swp_entry_to_pte(entry);
 249                        } else if (is_device_public_page(new)) {
 250                                pte = pte_mkdevmap(pte);
 251                                flush_dcache_page(new);
 252                        }
 253                } else
 254                        flush_dcache_page(new);
 255
 256#ifdef CONFIG_HUGETLB_PAGE
 257                if (PageHuge(new)) {
 258                        pte = pte_mkhuge(pte);
 259                        pte = arch_make_huge_pte(pte, vma, new, 0);
 260                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 261                        if (PageAnon(new))
 262                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 263                        else
 264                                page_dup_rmap(new, true);
 265                } else
 266#endif
 267                {
 268                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 269
 270                        if (PageAnon(new))
 271                                page_add_anon_rmap(new, vma, pvmw.address, false);
 272                        else
 273                                page_add_file_rmap(new, false);
 274                }
 275                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 276                        mlock_vma_page(new);
 277
 278                if (PageTransHuge(page) && PageMlocked(page))
 279                        clear_page_mlock(page);
 280
 281                /* No need to invalidate - it was non-present before */
 282                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 283        }
 284
 285        return true;
 286}
 287
 288/*
 289 * Get rid of all migration entries and replace them by
 290 * references to the indicated page.
 291 */
 292void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 293{
 294        struct rmap_walk_control rwc = {
 295                .rmap_one = remove_migration_pte,
 296                .arg = old,
 297        };
 298
 299        if (locked)
 300                rmap_walk_locked(new, &rwc);
 301        else
 302                rmap_walk(new, &rwc);
 303}
 304
 305/*
 306 * Something used the pte of a page under migration. We need to
 307 * get to the page and wait until migration is finished.
 308 * When we return from this function the fault will be retried.
 309 */
 310void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 311                                spinlock_t *ptl)
 312{
 313        pte_t pte;
 314        swp_entry_t entry;
 315        struct page *page;
 316
 317        spin_lock(ptl);
 318        pte = *ptep;
 319        if (!is_swap_pte(pte))
 320                goto out;
 321
 322        entry = pte_to_swp_entry(pte);
 323        if (!is_migration_entry(entry))
 324                goto out;
 325
 326        page = migration_entry_to_page(entry);
 327
 328        /*
 329         * Once page cache replacement of page migration started, page_count
 330         * *must* be zero. And, we don't want to call wait_on_page_locked()
 331         * against a page without get_page().
 332         * So, we use get_page_unless_zero(), here. Even failed, page fault
 333         * will occur again.
 334         */
 335        if (!get_page_unless_zero(page))
 336                goto out;
 337        pte_unmap_unlock(ptep, ptl);
 338        wait_on_page_locked(page);
 339        put_page(page);
 340        return;
 341out:
 342        pte_unmap_unlock(ptep, ptl);
 343}
 344
 345void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 346                                unsigned long address)
 347{
 348        spinlock_t *ptl = pte_lockptr(mm, pmd);
 349        pte_t *ptep = pte_offset_map(pmd, address);
 350        __migration_entry_wait(mm, ptep, ptl);
 351}
 352
 353void migration_entry_wait_huge(struct vm_area_struct *vma,
 354                struct mm_struct *mm, pte_t *pte)
 355{
 356        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 357        __migration_entry_wait(mm, pte, ptl);
 358}
 359
 360#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 361void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 362{
 363        spinlock_t *ptl;
 364        struct page *page;
 365
 366        ptl = pmd_lock(mm, pmd);
 367        if (!is_pmd_migration_entry(*pmd))
 368                goto unlock;
 369        page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 370        if (!get_page_unless_zero(page))
 371                goto unlock;
 372        spin_unlock(ptl);
 373        wait_on_page_locked(page);
 374        put_page(page);
 375        return;
 376unlock:
 377        spin_unlock(ptl);
 378}
 379#endif
 380
 381#ifdef CONFIG_BLOCK
 382/* Returns true if all buffers are successfully locked */
 383static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 384                                                        enum migrate_mode mode)
 385{
 386        struct buffer_head *bh = head;
 387
 388        /* Simple case, sync compaction */
 389        if (mode != MIGRATE_ASYNC) {
 390                do {
 391                        get_bh(bh);
 392                        lock_buffer(bh);
 393                        bh = bh->b_this_page;
 394
 395                } while (bh != head);
 396
 397                return true;
 398        }
 399
 400        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 401        do {
 402                get_bh(bh);
 403                if (!trylock_buffer(bh)) {
 404                        /*
 405                         * We failed to lock the buffer and cannot stall in
 406                         * async migration. Release the taken locks
 407                         */
 408                        struct buffer_head *failed_bh = bh;
 409                        put_bh(failed_bh);
 410                        bh = head;
 411                        while (bh != failed_bh) {
 412                                unlock_buffer(bh);
 413                                put_bh(bh);
 414                                bh = bh->b_this_page;
 415                        }
 416                        return false;
 417                }
 418
 419                bh = bh->b_this_page;
 420        } while (bh != head);
 421        return true;
 422}
 423#else
 424static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 425                                                        enum migrate_mode mode)
 426{
 427        return true;
 428}
 429#endif /* CONFIG_BLOCK */
 430
 431/*
 432 * Replace the page in the mapping.
 433 *
 434 * The number of remaining references must be:
 435 * 1 for anonymous pages without a mapping
 436 * 2 for pages with a mapping
 437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 438 */
 439int migrate_page_move_mapping(struct address_space *mapping,
 440                struct page *newpage, struct page *page,
 441                struct buffer_head *head, enum migrate_mode mode,
 442                int extra_count)
 443{
 444        XA_STATE(xas, &mapping->i_pages, page_index(page));
 445        struct zone *oldzone, *newzone;
 446        int dirty;
 447        int expected_count = 1 + extra_count;
 448
 449        /*
 450         * Device public or private pages have an extra refcount as they are
 451         * ZONE_DEVICE pages.
 452         */
 453        expected_count += is_device_private_page(page);
 454        expected_count += is_device_public_page(page);
 455
 456        if (!mapping) {
 457                /* Anonymous page without mapping */
 458                if (page_count(page) != expected_count)
 459                        return -EAGAIN;
 460
 461                /* No turning back from here */
 462                newpage->index = page->index;
 463                newpage->mapping = page->mapping;
 464                if (PageSwapBacked(page))
 465                        __SetPageSwapBacked(newpage);
 466
 467                return MIGRATEPAGE_SUCCESS;
 468        }
 469
 470        oldzone = page_zone(page);
 471        newzone = page_zone(newpage);
 472
 473        xas_lock_irq(&xas);
 474
 475        expected_count += hpage_nr_pages(page) + page_has_private(page);
 476        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 477                xas_unlock_irq(&xas);
 478                return -EAGAIN;
 479        }
 480
 481        if (!page_ref_freeze(page, expected_count)) {
 482                xas_unlock_irq(&xas);
 483                return -EAGAIN;
 484        }
 485
 486        /*
 487         * In the async migration case of moving a page with buffers, lock the
 488         * buffers using trylock before the mapping is moved. If the mapping
 489         * was moved, we later failed to lock the buffers and could not move
 490         * the mapping back due to an elevated page count, we would have to
 491         * block waiting on other references to be dropped.
 492         */
 493        if (mode == MIGRATE_ASYNC && head &&
 494                        !buffer_migrate_lock_buffers(head, mode)) {
 495                page_ref_unfreeze(page, expected_count);
 496                xas_unlock_irq(&xas);
 497                return -EAGAIN;
 498        }
 499
 500        /*
 501         * Now we know that no one else is looking at the page:
 502         * no turning back from here.
 503         */
 504        newpage->index = page->index;
 505        newpage->mapping = page->mapping;
 506        page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 507        if (PageSwapBacked(page)) {
 508                __SetPageSwapBacked(newpage);
 509                if (PageSwapCache(page)) {
 510                        SetPageSwapCache(newpage);
 511                        set_page_private(newpage, page_private(page));
 512                }
 513        } else {
 514                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 515        }
 516
 517        /* Move dirty while page refs frozen and newpage not yet exposed */
 518        dirty = PageDirty(page);
 519        if (dirty) {
 520                ClearPageDirty(page);
 521                SetPageDirty(newpage);
 522        }
 523
 524        xas_store(&xas, newpage);
 525        if (PageTransHuge(page)) {
 526                int i;
 527
 528                for (i = 1; i < HPAGE_PMD_NR; i++) {
 529                        xas_next(&xas);
 530                        xas_store(&xas, newpage + i);
 531                }
 532        }
 533
 534        /*
 535         * Drop cache reference from old page by unfreezing
 536         * to one less reference.
 537         * We know this isn't the last reference.
 538         */
 539        page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 540
 541        xas_unlock(&xas);
 542        /* Leave irq disabled to prevent preemption while updating stats */
 543
 544        /*
 545         * If moved to a different zone then also account
 546         * the page for that zone. Other VM counters will be
 547         * taken care of when we establish references to the
 548         * new page and drop references to the old page.
 549         *
 550         * Note that anonymous pages are accounted for
 551         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 552         * are mapped to swap space.
 553         */
 554        if (newzone != oldzone) {
 555                __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 556                __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 557                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 558                        __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 559                        __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 560                }
 561                if (dirty && mapping_cap_account_dirty(mapping)) {
 562                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 563                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 564                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 565                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 566                }
 567        }
 568        local_irq_enable();
 569
 570        return MIGRATEPAGE_SUCCESS;
 571}
 572EXPORT_SYMBOL(migrate_page_move_mapping);
 573
 574/*
 575 * The expected number of remaining references is the same as that
 576 * of migrate_page_move_mapping().
 577 */
 578int migrate_huge_page_move_mapping(struct address_space *mapping,
 579                                   struct page *newpage, struct page *page)
 580{
 581        XA_STATE(xas, &mapping->i_pages, page_index(page));
 582        int expected_count;
 583
 584        xas_lock_irq(&xas);
 585        expected_count = 2 + page_has_private(page);
 586        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 587                xas_unlock_irq(&xas);
 588                return -EAGAIN;
 589        }
 590
 591        if (!page_ref_freeze(page, expected_count)) {
 592                xas_unlock_irq(&xas);
 593                return -EAGAIN;
 594        }
 595
 596        newpage->index = page->index;
 597        newpage->mapping = page->mapping;
 598
 599        get_page(newpage);
 600
 601        xas_store(&xas, newpage);
 602
 603        page_ref_unfreeze(page, expected_count - 1);
 604
 605        xas_unlock_irq(&xas);
 606
 607        return MIGRATEPAGE_SUCCESS;
 608}
 609
 610/*
 611 * Gigantic pages are so large that we do not guarantee that page++ pointer
 612 * arithmetic will work across the entire page.  We need something more
 613 * specialized.
 614 */
 615static void __copy_gigantic_page(struct page *dst, struct page *src,
 616                                int nr_pages)
 617{
 618        int i;
 619        struct page *dst_base = dst;
 620        struct page *src_base = src;
 621
 622        for (i = 0; i < nr_pages; ) {
 623                cond_resched();
 624                copy_highpage(dst, src);
 625
 626                i++;
 627                dst = mem_map_next(dst, dst_base, i);
 628                src = mem_map_next(src, src_base, i);
 629        }
 630}
 631
 632static void copy_huge_page(struct page *dst, struct page *src)
 633{
 634        int i;
 635        int nr_pages;
 636
 637        if (PageHuge(src)) {
 638                /* hugetlbfs page */
 639                struct hstate *h = page_hstate(src);
 640                nr_pages = pages_per_huge_page(h);
 641
 642                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 643                        __copy_gigantic_page(dst, src, nr_pages);
 644                        return;
 645                }
 646        } else {
 647                /* thp page */
 648                BUG_ON(!PageTransHuge(src));
 649                nr_pages = hpage_nr_pages(src);
 650        }
 651
 652        for (i = 0; i < nr_pages; i++) {
 653                cond_resched();
 654                copy_highpage(dst + i, src + i);
 655        }
 656}
 657
 658/*
 659 * Copy the page to its new location
 660 */
 661void migrate_page_states(struct page *newpage, struct page *page)
 662{
 663        int cpupid;
 664
 665        if (PageError(page))
 666                SetPageError(newpage);
 667        if (PageReferenced(page))
 668                SetPageReferenced(newpage);
 669        if (PageUptodate(page))
 670                SetPageUptodate(newpage);
 671        if (TestClearPageActive(page)) {
 672                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 673                SetPageActive(newpage);
 674        } else if (TestClearPageUnevictable(page))
 675                SetPageUnevictable(newpage);
 676        if (PageWorkingset(page))
 677                SetPageWorkingset(newpage);
 678        if (PageChecked(page))
 679                SetPageChecked(newpage);
 680        if (PageMappedToDisk(page))
 681                SetPageMappedToDisk(newpage);
 682
 683        /* Move dirty on pages not done by migrate_page_move_mapping() */
 684        if (PageDirty(page))
 685                SetPageDirty(newpage);
 686
 687        if (page_is_young(page))
 688                set_page_young(newpage);
 689        if (page_is_idle(page))
 690                set_page_idle(newpage);
 691
 692        /*
 693         * Copy NUMA information to the new page, to prevent over-eager
 694         * future migrations of this same page.
 695         */
 696        cpupid = page_cpupid_xchg_last(page, -1);
 697        page_cpupid_xchg_last(newpage, cpupid);
 698
 699        ksm_migrate_page(newpage, page);
 700        /*
 701         * Please do not reorder this without considering how mm/ksm.c's
 702         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 703         */
 704        if (PageSwapCache(page))
 705                ClearPageSwapCache(page);
 706        ClearPagePrivate(page);
 707        set_page_private(page, 0);
 708
 709        /*
 710         * If any waiters have accumulated on the new page then
 711         * wake them up.
 712         */
 713        if (PageWriteback(newpage))
 714                end_page_writeback(newpage);
 715
 716        copy_page_owner(page, newpage);
 717
 718        mem_cgroup_migrate(page, newpage);
 719}
 720EXPORT_SYMBOL(migrate_page_states);
 721
 722void migrate_page_copy(struct page *newpage, struct page *page)
 723{
 724        if (PageHuge(page) || PageTransHuge(page))
 725                copy_huge_page(newpage, page);
 726        else
 727                copy_highpage(newpage, page);
 728
 729        migrate_page_states(newpage, page);
 730}
 731EXPORT_SYMBOL(migrate_page_copy);
 732
 733/************************************************************
 734 *                    Migration functions
 735 ***********************************************************/
 736
 737/*
 738 * Common logic to directly migrate a single LRU page suitable for
 739 * pages that do not use PagePrivate/PagePrivate2.
 740 *
 741 * Pages are locked upon entry and exit.
 742 */
 743int migrate_page(struct address_space *mapping,
 744                struct page *newpage, struct page *page,
 745                enum migrate_mode mode)
 746{
 747        int rc;
 748
 749        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 750
 751        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 752
 753        if (rc != MIGRATEPAGE_SUCCESS)
 754                return rc;
 755
 756        if (mode != MIGRATE_SYNC_NO_COPY)
 757                migrate_page_copy(newpage, page);
 758        else
 759                migrate_page_states(newpage, page);
 760        return MIGRATEPAGE_SUCCESS;
 761}
 762EXPORT_SYMBOL(migrate_page);
 763
 764#ifdef CONFIG_BLOCK
 765/*
 766 * Migration function for pages with buffers. This function can only be used
 767 * if the underlying filesystem guarantees that no other references to "page"
 768 * exist.
 769 */
 770int buffer_migrate_page(struct address_space *mapping,
 771                struct page *newpage, struct page *page, enum migrate_mode mode)
 772{
 773        struct buffer_head *bh, *head;
 774        int rc;
 775
 776        if (!page_has_buffers(page))
 777                return migrate_page(mapping, newpage, page, mode);
 778
 779        head = page_buffers(page);
 780
 781        rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 782
 783        if (rc != MIGRATEPAGE_SUCCESS)
 784                return rc;
 785
 786        /*
 787         * In the async case, migrate_page_move_mapping locked the buffers
 788         * with an IRQ-safe spinlock held. In the sync case, the buffers
 789         * need to be locked now
 790         */
 791        if (mode != MIGRATE_ASYNC)
 792                BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 793
 794        ClearPagePrivate(page);
 795        set_page_private(newpage, page_private(page));
 796        set_page_private(page, 0);
 797        put_page(page);
 798        get_page(newpage);
 799
 800        bh = head;
 801        do {
 802                set_bh_page(bh, newpage, bh_offset(bh));
 803                bh = bh->b_this_page;
 804
 805        } while (bh != head);
 806
 807        SetPagePrivate(newpage);
 808
 809        if (mode != MIGRATE_SYNC_NO_COPY)
 810                migrate_page_copy(newpage, page);
 811        else
 812                migrate_page_states(newpage, page);
 813
 814        bh = head;
 815        do {
 816                unlock_buffer(bh);
 817                put_bh(bh);
 818                bh = bh->b_this_page;
 819
 820        } while (bh != head);
 821
 822        return MIGRATEPAGE_SUCCESS;
 823}
 824EXPORT_SYMBOL(buffer_migrate_page);
 825#endif
 826
 827/*
 828 * Writeback a page to clean the dirty state
 829 */
 830static int writeout(struct address_space *mapping, struct page *page)
 831{
 832        struct writeback_control wbc = {
 833                .sync_mode = WB_SYNC_NONE,
 834                .nr_to_write = 1,
 835                .range_start = 0,
 836                .range_end = LLONG_MAX,
 837                .for_reclaim = 1
 838        };
 839        int rc;
 840
 841        if (!mapping->a_ops->writepage)
 842                /* No write method for the address space */
 843                return -EINVAL;
 844
 845        if (!clear_page_dirty_for_io(page))
 846                /* Someone else already triggered a write */
 847                return -EAGAIN;
 848
 849        /*
 850         * A dirty page may imply that the underlying filesystem has
 851         * the page on some queue. So the page must be clean for
 852         * migration. Writeout may mean we loose the lock and the
 853         * page state is no longer what we checked for earlier.
 854         * At this point we know that the migration attempt cannot
 855         * be successful.
 856         */
 857        remove_migration_ptes(page, page, false);
 858
 859        rc = mapping->a_ops->writepage(page, &wbc);
 860
 861        if (rc != AOP_WRITEPAGE_ACTIVATE)
 862                /* unlocked. Relock */
 863                lock_page(page);
 864
 865        return (rc < 0) ? -EIO : -EAGAIN;
 866}
 867
 868/*
 869 * Default handling if a filesystem does not provide a migration function.
 870 */
 871static int fallback_migrate_page(struct address_space *mapping,
 872        struct page *newpage, struct page *page, enum migrate_mode mode)
 873{
 874        if (PageDirty(page)) {
 875                /* Only writeback pages in full synchronous migration */
 876                switch (mode) {
 877                case MIGRATE_SYNC:
 878                case MIGRATE_SYNC_NO_COPY:
 879                        break;
 880                default:
 881                        return -EBUSY;
 882                }
 883                return writeout(mapping, page);
 884        }
 885
 886        /*
 887         * Buffers may be managed in a filesystem specific way.
 888         * We must have no buffers or drop them.
 889         */
 890        if (page_has_private(page) &&
 891            !try_to_release_page(page, GFP_KERNEL))
 892                return -EAGAIN;
 893
 894        return migrate_page(mapping, newpage, page, mode);
 895}
 896
 897/*
 898 * Move a page to a newly allocated page
 899 * The page is locked and all ptes have been successfully removed.
 900 *
 901 * The new page will have replaced the old page if this function
 902 * is successful.
 903 *
 904 * Return value:
 905 *   < 0 - error code
 906 *  MIGRATEPAGE_SUCCESS - success
 907 */
 908static int move_to_new_page(struct page *newpage, struct page *page,
 909                                enum migrate_mode mode)
 910{
 911        struct address_space *mapping;
 912        int rc = -EAGAIN;
 913        bool is_lru = !__PageMovable(page);
 914
 915        VM_BUG_ON_PAGE(!PageLocked(page), page);
 916        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 917
 918        mapping = page_mapping(page);
 919
 920        if (likely(is_lru)) {
 921                if (!mapping)
 922                        rc = migrate_page(mapping, newpage, page, mode);
 923                else if (mapping->a_ops->migratepage)
 924                        /*
 925                         * Most pages have a mapping and most filesystems
 926                         * provide a migratepage callback. Anonymous pages
 927                         * are part of swap space which also has its own
 928                         * migratepage callback. This is the most common path
 929                         * for page migration.
 930                         */
 931                        rc = mapping->a_ops->migratepage(mapping, newpage,
 932                                                        page, mode);
 933                else
 934                        rc = fallback_migrate_page(mapping, newpage,
 935                                                        page, mode);
 936        } else {
 937                /*
 938                 * In case of non-lru page, it could be released after
 939                 * isolation step. In that case, we shouldn't try migration.
 940                 */
 941                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 942                if (!PageMovable(page)) {
 943                        rc = MIGRATEPAGE_SUCCESS;
 944                        __ClearPageIsolated(page);
 945                        goto out;
 946                }
 947
 948                rc = mapping->a_ops->migratepage(mapping, newpage,
 949                                                page, mode);
 950                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 951                        !PageIsolated(page));
 952        }
 953
 954        /*
 955         * When successful, old pagecache page->mapping must be cleared before
 956         * page is freed; but stats require that PageAnon be left as PageAnon.
 957         */
 958        if (rc == MIGRATEPAGE_SUCCESS) {
 959                if (__PageMovable(page)) {
 960                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 961
 962                        /*
 963                         * We clear PG_movable under page_lock so any compactor
 964                         * cannot try to migrate this page.
 965                         */
 966                        __ClearPageIsolated(page);
 967                }
 968
 969                /*
 970                 * Anonymous and movable page->mapping will be cleard by
 971                 * free_pages_prepare so don't reset it here for keeping
 972                 * the type to work PageAnon, for example.
 973                 */
 974                if (!PageMappingFlags(page))
 975                        page->mapping = NULL;
 976        }
 977out:
 978        return rc;
 979}
 980
 981static int __unmap_and_move(struct page *page, struct page *newpage,
 982                                int force, enum migrate_mode mode)
 983{
 984        int rc = -EAGAIN;
 985        int page_was_mapped = 0;
 986        struct anon_vma *anon_vma = NULL;
 987        bool is_lru = !__PageMovable(page);
 988
 989        if (!trylock_page(page)) {
 990                if (!force || mode == MIGRATE_ASYNC)
 991                        goto out;
 992
 993                /*
 994                 * It's not safe for direct compaction to call lock_page.
 995                 * For example, during page readahead pages are added locked
 996                 * to the LRU. Later, when the IO completes the pages are
 997                 * marked uptodate and unlocked. However, the queueing
 998                 * could be merging multiple pages for one bio (e.g.
 999                 * mpage_readpages). If an allocation happens for the
1000                 * second or third page, the process can end up locking
1001                 * the same page twice and deadlocking. Rather than
1002                 * trying to be clever about what pages can be locked,
1003                 * avoid the use of lock_page for direct compaction
1004                 * altogether.
1005                 */
1006                if (current->flags & PF_MEMALLOC)
1007                        goto out;
1008
1009                lock_page(page);
1010        }
1011
1012        if (PageWriteback(page)) {
1013                /*
1014                 * Only in the case of a full synchronous migration is it
1015                 * necessary to wait for PageWriteback. In the async case,
1016                 * the retry loop is too short and in the sync-light case,
1017                 * the overhead of stalling is too much
1018                 */
1019                switch (mode) {
1020                case MIGRATE_SYNC:
1021                case MIGRATE_SYNC_NO_COPY:
1022                        break;
1023                default:
1024                        rc = -EBUSY;
1025                        goto out_unlock;
1026                }
1027                if (!force)
1028                        goto out_unlock;
1029                wait_on_page_writeback(page);
1030        }
1031
1032        /*
1033         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1034         * we cannot notice that anon_vma is freed while we migrates a page.
1035         * This get_anon_vma() delays freeing anon_vma pointer until the end
1036         * of migration. File cache pages are no problem because of page_lock()
1037         * File Caches may use write_page() or lock_page() in migration, then,
1038         * just care Anon page here.
1039         *
1040         * Only page_get_anon_vma() understands the subtleties of
1041         * getting a hold on an anon_vma from outside one of its mms.
1042         * But if we cannot get anon_vma, then we won't need it anyway,
1043         * because that implies that the anon page is no longer mapped
1044         * (and cannot be remapped so long as we hold the page lock).
1045         */
1046        if (PageAnon(page) && !PageKsm(page))
1047                anon_vma = page_get_anon_vma(page);
1048
1049        /*
1050         * Block others from accessing the new page when we get around to
1051         * establishing additional references. We are usually the only one
1052         * holding a reference to newpage at this point. We used to have a BUG
1053         * here if trylock_page(newpage) fails, but would like to allow for
1054         * cases where there might be a race with the previous use of newpage.
1055         * This is much like races on refcount of oldpage: just don't BUG().
1056         */
1057        if (unlikely(!trylock_page(newpage)))
1058                goto out_unlock;
1059
1060        if (unlikely(!is_lru)) {
1061                rc = move_to_new_page(newpage, page, mode);
1062                goto out_unlock_both;
1063        }
1064
1065        /*
1066         * Corner case handling:
1067         * 1. When a new swap-cache page is read into, it is added to the LRU
1068         * and treated as swapcache but it has no rmap yet.
1069         * Calling try_to_unmap() against a page->mapping==NULL page will
1070         * trigger a BUG.  So handle it here.
1071         * 2. An orphaned page (see truncate_complete_page) might have
1072         * fs-private metadata. The page can be picked up due to memory
1073         * offlining.  Everywhere else except page reclaim, the page is
1074         * invisible to the vm, so the page can not be migrated.  So try to
1075         * free the metadata, so the page can be freed.
1076         */
1077        if (!page->mapping) {
1078                VM_BUG_ON_PAGE(PageAnon(page), page);
1079                if (page_has_private(page)) {
1080                        try_to_free_buffers(page);
1081                        goto out_unlock_both;
1082                }
1083        } else if (page_mapped(page)) {
1084                /* Establish migration ptes */
1085                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1086                                page);
1087                try_to_unmap(page,
1088                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1089                page_was_mapped = 1;
1090        }
1091
1092        if (!page_mapped(page))
1093                rc = move_to_new_page(newpage, page, mode);
1094
1095        if (page_was_mapped)
1096                remove_migration_ptes(page,
1097                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1098
1099out_unlock_both:
1100        unlock_page(newpage);
1101out_unlock:
1102        /* Drop an anon_vma reference if we took one */
1103        if (anon_vma)
1104                put_anon_vma(anon_vma);
1105        unlock_page(page);
1106out:
1107        /*
1108         * If migration is successful, decrease refcount of the newpage
1109         * which will not free the page because new page owner increased
1110         * refcounter. As well, if it is LRU page, add the page to LRU
1111         * list in here.
1112         */
1113        if (rc == MIGRATEPAGE_SUCCESS) {
1114                if (unlikely(__PageMovable(newpage)))
1115                        put_page(newpage);
1116                else
1117                        putback_lru_page(newpage);
1118        }
1119
1120        return rc;
1121}
1122
1123/*
1124 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1125 * around it.
1126 */
1127#if defined(CONFIG_ARM) && \
1128        defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1129#define ICE_noinline noinline
1130#else
1131#define ICE_noinline
1132#endif
1133
1134/*
1135 * Obtain the lock on page, remove all ptes and migrate the page
1136 * to the newly allocated page in newpage.
1137 */
1138static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1139                                   free_page_t put_new_page,
1140                                   unsigned long private, struct page *page,
1141                                   int force, enum migrate_mode mode,
1142                                   enum migrate_reason reason)
1143{
1144        int rc = MIGRATEPAGE_SUCCESS;
1145        struct page *newpage;
1146
1147        if (!thp_migration_supported() && PageTransHuge(page))
1148                return -ENOMEM;
1149
1150        newpage = get_new_page(page, private);
1151        if (!newpage)
1152                return -ENOMEM;
1153
1154        if (page_count(page) == 1) {
1155                /* page was freed from under us. So we are done. */
1156                ClearPageActive(page);
1157                ClearPageUnevictable(page);
1158                if (unlikely(__PageMovable(page))) {
1159                        lock_page(page);
1160                        if (!PageMovable(page))
1161                                __ClearPageIsolated(page);
1162                        unlock_page(page);
1163                }
1164                if (put_new_page)
1165                        put_new_page(newpage, private);
1166                else
1167                        put_page(newpage);
1168                goto out;
1169        }
1170
1171        rc = __unmap_and_move(page, newpage, force, mode);
1172        if (rc == MIGRATEPAGE_SUCCESS)
1173                set_page_owner_migrate_reason(newpage, reason);
1174
1175out:
1176        if (rc != -EAGAIN) {
1177                /*
1178                 * A page that has been migrated has all references
1179                 * removed and will be freed. A page that has not been
1180                 * migrated will have kepts its references and be
1181                 * restored.
1182                 */
1183                list_del(&page->lru);
1184
1185                /*
1186                 * Compaction can migrate also non-LRU pages which are
1187                 * not accounted to NR_ISOLATED_*. They can be recognized
1188                 * as __PageMovable
1189                 */
1190                if (likely(!__PageMovable(page)))
1191                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1192                                        page_is_file_cache(page), -hpage_nr_pages(page));
1193        }
1194
1195        /*
1196         * If migration is successful, releases reference grabbed during
1197         * isolation. Otherwise, restore the page to right list unless
1198         * we want to retry.
1199         */
1200        if (rc == MIGRATEPAGE_SUCCESS) {
1201                put_page(page);
1202                if (reason == MR_MEMORY_FAILURE) {
1203                        /*
1204                         * Set PG_HWPoison on just freed page
1205                         * intentionally. Although it's rather weird,
1206                         * it's how HWPoison flag works at the moment.
1207                         */
1208                        if (set_hwpoison_free_buddy_page(page))
1209                                num_poisoned_pages_inc();
1210                }
1211        } else {
1212                if (rc != -EAGAIN) {
1213                        if (likely(!__PageMovable(page))) {
1214                                putback_lru_page(page);
1215                                goto put_new;
1216                        }
1217
1218                        lock_page(page);
1219                        if (PageMovable(page))
1220                                putback_movable_page(page);
1221                        else
1222                                __ClearPageIsolated(page);
1223                        unlock_page(page);
1224                        put_page(page);
1225                }
1226put_new:
1227                if (put_new_page)
1228                        put_new_page(newpage, private);
1229                else
1230                        put_page(newpage);
1231        }
1232
1233        return rc;
1234}
1235
1236/*
1237 * Counterpart of unmap_and_move_page() for hugepage migration.
1238 *
1239 * This function doesn't wait the completion of hugepage I/O
1240 * because there is no race between I/O and migration for hugepage.
1241 * Note that currently hugepage I/O occurs only in direct I/O
1242 * where no lock is held and PG_writeback is irrelevant,
1243 * and writeback status of all subpages are counted in the reference
1244 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1245 * under direct I/O, the reference of the head page is 512 and a bit more.)
1246 * This means that when we try to migrate hugepage whose subpages are
1247 * doing direct I/O, some references remain after try_to_unmap() and
1248 * hugepage migration fails without data corruption.
1249 *
1250 * There is also no race when direct I/O is issued on the page under migration,
1251 * because then pte is replaced with migration swap entry and direct I/O code
1252 * will wait in the page fault for migration to complete.
1253 */
1254static int unmap_and_move_huge_page(new_page_t get_new_page,
1255                                free_page_t put_new_page, unsigned long private,
1256                                struct page *hpage, int force,
1257                                enum migrate_mode mode, int reason)
1258{
1259        int rc = -EAGAIN;
1260        int page_was_mapped = 0;
1261        struct page *new_hpage;
1262        struct anon_vma *anon_vma = NULL;
1263
1264        /*
1265         * Movability of hugepages depends on architectures and hugepage size.
1266         * This check is necessary because some callers of hugepage migration
1267         * like soft offline and memory hotremove don't walk through page
1268         * tables or check whether the hugepage is pmd-based or not before
1269         * kicking migration.
1270         */
1271        if (!hugepage_migration_supported(page_hstate(hpage))) {
1272                putback_active_hugepage(hpage);
1273                return -ENOSYS;
1274        }
1275
1276        new_hpage = get_new_page(hpage, private);
1277        if (!new_hpage)
1278                return -ENOMEM;
1279
1280        if (!trylock_page(hpage)) {
1281                if (!force)
1282                        goto out;
1283                switch (mode) {
1284                case MIGRATE_SYNC:
1285                case MIGRATE_SYNC_NO_COPY:
1286                        break;
1287                default:
1288                        goto out;
1289                }
1290                lock_page(hpage);
1291        }
1292
1293        if (PageAnon(hpage))
1294                anon_vma = page_get_anon_vma(hpage);
1295
1296        if (unlikely(!trylock_page(new_hpage)))
1297                goto put_anon;
1298
1299        if (page_mapped(hpage)) {
1300                try_to_unmap(hpage,
1301                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1302                page_was_mapped = 1;
1303        }
1304
1305        if (!page_mapped(hpage))
1306                rc = move_to_new_page(new_hpage, hpage, mode);
1307
1308        if (page_was_mapped)
1309                remove_migration_ptes(hpage,
1310                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1311
1312        unlock_page(new_hpage);
1313
1314put_anon:
1315        if (anon_vma)
1316                put_anon_vma(anon_vma);
1317
1318        if (rc == MIGRATEPAGE_SUCCESS) {
1319                move_hugetlb_state(hpage, new_hpage, reason);
1320                put_new_page = NULL;
1321        }
1322
1323        unlock_page(hpage);
1324out:
1325        if (rc != -EAGAIN)
1326                putback_active_hugepage(hpage);
1327
1328        /*
1329         * If migration was not successful and there's a freeing callback, use
1330         * it.  Otherwise, put_page() will drop the reference grabbed during
1331         * isolation.
1332         */
1333        if (put_new_page)
1334                put_new_page(new_hpage, private);
1335        else
1336                putback_active_hugepage(new_hpage);
1337
1338        return rc;
1339}
1340
1341/*
1342 * migrate_pages - migrate the pages specified in a list, to the free pages
1343 *                 supplied as the target for the page migration
1344 *
1345 * @from:               The list of pages to be migrated.
1346 * @get_new_page:       The function used to allocate free pages to be used
1347 *                      as the target of the page migration.
1348 * @put_new_page:       The function used to free target pages if migration
1349 *                      fails, or NULL if no special handling is necessary.
1350 * @private:            Private data to be passed on to get_new_page()
1351 * @mode:               The migration mode that specifies the constraints for
1352 *                      page migration, if any.
1353 * @reason:             The reason for page migration.
1354 *
1355 * The function returns after 10 attempts or if no pages are movable any more
1356 * because the list has become empty or no retryable pages exist any more.
1357 * The caller should call putback_movable_pages() to return pages to the LRU
1358 * or free list only if ret != 0.
1359 *
1360 * Returns the number of pages that were not migrated, or an error code.
1361 */
1362int migrate_pages(struct list_head *from, new_page_t get_new_page,
1363                free_page_t put_new_page, unsigned long private,
1364                enum migrate_mode mode, int reason)
1365{
1366        int retry = 1;
1367        int nr_failed = 0;
1368        int nr_succeeded = 0;
1369        int pass = 0;
1370        struct page *page;
1371        struct page *page2;
1372        int swapwrite = current->flags & PF_SWAPWRITE;
1373        int rc;
1374
1375        if (!swapwrite)
1376                current->flags |= PF_SWAPWRITE;
1377
1378        for(pass = 0; pass < 10 && retry; pass++) {
1379                retry = 0;
1380
1381                list_for_each_entry_safe(page, page2, from, lru) {
1382retry:
1383                        cond_resched();
1384
1385                        if (PageHuge(page))
1386                                rc = unmap_and_move_huge_page(get_new_page,
1387                                                put_new_page, private, page,
1388                                                pass > 2, mode, reason);
1389                        else
1390                                rc = unmap_and_move(get_new_page, put_new_page,
1391                                                private, page, pass > 2, mode,
1392                                                reason);
1393
1394                        switch(rc) {
1395                        case -ENOMEM:
1396                                /*
1397                                 * THP migration might be unsupported or the
1398                                 * allocation could've failed so we should
1399                                 * retry on the same page with the THP split
1400                                 * to base pages.
1401                                 *
1402                                 * Head page is retried immediately and tail
1403                                 * pages are added to the tail of the list so
1404                                 * we encounter them after the rest of the list
1405                                 * is processed.
1406                                 */
1407                                if (PageTransHuge(page) && !PageHuge(page)) {
1408                                        lock_page(page);
1409                                        rc = split_huge_page_to_list(page, from);
1410                                        unlock_page(page);
1411                                        if (!rc) {
1412                                                list_safe_reset_next(page, page2, lru);
1413                                                goto retry;
1414                                        }
1415                                }
1416                                nr_failed++;
1417                                goto out;
1418                        case -EAGAIN:
1419                                retry++;
1420                                break;
1421                        case MIGRATEPAGE_SUCCESS:
1422                                nr_succeeded++;
1423                                break;
1424                        default:
1425                                /*
1426                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1427                                 * unlike -EAGAIN case, the failed page is
1428                                 * removed from migration page list and not
1429                                 * retried in the next outer loop.
1430                                 */
1431                                nr_failed++;
1432                                break;
1433                        }
1434                }
1435        }
1436        nr_failed += retry;
1437        rc = nr_failed;
1438out:
1439        if (nr_succeeded)
1440                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1441        if (nr_failed)
1442                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1443        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1444
1445        if (!swapwrite)
1446                current->flags &= ~PF_SWAPWRITE;
1447
1448        return rc;
1449}
1450
1451#ifdef CONFIG_NUMA
1452
1453static int store_status(int __user *status, int start, int value, int nr)
1454{
1455        while (nr-- > 0) {
1456                if (put_user(value, status + start))
1457                        return -EFAULT;
1458                start++;
1459        }
1460
1461        return 0;
1462}
1463
1464static int do_move_pages_to_node(struct mm_struct *mm,
1465                struct list_head *pagelist, int node)
1466{
1467        int err;
1468
1469        if (list_empty(pagelist))
1470                return 0;
1471
1472        err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1473                        MIGRATE_SYNC, MR_SYSCALL);
1474        if (err)
1475                putback_movable_pages(pagelist);
1476        return err;
1477}
1478
1479/*
1480 * Resolves the given address to a struct page, isolates it from the LRU and
1481 * puts it to the given pagelist.
1482 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1483 * queued or the page doesn't need to be migrated because it is already on
1484 * the target node
1485 */
1486static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1487                int node, struct list_head *pagelist, bool migrate_all)
1488{
1489        struct vm_area_struct *vma;
1490        struct page *page;
1491        unsigned int follflags;
1492        int err;
1493
1494        down_read(&mm->mmap_sem);
1495        err = -EFAULT;
1496        vma = find_vma(mm, addr);
1497        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1498                goto out;
1499
1500        /* FOLL_DUMP to ignore special (like zero) pages */
1501        follflags = FOLL_GET | FOLL_DUMP;
1502        page = follow_page(vma, addr, follflags);
1503
1504        err = PTR_ERR(page);
1505        if (IS_ERR(page))
1506                goto out;
1507
1508        err = -ENOENT;
1509        if (!page)
1510                goto out;
1511
1512        err = 0;
1513        if (page_to_nid(page) == node)
1514                goto out_putpage;
1515
1516        err = -EACCES;
1517        if (page_mapcount(page) > 1 && !migrate_all)
1518                goto out_putpage;
1519
1520        if (PageHuge(page)) {
1521                if (PageHead(page)) {
1522                        isolate_huge_page(page, pagelist);
1523                        err = 0;
1524                }
1525        } else {
1526                struct page *head;
1527
1528                head = compound_head(page);
1529                err = isolate_lru_page(head);
1530                if (err)
1531                        goto out_putpage;
1532
1533                err = 0;
1534                list_add_tail(&head->lru, pagelist);
1535                mod_node_page_state(page_pgdat(head),
1536                        NR_ISOLATED_ANON + page_is_file_cache(head),
1537                        hpage_nr_pages(head));
1538        }
1539out_putpage:
1540        /*
1541         * Either remove the duplicate refcount from
1542         * isolate_lru_page() or drop the page ref if it was
1543         * not isolated.
1544         */
1545        put_page(page);
1546out:
1547        up_read(&mm->mmap_sem);
1548        return err;
1549}
1550
1551/*
1552 * Migrate an array of page address onto an array of nodes and fill
1553 * the corresponding array of status.
1554 */
1555static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1556                         unsigned long nr_pages,
1557                         const void __user * __user *pages,
1558                         const int __user *nodes,
1559                         int __user *status, int flags)
1560{
1561        int current_node = NUMA_NO_NODE;
1562        LIST_HEAD(pagelist);
1563        int start, i;
1564        int err = 0, err1;
1565
1566        migrate_prep();
1567
1568        for (i = start = 0; i < nr_pages; i++) {
1569                const void __user *p;
1570                unsigned long addr;
1571                int node;
1572
1573                err = -EFAULT;
1574                if (get_user(p, pages + i))
1575                        goto out_flush;
1576                if (get_user(node, nodes + i))
1577                        goto out_flush;
1578                addr = (unsigned long)p;
1579
1580                err = -ENODEV;
1581                if (node < 0 || node >= MAX_NUMNODES)
1582                        goto out_flush;
1583                if (!node_state(node, N_MEMORY))
1584                        goto out_flush;
1585
1586                err = -EACCES;
1587                if (!node_isset(node, task_nodes))
1588                        goto out_flush;
1589
1590                if (current_node == NUMA_NO_NODE) {
1591                        current_node = node;
1592                        start = i;
1593                } else if (node != current_node) {
1594                        err = do_move_pages_to_node(mm, &pagelist, current_node);
1595                        if (err)
1596                                goto out;
1597                        err = store_status(status, start, current_node, i - start);
1598                        if (err)
1599                                goto out;
1600                        start = i;
1601                        current_node = node;
1602                }
1603
1604                /*
1605                 * Errors in the page lookup or isolation are not fatal and we simply
1606                 * report them via status
1607                 */
1608                err = add_page_for_migration(mm, addr, current_node,
1609                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1610                if (!err)
1611                        continue;
1612
1613                err = store_status(status, i, err, 1);
1614                if (err)
1615                        goto out_flush;
1616
1617                err = do_move_pages_to_node(mm, &pagelist, current_node);
1618                if (err)
1619                        goto out;
1620                if (i > start) {
1621                        err = store_status(status, start, current_node, i - start);
1622                        if (err)
1623                                goto out;
1624                }
1625                current_node = NUMA_NO_NODE;
1626        }
1627out_flush:
1628        if (list_empty(&pagelist))
1629                return err;
1630
1631        /* Make sure we do not overwrite the existing error */
1632        err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1633        if (!err1)
1634                err1 = store_status(status, start, current_node, i - start);
1635        if (!err)
1636                err = err1;
1637out:
1638        return err;
1639}
1640
1641/*
1642 * Determine the nodes of an array of pages and store it in an array of status.
1643 */
1644static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1645                                const void __user **pages, int *status)
1646{
1647        unsigned long i;
1648
1649        down_read(&mm->mmap_sem);
1650
1651        for (i = 0; i < nr_pages; i++) {
1652                unsigned long addr = (unsigned long)(*pages);
1653                struct vm_area_struct *vma;
1654                struct page *page;
1655                int err = -EFAULT;
1656
1657                vma = find_vma(mm, addr);
1658                if (!vma || addr < vma->vm_start)
1659                        goto set_status;
1660
1661                /* FOLL_DUMP to ignore special (like zero) pages */
1662                page = follow_page(vma, addr, FOLL_DUMP);
1663
1664                err = PTR_ERR(page);
1665                if (IS_ERR(page))
1666                        goto set_status;
1667
1668                err = page ? page_to_nid(page) : -ENOENT;
1669set_status:
1670                *status = err;
1671
1672                pages++;
1673                status++;
1674        }
1675
1676        up_read(&mm->mmap_sem);
1677}
1678
1679/*
1680 * Determine the nodes of a user array of pages and store it in
1681 * a user array of status.
1682 */
1683static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1684                         const void __user * __user *pages,
1685                         int __user *status)
1686{
1687#define DO_PAGES_STAT_CHUNK_NR 16
1688        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1689        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1690
1691        while (nr_pages) {
1692                unsigned long chunk_nr;
1693
1694                chunk_nr = nr_pages;
1695                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1696                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1697
1698                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1699                        break;
1700
1701                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1702
1703                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1704                        break;
1705
1706                pages += chunk_nr;
1707                status += chunk_nr;
1708                nr_pages -= chunk_nr;
1709        }
1710        return nr_pages ? -EFAULT : 0;
1711}
1712
1713/*
1714 * Move a list of pages in the address space of the currently executing
1715 * process.
1716 */
1717static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1718                             const void __user * __user *pages,
1719                             const int __user *nodes,
1720                             int __user *status, int flags)
1721{
1722        struct task_struct *task;
1723        struct mm_struct *mm;
1724        int err;
1725        nodemask_t task_nodes;
1726
1727        /* Check flags */
1728        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1729                return -EINVAL;
1730
1731        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1732                return -EPERM;
1733
1734        /* Find the mm_struct */
1735        rcu_read_lock();
1736        task = pid ? find_task_by_vpid(pid) : current;
1737        if (!task) {
1738                rcu_read_unlock();
1739                return -ESRCH;
1740        }
1741        get_task_struct(task);
1742
1743        /*
1744         * Check if this process has the right to modify the specified
1745         * process. Use the regular "ptrace_may_access()" checks.
1746         */
1747        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1748                rcu_read_unlock();
1749                err = -EPERM;
1750                goto out;
1751        }
1752        rcu_read_unlock();
1753
1754        err = security_task_movememory(task);
1755        if (err)
1756                goto out;
1757
1758        task_nodes = cpuset_mems_allowed(task);
1759        mm = get_task_mm(task);
1760        put_task_struct(task);
1761
1762        if (!mm)
1763                return -EINVAL;
1764
1765        if (nodes)
1766                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1767                                    nodes, status, flags);
1768        else
1769                err = do_pages_stat(mm, nr_pages, pages, status);
1770
1771        mmput(mm);
1772        return err;
1773
1774out:
1775        put_task_struct(task);
1776        return err;
1777}
1778
1779SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1780                const void __user * __user *, pages,
1781                const int __user *, nodes,
1782                int __user *, status, int, flags)
1783{
1784        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1785}
1786
1787#ifdef CONFIG_COMPAT
1788COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1789                       compat_uptr_t __user *, pages32,
1790                       const int __user *, nodes,
1791                       int __user *, status,
1792                       int, flags)
1793{
1794        const void __user * __user *pages;
1795        int i;
1796
1797        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1798        for (i = 0; i < nr_pages; i++) {
1799                compat_uptr_t p;
1800
1801                if (get_user(p, pages32 + i) ||
1802                        put_user(compat_ptr(p), pages + i))
1803                        return -EFAULT;
1804        }
1805        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1806}
1807#endif /* CONFIG_COMPAT */
1808
1809#ifdef CONFIG_NUMA_BALANCING
1810/*
1811 * Returns true if this is a safe migration target node for misplaced NUMA
1812 * pages. Currently it only checks the watermarks which crude
1813 */
1814static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1815                                   unsigned long nr_migrate_pages)
1816{
1817        int z;
1818
1819        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820                struct zone *zone = pgdat->node_zones + z;
1821
1822                if (!populated_zone(zone))
1823                        continue;
1824
1825                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1826                if (!zone_watermark_ok(zone, 0,
1827                                       high_wmark_pages(zone) +
1828                                       nr_migrate_pages,
1829                                       0, 0))
1830                        continue;
1831                return true;
1832        }
1833        return false;
1834}
1835
1836static struct page *alloc_misplaced_dst_page(struct page *page,
1837                                           unsigned long data)
1838{
1839        int nid = (int) data;
1840        struct page *newpage;
1841
1842        newpage = __alloc_pages_node(nid,
1843                                         (GFP_HIGHUSER_MOVABLE |
1844                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1845                                          __GFP_NORETRY | __GFP_NOWARN) &
1846                                         ~__GFP_RECLAIM, 0);
1847
1848        return newpage;
1849}
1850
1851static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1852{
1853        int page_lru;
1854
1855        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1856
1857        /* Avoid migrating to a node that is nearly full */
1858        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1859                return 0;
1860
1861        if (isolate_lru_page(page))
1862                return 0;
1863
1864        /*
1865         * migrate_misplaced_transhuge_page() skips page migration's usual
1866         * check on page_count(), so we must do it here, now that the page
1867         * has been isolated: a GUP pin, or any other pin, prevents migration.
1868         * The expected page count is 3: 1 for page's mapcount and 1 for the
1869         * caller's pin and 1 for the reference taken by isolate_lru_page().
1870         */
1871        if (PageTransHuge(page) && page_count(page) != 3) {
1872                putback_lru_page(page);
1873                return 0;
1874        }
1875
1876        page_lru = page_is_file_cache(page);
1877        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1878                                hpage_nr_pages(page));
1879
1880        /*
1881         * Isolating the page has taken another reference, so the
1882         * caller's reference can be safely dropped without the page
1883         * disappearing underneath us during migration.
1884         */
1885        put_page(page);
1886        return 1;
1887}
1888
1889bool pmd_trans_migrating(pmd_t pmd)
1890{
1891        struct page *page = pmd_page(pmd);
1892        return PageLocked(page);
1893}
1894
1895/*
1896 * Attempt to migrate a misplaced page to the specified destination
1897 * node. Caller is expected to have an elevated reference count on
1898 * the page that will be dropped by this function before returning.
1899 */
1900int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1901                           int node)
1902{
1903        pg_data_t *pgdat = NODE_DATA(node);
1904        int isolated;
1905        int nr_remaining;
1906        LIST_HEAD(migratepages);
1907
1908        /*
1909         * Don't migrate file pages that are mapped in multiple processes
1910         * with execute permissions as they are probably shared libraries.
1911         */
1912        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1913            (vma->vm_flags & VM_EXEC))
1914                goto out;
1915
1916        /*
1917         * Also do not migrate dirty pages as not all filesystems can move
1918         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1919         */
1920        if (page_is_file_cache(page) && PageDirty(page))
1921                goto out;
1922
1923        isolated = numamigrate_isolate_page(pgdat, page);
1924        if (!isolated)
1925                goto out;
1926
1927        list_add(&page->lru, &migratepages);
1928        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1929                                     NULL, node, MIGRATE_ASYNC,
1930                                     MR_NUMA_MISPLACED);
1931        if (nr_remaining) {
1932                if (!list_empty(&migratepages)) {
1933                        list_del(&page->lru);
1934                        dec_node_page_state(page, NR_ISOLATED_ANON +
1935                                        page_is_file_cache(page));
1936                        putback_lru_page(page);
1937                }
1938                isolated = 0;
1939        } else
1940                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1941        BUG_ON(!list_empty(&migratepages));
1942        return isolated;
1943
1944out:
1945        put_page(page);
1946        return 0;
1947}
1948#endif /* CONFIG_NUMA_BALANCING */
1949
1950#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1951/*
1952 * Migrates a THP to a given target node. page must be locked and is unlocked
1953 * before returning.
1954 */
1955int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1956                                struct vm_area_struct *vma,
1957                                pmd_t *pmd, pmd_t entry,
1958                                unsigned long address,
1959                                struct page *page, int node)
1960{
1961        spinlock_t *ptl;
1962        pg_data_t *pgdat = NODE_DATA(node);
1963        int isolated = 0;
1964        struct page *new_page = NULL;
1965        int page_lru = page_is_file_cache(page);
1966        unsigned long start = address & HPAGE_PMD_MASK;
1967
1968        new_page = alloc_pages_node(node,
1969                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1970                HPAGE_PMD_ORDER);
1971        if (!new_page)
1972                goto out_fail;
1973        prep_transhuge_page(new_page);
1974
1975        isolated = numamigrate_isolate_page(pgdat, page);
1976        if (!isolated) {
1977                put_page(new_page);
1978                goto out_fail;
1979        }
1980
1981        /* Prepare a page as a migration target */
1982        __SetPageLocked(new_page);
1983        if (PageSwapBacked(page))
1984                __SetPageSwapBacked(new_page);
1985
1986        /* anon mapping, we can simply copy page->mapping to the new page: */
1987        new_page->mapping = page->mapping;
1988        new_page->index = page->index;
1989        /* flush the cache before copying using the kernel virtual address */
1990        flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
1991        migrate_page_copy(new_page, page);
1992        WARN_ON(PageLRU(new_page));
1993
1994        /* Recheck the target PMD */
1995        ptl = pmd_lock(mm, pmd);
1996        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1997                spin_unlock(ptl);
1998
1999                /* Reverse changes made by migrate_page_copy() */
2000                if (TestClearPageActive(new_page))
2001                        SetPageActive(page);
2002                if (TestClearPageUnevictable(new_page))
2003                        SetPageUnevictable(page);
2004
2005                unlock_page(new_page);
2006                put_page(new_page);             /* Free it */
2007
2008                /* Retake the callers reference and putback on LRU */
2009                get_page(page);
2010                putback_lru_page(page);
2011                mod_node_page_state(page_pgdat(page),
2012                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2013
2014                goto out_unlock;
2015        }
2016
2017        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2018        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2019
2020        /*
2021         * Overwrite the old entry under pagetable lock and establish
2022         * the new PTE. Any parallel GUP will either observe the old
2023         * page blocking on the page lock, block on the page table
2024         * lock or observe the new page. The SetPageUptodate on the
2025         * new page and page_add_new_anon_rmap guarantee the copy is
2026         * visible before the pagetable update.
2027         */
2028        page_add_anon_rmap(new_page, vma, start, true);
2029        /*
2030         * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2031         * has already been flushed globally.  So no TLB can be currently
2032         * caching this non present pmd mapping.  There's no need to clear the
2033         * pmd before doing set_pmd_at(), nor to flush the TLB after
2034         * set_pmd_at().  Clearing the pmd here would introduce a race
2035         * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2036         * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2037         * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2038         * pmd.
2039         */
2040        set_pmd_at(mm, start, pmd, entry);
2041        update_mmu_cache_pmd(vma, address, &entry);
2042
2043        page_ref_unfreeze(page, 2);
2044        mlock_migrate_page(new_page, page);
2045        page_remove_rmap(page, true);
2046        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2047
2048        spin_unlock(ptl);
2049
2050        /* Take an "isolate" reference and put new page on the LRU. */
2051        get_page(new_page);
2052        putback_lru_page(new_page);
2053
2054        unlock_page(new_page);
2055        unlock_page(page);
2056        put_page(page);                 /* Drop the rmap reference */
2057        put_page(page);                 /* Drop the LRU isolation reference */
2058
2059        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2060        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2061
2062        mod_node_page_state(page_pgdat(page),
2063                        NR_ISOLATED_ANON + page_lru,
2064                        -HPAGE_PMD_NR);
2065        return isolated;
2066
2067out_fail:
2068        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2069        ptl = pmd_lock(mm, pmd);
2070        if (pmd_same(*pmd, entry)) {
2071                entry = pmd_modify(entry, vma->vm_page_prot);
2072                set_pmd_at(mm, start, pmd, entry);
2073                update_mmu_cache_pmd(vma, address, &entry);
2074        }
2075        spin_unlock(ptl);
2076
2077out_unlock:
2078        unlock_page(page);
2079        put_page(page);
2080        return 0;
2081}
2082#endif /* CONFIG_NUMA_BALANCING */
2083
2084#endif /* CONFIG_NUMA */
2085
2086#if defined(CONFIG_MIGRATE_VMA_HELPER)
2087struct migrate_vma {
2088        struct vm_area_struct   *vma;
2089        unsigned long           *dst;
2090        unsigned long           *src;
2091        unsigned long           cpages;
2092        unsigned long           npages;
2093        unsigned long           start;
2094        unsigned long           end;
2095};
2096
2097static int migrate_vma_collect_hole(unsigned long start,
2098                                    unsigned long end,
2099                                    struct mm_walk *walk)
2100{
2101        struct migrate_vma *migrate = walk->private;
2102        unsigned long addr;
2103
2104        for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2105                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2106                migrate->dst[migrate->npages] = 0;
2107                migrate->npages++;
2108                migrate->cpages++;
2109        }
2110
2111        return 0;
2112}
2113
2114static int migrate_vma_collect_skip(unsigned long start,
2115                                    unsigned long end,
2116                                    struct mm_walk *walk)
2117{
2118        struct migrate_vma *migrate = walk->private;
2119        unsigned long addr;
2120
2121        for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2122                migrate->dst[migrate->npages] = 0;
2123                migrate->src[migrate->npages++] = 0;
2124        }
2125
2126        return 0;
2127}
2128
2129static int migrate_vma_collect_pmd(pmd_t *pmdp,
2130                                   unsigned long start,
2131                                   unsigned long end,
2132                                   struct mm_walk *walk)
2133{
2134        struct migrate_vma *migrate = walk->private;
2135        struct vm_area_struct *vma = walk->vma;
2136        struct mm_struct *mm = vma->vm_mm;
2137        unsigned long addr = start, unmapped = 0;
2138        spinlock_t *ptl;
2139        pte_t *ptep;
2140
2141again:
2142        if (pmd_none(*pmdp))
2143                return migrate_vma_collect_hole(start, end, walk);
2144
2145        if (pmd_trans_huge(*pmdp)) {
2146                struct page *page;
2147
2148                ptl = pmd_lock(mm, pmdp);
2149                if (unlikely(!pmd_trans_huge(*pmdp))) {
2150                        spin_unlock(ptl);
2151                        goto again;
2152                }
2153
2154                page = pmd_page(*pmdp);
2155                if (is_huge_zero_page(page)) {
2156                        spin_unlock(ptl);
2157                        split_huge_pmd(vma, pmdp, addr);
2158                        if (pmd_trans_unstable(pmdp))
2159                                return migrate_vma_collect_skip(start, end,
2160                                                                walk);
2161                } else {
2162                        int ret;
2163
2164                        get_page(page);
2165                        spin_unlock(ptl);
2166                        if (unlikely(!trylock_page(page)))
2167                                return migrate_vma_collect_skip(start, end,
2168                                                                walk);
2169                        ret = split_huge_page(page);
2170                        unlock_page(page);
2171                        put_page(page);
2172                        if (ret)
2173                                return migrate_vma_collect_skip(start, end,
2174                                                                walk);
2175                        if (pmd_none(*pmdp))
2176                                return migrate_vma_collect_hole(start, end,
2177                                                                walk);
2178                }
2179        }
2180
2181        if (unlikely(pmd_bad(*pmdp)))
2182                return migrate_vma_collect_skip(start, end, walk);
2183
2184        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2185        arch_enter_lazy_mmu_mode();
2186
2187        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2188                unsigned long mpfn, pfn;
2189                struct page *page;
2190                swp_entry_t entry;
2191                pte_t pte;
2192
2193                pte = *ptep;
2194                pfn = pte_pfn(pte);
2195
2196                if (pte_none(pte)) {
2197                        mpfn = MIGRATE_PFN_MIGRATE;
2198                        migrate->cpages++;
2199                        pfn = 0;
2200                        goto next;
2201                }
2202
2203                if (!pte_present(pte)) {
2204                        mpfn = pfn = 0;
2205
2206                        /*
2207                         * Only care about unaddressable device page special
2208                         * page table entry. Other special swap entries are not
2209                         * migratable, and we ignore regular swapped page.
2210                         */
2211                        entry = pte_to_swp_entry(pte);
2212                        if (!is_device_private_entry(entry))
2213                                goto next;
2214
2215                        page = device_private_entry_to_page(entry);
2216                        mpfn = migrate_pfn(page_to_pfn(page))|
2217                                MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2218                        if (is_write_device_private_entry(entry))
2219                                mpfn |= MIGRATE_PFN_WRITE;
2220                } else {
2221                        if (is_zero_pfn(pfn)) {
2222                                mpfn = MIGRATE_PFN_MIGRATE;
2223                                migrate->cpages++;
2224                                pfn = 0;
2225                                goto next;
2226                        }
2227                        page = _vm_normal_page(migrate->vma, addr, pte, true);
2228                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2229                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2230                }
2231
2232                /* FIXME support THP */
2233                if (!page || !page->mapping || PageTransCompound(page)) {
2234                        mpfn = pfn = 0;
2235                        goto next;
2236                }
2237                pfn = page_to_pfn(page);
2238
2239                /*
2240                 * By getting a reference on the page we pin it and that blocks
2241                 * any kind of migration. Side effect is that it "freezes" the
2242                 * pte.
2243                 *
2244                 * We drop this reference after isolating the page from the lru
2245                 * for non device page (device page are not on the lru and thus
2246                 * can't be dropped from it).
2247                 */
2248                get_page(page);
2249                migrate->cpages++;
2250
2251                /*
2252                 * Optimize for the common case where page is only mapped once
2253                 * in one process. If we can lock the page, then we can safely
2254                 * set up a special migration page table entry now.
2255                 */
2256                if (trylock_page(page)) {
2257                        pte_t swp_pte;
2258
2259                        mpfn |= MIGRATE_PFN_LOCKED;
2260                        ptep_get_and_clear(mm, addr, ptep);
2261
2262                        /* Setup special migration page table entry */
2263                        entry = make_migration_entry(page, mpfn &
2264                                                     MIGRATE_PFN_WRITE);
2265                        swp_pte = swp_entry_to_pte(entry);
2266                        if (pte_soft_dirty(pte))
2267                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
2268                        set_pte_at(mm, addr, ptep, swp_pte);
2269
2270                        /*
2271                         * This is like regular unmap: we remove the rmap and
2272                         * drop page refcount. Page won't be freed, as we took
2273                         * a reference just above.
2274                         */
2275                        page_remove_rmap(page, false);
2276                        put_page(page);
2277
2278                        if (pte_present(pte))
2279                                unmapped++;
2280                }
2281
2282next:
2283                migrate->dst[migrate->npages] = 0;
2284                migrate->src[migrate->npages++] = mpfn;
2285        }
2286        arch_leave_lazy_mmu_mode();
2287        pte_unmap_unlock(ptep - 1, ptl);
2288
2289        /* Only flush the TLB if we actually modified any entries */
2290        if (unmapped)
2291                flush_tlb_range(walk->vma, start, end);
2292
2293        return 0;
2294}
2295
2296/*
2297 * migrate_vma_collect() - collect pages over a range of virtual addresses
2298 * @migrate: migrate struct containing all migration information
2299 *
2300 * This will walk the CPU page table. For each virtual address backed by a
2301 * valid page, it updates the src array and takes a reference on the page, in
2302 * order to pin the page until we lock it and unmap it.
2303 */
2304static void migrate_vma_collect(struct migrate_vma *migrate)
2305{
2306        struct mm_walk mm_walk;
2307
2308        mm_walk.pmd_entry = migrate_vma_collect_pmd;
2309        mm_walk.pte_entry = NULL;
2310        mm_walk.pte_hole = migrate_vma_collect_hole;
2311        mm_walk.hugetlb_entry = NULL;
2312        mm_walk.test_walk = NULL;
2313        mm_walk.vma = migrate->vma;
2314        mm_walk.mm = migrate->vma->vm_mm;
2315        mm_walk.private = migrate;
2316
2317        mmu_notifier_invalidate_range_start(mm_walk.mm,
2318                                            migrate->start,
2319                                            migrate->end);
2320        walk_page_range(migrate->start, migrate->end, &mm_walk);
2321        mmu_notifier_invalidate_range_end(mm_walk.mm,
2322                                          migrate->start,
2323                                          migrate->end);
2324
2325        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2326}
2327
2328/*
2329 * migrate_vma_check_page() - check if page is pinned or not
2330 * @page: struct page to check
2331 *
2332 * Pinned pages cannot be migrated. This is the same test as in
2333 * migrate_page_move_mapping(), except that here we allow migration of a
2334 * ZONE_DEVICE page.
2335 */
2336static bool migrate_vma_check_page(struct page *page)
2337{
2338        /*
2339         * One extra ref because caller holds an extra reference, either from
2340         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2341         * a device page.
2342         */
2343        int extra = 1;
2344
2345        /*
2346         * FIXME support THP (transparent huge page), it is bit more complex to
2347         * check them than regular pages, because they can be mapped with a pmd
2348         * or with a pte (split pte mapping).
2349         */
2350        if (PageCompound(page))
2351                return false;
2352
2353        /* Page from ZONE_DEVICE have one extra reference */
2354        if (is_zone_device_page(page)) {
2355                /*
2356                 * Private page can never be pin as they have no valid pte and
2357                 * GUP will fail for those. Yet if there is a pending migration
2358                 * a thread might try to wait on the pte migration entry and
2359                 * will bump the page reference count. Sadly there is no way to
2360                 * differentiate a regular pin from migration wait. Hence to
2361                 * avoid 2 racing thread trying to migrate back to CPU to enter
2362                 * infinite loop (one stoping migration because the other is
2363                 * waiting on pte migration entry). We always return true here.
2364                 *
2365                 * FIXME proper solution is to rework migration_entry_wait() so
2366                 * it does not need to take a reference on page.
2367                 */
2368                if (is_device_private_page(page))
2369                        return true;
2370
2371                /*
2372                 * Only allow device public page to be migrated and account for
2373                 * the extra reference count imply by ZONE_DEVICE pages.
2374                 */
2375                if (!is_device_public_page(page))
2376                        return false;
2377                extra++;
2378        }
2379
2380        /* For file back page */
2381        if (page_mapping(page))
2382                extra += 1 + page_has_private(page);
2383
2384        if ((page_count(page) - extra) > page_mapcount(page))
2385                return false;
2386
2387        return true;
2388}
2389
2390/*
2391 * migrate_vma_prepare() - lock pages and isolate them from the lru
2392 * @migrate: migrate struct containing all migration information
2393 *
2394 * This locks pages that have been collected by migrate_vma_collect(). Once each
2395 * page is locked it is isolated from the lru (for non-device pages). Finally,
2396 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2397 * migrated by concurrent kernel threads.
2398 */
2399static void migrate_vma_prepare(struct migrate_vma *migrate)
2400{
2401        const unsigned long npages = migrate->npages;
2402        const unsigned long start = migrate->start;
2403        unsigned long addr, i, restore = 0;
2404        bool allow_drain = true;
2405
2406        lru_add_drain();
2407
2408        for (i = 0; (i < npages) && migrate->cpages; i++) {
2409                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2410                bool remap = true;
2411
2412                if (!page)
2413                        continue;
2414
2415                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2416                        /*
2417                         * Because we are migrating several pages there can be
2418                         * a deadlock between 2 concurrent migration where each
2419                         * are waiting on each other page lock.
2420                         *
2421                         * Make migrate_vma() a best effort thing and backoff
2422                         * for any page we can not lock right away.
2423                         */
2424                        if (!trylock_page(page)) {
2425                                migrate->src[i] = 0;
2426                                migrate->cpages--;
2427                                put_page(page);
2428                                continue;
2429                        }
2430                        remap = false;
2431                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2432                }
2433
2434                /* ZONE_DEVICE pages are not on LRU */
2435                if (!is_zone_device_page(page)) {
2436                        if (!PageLRU(page) && allow_drain) {
2437                                /* Drain CPU's pagevec */
2438                                lru_add_drain_all();
2439                                allow_drain = false;
2440                        }
2441
2442                        if (isolate_lru_page(page)) {
2443                                if (remap) {
2444                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2445                                        migrate->cpages--;
2446                                        restore++;
2447                                } else {
2448                                        migrate->src[i] = 0;
2449                                        unlock_page(page);
2450                                        migrate->cpages--;
2451                                        put_page(page);
2452                                }
2453                                continue;
2454                        }
2455
2456                        /* Drop the reference we took in collect */
2457                        put_page(page);
2458                }
2459
2460                if (!migrate_vma_check_page(page)) {
2461                        if (remap) {
2462                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2463                                migrate->cpages--;
2464                                restore++;
2465
2466                                if (!is_zone_device_page(page)) {
2467                                        get_page(page);
2468                                        putback_lru_page(page);
2469                                }
2470                        } else {
2471                                migrate->src[i] = 0;
2472                                unlock_page(page);
2473                                migrate->cpages--;
2474
2475                                if (!is_zone_device_page(page))
2476                                        putback_lru_page(page);
2477                                else
2478                                        put_page(page);
2479                        }
2480                }
2481        }
2482
2483        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2484                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2485
2486                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2487                        continue;
2488
2489                remove_migration_pte(page, migrate->vma, addr, page);
2490
2491                migrate->src[i] = 0;
2492                unlock_page(page);
2493                put_page(page);
2494                restore--;
2495        }
2496}
2497
2498/*
2499 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2500 * @migrate: migrate struct containing all migration information
2501 *
2502 * Replace page mapping (CPU page table pte) with a special migration pte entry
2503 * and check again if it has been pinned. Pinned pages are restored because we
2504 * cannot migrate them.
2505 *
2506 * This is the last step before we call the device driver callback to allocate
2507 * destination memory and copy contents of original page over to new page.
2508 */
2509static void migrate_vma_unmap(struct migrate_vma *migrate)
2510{
2511        int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2512        const unsigned long npages = migrate->npages;
2513        const unsigned long start = migrate->start;
2514        unsigned long addr, i, restore = 0;
2515
2516        for (i = 0; i < npages; i++) {
2517                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2518
2519                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2520                        continue;
2521
2522                if (page_mapped(page)) {
2523                        try_to_unmap(page, flags);
2524                        if (page_mapped(page))
2525                                goto restore;
2526                }
2527
2528                if (migrate_vma_check_page(page))
2529                        continue;
2530
2531restore:
2532                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2533                migrate->cpages--;
2534                restore++;
2535        }
2536
2537        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2538                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2539
2540                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2541                        continue;
2542
2543                remove_migration_ptes(page, page, false);
2544
2545                migrate->src[i] = 0;
2546                unlock_page(page);
2547                restore--;
2548
2549                if (is_zone_device_page(page))
2550                        put_page(page);
2551                else
2552                        putback_lru_page(page);
2553        }
2554}
2555
2556static void migrate_vma_insert_page(struct migrate_vma *migrate,
2557                                    unsigned long addr,
2558                                    struct page *page,
2559                                    unsigned long *src,
2560                                    unsigned long *dst)
2561{
2562        struct vm_area_struct *vma = migrate->vma;
2563        struct mm_struct *mm = vma->vm_mm;
2564        struct mem_cgroup *memcg;
2565        bool flush = false;
2566        spinlock_t *ptl;
2567        pte_t entry;
2568        pgd_t *pgdp;
2569        p4d_t *p4dp;
2570        pud_t *pudp;
2571        pmd_t *pmdp;
2572        pte_t *ptep;
2573
2574        /* Only allow populating anonymous memory */
2575        if (!vma_is_anonymous(vma))
2576                goto abort;
2577
2578        pgdp = pgd_offset(mm, addr);
2579        p4dp = p4d_alloc(mm, pgdp, addr);
2580        if (!p4dp)
2581                goto abort;
2582        pudp = pud_alloc(mm, p4dp, addr);
2583        if (!pudp)
2584                goto abort;
2585        pmdp = pmd_alloc(mm, pudp, addr);
2586        if (!pmdp)
2587                goto abort;
2588
2589        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2590                goto abort;
2591
2592        /*
2593         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2594         * pte_offset_map() on pmds where a huge pmd might be created
2595         * from a different thread.
2596         *
2597         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2598         * parallel threads are excluded by other means.
2599         *
2600         * Here we only have down_read(mmap_sem).
2601         */
2602        if (pte_alloc(mm, pmdp, addr))
2603                goto abort;
2604
2605        /* See the comment in pte_alloc_one_map() */
2606        if (unlikely(pmd_trans_unstable(pmdp)))
2607                goto abort;
2608
2609        if (unlikely(anon_vma_prepare(vma)))
2610                goto abort;
2611        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2612                goto abort;
2613
2614        /*
2615         * The memory barrier inside __SetPageUptodate makes sure that
2616         * preceding stores to the page contents become visible before
2617         * the set_pte_at() write.
2618         */
2619        __SetPageUptodate(page);
2620
2621        if (is_zone_device_page(page)) {
2622                if (is_device_private_page(page)) {
2623                        swp_entry_t swp_entry;
2624
2625                        swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2626                        entry = swp_entry_to_pte(swp_entry);
2627                } else if (is_device_public_page(page)) {
2628                        entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2629                        if (vma->vm_flags & VM_WRITE)
2630                                entry = pte_mkwrite(pte_mkdirty(entry));
2631                        entry = pte_mkdevmap(entry);
2632                }
2633        } else {
2634                entry = mk_pte(page, vma->vm_page_prot);
2635                if (vma->vm_flags & VM_WRITE)
2636                        entry = pte_mkwrite(pte_mkdirty(entry));
2637        }
2638
2639        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2640
2641        if (pte_present(*ptep)) {
2642                unsigned long pfn = pte_pfn(*ptep);
2643
2644                if (!is_zero_pfn(pfn)) {
2645                        pte_unmap_unlock(ptep, ptl);
2646                        mem_cgroup_cancel_charge(page, memcg, false);
2647                        goto abort;
2648                }
2649                flush = true;
2650        } else if (!pte_none(*ptep)) {
2651                pte_unmap_unlock(ptep, ptl);
2652                mem_cgroup_cancel_charge(page, memcg, false);
2653                goto abort;
2654        }
2655
2656        /*
2657         * Check for usefaultfd but do not deliver the fault. Instead,
2658         * just back off.
2659         */
2660        if (userfaultfd_missing(vma)) {
2661                pte_unmap_unlock(ptep, ptl);
2662                mem_cgroup_cancel_charge(page, memcg, false);
2663                goto abort;
2664        }
2665
2666        inc_mm_counter(mm, MM_ANONPAGES);
2667        page_add_new_anon_rmap(page, vma, addr, false);
2668        mem_cgroup_commit_charge(page, memcg, false, false);
2669        if (!is_zone_device_page(page))
2670                lru_cache_add_active_or_unevictable(page, vma);
2671        get_page(page);
2672
2673        if (flush) {
2674                flush_cache_page(vma, addr, pte_pfn(*ptep));
2675                ptep_clear_flush_notify(vma, addr, ptep);
2676                set_pte_at_notify(mm, addr, ptep, entry);
2677                update_mmu_cache(vma, addr, ptep);
2678        } else {
2679                /* No need to invalidate - it was non-present before */
2680                set_pte_at(mm, addr, ptep, entry);
2681                update_mmu_cache(vma, addr, ptep);
2682        }
2683
2684        pte_unmap_unlock(ptep, ptl);
2685        *src = MIGRATE_PFN_MIGRATE;
2686        return;
2687
2688abort:
2689        *src &= ~MIGRATE_PFN_MIGRATE;
2690}
2691
2692/*
2693 * migrate_vma_pages() - migrate meta-data from src page to dst page
2694 * @migrate: migrate struct containing all migration information
2695 *
2696 * This migrates struct page meta-data from source struct page to destination
2697 * struct page. This effectively finishes the migration from source page to the
2698 * destination page.
2699 */
2700static void migrate_vma_pages(struct migrate_vma *migrate)
2701{
2702        const unsigned long npages = migrate->npages;
2703        const unsigned long start = migrate->start;
2704        struct vm_area_struct *vma = migrate->vma;
2705        struct mm_struct *mm = vma->vm_mm;
2706        unsigned long addr, i, mmu_start;
2707        bool notified = false;
2708
2709        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2710                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2711                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2712                struct address_space *mapping;
2713                int r;
2714
2715                if (!newpage) {
2716                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2717                        continue;
2718                }
2719
2720                if (!page) {
2721                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2722                                continue;
2723                        }
2724                        if (!notified) {
2725                                mmu_start = addr;
2726                                notified = true;
2727                                mmu_notifier_invalidate_range_start(mm,
2728                                                                mmu_start,
2729                                                                migrate->end);
2730                        }
2731                        migrate_vma_insert_page(migrate, addr, newpage,
2732                                                &migrate->src[i],
2733                                                &migrate->dst[i]);
2734                        continue;
2735                }
2736
2737                mapping = page_mapping(page);
2738
2739                if (is_zone_device_page(newpage)) {
2740                        if (is_device_private_page(newpage)) {
2741                                /*
2742                                 * For now only support private anonymous when
2743                                 * migrating to un-addressable device memory.
2744                                 */
2745                                if (mapping) {
2746                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2747                                        continue;
2748                                }
2749                        } else if (!is_device_public_page(newpage)) {
2750                                /*
2751                                 * Other types of ZONE_DEVICE page are not
2752                                 * supported.
2753                                 */
2754                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2755                                continue;
2756                        }
2757                }
2758
2759                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2760                if (r != MIGRATEPAGE_SUCCESS)
2761                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2762        }
2763
2764        /*
2765         * No need to double call mmu_notifier->invalidate_range() callback as
2766         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2767         * did already call it.
2768         */
2769        if (notified)
2770                mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2771                                                       migrate->end);
2772}
2773
2774/*
2775 * migrate_vma_finalize() - restore CPU page table entry
2776 * @migrate: migrate struct containing all migration information
2777 *
2778 * This replaces the special migration pte entry with either a mapping to the
2779 * new page if migration was successful for that page, or to the original page
2780 * otherwise.
2781 *
2782 * This also unlocks the pages and puts them back on the lru, or drops the extra
2783 * refcount, for device pages.
2784 */
2785static void migrate_vma_finalize(struct migrate_vma *migrate)
2786{
2787        const unsigned long npages = migrate->npages;
2788        unsigned long i;
2789
2790        for (i = 0; i < npages; i++) {
2791                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2792                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2793
2794                if (!page) {
2795                        if (newpage) {
2796                                unlock_page(newpage);
2797                                put_page(newpage);
2798                        }
2799                        continue;
2800                }
2801
2802                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2803                        if (newpage) {
2804                                unlock_page(newpage);
2805                                put_page(newpage);
2806                        }
2807                        newpage = page;
2808                }
2809
2810                remove_migration_ptes(page, newpage, false);
2811                unlock_page(page);
2812                migrate->cpages--;
2813
2814                if (is_zone_device_page(page))
2815                        put_page(page);
2816                else
2817                        putback_lru_page(page);
2818
2819                if (newpage != page) {
2820                        unlock_page(newpage);
2821                        if (is_zone_device_page(newpage))
2822                                put_page(newpage);
2823                        else
2824                                putback_lru_page(newpage);
2825                }
2826        }
2827}
2828
2829/*
2830 * migrate_vma() - migrate a range of memory inside vma
2831 *
2832 * @ops: migration callback for allocating destination memory and copying
2833 * @vma: virtual memory area containing the range to be migrated
2834 * @start: start address of the range to migrate (inclusive)
2835 * @end: end address of the range to migrate (exclusive)
2836 * @src: array of hmm_pfn_t containing source pfns
2837 * @dst: array of hmm_pfn_t containing destination pfns
2838 * @private: pointer passed back to each of the callback
2839 * Returns: 0 on success, error code otherwise
2840 *
2841 * This function tries to migrate a range of memory virtual address range, using
2842 * callbacks to allocate and copy memory from source to destination. First it
2843 * collects all the pages backing each virtual address in the range, saving this
2844 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2845 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2846 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2847 * in the corresponding src array entry. It then restores any pages that are
2848 * pinned, by remapping and unlocking those pages.
2849 *
2850 * At this point it calls the alloc_and_copy() callback. For documentation on
2851 * what is expected from that callback, see struct migrate_vma_ops comments in
2852 * include/linux/migrate.h
2853 *
2854 * After the alloc_and_copy() callback, this function goes over each entry in
2855 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2856 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2857 * then the function tries to migrate struct page information from the source
2858 * struct page to the destination struct page. If it fails to migrate the struct
2859 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2860 * array.
2861 *
2862 * At this point all successfully migrated pages have an entry in the src
2863 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2864 * array entry with MIGRATE_PFN_VALID flag set.
2865 *
2866 * It then calls the finalize_and_map() callback. See comments for "struct
2867 * migrate_vma_ops", in include/linux/migrate.h for details about
2868 * finalize_and_map() behavior.
2869 *
2870 * After the finalize_and_map() callback, for successfully migrated pages, this
2871 * function updates the CPU page table to point to new pages, otherwise it
2872 * restores the CPU page table to point to the original source pages.
2873 *
2874 * Function returns 0 after the above steps, even if no pages were migrated
2875 * (The function only returns an error if any of the arguments are invalid.)
2876 *
2877 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2878 * unsigned long entries.
2879 */
2880int migrate_vma(const struct migrate_vma_ops *ops,
2881                struct vm_area_struct *vma,
2882                unsigned long start,
2883                unsigned long end,
2884                unsigned long *src,
2885                unsigned long *dst,
2886                void *private)
2887{
2888        struct migrate_vma migrate;
2889
2890        /* Sanity check the arguments */
2891        start &= PAGE_MASK;
2892        end &= PAGE_MASK;
2893        if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2894                        vma_is_dax(vma))
2895                return -EINVAL;
2896        if (start < vma->vm_start || start >= vma->vm_end)
2897                return -EINVAL;
2898        if (end <= vma->vm_start || end > vma->vm_end)
2899                return -EINVAL;
2900        if (!ops || !src || !dst || start >= end)
2901                return -EINVAL;
2902
2903        memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2904        migrate.src = src;
2905        migrate.dst = dst;
2906        migrate.start = start;
2907        migrate.npages = 0;
2908        migrate.cpages = 0;
2909        migrate.end = end;
2910        migrate.vma = vma;
2911
2912        /* Collect, and try to unmap source pages */
2913        migrate_vma_collect(&migrate);
2914        if (!migrate.cpages)
2915                return 0;
2916
2917        /* Lock and isolate page */
2918        migrate_vma_prepare(&migrate);
2919        if (!migrate.cpages)
2920                return 0;
2921
2922        /* Unmap pages */
2923        migrate_vma_unmap(&migrate);
2924        if (!migrate.cpages)
2925                return 0;
2926
2927        /*
2928         * At this point pages are locked and unmapped, and thus they have
2929         * stable content and can safely be copied to destination memory that
2930         * is allocated by the callback.
2931         *
2932         * Note that migration can fail in migrate_vma_struct_page() for each
2933         * individual page.
2934         */
2935        ops->alloc_and_copy(vma, src, dst, start, end, private);
2936
2937        /* This does the real migration of struct page */
2938        migrate_vma_pages(&migrate);
2939
2940        ops->finalize_and_map(vma, src, dst, start, end, private);
2941
2942        /* Unlock and remap pages */
2943        migrate_vma_finalize(&migrate);
2944
2945        return 0;
2946}
2947EXPORT_SYMBOL(migrate_vma);
2948#endif /* defined(MIGRATE_VMA_HELPER) */
2949